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Abstract

Clustered standard errors, with clusters defined by factors such as geography, are
widespread in empirical research in economics and many other disciplines. For-
mally, clustered standard errors adjust for the correlations induced by sampling
the outcome variable from a data-generating process with unobserved cluster-
level components. However, the standard econometric framework for clustering
leaves important questions unanswered: (i) Why do we adjust standard errors for
clustering in some ways but not others, e.g., by state but not by gender, and in
observational studies, but not in completely randomized experiments? (%) Why is
conventional clustering an “all-or-nothing” adjustment, while within-cluster cor-
relations can be strong or extremely weak? (iii) In what settings does the choice
of whether and how to cluster make a difference? We address these and other
questions using a novel framework for clustered inference on average treatment
effects. In addition to the common sampling component, the new framework
incorporates a design component that accounts for the variability induced on the
estimator by the treatment assignment mechanism. We show that, when the
number of clusters in the sample is a non-negligible fraction of the number of
clusters in the population, conventional cluster standard errors can be severely
inflated, and propose new variance estimators that correct for this bias.

The questions addressed in this article partly originated in discussions with Gary Chamberlain. We are
grateful for questions raised by Chris Blattman and seminar audiences, and for insightful comments by Colin
Cameron, Vicente Guerra, four reviewers, Larry Katz, and Jesse Shapiro. Jaume Vives-i-Bastida provided
expert research assistance. This work was supported by the Office of Naval Research under grants N00014-
17-1-2131 and N00014-19-1-2468.



1. Introduction

Imagine you estimated the effect of attending college on labor earnings using linear regression
on a cross-section of U.S. workers. How should you calculate the standard error? Empirical
studies in economics often report heteroskedasticity-robust standard errors (henceforth “ro-
bust”) associated with the work by Eicker [1963], Huber [1967], and White [1980]. A common
alternative is to report cluster-robust standard errors (henceforth “cluster”) associated with
the work by Liang and Zeger [1986] and Arellano [1987], with clustering often applied within
geographic units such as states or counties. Moulton [1986, 1987] and Bertrand, Duflo, and
Mullainathan [2004] have shown that clustering adjustments can make a substantial differ-
ence, and since the 1980s cluster standard errors have become commonplace in empirical
economics.

Later in this section, we estimate a log-linear regression of earnings on an indicator for
some college using data from the 2000 U.S. Census. We find that standard errors clustered
at the state level are more than 20 times larger than robust standard errors. Which ones
should a researcher report? The conventional framework for clustering [see Cameron and
Miller, 2015, MacKinnon, Nielsen, and Webb, 2021, for recent reviews| suggests that if the
clustering adjustment matters, in the sense that the cluster standard errors are substantially
larger than the robust standard errors, one should use the cluster standard errors. In this
article, we develop a new framework for cluster adjustments to standard errors that nests the
conventional framework as a limiting case. The new framework suggests novel standard error
formulas that can substantially improve over robust and cluster standard errors in settings
like the earnings regression described above.

Our proposed clustering framework differs from the standard one in that it includes a
design component that accounts for between-clusters variation in treatment assignments.
We argue that the new design component is important because between-cluster variation
in treatment assignments often motivates the use of clustered standard errors in empiri-
cal studies [see, e.g., Gentzkow and Shapiro, 2008, Cohen and Dupas, 2010]. In addition,

our framework shifts the focus of interest from features of infinite super-populations/data-



generating processes to average treatment effects defined for the finite (but potentially large)
population at hand. As a result of this shift, it is the sampling process and the treatment
assignment mechanism that solely determine the correct level of clustering; the presence
of cluster-level unobserved components of the outcome variable becomes irrelevant for the
choice of clustering level. Moreover, by focusing on finite populations (which could be en-
tirely or substantially sampled in the data) we obtain standard errors smaller than those
aiming to measure uncertainty with respect to features of infinite super-populations. We
derive the large sample variances for the least squares and fixed effect estimators under our
proposed framework and show that they differ in general from both the robust and the clus-
ter variances. We also propose two estimators for the large sample variances, one analytic
and one based on a re-sampling (bootstrap) approach. For the U.S. earnings application,
our proposals produce standard errors that are substantially larger than the robust standard
errors, but also substantially smaller than the conventional version of cluster standard errors.

We use our framework to highlight three common misconceptions surrounding clustering
adjustments. The first misconception is that the need for clustering hinges on the presence
of a non-zero correlation between residuals for units belonging to the same cluster. We show
that the presence of such correlation does not imply the need to use cluster adjustments,
and that the absence of such correlation does not imply that clustering is not required. The
second misconception is that there is no harm in using clustering adjustments when they are
not required, with the implication that if clustering the standard errors makes a difference,
one should do so. To see that both of these claims are in fact incorrect, consider the following
simple example. Suppose that, based on a random sample from the population of interest,
we use the sample average of a variable to estimate its population mean. Suppose also
that the population can be partitioned into clusters such as geographical units. If outcomes
are positively correlated within clusters, the cluster variance will be larger than the robust
variance. However, standard sampling theory directly implies that if the units are sampled
randomly from the population there is no need to cluster. The harm in clustering in this case

is that confidence intervals will be unnecessarily conservative, possibly by a wide margin.



A third misconception is that researchers have only two choices: either fully adjust for
clustering and use the cluster standard errors, or not adjust the standard errors at all and
use the robust standard errors. We show that a combination of the robust and the cluster
variance estimators can substantially improve accuracy over its two components.

The new clustering framework in this article has the advantage of providing actionable
guidance on a question of substantial consequence for empirical practice in econometrics:
When should standard errors be clustered, and at what level? In the conventional model-
based econometric framework, the researcher takes a stand on the error component structure
of a model for the outcome variable. For example, suppose that, following Moulton [1986,
1987], the researcher posits a random effects model, with random effects at the state level. In
this setting, a repeated sampling thought experiment entails that, for each sample, different
values of the state random effects are drawn from their distributions. This model-based
approach implies that if we are estimating a population mean using a sample average one
needs to cluster the standard errors at the state level even if the sample is a random sample
of individuals and not a clustered sample. A drawback of the model-based econometric
framework for clustering is that empirical researchers need to take a stand on the structure
of the error components of their models.

A second, closely related, framework for clustering that is often invoked in the economet-
rics literature is motivated by a sampling mechanism that in a first stage selects clusters at
random from an infinite population, followed by a second stage of random sampling of units
from the sampled clusters (or keeping all units in a cluster). Although this framework is
appropriate for some applications in the analyses of surveys, where it originated [Kish, 1995,
Thompson, 2012], we argue that it is not appropriate for many of the data sets economists
and other social scientists analyze. In many applications in economics, researchers do ob-
serve units from all the clusters they are interested in, e.g., all the states in the U.S., and
a framework based on randomly sampling a small fraction of a large population of clusters
does not apply.

Neither of the two conventional frameworks for clustered inference described above fully



incorporates the design aspect of clustering. And it is the lack of a design component that
makes them inappropriate for inference on treatment effects. To gain insight on the impor-
tance of the assignment mechanism for the standard errors of treatment effects estimators,
consider a setting with individuals sampled at random from a population, but where treat-
ment is assigned at the cluster level, with the same treatment value for all the individuals in
the same cluster. Assume that the quantity of interest is the population average treatment
effect. Clustered assignment to treatment is equivalent to clustered sampling of potential
outcomes. Because the parameter of interest depends on averages of potential outcomes,
which are sampled in a clustered manner, clustering of the standard errors is required in this
setting, even when the individual observations are sampled at random. Our framework for
clustered inference in this setting is close in spirit to the sampling framework described in
the previous paragraph, but it incorporates a design component.

By shifting the attention from parameters of a data generating process for the outcomes to
the average treatment effect for the population at hand, a researcher applying the proposals
in this article does not need to take a stand on the error component structure of a model
for the outcome variable to calculate standard errors. Instead, all the relevant variability
of the estimator with respect to the average treatment effect is generated by the sampling
mechanism, which extracts the sample from the population, and the assignment mechanism,
which determines which units are exposed to the treatment. We see this as an intrinsic
advantage of the framework proposed in this article in settings where it is difficult to justify
a particular error component structure.

In this article we make three contributions. The first one is a novel framework for
clustering, building on the one developed by Abadie et al. [2020] for the analysis of regression
estimators from a design perspective. We allow for clustering both in the sampling process
and in the assignment process. As a result, the framework nests both the traditional case of
clustered sampling and the case of clustered treatment assignment in experiments as special
cases. It also allows for intermediate cases. In particular, treatment assignment may depend

on cluster but not perfectly so, and there remains variation in treatments within-clusters.



This framework clarifies the separate roles of clustering in the sampling process and clustering
in the assignment process. It also clarifies what we can learn from the data about the need
to adjust standard errors for clustering. In our framework, the data are not informative
about the need to adjust for clustering in the sampling process, but they are informative
about the need to adjust for clustering in the assignment process.

In our second contribution, we derive central limit theorems and large sample variances
for the least squares and the fixed effect estimators of average treatment effects that take
into account variation both from sampling and assignment. Comparing these variances to
limit versions of the robust and cluster variances shows that the robust standard errors are
generally too small, and the cluster standard errors are unnecessarily conservative. These
comparisons also highlight how heterogeneity in treatment effects affects inference in the esti-
mation of average treatment effects. Often researchers specify models that implicitly assume
constant treatment effects without appreciating the implications for inference. We show,
however, that heterogeneity in treatment effects introduces additional variance components
that affect the need for clustering adjustments.

In our third contribution, we propose new variance formulas and bootstrap procedures
for treatment effects estimators in the presence of clustering. We use the term Causal Cluster
Variance (CCV) for the analytic variance formulas. For the case of a least squares estimator
of average treatment effects, the intuition for the CCV variance formula is as follows. The
error of the least squares estimator is approximately equal to a sum, over all units, of
an expression involving products of regression errors and regressors values. The robust
variance is approximately equal to a sum, over all units, of the squares of these products.
In contrast, the conventional cluster variance estimator is approximately equal to a sum,
over all clusters, of squares of within-cluster sums of the same products. Although the sum
over all clusters of the expectation of the within-cluster sums of these products is zero, the
expectation for each cluster separately is not. For each cluster in the sample, it is possible to
estimate the expectation of the sum of the products between regression errors and regressors

values. The CCV formula uses these estimates to correct the bias of the conventional cluster



variance. The CCV correction does not help much if only a small fraction of clusters are
sampled. However, when a large fraction of the clusters are represented in the sample, the
CCV correction can lead to substantial improvements. This adjustment relies on estimates
of cluster-level treatment effects, and thus requires within-cluster variation in treatment
assignment. In addition, we propose a bootstrap version of the variance estimator., which
we compare to two benchmarks. In contrast to conventional bootstrap procedures, which
are based on resampling individual units or entire clusters of units, our proposed Two-Stage-
Cluster-Bootstrap (TSCB) conducts resampling in two stages. In the first stage, the fraction
treated for each cluster is drawn from the empirical distribution of cluster-specific treatment
fractions. In the second stage, the researcher samples the treated and control units from
each cluster, with their number of units determined in the first stage. The CCV and TSCB
variance estimators are designed for applications with large number of observations and
substantial variation in treatment assignment within clusters.

To illustrate the empirical relevance of our results, we analyze a sample from the 2000
U.S. Decennial Census, which includes 2,632,838 individuals. We define 52 clusters according
to residency in the 50 states, Puerto Rico, and the District of Columbia. We consider two
log-linear regressions of individual earnings on a treatment variable that encodes information
on college attendance. In the first specification, the treatment variable is measured as an
average, at the state level. In a second specification, we measure college attendance at the
individual level.

In Panel A of Table 1, we report results for a regression where the only explanatory
variable is a binary treatment that takes value one if the fraction of individuals with at least
some college residing in the state is 0.55 or higher, and value zero otherwise (we chose the
0.55 value to ensure sufficient variation in the treatment over the 52 clusters). Notice that the
treatment is constant within states. We report the ordinary least squares (OLS) estimate, as
well as robust and cluster standard errors. Since the late 1980s, it has been common practice
to report cluster standard errors in settings where the regressors are constant within a cluster.

Clustering at the state level makes a substantial difference relative to using robust standard



Table 1: College effects in the Census sample

Dependent variable: Log labor earnings
Panel A
Treatment: State indicator for share of some
college greater than 0.55

OLS
coefficient 0.1022
standard error:
robust (0.0012)
cluster (0.0312)
Panel B
Treatment: Individual indicator for some college
OLS FE
coefficient 0.4656 0.4570
standard error:
robust (0.0012) (0.0012)
cluster (0.0269) (0.0276)
causal cluster variance (CCV) (0.0035) (0.0014)
two-stage cluster bootstrap (TSCB) (0.0036) (0.0014)

errors, with the cluster standard errors approximately twenty-six times larger than the robust
standard errors.

In Panel B of Table 1, the sole regressor is an individual-level indicator for at least some
college. In addition to OLS, we report the fixed effects (FE) estimate (with fixed effects for
the 50 states, plus Washington DC and Puerto Rico) and robust, cluster, CCV, and TSCB
standard errors in parentheses. Like for the regression of the first panel, clustering at the
state level makes a substantial difference in the standard errors, with the cluster standard
errors approximately twenty-three times larger than the robust standard errors, both for the
OLS and the FE regressions. In Panel B, our proposed CCV and TSCB standard errors for
the OLS estimate are 0.0035 and 0.0036 respectively, in between the robust standard errors
(0.0012) and the cluster standard errors (0.0269), and substantially different from both. The
same holds for the FE estimator. The cluster standard error is 0.0276, quite different from

the robust standard errors, 0.0012. The CCV and TSCB standard errors are 0.0014, in



between robust and cluster but much closer to robust.

2. A Framework for Clustering

In this section, we describe in detail the framework for our analysis. There are multiple
components to our set-up that are not explicitly modeled in the usual analysis of the variance
of econometric estimators. In general, quantifying the uncertainty of parameter estimates
requires describing the population and articulating the assumptions that describe how the
sample was generated from that population (that is, building a model for the data generating
process). In our framework, there are three distinct sources of sampling variation that lead
to variation in the estimates. First, there is variation across samples in which units are
observed in each cluster. Second, there is potentially variation in which clusters are observed
(which leads to different units being observed). Third, there is variation in the treatment
assignment across units. Whereas the standard framework for clustering focuses solely on
the first two (sampling) sources of uncertainty, our proposed framework allows for all three.
How much these three components matter for the variance of the least squares and fixed
effects estimators of the average treatment effect depends on (i) the sampling process, (ii)
the assignment process, and (i) the heterogeneity in the treatment effects across clusters.
To facilitate the calculation of asymptotic approximations in a range of relevant settings
for empirical practice, it is convenient to formally consider a sequence of populations where
we can separately control the fraction of units in the population that are sampled and the

fraction of clusters in the population that is sampled, as well as the assignment mechanism.

2.1. A Sequence of Populations

We have a sequence of populations indexed by k. The k-th population has n; units, indexed
by i = 1,...,n,. The population is partitioned into my clusters. Let my; € {1,...,my}
denote the cluster that unit ¢ of population k& belongs to. The number of units in cluster m
of population k is ny,, = 1. For each unit, 7, there are two potential outcomes, yj;(1) and
Yr.i(0), corresponding to treatment and no treatment. Thus the population is characterized

by the set of triples (mg, yri(0),yx:(1)), for units 1,...,n; and clusters 1,...,my. The



object of interest is the population average treatment effect
1 &
Tk = — Z(ylm(l) - yk1<0)>
Lt
The population average treatment effect by cluster is

e = — S e = m s(1) — p1s(0)).

Mem 55
Therefore,
mg
. nk’,m
T = —n Tk,m-
m=1 k

We assume that potential outcomes, yx,(1) and yx,;(0), are bounded in absolute value, uni-
formly for all (k,1).

For each unit in the population, we define the stochastic treatment indicator, Wy ; € {0, 1}.
The realized outcome for unit ¢ in population k is Yj; = yx;(W;,). For a random sample of
the population, we observe the triple (Y} ;, Wi ;, m ;). Inclusion in the sample is represented
by the random variable Ry ;, which takes value one if unit ¢ belongs to the sample, and value
zero if not. We next describe the two components of the stochastic nature of the sample:
the sampling process that determines the values of Ry ;, and the assignment process that

determines the values of W ;.

2.2. The Sampling Process

The sampling process that determines the values of Ry, is independent of the potential
outcomes and the assignments. It consists of two stages. First, clusters are sampled with
cluster sampling probability ¢ € (0,1]. Second, units are sampled from the subpopulation
consisting of all the sampled clusters, with unit sampling probability equal to py € (0,1].
Both ¢, and pp may be equal to one, or close to zero. If ¢, = 1, we sample all clusters.
If pr. = 1, we sample all units from the sampled clusters. If ¢ = pp = 1, all units in the
population are sampled. The standard framework for analyzing clustering focuses on the
special case where g, — 0, so only a small fraction of the clusters in the population are

sampled. The case ¢z = 1 and pr — 0 corresponds to taking a relatively small random
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sample of units from the population. While this is an important special case, there are also
many applications where the sampled clusters comprise a large fraction of the overall set of
clusters. We refer to the case of qx = 1 as random sampling and to the case of ¢ < 1 as

clustered sampling.

2.3. The Assignment Process

The assignment process that determines the values of Wj, ; also consists of two stages. In the
first stage of the assignment process, for cluster m in population k, an assignment probability
Agm € ]0,1] is drawn randomly from a distribution with mean py, bounded away from zero
and one uniformly in &, and variance o, independently for each cluster. The variance o
is key. If o7 is zero, then Ay, is the same for all m, and W}, is randomly assigned across
clusters. We refer to this case as random assignment. For positive values of o7 assignment
probabilities depend on cluster. Because A} ,, < Agm, it follows that o is bounded above
by fu(1 — 1) and that the bound is attained when Ay, can only take values zero or one, so
all units within a cluster have the same values for the treatment. We use the term clustered
assignment to refer to the case o7 = (1 — pz), when there is no within-cluster variation in
Wi.i. We use the term partially clustered assignment to refer to the case 0 < o2 < (1 —pg),
where assignment depends on cluster but not all units in the same cluster necessarily have

the same value of Wy ;. In the second stage of the assignment process, each unit in cluster

m is assigned to the treatment independently, with cluster-specific probability Ay .

3. The Least Squares Estimator and its Variance

Let
Nk Nk
New =D ReiWii  and - Nig = Y Rii(1— Wiy)

=1 i=1

be the number of treated and untreated units in the sample, respectively; these are random
variables. The total sample size is N = Ny 1 + Nip.
We first analyze the OLS estimator of a regression of the outcome Y} ; on an intercept

and the treatment indicator Wy ;. The OLS estimator (modified so it is well-defined even
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when Ny 1 = 0 or Ni = 0) is equal to the difference in means:

Nngk 23
Tk = ﬁ ; Ry Wi iYii — W ; Ry (1 — W) Yei, (1)
where N1 v 1 and Ni v 1 are the maxima of Ny ; and 1 and of Njo and 1, respectively.
We make the following assumptions about the sampling process and the cluster sizes: (i)
myqr, — 00, (1) iminfy_,, py ming, ny,, > 0, and (4ii) lim sup,,_,,, max,, N,/ ming, N, <
o0. The first assumption implies that the expected number of sampled clusters goes to infinity
as k increases. The second assumption implies that the average number of observations
sampled per cluster, conditional on the cluster being sampled, does not go to zero. The third
assumption restricts the imbalance between the number of units across clusters. Notice that
assumptions (i) and (i) imply ngprgr — 0, so the sample size becomes larger in expectation

as k increases.

3.1. Large k Distribution of the Least Squares Estimator

Our first main result derives the large k distribution of 7. Let ax = (1/ng) 2%, yr.i(0),
ug,i(1) =y (1) — (o + %), and u;(0) = yx;(0) — . Under additional regularity conditions
in the Appendix,

VNG — ) /o) =5 N(0,1),

()

e 1 — ik

- pkni Z (uri(1) = uk,i(O))2 - pkdzni Z (u;“(l) + u’“(o))

[t kN Mk L — pe

where

+ (1 — Qk)nik > <Z Ui = m (up(1) - Uk,i(o))>

m=1 i=1

+pk0§ik Zk: (i Lmy,; = m}<uk’i<1) + uk’i(o)>) : (2)

S\a [k 1 — i
The expression for the variance v, has multiple terms that make its interpretation challeng-

ing. We first interpret v, in some special cases to highlight the implications of clustered
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sampling and clustered assignment. In Section 3.3, we compare vy, to the large-k form of the
robust and cluster variance estimators.
For the case of random sampling (g = 1) and random assignment (o7 = 0), the variance

simplifies to

L9 (R0 BN 8

i

As we show in Section 3.2 below, the first term in this variance is estimated by the robust
variance estimator. The second term is a finite sample correction that is familiar from the
literature on randomized experiments [e.g., Neyman, 1923/1990, Imbens and Rubin, 2015,
Abadie et al., 2020]. This finite sample correction vanishes if there is either no heterogeneity
in the treatment effects (so ug;(1) — ui(0) = yk,i(1) — yx:(0) — 7, = 0), or if the sample is a
small fraction of the population (p; ~ 0).

Adding clustered sampling, g, < 1, increases the variance by

UETEDY (Z s = m) (ea(1) — uk,i<o>)> ,

m=1 i=1

which is the same as
1 &

Z nim(rkm —73)%.

m=1

pr(l — qk)n_k
This term vanishes if there is no heterogeneity in the average treatment effect across clusters.
Although the sample is informative about heterogeneity in cluster average treatment effects,
it is not informative about the value of ¢,. Information about the need to adjust for clustered

sampling (gx < 1) must come from outside the sample.

Clustered assignment, o7 > 0, adds two terms to the variance,

o 1T & (upi(1) wei(0)\° ,1 & (& wi() ua (Y
_pkakn_kz( - ()+1k_( i) +pwkn—k§] (Zl{mk,z‘zm}< - (>+ ki )>> :

i=1 Hk m=1 \i=1 20" - Mk

As we explain in more detail in section 3.3, the sign of this expression depends on the
amount of variation in potential outcomes that can be explained by the clusters. Note that
in contrast to the lack of sample information about the need to adjust for clustered sampling,

the sample is potentially informative about the need to account for clustered assignment.
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The five terms making up the asymptotic variance v, can be of different order. The first
term is an average of bounded terms, and so under our assumptions will be of order O(1).
The second and third terms will be at most of the same order as the first one. If pp ~ 0 so
we can think of the sample as small relative to the population of sampled clusters, the first
term dominates the second and third terms. If cluster sizes are bounded as k increases, the
fourth and fifth terms in are also order O(1). If, on the other hand, cluster sizes increase
with k, these terms can be of higher order and dominate the variance. Whether they do
so or not depends on the (i) magnitude of py, (ii) presence of clustering in sampling, (7ii)

presence of clustering in assignment, and (7v) heterogeneity in potential outcomes.

3.2. The Robust and Cluster Robust Variance Estimators

Let (7';” = Yy, — ax — TWi,; be the residuals from the regression of Yy ; or a constant and
Wii. Here, Qy, is the intercept of the regression and 7 is the coeflicient on Wy ; (equal to
the expression in (1) with probability approaching one).

There are two common estimators of the variance of /N (7, —73). First, the conventional

robust variance estimator (Eicker [1963], Huber [1967], White [1980]):

~ 1 1 2k ~ _
robust 2 2
= = N'RUE Wi — W) (3)
k — — kiY ki k2t k ’
Wi(1 =Ty {Nk; }
where
_ 1 Dk
Wi = Ry i Wi
L AV ; ki Wk,
Let
e = 1§ (10D 0
F e =\ Mk 1— )
Under regularity conditions (see appendix), \A/kmb““ and vi°P"t are close in the following sense,
‘//\;Crobust U]l;obust
= +op(1),
o o p(1)
motivating our focus on the comparison of vi°""t and vy,. In general the difference v}°P"* — vy,

can be positive or negative, so the robust variance estimator can be invalid in large samples.
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The second common variance estimator is the cluster variance [Liang and Zeger, 1986,

Arellano, 1987],

2
~ 1 1 & [ A —
Voster o~ { — Hmy; = miRei Ui (Wi — Wy : 4
e = b 8 (St = mifuon-wa)

Define

,Ucluster _ ii (uiﬂ(l) + uz,z<0))
* L — pu

L2 ey i

e S (s (1) — 0 (0)) — o2 Y <u1m(1) . ukﬂ.(o))

= 0 et e 1 — g

m=1 i=1

2

m=1 =1

+pknik > <Z Ui = m} (up(1) - Uk,i(o))>

Then, V;&ster is close to v{™™" in the sense that

f}cluster Ucluster
k

k
- +o,(1).
U U Op( )

The difference v{"tr — v, is always nonnegative. Therefore, for large k, the cluster variance

estimator can be conservative but cannot underestimate the variance of 7j.

3.3. Discussion

From the formulas for v, vi°P"* and v{"* it follows that if py, is small enough, then v}°Pust
and v{"tT are approximately equal to vg. In this case, clustered sampling and clustered

assignment do not matter much because the probability that two sample units belong to the
same cluster is small.

The difference v°°"* — v depends on two terms. The first term,

pknik Z (um(l) — Uk,i(0>)2 —(1—q) Z ”%,m(Tk,m . Tk)2 ’ (5)

is equal to zero when treatment effects are constant (in which case, uy (1) — ux;(0) = 0 for

i=1,....,npand 7, — 7 = 0 for all m = 1,...,my). If all clusters are sampled, so g = 1,
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and treatment effects are heterogeneous, (5) is positive. When only a fraction of the clusters
are sampled, ¢, < 1, the sign of (5) depends on the extent to which heterogeneity in treatment
effects can be explained by the clusters. If there is no variation in average treatment effects
across clusters, the expression in (5) is non-negative. However, when clusters explain much

of the variation in treatment effects, the expression in (5) can be negative and very large in

magnitude because of the factor n . The second term of v;°P"" — vy is equal to
my ng 2
2 Ni.m 1 (u;w(l) uk,z(0)>
yye — | — ) Limy; =m +
k7n221 Nk [nk,m ;1 { } m 1 ~
2
— N, —Zl{mkvizm}< k()+ k()> . (6)
Nksym, 7= M L= pe

This term is equal to zero if there is no clustered assignment, that is, o7 = 0. If o7 > 0, the
sign of (6) depends on how much of the heterogeneity in potential outcomes is explained by
the clusters. The expression in (6) is close to zero when there is little heterogeneity in po-
tential outcomes, so uy;(1) and wuy;(0) are close to zero. If there is heterogeneity in potential
outcomes but average potential outcomes are nearly constant across clusters, (6) is positive.
When the clusters explain enough heterogeneity in potential outcomes (6) can be negative
and potentially very large in magnitude because of the factor ny,, multiplying the second
term of the sum in (6). That is, the robust variance formula can severely underestimate the
variance of 7.

Clustered standard errors are conservative in general, that is, v{"'" > v;. In particular,

the difference v§Uster — o is

2
1 mg ng
v]«;luster — = pqun_k Z (Z 1{m;m = m} (uk,z(l) - uk,z(o))) )

m=1 =1

which can be rewritten as

n 1 & (npme\>
U — gy, = (p—%:) k {m—k Z ( knk k) (Thm — Tk)Z} : (7)

When the expected fraction of clusters in the sample, g, is small, or when the average

treatment effect is nearly constant between clusters, then v{"'" ~ v;. Aside from these
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special cases, the ppng/my, factor in the formula above indicates that cluster standard errors

can be extremely conservative in general.

4. Two New Variance Estimators

Estimation of the variance of 7} is challenging because the different terms in vy can be of
different orders of magnitude. In this section, we propose two estimators of the variance of
7 that allow us to correct the bias of the cluster variance estimator, one analytic, and one
resampling-based. As the expression for the bias of the cluster variance in (7) shows, the
cluster variance is heavily biased if the fraction of the sampled clusters is large and there is
substantial variation in the cluster-specific treatment effects. Although the proposed analytic
variance estimator is defined irrespective of the value of o2, in order to for the correction to
be effective we need to be able to estimate the cluster-specific treatment effects, and thus we
need o} to be less than its maximum value of ju;(1— ) to ensure that there is variation in the
treatment assignment within clusters. One of the proposed variance estimators is based on
a correction to ‘A/kdu“er, and the other is based on resampling methods. An alternative would
be to directly estimate the bias term in (7) and subtract that from the cluster variance.
A challenge with this approach is that the estimation error for the adjustment term is
large (often leading to negative variances estimates) because the order of magnitude of the
correction is itself large and this approach did not work well in our simulations. We do not
report formal results for the variance estimators in the current paper. We demonstrate their
performance in the simulations in Section 6. There may well be further refinements possible.

If g is close to zero, the proposed variance estimators are close to ‘A/kdu“er, which has
little bias in that case. If 07 = up(1 — ug) (that is, when Wy ; is constant within clusters),
the proposed resampling variance estimator is not defined. To be effective both variance
estimators rely on estimating the variation in treatment effects across clusters, and therefore
require a substantial number of both treated and control observations per cluster. The

Veluster i cases where

proposed variance estimators lead to substantial improvements over
17,51“““ has a large upward bias. The downside of the proposed variance estimators is that

they can be conservative when there is no need to cluster because there is no heterogeneity
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in treatment effects, or when there are too few treated and control observations per cluster
to estimate the heterogeneity in the treatment effects precisely.

We first consider in Section 4.1 the case with g = 1 so we have random sampling. Next we
consider in Section 4.2 the case with clustered sampling ¢, < 1. In Section 4.3 we propose a
bootstrap procedure for estimating the variance. The proposed variance estimators perform
very well in the simulation study of Section 6. The derivation of their formal properties is

left for future work.

4.1. The Case with All Clusters Observed

First we focus on the case with ¢ = 1 (all clusters observed), but allowing for general py.
Let Uy; = Wiugi(1) + (1 — Wy )ug,(0). The first step is to approximate the normalized

error of the least squares estimator 7, by a normalized sample average over clusters,

. e 1 ,
VNl =m0 = ey Z@m (1), ®)

where the terms
n

Cem = Z H{mg,; = myRy;(Wii — ) Ugi

=1

are independent across clusters. In the appendix, we show

Sy >2§ckm+op(1> 0

NPk U 1— )

m=1

The expectation of C, j is

E[Crm] = emPrtte(1 — 1) (Tom — ),

with sum over clusters

Z E[Crm] = prpur(1 — pix) Z Mo (Thm — Tie) = 0. (10)
m=1 m=1

That is, although the sum of the expectations of Cj,, over clusters is equal to zero, these
expectations are not equal to zero in general for each cluster separately. Because var(Cy,,,) <
E[C},.], the first term on the right-hand side of (9) is conservative on expectation relative

. A~ 1/2 . . . =5 -
to the variance of /Ny (7, — 7%) /vk/ , which explains the conservativeness of Vcluster,
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Because of (10), we can replace the terms Cj, , in (8) by Cin— E[Chim] = Crim1 + Chm.2,

where
ng
Crma = > Uy = m}(Rus — pu) (Tim — 7)1 — i),
i=1
and
ng
Ck:,m,Q = Z 1{mk7z = m}Rkﬂ((Wk’z — ,uk)U;m — (Tk,m — Tk),uk<1 — Mk))
i=1
Therefore,

1 mi mg
N5 — 1/2 _ 1). 11
VA=) VPRV (1 = k) (Z Choma + 2, Ck,m,z) Fotd "

It can be shown that Cj ,, 1 and C ,,, 2 have means equal to zero and are uncorrelated. In addi-

m=1 m=1

tion, Cy 1 and Cj 2 are uncorrelated across clusters. The variance of 3% | Cy 1.1/ (y/Mueprpur(1—

1)) s
o Nkm 2
(1=pk) D) = (Thm — )"
m=1 Tk

Let 7y, be difference between the sample average of the outcome for treated and nontreated

units in cluster m. A direct estimator the variance of > "%\ Cy .o 18

m=1 \i=1

my, [y, 2
3 (Z 1{my, = m}Rk,i((Wk,i W)Uk — Fom — F)Wi(1 — W,g)) . (12)
In practice, the estimator in (12) is biased from the correlations between the estimation
errors of its components. We apply sampling splitting to address this bias. We first split the
sample randomly into two subsamples. Let Z;,; € {0, 1} be the indicator that unit ¢ belongs
to the second subsample, and let Z;, be the mean of Zy;. Using the subsample with Z;; = 0,
we obtain estimates ?,:m, oy, and 7% of 7y, oy, and 7y, respectively. Next, for observations

with Z;;, = 1, we calculate the residuals ﬁk*z =Y —af — 77Wy,. Finally, we estimate the

normalized variance for the case with ¢, = 1 as

Nk

~ 1 <1 — A
V(1) = —— — — H{my,; = m}RkiZki<(Wki — W)U,
S A AT A [Zi (2 i = mH ks (Wi = W0

— (R — AW(1 —Wm))
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J g — 2
— S g = m}Rk,iZM((Wkl WO — (3, — 7 Wi(1 — Wk)>

Zk i=1
mpg N m R
(=) D) P — 7, (13)
m=1 k

where N;ﬁ,m is the size of the sample in cluster m. For clusters with no variation in the
treatment variable, we replace Ty, in (13) with 7. For clusters with no variation in the
treatment variable for a particular subsample, we replace 77, in (13) with 7. We derive
the form of the CCV estimator in the appendix. To improve the precision of VCCV( ), we
re-estimate it multiple times with new sample splits (new values for Z; ;) and then average
the corresponding variance estimators. In our simulations of section 6, we re-estimate the
variance estimator four times, and use sample splits with in expectation an equal number of

units in each subsample, so E[Z};] = 1/2.

4.2. The Case When Not All Clusters Are Sampled

To motivate the modification of the variance estimator ‘A/kccv(l) for the ¢ < 1 case, notice

that

(Qk) cluster = q X (Uk(l) o U;luster)’

where vy (i) denotes the value of the true variance vy, evaluated at g,. That is, the variance
for the general g case is a convex combination of the true variance at ¢ = 1 and the cluster

variance,
vk(Qk) = Qi X vk(l) (1 — Qk) Cluster

Let ¢ be the ratio between the number of sampled clusters and the total number of clusters
in the population. The proposed variance estimator, XA/,CCCV, is a convex combination of

VCCV( ) and ‘A/,fl“Ster with weights g, and 1 — qx,
VCCV a\ "}CCV(l) + (1 i (}\k> % f}kcluster' (14)

Computation of g, requires knowledge of my, the total number of clusters in the population.
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4.3. A Bootstrap Variance Estimator

In the previous sections, we have discussed an analytic variance estimator. Here we suggest
a resampling-based variance estimator, initially for the case with ¢, = 1. Like the causal
bootstrap in Imbens and Menzel [2021], the proposed bootstrap procedure takes into ac-
count the causal nature of the estimand and creates bootstrap samples where units (in this
case clusters) have different assignments and assignment probabilities than they have in the
original sample. It differs from earlier bootstrap variance estimators for clustered settings
le.g., Cameron and Miller, 2015, Menzel, 2021] in that it allows for the possibility that a
large fraction of clusters are observed.

The specific resampling procedure, which we call the two-stage-cluster-bootstrap (TSCB),
consists of two stages. For each of the clusters, let Nk,m be the cluster-level sample size and
Wi = Nema/(Nem v 1) the cluster-level fraction of treated units. In the first stage of the
bootstrap procedure, for each cluster we draw W:m with replacement from the empirical
distribution of the cluster-level fractions of treated units, that is with probability 1/my from
the set {Wm, . ,Wk,mk}. In the second stage, we draw Nk,mW,im units with replacement
from the set of treated units in cluster m and Ny, (1 — W,fm) units with replacement from
the set of untreated units in cluster m. In order for this to be well-defined we do need
all the Wk,l to be strictly between zero and one. We do this for all clusters to create the
bootstrap sample, and calculate the bootstrap standard errors as the standard deviation of
the treatment effect estimates across bootstrap iterations.

Next, consider the case with g < 1. In this case, we need to take into account the fact
that we see a fraction of the clusters in the population. We follow the approach proposed in
Chao and Lo [1985]. Suppose ¢ = 1/2, so we observe half the clusters in the population. The
bootstrap procedure first creates a pseudo population consisting of the original population
of clusters, plus one additional replica of each cluster. Then, to get a bootstrap sample, we
sample randomly, without replacement, from the clusters in this pseudo population. Given
the clusters in the bootstrap sample, we proceed as before, and ultimately calculate the

bootstrap variance as the variance of the estimator over the bootstrap samples. Chao and

21



Lo [1985] provide details and extensions to the case for the case where 1/g; is not an integer.

The algorithm for the TSCB is summarized here.

Algorithm 1 Two Stage Cluster Bootstrap

Input:
Sample (Yy;, Wi, M)
Fraction sampled clusters g
Number of bootstrap replications B

Stage 1:
la: Create pseudo population by replicating each cluster 1/g; times
1b: For each cluster in the pseudo population, calculate the assignment probability
Wk,m
lc: Create a bootstrap sample of clusters by randomly drawing clusters from the pseudo
population from Stage 1a, where cluster £ is sampled with probability g
1d: For each sampled cluster, draw an assignment probability Ay, from the empirical
distribution of the ka from Stage 1b

Stage 2:
2a: Randomly draw from the set of treated units in cluster m, | N, Ak | units
2b: Randomly draw from the set of control units in cluster m, | Ng (1 — Ag,)| units

Calculations:
For the units in the bootstrap sample constructed in Stage 2, collect the values for
(Yiis Wi, mg ;) and calculate the least squares or fixed effect estimator
Calculate the standard deviation of the least squares or fixed effect estimator over the
B bootstrap samples

5. The Fixed Effect Estimator

In this section, we report results for the fixed effect estimator often used in empirical re-
search in economics. Arellano [1987], Bertrand, Duflo, and Mullainathan [2004], Cameron
and Miller [2015] and MacKinnon, Nielsen, and Webb [2021] have pointed out that cluster
adjustments may still be necessary in fixed effects regressions. However, a view of cluster-
ing based on models with cluster-specific variance components creates ambiguity in the role
of clustered standard errors for estimators with cluster fixed effects, which are specifically
aimed to absorb cluster-level variation.

We first characterize the fixed effect estimator and derive its large k distribution. Then,

we discuss the properties of the two conventional variance estimators, the robust and cluster
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robust variance estimators. As in the least squares case, we find that the robust standard
errors may be too small and the cluster standard errors may be unnecessarily large, especially
in cases when the number of observations per cluster is large. We propose CCV and TSCB
variance estimators. The CCV estimator for fixed effects has a different form than the one
for least squares in section A.4.

The fixed effect estimator is based on a regression of the outcome on the treatment
indicator and indicators for each of the clusters in the sample. It can be written as the
least squares estimate for a regression of the outcome on the treatment, with both variables

measured in deviation from cluster means,

mrg Nk

Z Z H{mg;, = myRy;Yii(Wyi — ka)

?kﬁxed = 7:1:1 ;:kl . (15)

Z Z 1{m;m = m}Rk,iWk,i(Wk,i - Wk,m)

m=11i=1

Like in section 3, we assume that that potential outcomes are bounded, mpq, — o,
and lim supy,_, ., max,, N,/ min,, ng,, < . In addition, we assume (i) (myqx)/((pxnr)/mi)
— 0, and (7)) the supports of the cluster probabilities, Ay, are bounded away from zero
and one (uniformly in & and m). Assumption (i) restricts the focus of our analysis in this
section to settings where the expected number of sampled clusters is small relative to the
expected number of sampled observations per sampled cluster. Together with the previous
assumptions, assumption (i) implies (pgng)/my — 90, NgpPrqr — 0, and pg Min,, Nk, — 0.
This last result, along with assumption (7i), ensures that 7,5 in (15) is well-defined with
probability approaching one.

Let agm = (1/ngm) 200k, T{my,; = m}yg:(0). For an observation, ¢, with my; = m, we
define the within-cluster residuals ey ;(0) = yx;(0) — agm and ex (1) = yri(1) — Thm — Q-
Let

Ok = fu/ (i (1 = i) — 07)? (16)

where
1 & 1 &
Jio = E[Apm(1 — Ak’m)2]n_k D eri(1) + E[A7,,(1 - Ak’m)]n_k D leri(0)
=1 =1
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- BT (1 A ) Y (ena(1) ~ €10))

+ (E[Ak,m(l — Apm)] — (5 + pk)E[Ai,m(l _ Ak,m)Q]

mg

Nkm
+ 20 (Bl (L= An))?) D) T (i — 1)
m=1
# (PRBIAL (1 = i) = prn (Bl (1= Aum))?) 35 52 = )"

Under additional regularity conditions, which are described in the Appendix, we obtain the

large k distribution of the fixed effects estimator,

VNLFEE ) 5,2 -5 N(0,1). (17)

Let ﬁkz = ?kz - Aﬁxedei’ where }N/;“ = Yk,z’ — }_/k:mk,ﬂ W}m = (VV}€7Z — kamk,i)' The

robust estimator of the variance of /Ny (7,54 — 7) is

2
~ 1 &k ~ o~ 1 & ~
robust __ T2 172 A2
et = Nki;Rk,sz,iUk,i / ( Nk;Rk,ka,i) . (18)

Now let,
B = (1 ) — o)
with
P = Bl (1~ AP 3162, + 143, (1 - A1 30 2,0)
=1 =1
ElArm(1 = Apm)(1 = 3Apm(1 — Agm))] Z %(m = Ti)?

Notice that all terms of f;°** are bounded. In the appendix, we show that
Vrobust _ U]l;obust + Op(l).

The cluster variance estimator for fixed effects is

2 2
1 M [ ~ 1o
Pchuster _ i Z (Z Hmy,; = m}Rk,iWk,z‘Uk,i> / (mZRleli) : (19)
m=1 \u=1 =1
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Let,
{chcluster _ f]?luSter/(Hk(l . ,uk) . 02)2'

with
cluster 2 1 < 1 < 2
[ = E[Agm(1 — Agm) ]n_zekz( )+ E[AL (1= Arm)]— > €;.,(0)
kiz1 i
1 &

— prE[A},, (1 — Ak,m)Q]n—k ;(ek,z‘(l) — exi(0))?
mp n "

+ (E[Apm(l — Aem)] — (5 + pk)E[Ai,m(l — Ae)’]) D) ;—;(Tk,m — )
m=1

+pkE[Aim Akm Z — Tkm—Tk)Q.

We obtain in the appendix,
Vcluster ﬁcluster
=k 4 o,(1).
Vg Vg

Similar to the least squares case, the robust variance can underestimate the true variance,
and the cluster variance is generally too large. Our proposed variance estimator is a convex
combination of \N/k,duster and and \N/k“’b‘m, with the weights selected to correct the bias of the

cluster variance estimator as k increases (see appendix for details).

VCCV /)\\k"}kcluster + (1 _ }:k)"\/'krobust. (2())
where the estimated weight for the cluster variance is

2
1 & — —
s Qk,mwk,m(l - Wk,m))
<Mk 2

_2 R
—§ QrWi (1 = Whn)?
Mkm:1 g k( m)

where Q. is an indicator that takes value one if cluster m of population £ is sampled, and
My, = 3" | Qrm is the total number of sampled clusters. The second factor in the second
term approximately (that is, ignoring the variance of Wy, ,, conditional on Ay,,]) estimates

the variance of Ay (1 — Ag,m) divided by its second moment, so that

V(Ak,m<1 — Ak,m))
(A (1 — Ap))?]
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If there is no variation in Wj,; within any of the clusters the fixed effect estimator is not
defined, and neither is this variance estimator. In all other cases the variance estimator is
well-defined.

We also consider a bootstrap standard error, based on the same resampling procedure

described in Section 4.3.

6. Simulations

We next report simulation results that illustrate the performance of the proposed variance
estimators relative to existing alternatives. To operate in an empirically relevant setting, we
create an artificial population based on the Census data briefly described in the introduction,
which contains information on log earnings, an indicator for college attendance, and an
indicator for state of residence for 2,632,838 individuals.

For each individual in this population of 2,632,838 individuals, we define my; using
state of residence (plus Washington, DC, and Puerto Rico), for a total of 52 clusters. We
assign potential outcomes as yx;(0) = Yi; — kWi and yg (1) = Yii + Tem(1 — Wia),
so treatment effects are constant within clusters. We then repeatedly create samples from
this population. Creating a sample requires fixing py, qx, and fixing the distribution of Ay,
and then drawing from the implied distribution for Rj; and W} ; to generate outcomes for
all sampled units. In the baseline design, we set pr = ¢z = 1, so we sample all m; = 52
clusters and all n;, = 2,632,838 individuals in the population. For the assignment mechanism
in the baseline design, we convert cluster means of the treatment variable into log-odds,
Zkym = In(Wym/(1 = Wim)). Let (fig, 5¢) be the average and the sample standard deviation
of Ekm We then draw In(Ay /(1 — Ag.m)) for cluster m from a normal distribution with
expected value [iy and standard deviation o,. Given the cluster assignment probability Ay ,,,
we assign the treatment in cluster m by drawing from a binomial distribution with parameter
Ak

We calculate the standard deviation of the least squares and fixed effect estimators,
normalized by the square root of the sample size, N,i/ 2s.d., across 10,000 samples drawn

according to the procedure outlined above. This is the benchmark against which we compare
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Table 2: Average standard errors across simulations

normalized standard error
Nsd. v 5 robust cluster CCV TSCB

Baseline design:

=1 q =1, OLS 5.91 5.90 1.90 4486 6.32 5.80
or, = .120, o, = .057 FE 2.34 232 190 44.63 231 2.29
Second Design:

pe =1, q. =1, OLS 2.61 2.59 1.90 14.28 3.78 2.60
or, = .120, o, = .057 FE 1.95 1.95 190 1421 195 1.94
Third Design:

e =1, q. =1, OLS 1450 14.17 1.98 56.46 13.70 14.33
o, = 480, o, = .206 FE 12.14 11.89 2.13 56.79 11.61 12.07
Fourth design:

pe =1, q. =1, OLS 9.39 9.39 1.90 820 9.19 9.37
or =0, o, = .206 FE 2.04 204 204 197 204 2.09
Fifth design:

e =1, q. =1, OLS 195 1.97 1.97 56.42 453 2.04
o, = 480, 0, =0 FE 1.91 1.94 194 5642 196 1.90

Notes: N g/ %s.d. is the standard deviation of the estimators over the simulations, multiplied by the square

root of the sample size. u;/ % is the square root of the asymptotic variance in equation (2). 17]1/ % is the square

root of the asymptotic variance of the fixed effect estimator in (16). The remaining four columns report

average values of robust, cluster, CCV, and TSCB standard errors across simulations (multiplied by N ;/ 2).

pr and ¢ are the unit and cluster sampling probabilities, respectively. o, is the standard deviation of the
cluster average treatment effect. oy is the standard deviation across clusters of the treatment assignment
probabilities.

the various estimates of standard errors. For the least squares and the fixed effects estimators,
respectively, we first calculate the (infeasible) asymptotic standard errors v,i/ * and 17,1/ ? to
benchmark the performance of the feasible variance estimators. Next, we calculate the
averages across 10,000 simulations of the robust, cluster, CCV, and TCSB standard errors,
where we use 100 bootstrap replications in each simulation. Table 2 reports the results.
Table 3 reports coverage rates for 95 percent confidence intervals. In the design column of
the two tables o, is the standard deviation of the cluster average treatment effect.

For the baseline design, the normalized standard deviation of the least squares estimator is
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Table 3: Coverage rates across simulations

coverage of 95 percent confidence interval

v,i/ ? i,i/ > robust cluster CCV TSCB

Baseline design:

pe =1, g =1, OLS 0.949 0.467 1.000 0.971 0.947
or, = .120, o, = .057 FE 0.950 0.893 1.000 0.947 0.942
Second design:

=1, q.=1, OLS 0.951 0.846  1.000 0.996 0.952
or = .120, o = .057 FE 0.950 0.944 1.000 0.950 0.948
Third design:

e =1, q =1, OLS 0.947 0.208 1.000 0.960 0.950
or, = 480, o, = .206 FE 0.941 0.284 1.000 0.918 0.948
Fourth design:

=1 q =1, OLS 0.952 0.308 0.905 0.966 0.952
o =0, o, = .206 FE 0.952 0.951 0.932 0.951 0.955
Fifth design:

=1 q =1, OLS 0.952 0.953 1.000 1.000 0.959
or, = 480, 0, = 0 FE 0.954 0.955 1.000 0.957 0.949

Notes: See notes of Table 2.

5.91. This is well approximated by the asymptotic standard error, 5.90. The robust standard
error is on average over the simulations 1.90, less than one-third of the normalized standard
deviation of the estimator. The cluster standard error is far too large, on average 44.86, more
than seven times the value of the normalized standard deviation. CCV improves considerably
over robust and cluster. The average CCV standard error is 6.32, about 7 percent higher
than the normalized standard deviation. The TSCB standard error is the most accurate, on
average equal to 5.80. For the fixed effect estimator, the asymptotic standard error is again
accurate. The robust standard error is about 16 percent too small, leading to a coverage
rate for the nominal 95 percent confidence interval of 0.89 in Table 3. The cluster standard
error is too large by a factor of 20. CCV and TSCB standard errors closely approximate the

normalized standard error.
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It is also interesting to consider the variation in the different variance estimators over the
repeated samples relative to the true value of the standard deviation of the estimator. In
the baseline design the normalized standard deviation is 5.91. The robust standard error is
very precisely estimated, with a standard deviation of the normalized robust standard over
the 10,000 simulations equal to 0.005. The standard deviation of the cluster standard error
is much larger, 1.48. For the CCV standard error the standard deviation is 1.21, and for the
resampling-based TSCB the standard deviation is consideralby lower at 0.69.

We vary the design from the baseline case by changing (i) the fraction of sampled units
Pk, (77) the amount of treatment effect heterogeneity across clusters, o, , and (4i7) the cross-
cluster standard deviation of the assignment probability, o;. In the second design, pp = 0.1
is the only change relative to the baseline design. This makes the robust standard errors
less biased downward, and the cluster standard errors less biased upward. The result of
decreasing the fraction of sampled units (and thus decreasing the sample size) is that the
performance of the analytic CCV variance estimator declines, whereas the bootstraping
vaiance estimator TSCB continues to perform well. We keep pr = 0.1 for the remaining
three designs. In the third design, we increase both the treatment effect heterogeneity and
the within-cluster correlation of the treatment by increasing the differences in treatment
effects 4, — 7 and the differences of the logs odds ratio ¢y, — ¢ by a factor of four. The
resulting increase in o7 makes the performance of the robust standard error substantially
worse, consistent with equation (6). In this design, the bias of the robust standard error is
substantial, also for the fixed effect estimator. The difference between the cluster variance
and the true variance for the least squares estimator is proportional to the variation in the
cluster average treatment effects, implying that the bias will increase for this design relative
to the second design. In the fourth design, we remove the heterogeneity in the treatment
effect but keep the correlation in the treatment assignment the same as in the third design.
Now, the cluster variance performs well, but the robust variance remains poor. In the
fifth design, the assignment probabilities are identical in all clusters, and the treatment

effect heterogeneity is the same as in the third and fourth designs. In this case the robust
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standard errors perform well, but the cluster standard errors substantially over-estimate the
uncertainty, as expected. In all designs, the CCV and especially the TSCB standard errors

outperform the robust and cluster standard errors.

7. Implications for Practice

The analysis in this article has several implications for how to compute and, most impor-
tantly, interpret, standard errors in a variety of empirical settings. Some settings are clear
cut and others are more subtle. First, we discuss the case where there is no cluster sampling.
If one has a random sample of units from a large population with randomized treatment
assignment at the unit level, there is no reason to cluster the standard errors of the least
squares estimator. Doing so can be harmful, resulting in unnecessarily wide confidence inter-
vals. In this case, clustering is not appropriate even if there is within-cluster correlation in
outcomes (however those clusters are defined), and thus even if clustering makes a substan-
tial difference in the magnitude of the standard errors. For example, if workers are sampled
at random from a some population of interest and then randomly assigned to a job training
program, clustering the standard errors at, say, the industry, county, or state level can result
in standard errors that are unnecessarily conservative, often by a wide margin. Similarly, in a
judge-leniency design—where defendants are randomly assigned to judges—standard errors
should not be clustered at the level of the judge [Chyn, Frandsen, and Leslie, 2022]. If the
sample represents a large fraction of the population and treatment effects are heterogeneous
across units, robust standard errors are also conservative. If the data contains information
on attributes of the units that are correlated with unit-level treatment effects, the methods
in Abadie et al. [2020] can be applied to obtain less conservative standard errors.

Next, consider the case of clustered assignment, and where we either have random sam-
pling or we observe the entire population. This is one case where clustering becomes relevant,
although conventional cluster standard errors can be extremely conservative. If assignment
is perfectly clustered so that units that belong to the same cluster have the same treatment
assignment, there is no improvement from using the CCV variance and the TSCB variance

estimator is not applicable. If assignment is partially clustered—so there is variation in
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treatment assignment within clusters—and cluster sizes are large, the CCV and TSCB can
be applied and can produce standard errors considerably smaller than the usual clustered
standard errors.

Another reason to cluster standard errors is cluster sampling. The case with g close to
zero is sometimes relevant, especially when the sample is a panel data on individuals or a
cross-section of families, and the individuals or families in the sample are a small fraction
of the population. Then, the clustered variance estimator of the least squares estimator is
asymptotically correct regardless of whether the treatment assignment is clustered or not.
The same result holds when clusters are large (e.g., states), g, is a substantial fraction of
the clusters in the population, but p; is small-—so the sample includes only a small number
of units from each cluster. In other cases, cluster standard errors can be considerably larger
than necessary. If cluster sizes are large and there is treatment variation within clusters,
CCV and TSCB can substantially reduce the magnitude of standard errors.

The insights in this article are relevant in other common settings of empirical economics.
Consider a setting with unit-level panel data on outcomes and a treatment that is imple-
mented on the same period for all units in the treatment group. The difference-in-difference
estimator is in this case equal to the coefficient on the treatment variable in a cross-sectional
regression of the change in unit-level average outcomes between the post-treatment and the
pre-treatment periods on a constant and a treatment indicator that takes value one if the
unit belongs to the treatment group. If treatment assignment is random across units, and
the sample includes a random subset of the population or the entire population, robust stan-
dard error provide inference that is generally conservative if the sample is large relative to
the population and treatment effects are heterogeneous. Here too, the methods in Abadie
et al. [2020] can be applied to correct the bias of robust standard errors. With clustered
assignment, one should cluster the standard errors at the level of assignment—for example,
cluster at the village level if all farmers are assigned the same treatment status. Adding
group-level fixed effects to this regression allows for group-specific linear trends in the un-

derlying potential outcomes series but does not change the answer to the question whether
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one needs to adjust for clustering. Under partially clustered assignment, CCV and TSCB
standard errors can continue to provide substantial improvements over conventional cluster

standard errors for the fixed effect estimator.

8. Conclusion

This article proposes a research framework aimed to address a question of central relevance
for empirical practice: when and how we should cluster standard errors. Like in Abadie et al.
[2020], we shift the attention from estimation of features of a data-generating process (i.e.,
infinite superpopulation) to estimation of average treatment effects of the finite population
at hand. We show that, in this framework, the decision on when and how to cluster standard
errors depends on the nature of the sampling and the assignment processes only, and not on
the presence of within-cluster error components in the outcome variable. We derive expres-
sions of the large sample variances of the OLS and FE estimators of the average treatment
effect for a setting with clustered sampling and where assignment is random within clusters
with assignment probabilities that may vary across clusters. For this setting, we demonstrate
that robust standard errors can be too small and conventional cluster standard errors can
be unnecessarily large. We propose two novel procedures, CCV and TSCB, that can be used
to calculate more precise standard errors in settings with large clusters and where there is
enough variation in treatment assignment within cluster (so that average treatment effects
within clusters can be precisely estimated). While CCV and TSCB are designed for this par-
ticular setting, the general principles of the framework remain valid for other settings and
estimators. If sampling is not clustered, standard errors should be clustered at the treatment
assignment level because the estimand of interest depends on potential outcomes and the
sampling of potential outcomes is determined only by the assignment mechanism. When
the fraction of sampled clusters is non-negligible and there is variation in average treatment
effects across clusters, conventional clustered standard errors may be off, and we provide an
analytical framework that can be applied to derive appropriate standard errors. When sam-
pling and assignment are random, clustering standard errors is not appropriate regardless

of the structure of the covariance of the outcomes across the units in the population. In
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this setting, if there is substantial treatment effect heterogeneity and the sample represents
a large fraction of the population of interest, robust standard errors are conservative in large
samples. This bias can be corrected using the methods in Abadie et al. [2020]. Deriving
standard error formulas for sampling and assignment processes other than the ones featured
in this article is an important avenue for future research. Rambachan and Roth [2022] is a
recent contribution in this direction. In addition, in the present article we have restricted
the analysis to linear estimators (least squares and fixed effects). Xu [2019] extends the ideas

and framework of this article to analyze the distribution of non-linear estimators.
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On-Line Appendix
When Should You Adjust Standard Errors for Clustering?
Alberto Abadie, Susan Athey, Guido W. Imbens, and Jeffrey M. Wooldridge
Current version: September 20, 2022

A.1. Setting and notation

We have a sequence of populations indexed by k. The k-th population has nj units, indexed by
i = 1,...,n,. The population is partitioned into my, strata or clusters. Let my,; € {1,...,my}
denote the stratum that unit ¢ of population k& belongs to. The number of units in cluster m of
population £ is ny,, = 1. For each unit, ¢, there are two potential outcomes, yi (1) and yy;(0),
corresponding to treatment and no treatment. The parameter of interest is the population average

treatment effect
1 &

Th = — > (Wki(1) = yr,(0)).

e}

The population treatment effect by cluster is

_— Z H{mi,; = m(yri(1) — yx,i(0)).

kml- 1

Therefore,
mg

=3

m=1

We will assume that potential outcomes, yy (1) and ym(O), are bounded in absolute value, uni-
formly for all (k,1).

We next describe the two components of the stochastic nature of the sample. There is a stochastic
binary treatment for each unit in each population, Wy, ; € {0,1}. The realized outcome for unit i
in population & is Y} ; = yi,i(Wi,;). For a random sample of the population, we observe the triple
(Yg,i, Wi, mp;). Inclusion in the sample is represented by the random variable Ry ;, which takes
value one if unit ¢ belongs to the sample, and value zero if not.

The sampling process that determines the values of Ry ; is independent of the potential outcomes
and the assignments. It consists of two stages. First, clusters are sampled with cluster sampling
probability g € (0,1]. Second, units are sampled from the subpopulation consisting of all the
sampled clusters, with unit sampling probability equal to pg € (0,1]. Both g and py may be equal
to one, or close to zero. If g = 1, we sample all clusters. If p = 1, we sample all units from the
sampled clusters. If ¢, = pp = 1, all units in the population are sampled.

The assignment process that determines the values of Wy, ; also consists of two stages. In the first
stage, for cluster m in population k, an assignment probability Ay, € [0,1] is drawn randomly
from a distribution with mean i, bounded away from zero and one uniformly in k, and variance
0,%, independently for each cluster. The variance 0’]% is key. If it is zero, we have random assignment
across clusters. For positive values of ak we have correlated assignment within the clusters. Because
A2 < A .m it follows that O'k is bounded above by g (1— k) and that the bound is attained when

km =S



Aj,m can only take values zero or one (so all units within a cluster have the same values for the
treatment). In the second stage, each unit in cluster m is assigned to the treatment independently,
with cluster-specific probability Ay ,.

A.2. Base case: Difference in means

Let

2 ng
Nii = )| RiiWii and  Npo = > Rii(1—Wiy)
i=1 i=1
be the number of treated and untreated units in the sample, respectively. The total sample size is
Ny = Njp1 + Nio. We consider the simple difference of means between treated and non-treated,
which is obtained as the coefficient on the treatment indicator in a regression of the outcome on a
constant and the treatment,

R 1 N 1 ng

Tk = Navi ; Ry iWi,iYii — Neov1 ; Ry i(1 — Whi) Yk i

We make the following assumptions about the sampling process and the cluster sizes: (i) ggmy — o0,
(11) liminfy_, pp ming, ng ., > 0, and (444) limsupy_, ., maxy, ng,/ ming, ng,, < ©. The first
assumption implies that the expected number of sampled clusters goes to infinity as k increases. The
second assumption implies that the average number of observations sampled per cluster, conditional
on the cluster being sampled, does not go to zero. The third assumption restricts the imbalance
between the number of units across clusters. Notice that assumptions (i) and (i) imply ngprgr —
0, so the sample size becomes larger in expectation as k increases.

A.2.1. Large k distribution

Let g = (1/ni) 2% ye,i(0) and 7 = (1/nk) 252 (Yki(1) = 4k (0)), (1) = yi(1) — (o + 7),
and ug,;(0) = y.i(0) — oy. Notice that,

ng ng
D lugi(1) = Y ugi(0) = 0.
izl i=1

This implies

bi,1 bk.0 ~

VPR (Th — Tk) = =—k,1 — =~ 0k,0,
k1 b0
where

Ly

a1 = ———— > (RpiWhi — Prartin)ur,i(1),
VIEPEGRHE (2

1 &
a0 = Z(Rk,z‘(l — Wii) — prae(1 — px))ug,i(0),

VkpkGe(L — pr) 5



bk = (Nga1 v 1)/ng, bro = (Nko v 1)/nk, by = pegepr and bro = prar(1 — pg). We will first
derive the large sample distribution of

A = Qg1 — g0

my
= Z (fk’,m,l _gk,m,())a

m=1

where
Ly ( )
Ekemg = ———— > Umy; = mP(Rii Wi, — Praiitr) i, (1),
VTEPEAR K S

and

1 ok

VPG (1= ) z; H{mp; = m}(Rei(1— W) — prar(1 — ) ) ur,:(0).

Notice that E[&gm.1] = E[&km,0] = 0. Moreover, notice that the terms & 1 — &k m,0 are indepen-
dent across clusters, m. In addition,

gk,m,O =

DLk ik
El&} il = El{m,“ = T“i,i(l)

ng—1 n
2k k

+ — Z Z H{my,; = my; = m}pk(al3 i M%(l - qk)>ukz(1)ukg(1)

L i H
— peqr(1 — pk) o
5 m, 1{m;“ = uj ; (0
ng—1 ng 2 2
o +(1— 1-—
=1 j=i+1 (1 _Nk)
and
El&km1&kmo] = —— 2 Hmy; = mprqrug:(1)ur,i(0)
1S & pr(p(1 — ) (1 — qi) — 0})
+ — H{mg;, =mr;, =m kui0u~1+ui1u-0.
w2 2 Homes =g = m) 0= (105 (1) + (15 (0))
We obtain:

i E[(&km — Ekm 0)°]

1 & 5 1 & )
= — 1{my; = mtuz (1) + 1{mz; = mtus (0
:U’k‘lzl { ki } k,z( ) 1_Mki21 { ki } k,z( )
ng—1 ng
+2pk Y Y Hmi = miy =m) (uk,i(l)wc,j(l) + i (0)ug,j(0) — g, (0)u,;(1) — uk,i(l)Uk,j(U))
i=1 j=itl



—M%<iﬂmm=WM%AU+%A®—%MGWM@)

i=1

ng—1 ng
+ 2 Z 2 l{mk,i =Mk = m}(uk7i(1)uk7j(1) + ukﬂ-(O)uk,j(O) — ukﬂ-(O)uk,j(l) — uk,i(l)ukyj(()))>
i=1 j=it1l
TLk—l ng
g (D, (1) i (0)ugi(0) | uki(0)up(1) | ugi(1)uk,;(0)
+2pk0'2 myg; =my; =m ( ’ > 4+ = ) 4 5 ) 4+ =5 , .
k( ; j_zi;rl { ! } 13 (1 — pg)? (1 — pk) pe (1 — pk)
Therefore,

e E[(Ekma — Ekmo)?]

1 & 1
= — 1mki:mu2i1+ Hmy,; = miuj ;(0
20 ks = b (1) Dt = m 0)

1—

=
-wd(gumm=W@mm—wwmy—§?mm=mmwm—wMW1
m%(ZHmm=mWwﬂ)uM@02
o] ( Byt - (40 2O)) B () 2],
Let v = X%, Bl(€mt — Ghmo)?], then
-5 (22 55)
+ Pk Z [(Zl Lmy; = m}(ugi(1) - Uk,i(o))>2 — 2 mp; = m} (upi(1) — u;m(O))Q]
— Dk 2 <21 {my; = m}(upq(1) — Uk,i(o)))2

2 Hmg; = m} (um(l) + Uk7i(0)>>2 B i Hmii = m} (u’“;il) - ;LIC—Z(/(Z)Z]

= [k I — pg et

St

Alternatively, we can write this expression as

NV = i <uil(1) " ”iz(0)>

N\ Mk L — p

B i( (1) - B i uj,i(1 Uk,i(o) ?
pki:1 Ui ukz PrO}, P m 1_Nk

mp n 2
+ (1 — k) Z (Z {my; = m} (upi(1) — Uk,i(@))

m=1 \i=1
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myg [ ng ' s 2
+ Dok D, (2 1{mk,i:m}<“'w(1) N k,z(0)>> ‘

Ik L — pu

The sum of the first three terms is minimized for p; = 1 and oz = pr(1 — pg), in which case this
sum is equal to zero. Therefore,

mi ng 2
vk = (prminng ) (1 — gg) Z Rhm (1 Z Hmpgi = m}(up(1) — uk,i(o))>

m=1 "k \"km 5

mp Nk . UL ; 2
+ (prminmg) of 3 e (121{mk,i=m}<“’“‘” ¥ ’““”)) TS

= e \ ke Fk L — g

We will assume that liminfg o ((1 — gx) v 07) > 0, so either sampling or assignment or both are
correlated within cluster. (We study the case gx = 1 and 0,3 = 0 separately below.) In addition,
assume (7) liminfy_,o(1 — g;) > 0 and

it S0 " (1 S 1 = m) (1) — Uk,im))) -0, (A.9)

k—o0 el ng Nkm i

or (i) liminfy_,o 0% > 0 and

mig nE 2
. N [ 1 ug,i(1)  ug,;(0)
h;?l,lo{;lf mzzjl o ( Z {my,; = m}( + > 0. (A.3)

Nk = [k L= pug

Equation (A.2) would be violated if, as k increases, there is no variation in average treatment effects
across clusters. Equation (A.3) would be violated if as k increases there is no variation in average
potential outcomes across clusters. If equations (A.2) and (A.3) hold, vx is bounded below by a
term of order at least pj min,, n . Recall our assumption, liminf;_, p min,, ng , > 0, so the
average number of observations sampled per cluster, conditional on the cluster being sampled, does
not go to zero. Then,
lim inf v > 0.
k—0o0

To obtain a CLT, we will check Lyapunov’s condition,
my,
lim WEUfk,m,l = &m0

k—00 me1 Uy,

2+5] _ O,

for some § > 0. Because potential outcomes are uniformly bounded and py is uniformly bounded
away from zero, we obtain

5 Z+6 ng 2+0
(€m0 < = D mpi = m} | ReiWas — piaipin|
m X (nkpqu)1+§/2 Nkm = 7 7 7 s

where ¢ is some generic positive constant, whose value may change across equations. Consider
6 =1, and let

3
1 &
St = E | |=— > Ympi = m}| R Wi — prausin]
Mkm (5




1
< e B[ ReiWii — praiinl’]

nk,m
+ ——1en (Nl — V) E[|RieiWhi — et | RiejWij — Pretin]|[mu; = my; = m|
2
6 [nk
n3< 3’m>E[\Rk,iWk,i — Pe@itvi| | Rie j Wi j — Dot | Rt Wit — Predette||mi; = mij = my, = m],
i

for i # j # t. (The second and third terms on the left-hand side of last equation only appear when
ngm = 2 and ny,, = 3, respectively) As a result,

DPkdk p qk
Si,m,l Sc ( 7+ R +kak>

nk‘ ,m kzm

1 1
< cp%qk 5 57— + - +1].
Py iy Ny P My N

Because lim infj_, o pr ming, ny »,, > 0, for large enough k£ we obtain,

3 3
Drdky m

3/2°

3] e M
’ (NkPKYK)

E[

ol%]. Notice that

and the same bound applies for E[

g

Z ‘gk m,1 — gk,m,0|3] [(|§k,m,1| + |§k,m,0’)3]

[y

mg

El|&kmal*] + Z E[|&k,mol’]

m=1

E[|&km.1[*1ékmol] +3 Z [1€k,m.111Ek,m.00%]-

Msﬁm

3

MM

+

3
)

Now, Holder’s inequality implies that

3 My n3
3/2

3/2
Uk/ (nkpPrar)

is sufficient for the Lyapunov condition to hold. Because maxy, 1y ,,,/ ming, ny ,, is bounded asymp-
totically, we obtain,

3 m 3 3 3
. PrAk kazl L . Pk MaXey, N, o,
limsup — 7 < limsupc— . 7372
k-0 v (ngprar)3/? koo (PRqEm ming, ng )
. maxm;, Nem - €
< lim sup - : =0,
k—o0 MmNy, M m \/m

and so the Lyapunov condition holds. As a result, we obtain
~ d
ak/w/vk —_—> N(O, 1).
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We will next prove that both @y 1/\/vx and @y o//vr are Oy(1).

Nk 2
Elaj, E mp; = m}(ReiWhi — prdiin)un,i(1
[ kl] nkpk(lk ,uk mzl (; { ) }( ) ) ) ,2( )
1 &
<c NPkl + M (Mkm — 1 Pk
nkpqumzzl( " m(hm = 1pici)
mi
-1
—c (1 + Z P (T >pk>.
m=1 Tk

Therefore,

Bl Vo)) < ¢ (.1 4 3 (et (i = ”p'f) |

eIy N 42 NPk Milyy Ny,

Because lim sup max;, 1,/ ming, ng , < 00, we obtain limsupy,_,, E[(ak1/vk)?] < 0. As a result,

a1/ is Op(1).

Let Zk,l = Nj.1/ni. Consider k large enough, so pj ming,, ny ,, is bounded away from zero, making
bi1/bk1 well-defined. Notice that E[by 1/by,1] = 1 and

2
nk
var(bg,1/bk 1 E Wi = mp(Re, Wi — neDreqr itk
(i /o) = (nkpquWE 33 ks = m (R W )
_ Dk (1 — PrQipie) %’j N (Mem — 1)piai(or + (1 — qi)pi)
(TPt )? el (kD fir)?
o Lo peaee | (ma, ngm — 1)piai
NPk i (nkPraK)?
< 1 — prqrpk Lo (maxn‘% Neom — 1) 1 0
NEPLqr ik minng m qEmg

This implies 5;671 /b1 LA Analogous calculations yield 507k/b0,k 2 1. For large enough k,
bi1/bk1 = 0 if and only if Ny, = 0, which implies Pr(N,; = 0) — 0. It follows that, for
large enough k,

Pr(|bg,1/bk1 — br,1/bra| = 0) = Pr(Nyy > 0) — 1

and gk,l /bi1 2. Using analogous calculations, we obtain Bk,o /b0 £ 1. Asa result,

12 bpiGr1  brodro
\/W(Tk—ﬂc)/”/ V- R V51

br,1 vy, b0 vy,
~ b ~ b ~
_ O Oea ) Bk (Do ) Gko
12 5 1/2 5 12
v, k1 v k.0 vy
= Ag/\/vk + 0p(1).



Therefore,
A~ d
\/nkpqu(’i'k — ’I'k)/’l)]i/2 e N(O, 1).

Using 517k/b1,k 21 and Z[)}k/b(],k £ 1, it is easy to show Ni/(ngprgr) 2 1, which implies
A~ 2 d
VNG — ) /)2 =5 N(0,1).

We will next consider the case of ¢ = 1 and ag = 0, where no clustering is required. Consider

1
Vil = ———— (BriWhi — Drpir)ug i (1
)by \/muk( ) )t ) »l( )

and
1

VEPk(1 — )
Redefine now vy = Y7 E[ (ki1 — Vk,i,0)%]. Then,

Nk u2 . U2
o = Tz.k Z ( k,z(l) + kz< > — Z uk’L ukﬂ(O))Z
i=1

ke 1 — g

Upio = (Riei(1 = Wi) — pr(1 — ) ) uk :(0).

Notice that vy is minimized for p; = 1, in which case

Nk g2 u2 (0 Dk
U er 2, ( - = )> - i, (g i (1) — ur(0))*

4\ Mk 1-/%

WZ(l_“ fuf (1) + ui,i<0>+2uk,i<1>uk,i<o>>
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G (i) ug,(0) wgi(1)ug,i(0)
= a1 Mk)" ;( 1 +<1_Mk)2+2 fr (L — pug) >
_ 1 uri(1) | ugi(0)\?
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Therefore, the assumption

Tk (1 ] 2
1iminfi2 <“’w( ) n Uk,z(0)> -0

k—oo mp =\ ik 1 — g

is enough for liminfy_, vr > 0. Notice now that

1
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and the same bound holds for E[|U;;0/®]. Therefore, for the Lyapunov condition to hold, it is

enough that

n 1
kPE 0,

(nkpk)3/2 vV TkPk

or ngpr — 00. That is, assumptions (i)-(4i), which we used for the clustered case, are replaced by

Ngpr — 0.

A.2.2. Estimation of the variance

Let Uy; = Yi; — ap — 7,Wy; be the residuals from the regression of Y ; or a constant and Wi ;.
Here, i, is the coefficient on the constant regressor equal to one, and 7}, is the coefficient on Wy, ;.

We have already shown 0’21/2(% — 1) = Op(1/y/nkprqr). The same is true about ay (e.g., apply
the proof for 7, after replacing each vy ;(1) with a zero). Define Xy = > "% | ¥y ., where

R Nk [’J'k . ok ﬁk i /
Sean = (Z’i H{my; = m} Ry, ( szé,kz )) (Z:l Hmy; = m}Ry; ( székz )) :

Also, let
N Nk 1 1 /
Qr = Z;Rm< Wi ) < Wi ) )

and z = (0,1)". Then, the cluster estimator of the variance of /N (7 — 7%) is
"}kcluster _ Nkzléjlzlik@;lz'

Notice that

(nprar) 'E[Qk] = ( ulk Z: >

In addition,

1 N 1 mg Mg
Qk272 = lmk-szkau
NPk Ak (2,2) NPk Ak ,;1; s MW

ny
var ( Z 1{my,; = m}Rk,iWk,¢> = Nk mPrrtk (1 — Prqriix)
i=1

+ N (Mo — D)ia (o + (1 — ax)).-

Therefore, under conditions (%)-(4ii), we obtain
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Analogous calculations yield var((nkpqu)_lék(l, 1)) — 0. Therefore,

L A 1 Mk)
k= + op(1
nkkakQ < T p(1)

and

~ 1 _
-1 _ Kk Hi
nkqeprk@y - = Hi +0p(1), where Hj = n (= ) ( o ! ) .

Now, let Uy; = Yi; — ap — Wi = Wi iugi(1) + (1 — Wy ;)ug,:(0). Notice that

—1/2 -~ —1/2,~ —1/2, A~
v max (Ui — Upsl < o 6% — il + vp 15 — 7l = Op(1/</MkDrar)-

i=1,...ng
Define Xj, = Y% | 3, where
_ Dk Uk ; Mk Ui !
Skom = Z; {my,; = m} Ry, < WeiUis > Z Hmyg; = miRy; < Wi iU > .

We will show

1 ~ _
——— (5, = %) 0.
Nk PkkVE
Notice that
A~ _ Nk . 2
hom(2,2) = Zkm(2,2) = (Z Wmup; = mpReiWi,i(Uk,i — Uk,i))
i=1
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Therefore,
1 ~ _ 1 my N 2
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X ( max |(7kl — Ugi* +  max \ﬁm - Ukz|>
(2

:1,...,1’Lk z':l,...,nk
The same expression holds for the off-diagonal elements of f}km —fk,m. For f]km(l, 1) —fk’m(l, 1),

the expression holds once we replace each Wy ; with a one. Let | - | be the Frobenius norm of a
matrix. Then,

1 ~ _ 1 mg Nk 2
| = S S e 3| D) Hmig = m) Ru

Nk PkqkVk nkPrgkVR T\ o

X ( - max |ﬁ]€72 — Uk,i|2 + max |ﬁk‘,l - Uk7i|>'
i=1,...,ng i=1,...,ng

10



We will prove that the right-hand side of the previous equation converges to zero in probability.
We will factorize each term into a expression that is bounded in probability and one that converges
to zero in Lj.

E < nEprqr + nk(mn%}X e — )P

mi Nk 2
2 (Z 1{mk,i = m}sz>

m=1 \i=1

For the first term, notice that

9
~ o MEDKGE + T (MaXy, N — 1) Gk

max  |Ug; — Ul

=1,k NkPkkVk

:w max ‘ﬁk,i_Uk,iP

Vi i=1,...,ng

n ~ 1 max,, n -1 1

NPk + 1 (MaxX, ngm — 1)Prqe
(nkprar)?

N

Vg i=l.ny, NkPrqk ming, Nk, qrME

Op(1) o(1).

For the second term, using the fact that vy is greater or equal to pj min,, ng , > 0 times a term
with limit inferior that is bounded away from zero, we obtain

nEPEQr + g (MaXm, ngm — 1)piar

max |Uy; — Ul

i=1,...,nk NEPLgEVk
NEPkk \ /2 ~ NEPeGr + (MK g — 1) PGk
= <7> cmax  |Up; — Uyl - 17; .
Vg i=1,...,ng (nkpqu)B/ka
NEPLqE\ 1/2 ~ 1 max,, Ngm — 1 1
< <7) -max |Ug,; — Uyl 75+ s il 3
Uk i=1,...,ng (nkpquvk) My Mg m (kak)
= Op(1) o(1).
As a result, we obtain
1 ~
— 12 — 2| = 0,(1).
|54 = il = 0p(1)
Notice that
NPk Sk ) A1
Qi SiQi = Hi— 5 Hy = Hy—*— (mpyar @y — H)
Uk NgPEqkVk NEPLJkVk
A D) ~ S — ~
+ (nkkaka 1 Hk) — (nkkaka 1) + <nkkaka ) (nkkaka 1)-
NEPEqkVk NEPEqkVk

Therefore, to show that the left-hand side of the last equation is op(1), it is only left to show that
Y/ (nkprarvr) is Op(1). We will prove this next. Notice that

1 - 1 @[ & 2
——— Skl < e——— > D Yy = m}Re | -

Nk PkqkVk nkPrgkVE S\ o

11



Therefore,

1 — 1
E| ——|%| | € c————| nprar + np(maxny ,, — 1)piqk .
NkPLAKVE NkPLAkVE m
Then,
1 — 1 max,, n -1
NEPL4kVE Vg P My NEom

We, therefore, obtain,

NEPLdk A—13 Xk »
Qk Qk nkkakUk b
Because Nyi./(nxprgr) = 1, we obtain
?kduSter/Uk = Z/HkLsz + 0,(1)
NEPLqEVk b
1 1 2 my < g, 9
- 1m’fa’:mRk‘Wk‘—MkUk‘> + 0,(1).
NEPEAkVk (,uk(l _Mk)> Z Z (i Y Ryei (Wi YUk »(1)

m=1 “i=1

Recall that Ulg,i = uil(l)VVkZ + uil(O)(l — W}). Notice that
ny, 2
E[(Zl{mlm = m}sz(sz - ,Uk:)Uk:,i> ]
i=1

= > Uk = mipparin (1= ) (1= i)t (1) + it (0))

=1
nk—l Nk
#2370 Y = mag = mipay| (0 + 1) (1 = )i (D (1)
i=1 j=i+1

+ k(1 — ) (0 — (1 — ) (e (0)ug 5 (1) + wg i (1)ug 5 (0))
+ (0F + (1= )P paun () 5(0) |

Let
cluster __ 1 R & —m ) o ' 2
vy, = s <Mk 1= ) > mZ—J1E[<z_Zl Hmpg; = miRy (Wi Nk)Uk,z> ]
Then,
i el (1) u?(0)
cluster __ ki ki
2 g,
+ Pk Z [(Z H{mg; = m}(ug,(1) — u/”(O))> — Z Wi = m}(ug,(1) — u;“(()))2]
i=1 i=1
2
(i) O R (i) uka(0)
+ pro, Z [(;1{%,@— }< o + 1_Mk>> Zle{ ki = }( o + 1_%) ]

12



Alternatively, we can write

ng 2
cluster _ Z (ukl uk»1(0)>
=1

L= pg
2
ugi(1 Um‘(o))
—p ugi(1) —u —p o ( :
k;(lm() kz kaZl L 1—,uk
2
m=1 =1
OINONY
Uk i Ui

+pk0 l{mk,-zm}< ’ 4+ = > )

) Z= <; Z H L= pu

We will next show that .
Ek ,Ucluster
' Hy————Hyz — — 0.
NEPrqkVk Vi

Given the p(1 — pg) is bounded away from zero, by the weak law of large numbers for arrays, it
is enough to show

4
o) Z [( 2 {my,; = m}Ry ;(Wy,; — Mk)Uk,z) ] — 0.

=1

Applying the multinomial theorem and the fact that all moments of W}, ; as well as all potential
outcomes are bounded, we obtain:

(praron Z [(Z Hmpg; = miRy (Wi — Hk)Uk,i> 4}

c
2 3 2 4 3
< % (nkpqu + NEPR Gk MAX NE yy + NEPRGE MAX N, ) + NEPLGE MAX Ny, m) .
(NkPrAKVE) m m axny,

nkpk:QkUk:

Now, using lim supy,_, o, maXy, Nk, m/ Miley, Nk, < 00, im supy,_, o pr Ming, ngm,/vp < 0, and ggmy —
o0 we obtain

4
nkpquvk 2 2 [(Z { k, } k,( k, ,uk) k) }

i=1

2 2 3
< 1 maXy Nk,m 1 P maxmy 1y ., 1 Py maXm Ny o, 1
C " - .
nkkakU;% MMy, N m kakv,% VU MMy N, GETNEVE v,% MmNy, N Gk
— 0.

As a result,
i cluster cluster
Vi Yk

= 1).
Uk Vi + 0p(1)

The robust (sandwich) estimator of the variance of /Ny (Tx — 7) is given by
f}krobust _ Nkz/églﬁk@]zlz-

13



where

Nk ~ A~ /
S Ui Uk.i
Q. = R i N ~ .
g Z; " ( WUk ) < WUk )

We will derive the limit of ﬁgObUSt Jvg. Let

Nk !/
a _ , Uk,i Uk,i
e = ;Rk’l< Wi iU > < Wi iU ) '

Because potential outcomes (and Wy, ;) are bounded, we obtain

1 A _
[ — O < c Ry, max U2, —U2..
NEPLKVE ” ” (nkkakUk Z ) i1, | ki k,z|

Because the limsup of the expectation of the first factor (which is non-negative) is bounded and
the second factor converges to zero in probability as proved above, we obtain

1

EEE— Qk —ﬁk = 0,(1).
1 = i = 0p()

Notice that

1 — 1 ok
———— || < | ——— > Ry
NkPEAkVk NEPEIkVE =

Again, the limsup of the expectation of the right-hand side of this equation is non-negative and
bounded. As a result, we obtain ||/ (nrprgrvr) = Op(1).

~ Qp
VEobust fy — 2 Hy—— Hyz + 0,(1
e NEDEAEUK (1)

! 1 Ry 2772
R i (Wi, — pu)“Up i + 0p(1).
N PEqkVE <uk(1 —Mk)> Z; (Wi — ) Ui + 0p(1)

Notice that

ng Nk
E[ D Ry i(Wii — ,Uk:)ZUlg,i] = > Dk (1 — i) <(1 — pe)up (1) + Mkui,i(o))-
b i

Finally, notice that

2
1 mp Nk
E > EKZ Ryi(Wii — uk)ZUii>
=1

2
NEPrk + NEPLqk MaXy, Nk m

("kPR VR h (nkPrqrvE)?
m =1
1 maXm, Nk.m 1
<c 5+ — 5
NEPKqEV, My, Ngm EMEVL
— 0.
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Therefore, by the weak law of large numbers for arrays, we obtain

Vkrobust ,Urobust

k
= + 0p(1),
= o)

vrobust _ i % uz,z(l) + ui,z(o) .
‘ Mk Fok L — pug

=1

where

A.3. Fixed effects
A.3.1. Large k distribution

Let .
k
Nim = Y Hmg; = m} Ry,
i=1
and
mp Nk
DD Ymes = m}Re Yiei (Wi — W)
~fix —1li=1
T = e : (A5)
Z Z Hmy,i = m}RkiWii(Wii — W)
m=1i=1
where .
__ 1 k
w = = 1 ; = Ry ;Wi ;.
k,m Nk,m v 1 1_21 {mk,z m} kiVVki

Notice that we need liminfy o pp(l — pg) — ak = liminfy_,o E[Agm(1 — Agm)] > 0 for this
estimator to be well-defined in large samples (otherwise, the denominator in the formula for TﬁXEd
could be equal to zero). Although it is not strictly necessary, and because it entails little loss of
generality and simplifies the exposition, we will assume that the supports of the cluster probabilities,
Ajm, are bounded away from zero and one (uniformly in k£ and m). In finite samples we assign

7lixed = () to the cases when the denominator of 7,i**d in equation (A.5) is equal to zero. Notice
that

n,

Z 1{mk7i = m}Rk’Z(Wkﬂ — Wk,m) = O.

i=1
Let

—_— Z 1{my,; = m}yi(0), — Z Hmy; = m}(yr,i(1) — yr,i(0)),

kmil kmil

ek,i(0) = Y,i(0) — Qpmy ;> and e (1) = ypi(1) — Qrmy,; — Ty, 1t follows that

Nk Nk
D = meri(1) = > 1my,; = mber;(0) = 0.
=1 =1

15



Now, Yy = eki(1)Wh; + exi(0)(1 — W) + by, + Thomy, ;Wh,i- Then,

mg Mg

D0 Hmgg = m3Rei((eri(1) + Thum) Wi + €xi(0)(1 = Wi i) (Wii — W)

?kﬁxed _ m=1i=1

mg Nk

Z Z Hmg; = myRyiWii Wi — Wim)

m=11i=1

Let

my ng
Z Thym Z H{my; = m}Ry Wi i Wiy — Wim)
m=1 =1

mE Nk ’

Z Z H{my; = m}RyiWii(Wii — Wim)

m=11¢=1

(A.6)

where, as before, we make 7 = 0 if the denominator on the right-hand side of (A.6) is equal to
zero. Now, ?kﬁxed — T = (?kﬁxed —Tk) + (Tx — Tk), where
mi Mk

Z Z Hmy; = m}Ryi(eri(D)Wii + eri(0)(1 — Wi i) ) (Wri — Wiom)

~ — =1i=1
Tkﬁxed — T = m=14

mp Nk
Z Z {my; = myRy iWii(Wii — Wim)
m=1i=1
and
mg N
D T = 70) D, Wmii = my Ry ;Wi s (Wi — W)
— m=1 i=1
Tp— Tl = e
Z Z {my; = myRy Wii(Wii — Wim)
m=1i=1
Notice that outcomes enter the term ?kﬁmd — Tj only through the intra-cluster errors, ey ;(1) and

ex,i(0). In contrast, the term 7, — 75, depends on outcomes only through inter-cluster variability
in treatment effects, 7 ,, — 7%. The numerator in the expression for 7, — 7 in the last displayed
equation does not have mean zero in general, and this will be reflected in a bias term, By, which
we define next. Let,

1 mg Nk o

Dy = 1mi=mRiWiWi—Wm,

e 7;::1;:1 {my, YR iWhi (W, kom)

and
1 L
——E[Agm(1 — Agm Tem — Te)(1 — (1 — Tk,m
o [Am( k, )]77;1( k, k) (1 — (1 —pg)"™m)
k= = 1 my ng _
1{m isz ZW1W1—W m
PRl mz_:“; {mu, YR iWii (Wi, kem)

Then, wnkpqu(?kﬁxed — Tk — Bk) = Fk/Dk, where
mg

Fy = Z (¢k,m - Ek,m) + (ka,m - @k,m)a

m=1

16



1 &

Veym = N 1:21 Hmyp; = m}Ryi(eri(D)Wii + ei(0)(1 — Wiei)) (Wi — Agm),
_ 1 & TTd
Viom = N z; Hmp, = m}Ryi(eri(1) Wi + €r,i(0)(1 = Wi i) ) (Wrim — Agm),
1 -
Okm = W(Tk’m — Tk) Z_le 1{m;m- = m}(Rk’iWk,i(Whi - Ak,m) - pquE[Ak,m(l - Ak,m)])v
and
1 < T
_mzirm—T 1mi=mRiWin—Am
P, m( kom — Tk) ; {mu, Rk, iWii(W, k)

— @ B[ Ak (1 — Agm)](1— (1 = Pk)”’“”))-

The terms )y, ,,, and Ek’m depend on the within-cluster errors ey ;(1) and e ;(0). The terms ¢y,
and Prm depend on the inter-clusters errors 7y ,, — Tx. Vrm and @y, replace Wy, with Ay,
while )y, ,, and @y, ,,, correct for the difference, Wy — A .

It can be seen (in intermediate calculations below) that

N
E[ D Umgs = myR Wi (Wi — Akm) | = e mPr@h E[Aran (1 = Agm)]

-1
and
ng
E| ) Ympi = m}Re Wi (Wim — Aran) | = ahE[Apan (1 = Agm)](1 = (1= pg)™m).
izl

These two expectations are substracted in ¢ ,,, and @y, ,, , 80 Y m and @y, ,, have mean zero. Doing
so for ¢y, does not require adjustments elsewhere. Because

mg

> (Tham — T)Mem = 0,

m=1

the ngmPrae B[ Agm (1 — Agm)] terms do not change the sum Fj. In contrast, demeaning @y,
creates the bias term Bj,. If the size of the clusters ny ,, does not vary across clusters, then By, is

equal to zero. More generally, \/niprqeDrBr = O(mgA/qx/(ngpr)). Therefore, if

Mgdk

pe(ni/me) 0 (AD)

(that is, if the expected number of sampled clusters is small relative to the expected number of
sampled observations per sampled cluster) then ./ngprqr DBy, converges to zero. As a result,
/MkPrqr By converges in probability to zero, because, as we will show later, Dy, converges in prob-
ability to pr(1 — pg) — ag, which is bounded away from zero. In our large sample analysis, we will
assume that the expected number of sampled clusters grows to infinity, mgqr — 0. Then, equa-
tion (A.7) implies that the expected number of observations per sampled cluster goes to infinity,
pr(nk/my) — o0. Notice also that ngprqr = (ngpr/mi)(mrqr) — 0.
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We summarize now the assumptions we made thus far. We first assumed that the supports of the
cluster probabilities, Ay ,,,, are bounded away from zero and one (uniformly in k£ and m), and that
potential outcomes are bounded. Moreover, we assumed myqr — o0 and (mrqr)/((pknk)/my) — 0.
These imply (pgng)/mr — 00 and ngprgr — 0. We will add the assumption that the ratio between
maximum and minimum cluster size is bounded, limsup;,_, ., max,, nj,/ min,, ny,, < . This
assumption implies py min,, ng m, — 00 and (mgqy)/(Pr Ming, ng m) — 0.

We will now study the behavior of Dy. Notice that

mp Nk
E[ Z Zl{mk,i = m}Ry iWii(Wyi — Wk,m)]

m=1i=1

mp Nk
=B [ D0 > Mk = my Ry Wii(Wis — Agm)

m=1i=1

mp Nk
—F [ 30 Umii = m} Ry Wi (Wi — Ag )

m=1i=1
my,
= nprgr B[ Ak (1 = Apan)] — @ B[Agm (1 — Agm)] Y (1= (1= pg)™m).
m=1

In addition,

2
1 mg Nk o

m=1 i=1
NkPrqr + nkpi% maxm Nk,m
(niprar)?

1 maXm, Nk, 1
=c + — : — 0.
NEPEqE Mgy Nk MEQE

The weak law of large numbers for arrays implies

mg

1
Dy, — E[Ak,m(l - Ak,m)] + kaE[Ak,m(l - Akz,m)] Z (1 - (1 - pk‘)nk’m) - 0.

m=1

Because my,/(ngpr) — 0 and E[Ag (1 — Agm)] = k(1 — pg) — o2, we obtain
Dy — (k1 — p) — 0f) == 0.

We now turn our attention to Fj,. We will first calculate the variance of 9y, ,,. Let Qg be a binary
variable that takes value one if cluster m in population k is sampled, and zero otherwise. Notice
that

E[RyiWii(Wiki — Akm) | Akms Qkm = 1, my; = m] = prApm (1 — Akm),
and
E[Ryi(1 = Wii) Wi — Ak )| Akms Qkom = Lymp; = m) = —ppApm(1 — Agm).
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Consider now

1 &

Vhm1 = N Z:Zl Hmp; = myRy iWhi (Wi — Akm)ex,i(1)

n
Qk,m "

m;{ k, }( ki Wi (W, km) = DAk ( k, )) k,i(1)

= m Z; {mp; = m}Ry (1 — Wii) Wi — Ak,m)ex,i(0)

n
Qk,m .

= > 1{my; = m) (Rk,i(l = Wii) (Whi — Aim) + prAem (1 — Ak,m))ek,i(o)-

VTUPEk

It holds that ¥y m = Ykm1 + Ykmo and E[y ] = 0. Now, notice that

Nk

1
E[R 1l = ;kE[Ak,m(l — Apm)? = prAf (1= Agn)?] Z {my,; = m}ei (1),
=1
1 <
E[{} mol = TTkE [A7 0 (1 = Apm) = prAf (1 — Agn)?] Z 1{my,; = m}ei ;(0),
=1

and
Nk

1
ElYkm1¥kmo] = ;kpkE[Az,m(l — Agm)’] Z H{my,; = mpegi(1)ex,i(0).
i=1

Therefore,

1 &
El(Yrma + Yemo)?] = ;kE[Ak,m(l — Apm)?] Z {my,; = m}ez,i(l)
i=1
ng

1
+ ;kE[Ai,m(l — Agm)] Y Hmps = me ;(0)
1=1

N

— D BLAR (1= An)®] 3] s = ) eni(1) = ei(0)),
=1

and

3

k Ny

Bl@km + Ymo)] = BlAxm(1 = An))-— 31631

1 ki1

1 &
+ E[Ai,m(l - Akm)];k Z 6%,1‘(0)
i=1

1 &

— peE[AR (1 — Ak’m)Q]TTk D eri(1) = ex,i(0))>.
=1

m
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We will next show that the terms @_bkm do not matter for the asymptotic distribution of \/mxprqr Tk —

7). Notice that, because the cluster sum of ey ;(1) is equal to zero, we obtain E[ty, ,,,] = 0 and,
therefore,

mi
B W] = 0.
m=1
Moreover
ng—1 ng ng
2 3 > Ui = my; = myegi(Der (1) = = >, Hmy; = mle ;(1) < 0.
i=1 j=i+1 i=1

In addition, E[RkiWi;(Wkm — Akm)?mi; = m] < quE[Arm(1 — Agm)]/num (see intermediate
calculations). Therefore,

ng 2
E (Z H{mp; = m}Ry Wi i (Wi m — Ak,m)ek,i(1)> ]

i=1

ng
= Z 1{mk7i = m}E[RkJWk,i(Wk,m - Ak,m)Q‘mk,i = m] 6%,1'(1)
i=1

ng—1 ng
+2 > > E[l{mk,i = my; = M}Ry ;i Ri jWieiWi j (Wi m — Ak,m)2] ek,i(1)er,j(1)
i=1 j=it1
1 &
< E[Agm (1 — Ak,m)]ﬁ Z {my,; = m}ei;(1).
M =1

Now, because errors are bounded, we obtain

2
my 1 ny . m
El|——— ) mp; =m}R WiriWi — Ap.m)eri(1 <c . A9
m§:1 [( o ;_1 {mu, $ R, iWie,i (W, kym )€k ( )) ] o (A.9)

Because my/(ngpr) — 0, the weak law of large numbers for arrays, implies,

mg Nk

1 E—
N Z Z Hmgi = m} Ry iWii(Wrm — Ag.m)eri(1) =2 0.
m=1i=1

with the analogous result involving the errors ey ;(0). If follows that
mg
- P
2 wk,m — 0.
m=1
Consider now ¢y, ,,. Notice that

E[(Rk,iWk,i(Wk,i — Agm) — PrAEE[ Ak m (1 — A’“vm)]))Q]
2

= prai E[Apm (1 — Ag.m)?] — pig} (E[Akm(1 = Akm)]),
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and
E[(Rk,iWk,i(Wk,i — Akgm) — PekE[ A m (1 — Ak,m)]))
X (Rk,jWk,j(Wk,j — Arm) — Prqe E[Agm (1 — Ak,m)])) Mk = my; = m]
= PRk E[AL (1 = Akn)*] = PR (B[ A (1 — Ap)])”

Therefore,
2 1= (E[Apn(1 = Ap)?] — Ao (1= Ag))?) e —7)?
E[‘Pk,m] - E[ k,m(l k,m)] kak(E[ k,m(l k,m)]) ng (Tk’,m Tk)
Nem (Mem — 1
+(mm%mu—umﬁ—M%wmmﬂ—mmmﬂk’%;>mm—m%
and
mi 5 ) mi nkm )
Z B¢k m] :< [Akm(1 = Apm)?] — Pear(E[Agm(1 — Agm)]) ) Z nk (Thkym — Tk)
m=1 m=1
2 4 Nk m(nk m 1) 2
(pkE[Akm( — Akn)?] = Prar(E[Apm(1 — Agm)]) ) Z T(Tk,m—ﬂc) .
m=1

Next, we calculate the variance of ¥, ,,,. Using results on the moments of a Binomial distribution,
we obtain, for n > 1,

ngk 2
T m = 17
E (Zl{mk,i = m} Ry i Wi i(Wim — Ak,m)> Q. ]
i=1

Nk,m =N
= ﬁE (Z; {my,; = m}Rk,iWk,i(Zl Hmpg; = miRy Wi — ”Akm)> ‘ Nkim =n ]

B[4} (1 = Apn)] + B[AR (1= A ) (5 — TApm)]
1
+ EE[Akﬂn(l - Ak,m)(6Al2c,m - 6Ak,m + 1)]

Therefore,

Nk 2
E (21{mk,i = m} Ry iWii Wim — Ak,m))
i1

= M mPrG B[AL (1= Ak )] + G BLAT (1= Agn) (5 — TAgm) (1 — (1 = pg)™m)
+ B[ Agm (1 = Agm) (647, — 6Akm + D]rem,

where .
k,m 1 . Nk,m
Tkom = ;Pr(Nk,m:n‘ka*1 Z Nkm*n’ka: )<1
n=1 n=1
It follows that,
_ ng 1
E[# ) = (Thom — )° (ﬁE[Ai,m(l — Apm)] + @E[Az,m(l — ) (5 = TApm)](1 = (1 = pr)™m)



+ 7E[Ak m(1 = Akm) (647, — 6 Ak + 1|7k m

NEPk
qk 2 n 2
(B[ A (1= A )21 = (1 — pg)™em)2).
(Bl k(1= Ak)DP(1 = (1= pe)n)?)
Therefore,
% Zk — ("’”” E[A2 (1-A 1
E[%} ] (Thm = 7)== ) ELALm km)] +0(1).
m=1 m=1

We will now study the covariance between ¢y, and Py, ,,. Using results on the moments of a
Binomial distribution, we obtain, for n > 1,

Nk Nk
E (Z {mp; = myRy Wi i (Wi — Ak,m)) (Z {mp; = m}Ry Wi (Wi m — Ak,m)> ‘ ]%];m 7 ]
i=1 i=1 m
1-— Ak ok 2 & Qk =
=Bl — = D Umps = myRe Wi | | D2 Umies = myRiWis — nAg m) Nkm _ .
i=1 i=1 m
= 2nE[A} ,,(1 = Apm)?] + E[Apm (1 — Apm)?(1 = 245m)].
Therefore,
Nk N o
E (Z {my; = m}Ry Wi (Wi, — Ak,m)) (Z Hmpg; = myRy Wi i (Wim — Ak,m)>]
i=1 i=1

= 205 mPe @k B[ A} 1y (1 = Akn)’] + G E[Agm(1 — Agm)* (1 — 24401 Pr(Njgm = 1|Qpm = 1).

In addition,

ng Nk
Z Hmy,; = myRy Wi i (Wi — Agm) E[ Z H{my; = myRy Wi i (Wi m — Ak,m)]
=1 =1

= N mPkGp (B[ Ak (1 — A i) )? Pr(Nim = 1|Qpm = 1).

As a result,

B[k mBrm] = (2B (1 = A)?] = au (B[ A1 = Ap)])?) (7 — 70 (T;:) +0O (7%1]%)

+ O (Qk (pre min ng, (1 — pip) ™0 n’””)) .
Pr My NEom m

Notice that my/(ngpr) — 0. In addition, myqy/(pr ming, nk,) — 0 and

. ming,, n
Dk mlnmnk,m> m

Pr N 1 (1 = ppe) ™™ ™ = prmin g, (1 — ——
m ’ m ’ miny, Nk m

< pr minng, e PEIIm em s (),
m

Therefore,

S Bl = (2BL4 (1= A= BlAwn(=Aen))?) 3 (rim—r)? (";jm) +o(1).

m=1 m=1

22



Next, we will study the remaining covariances between ¥ ., @k m, z_bkm, and @y, ,,,. Because the
intra-cluster errors, ey ;(1) and e;;(0) sum to zero, it can be easily seen that E[vy,¢@rm] =
B[k, m®y.m] = 0. It can also be seen that the inter-clusters sums of covariances between ﬁkm and
any of the other terms go to zero. To prove this for the covariance with vy, ,,,, we have

(i E[Iwk,m%,ml]> < (i (B[R m) B[ ]) 2)

m=1 m=1
my mg
—2
m=1 m=

1
=0(1)o(1) = o(1).

The same argument and result applies to E[¢y, ,,,¢km] and E[¢y @y ,,]. Putting all the pieces
together, we obtain

nprar E[Di (784 — 7)) = fi + 0(1),

where

1 &
= E[Agm(1 — Apn)? eri(1) + E[A7,,(1 — Apm)]— ) eri(0
fie = E[Agm( k Zk m(1— Ag, )]nki_z1 7.i(0)

1 &
— peE[AR (1 — Akm)g]n*k D eri(1) — ei(0))?
i=1
2 2) U’ ”k:m 2
+ (E[Ak,m(l — Akm)”] = Prak(E[Agm (1 — Agm)]) ) > nk (Tkym — Tk)
m=1
A |
+ (PEAR (1 = )] = prar(B[ A (1 = Ap)])?) D) 2ot Moo = 1) (2
m=1
my
3 2 ( Mkm
P (1 = A)] 3 (7 =) (%)
2 2 2) 2 Mkm
~2(2B[47 (1~ Ak )] = e (Bl = A))?) 3 (i =70 ().
m=1

Collecting terms with identical factors, we obtain

1 &
= E[Apm(1 — Agm)? eri(1) + E[A},,(1 — Apm)]— > eq (0
Tk [Akm ( k Ek m(1— Ag, )]nki_z1 i (0)

— peE[AR (1 - Ak,m)2]nlk i(ek,i(l) — e,i(0))?
i=1
+ (BlArm(1 = Aem)?] = 4+ p) E[A] 1, (1 = Am)?]

mg

BAR (1 = Ai)] + 26 (B[ Ak (1= Agn)])?) D S (i = 70)°
m=1
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mg 2

+ (pkE[Ai,m(l — Akn)®] = Drar(E[Agm (1 — Ak,m)]>2) > M(Tk,m — )%

m=1 Tk

The first three terms in the expression above depend on intra-cluster heterogeneity in potential
outcomes and treatment effects. The last two terms depend on inter-cluster variation in average
treatment effects.

A more compact expression for f is

1 &
fr = E[Apm(1 = Agm)’] 26’1“ ) + B[4}, (1 _Ak,m)];kZei,i(O)

1”’“

— peE[AF (1 - Ak,m)2]n* D ileri(1) = exi(0))

k=1
+ (BlAkin(1 = Akn)] = 6+ ) BIAT (1 = Ap)?)

+ 2qi(E[Ag,m (1 — Ak,m)])2> i i (Thom — Tk)?

m=1 Nk
( 2 2 2 G ni,m 9
+ (PLEAR (1 = An)®) = e (Bl (1= Ax)])?) 3 S (i =) (A10)
m=1

Notice that the first four terms in (A.10) are bounded, and that

E[A} (1= Apm)*] = i (B[ A (1= Ag ) 1)? = var(Ag m (1= A n)) + (1= 1) (B[ Agm (1= Agm) 1)
Assume that

2 >0, (A.11)

h’?ilolgf Zl ” (Tk m— Tk)
and

lim inf var(Ag m (1 — Akm)) v (1 —qx) > 0. (A.12)

k—o0

The last term in equation (A.10) is greater than

mg
. n
prmin g (BIAR (1= Akn)?] = (B[Agm(1 = Axa)]D?) D) (Thm = 7k)%,
m=1

which converges to infinity because pj min,, ng,, — . That is, the last term dominates the
variance in large samples provided that (A.11) and (A.12) hold.

We will now derive the large sample distribution of Tﬁxed

holds for F}, notice that

To show that Lyapunov’s condition

|(Yrn — Vo) + (Pln — P
1 <

= 35 2 H{my; = m}Rpi((eri(1) + Thm — 7o) Wi + €k, (0)(1 = Wi i) (Wi — W)
(neprar)? | =

3
— (Tk,m - T)QkE[Ak,m(l — Ak,m)](l — (1= pp)™m)]| |
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where the last term inside the absolute value comes from the bias correction. Notice that,

3
Nk
Z {mp; = m}Ryi(eri(1) + Thm — T)Whi(Wii — Wim)
izl
J— Dk 5
= |(1 = W) D Ympi = m}Rii(eri(1) + Thm — %) Wi
izl
ng 3
<c Z Hmp,; = my Ry, ;Wi
=1
<cNp,,

From the formula of the third moment of a binomial random variable, we obtain
-3 -3
E[Nk,m] = QkE[Nk:,m|Qk,m = 1]
= n} Drt + 0(n} PRak),

as prNk,m — 0. Now,

3
1 mp 1 Nk J—
—_— Fl|l——— Hmp,; = mtRr;(eri(1) + Thom — Te) Wi (Wi — W
rp) [ g 2o s = mBons (1) 4 T = ) Wi Wiy = Wi
_ Ny Maxy, nijmpi% (maxm N ) 2 1 0
xC - = - —
(nkprqi)®? (pr ming, g m,)3/? ming, ngm ) (myge)'/?

Similar calculations deliver the analogous result for the term involving ey ;(0), and proving the
result for the bias term is straightforward. Therefore, we obtain

JR — _
:3/2 2 ‘(wk,m - wk’,m) + (Spk,m - (pk,m)‘g — 0.
kL m=1
By the Central Limit Theorem for arrays, this implies

d
\/nkkaIka/f;/Z — N(0,1).
Let oy, = fr/(ur(1 — px) — 07)*. Then,

~ ~1/2 d
«/nkpqu(Tkﬁxed — Tk)/'l);/ I N(O, 1).
As a result,

VNEE — 57 -4 N(0,1).

A.3.2. Estimation of the variance

Let
ny

Nimo = Z H{mp,; = miRy (1 — W)
i—1
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and

N
Nimi = Z {mp; = m}Ry Wh..
i=1
Let , -
Yim==——— % mp; = m}Rp;Vii.
k,m ng,m v 1; { ki } kilk,
Then,
?k,m = &k,m + ?k,ka,ma
where
~ 1 S
Qfm = W Z; {my,; = m}Ry;(1 — Wyi)Yii,
1 & 1 &
Thm = —————— 1 = myR Wi i Y, — ——— 1 = mRy (1 — Wr)Yes
Tk,m Nk,m,l v Z=21 {mk,z ’I?’L} kiVVkilki Nk,m,O v Z:Z; {mk,z m} k,z( k:,z) k,i»
and, as before,
_ 1 2k
Wim = m Z {mp; = m}Ry Wh..

i=1

Let Uy = Yi; — 705W, 5, where Yy = Y — Y, Wi = Wei — Wi, ), and 7,54 is the

within estimator of 7. Let Y = Dok, ik’m, where

2
ng
Ykm = (Z {my,; = m}Rk,iWk,iUk,i> .

i=1

Also, let
Ny
Qr = Y, RiiWi,.
i=1

Then, the cluster estimator of the variance of v/ N}, (?kﬁxed —TE) is
‘N/kcluster _ Nkélzlik@;l

We know already that
1

NEPLdk

Qr — (pr(1 — ) — o3) > 0,

with (1 — px) — o2 bounded away from zero. To establish convergence of f]k/ (nkprqr fr), first
notice that, for my; = m, we have

Ui = Yii — @m + TomWhm) — 0 (Wi — Wim)
= Ui (D Wi + Y (0)(1 = Wis) — (o + ToomWiom) — T (Wi — Weom)
— (@hm — hm) = Thm = Thm) Wim
= ep i)W+ e, (0)(1 — Wh;) + (Thm — ?kﬁxed)(Wk,i — ka)
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- (ak,m - ak,m) - (?k,m - Tk,m)Wk,m
= ek (Wi + exi(0)(1 = Wii) + (Teom — ) Wei — W)
— (Ffxed — Y Wi = Wiom) — (Qrem — Qom) — Frm — Tom) Wk
For my; = m and Nj .0, Ngm,1 = 1, let
Uk = ex,i(1)Wii + €x,i(0)(1 = Wi) + (Thom — %) (Wii = Wem),

and let Uk,i = 0 for my; = m and Nj ,,0Nkm,1 = 0. Then, for my; = m and Ni p, 0Ng,m,1 = 1, we
have

Upi — Ugi = =35 = 5) Wi = Wam) — @him — @) — T — Thm )W k-
Then,
(Z H{my,; = m}Rk,iWk,iUk,z‘>
=1

ng N . N _ 2
= (Z Hmp,; = my Ry ;Wi <Uk:7i + (Ui — Ukz)))

i=1

ng 2
= (Z 1{mk,i = m}RMWk’i (U]m — (?kﬁxed - Tk)(Wk,i - Wk,m)))
i=1

Nk Nk 2
= (Z Ump; = m}ReiWe, iUk — (B0 = 1) > Y = m}Ry Wi (Wi — Wk,m)> -
-1 -1

Using the formula for the second moment of a binomial distribution and n > 1, we obtain,

ng 2
E (Z Hmy; = myRy Wi ;(Why — Wk,m)) ’Nk,m = n]

=1

ng 2
=F (Z l{mkﬂ‘ = m}(l — Wk,m)Rk,iWk,i> ‘Nk,m = n]

=1

ng 2
<Z {my,; = m}Rk,iWk,i> ‘Nk,m = n]

<FE

i=1
< n2+n
< .

From the formula of the sum of the first two moments of a binomial distribution, we obtain

mg ng o 2 e
LB (Z Wi = m} By iWii(Wh,i — Wk,m)> ] < D (0F PR + Mo DRAR)-
m=1 i=1 m=1
Therefore,
1 fixed o & 2
= (pfixed _ 32 E YUmp: = m Re W :(We - — W
nkpqufk( ¥ ) mZ::l 121 {m F Rk Wi (Wi kym)
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my
NEPE4k ,~fixed 2 1 2 2
< T, —Tk) T3 N mPrk + Nk mPrqk

fk ( k ) (nkkak)2 WLE:I( k,mtk m )

= 0,(1) (Bl _L_ ) 2,
p min,, Nkm MEkqk  NkDPkqk ‘

Now, notice that

my, ng - 2
! Z <Z H{my; = m}Rk,iWk,iUk,i>

1 P Dk o
[ — {mg;, = mtRr;(eri(OWii 4+ eri(0)(1 —Wii)) Wii — Wi
kPR fr mZ‘l Z; tm, PRy (eri(D)Wei + en,i(0)( ki) (W, km)
Nk L 2
+ (T — %) ) Lmpes = m} Rii( Wi — ka)?) :
i=1

Equation (A.9) (and the analogous result for the sum involving terms with ey ;(0)), implies

2
1 E (& B
5Pk fr 2 ( Z; Uy = m} Ry (eri(D)Wii + eki(0)(1 = Wi i) (Wim — Ak,m)> P,

m=1

As a result, it is enough to establish convergence of 3, /(nkprqr fr), where

Sy = i <Zk: Wi = m} Ry (eri(1) Wi + e (0)(1 — Wii)) (Wei — Akm)

m=1 \i=1
ng 2

+ (Thym — Th) Z I{my; = m} Ry ;(Wg,; — Wk,m)2>
i—1

m ng
— Z <Z {myg; = m} (RMWk,i(Wk,i — Aim) — PrQeAkm(1 — Ak,m)>ek,i(1)

m=1 \i=1

Nk
+ > Umy; = m} (Rk,i(l = Wii) (Whyi — Akm) + PraiAkm(1 — Ak,m)>€k,i(0)
-1

ng 2
+ (Thym — Tk) Z H{my; = m}Ry;(Wy; — Wk,m)2> .
i=1
We will next show that
1 i flgluster » 0 (A 13)
kG fe Tx ’ '
where
cluster 1 2 % 2
i = —E[Apm(1 = Aem)®] Y eri(1)
U i=1
1 2 S 2
+ FkE[Ak,m(l — Agm)] Z €5.i(0)
i=1

28



=1
k
Nkm
+ (BLAgn(1 = Agm)] = 5+ p ELAR (1= Akm)*]) 3 S (i = 78)
m=1
mp n%
+ Pk B[A} 0 (1= Akm)’] D ” (Tk,m — Tk)
m=1
Let
1 &
Xim = my; = miRg i (er:(0)(1 — Wi,
L Z; {my, YRii (€r,:(0)( i)
nk 2
+ eri(DWei) (Wi — Agm) + (Thm — Tk) Z Hmpg; = miRy (Wi — Wk,m)2>
i=1

Using the result in equation (A.8) and results on the moments of the binomial distribution (see
intermediate calculations in section A.7), we obtain

1 L
E[Z] = E[ X}
NEPEqk (%] mZ::l (K]

_ f](éhISter + O(l)

Therefore, to show that equation (A.13) holds, we will show

mg

1
= Z E[X}, ]—0. (A.14)
fk m=1 7
Let
Ok = E[(RiWii Wi — Aem) — PrAem(1 — Apm))?mei = m, Qpm = 1]
= P (E[Apm(1 = Apm)®] — phE[A7 (1 = Agm)?])
and

Tk = E[(ReiWii Wi — Akm) — PkAkm (1 — A ) mii = m, Qim = 1]
= Dk El(Wiei Wi — Akm) — DrArm (1 = Agn))Imui = m] + pp(1 — pi) E[AR (1 = Agn) 1.

Let
1 & ?
sz 1mz=mRZWZWl—Amell
k1 nkpqu<; {my, R, i Wi (W, o) €hsi ))
Qr - ’
= N U ms = MY (R Wi (Wi — Akgm) — Priem (1= Apan))eri(1) | -
nEPkGk \
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Then,

E[Xl%,m,l] = QkE[Xlg,m,”Qk,m = 1]

ng
Tk
= H{my; = miey ;(1)
wEptay 2 1k = el

2.2 Z Z Wmg; = my; = m}ei,i(l)ei,j(l)-

Therefore, because nyprqr — 00 and myq; — 00, we obtain
mg Nk 2
max, 1
BElx2 < ¢ ¢ + = m_km
k,m,1 k z . 2
NEPEqk nk MGl Mgy N

m=1
1 mg 1 ng—1 ng
x ( Z 2 Z Z Wmp; = my; = m}ei,i(l)eig(l))

M g M8Xm ey 527 1550

— 0. (A.15)

Using the same argument, we obtain

mp,
Z E[Xlg,mz] - 07 (Alﬁ)
m=1
where
1 <& ?
Xiem2 = P <2—21 H{mp; = myRy (1 — Wy) Wy — Ak,m)ek,i(0)> .

Notice that equations (A.15) and (A.16) imply

and

Notice that the last two equations hold even if fj, is bounded (e.g., when 7, — 7, = 0 for all £ and
m), as long as fi is bounded away from zero in large samples. In section A.3.3 we derive conditions
so that f;, is bounded away from zero in large samples even if 73 ,, — 7, = 0 for all £ and m. Now,
let

2
1 & —
X = — 1 i = m}tR Wi (Wi — W .
k,m,3 e ((Tk,m Tk:) 7; {mk,z m} ki k,z( ki k,m))
Recall that, under the conditions in (A.11) and (A.12), fi — o0 and py minny,,/fx is bounded for
large k and, therefore, py maxny, .,/ fi is bounded for large k. Then (see intermediate calculations
at the end of this document), for large k,

1 & 1 1
EI R R S ] (RY] e
Vi mZ::1 Ximal (nkprak fr)? Z PRk (Tim ) Pk MiNy, Ny,
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2 mi 2
P mMaxX;, n n 1
— mohm (PENY ko — 7))t (1 +0 ( >>
Mgk fr Ming, Ngm Tk ng Pr My, Mg m

1 1
o( )<1+o(_ ))—»0.
My Dk Mgy N m

Now, Holder’s inequality implies that equation (A.14) holds (see intermediate calculations).

Now let,

2

{]]ccluster _ f]gluster/('uk(l - Nk) - O-I%) :

We obtain,
1/ cluster ~cluster
Vi Yk

= 1).
. . + 0p(1)

We will next establish the analogous result for the heteroskedaticity-robust variance estimator. Let
ng
i=1

Then, the heteroskedasticity-robust estimator of the variance of /Ny (7,8 — 7;) is

Prrobust — N, G 1Sobust L,
As we have established before,
Ui = eri(DWii + eri(0)(L = W) + (Tiom — ) Wiy = W)
— (Ffed — Y Wi = Wiom) — (Qrem — Qeom) — Frm — Tom) Wk
For my; = m and N ,,0Nkm,1 = 1, let

Ui = eri(DWii + e (0)(1 — Wii) + (Teom — T6) Wi — W),

and let Uk,i = 0 for my; = m and N ,,0Nkm,1 = 0. Then, for my; = m and Nj , 0Ng,m,1 = 1, we
have

ﬁk’i - Uk,i - _(?kﬁxed B Tk)(Wk’i N kam> - (&k,m - O‘k,m) - (?k,m - Tk,m)Wk,mv
and 1 Nk .y ~ 1 ng — - N _ )
Ry, W2.02, = Ry, ‘W2~<Uk-+ Ui — Ty ) ‘ ALT
NPk @_21 AR DRk ; iWii( Uk + (U i) ( )

Focusing on the part of the right hand side of last equation that depends on the first term of
Uki — Uy, we obtain

1 & ~, . 1 & ~o
Z Rk,inﬁ,i(Tkﬁxed - Tk)2 S (Tkﬁxed - Tk>2 Z Rklwlgz — 0.
PRk = PRk ;5

We will focus now on the part of the right-hand side of equation (A.17) that that depends on the
second term of Uj; — Uk,i,

mpg N
! 33 ks = mYRe W (Qkam — km)
NkPkdk =121 ’
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Using the formula for the variance of a sample mean under sampling without replacement [e.g., in
the supplement of Abadie et al., 2020], we obtain for 1 <n < ny,, — 1,

g
E|(@km — arm)® D {mis = m}Re Wi,
i=1

Nk,m,O = ’I’L]

=F

(ak,m - O‘k,m)2ﬁk,mwk,m(1 - Wk,m)’Nk:,m,O = n]

<E [”(@k,m — am)*| Niggm,0 = ”]

= nvar (g, m|Nk,mo = 1)

n
— Si,m,o(l S ) (A.18)
,m
where .
1 k
Si,m,o T 1 Z Hmpi = m}(y,i(0) — akz,m)Q'
k,m i=1

Because Si,m,o is bounded, so is the right-hand side of equation (A.18). As a result

mg Mk
T2 (A 2 my
Z Z 1{mkl m}Rk,iWk,i(ak,m - ak,m) sc — 0.
nkPrAk o o Nk Pk

An analogous derivation applies to the part of the right-hand side of equation (A.17) that depends
on the third term of Uk i Ulm (Notice that Wi m < 1 and that 7} ,,, — 7 m is equal to minus the
difference between &y, — o 5, and the analogous difference for the treated.

Therefore, we will study the behavior of

1
Ry W2 Uy ;. A.19
nkkakzzl & b F ( )

First, notice that

mE Nk
Z Z mp; = m}Rii| (Wi — Wim)? — (Wi — Ak,m)z‘Wk,iez,i(l)
niprqe = S
my ng L L
Z Z Wi = m}Ryi| (Wi — Wim) + (Wi — Ak,m)“Wk,m — Apm| Wiy
nrprar ol

1 mg Nk o 9 1/2
< C( Z Z 1{mk,i = m}Rk,i <(Wkﬂ — Wka) + (Wk,i — Ak,m)) Wk:,z‘)

nkPrqk T o

my Nk 1/2
( Z Z Ump; = m}Ry;(Wim — Ak7m)2> . (A.20)

nkPkdk T o

The inside of the first square root in equation (A.20) is bounded by a constant times

mg Nk

D0 Ui = m} Ry,

m=1i=1

NkPLAk
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which converges in probability to one. The expectation of the inside of the second square root in
equation (A.20) is

1

E[Nt (Wi — Arm)’] <
nkkakmz:l [ . ( b b )] ¢

mg
NgPk

— 0.
As a result, the right-hand side of equation (A.20) converges to zero in probability. The derivation
with (1 — Wy;)ez ,(0) replacing Wy ;e? .(1) in equation (A.20) is analogous. Now, notice that

(Wi = W) = (Wi — A
(Wi = Wim)® + Whi — Apn)?) (Wii = Wem) + Wi — Agn)) (Wiom — Akom).-

Because the first factor of the expression above is bounded, we obtain

mg Nk
DD Umk = mIRei| (Wi = Wim)* — (Wi — Ak,m>4‘(7k,m —7)?
nkkakm 1i=1
my Nk 1/2
2 Z l{mkz = m}sz
nkpRar [ A
mg Nk - ) 1/2
{mp; = m}Rp; Wgm — A . A21
(nkkak mzlzzl { k, } k,z( k,m k,m)) ( )

Now, the right-hand side of equation (A.21) converges to zero in probability by the same argument
as for equation (A.20). Cauchy-Schwarz inequality implies,

1 1 Tk y
szlU%_ Hmgi = m}Ry;(Wei — Arm) Ui + 0p(1),
NPl zz; Pk R T DRk Z; {me, YRii (Wi — Akm) U + 0p(1)
where
Uk,i = €k,i(1)Wk7i + 6]@71‘(0)(1 - Wk,i) + (Tk,m - Tk)(Wkﬂ' - Ak,m): (A.22)

for my; = m and Ng m0Ngm1 = 1, and (v];” = 0 for Ny moNgm1 = 0. Therefore, we will study
the behavior of

mE Nk
1{m Z—mR sz—A mZUQi.
NEPLqk mzuzl tm, HRks (W, bm) U,
We know,
1mz leWZ—Am Wieil
nkkaka“Z; {mx YRy s (W, kom) Wi ieg (1)
0l G o P
— E[Agm(1 — Akm) ]n: Z (1) — 0,
i=1
and
mi Mk
Z Z H{mg; = m}Rei(Wii — Agm)* (1 — Wi)e :(0)
nkPedk 52 =
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1 &
B4, (- Ae)] - Y0
kiz1

Now, notice that
E[(Wii — Akm) [y = m, Rei = 1, A = a] = (1 —a)'a + a*(1 —a)
a

(1—a)[(1-a)®+a*]
=a(l —a)[l —3a(l —a)],

which implies

E

N
D Wi = m} Ry i(Wii = Agn)* (iom — Tk)2]
i=1

= D@k B[ Ak m (1 — Agn) (1 — 3A (1 — Ak )] (Tom — 1),

and

mg Nk

Z Z Ump; = myRy; Wi — Apn)* (Teom — Tk)2]

m=1i=1

NkPLAk
my

= E[Ak,m(l - Ak,m)(l - 3Ak,m(1 - Ak,m))] - Tk)z'

Notice now that

2
(NPRar) 2 Z E[(Z {my; = m}Ry ;(W,; — Ak,m)4(Tk,m B Tk;)2> ]

=1
2
(rpran)? 2 (Z Hmy,; = m}Rk,i)

nkpk:Qk

i=1
<G 2"+ o)
m=1

1 maX,, Ngm 1 P
=c + — ’ — 0.
NEPLqr My gy MEGE

Notice also that expectations of the sums of products of the terms on the right-hand side of equation
(A.22) are equal to zero. Then,

1

Erobust . f]gobust p 0,
NP4k

where

1 &
FioPU = E[Apm(1 — Agm) Z €ii(1) + E[AF (1 = Akm)];k Z ¢ki(0)
i=1
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mg

nk7
+ E[Agm(1 = Apm) (1 = 3Akm(1 — Agm))] Y n: (Thym — 7).
m=1
Now let,
B = FEO (1~ ) — o7
We obtain,

Vkrobust _ 1~)ll;obust + Op(l).

A.3.3. Large k results the fixed effects case under homogeneous average
treatment effects across clusters

We will now study the Lyapounov’s condition for the case 73 ,, = 71 for all K and m = 1,...,my,
SO

my

m=1

Notice that

mpe 1 ne
2 Elim] 2 Bl Akm(1 = Agm)’] 3 i = mief (1)
m=1 i=1
1 2 < 2
+ ;kE (A7 (1 = Arn)] Y Hmi i = m}e ;(0)
=1
1 2 7\ 2
- ;kE[Ak,m(l — Akm)?] Y Hmii = m}(eri(1) — ei(0))
=1
1 4 &
= nka[Ak,m(l — Agm)®1 Y Ymps = m}ed ;(1)
=1
1 < )
+ n*kE[Aim(l — A,m)] 2 Hmy,; = m}eg ;(0)
=1
2 &
+ ;kE[Ai,m(l — Akm)?] Y Hmpi = mberi(1)er(0)
=1
1 & & eri(l) | era(0) \?
=FE|— Y A} (1—Apn)? 1mi=m<’l + —= > .
nk ,mZ:l k, ( k, ) 121 { k, } Ak,m 1_Ak,m
Therefore,
1 & eri(D)  eri(0) )2
liminf B | — > A} (1= Agm)® ) Hmg = . . 0
min [ DI R C e N B

is sufficient for liminfy_,4 fr > 0 (even if condition (A.11) does not hold). Given our assumption
that the supports of the cluster probabilities, Ay, ,, are bounded away from zero and one (uniformly
in k and m), then

o 1 & & eri(1) | eri(0) \?
h]?llolng nka::MZ:l 1{my,; = m} ( A + 7 —Ak,m> >0 (A.23)
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is sufficient for liminfy_,o, fr > 0. Assume that (A.23) holds, so liminfy_,4 fxr > 0. We now obtain,

4
ng
E[| > Ymki = m}Re iWii(Wii — Wim)eri(1) ‘Qk,m =1, Agm
iz
N 4
= E| (1= Wim)*| > Hmg; = m}Ry ;Wi iep (1) ‘Qk,m =1, Akm
i=1
n 4
SE Z Hmp; = miRy Wi ieri(1) ‘Qk,m =1, Akm |,
i=1
and
e 4
E[| Y] Hmp; = m}Ry ;Wi iep,i(1) ‘Qk,m =1,Am
i=1
ng 4
= E[ Z Hmy; = my(Ri,iWhki — prAkm)er,i(1) ’Qk,m =1,Arm
i=1

= e E[(Rie,iWii — Pk Akm) | Qrm = 1, Akm]
+ 31 (Mo — D) (E[(RiiWhi — Pk Akn)?|Qrm = 1, Apm])?.

The first equality holds because the terms ey ;(1) sum to zero within clusters. The second equality
holds because, if my; = myp; = m, with ¢ # j, then Ry;Wy; and Ry ;W}; are independent
conditional on Qg m = 1, Akm, and E[Ry iWi i — prAkm|Qkm = 1, Akm] = 0. Notice that

E[(RiiWiyi — PeAkm)?|Qrm = 1, Agm] = PeAim(l — PeArm) < D
which also implies E[(RkiWki — PkAkm)|Qkm = 1, Agm] < pr. As a result,

mp 4
o |
m=1

1 43 maXmy, Ngm 1

~ .
NEPEqk Milyy, Mg m Mgk

Nk

1
‘m Z 1{mk,i = m}Rk,z’Wk,iek,i(l)
=1

— 0.

A.4. Derivations of the variance estimators

In this section, we derive the adjustments in the CCV variance. (We do this under the assumption
that the Z; are independent. In our simulations we actually use a slightly different sampling scheme
for the Z; where the average Zy,, is identical and fixed in each cluster.) To derive the CCV variance
of the least squares estimator, consider first a variance estimator of the form

(&)

We aim, however, to design an estimator based on a subsample consisting of units with Z; = 1,
where Z; € {0,1} is i.i.d. binary with Pr(Z; = 1) = pz and independent of V. First, notice that

n 2 n n—1 n
E (ZIV) =;E[V£]+2Z >, ElVivjl,

i=1 j=i+1
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and

=1 =1 i=1 j=i+1
Therefore,
1 n 2 n n—1 n
p (zm) SNV s S ) B
Pz \;o i=1 i=1 j=i+1
and

Adding the last two equations,

(Z w) B (Z Zv) WUz v gy
i=1 ; -

bz i=1 pz i=1
) _ . 2: (1 ) .
— bz
- E|(Y2Vi| | - =D ElZV7] (A.24)
Pz iz Pz i3

The first term of the CCV variance estimator for least squares is based ‘on the sample counterpart of
the right-hand side of equation (A.24), with 1{my; = m} Ry (Wi — W)Uk — (Them — Te) Wi (1 —
W)) in the role of V.

To derive the CCV variance estimator for the fixed effect case, consider

( [Akm(l_Akm)])2
BlA},, (1= Agm)?]

A =1—

and let f; COV — N4 f,‘élusmr +(1—=Xg) f,gObuSt. This transformation is designed to reproduce the terms
in fi with factor

my n2

k?
Z m(Tkm — Tk)Q.
m=1 "k

These terms dominate fj as k increases. It also reproduces several lower order terms.

Notice that

1 &
P = Pl (1 = A D3 hl0) + FLA 1= Ao 31,00
=1

mg

Nkm
+ (BlAm(1 = Aem)] = 6+ P AT (1= Akn)]) D S (i — 1)’
m=1
2 2 &G Nkm 2
+ (2 + pr) E[Af (1 — Agm)7] nk (Thym — Th)*-
m=1
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Then,

KN = fi = (1= MNP B[AR 1, (1 = Arn)?] ( > nz: (Thum — ) + nlk D lera(1) — ekz,i(o))2>

m=1 =1

m=1 "% i=1

= ek (B[Agm (1 — Agm)])? ( Zk: o (o — )2 + nlk Zk(ek,i(l) - ek,i(o))2> ~

For 50V = POV /(g (1 — pi) — 02)2, we obtain,
my Nk
oV - Nk,m 2 1 2
Oy = Ok = prear Y, Tk(Tk,m —TK)" + i D (eri(1) = exi(0))7. (A.25)
m=1 i=1

The difference @ECV — ¥ is non-negative and of smaller order than ;. Therefore, @,gcv/f)k — 1

(even if 3¢V — 7, is bounded away from zero). The first term on the right-hand side of (A.25)
could be estimated to further correct the difference between the CCV estimator and the variance
of ?,gixed.

A.5. Limit results
Let X}, be an infinite array of random variables, with rows indexed by k = 1,2,..., and the
columns of the k-th row indexed by m = 1,...,mg. Let

my
Sk‘ = Z Xk:,m>
m=1
and ap = E[Sk].

A Weak Law of Large Numbers for Arrays: For each k = 1,2,..., suppose that Xy 1,..., Xj , are
independent and have finite second moments. In addition, let by be a sequence of positive constants
such that

1
= > E[X},,] — 0.
k m=1
Then,
Sy — ag 2.0
b, '
Proof: By Chebyshev’s inequality, for any ¢ > 0
S — ay, 1
Pr <‘ h > €> < b%?var(Sk)
1 &
— b,%? Z var( Xk m)
m=1
1 & 5
S 193 Z B[ Xim] — 0
bpe® =,
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A Central Limit Theorem for Arrays: For each k = 1,2,... , suppose that Xy 1,..., Xgm, are

independent, with zero means, E[Xj,,| = 0, and finite variances, o = E[X?, ], for m =
1,...,mp. Let
my
2 2
S = Z Uk,m'
m=1

Assume also that Lyapounov’s condition holds,

: 4
hm 27+5 Z |Xk m|2+ 0,

k—o g

for some § > 0. Then,

S _d, N(0,1).
Sk

Proof: Billingsley [1995], Chapter 27.

A.6. Intermediate calculations for Section A.2
The calculation of v uses the following results.
E[(RiWki — pe@itn)*] = prasio(1 — prgiti),
E[(Ry;(1 — Wis) — prar(1 — px)?] = prar(1 — pe) (1 — prae (1 — ux)),
E[(Ry,iWii — preiott) (R (1 — Wii) — prar(1 — px))] = —piraepn(l — ),
E[RyiWiiRi j Wi jlmrs = mrj] = ElprarAR ] = prar(ok + 13),
and
E[(RiiWi,i — Pediotin) (R Wiy — Pritn) M = mu ;] = prar(on + 1i) — (Pediin)’
= prar(or + (1 — qr)up)-
Similarly,
E[(Rri(1 = Wis) — peae(1 — pr)) (Rij (1 — Wi j) — preqr(1 — pi))|mi; = mu ;]
= piar(op + (1 — qr)(1 — )?).
Notice also that
B[Ry iWi iRy ; (1 — Wi ) mpi = muj] = E[pigrArm(l — Agm)]
= prar (b (1 — pi) — 07),
and
E[(RiiWhi — pearir) (Rij (1 — Wi i) — pear(1 — pe)) [me; = my ]

= pear k(1 — i) — o) — Pedierin(1 — pg)
= prar (i (1 — i) (1 — qi) — o).
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The following bounds are useful to prove Lyapunov’s condition.
E[|Re Wi — prarinl’] = (1 = preaeson)*prarik + (raern)*(1 — pegesie)
S CPkGk-
Let Qg,m be a binary indicator that takes value one if cluster m of population % is sampled.
E[| Ry Wi — praitin|*| R jWi.j — Prelistis]|[mu; = mej = m|

= E[((1 — praotin)*prAkm + Pr@itn)* (1 — prAgm))
X (1 = prqipi) P Akm + (Ore@iottn) (1 = prAgm)) M = mij = m, Qrm = 1] ak

+ E[(kakﬂk)g‘mk,i = my; = m, Qrm = 0](1 — qi)

2
< PGk

E[|RyiWi,i — prioki] | Ri Wi — Pe@ietve| | Rt Wit — Priiin]|mis = miy; = myy = m)|
3
= E[((1 = prqrtn) Pk Akm + Or@rin) (1 — PeAm))” [mis = mpj = mpe = m, Qpm = 1]%
3
+ B[ (prarin)” | mii = mij = mig = m, Qpm = 1](1 — k)

3
< CPRQk-

Other useful intermediate calculations.

For the moments of treatment indicators, notice that E[(Wg; — pr)*Wiki] = pe(l — pg)?, and
El[(Wii — pe)*(1 = Wii)] = (1 — ). In addition,

E[Wk,iWk,j|mk,i = mk’j] = E[A%,m] (fOl" me {1, ey mk})
= 0} + ik

Similarly, E[(1—Wj.;)(1—Wg ;) |mk,; = my. ;] = o2+ (1—pg)?. Therefore, E[(Wy,; — pu) Wi j|m; =
my.;] = oz and E[(Wy; — pr)(1 — W) |myi = my ;] = —oz. In addition,

El(Wii — ) Wi j — pie) Wi i Wi jlmuei = my ;]
= E[A} ,J(1— pu)®  (for me {1,...,my})

= (o + p) (1 = ).
Similarly,
E[(Wii — ) Wi j — ) (1= Wi ) (1= Wi ) [mii = mi 5] = (0f + (1 — )i,
and

E[(Wii — pur) Wiy — ) Wi i (1 = Wi ) mues = mi ] = (1 — i) (0 — p(1 — ).
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var(Ry iWhi) = praiite(1 —prarpn), var(Ryi(1—Wii)) = prar(1— ) (1 —prgr(1— ). Moreover,
cov(Ry iWgi, Rii(1 = Wy;)) = B[Ry Wi iRk (1 — Wi ;)| — E[Ri iWii|E[Ryi (1 — Wii)]
= —pidei(l — k).

Recall that E[W}, ;Wi j|mi; = my ;] = a,% +,ui. Therefore, cov(W, ;, Wi j|mi; = my ;) = ak Also,

E[W}m(l — Wk7]~)|mk,i = mk,j] = ,uk(l — Mk) — 0']%.

B[Ry iWyi Rk jWy j|lmk; = my. ;] = B[R iR jlmyi = mg j|1E[Wr Wi jlmy i = my ;]
= prar(ok + 17)-

Similarly,
E[Ryi(1 — Wi i) R j(1 = Wi ) [mi i = my 5] = prar(of, + (1 — u)?).
Therefore,
cov (R iWii, Ry jWijlmus = mu ;) = pRar(of + 1) — piaini
= prar(op + pE(1 — ),
and

cov(Rii(1 = W), Riej(1 = Wi j)Imui = myj) = prar(or + (1 — p)?) — prai(1 — )
= piar(oq + (1 — p)* (1 — ax)).

In addition,

cov(Ry iWyi, R j (1 — Wi j)|mys = myj) = E[RMWMRM( — Whj)|my: = my 4]
— B[Ry = my | B[Ry j (1 — Wi j)[muy; = my ]
= B[Ry, sz\mk i =Mk E[Wii(1 = Wy j)|mpg; = my;]
— B[Ry Wi
= prar(k(1 — ) — o7) — pidern (1 — i)
= i (e (1 = ) (1 = qi) — o).

M = My | E[Rij (1 — Wi ) |[mei = mu ]

A.7. Intermediate calculations for Section A.3

E[RkiWii Wi — Akm)| Akm, Qem = 1, mii = m] = prAgm(1 — Akm)-
This implies
E[RiiWii Wi — Akm)mi; = m] = prapE[Agm(1 — Apm)]-
Therefore,

nk

E Z Hmp; = myRy Wi Wi — Akm) | = memPr @k E[Agm (1 — Agm)].
i—1
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Forn > 1,

ng
E Zl{mm‘ =m}Ry iWii(Wgm — Ak,m)‘N,ﬂ’m — n]
i=1
1 ok ng B
=—-F 1 MmE; =M Rk’,iWk‘,i 1 Mg =m Rk,iWk,‘7i _ nAk‘,m ’Nk;7m =n
PR } 2 }
= E[Ak,m(l - Akﬂn)]
Therefore,
2
E Z Hmpi = m}ReiWii Wi — Agm) | = E[Akm(1 — Agm) | Pr(Ngm = 1)
i=1
= @ E[Apm(1 — Apn)] (1 — (1 — pp)™m).
Forn=>1

B[Ry iWii Whm — Agm)mii = my Nigm = 1, Rii = 1]
< E[(Wim — Akm)?Imii = my Ngm = n, Ri; = 1]
- E[Agm(1 — Agm)]

\ .

n

Because Pr(Ry; = llﬁkym =n,Mp; = M) = n/ny m, we obtain

— — ElAg (1 — A,
B[Ry iWii Wrm — Ag.m)?Imi; = m, N = n] < LA gk i )],

which implies

— — ElAg (1 — A,
B[Ry iWii Wrm — Agm)?Imii = m, Nm = 1] < [Arn it )]-

Nkm

Therefore,

B[Ry iWii(Whm — Agm)?Imu; = m]
= B[ReiWiiWim — Akm)?|mii = m, N = 1 Pr(Ngm = 1my; = m)
E[Ak,m(l - Ak,m)]

x Yk .

Nk.m

Conditional on ]_Vk’m = n and Ay, the variable N}, ,, 1 has a binomial distribution with parameters
(n, Ag,m). Then, using the formulas for the moments of a binomial distribution, we find that for
any integer n, such that 1 < n < ngpm,,

n 2
E[(Zl{mk,i = m} Ry iWyi(Wy,; — Wk,m)> ’Ak,m =a,Npm = n]

i=1
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= E[(Nk,m,l - Nl?,m,l/n)2|Ak,m = avﬁk,m = TL]
=n2a*(1 — a)*> + na(l — a)(1 — 6a + 6a*) + r1(a) + r2(a)/n,

where |r1(a)| and |ra(a)| are uniformly bounded in a € [0, 1]. Therefore,

Nk 2
E (Zl{mk,i = m} Ry Wii(Wg,i — Wk,m)> ’Nk,m = n]
i=1

=n?E[AL (1 — Apn)?] + nE[Apm (1 — Ag ) (1 — 645 + 647,,)]

+ E[Tl (Ak,m>] + E[Tg(Ahm)]/n.

It follows that

mg ng 2
E! Z (Thom — i) ( Z H{mp; = m}Ry Wi i (Wi ; — Wk,m))

m=1 =1

my,
= ( > Tren = )% (g (M. — V)i + nk,mPka)) E[A} ,,(1 = Agm)?]

m=1

mp,
+ 3" (Than — 70) P Qe B[ Apm (1 = Ap) (1 = 6Agm(1 = Agm))] + O(mpgr)-

m=1
Therefore,
1 L [ & B 2
E Thoym = T Hmp; = miReiWii Wi — Wim
NPk Gk mzzl( ks ) Z; {m, YRy, i Wi (W, kom)
mg
n m
(B Ak (1= )] = (54 ) ELAL (1= Aen)*]) 3 =2 (i — 70’
m=1
+PREAL (1= )] X5 S8 (e = 70)
m=1

Notice that,

ng 4
E (Z Hmy; = myRy Wi i (Wi — Wk,m)> ‘Ak,m =a,Npm = n]

i=1

E[(Nkm,1(1 = Nim,1/n))* | Agm = @, Nin = 1]
E[Nl?,m,l‘Ak,m = aawk,m = n]
n4,

NN

Therefore,

ng 4
_ 1
E[(Z Hmps = m}Re iWi i (Wi — Wk,m)> ] = N}y Phk (1 +0 <>> ;

i=1 Dk Minyy, Ng.m
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uniformly in m.

Suppose Xim = (Zkmi + Zkma)?. Let Xgm1 = Z,im’l and Xj 2 = Zg,m,z- Now suppose,

mg

Z E[Xlz,m,l] - 07

m=1

and
my,

Z E[Xlz,mﬁ] — 0.

m=1

Using the binomial theorem and Holder’s inequality, we obtain

mip mg 4 (4 )
Z E[X ] = Z Z CPE[ZII:,mJZk,mg]
m=1 m=1p=0
mp 4
<e X X ElNZkmalP 1 Zkma 4P
m=1p=0
mi 4
<o D) DB ) B ]
m=1 p=0
4 mg p/4 my (4—p)/4
<c) | 2 E[Xﬁ,m71]> (Z E[Xi,m,2]> —0
p=0 \m=1 m=1
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