AI-TOCRACY

Martin Beraja (MIT) Andrew Kao (Harvard) David Yang (Harvard) Noam Yuchtman (LSE)

NBER Summer Institute, 2022

Conventional wisdom: autocracies are fundamentally misaligned with innovation

(Lipset, 1959; Barro, 1996; Acemoglu and Robinson 2006; Glaeser et al., 2007; North et al. 2009)

MOTIVATION: SUSTAINED INNOVATION UNDER AUTOCRACY?

- Conventional wisdom: autocracies are fundamentally misaligned with innovation (Lipset, 1959; Barro, 1996; Acemoglu and Robinson 2006; Glaeser et al., 2007; North et al. 2009)
- This paper: innovation in frontier techs. can be sustained under autocracy when they mutually reinforce each other
 - 1. Frontier technology increases autocrats' probability of maintaining power
 - 2. Autocrats' spending on this tech. generates broader innovation spillovers

MOTIVATION: SUSTAINED INNOVATION UNDER AUTOCRACY?

- Conventional wisdom: autocracies are fundamentally misaligned with innovation (Lipset, 1959; Barro, 1996; Acemoglu and Robinson 2006; Glaeser et al., 2007; North et al. 2009)
- This paper: innovation in frontier techs. can be sustained under autocracy when they mutually reinforce each other
 - 1. Frontier technology increases autocrats' probability of maintaining power
 - 2. Autocrats' spending on this tech. generates broader innovation spillovers
- AI may possess features that lead to a mutually reinforcing relationship
 - 1. As a technology of prediction, autocrats may be able to use AI for social / political control (Zuboff, 2019; Tirole, 2021; Acemoglu, 2021)
 - 2. Traditional spillovers (Moretti et al. 2019) + Sharability of gov't data / algo's (Beraja et al. 2022)

What are the international ramifications of China's leadership in this surveillance tech?

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI firms

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI firms

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
- 2. Obtain universe of government contracts
 - 2,997,105 contracts
 - Source: Chinese Govt. Procurement Database (Ministry of Finance)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI firms

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
- 2. Obtain universe of government contracts
 - 2,997,105 contracts
 - Source: Chinese Govt. Procurement Database (Ministry of Finance)
- 3. Link government **buyers** to AI **suppliers**
 - 10,677 AI contracts issued by public security arms of government (e.g., local police department)
 - Data also on procurement of Al-capable surveillance cameras

Protests and other episodes of political unrest:

- ► Daily level events in China from GDELT, a database tracking hundreds of news sites
- Use machine learning analysis to classify articles into those indicating political unrest (protests, demands, threats, etc.)
- ► There are 9,267 of these events from 2014 2020 throughout China
 - E.g., Shanghai residents protest against property law; traders protest against banks; ...
- ► Aggregate daily unrest to quarterly level; build on IV literature with different aggregation across stages (Inoue and Solon 2010, Angrist and Krueger 1992)

Protests and other episodes of political unrest:

- ► Daily level events in China from GDELT, a database tracking hundreds of news sites
- Use machine learning analysis to classify articles into those indicating political unrest (protests, demands, threats, etc.)
- ► There are 9,267 of these events from 2014 2020 throughout China
 - E.g., Shanghai residents protest against property law; traders protest against banks; ...
- ► Aggregate daily unrest to quarterly level; build on IV literature with different aggregation across stages (Inoue and Solon 2010, Angrist and Krueger 1992)

Weather

- Daily weather data from 260 weather stations across China
- LASSO regression to predict unrest events with 30 weather variables (e.g., temperature, precipitation, windspeed) and their interactions

- Diff-in-diff: panel specification, controlling for location and time FEs
- LASSO IV: instrument unrest with local weather conditions
 - Similar results using parsimonious IV, LIML, and JIVE
- ► Al x Cameras: complementarity?

	Public security AI procurement				
	(1)	(2)	(3)	(4)	
Panel A.1: OLS, AI					
Unrest events	0.199***	0.198***	0.199***	0.200***	
	(0.043)	(0.045)	(0.044)	(0.043)	
Panel A.2: Lasso IV,	AI				
Unrest events	0.388***	0.387***	0.388***	0.388***	
	(0.088)	(0.088)	(0.088)	(0.087)	
Panel B.1: OLS, AI X	surveilland	ce cameras			
Unrest events	0.681***	0.669***	0.680***	0.674***	
	(0.154)	(0.157)	(0.155)	(0.150)	
Panel B.2: Lasso IV,	AI X survei	llance came	eras		
Unrest events	1.099***	1.083***	1.099^{***}	1.085***	
	(0.390)	(0.385)	(0.390)	(0.384)	
$GDP \times time$	Yes	No	No	Yes	
Population × time	No	Yes	No	Yes	
Gov. revenue \times time	No	No	Yes	Yes	

\uparrow Public security AI stock in quarter $t \Longrightarrow$ Effect on unrest t + 1?

Problematic to directly examine effect of AI stock on subsequent unrest events

Positive autocorrelation between such events; and AI procurement is endogenous

► Instead, examine whether AI tempers the effect of good weather on unrest events

Also, look at AI in combinations with cameras, and placebo using non-public security AI

	Standardized number of unrest events							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Procurement of AI								
Favorable weather	0.9082***	0.9422***	0.9089***	0.9410***	0.9315***	0.9705***	0.9323***	0.9684***
	(0.1576)	(0.1564)	(0.1579)	(0.1510)	(0.1646)	(0.1632)	(0.1650)	(0.1574)
Public security procurement stock AI_{t-1}	-0.0096**	-0.0057	-0.0096**	-0.0044				
	(0.0048)	(0.0061)	(0.0048)	(0.0056)				
Favorable weather \times public security AI_{t-1}	-0.2626*	-0.3152*	-0.2623*	-0.3088*				
	(0.1563)	(0.1742)	(0.1570)	(0.1687)				
Non-public security procurement stock AI_{t-1}					-0.0025	-0.0027	-0.0025	-0.0024
					(0.0017)	(0.0020)	(0.0017)	(0.0018)
Favorable weather \times non-public security AI_{t-1}					-0.0492	-0.0576	-0.0495	-0.0535
					(0.0367)	(0.0411)	(0.0372)	(0.0375)
Panel B: Procurement of AI X procurement of a	surveillance c	ameras						
Favorable weather	0.8989***	0.9325***	0.8994***	0.9327***	0.9554***	0.9945***	0.9562***	0.9926***
	(0.1549)	(0.1524)	(0.1552)	(0.1480)	(0.1691)	(0.1659)	(0.1695)	(0.1605)
Public security procurement stock AI_{t-1}	0.2923***	0.3158***	0.2917***	0.3081***				
	(0.1083)	(0.0991)	(0.1081)	(0.0948)				
Favorable weather \times public security AI_{t-1}	-0.7096***	-0.7952***	-0.7144***	-0.7789***				
	(0.2302)	(0.2412)	(0.2323)	(0.2248)				
Non-public security procurement stock AI_{t-1}					0.0605	0.0626	0.0608	0.0601
					(0.0600)	(0.0592)	(0.0603)	(0.0572)
Favorable weather \times non-public security AI_{t-1}					0.7558	0.8049	0.7573	0.7744
					(0.6020)	(0.6015)	(0.6043)	(0.5801)
$GDP \times time$	Yes	No	No	Yes	Yes	No	No	Yes
Log population × time	No	Yes	No	Yes	No	Yes	No	Yes
Gov. revenue × time	No	No	Yes	Yes	No	No	Yes	Yes

6 / 18

Registered with Min. of Industry and Information Technology

- Validation exercise: check against IPO Prospectus of MegVii

Categorize software outputs:

- 1. By intended customers: e.g., government, commercial (customer tracing system in retail space)
- 2. By intended use: e.g., surveillance related (tools to locate relatives in the city)
- 3. Use Recurrent Neural Network (RNN) model, LSTM algorithm; with 13,000 manually labeled training set

\uparrow Politically motivated public security AI procurement in quarter $t\Longrightarrow$ \uparrow Commercial AI innovation in t+1

- 1. Politically motivated public security contracts: those from location with above median unrest at t - 1
- 2. **Triple Diff:** before/after firms receive 1st politically motivated contract, then compare to non-public sec. contracts

Panel B: Commercial

\uparrow Politically motivated public security AI procurement in quarter $t\Longrightarrow$ \uparrow Exports of AI in t+1

	Newly exporting firm				
	(1)	(2)	(3)	(4)	
Panel A: high unrest contracts					
Public security	0.054^{*}	0.049**	0.056**	0.052**	
	(0.027)	(0.023)	(0.026)	(0.025)	
Contract quarter FE	No	Yes	Yes	Yes	
Contract prefecture FE	No	Yes	Yes	Yes	
Pre-contract software	No	No	Yes	Yes	
Firm age	No	No	No	Yes	

1. Alignment between autocrats demand for social control and AI innovation

- ► Could shed light on prominent episodes of frontier innovation under non-democracies
 - Aerospace technology in the USSR
 - Chemical engineering innovation in Imperial Germany

1. Alignment between autocrats demand for social control and AI innovation

- ► Could shed light on prominent episodes of frontier innovation under non-democracies
 - Aerospace technology in the USSR
 - Chemical engineering innovation in Imperial Germany

- 2. If China exports surveillance AI, what are the international ramifications?
 - China's comparative advantage in AI: \uparrow state demand $\implies \uparrow$ firms' global competitiveness
 - Political bias: support autocracies and weak democracies abroad

1. Global trade in facial recognition AI from 2008 to 2021

- 1.1 Trade deals from the bibliography of "Carnegie report" (Feldstein, 2019)
 - ▶ International procurement of AI surveillance tech by governments (1300 citations, 75 countries)
 - Identify key variables with Stanza: exporting / importing countries, year of the deal, exporting firm, and whether smart city. Then, human verifies that entries are indeed AI trade deals.
- 1.2 Report not comprehensive \longrightarrow Search firm websites and news/media references to them
 - Examples: "Safe City Service Brings the Future to Laos: Huawei case studies," "Bosch equips Hong Kong-Zhuhai-Macao Bridge with customized security solutions"
 - Again, use Stanza plus human verification.

In all, 1377 AI trade deals from 37 exporting countries to 132 importing countries

2. Trade in other frontier technologies and country characteristics

- UN Comtrade database: trade volume in 16 SITC codes related to 10 techs. in the OECD's "Science, Technology and Innovation Outlook" (Robotics, genomics, neuroscience, ...)
- Helpman et al (2008): distance between countries, common border, free trade agreement, colonial history, legal system, language, or religion
- ► GDP (World Bank), AI investment (Netbase Quid), regime type (Polity IV Project)

3. Political unrest

- GDELT project: **unrest events** from a global, comprehensive set of news feeds
- E.g., "Laos: Police arrests 8 activists planning to stage protests to condemn land grabs and dam projects, later releases 6 of them"

CHINA'S COMPARATIVE ADVANTAGE IN FACIAL RECOGNITION AI

CHINA'S COMPARATIVE ADVANTAGE IN FACIAL RECOGNITION AI

More likely to export AI than other frontier technologies relative to the rest of the world

Linear probability model

 $trade_{ijs} = \beta_1 \mathbf{1}_{i=China} + \beta_2 \mathbf{1}_{s=AI} + \beta_3 \mathbf{1}_{i=China,s=AI} + X_{ij} + u_{ijs}$

Table 1: China vs. rest of world, AI vs. frontier technologies

	Engage in trade				
	(1)	(2)	(3)	(4)	
Origin China	-0.026	-0.026	-0.012	-0.026	
-	(0.024)	(0.025)	(0.025)	(0.024)	
AI	-0.358***	-0.359***	-0.357***	-0.356***	
	(0.012)	(0.012)	(0.012)	(0.012)	
Origin China X AI	0.477***	0.477***	0.463***	0.477***	
	(0.029)	(0.032)	(0.031)	(0.030)	
N	402300	402300	402300	402300	
Importer/exporter GDP	Yes	Yes	Yes	Yes	
Log distance	Yes	Yes	Yes	Yes	
Border/trade characteristics	No	Yes	No	No	
Institutional characteristics	No	No	Yes	No	
Geographical characteristics	No	No	No	Yes	

Same relative to the US or focusing on smart city AI

IN NO OTHER TECH CHINA HAS SUCH EXPORTING DOMINANCE

14 / 18

POLITICAL BIAS IN CHINESE FACIAL RECOGNITION AI EXPORTS

Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

POLITICAL BIAS IN CHINESE FACIAL RECOGNITION AI EXPORTS

More likely to export AI to autocracies and weak democ. relative to other frontier tech

Democracies: Polity Score 7 or greater. Autocracies and weak democracies: Polity Score below 7

	(0.108)	(0.103)	(0.125)	(0.112)
N	2394	2394	2394	2394
Importer GDP	Yes	Yes	Yes	Yes
Log distance	Yes	Yes	Yes	Yes
Border/trade characteristics	No	Yes	No	No
Institutional characteristics	No	No	Yes	No
Coographical characteristics	No	No	No	Vac

No bias in **US** AI exports

Linear probability model

 $trade_{is}^{China} = \beta_1 \mathbf{1}_{j=\text{Low}} + \beta_2 \mathbf{1}_{s=\text{AI}} + \beta_3 \mathbf{1}_{j=\text{Low},s=\text{AI}} + X_j + u_{js}$

China exports

	(1)	(2)	(3)	(4)
Destination low Polity score	-0.004	-0.003	-0.003	0.000
	(0.003)	(0.003)	(0.005)	(0.003
AI	-0.650***	-0.668***	-0.151	-0.653*
	(0.103)	(0.105)	(0.839)	(0.102
Destination low Polity score X AI	0.256**	0.309***	0.245*	0.251*
	(0.108)	(0.105)	(0.125)	(0.112
N	2394	2394	2394	2394
Importer GDP	Yes	Yes	Yes	Yes
Log distance	Yes	Yes	Yes	Yes
Border/trade characteristics	No	Yes	No	No
Institutional characteristics	No	No	Yes	No
Geographical characteristics	No	No	No	Yes

NO BIAS IN ANY OTHER FRONTIER TECH EXPORTED BY CHINA

More likely to export AI to autocracies and weak democracies experiencing political unrest

$$trade_{jt}^{China,AI} = \sum_{T} \beta_{1T} unrest_{jt} + \alpha_t + \gamma_j + u_{jt}$$

Other frontier tech imports in weak democracies aren't associated with unrest

- 1. China's facial recognition AI exports may strengthen and beget autocracies abroad
- 2. Frame AI trade regulations around those on products with global externalities
 - ▶ Dual-use (military-civilian) technologies, which can contribute to global conflict
 - Goods using inputs that are unethically sourced, such as child labor
 - Polluting goods