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This supplement accompanies the review article “Weak Instruments in IV Regression: Theory
and Practice” by Isaiah Andrews, James Stock, and Liyang Sun. Section A describes the collec-
tion of American Economic Review (AER) articles and specifications for tabulations reported in the
review article. Section B discusses the calibration of simulations to these results, with an empha-
sis on estimation of variance-covariance matrix for the reduced-form and first-stage estimates from
our collected linear instrumental variables (IV) specifications. Section (C) provides details on size
simulations in calibrations to AER specifications. Section (D) presents the results underlying the
discussion of AR confidence sets in Section 5.1 of the review article. Section E overviews available
Stata implementations of the weak-IV robust procedures discussed in the main text.

A Publication Selection Criterion

To examine the practical relevance of weak instrument issues, we select recent publications in the
American Economic Review (AER). We first find articles published in the AER between January 2014
to June 2018 with the keyword “instrument” in their abstract, excluding those which did not relate
to instrumental variables. We exclude articles published in the May issue. There are 22 articles
that meet such criteria. We then exclude five articles that do not estimate linear instrumental
variables (IV) model. Table 1 lists the resulting 17 articles. From these 17 articles, we collect all IV
specifications reported in their main text (12 IV specifications are excluded because only first-stage
and reduced-form estimates are reported). This yields a total of 230 specifications, which is the “AER
sample” in the main text.

For each specification, we record the number of endogenous regressors p and the number of
instruments k. In Table 2, we report summary statistics on p and k for these specifications. In
one article only, all specifications have multiple endogenous regressors (p > 1). While two other
articles contain a few specifications with multiple endogenous regressors, 211 of the 230 specifications
collected have a single endogenous regressor (p = 1), which are the focus of our discussion. Among
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specifications with a single endogenous regressor, there are 101 just-identified specifications (p = k =

1), found in 12 articles.
For simulations, we rely on the subset of 8 articles and 124 specifications for which we could obtain

a full and non-singular variance-covariance matrix for the reduced-form and first-stage estimates,
either from the published results or from posted replication data and code. All specifications used for
simulation happen to have only a single endogenous regressor (p = 1). For details on our calibration
of simulations to these data, see Section B.

For our tabulations on reported first-stage F-statistics, we rely on the subset of 14 articles and
108 specifications that report F-statistics and have a single endogenous regressor. Among these
specifications, 56 specifications are just-identified, found in 10 articles.

We recognize that not all specifications are important. To distinguish specifications that are most
important in each article, we code specifications as “main specifications” for each paper based on the
following criteria:

1. The specification is in the first table of IV estimates.

2. If in this table the outcome and endogenous variable(s) are the same across specifications i.e.
the only difference is sample restriction / control variables, then we code the last specification
as “main specification”. If in this table outcome and endogenous variable(s) differ across speci-
fications, restrict specifications to those with outcome and endogenous variables referenced in
the abstract or introduction of the article, then code the last specification in this restricted
subset as “main specification”.

3. If 1) and 2) do not give a unique specification, then we code all specifications at the end of 2)
as “main specifications.”

We do not use the “main specification” variable in our analysis in the main text, but report this
variable in our replication files in case it is of interest to other researchers.

B Details on Simulation Calibration

Consider the IV model
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Define (�̂, ⇡̂) as the coefficients on Z
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(and, in the time-series case, stationarity), (�̂, ⇡̂) are consistent and asymptotically normal in the
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? , and we can construct consistent estimators ⇤̂⇤ for ⇤⇤ depending on the assumptions
imposed on the data generating process (for example whether we allow heteroskedasticity, clustering,
or time-series dependence). One can then form consistent estimators for the asymptotic variance
matrix ⌃⇤.

These results imply that for the two stage least square estimator,
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For reasons discussed in the main text, motivated by the asymptotic approximation (4), we

consider the case where the reduced-form and first-stage regression coefficients are jointly normal
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The estimated variance matrix for (�̂, ⇡̂) is thus ⌃̂ = 1
n

⌃̂⇤. For our simulation exercise, we calibrate
the normal model (6) to IV specifications in the AER sample, with ⇡ set to the estimate ⇡̂ in the data,
� set to ⇡̂�̂2SLS

, and ⌃ set to the estimated variance matrix for (�̂, ⇡̂) under the same assumptions
used by the original authors. Most articles report estimates (�̂, ⇡̂) and their standard error, whose
squared terms are variance estimates of �̂ and ⇡̂. However, none of the articles reports the covariance
estimate between �̂ and ⇡̂. So we replicate the covariance estimate for as many specifications as
possible, as well as any parameter estimate that is not reported in the article.

B.1 Calibration by Direct Calculation

With replication data and code, we can directly estimate ⌃ by jointly estimating (�̂, ⇡̂) in a seemingly
unrelated regression under the same assumptions used by the original authors. Appropriate estimates
⌃̂ are then generated automatically by standard statistical software e.g. suest or avar in Stata.1

We are able to obtain (�̂, ⇡̂) and its estimated variance matrix this way for 116 specifications from
7 articles. We exclude one specification from simulation because ⌃̂ is singular. For overidentified
specifications, we also obtain Q̂

Z

?
Z

? .

B.2 Calibration Based on 2SLS Standard Error

For specifications with p = k = 1, the 2SLS squared standard error is estimated as
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. We are able to obtain (�̂, ⇡̂) and its
estimated variance matrix for 12 specifications found in Lundborg et al. (2017). We exclude three
specifications from simulation because ⌃̂ is singular.

B.3 First-stage F Statistics

To facilitate the discussion on usage of first-stage F-statistics in detecting weak instruments, for each
specification we record the following features of each specification:

1. whether first-stage F-statistic is reported;

2. what type of the reported first-stage F-statistics is computed; We can infer this based on
labels used by authors in text, or by replicating the reported F-statistics to infer authors’
choice of F-statistics. If no explicit discussion on F-statistic is found in text or replication
data is not available, we calculate F = 1

k

⇡̂0⌃̂�1
⇡⇡

⇡̂ based on reported first-stage estimates ⇡̂ and
⌃̂

⇡⇡

. For an estimate ⌃̂
⇡⇡

that does not assume homoskedasticity, this would match with non-
homoskedasticity-robust F-statistic FR. For an estimate ⌃̂

⇡⇡

that assumes homoskedasticity,
1
Some articles report first-stage and reduced-form variances based on Stata’s regress routine, which applies a

degree-of-freedom adjustment to the variance estimate of �̂ and ⇡̂ by default. In contrast, Stata’s linear IV regression

routines do not apply such adjustment by default. For these articles, we replicate the variance matrix estimate for

(�̂, ⇡̂) with the degree-of-freedom adjustment for consistency.
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this would match with the traditional, non-robust F-statistic FN . We categorize specifications
that do not match with our calculation as “unknown”. For specifications specifications that
report robust ⌃̂

⇡⇡

, but computed FR does not match with reported F-statistic, it could be
either that reported F-statistic is FN or authors use a different degree-of-freedom adjustment
in calculating FR.

3. what label is used by authors in text for their reported first-stage F-statistics; If there is
no mention of the type of first-stage F-statistics, we categorize these specifications as “no
discussion”

4. whether any weak-instruments robust methods are used.

In Table 3, we summarize the distribution of first-stage F statistics.
As an alternative to the robust and non-robust F-statistics in non-homoskedastic settings, Olea

and Pflueger (2013) proposed the effective F statistic. The effective F statistic can be written
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The effective F-statistic is equivalent to non-robust F-statistic in homoskedastic settings. The effec-
tive F-statistic is equivalent to robust F-statistic in non-homoskedastic settings only when k = 1.

Under the normal model (6) with known variance, the average value of the effective F-statistic is
⇡

0
QZ?Z?⇡

tr

⇣
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C Details on Size Simulations

In this section we describe how we calculate sizes of various tests using simulations based on our
AER sample. Based on the normal model (6) with known variance, under a given null hypothesis
H0 : � = �0, we have g(�0) = �̂ � ⇡̂�0 ⇠ N(0,⌦(�0)) for

⌦ (�0) = ⌃
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where c1�↵

is the 1�↵ quantile of standard normal distribution. Besides the t-test, we also consider
t-test after screening on the first-stage effective F-statistic. In this case, we only evaluate the t-test
when FEff � 10,
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Define the AR statistic as AR(�0) = g(�0)0⌦(�0)�1g(�0). The size-↵ AR test of H0 : � = �0 is

�
AR
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} (10)

where �2
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distribution. Lastly, we consider the two-step test
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In other results (not reported, but available in replication files) we also considered cutoffs based on
the Olea and Pflueger (2013) critical values.

We are also interested in testing correct specification H0 : � � ⇡�0 = 0. Define the J-statistic as
J = g(�̂2SGMM
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is the efficient two-step GMM estimator, with first-step estimator being the 2SLS estimator �̂2SLS

.
The size-↵ over-identification test is

�
overid

= 1{J > �2
k�1,1�↵

} (12)

where �2
k�1,1�↵

is the 1� ↵ quantile of �2
k�1 distribution.

We calculate the size of tests with respect to H0 : � = �0 for all 124 specifications that we replicate
based on simulations as described in Section C.1 and C.2. We report these results in the main text.
For over-identification test, we focus on 90 out of these 124 specifications that are over-identified.
We calculate the size based on simulations calibrated to AER sample as described in Section C.1 and
report the results in Figure 1 and 2. These 90 specifications are collected from three articles.
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Figure 1: Rejection probability for nominal 5% over-identification test, plotted against average first-
stage effective F-statistic in calibrations to AER sample. Limited to the 81 out of 90 over-identified
specifications with average F smaller than 50.
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Figure 2: Rejection probability for nominal 5% over-identification test after screening on the first-
stage effective F-statistic, plotted against average first-stage effective F-statistic in calibrations to
AER sample. Limited to the 81 out of 90 over-identified specifications with average F smaller than
50.
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C.1 Simulations calibrated to AER sample

In simulation runs s = 1, . . . , S for S = 10000, we draw (�̂⇤, ⇡̂⇤) from the normal model (6) calibrated
to IV specifications from the AER sample, with ⇡ set to the estimate ⇡̂ in the data, � set to ⇡̂�̂2SLS

,
and ⌃ set to the estimated variance matrix for (�̂, ⇡̂) under the same assumptions used by the original
authors. The null is thus set to �0 = �̂2SLS

. We calculate the t-statistic t⇤(�0) based on the 2SLS

estimate at each draw �̂⇤
2SLS

=
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? �̂⇤ and its asymptotic variance estimate
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. We calculate the AR statistic AR⇤(�0) based on the moment function at each draw g(�0)⇤

and its variance ⌦(�0). We calculate the J-statistic J⇤ based on g(�̂⇤
2SGMM

)⇤ and ⌦(�̂⇤
2SGMM

). The
size of each test is calculated as the average of �⇤

j

(�0) across simulation runs. We also record the
median of t⇤(�0) across simulation runs.

C.2 Bayesian exercise

To account for uncertainty in estimating (�,⇡), we adopt a Bayesian approach consistent with the
normal model (6). Specifically, we calculate the posterior distribution on (�,⇡) after observing
estimates (�̂, ⇡̂) based on the normal likelihood from (6) with ⌃ set to the estimated variance matrix
for (�̂, ⇡̂) and a flat prior. Then in d = 1, . . . , D for D = 1000, we draw (�̃, ⇡̃) based on the posterior
distribution
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on the size of each test, at each posterior draw (�̃, ⇡̃) where �̃ = ⇡̃�̃, we calculate the size of each
test by simulations as described above where the null is set to �0 = �̃. Note that we set �̃ = ⇡̃�̃ to
ensure that our simulation designs are consistent with the IV model.

D AR Confidence Sets in Applications

In this section, we provide the underlying results for the discussion of AR test in Section 5.1. For
k = p = 1, the 5% AR confidence set can be calculated analytically by solving the following quadratic
inequality

(�̂ � ⇡̂�0)
2  �2

1,1�↵

(⌃̂
��

� �0⌃̂�⇡

� �0⌃̂⇡�

+ �2
0⌃̂⇡⇡

)

) (⇡̂2 � �2
1,1�↵

⌃̂
⇡⇡

)�2
0 + (2�2

1,1�↵

⌃̂
�⇡

� 2�̂⇡̂)�0 + �̂2 � �2
1,1�↵

⌃̂
�

 0 (14)

where �2
1,1�↵

is the 1 � ↵ quantile of �2
1 distribution. If (⇡̂2 � �2

1,1�↵

⌃̂
⇡

) < 0, the confidence set is
unbounded, which happens when we cannot reject ⇡ = 0 based on a 5% t-test.

In Table 4, we list the AR confidence set for 34 just-identified specifications out of 124 specifica-
tions that we replicate.
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E Weak-IV Robust Procedures in Stata

In replicating IV specifications in our AER sample, we noticed that the ivreg2 suite, described
in Baum et al. (2007), remains a common toolkit for linear IV estimation. ivreg2 implements the
Stock and Yogo (2005) weak instrument test and reports confidence sets for coefficients on endogenous
regressors based on the t-test.

As discussed in the main text, the Stock and Yogo (2005) weak instrument test is only valid
in the homoskedastic case. The weak instrument test of Olea and Pflueger (2013) is robust to
heteroskedasticity, autocorrelation, and clustering. It is thus the preferred test for detecting weak
instruments in the over-identified, non-homoskedastic setting. A recent Stata package weakivtest

by Pflueger and Wang (2015) implements this test. It computes the effective F-statistic and tabulates
critical values based on Olea and Pflueger (2013).

The weak instrument test of Olea and Pflueger (2013) concerns only the Nagar (1959) bias
approximation, not size distortions in conventional inference procedures (t-tests), though as discussed
in the text, in the k = 1 case one can use the Olea and Pflueger (2013) effective F-statistic, or the
Kleibergen-Paap statistic reported by ivreg2, along with the Stock and Yogo (2005) critical values
to test for size distortions. Our review paper discusses several tests robust to weak instruments and
explains how to construct a level 1�↵ confidence set based on test inversion. In just-identified models,
the AR test is efficient and thus recommended. In over-identified models with a single endogenous
regressor and homoskedastic errors, the CLR test has good properties. Except for the AR test and
the Kleibergen score test, these robust tests require simulations to calculate their critical values in
many cases, which can be computationally costly. Below we describe several recent Stata packages
that augment ivreg2 in terms of inference with weak instruments.2

For the p = 1 and homoskedastic case, the Stata package condivreg by Mikusheva and Poi (2006)
computes the AR, Kleibergen score, and CLR confidence sets. This routine implements algorithms
proposed by Mikusheva (2010) that allow one to construct confidence sets by quickly and accurately
inverting these tests without having to use grid search.

For the non-homoskedastic and p � 1 case, the Stata package weakiv computes the AR, Kleiber-
gen score, and CLR confidence sets based on grid search. Finlay and Magnusson (2009) describe a
previous version of this package called rivtest. Together with simulations for critical values of the
CLR test, the grid search can be computationally demanding.

As an alternative to a two-step confidence set based on first-stage F-statistic, Andrews (2018)
propose a two-step weak-instruments-robust confidence set. The Stata package twostepweakiv by
Sun (forthcoming) computes such confidence sets based on grid search. While twostepweakiv does
not need to simulate critical values for most cases, the grid search alone can be computationally
demanding.

For the p > 1 cases, one may be interested in subvector inference. weakiv implements the
traditional projection method and twostepweakiv implements the refined projection method based
on Chaudhuri and Zivot (2011).

To summarize, in homoskedastic settings, ivreg2 conducts valid weak instrument tests and
2
ivreg2 performs the Anderson-Rubin (AR) test for the null H0 : � = 0, but does not calculate a confidence set.
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condivreg calculates weak-instrument-robust confidence sets. In non-homoskedastic settings, weakivtest
conducts valid weak instrument tests, but does not guarantee valid inference. For k = 1 one can
use the effective F-statistic reported by weakivtest, or the Kleibergen-Paap statistic reported by
ivreg2, along with the Stock and Yogo (2005) critical values to test for size distortions. To construct
robust confidence sets, weakiv or twostepweakiv should be used.3
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Table 2: Summary statistics

(a) unweighted

p # specifications % just-identified % over-identified Avg. k | over-identified
1 211 48% 52% 21.95
2 5 40% 60% 48.67
3 2 0% 100% 58
4 12 0% 100% 8

(b) weighted by the inverse of the number of specifications in each article

p # articles % just-identified % over-identified Avg. k | over-identified
1 15.63 74.23% 25.78% 23.01
2 0.19 26.19% 73.80% 72.68
3 0.18 0% 100% 58
4 1 0% 100% 8

Notes: In panel (a), we tabulate the distribution of p and k by specifications. The sample consists of
230 specifications. In panel (b), we tabulate the distribution of p and k by specifications, weighted
by the inverse of the number of specifications in each article so that each article receives the same
weight.
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Table 3: Summary statistics on F statistics for specifications with p = 1

(a) unweighted; level of observation is specification

k # spec % report F Avg. F % F > 10 % F > SY cutoffs SY cutoffs % use Avg. F
robust tests

1 101 55.44% 3483.23 89.29% 92.86% 8.96 0%
2 28 78.57% 33.75 86.36% 68.18% 11.59 0%
3 30 60% 49.27 88.89% 88.89% 12.83 100% 49.27
16 4 100% 3.96 0% 0% 27.99 100% 3.96
21 4 0% 33.97 0%
23 4 100% 57.1 100% 100% 36.37 0%
28 16 0% 42.37 0%
59 20 0% 44.78 0%
100 4 100% 2.88 0% 0% 44.78 100% 2.88
total 211 51.18% 1823.572 82.41% 18% 35.16

(b) weighted by the inverse of the number of specifications in each article

k # articles % report F Avg. F % F > 10 % F > SY cutoffs SY cutoffs % use Avg. F
robust tests

1 11.6 64.99% 2228.85 89.31% 91.96% 8.96 0%
2 1.2 87.5% 24.02 85.71% 66.67% 11.59 0%
3 1 60% 49.27 88.89% 88.89% 12.83 100% 49.27
16 0.36 100% 3.96 0% 0% 27.99 100% 3.96
21 0.1 0% 33.97 0%
23 0.1 100% 57.1 100% 100% 36.37 0%
28 0.4 0% 42.37 0%
59 0.5 0% 44.78 0%
100 0.36 100% 2.88 0% 0% 44.78 100% 2.88
total 15.63 64.09% 1683.87 82.53% 11.06% 24.15

Notes: Column (3), (4), (5) are conditional on reporting F statistics. Column (8) is conditional on
using robust tests. There are four specifications report F statistics being >614. We take them to be
614. The SY cutoffs ensure the maximal size is 15% of a 5% Wald test. Tabulation is only available
for k  30. For k > 30, we use the cutoff for k = 30, which is 44.78. Among the 16 articles with any
specifications with p = 1, there are 14 articles that report some F statistics, one reports p-value and
the other none.
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