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A.1. Setting and notation

We have a sequence of populations indexed by k. The k-th population has nj units, indexed by
i = 1,...,n,. The population is partitioned into my, strata or clusters. Let my,; € {1,...,my}
denote the stratum that unit ¢ of population k& belongs to. The number of units in cluster m of
population £ is ny,, = 1. For each unit, ¢, there are two potential outcomes, yi (1) and yy;(0),
corresponding to treatment and no treatment. The parameter of interest is the population average

treatment effect
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Th = — > (Wki(1) = yr,(0)).
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The population treatment effect by cluster is

_— Z H{mi,; = m(yri(1) — yx,i(0)).
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Therefore,
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We will assume that potential outcomes, yy (1) and ym(O), are bounded in absolute value, uni-
formly for all (k,1).

We next describe the two components of the stochastic nature of the sample. There is a stochastic
binary treatment for each unit in each population, Wy, ; € {0,1}. The realized outcome for unit i
in population & is Y} ; = yi,i(Wi,;). For a random sample of the population, we observe the triple
(Yg,i, Wi, mp;). Inclusion in the sample is represented by the random variable Ry ;, which takes
value one if unit ¢ belongs to the sample, and value zero if not.

The sampling process that determines the values of Ry ; is independent of the potential outcomes
and the assignments. It consists of two stages. First, clusters are sampled with cluster sampling
probability g € (0,1]. Second, units are sampled from the subpopulation consisting of all the
sampled clusters, with unit sampling probability equal to pg € (0,1]. Both g and py may be equal
to one, or close to zero. If g = 1, we sample all clusters. If p = 1, we sample all units from the
sampled clusters. If ¢, = pp = 1, all units in the population are sampled.

The assignment process that determines the values of Wy, ; also consists of two stages. In the first
stage, for cluster m in population k, an assignment probability Ay, € [0,1] is drawn randomly
from a distribution with mean i, bounded away from zero and one uniformly in k, and variance
0,%, independently for each cluster. The variance 0’]% is key. If it is zero, we have random assignment
across clusters. For positive values of ak we have correlated assignment within the clusters. Because
A2 < A .m it follows that O'k is bounded above by g (1— k) and that the bound is attained when
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Aj,m can only take values zero or one (so all units within a cluster have the same values for the
treatment). In the second stage, each unit in cluster m is assigned to the treatment independently,
with cluster-specific probability Ay ,.

A.2. Base case: Difference in means

Let

2 ng
Nii = )| RiiWii and  Npo = > Rii(1—Wiy)
i=1 i=1
be the number of treated and untreated units in the sample, respectively. The total sample size is
Ny = Njp1 + Nio. We consider the simple difference of means between treated and non-treated,
which is obtained as the coefficient on the treatment indicator in a regression of the outcome on a
constant and the treatment,
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Tk = Navi ; Ry iWi,iYii — Neov1 ; Ry i(1 — Whi) Yk i

We make the following assumptions about the sampling process and the cluster sizes: (i) ggmy — o0,
(11) liminfy_, pp ming, ng ., > 0, and (444) limsupy_, ., maxy, ng,/ ming, ng,, < ©. The first
assumption implies that the expected number of sampled clusters goes to infinity as k increases. The
second assumption implies that the average number of observations sampled per cluster, conditional
on the cluster being sampled, does not go to zero. The third assumption restricts the imbalance
between the number of units across clusters. Notice that assumptions (i) and (i) imply ngprgr —
0, so the sample size becomes larger in expectation as k increases.

A.2.1. Large k distribution

Let g = (1/ni) 2% ye,i(0) and 7 = (1/nk) 252 (Yki(1) = 4k (0)), (1) = yi(1) — (o + 7),
and ug,;(0) = y.i(0) — oy. Notice that,

ng ng
D lugi(1) = Y ugi(0) = 0.
izl i=1

This implies
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VPR (Th — Tk) = =—k,1 — =~ 0k,0,
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where
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bk = (Nga1 v 1)/ng, bro = (Nko v 1)/nk, by = pegepr and bro = prar(1 — pg). We will first
derive the large sample distribution of

A = Qg1 — g0

my
= Z (fk’,m,l _gk,m,())a
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where
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and
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VPG (1= ) z; H{mp; = m}(Rei(1— W) — prar(1 — ) ) ur,:(0).

Notice that E[&gm.1] = E[&km,0] = 0. Moreover, notice that the terms & 1 — &k m,0 are indepen-
dent across clusters, m. In addition,

gk,m,O =
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We obtain:
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Therefore,
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Alternatively, we can write this expression as

NV = i <uil(1) " ”iz(0)>
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The sum of the first three terms is minimized for p; = 1 and oz = pr(1 — pg), in which case this
sum is equal to zero. Therefore,

mi ng 2
vk = (prminng ) (1 — gg) Z Rhm (1 Z Hmpgi = m}(up(1) — uk,i(o))>
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We will assume that liminfg o ((1 — gx) v 07) > 0, so either sampling or assignment or both are
correlated within cluster. (We study the case gx = 1 and 0,3 = 0 separately below.) In addition,
assume (7) liminfy_,o(1 — g;) > 0 and

it S0 " (1 S 1 = m) (1) — Uk,im))) -0, (A.9)

k—o0 el ng Nkm i

or (i) liminfy_,o 0% > 0 and

mig nE 2
. N [ 1 ug,i(1)  ug,;(0)
h;?l,lo{;lf mzzjl o ( Z {my,; = m}( + > 0. (A.3)

Nk = [k L= pug

Equation (A.2) would be violated if, as k increases, there is no variation in average treatment effects
across clusters. Equation (A.3) would be violated if as k increases there is no variation in average
potential outcomes across clusters. If equations (A.2) and (A.3) hold, vx is bounded below by a
term of order at least pj min,, n . Recall our assumption, liminf;_, p min,, ng , > 0, so the
average number of observations sampled per cluster, conditional on the cluster being sampled, does
not go to zero. Then,
lim inf v > 0.
k—0o0

To obtain a CLT, we will check Lyapunov’s condition,
my,
lim WEUfk,m,l = &m0

k—00 me1 Uy,

2+5] _ O,

for some § > 0. Because potential outcomes are uniformly bounded and py is uniformly bounded
away from zero, we obtain

5 Z+6 ng 2+0
(€m0 < = D mpi = m} | ReiWas — piaipin|
m X (nkpqu)1+§/2 Nkm = 7 7 7 s

where ¢ is some generic positive constant, whose value may change across equations. Consider
6 =1, and let
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for i # j # t. (The second and third terms on the left-hand side of last equation only appear when
ngm = 2 and ny,, = 3, respectively) As a result,
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Because lim infj_, o pr ming, ny »,, > 0, for large enough k£ we obtain,
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and the same bound applies for E[
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Now, Holder’s inequality implies that

3 My n3
3/2

3/2
Uk/ (nkpPrar)

is sufficient for the Lyapunov condition to hold. Because maxy, 1y ,,,/ ming, ny ,, is bounded asymp-
totically, we obtain,

3 m 3 3 3
. PrAk kazl L . Pk MaXey, N, o,
limsup — 7 < limsupc— . 7372
k-0 v (ngprar)3/? koo (PRqEm ming, ng )
. maxm;, Nem - €
< lim sup - : =0,
k—o0 MmNy, M m \/m

and so the Lyapunov condition holds. As a result, we obtain
~ d
ak/w/vk —_—> N(O, 1).
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We will next prove that both @y 1/\/vx and @y o//vr are Oy(1).

Nk 2
Elaj, E mp; = m}(ReiWhi — prdiin)un,i(1
[ kl] nkpk(lk ,uk mzl (; { ) }( ) ) ) ,2( )
1 &
<c NPkl + M (Mkm — 1 Pk
nkpqumzzl( " m(hm = 1pici)
mi
-1
—c (1 + Z P (T >pk>.
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Therefore,

Bl Vo)) < ¢ (.1 4 3 (et (i = ”p'f) |

eIy N 42 NPk Milyy Ny,

Because lim sup max;, 1,/ ming, ng , < 00, we obtain limsupy,_,, E[(ak1/vk)?] < 0. As a result,

a1/ is Op(1).

Let Zk,l = Nj.1/ni. Consider k large enough, so pj ming,, ny ,, is bounded away from zero, making
bi1/bk1 well-defined. Notice that E[by 1/by,1] = 1 and

2
nk
var(bg,1/bk 1 E Wi = mp(Re, Wi — neDreqr itk
(i /o) = (nkpquWE 33 ks = m (R W )
_ Dk (1 — PrQipie) %’j N (Mem — 1)piai(or + (1 — qi)pi)
(TPt )? el (kD fir)?
o Lo peaee | (ma, ngm — 1)piai
NPk i (nkPraK)?
< 1 — prqrpk Lo (maxn‘% Neom — 1) 1 0
NEPLqr ik minng m qEmg

This implies 5;671 /b1 LA Analogous calculations yield 507k/b0,k 2 1. For large enough k,
bi1/bk1 = 0 if and only if Ny, = 0, which implies Pr(N,; = 0) — 0. It follows that, for
large enough k,

Pr(|bg,1/bk1 — br,1/bra| = 0) = Pr(Nyy > 0) — 1

and gk,l /bi1 2. Using analogous calculations, we obtain Bk,o /b0 £ 1. Asa result,

12 bpiGr1  brodro
\/W(Tk—ﬂc)/”/ V- R V51

br,1 vy, b0 vy,
~ b ~ b ~
_ O Oea ) Bk (Do ) Gko
12 5 1/2 5 12
v, k1 v k.0 vy
= Ag/\/vk + 0p(1).



Therefore,
A~ d
\/nkpqu(’i'k — ’I'k)/’l)]i/2 e N(O, 1).

Using 517k/b1,k 21 and Z[)}k/b(],k £ 1, it is easy to show Ni/(ngprgr) 2 1, which implies
A~ 2 d
VNG — ) /)2 =5 N(0,1).

We will next consider the case of ¢ = 1 and ag = 0, where no clustering is required. Consider

1
Vil = ———— (BriWhi — Drpir)ug i (1
)by \/muk( ) )t ) »l( )

and
1

VEPk(1 — )
Redefine now vy = Y7 E[ (ki1 — Vk,i,0)%]. Then,

Nk u2 . U2
o = Tz.k Z ( k,z(l) + kz< > — Z uk’L ukﬂ(O))Z
i=1

ke 1 — g

Upio = (Riei(1 = Wi) — pr(1 — ) ) uk :(0).

Notice that vy is minimized for p; = 1, in which case

Nk g2 u2 (0 Dk
U er 2, ( - = )> - i, (g i (1) — ur(0))*

4\ Mk 1-/%

WZ(l_“ fuf (1) + ui,i<0>+2uk,i<1>uk,i<o>>

L — p
G (i) ug,(0) wgi(1)ug,i(0)
= a1 Mk)" ;( 1 +<1_Mk)2+2 fr (L — pug) >
_ 1 uri(1) | ugi(0)\?
= #xll Mk)nkl_zl( Pk i 1_,Uk>

Therefore, the assumption

Tk (1 ] 2
1iminfi2 <“’w( ) n Uk,z(0)> -0
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is enough for liminfy_, vr > 0. Notice now that

1
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and the same bound holds for E[|U;;0/®]. Therefore, for the Lyapunov condition to hold, it is

enough that

n 1
kPE 0,

(nkpk)3/2 vV TkPk

or ngpr — 00. That is, assumptions (i)-(4i), which we used for the clustered case, are replaced by

Ngpr — 0.

A.2.2. Estimation of the variance

Let Uy; = Yi; — ap — 7,Wy; be the residuals from the regression of Y ; or a constant and Wi ;.
Here, i, is the coefficient on the constant regressor equal to one, and 7}, is the coefficient on Wy, ;.

We have already shown 0’21/2(% — 1) = Op(1/y/nkprqr). The same is true about ay (e.g., apply
the proof for 7, after replacing each vy ;(1) with a zero). Define Xy = > "% | ¥y ., where

R Nk [’J'k . ok ﬁk i /
Sean = (Z’i H{my; = m} Ry, ( szé,kz )) (Z:l Hmy; = m}Ry; ( székz )) :

Also, let
N Nk 1 1 /
Qr = Z;Rm< Wi ) < Wi ) )

and z = (0,1)". Then, the cluster estimator of the variance of /N (7 — 7%) is
"}kcluster _ Nkzléjlzlik@;lz'

Notice that

(nprar) 'E[Qk] = ( ulk Z: >

In addition,

1 N 1 mg Mg
Qk272 = lmk-szkau
NPk Ak (2,2) NPk Ak ,;1; s MW

ny
var ( Z 1{my,; = m}Rk,iWk,¢> = Nk mPrrtk (1 — Prqriix)
i=1

+ N (Mo — D)ia (o + (1 — ax)).-

Therefore, under conditions (%)-(4ii), we obtain

1 -~
var 0r(2,2) | < —=— (1 + pp(maxy, njpm — 1)
NEPkgk NkPkqk

maX,, ng
= mEm o(1)
Nnkqg
maXm, Ngm 1
c

+0(1) — 0.
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Analogous calculations yield var((nkpqu)_lék(l, 1)) — 0. Therefore,

L A 1 Mk)
k= + op(1
nkkakQ < T p(1)

and

~ 1 _
-1 _ Kk Hi
nkqeprk@y - = Hi +0p(1), where Hj = n (= ) ( o ! ) .

Now, let Uy; = Yi; — ap — Wi = Wi iugi(1) + (1 — Wy ;)ug,:(0). Notice that

—1/2 -~ —1/2,~ —1/2, A~
v max (Ui — Upsl < o 6% — il + vp 15 — 7l = Op(1/</MkDrar)-

i=1,...ng

Define %j, = Y7 | ¥ 1, where

ng Nk !
S Uk,i Uk,i
Ekz,m = <Z 1{mk77; = m}Rm < Wk k[’]k ' >) (Z 1{mk,z’ = ’I?’L}Rkﬁ < Wk ki-]k ) >> .

i=1 = Un,
We will show X
— (3 — ik) — 0
NEPE4EVEk
Notice that
~ _ n ~ 2
Zrom(2:2) = Biyn(2,2) = (Z Wmp; = mpReiWii(Uk,i — Uk,i))
i=1
Nk g R
+ 2 ( Z 1{mk,z = m}Rk,’LWk,zUk‘J) <2 1{mk‘,z — m}Rk,iWk,i(Ukz,i . Ukﬂ,)) )
=1 i=1
Therefore,
1 ~ _ 1 mi Nk 2
—121(2,2) — Xk(2,2)| K c——— Lme: = m)Re W o
nkkakvk‘ #(2:2) £(2,2)] NEPLGKVk mz=]1 1_211 (i PR1 i Wi

X( max ’ﬁk,i_Uk,i‘Q'i' Ilnax ‘fjk,i_Uk,i|>~
i

‘:1,..‘,1’1,]6 = geeny
The same expression holds for the off-diagonal elements of ikm —fk,m. For f]km(l, 1) —fk’m(l, 1),

the expression holds once we replace each Wy ; with a one. Let | - | be the Frobenius norm of a
matrix. Then,

1 & = 1 G ’
S =Sk Se——— D7 | Y] Hmpy = m} Ry

Nk PkqkVk nkPrgEVR T\ o

X ( - max |ﬁk72 — Uk,i|2 + max |ﬁk,z — U;m'|>.
i=1,...,ng i=1,...,nk

77777
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We will prove that the right-hand side of the previous equation converges to zero in probability.
We will factorize each term into a expression that is bounded in probability and one that converges
to zero in Lj.

E < nprqr + nk(mgx Ngem — )P

my ng 2
Z <Z H{my,; = m}Rk,i>

m=1 \ =1

For the first term, notice that

2

~ NEPLqE + Nk (Max,, Nk — 1)Prqe
“max Uy — Ug,l? (mam Mem — 1)
i=1,..,nk NkPLAkVE

NkPLAk U, .|2 (nkpk:Qk + 1y (maxy, ngm — 1)pzqk>
K

= KETE max |Ug —
vk i=17---’nk| i (nkprar)?

n N 1 max,, n -1 1
WPRGE |Uk,z‘_Uk,z‘|2< n m Me,m >

N

Vg i=lnyg Nk Dk Gk Mily, N QM

Op(1) o(1).

For the second term, using the fact that vy is greater or equal to pj min,, ng,, > 0 times a term
with limit inferior that is bounded away from zero, we obtain

~ n + ni(max,, n —1)p?
max |Dps — Ups KPRk + N (MaXy, N — 1)PLqi

i=1,...,np ’ NEPEGEVEk
PRk \ M2 ~ NPk + Mk (MaXim Mg — 1)Prgr
— (7) -max |Up; — Uyl - 17; .
Vk i=1,...,ng (nkpqu)QS/ka
nEPEqE \ /2 ~ 1 MaXy, N m — 1 1
< <7) -max |Ug,; — Uyl 7zt Ui il 3
Vg, i=1,...,ng (NkPKqrVEK) ming, ngm  (qemg)
= Op(1) o(1).
As a result, we obtain
1 ~
— |3 — 2| = 0,(1).
8-Sl = o)
Notice that
PRk S S A
Qi ShQyt — Hy——— = Hy——"— (i Q5 — H )
NkPLYKVk NkPLYkVk
A—1 Xk A—1 Xk A—1
+ (nkkaka _Hk)i(nkpk%@k )+ (nkkaka ) ( nkPrqeQy, )
NkPLkVk Nk PEqkVk

Therefore, to show that the left-hand side of the last equation is 0,(1), it is only left to show that
i/ (nkprqrvr) is Op(1). We will prove this next. Notice that

1S IR ’
——— Skl < e——— > [ D Yy = m}Rey | -

Nk PkqkVk nkPrgkVE S\ o
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Therefore,

1

— 1
Bl ————[k| | < c——— [ niprar + i (maxng ., — 1)pigk |-
NPk Vk NPk Vk m

Then,

E

1 = 1 max,, 1 -1
S Y R B G R ) I
NEPEqkVE Vg Pr My, Mg m

We, therefore, obtain,

NEPLdk A—1& k »
> Hy————Hj = 0.
Qk Qk nkkakvk F
Because Ny/(ngprgr) — 1, we obtain
vkdusmr/vk = Z'Hy, LH z 4+ 0p(1)
NkPkqkVk b

]_ 1 2 me Nk 9
- Lomyi = my Ry i (Wi — g Uk,‘) + 0p(1).
NEPLAKVk (,uk(l — Mk)) m2=1 (1_21 {mi JREi (Wi Vi »(1)

Recall that Ulii = uiz(l)W;H + uzl(O)(l — Wi.i). Notice that
ng 2
E[(Zl{mk,i = m}Ry;(Wr; — Nkz)Ukz,i> ]
i=1

= > Uk = mbpgain (1 — ) (1= et (1) + it (0))
i=1

'I”Lk—l Nk
+2 37 Y Ympy = my; = m}Pi%[(Uz% + i) (1 — pge) g (1w 5 (1)
i=1 j=i+1

+ k(1 = ) (0 — (1 — ) (g (0)ug 5 (1) + w i (1)ug 5 (0))
+ (oF + (1= )P paun () 5(0) |

Let
cluster __ 1 Y & —m ) o ‘ 2
U, i (Mk = ) ) mz_:1E[<; Hmg; = mjRy (Wi Mk)Uk,z> ]
Then,
i el (1) u?(0)
cluster __ ki ki
2 g,
+ Pk Z [(Z H{mg; = m}(ug,(1) — u/”(O))> — Z Wi = m}(ug,(1) — u;“(()))2]
i=1 i=1
2
(i) O R (i) uka(0)
+ pro, Z [(;1{%,@— }< o + 1_Mk>> Zle{ ki = }( o + 1_%) ]
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Alternatively, we can write

cluster _ Zk (ukz ui,z(0)>
i=1 1= pk
U 1 u (0 2
—ka (i (1) = upi(0))* = prot Z ( ‘ kil ))
i=1

=1 Hk 1 — Mk
2
m=1 i=1
mg Nk 2
2 ugi(1)  ug;(0)
+pk0'k2 (Zl{mk,izm}< 2 + .
m=1 \i=1 Kk 1T — pg
We will next show that . -
Z cluster
Y Hy——"—Hyz — Yk 250.
NEPE4kVk VU

Given the pi(1 — pg) is bounded away from zero, by the weak law of large numbers for arrays, it
is enough to show

4
1 i i i i — 0.
(nEpEgror)® Z K; {mii = m}Ryi(Wr, Hk)Uk,) ] 0

Applying the multinomial theorem and the fact that all moments of W}, ; as well as all potential
outcomes are bounded, we obtain:

4
Z [(Z Wmp = m}Ry;(Wy,; — Nk)Uk,i> ]
nkkakUk i
< ¢ 2 3 2 4 3
< 5 \ MkPkAEK + NEPRqk MAX N py + NEPRGE MAX Ngom + NEPLgr max N ) -
(MkPRQRVE) m m ™
Now, using lim supy,_, o, maXy, Nk, m/ Mily, Nk, < 00, imsupy,_, o pr ming, ng ., /vp < ©, and ggmy —
o0 we obtain

4
nkPkaka Z [(Z {m, Y Rki (Wi — ) k)}

=1

2 2 3
_ 1 WXy M 1 PEMm Ty 1 PEMAXm T,
C " " -
NEPRQEVE Ml N QeMEUE Uk Mily, Ny QeMEVE  VF Wil Ty QoM
—0.

As a result,
i cluster cluster
Vi Yk

= + 0,(1).
= )

The robust (sandwich) estimator of the variance of /Ny (Tx — 7) is given by
f}krobust _ Nkz/églﬁk@]zlz-
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where

Nk ~ A~ /
S Ui Uk.i
Q. = R i N ~ .
g Z; " ( WUk ) < WUk )

We will derive the limit of ﬁgObUSt Jvg. Let

Nk !/
o _ , Uk,i Uk,i
e = ;Rk’l< Wi iU > < Wi iU ) '

Because potential outcomes (and Wy, ;) are bounded, we obtain

1 ~ —
[ — O < c Ry, max U2, —U2..
NEPLKVE ” ” (nkkakUk Z ) i1, | ki k,z|

Because the limsup of the expectation of the first factor (which is non-negative) is bounded and
the second factor converges to zero in probability as proved above, we obtain

1

EEE— Qk —ﬁk = 0,(1).
I = T = 0p()

Notice that

1 — 1 ok
———— || < | ——— > Ry
NkPEAkVk NEPEIkVE =

Again, the limsup of the expectation of the right-hand side of this equation is non-negative and
bounded. As a result, we obtain |Q|/(nrprgrvr) = Op(1).

~ Q.
VI“ObuSt Uk; — Z/Hkinz + o 1
e TPk Vk o(1)

! 1 Ry 2772
Ry i (Wi — )" U + 0p(1).
N PEqkVE <uk(1 —Mk)> Z; (Wi — ) Uy + 0p(1)

Notice that

ng Nk
E[ > Ry (Wi uk>2U,?,l-] = > pranie(1 = ) (1= )i (1) + i 0) ).
=1 =1

Finally, notice that

2
ng 2
NgPkk + NEPRk MaAXm N m
Rii(Whi — ) ?UZ, <c :
(nkprarvr)? Z [(; ne e (nkPraRvE)?
1 max,, n 1
<ec . + i m Ttk.m ;
NEPKqEV, — My, Ngm EMEVL
— 0.
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Therefore, by the weak law of large numbers for arrays, we obtain

Vkrobust ,Urobust

k
= + 0p(1),
= o)

vrobust _ i % uz,z(l) + ui,z(o) .
‘ Mk Fok L — pug

=1

where

A.3. Fixed effects
A.3.1. Large k distribution

Let .
k
Nim = Z H{my,; = m}Ry;
i=1
and
mp Nk o
DD Ymes = m}Re Yiei (Wi — W)
~fix =1i=1
Tk’ﬁ ed = T’I:L’Lk ;Lk o ’ (A5)
Z Z Hmy,; = m}RiWii(Wii — W)
m=1i=1
where .
_ 1 k
Wim==———)> Hmg; = mjRy ;Wi ;.
k,m Nk’m v ; { ki } kiVVk,i

Notice that we need liminfy o pp(l — pg) — ak = liminfy_,o E[Agm(1 — Agm)] > 0 for this
estimator to be well-defined in large samples (otherwise, the denominator in the formula for TﬁXEd
could be equal to zero). Although it is not strictly necessary, and because it entails little loss of
generality and simplifies the exposition, we will assume that the supports of the cluster probabilities,
Ajm, are bounded away from zero and one (uniformly in k£ and m). In finite samples we assign

7lixed = () to the cases when the denominator of 7,i**d in equation (A.5) is equal to zero. Notice
that

ng o

Z 1{mk7i = m}Rk’Z(Wkﬂ — Wk,m) = O.

i=1
Let

—_— Z 1{my,; = m}yi(0), — Z Hmy; = m}(yr,i(1) — yr,i(0)),

kmil kmil

ek,i(0) = Y,i(0) — Qpmy ;> and e (1) = ypi(1) — Qrmy,; — Ty, 1t follows that

Nk Nk
D = meri(1) = > 1my,; = mber;(0) = 0.
=1 =1
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Now, Yy = eki(1)Wh; + exi(0)(1 — W) + by, + Thomy, ;Wh,i- Then,

mg Mg

D0 W = m3 R i((eri(1) + Thum) Wi + €xi(0)(1 = Wii)) (Wii — W)

?kﬁxed _ m=1i=1

mg Nk

Z Z my; = m} R iWii (Wi — W)

m=11i=1

Let

my ng L
Z Thym Z H{mp; = m}Ry Wi i (Wi i — Wim)
m=1 =1

mE Nk ’

Z Z my; = m} R iWii Wi — W)

m=11¢=1

(A.6)

where, as before, we make 7 = 0 if the denominator on the right-hand side of (A.6) is equal to
zero. Now, ?kﬁxed — T = (?kﬁxed —Tk) + (Tk — Tk), where
mi Mk

Z Z mp; = m}Ryi(eni()Wii + eri(0)(1 = W) ) (Wi — W)

A~ — =1i=1
Tkﬁxed — T = m=14

mp Nk .
Z Z {my; = myRy iWii (Wii — Wim)
m=1i=1
and
mg N e
D T = 70) D, Wmii = my Ry ;Wi s (Wi — W)
_ m=1 =1
Tp— Tl = e
Z Z {my; = myRy Wii(Wii — Wim)
m=1i=1
Notice that outcomes enter the term ?kﬁmd — Tj only through the intra-cluster errors, ey ;(1) and

ex,i(0). In contrast, the term 7, — 75, depends on outcomes only through inter-cluster variability
in treatment effects, 7 ,, — 7%. The numerator in the expression for 7, — 7 in the last displayed
equation does not have mean zero in general, and this will be reflected in a bias term, By, which
we define next. Let,

1 mg Nk e

Dy = 1mi=mRiWiWi—Wm,

e 7;::1;:1 {my, YR iWhi (W, kom)

and
1 L
——E[Agm(1 — Agm Tem — Te)(1 — (1 — Tk,m
o [Am( k, )]77;1( k, k) (1 — (1 —pg)"™m)
k= = 1 my ng —
1{m isz ZW1W1—W m
PRl mz_:“; {mu, YR iWii (Wi, kem)

Then, wnkpqu(?kﬁxed — Tk — Bk) = Fk/Dk, where
mg

Fy = Z (¢k,m - Ek,m) + (ka,m - Ek,m)a

m=1
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1 &

Veym = N 1:21 Hmyp; = m}Ryi(eri(D)Wii + ei(0)(1 — Wiei)) (Wi — Agm),
_ 1 & T
Viom = N z; Hmp, = m}Ryi(eri(1) Wi + €r,i(0)(1 = Wi i) ) (Wrm — Akm),
1 -
Okm = W(Tk’m — Tk) Z_le 1{m;m- = m}(Rk’iWk’i(Whi - Ak,m) - pquE[Ak,m(l - Ak,m)])v
and
1 - =
_mzirm—T 1mi=mRiWin—Am
P, m( kom — Tk) ; {mu, Rk, Wi (W, k)

— @ B[ Ak (1 — Agm)](1— (1 = Pk)”’“”))-

The terms )y, ,,, and @km depend on the within-cluster errors ey, ;(1) and e ;(0). The terms ¢y,
and @y, ,, depend on the inter-clusters errors 74, — Tk. VYkm and ¢y, replace Wk,m with Ay,
while )y, ,, and @, ,, correct for the difference, Wi — Ak .

It can be seen (in intermediate calculations below) that

N
E[Z Hmpg; = myRe Wi (Wi — Akm) | = memPr kB[ Ak m (1 — Akm)]

i=1
and
ny
E| > 1{mpi = m}RiiWeiWhm — Aran) | = GE[Apm(1 — Ag )] (1 = (1= pp)™m).
i=1

These two expectations are substracted in ¢ ,,, and @y, ,,, , 80 g 1 and @y, ,,, have mean zero. Doing
so for ¢y, does not require adjustments elsewhere. Because

mg

> (Tham — T)Mem = 0,

m=1

the 1k mprae B[ Agm (1 — Agm)] terms do not change the sum Fj. In contrast, demeaning @y,
creates the bias term By. If the size of the clusters ny ,, does not vary across clusters, then By, is

equal to zero. More generally, \/ngpprqr DiBr, = O(miA/qx/(nkpk)). Therefore, if

Midk

pik(nk/mk) — 0, (A.7)

(that is, if the expected number of sampled clusters is small relative to the expected number of
sampled observations per sampled cluster) then ./ngprqr DBy, converges to zero. As a result,
/MkPrqr By converges in probability to zero, because, as we will show later, Dy, converges in prob-
ability to pr(1 — pg) — ag, which is bounded away from zero. In our large sample analysis, we will
assume that the expected number of sampled clusters grows to infinity, mgqr — 0. Then, equa-
tion (A.7) implies that the expected number of observations per sampled cluster goes to infinity,
pr(nk/my) — o0. Notice also that ngprqr = (ngpr/mi)(mrqr) — 0.
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We summarize now the assumptions we made thus far. We first assumed that the supports of the
cluster probabilities, Ay ,,,, are bounded away from zero and one (uniformly in k£ and m), and that
potential outcomes are bounded. Moreover, we assumed myqr — o0 and (mrqr)/((pknk)/my) — 0.
These imply (pgng)/mr — 00 and ngprgr — 0. We will add the assumption that the ratio between
maximum and minimum cluster size is bounded, limsup;,_, ., max,, nj,/ min,, ny,, < . This
assumption implies py min,, ng m, — 00 and (mgqy)/(Pr Ming, ng m) — 0.

We will now study the behavior of Dy. Notice that

mp Nk
E[ Z Zl{mk,i = m}Ry iWii(Wyi — Wk,m)]

m=1i=1

mp Nk
=B [ D0 > Mk = my Ry Wii(Wis — Agm)

m=1i=1

mp Nk
—F [ 3 Umii = my Ry Wi (Wi — Ag )

m=1i=1
my,
= nprgr B[ Ak (1 = Apan)] — @ B[Agm (1 — Agm)] Y (1= (1= pg)™m).
m=1

In addition,

2
1 mg Nk o

m=1 i=1
NkPrqr + nkpi% maxm Nk,m
(niprar)?

1 maXm, Nk, 1
=c + — : — 0.
NEPEqE Mgy Nk MEQE

The weak law of large numbers for arrays implies

mg

1
Dy, — E[Ak,m(l - Ak,m)] + kaE[Ak,m(l - Akz,m)] Z (1 - (1 - pk‘)nk’m) - 0.

m=1

Because my,/(ngpr) — 0 and E[Ag (1 — Agm)] = k(1 — pg) — o2, we obtain
Dy — (k1 — p) — 0f) == 0.

We now turn our attention to Fj,. We will first calculate the variance of 9y, ,,. Let Qg be a binary
variable that takes value one if cluster m in population k is sampled, and zero otherwise. Notice
that

E[RyiWii(Wiki — Akm) | Akms Qkm = 1, my; = m] = prApm (1 — Akm),
and
E[Ryi(1 = Wii) Wi — Ak )| Akms Qkom = Lymp; = m) = —ppApm(1 — Agm).
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Consider now

1 &

Vhm1 = N Z:Zl Hmp; = myRy iWhi (Wi — Akm)ex,i(1)

n
Qk,m "

m;{ k, }( ki Wi (W, km) = DAk ( k, )) k,i(1)

= m Z; {mp; = m}Ry (1 — Wii) Wi — Ak,m)ex,i(0)

n
Qk,m .

= > 1{my; = m) (Rk,i(l = Wii) (Whi — Aim) + prAem (1 — Ak,m))ek,i(o)-

VTUPEk

It holds that ¥y m = Ykm1 + Ykmo and E[y ] = 0. Now, notice that

Nk

1
E[R 1l = ;kE[Ak,m(l — Apm)? = prAf (1= Agn)?] Z {my,; = m}ei (1),
=1
1 <
E[{} mol = TTkE [A7 0 (1 = Apm) = prAf (1 — Agn)?] Z 1{my,; = m}ei ;(0),
=1

and
Nk

1
ElYkm1¥kmo] = ;kpkE[Az,m(l — Agm)’] Z H{my,; = mpegi(1)ex,i(0).
i=1

Therefore,

1 &
El(Yrma + Yemo)?] = ;kE[Ak,m(l — Apm)?] Z {my,; = m}ez,i(l)
i=1
ng

1
+ ;kE[Ai,m(l — Agm)] Y Hmps = me ;(0)
1=1

N

— D BLAR (1= An)®] 3] s = ) eni(1) = ei(0)),
=1

and

3

k Ny

Bl@km + Ymo)] = BlAxm(1 = An))-— 31631

1 ki1

1 &
+ E[Ai,m(l - Akm)];k Z 6%,1‘(0)
i=1

1 &

— peE[AR (1 — Ak’m)Q]TTk D eri(1) = ex,i(0))>.
=1

m
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We will next show that the terms @_bkm do not matter for the asymptotic distribution of \/mxprqr Tk —

7). Notice that, because the cluster sum of ey ;(1) is equal to zero, we obtain E[ty, ,,,] = 0 and,
therefore,

my -
> B|tm| =0
m=1
Moreover
ng—1 ng ng
2 3 Y Ympg = mpy = mberi(Dep (1) = — Y 1f{my; = mbeq ;(1) < 0.
i=1 j=i+1 i=1

In addition, E[Re;Wi;(Wim — Akm)*mei = m] < qeE[Agm(1 — Agm)]/nkm (see intermediate
calculations). Therefore,

ng 2
E (Z H{my; = m} Ry Wi i (Wi m — Ak,m)ek,i(1)> ]

i=1

ng
= Z H{my,; = m}E[szsz(szm — Ak,m)2|mk,i = m] 6%,1(1)
i=1

ng—1 ng

+2 > > E[l{mk,z‘ = mj = m}Ry i Ry jWiiWi j (W m — Ak,m)2] ek,i(1)ek,;(1)
i=1 j=it1
1 &
S @B Arm(1 = Apm )] > Hmis = miej ;(1).
M =1

Now, because errors are bounded, we obtain

2
mp 1 ng o mk
E p— 1mz=mR1W1W m—A meil <c . A9
mZ:l [(m; {m, $ R, iWi,i (W, kom )€ (1) o (A.9)

Because my/(ngpx) — 0, the weak law of large numbers for arrays, implies,

mg Nk
1

i 2o 23 ks = Wi Wi — A 20

with the analogous result involving the errors ey ;(0). If follows that

Consider now ¢y, ,,. Notice that

E[<Rk,iWk,i(Wk,i — Agm) — PraEE[ Ak m (1 — A’“vm)])>2]

2
= pk:QkE[Ak,m(l - Ak,m)Q] - piqz (E[Akﬂn(l - Ak,m)]) 5
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and
E[(Rk,iWk,i(Wk,i — Akgm) — PekE[ A m (1 — Ak,m)]))
X (Rk,jWk,j(Wk,j — Arm) — Prqe E[Agm (1 — Ak,m)])) Mk = my; = m]
= PRk E[AL (1 = Akn)*] = PR (B[ A (1 — Ap)])”

Therefore,
2 1= (E[Apn(1 = Ap)?] — Ao (1= Ag))?) e —7)?
E[‘Pk,m] - E[ k,m(l k,m)] kak(E[ k,m(l k,m)]) ng (Tk’,m Tk)
Nem (Mem — 1
+(mm%mu—umﬁ—M%wmmﬂ—mmmﬂk’%;>mm—m%
and
mi 5 ) mi nkm )
Z B¢k m] :< [Akm(1 = Apm)?] — Pear(E[Agm(1 — Agm)]) ) Z nk (Thkym — Tk)
m=1 m=1
2 4 Nk m(nk m 1) 2
(pkE[Akm( — Akn)?] = Prar(E[Apm(1 — Agm)]) ) Z T(Tk,m—ﬂc) .
m=1

Next, we calculate the variance of ¢, ,,,. Using results on the moments of a Binomial distribution,
we obtain, for n > 1,

ngk 2
17 m — 17
E (;Hmk,i = m} Ry i Wi i(Wim — Ak,m)> %’Zm 0 ]
1 ng Ng 2 Qk -1
— EE (; 1{mk71 = m}Rk’ka’l(lzl 1{m;m = m}Rk,iWk,i - nAk,m)> ]_Vk:m Y ]

B[4} (1 = Apn)] + B[AR (1= A ) (5 — TApm)]
1
+ EE[Akﬂn(l - Ak,m)(6Al2c,m - 6Ak,m + 1)]

Therefore,

Nk 2
E (21{mk,i = m} Ry iWii Wim — Ak,m))
i1

= M mPrG B[AL (1= Ak )] + G BLAT (1= Agn) (5 — TAgm) (1 — (1 = pg)™m)
+ B[ Agm (1 = Agm) (647, — 6Akm + D]rem,

where .
k,m 1 o Nke,m
Tkom = ;Pr(Nk,m:n‘ka*1 Z Nkm*n’ka: )<1
n=1 n=1
It follows that,
_ ng 1
E[#} ) = (Thom — )° (ﬁE[Ai,m(l — Apm)] + @E[Az,m(l — ) (5 = TApm)](1 = (1 = pr)™m)



1
+ 7E[Ak7m(1 — Ak,m)(6Ai m 6Ak7m + 1)]Tk,m
NEPk '

= L (B[ Apn(1 = Aem)])2(1 = (1= p)"m)?).

Nk Pk
Therefore,
mg mp
— Nk.m
Y BlEml = 2 (ko = 7)* (5 ) LAY (1~ A )] + (1),
m=1 m=1

We will now study the covariance between ¢y, and Py ,,. Using results on the moments of a
Binomial distribution, we obtain, for n > 1,

< < 17 m = 17
E (; {my; = myRy Wi (Wi, — Ak,m)> (; Wy = myRy Wi i (Wim — Ak,m)> %}zm " ]
1— A % o Qrm =1
=EB|——* Hmg, = iWh,i Hmy,; = iWei —ndem) || 5 _
- (ZZ; {mri = m}RiiWr, ) <121 {mp,; = m}Ry ;Wi — nAy, )) New =1 ]
= 2nE[Ai,m(1 - Ak,m)Q] + E[Akﬂn(l - Akz,m)2(1 - 2Ak7m)]-

Therefore,

E

i=1

ng Nk
(Z Hmp; = m}Ry Wi i(Wy s — Ak,m)> (Z Hmp = myRy ;Wi i (W m — Ak,m)>]
=1

= 205, Pk @k E[ A} 1 (1 — Akn)®] + @ E[Agm(1 — Agn)? (1 = 2450) 1 Pr(Njgm = 1|Qpm = 1)
In addition,

ng Nk
E Z Hmy,; = myRy Wi i (Wi — Agm) E[ Z H{my; = myRy Wi i(Wim — Ak,m)]
i=1 1=1

= Pk (B[ Ak m(1 = Agm)])* Pr(Nem = 1|Qpm = 1).
As a result,

NEPk

ElormPrm] = (2E[A%,m(1 — Apn)?] — ar(E[Agm (1 — Ak,m)])2> (Thm — 71)* (M) +0 ( 1 )

ng
+0O < I (pr min n (1 — pyp) ™0 "’“m)> .
Pk Mgy, N m, m

Notice that my/(ngpr) — 0. In addition, myqx/(pr ming, ng ) — 0 and
. min,, n . Dk Milyy Mg moifm e, m
Pk 0N gy (1 — i) ™0 M = prmin g gy (1= ===

ming, Ng.m
< p min ng, y,e” PEIIm tem s (),
m

Therefore,

G 2 2 2 G 2 [ Nk,m

>} Elunhm] = (204 (1= A P10 B (1= A1) 3 (=) (2% )4 0(0),
m=1 m=1
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Next, we will study the remaining covariances between ¥ ., @k m, z_bkm, and @y, ,,. Because the
intra-cluster errors, ey ;(1) and e;;(0) sum to zero, it can be easily seen that E[vy,¢@rm] =
B[k m®r.m] = 0. It can also be seen that the inter-clusters sums of covariances between ﬁkm and
any of the other terms go to zero. To prove this for the covariance with vy, ,,,, we have

(i E[Iwk,m%,ml]> < (i (B[R m) B[ ]) 2)

m=1 m=1
my mg
—2
m=1 m=

1
=0(1)o(1) = o(1).

The same argument and result applies to E[¢y, ,,,¢km] and E[¢y @y ,,]. Putting all the pieces
together, we obtain

nprar E[Di (784 — 7)) = fi + 0(1),

where

1 &
= E[Agm(1 — Apn)? eri(1) + E[A7,,(1 — Apm)]— ) eri(0
fie = E[Agm( k Zk m(1— Ag, )]nki_z1 7.i(0)

1 &
— peE[AR (1 — Akm)g]n*k D eri(1) — ei(0))?
i=1
2 2) U’ ”k:m 2
+ (E[Ak,m(l — Akm)”] = Prak(E[Agm (1 — Agm)]) ) > nk (Tkym — Tk)
m=1
A |
+ (PEAR (1 = )] = prar(B[ A (1 = Ap)])?) D) 2ot Moo = 1) (2
m=1
my
3 2 ( Mkm
P (1 = A)] 3 (7 =) (%)
2 2 2) 2 Mkm
~2(2B[47 (1~ Ak )] = e (Bl = A))?) 3 (i =70 ().
m=1

Collecting terms with identical factors, we obtain

1 &
= E[Apm(1 — Agm)? eri(1) + E[A},,(1 — Apm)]— > eq (0
Tk [Akm ( k Ek m(1— Ag, )]nki_z1 i (0)

— peE[AR (1 - Ak,m)2]nlk i(ek,i(l) — e,i(0))?
i=1
+ (BlArm(1 = Aem)?] = 4+ p) E[A] 1, (1 = Am)?]

mg

BAR (1 = Ai)] + 26 (B[ Ak (1= Agn)])?) D S (i = 70)°
m=1
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mg 2

+ (pkE[Ai,m(l — Akn)®] = Drar(E[Agm (1 — Ak,m)]>2) > M(Tk,m — )%

m=1 Tk

The first three terms in the expression above depend on intra-cluster heterogeneity in potential
outcomes and treatment effects. The last two terms depend on inter-cluster variation in average
treatment effects.

A more compact expression for f is

1 &
fr = E[Apm(1 = Agm)’] 26’1“ ) + B[4}, (1 _Ak,m)];kZei,i(O)

1”’“

— peE[AF (1 - Ak,m)2]n* D ileri(1) = exi(0))

k=1
+ (BlAkin(1 = Akn)] = 6+ ) BIAT (1 = Ap)?)

+ 2qi(E[Ag,m (1 — Ak,m)])2> i i (Thom — Tk)?

m=1 Nk
( 2 2 2 G ni,m 9
+ (PLEAR (1 = An)®) = e (Bl (1= Ax)])?) 3 S (i =) (A10)
m=1

Notice that the first four terms in (A.10) are bounded, and that

E[A} (1= Apm)*] = i (B[ A (1= Ag ) 1)? = var(Ag m (1= A n)) + (1= 1) (B[ Agm (1= Agm) 1)
Assume that

2 >0, (A.11)

h’?ilolgf Zl ” (Tk m— Tk)
and

lim inf var(Ag m (1 — Akm)) v (1 —qx) > 0. (A.12)

k—o0

The last term in equation (A.10) is greater than

mg
. n
prmin g (BIAR (1= Akn)?] = (B[Agm(1 = Axa)]D?) D) (Thm = 7k)%,
m=1

which converges to infinity because pj min,, ng,, — . That is, the last term dominates the
variance in large samples provided that (A.11) and (A.12) hold.

We will now derive the large sample distribution of Tﬁxed

holds for F}, notice that

To show that Lyapunov’s condition

|(Yrn — Vo) + (Pln — P
1 <

= 35 2 Wmui = m} Ry ((eni(1) + Thm — ) Wi + €x(0) (1 — Wi i) (Wi — Wi )
(neprar)? | =

3
— (Tk,m - T)QkE[Ak,m(l — Ak,m)](l — (1= pp)™m)]| |

24



where the last term inside the absolute value comes from the bias correction. Notice that,

3
Nk
D Hmg = my R i(eni(1) + Thm — 1) Wi (Wi — Wi m)
iz
=1(1=Wim) 2 Hmp; = myRyi(ex,i(1) + Thom — 7o) Whi
i1
ng 3
<ec 2 1{mk,i = m}Rk 1W]“
=1
< cﬁzm

From the formula of the third moment of a binomial random variable, we obtain
3 3
E[Nk,m] = QkE[Nk,m|Qk,m = 1]
= nj o Dht + 0(n} L PRak),

as pgpngm — . Now,

3
Nk
3/2 Z [ Ve & Z Hmp; = myRyi(eri(1) + Tem — T) Whi(Whi — Wim) ]
nj Maxy n% mP%Qk (maxm N, ) 2 1
<c - = - ’ — 0.
(nkprqi)®? (pr ming, ny m, )32 ming, ngm ) (mege)t/?

Similar calculations deliver the analogous result for the term involving ey ;(0), and proving the
result for the bias term is straightforward. Therefore, we obtain

1 _ _
3 Z |(Vkyn — Vrn) + (Phym — Prom)|> — 0.
m=1
By the Central Limit Theorem for arrays, this implies

\/nkkaka/f;/z -4 N(0,1).
Let o = fi/(ur(1 — pg) — o). Then,

VPR R (e — )/~1/2 — N(0,1).
As a result,

VNG =) /52 =5 N(0,1).

A.3.2. Estimation of the variance

Let
ny

Nimo = Z H{mp,; = miRy;(1 — W)
i—1
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and

N
Nimi = Z {mp; = m}Ry Wh..
i=1
Let B , -
Y == Hmy; = miRe ;Y.
k,m Nk7m v 1; { ki } kilk,
Then,
Yk,m = ak,m + ?k,ka:,ma
where
~ 1 S
Qf.m = W ; 1{mk,i = m}sz,z‘(l - Wk,i)Yk,m
1 & 1 &
T = ——————— 1 ;= Ry WiV, — —— 1 = R (1 —Wr )Y,
Tk,m Nk,m,l v Z_zzl {mk,z m} kiVWkitk Nk,m,O v 1 l_zzl {mk,l m} k,z( k,z) kyis
and, as before,
_ 1 Rk
== Ymg,;, = mtRp ;Wi
k,m Nk,m v 1 Z:Z; { ki } kiVVki

Let Ugi = Yii — 70W, 5, where Yii = Yii — Y, Wi = Wei — Wim,,), and 7,554 is the

within estimator of 75,. Let ) = Dok g ik’m, where

2
ng
Xkm = (Z 1{my,; = m}Rk,iWk,iUk,i> .
i=1

Also, let
Qr = ), RiiWi,.
i=1

Then, the cluster estimator of the variance of v/Ng(75*d — 7.) is
vkcluster _ Nkélzlik@];l

We know already that

Qr — (pr(1 — ) — o3) 2> 0,

NEPLqk
with (1 — px) — o bounded away from zero. To establish convergence of f]k/ (nkprqr fr), first
notice that, for my; = m, we have
Upi = Yii — @hm + ToonWhm) — 705 ( Wi — Wm)
= k(D) Whi + Yei(0) (1 = Wii) = (o + ThnWhm) — 722U Wi i — W)
— (Qkim — km) = From = Tem)Wkm
= eri(D)Wii + €5,:(0)(1 = Wis) + (Thm — T2 (Wi — Wiem)
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- (ak,m - ak,m) - (?k,m - Tk,m)Wk,m
= eki(DWhi + eri(0)(1 = Wii) + (Tkm — k) Wi — Wim)
— (7 — 1) (Wi = Whan) = (Qkan — 0kim) — Fram — Tem) Wm-
For my; = m and N .0, Ngm1 = 1, let
Ukji = eri(1)Wii + exi(0)(1 — Wii) + (Thom — 76) (Wi — Wiem),

and let Uy ; = 0 for my; = m and Ny, 0Nkm,1 = 0. Then, for my; = m and Ni p, 0Nim,1 = 1, we
have

Oki = Ups = = = 1) (Wies = Wiem) = (@km = @bm) = Fim = Tiean) Wiean-
Then,
- 2
(Z H{my,; = m}Rk,iWk,iﬁk,i>
1=1 . ,
= (Z Hmy; = m}Rk,z’Wk,i <Uk,z' + (ﬁk;,z’ - 5m))>
Z:kl )
= (Z‘i {my,; = m}Rk,iWk,i <l_]k,i — (Rixed — 1) (Wi — ka))>

ng Nk 2
= (Z Uy = m}Ry Wi Ugs — (RPN = 70) Y Hmg = myRe Wi a(Whi — Wk,m)) :
i=1 i=1

Using the formula for the second moment of a binomial distribution and n > 1, we obtain,

ny 2
E <Z Hmp; = myRy Wi i (Wi — kaz)) ‘th = n]

i=1

ng 2
=F (Z {my,; = m}(1 — Wk,m)Rk,iWk,i> ‘Nk,m = n]

i=1

ng 2
(2 1{my,; = m}Rk,iWk,i> ‘]_Vk,m = n]

<FE
i=1

2
<n’+n.

From the formula of the sum of the first two moments of a binomial distribution, we obtain

Mk g o 2 -~
Z - (Z M = m R iWhe (Wi = Wk’m)> ] S Z (n%,mpiQk + Nk Pk )-
m=1 i=1 m=1
Therefore,
1 fixed 2 G & - 2
= (pfixed _ E YUme: = mYRy Wi (Wi, — W
nkpqufk( F ) mZ::l 121 {mii } Rii Wi (Wi kom)
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mg
NEPLE ,~fixed 2 1 2 2
< 7] —Tk) T3 Ny mPrk + NkmPkk

fk ( k ) (nkkak)2 WLE:I( k,mtk m )

= 0,(1) (Bl _L_ ) 2,
p min,, Nkm MEkqk  NkDPkqk ‘

Now, notice that

m ng 2
: Z (Z Kmp; = m}Rk,iWk,iﬁk,z)

NEPEk fi

m=1 \i=1
1 mp ng -
= — H{mp,; = mRr (e (DWei +eri(0)(1 —We)) Wei — Wem
R n;l <; {mu, Y Rii (eni(1) Wi + €,i(0)( ki) (W, km)
n o 2
+ (Thym — k) Z Hmgi = m}Re;(Wii — Wim)? |
=1

Equation (A.9) (and the analogous result for the sum involving terms with ey, ;(0)), implies

2
1 Tk Tk o
- - 1 i = Ry A(DOWe, SOV = W) Wim — Ak P, 0.
NPk S mZ_1<Z_21 {mp; = m}Ryi(eri(1)Whi + exi(0)( ki) (W, k, )> REN

As a result, it is enough to establish convergence of ¥, /(nkprak fr), where

Sk = Zk: <i Hmp; = m}Ryi(eri(1) Wi + e (0)(1 — Wii)) (Wei — Akm)

m=1 i=1
ny 2
+ (Tham — 7k) D Hmii = m} Ry j(Wii — Wk,m)2>
iz1
my ng
=) <Z Hmyg; = m} (Rkﬂ'Wk,i(Wk,i — Akm) — PrqrAkm(1 — Ak,m)>€k,i(1)
m=1 i=1
ng
+ 3 Lmy; = m} (Rk,i(l = W) Wi — Arm) + PeqeAgm (1 — Ak,m)>€k,i(0)
=1
n 2
+ (Togn = ) O, Ymigg = m} Ry i (Wi — Wk,m)2> :
iz1
We will next show that
1 E ](Czluster » 0 (A 13)
kS fr ’ '
where
fster = LB Ay (1= Apn)?] % eka(1)
k n ,m ,m & ki

1 ok
+ n*kE[A%,m(l — Aim)] Z ez.i(0)
i—1
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=1
k
Nkm
+ (BLAgn(1 = Agm)] = 5+ p ELAR (1= Akm)*]) 3 S (i = 78)
m=1
mp n%
+ Pk B[A} 0 (1= Akm)’] D ” (Tk,m — Tk)
m=1
Let
1 &
Xim = my; = miRg i (er:(0)(1 — Wi,
L Z; {my, YRii (€r,:(0)( i)
nk 2
+ eri(DWei) (Wi — Agm) + (Thm — Tk) Z Hmpg; = miRy (Wi — Wk,m)2>
i=1

Using the result in equation (A.8) and results on the moments of the binomial distribution (see
intermediate calculations in section A.7), we obtain

1 = W
ElX] = Y E[X,
NEPEqk %] mZ::l (K]

_ f](éhISter + O(l)

Therefore, to show that equation (A.13) holds, we will show

mg

1
= Z E[X}, ]—0. (A.14)
fk m=1 7
Let
Ok = E[(RiWii Wi — Aem) — PrAem(1 — Apm))?mei = m, Qpm = 1]
= P (E[Apm(1 = Apm)®] — phE[A7 (1 = Agm)?])
and

Tk = E[(ReiWii Wi — Akm) — PkAkm (1 — A ) mii = m, Qim = 1]
= Dk El(Wiei Wi — Akm) — DrArm (1 = Agn))Imui = m] + pp(1 — pi) E[AR (1 = Agn) 1.

Let
1 & ?
sz 1mz=mRZWZWl—Amell
k1 nkpqu<; {my, R, i Wi (W, o) €hsi ))
Qr - ’
= N U ms = MY (R Wi (Wi — Akgm) — Priem (1= Apan))eri(1) | -
nEPkGk \
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Then,

E[Xl%,m,l] = QkE[Xlg,m,”Qk,m = 1]

ng
Tk
= H{my; = miey ;(1)
wEptay 2 1k = el

2.2 Z Z Wmg; = my; = m}ei,i(l)ei,j(l)-

Therefore, because nyprqr — 00 and myq; — 00, we obtain
mg Nk 2
max, 1
BElx2 < ¢ ¢ + = m_km
k,m,1 k z . 2
NEPEqk nk MGl Mgy N

m=1
1 mg 1 ng—1 ng
x ( Z 2 Z Z Wmp; = my; = m}ei,i(l)eig(l))

M g M8Xm ey 527 1550

— 0. (A.15)

Using the same argument, we obtain

mp,
Z E[Xlg,mz] - 07 (Alﬁ)
m=1
where
1 <& ?
Xiem2 = P <2—21 H{mp; = myRy (1 — Wy) Wy — Ak,m)ek,i(0)> .

Notice that equations (A.15) and (A.16) imply

and

Notice that the last two equations hold even if fj, is bounded (e.g., when 7, — 7, = 0 for all £ and
m), as long as fi is bounded away from zero in large samples. In section A.3.3 we derive conditions
so that f;, is bounded away from zero in large samples even if 73 ,, — 7, = 0 for all £ and m. Now,
let

2
1 & —
X = — 1 i = m}tR Wi (Wi — W .
k,m,3 e ((Tk,m Tk:) 7; {mk,z m} ki k,z( ki k,m))
Recall that, under the conditions in (A.11) and (A.12), fi — o0 and py minny,,/fx is bounded for
large k and, therefore, py maxny, .,/ fi is bounded for large k. Then (see intermediate calculations
at the end of this document), for large k,

1 & 1 1
EI R R S ] (RY] e
Vi mZ::1 Ximal (nkprak fr)? Z PRk (Tim ) Pk MiNy, Ny,
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2 mi 2
P mMaxX;, n n 1
— mohm (PENY ko — 7))t (1 +0 ( >>
Mgk fr Ming, Ngm Tk ng Pr My, Mg m

1 1
o( )<1+o(_ ))—»0.
My Dk Mgy N m

Now, Holder’s inequality implies that equation (A.14) holds (see intermediate calculations).

Now let,
{]]ccluster _ f]gluster/('uk(l _ Nk) _ O-I%)2'
We obtain,

1/ cluster ~cluster
Vi Yk

= 1).
. . + 0p(1)

We will next establish the analogous result for the heteroskedaticity-robust variance estimator. Let

ng
Ei;obust _ Z Rk,zW]iZU]g’l

i=1

Then, the heteroskedasticity-robust estimator of the variance of /Ny (7, fixed _ ) is

Vkrobust _ Nka_:lz;;ObUSthzl.
As we have established before,
Uk = eki() Wi + eni(0)(1 = Wiei) + (Thm — 1) (Wi — Wien)
— (B = 1) (Wi = Wim) — (@Qkn — km) — Frm — Thm)Wkm-
For my; = m and N ,,0Nkm,1 = 1, let
Uk = eri()Whi + eni(0)(L = Wii) + (Thm — 7)) (Whi = W),

and let Uy ; = 0 for my; = m and Ny, 0Nkm,1 = 0. Then, for my; = m and Ni p, 0Nim,1 = 1, we
have

Upi — Upi = —(75 — 1) (Wi = Wem) — (Gkm — @m) — Fem — Thm)Wkms
and
1 ~ _ 2
Ry W20, = RZWZ<UZ Ui—Ui>. A7
NPk 121 PRk Dk ; #iWei(Uni + (Uri = Uki) (A-17)

Focusing on the part of the right hand side of last equation that depends on the first term of
U;“ — U} 4, we obtain

1
NkPLAk ;

! ZR,“W,” 250.

Z Ry, Zsz( ~fixed Tk)Q < (,;:kﬁxed - Tk>2
NkPrdk i=1

We will focus now on the part of the right-hand side of equation (A.17) that that depends on the
second term of Uk i Uk:,u

mg Nk
221 mi, mRkWQ&k — 2.
ey 2 2o M = R W2 (B — 0 m)
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Using the formula for the variance of a sample mean under sampling without replacement (e.g., in
the supplement of ?), we obtain for 1 <n < ny,, — 1,

g
E|(@km — arm)® D {mis = m}Re Wi,
i=1

Nk,m,O = ’I’L]

=F

(ak,m - O‘k,m)2ﬁk,mwk,m(1 - Wk,m)’Nk:,m,O = n]

<E [”(@k,m — am)*| Niggm,0 = ”]

= nvar (g, m|Nk,mo = 1)

n
— Si,m,o(l S ) (A.18)
,m
where .
1 k
Si,m,o T 1 Z Hmpi = m}(y,i(0) — akz,m)Q'
k,m i=1

Because Si,m,o is bounded, so is the right-hand side of equation (A.18). As a result

mg Mk
T2 (A 2 my
Z Z 1{mkl m}Rk,iWk,i(ak,m - ak,m) sc — 0.
nkPrAk o o Nk Pk

An analogous derivation applies to the part of the right-hand side of equation (A.17) that depends
on the third term of Uk i Ulm (Notice that Wy m < 1 and that 7} ,,, — 7 m is equal to minus the
difference between &y, — o 5, and the analogous difference for the treated.

Therefore, we will study the behavior of

1
Ry W2 U A.19
nkkakzzl & b F ( )

First, notice that

mE Nk
Z Z Wmp; = m}Rii| (Wi — Wim)? — (Wi — Ak,m)z‘Wk,iez,i(l)
niprqe = S
my ng . L
Z Z Wi = m}Ryi| (Wi — Wim) + (Wi — Ak,m)“Wk,m — Apm| Wiy
nrprar ol

1 mg Nk L 9 1/2
< C( Z Z 1{mk,i = m}Rk,i <(Wkﬂ — Wka) + (Wk,i — Ak,m)) Wk:,z‘)

nkPrqk T o

my Nk 1/2
( Z Z my; = m}Ry;i (Wim — Ak7m)2> . (A.20)

nkPkdk T o

The inside of the first square root in equation (A.20) is bounded by a constant times

mg Nk

D0 Ui = m} Ry,

m=1i=1

NkPLAk
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which converges in probability to one. The expectation of the inside of the second square root in
equation (A.20) is

1 &

2 E[Nk,m (Wk,m - Ak,m)Q] <c
NEPrak m=1

mg
NgPk

— 0.
As a result, the right-hand side of equation (A.20) converges to zero in probability. The derivation
with (1 — Wy;)ez ;(0) replacing Wy ;e? .(1) in equation (A.20) is analogous. Now, notice that

Wii = Wim)* = Wi — Apn)?
(Wi = Wim)® + Wi — Akm)?) (Wi = Wiem) + (Wi — Akm)) Wim — Agm).

Because the first factor of the expression above is bounded, we obtain

mg N
DD Ymks = mIR | (Wi = Wim)* — (Wi — Ak,m)4‘(7-k:,m —7)?
NkPRGk ) o
mE Nk 1/2
Z Z 1{mkz = m}sz
nkPRGk o o
mE Nk . ) 1/2
Hmpgi = miRei (Wem — Akm . A.21
(nkkak mzhzj e } k( & & )> ( )

Now, the right-hand side of equation (A.21) converges to zero in probability by the same argument
as for equation (A.20). Cauchy-Schwarz inequality implies,

1 1 N y
RlWZUl: mpi = m}Rei(Wii — Aem) Ul + 0p(1),
NkPEAk | Z FA ki NEPLqk ZZ:I {m. J R i (W, kam) k, p(1)
where
Uki = eri(1)Wii + €ri(0)(1 — Wii) + (Them — ) Wi — Akm)s (A.22)

for my; = m and Ng p, 0Ngm,1 = 1, and U;“ = 0 for Nimo0Ngm,1 = 0. Therefore, we will study
the behavior of

mg Mk
HUmp; =miR,, (Wi, — A m2(U]2i.
. mzuzi {m, J Ry i (W, kom) U,
We know,
mE Nk
H{me; =m R1WZ—Aszel
nkpqule;{k i (W ko) Wi ieq (1)
—E[Ap,(1—-A )2]i§624(1)i>0
k,m k,m ng . ki )
and
mi Mk
Z Z H{mg; = m}Rei(Wii — Agm)* (1 — Wi)e :(0)
NPk S o
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1 &
B4, (- Ae)] - Y0
kiz1

Now, notice that
E[(Wii — Akm) [y = m, Rei = 1, A = a] = (1 —a)'a + a*(1 —a)
a

(1—a)[(1-a)®+a*]
=a(l —a)[l —3a(l —a)],

which implies

E

N
D Wi = m} Ry i(Wii = Agn)* (iom — Tk)2]
i=1

= D@k B[ Ak m (1 — Agn) (1 — 3A (1 — Ak )] (Tom — 1),

and

mg Nk

Z Z Ump; = myRy; Wi — Apn)* (Teom — Tk)2]

m=1i=1

NkPLAk
my

= E[Ak,m(l - Ak,m)(l - 3Ak,m(1 - Ak,m))] - Tk)z'

Notice now that

2
(NPRar) 2 Z E[(Z {my; = m}Ry ;(W,; — Ak,m)4(Tk,m B Tk;)2> ]

=1
2
(rpran)? 2 (Z Hmy,; = m}Rk,i)

nkpk:Qk

i=1
<G 2"+ o)
m=1

1 maX,, Ngm 1 P
=c + — ’ — 0.
NEPLqr My gy MEGE

Notice also that expectations of the sums of products of the terms on the right-hand side of equation
(A.22) are equal to zero. Then,

1

Erobust . f]gobust p 0,
NP4k

where

1 &
FioPU = E[Apm(1 — Agm) Z €ii(1) + E[AF (1 = Akm)];k Z ¢ki(0)
i=1
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mg

nk7
+ E[Agm(1 = Apm) (1 = 3Akm(1 — Agm))] Y n: (Thym — 7).
m=1
Now let,
B = FEO (1~ ) — o7
We obtain,

Vkrobust _ 1~)ll;obust + Op(l).

A.3.3. Large k results the fixed effects case under homogeneous average
treatment effects across clusters

We will now study the Lyapounov’s condition for the case 73 ,, = 71 for all K and m = 1,...,my,
SO

my

m=1

Notice that

mpe 1 ne
2 Elim] 2 Bl Akm(1 = Agm)’] 3 i = mief (1)
m=1 i=1
1 2 < 2
+ ;kE (A7 (1 = Arn)] Y Hmi i = m}e ;(0)
=1
1 2 7\ 2
- ;kE[Ak,m(l — Akm)?] Y Hmii = m}(eri(1) — ei(0))
=1
1 4 &
= nka[Ak,m(l — Agm)®1 Y Ymps = m}ed ;(1)
=1
1 < )
+ n*kE[Aim(l — A,m)] 2 Hmy,; = m}eg ;(0)
=1
2 &
+ ;kE[Ai,m(l — Akm)?] Y Hmpi = mberi(1)er(0)
=1
1 & & eri(l) | era(0) \?
=FE|— Y A} (1—Apn)? 1mi=m<’l + —= > .
nk ,mZ:l k, ( k, ) 121 { k, } Ak,m 1_Ak,m
Therefore,
1 & eri(D)  eri(0) )2
liminf B | — > A} (1= Agm)® ) Hmg = . . 0
min [ DI R C e N B

is sufficient for liminfy_,4 fr > 0 (even if condition (A.11) does not hold). Given our assumption
that the supports of the cluster probabilities, Ay, ,, are bounded away from zero and one (uniformly
in k and m), then

o 1 & & eri(1) | eri(0) \?
h]?llolng nka::MZ:l 1{my,; = m} ( A + 7 —Ak,m> >0 (A.23)
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is sufficient for liminfy_,o, fr > 0. Assume that (A.23) holds, so liminfy_,4 fxr > 0. We now obtain,

4
ng
E[| > Ymki = m}Re iWii(Wii — Wim)eri(1) ‘Qk,m =1, Agm
iz
= E| (1= Wim)*| > Hmg; = m}Ry ;Wi iep (1) ‘Qk,m =1, Akm
i=1
n 4
SE Z Hmp; = miRy Wi ieri(1) ‘Qk,m =1, Akm |,
i=1
and
e 4
E[| Y] Hmp; = m}Ry ;Wi iep,i(1) ‘Qk,m =1,Am
i=1
ng 4
= E[ Z Hmy; = my(Ri,iWhki — prAkm)er,i(1) ’Qk,m =1,Arm
i=1

= e E[(Rie,iWii — Pk Akm) | Qrm = 1, Akm]
+ 31 (Mo — D) (E[(RiiWhi — Pk Akn)?|Qrm = 1, Apm])?.

The first equality holds because the terms ey ;(1) sum to zero within clusters. The second equality
holds because, if my; = myp; = m, with ¢ # j, then Ry;Wy; and Ry ;W}; are independent
conditional on Qg m = 1, Akm, and E[Ry iWi i — prAkm|Qkm = 1, Akm] = 0. Notice that

E[(RiiWiyi — PeAkm)?|Qrm = 1, Agm] = PeAim(l — PeArm) < D
which also implies E[(RkiWki — PkAkm)|Qkm = 1, Agm] < pr. As a result,

mp 4
o |
m=1

1 43 maXmy, Ngm 1

~ .
NEPEqk Milyy, Mg m Mgk

Nk

1
‘m Z 1{mk,i = m}Rk,z’Wk,iek,i(l)
=1

— 0.

A.4. Derivations of the variance estimators

In this section, we derive the adjustments in the CCV variance. (We do this under the assumption
that the Z; are independent. In our simulations we actually use a slightly different sampling scheme
for the Z; where the average Zy,, is identical and fixed in each cluster.) To derive the CCV variance
of the least squares estimator, consider first a variance estimator of the form

(&)

We aim, however, to design an estimator based on a subsample consisting of units with Z; = 1,
where Z; € {0,1} is i.i.d. binary with Pr(Z; = 1) = pz and independent of V. First, notice that

n 2 n n—1 n
E (ZIV) =;E[V£]+2Z >, ElVivjl,

i=1 j=i+1
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and

=1 =1 i=1 j=i+1
Therefore,
1 n 2 n n—1 n
p (zm) SNV s S ) B
Pz \;o i=1 i=1 j=i+1
and

Adding the last two equations,

(Z w) B (Z Zv) WUz v gy
i=1 ; -

bz i=1 pz i=1
) _ . 2: (1 ) .
— bz
- E|(Y2Vi| | - =D ElZV7] (A.24)
Pz iz Pz i3

The first term of the CCV variance estimator for least squares is based on the sample counterpart of
the right-hand side of equation (A.24), with 1{my; = m} Ry i(Wi;i — W)Uk — Them — Te) Wi (1 —
W)) in the role of V.

To derive the CCV variance estimator for the fixed effect case, consider

( [Akm(l_Akm)])2
BlA},, (1= Agm)?]

A =1—

and let f; COV — N4 f,‘élusmr +(1—=Xg) f,gObuSt. This transformation is designed to reproduce the terms
in fi with factor

my n2

k?
Z m(Tkm — Tk)Q.
m=1 "k

These terms dominate fj as k increases. It also reproduces several lower order terms.

Notice that

1 &
P = Pl (1 = A D3 hl0) + FLA 1= Ao 31,00
=1

mg

Nkm
+ (BlAm(1 = Aem)] = 6+ P AT (1= Akn)]) D S (i — 1)’
m=1
2 2 &G Nkm 2
+ (2 + pr) E[Af (1 — Agm)7] nk (Thym — Th)*-
m=1
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Then,

KN = fi = (1= MNP B[AR 1, (1 = Arn)?] ( > nz: (Thum — ) + nlk D lera(1) — ekz,i(o))2>

m=1 =1

m=1 "% i=1

= ek (B[Agm (1 — Agm)])? ( Zk: o (o — )2 + nlk Zk(ek,i(l) - ek,i(o))2> ~

For 50V = POV /(g (1 — pi) — 02)2, we obtain,
my Nk
oV - Nk,m 2 1 2
Oy = Ok = prear Y, Tk(Tk,m —TK)" + i D (eri(1) = exi(0))7. (A.25)
m=1 i=1

The difference @ECV — ¥ is non-negative and of smaller order than ;. Therefore, @,gcv/f)k — 1

(even if 3¢V — 7, is bounded away from zero). The first term on the right-hand side of (A.25)
could be estimated to further correct the difference between the CCV estimator and the variance
of ?,gixed.

A.5. Limit results
Let X}, be an infinite array of random variables, with rows indexed by k = 1,2,..., and the
columns of the k-th row indexed by m = 1,...,mg. Let

my
Sk‘ = Z Xk:,m>
m=1
and ap = E[Sk].

A Weak Law of Large Numbers for Arrays: For each k = 1,2,..., suppose that Xy 1,..., Xj , are
independent and have finite second moments. In addition, let by be a sequence of positive constants
such that

1
= > E[X},,] — 0.
k m=1
Then,
Sy — ag 2.0
b, '
Proof: By Chebyshev’s inequality, for any ¢ > 0
S — ay, 1
Pr <‘ h > €> < b%?var(Sk)
1 &
— b,%? Z var( Xk m)
m=1
1 & 5
S 193 Z B[ Xim] — 0
bpe® =,
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A Central Limit Theorem for Arrays: For each k = 1,2,... , suppose that Xy 1,..., Xgm, are

independent, with zero means, E[Xj,,| = 0, and finite variances, o = E[X?, ], for m =
1,...,mp. Let
my
2 2
S = Z Uk,m'
m=1

Assume also that Lyapounov’s condition holds,

lim 2+5 Z [ X5m|?+°] =0,

k—w g

for some § > 0. Then,

&—>N(O 1)
Sk

Proof: 7, Chapter 27.

A.6. Intermediate calculations for Section A.2
The calculation of v uses the following results.
E[(RiWki — pe@itn)*] = prarin(1 — prariir),
E[(Rpi(1 = W) — prear(l — )] = prae(1 — 1) (1 — prai(1 — pe)),
E[(Ry,iWii — pr@iottr) (R (1 — Wii) — prar(1 — px))] = —paaapn(l — ),
E[Ry Wi iRy, jWhjlmei = mui ;] = E[prarAi m] = Prar(or + 12),
and
E[(Ri.iWi.i — pre@itir) (R jWij — praieie)|mi: = muy;] = piar(or + ) — (Prqriir)?
= piar(or + (1= qr)pp)-
Similarly,
E[(Ryi(1 = Wii) — preae(1 — pe) ) (R (1 — Wi j) — prae(1 — pg))|mgi = my 5]
= prar(of + (1 — qr) (1 — ).
Notice also that
E[Ry Wi iRy j(1 — Wi j)|mi: = my ;] = EpaarAxm(1 — Ag.m)]
= prar (1 — pg) — o),
and
E[(RiiWhi — pearin) (Rij (1 — Wi i) — pear(1 — pe)) [me; = my ]

= pear (i (1 — i) — o) — Pedierin(1 — 1)
= prar k(1 — i) (1 — qi) — o).
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The following bounds are useful to prove Lyapunov’s condition.
E[|Re Wi — prarinl’] = (1 = preaeson)*prarik + (raern)*(1 — pegesie)
S CPkGk-
Let Qg,m be a binary indicator that takes value one if cluster m of population % is sampled.
E[| Ry Wi — praitin|*| R jWi.j — Prelistis]|[mu; = mej = m|

= E[((1 — praotin)*prAkm + Pr@itn)* (1 — prAgm))
X (1 = prqipi) P Akm + (Ore@iottn) (1 = prAgm)) M = mij = m, Qrm = 1] ak

+ E[(kakﬂk)g‘mk,i = my; = m, Qrm = 0](1 — qi)

2
< PGk

E[|RyiWi,i — prioki] | Ri Wi — Pe@ietve| | Rt Wit — Priiin]|mis = miy; = myy = m)|
3
= E[((1 = prqrtn) Pk Akm + Or@rin) (1 — PeAm))” [mis = mpj = mpe = m, Qpm = 1]%
3
+ B[ (prarin)” | mii = mij = mig = m, Qpm = 1](1 — k)

3
< CPRQk-

Other useful intermediate calculations.

For the moments of treatment indicators, notice that E[(Wg; — pr)*Wiki] = pe(l — pg)?, and
El[(Wii — pe)*(1 = Wii)] = (1 — ). In addition,

E[Wk,iWk,j|mk,i = mk’j] = E[A%,m] (fOl" me {1, ey mk})
= 0} + ik

Similarly, E[(1—Wj.;)(1—Wg ;) |mk,; = my. ;] = o2+ (1—pg)?. Therefore, E[(Wy,; — pu) Wi j|m; =
my.;] = oz and E[(Wy; — pr)(1 — W) |myi = my ;] = —oz. In addition,

El(Wii — ) Wi j — pie) Wi i Wi jlmuei = my ;]
= E[A} ,J(1— pu)®  (for me {1,...,my})

= (o + p) (1 = ).
Similarly,
E[(Wii — ) Wi j — ) (1= Wi ) (1= Wi ) [mii = mi 5] = (0f + (1 — )i,
and

E[(Wii — pur) Wiy — ) Wi i (1 = Wi ) mues = mi ] = (1 — i) (0 — p(1 — ).
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var(Ry iWhi) = praiite(1 —prarpn), var(Ryi(1—Wii)) = prar(1— ) (1 —prgr(1— ). Moreover,
cov(Ry iWgi, Rii(1 = Wy;)) = B[Ry Wi iRk (1 — Wi ;)| — E[Ri iWii|E[Ryi (1 — Wii)]
= —pidei(l — k).

Recall that E[W}, ;Wi j|mi; = my ;] = a,% +,ui. Therefore, cov(W, ;, Wi j|mi; = my ;) = ak Also,

E[W}m(l — Wk7]~)|mk,i = mk,j] = ,uk(l — Mk) — 0']%.

B[Ry iWyi Rk jWy j|lmk; = my. ;] = B[R iR jlmyi = mg j|1E[Wr Wi jlmy i = my ;]
= prar(ok + 17)-

Similarly,
E[Ryi(1 — Wi i) R j(1 = Wi ) [mi i = my 5] = prar(of, + (1 — u)?).
Therefore,
cov (R iWii, Ry jWijlmus = mu ;) = pRar(of + 1) — piaini
= prar(op + pE(1 — ),
and

cov(Rii(1 = W), Riej(1 = Wi j)Imui = myj) = prar(or + (1 — p)?) — prai(1 — )
= piar(oq + (1 — p)* (1 — ax)).

In addition,

cov(Ry iWyi, R j (1 — Wi j)|mys = myj) = E[RMWMRM( — Whj)|my: = my 4]
— B[Ry = my | B[Ry j (1 — Wi j)[muy; = my ]
= B[Ry, sz\mk i =Mk E[Wii(1 = Wy j)|mpg; = my;]
— B[Ry Wi
= prar(k(1 — ) — o7) — pidern (1 — i)
= i (e (1 = ) (1 = qi) — o).

M = My | E[Rij (1 — Wi ) |[mei = mu ]

A.7. Intermediate calculations for Section A.3

E[RkiWii Wi — Akm)| Akm, Qem = 1, mii = m] = prAgm(1 — Akm)-
This implies
E[RiiWii Wi — Akm)mi; = m] = prapE[Agm(1 — Apm)]-
Therefore,

nk

E Z Hmp; = myRy Wi Wi — Akm) | = memPr @k E[Agm (1 — Agm)].
i—1
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Forn > 1,

Nk
E Zl{mk,i =m}Ry Wi (W m — Ak,m)‘Nk,m — n]
i=1
1 e ng B
=7 Z; Wi = m} R i Wi Zl Wmg; = myRy Wi, — ndgm ’Nk,m =n
= E[Agm(1 = Apm)].
Therefore,
nk
E| 23 Wmii = m}ReiWei(Win = Axm) | = E[Am(1 = Agm)] Pr(Nim > 1)
i=1
Forn=>1

B[Ry, Wi i(Wim — Agn)?|mip; = my Ngm = n, Rii = 1]
< E[(Wim — Arm)?Imii = m, Nk =n, Ri; = 1]
_ Bl An(l ~ Apn)]

~ .

n

Because Pr(Ry; = Hﬁk,m =n,Mp; = M) = n/ny m,, we obtain

— — ElAL (1 —Ap.
B[Ry iWii Wrm — Agm)?Imi; = m, N = n] < A, T(Lk k, )],

which implies

_ _ E[A,, (1— Ay,
B[Ry iWii(Wrm — Akn)?mri = m, N = 1] < [Aem us )].

Ngm

Therefore,

E[ReiWii Wrm — Agm)?|mei = m]
= B[Ry Wii (Wi — Akm)?mii = my Ngm = 1 Pr(Ngm = 1my,; = m)
E[Ak,m(l - Ak:,m)]

x (g .

Nk.m

Conditional on Nk,m = n and Ay, the variable Ny, ,, 1 has a binomial distribution with parameters
(n, Akm). Then, using the formulas for the moments of a binomial distribution, we find that for
any integer n, such that 1 < n < ngpm,

n 2
E[(Zl{mk,i = m} Ry ;Wi i(Wii — Wk,m)> ’Ak,m =a,Ngm = n]

i=1
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= E[(Nk,m,l - Nl?,m,l/n)2|Ak,m = avﬁk,m = TL]
=n2a*(1 — a)*> + na(l — a)(1 — 6a + 6a*) + r1(a) + r2(a)/n,

where |r1(a)| and |ra(a)| are uniformly bounded in a € [0, 1]. Therefore,

Nk 2
E (Zl{mk,i = m} Ry Wii(Wg,i — Wk,m)> ’Nk,m = n]
i=1

=n?E[AL (1 — Apn)?] + nE[Apm (1 — Ag ) (1 — 645 + 647,,)]

+ E[Tl (Ak,m>] + E[Tg(Ahm)]/n.

It follows that

mg ng 2
E! Z (Thom — i) ( Z H{mp; = m}Ry Wi i (Wi ; — Wk,m))

m=1 =1

my,
= ( > Tren = )% (g (M. — V)i + nk,mPka)) E[A} ,,(1 = Agm)?]

m=1

mp,
+ 3" (Than — 70) P Qe B[ Apm (1 = Ap) (1 = 6Agm(1 = Agm))] + O(mpgr)-

m=1
Therefore,
1 L [ & o 2
E Thoym = T Hmp; = miReiWii Wi — Wim
NPk Gk mzzl( ks ) Z; {m, YRy, i Wi (W, kom)
mg
n m
(B Ak (1= )] = (54 ) ELAL (1= Aen)*]) 3 =2 (i — 70’
m=1
+PREAL (1= )] X5 S8 (e = 70)
m=1

Notice that,

ng 4
E (Z Hmy; = myRy Wi i (Wi — Wk,m)) ‘Ak,m =a,Ngm = n]

i=1

E[(Nk,m,l(l - Nk,m,l/n))4‘Ak,m = aaﬁk,m = TL]
E[Ng 1| Akyn = @, Njm = 1]
4

n-,

NN

Therefore,

ng 4
— 1
o (St -~ | st (10 ()

i=1 Dk minm Nk.m
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uniformly in m.

Suppose Xim = (Zkmi + Zkma)?. Let Xgm1 = Z,im’l and Xj 2 = Zg,m,z- Now suppose,

mg

Z E[Xlz,m,l] - 07

m=1

and
my,

Z E[Xlz,mﬁ] — 0.

m=1

Using the binomial theorem and Holder’s inequality, we obtain

mip mg 4 (4 )
Z E[X ] = Z Z CPE[ZII:,mJZk,mg]
m=1 m=1p=0
mp 4
<e X X ElNZkmalP 1 Zkma 4P
m=1p=0
mi 4
<o D) DB ) B ]
m=1 p=0
4 mg p/4 my (4—p)/4
<c) | 2 E[Xﬁ,m71]> (Z E[Xi,m,2]> —0
p=0 \m=1 m=1
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