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We propose a positive model of empirical science in which an analyst makes a report
to an audience after observing some data. Agents in the audience may differ in their
beliefs or objectives, and may therefore update or act differently following a given re-
port. We contrast the proposed model with a classical model of statistics in which the
report directly determines the payoff. We identify settings in which the predictions of
the proposed model differ from those of the classical model, and seem to better match
practice.
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1. INTRODUCTION

STATISTICAL DECISION THEORY, following Wald (1950), is the dominant theory of opti-
mality in econometrics.! The classical theory of point estimation, for instance, envisions
an analyst who estimates an unknown parameter based on some data. The performance
of the estimate is judged by its proximity to the true value of the parameter. This judg-
ment is formalized by treating the estimate as a decision that, along with the parameter,
determines a realized payoff or loss. For example, if the loss is taken to be the square
of the difference between the estimate and the parameter, then the expected loss is the
estimator’s mean squared error, a standard measure of performance.

Although many scientific situations seem well described by the classical model, many
others do not. Scientists often communicate their findings to a broad and diverse audi-
ence, consisting of many different agents (e.g., practitioners, policymakers, other scien-
tists) with different opinions and objectives. These diverse agents may make different
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decisions, or form different judgments, following a given scientific report. In such cases, it
is the beliefs and actions of these audience members which ultimately matter for realized
payoffs or losses.

In this paper, we propose an alternative, positive model of empirical science to capture
scientific situations of this kind. In the proposed communication model, defined in Sec-
tion 2, the analyst makes a report to an audience based on some data. After observing
the analyst’s report, but not the underlying data, each agent in the audience takes their
optimal decision. Agents differ in their priors or loss functions, and may therefore have
different optimal decisions following a given report. A reporting rule (specifying a distri-
bution of reports for each realization of the data) induces an expected loss for each agent,
which we call the rule’s communication risk.

We compare the proposed communication model with a decision model in which the
analyst selects a decision that directly determines the loss for all agents. The decision risk
of a rule for a given agent is then the expected loss under the agent’s prior from taking the
decision prescribed by the rule.> The decision model generalizes the classical frequentist
model, and the decision model’s implications coincide with those of the classical model in
a particular sense. By contrast, we find that the implications of the decision model can be
very different from those of the communication model.

Section 3 presents an example in which the communication and decision models imply
opposite dominance orderings of the same rules. In the example, the analyst conducts a
randomized controlled trial to assess the effect of a deworming medication on the aver-
age body weight of children in a low-income country. Although deworming medication
is known to (weakly) improve nutrition, sampling error means that the treatment-control
difference may be negative. Under quadratic loss, the decision model implies that all au-
dience members prefer that the analyst censor negative estimates at zero, since zero is
closer to the (weakly positive) true effect than any negative number. Under the same loss,
the communication model implies that censoring discards potentially useful information
(the more negative the estimate, the weaker the evidence for a large positive effect), and
has no corresponding benefit (agents can incorporate censoring when determining their
optimal decisions or estimates). Thus, an uncensored rule dominates a censored one un-
der the communication model, while the reverse is true under the decision model. We
claim, and illustrate by example, that a scientist choosing a report for a research article
would be unlikely to censor. We also develop some general properties of the communica-
tion model that are suggested by the example.

Section 4 presents an example in which the communication and decision models dis-
agree in an even stronger sense. In this example, the analyst conducts a randomized con-
trolled trial to determine, from a finite set of options, the optimal treatment for a medical
condition. When all of the treatments show equally promising effects in the trial, the de-
cision model implies that it is optimal for the analyst to randomize among the treatments.
By contrast, under the communication model, randomization discards the information
that the treatments showed similar effects, which is useful to an agent who has a prior or
preference in favor of one of them. Thus, a rule that reports that the trial was inconclusive
dominates one that randomizes among the treatments under the communication model,
while the reverse is true under the decision model. In fact, we show that any rule that is
undominated (admissible) under the decision model in this example must be dominated
(inadmissible) under the communication model, and vice versa. Again, we illustrate by
example that the implications of the communication model seem to better match practice

*Decision risk is what Lehmann and Casella (1998, Chapter 4) call the Bayes risk.
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in at least some situations, and we develop some general results suggested by the example
in an appendix.

Section 5 looks beyond dominance comparisons to consider alternative ways of select-
ing rules. One is to minimize weighted average risk which, under the decision model,
corresponds to selecting Bayes decision rules. If all agents receive positive weight, then
(under regularity conditions) weighted average risk inherits any ordering implied by dom-
inance, and the conflicts in the preceding examples stand. Another way to select rules is
to minimize the maximum risk over agents in the audience. Here we find more agreement
between the two models in the sense that if the class of beliefs in the audience is convex,
then (under regularity conditions) any rule that is minimax in decision risk is minimax in
communication risk. This finding establishes a sense in which any rule that is robust for
decision-making is also robust for communication.

We illustrate both results in an example, based on GMM estimation, in which an an-
alyst needs to combine multiple potentially misspecified moment conditions to learn
about a structural parameter of interest. We characterize, respectively, rules that mini-
mize weighted average decision risk and communication risk, and show how and why they
differ. We further derive minimax decision rules, show that they are not minimax opti-
mal for communication when the audience is non-convex, and discuss why they become
minimax optimal for communication when the audience is convex.

Heterogeneity among agents plays a central role in our analysis. When agents are ho-
mogeneous, the distinction between decision and communication risk is inconsequential,
because a benevolent analyst can simply report the agents’ optimal decision given the
data. When agents are instead heterogeneous, the distinction can be consequential, be-
cause different agents may prefer different decisions (or estimates).

We are not aware of past work that studies the ranking of rules based on communication
risk in a setting with heterogeneous agents. Raiffa and Schlaifer (1961), Hildreth (1963),
Sims (1982, 2007), and Geweke (1997, 1999), among others, considered the problem of
communicating statistical findings to diverse, Bayesian agents.’ Our analysis is particularly
related to that of Hildreth (1963) who studied, among other topics, the properties of
what we term communication risk in the single-agent setting. Andrews, Gentzkow, and
Shapiro (2020) studied the implications of communication risk for structural estimation
in economics (see also Andrews, Gentzkow, and Shapiro (2017)).

Our setting is also related to the literature on comparisons of experiments following
Blackwell (1951, 1953), reviewed, for example, in Le Cam (1996) and Torgersen (1991).
What we term communication risk has previously appeared in this literature (see, for in-
stance, Example 1.4.5 in Torgersen (1991)), but the primary focus has been on properties
(e.g., Blackwell’s order) that hold for all possible beliefs and loss functions. By contrast,
we focus on the comparison between communication risk and decision risk for a given
loss function and class of priors. We formalize the connection to sufficiency, which plays
an important role in this literature, in Section 3.3.

Our setting is broadly related to large literatures on strategic communication (Craw-
ford and Sobel (1982)) and information design (Bergemann and Morris (2019)). As in

3See also Efron (1986) and Poirier (1988). A related literature (e.g., Pratt (1965), Kwan (1999), Abadie
(2020), Abadie and Kasy (2019), Frankel and Kasy (forthcoming)) assesses the Bayesian interpretation of
frequentist inference. Another literature (e.g., Zhang, Duchi, Jordan, and Wainwright (2013), Jordan, Lee,
and Yang (2018), Zhu and Lafferty (2018)) considers the problem of distributing statistical estimation and
inference across multiple machines when communication is costly. Brown (1975) considered a setting with a
collection of possible loss functions, while the literature on robust Bayesian decision theory (see, e.g., Gilboa
and Schmeidler (1989), Stoye (2012)) analyzes decision rules with respect to classes of priors.
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Farrell and Gibbons (1989), the receivers (agents) in our setting are heterogeneous. As in
Kamenica and Gentzkow (2011), the sender (analyst) in our setting commits in advance
to a reporting strategy. Unlike much of the literature on strategic communication, our
setting does not involve a conflict of interest between the sender and the receivers, which
Spiess (2020), Banerjee, Chassang, Montero, and Snowberg (2020), and others have re-
cently considered in a statistical context.

2. MODEL

An analyst observes data X € X, for X a sample space. The distribution of X is gov-
erned by the parameter 6 € @, X ~ F,, for ©® a parameter space. The analyst publicly
commits to a rule ¢ : X — A(S) that maps from realizations of the data X to a distribu-
tion over reports s € S, for S a signal space and A(S) the set of distributions on S. Let C
denote the set of all such rules, and with a slight abuse of notation let ¢(X) € S denote
the realization from a given rule ¢ € C.

The analyst’s report c¢(X) is transmitted to a set of agents indexed by a. Each agent a
is identified with a prior a € A(@) on the parameter space. We will call the set A C A(O)
of such priors the audience. While we interpret the audience as a collection of agents, our
model can be interpreted as one in which there is a single agent who possesses additional
information unavailable to the analyst.*

After receiving the analyst’s report c(X), each agent a takes a decision d € D C S, for
D a decision space. It will sometimes be useful to focus on rules whose reports are valid
decisions, that is, rules ¢ : X — A(D). We term such rules decision rules and let B denote
the set of all such rules, where since D € S, we have B C C.

After taking the decision d, the agent a realizes the loss L(d, 8) > 0. The analyst is
benevolent and wishes to minimize the ex ante expected loss, or risk, of each agent under
the agent’s own prior. We consider two notions of risk. The first, which we call decision
risk, is the expected loss to the agent from following the decision recommended by the
analyst’s report. Formally, for ¢ € B, the decision risk R,(c) is

R,(c) = E,[L(c(X), 0)],

where E,[-] denotes the expectation under a’s prior. The second notion of risk, which
we call the communication risk, is the expected loss when each agent updates their be-
liefs based on the analyst’s report and then selects a decision that is optimal under their
updated beliefs. Formally, for ¢ € C, the communication risk R%(c) is

R;(¢) = E,[inf E,[L(d, 0)|c(x)] .

For given audience A and loss L(-, ), we will call the model with rules B and risk
functions R,(-) the decision model, and the model with rules C and risk functions R’ (-)
the communication model. The assumption that all agents share a common loss function
is without loss of generality, as a model with heterogeneous loss functions can always be
reparameterized as one with a homogeneous loss and a richer parameter 6.

Both the decision model and the communication model evaluate the expected loss with
respect to the agent’s own prior. The key difference between the decision model and the

“Under this interpretation, A is the set of posterior beliefs that the agent may hold after receiving the
additional information.
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communication model is that, under the decision model, the expected loss is evaluated as
if the agent is forced to adopt the decision recommended by the analyst’s report, whereas
under the communication model, the expected loss is evaluated as if each agent takes
their optimal decision conditional on the analyst’s report.

If we take the audience 4 to be the set of point-mass priors on @, that is, the vertices of
A(O), then the decision risk is the frequentist risk (Lehmann and Casella (1998), equation
1.10), and the decision model coincides with the classical model. If we instead take the
audience A to be the set of all possible priors on 0, that is, A(®), then the decision
model still selects the same rules as the classical model under many standard optimality
criteria (see Stoye (2012) for discussion). We therefore focus on comparing the decision
and communication models.

The implications of the decision and communication models coincide if we take the au-
dience A to be a singleton with unique element a*. In this case, under the decision model,
the analyst will choose a rule ¢* such that ¢*(X) minimizes E,:[L(d, 6)|X] almost surely.
Any such rule is also optimal under the communication model. If A instead contains mul-
tiple priors, this logic need not apply and, as we show below, the two models can have
quite different implications.

Interpretation of the Decision and Loss

We pause to highlight two ways to interpret the decision d € D and loss L(d, 8). One in-
terpretation is that the decision d € D represents a real-world action whose consequences
are captured by L(d, 0). For example, doctors may need to choose a treatment, policy-
makers to set a tax, and scientists to decide on what experiment to run next. On this
interpretation, the decision model reflects a situation in which the analyst makes a de-
cision on behalf of all agents, or equivalently, all agents are bound to take the decision
recommended by the analyst. The communication model, by contrast, reflects a situation
in which each agent is free to take their optimal decision given the information in the
analyst’s report.

Another interpretation is that the decision d € D represents a best guess whose de-
parture from the truth is captured by L(d, 6). This interpretation is evoked by canonical
losses, such as L(d, ) = (d — 6)?, that increase in the distance between the estimate and
the parameter. On this interpretation, the decision model reflects a situation in which
each agent evaluates the quality of the analyst’s guess according to the agent’s prior. The
communication model, by contrast, reflects a situation in which each agent evaluates the
quality of the agent’s own best guess, as informed by the analyst’s report as well as the
agent’s prior.

In many real-world situations, the agents in the audience for a given scientific finding
will have diverse opinions and may therefore make different decisions, or form different
best guesses about an unknown parameter, after observing the same report. The com-
munication model better reflects such situations than does the decision model. In other
situations—for example, a government committee deciding on the appropriate treatment
to reimburse for a given diagnosis for all practitioners, or a scientific committee deciding
where next to point a telescope that will provide data to many researchers—the decision
model seems a better fit.

3. CONFLICT IN DOMINANCE ORDERING

We will say that a rule ¢ dominates another rule ¢’ under a given model if the rule ¢
achieves weakly lower risk for all agents in the audience and strictly lower risk for some. In
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this section, we show by example that the decision and communication models can imply
opposite dominance orderings, in the sense that ¢ dominates ¢’ in the communication
model but ¢’ dominates ¢ in the decision model.

3.1. A Treatment Effect With a Sign Constraint

An analyst observes data on weight gain for a sample of children enrolled in a random-
ized trial of deworming drugs (anthelmintic therapy). For the N children in the control
group, weight gain X is distributed as X; ~ N (6¢, o). For the Ny children in the treat-
ment group, weight gain X is distributed as X; ~ N(6r, o). Thus, the sample space is
X =RNc+Nt We assume that weight gain is independent across children so that the con-
trol group mean X ¢ and treatment group mean X ; follow

0_2

~ Z 0

{C ~N QC NC
XT OT s 0 0_2
Nr

The variance o and group sizes (N¢, Ny) are commonly known. The average treatment
effect of deworming drugs on child weight is 67 — 6. Suppose that this effect is known a
priori to be nonnegative, and in particular, @ = {(6¢, 67) € R*: 67 > 6c}.

The audience consists of governments who must decide how much to subsidize (or tax)
deworming drugs. The governments face a loss L(d, 6) = (d — (67 — 6¢))? for d the per-
unit subsidy, with d < 0 denoting a tax. The set of feasible decisions is D = R. We assume
that the audience A consists of the set of all distributions such that 8; — 6. is a zero-
truncated normal. All statements in this section continue to apply when A = A(O).

Consider two decision rules, ¢ and ¢/, defined as

c(X)=Xr—Xe, ¢(X) = max{c(X),0}.

The rule ¢ reports the difference in means between the treatment and control groups.
The rule ¢’ censors this report at 0.

CLAIM 1: Rule ¢’ dominates rule ¢ under the decision model. Rule ¢ dominates rule ¢
under the communication model.

Proofs are collected in Appendix A, but we sketch the argument here. Start with the
decision model. Because all governments accept that 6 > 6., a tax on deworming drugs
is never optimal. Yet, the rule ¢ will sometimes recommend a tax. Under the decision
model, such a recommendation incurs an unnecessarily large loss, because it is worse
than recommending a neutral policy d = 0.

Next, consider the communication model. Although all governments accept that 6, >
fc, in cases where X7 — X ¢ < 0 the realized value of X — X ¢ is nevertheless informative
about the true value of 67 — 6¢. Intuitively, the lower is X1 — X, the stronger is the
evidence for a small value of 8 — 6. The rule ¢ preserves this information, whereas
the rule ¢’ discards it. Even though every government’s optimal subsidy d is nonnegative,
there is no benefit to the censoring in ¢/, because each government can simply censor its
own decision d based on the information conveyed by c.

We can compare the implications of the decision and communication models to ob-
served practice in a situation similar to the example. Kruger, Badenhorst, and Mansvelt
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(1996) conducted an early randomized controlled trial of the effect of deworming drugs
on children’s growth. A separate randomization was used to study the effect of iron-
fortified soup. Among children who received unfortified soup, those receiving deworm-
ing drugs had a lower average growth over the intervention period (mean weight gain of
0.9 kg, n = 15) than those receiving a placebo treatment (mean weight gain of 1.0 kg,
n = 14; see Table 4 of Kruger, Badenhorst, and Mansvelt (1996)). Kruger, Badenhorst,
and Mansvelt (1996) stated that “[Positive effects on weight gain] can be expected with
reduction in diarrhoea, anorexia, malabsorption, and iron loss caused by parasitic infec-
tion” (p. 10). In a later review of the literature, Croke, Hamory Hicks, Hsu, Kremer, and
Miguel (2016) stated that “there is no scientific reason to believe that deworming has
negative side effects on weight” (p. 19).

If we interpret these statements to mean that the average treatment effect is known to
be nonnegative, then censoring the estimated treatment effect at 0 (i.e., reporting that the
treatment and control groups experienced the same average weight gain) would lead to an
estimate strictly closer to the truth than the negative estimate implied by the group means,
and would therefore dominate in mean squared error. However, Kruger, Badenhorst,
and Mansvelt (1996) did not publish a censored estimate, nor did any of the four studies
that Croke et al. (2016) identified as implying negative point estimates of the effect of
deworming drugs on weight.’

3.2. Discussion

We have focused on a scenario where the audience consists of policymakers, so the loss
captures the value of setting the right policy. We may alternatively envision the loss as
capturing the scientific community’s desire for a good guess of the true average treatment
effect. On this interpretation, a guess d < 0 is again unappealing from the standpoint of
decision risk (such a guess cannot be right), but may be appealing from the standpoint of
communication risk (because it conveys useful information that agents can use in formu-
lating their own guesses).

We have focused on rules that have range D and are therefore decision rules. This is
natural under the decision model but is restrictive under the communication model. To
illustrate, suppose that S contains R* and consider the rule ¢’ with

"(X)=Xc, Xr).

CLAIM 2: (i) The rule ¢" dominates the rule c under the communication model. (ii) The
rule ¢” achieves weakly lower risk for all agents than does any other rule under the communi-
cation model.

SCroke et al. (2016, Figure 2) identified four negative point estimates out of a total of 22 reviewed. These
four negative point estimates are from four distinct studies (including Kruger, Badenhorst, and Mansvelt
(1996)), out of a total of 20 distinct studies reviewed. Donnen, Brasseur, Dramaix, Vertongen, Zihindula,
Muhamiriza, and Hennart (1998, Table 2) reported the regression-adjusted weight gains for a group treated
with mebendazole and a control. They further reported that the treated group’s gain is statistically significantly
below that of the control group at all time horizons considered. Croke et al. (2016, Figure 2) reported a sta-
tistically significant effect on weight gain of —0.45 kg based on the data from Donnen et al. (1998). Miguel
and Kremer (2004, Table V) reported treatment and control group means of standardized weight-for-age and
a statistically insignificant difference in means of —0.00 to rounding precision. Croke et al. (2016, Figure 2)
reported a statistically insignificant effect on weight of —0.76 kg based on the data from Miguel and Kremer
(2004). Awasthi, Pande, and Fletcher (2000, Table 1) reported treatment and control group means of weight
gain and reported that these are not statistically different. Croke et al. (2016, Figure 2) reported a statistically
insignificant effect of —0.05 kg based on the data from Awasthi, Pande, and Fletcher (2000).
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Because the rule ¢” conveys more information than the rule ¢, it dominates the rule
¢ under the communication model. Moreover, because the statistic ¢”(X) is sufficient
for 6, rule ¢” is weakly better than any other rule for any agent under the communication
model. Interestingly, Kruger, Badenhorst, and Mansvelt (1996) reported group means for
the control and treatment groups, and did not explicitly report the difference X, — X .

We have also focused on a situation in which the tension between the decision and
communication models arises due to an a priori constraint on the parameter space. While
illustrative, that is not the only situation in which the tension arises. Imagine, for example,
that the randomized controlled trial is run at J > 3 sites j, each of which is associated
with its own parameters 6; = (6, 6}). We drop the sign constraints, so that @ = R¥, and
take A to be the set of all distributions on @ such that the J-vector 67 — 6 is normally
distributed. Agents in the audience must now choose a subsidy or tax for each site, so
that D=R’, and L(d, 0) = ||d — (67 — 0¢)||? for || - || the Euclidean norm. At each site,
the number of treatment and control units is equal to N, which we continue to assume is
commonly known along with the variance o of weight gain. Consider two estimators, ¢*
and ¢’%, defined as

- - J-2 20’
MX)=Xr—Xe,  IS(X) :max{l S O}CM(X),
e of” N

where X — X is the J-vector of treatment-control differences X, — X .. The rule ¢
corresponds to the maximum likelihood estimator for the vector of average treatment
effects, while ¢’S is a positive-part James-Stein estimator.

CLAIM 3: (i) Rule ¢’S dominates rule c™ under the decision model. (ii) Rule ¢™ dominates
rule ¢’ under the communication model.

Classic results in statistics (James and Stein (1961), Baranchik (1970), Efron and Mor-
ris (1973)) imply that, for any value of 6, the mean squared error of rule ¢’S is strictly
lower than that of ¢, implying that ¢S dominates ¢ under the decision model. At the
same time, because ¢’$(X) is a function of ¢ (X), ¢ is at least as good as ¢’5 for any
agent under the communication model. Moreover, because ¢’* sometimes discards useful
information (by mapping a range of X — X ¢ values to zero), ¢ dominates ¢’* under the
communication model.

3.3. Generalization

The examples in this section illustrate two general properties of dominance orderings
under the communication model. The first is that coarsening the analyst’s report is never
desirable.

PROPOSITION 1: Fix rules c, ¢ € C. (i) If the distribution of ¢'(X)|c(X), X is equal to
Y(c(X)) for some i : S — A(S), then c achieves weakly lower risk than ¢’ for all agents
a € A under the communication model. (ii) If, further, there exists a € A for whom c¢(X) and
c'(X) imply different optimal actions with positive probability,

Pr{argminEu[L(d, 6)|c(X)]NargminE,[L(d, 6)|c'(X)] = Q)} >0,

deD deD
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where both minima are achieved and R’(c) is finite, then ¢ dominates ¢’ under the commu-
nication model.

The conditions in Proposition 1 part (i) imply that ¢’(X) is a garbling of c(X), while
part (ii) gives a sufficient condition for strict superiority of ¢ for a given loss function and
prior. An important special case of garbling is when ¢'(X) can be written as a deterministic
transformation of ¢(X'), as in the examples in this section.

The second general property is that, following Blackwell (1951, 1953), it is optimal for
the analyst to report sufficient statistics when feasible.

PROPOSITION 2: Fix a rule ¢ € C. If ¢(X) is sufficient for 0 under F,, then c achieves
weakly lower risk than does any other rule for all agents a € A under the communication
model.

The statements about the communication model in Claims 1, 2, and 3 are corollaries of
Propositions 1 and 2.

4. CONFLICT IN ADMISSIBILITY

We will say that a rule ¢ is admissible under a given model if no other rule domi-
nates c. Admissibility in the decision model corresponds to what Stoye (2012) termed
I'-admissibility. In this section, we give an example in which the sets of admissible rules
under the decision and communication models do not intersect.

4.1. Optimal Treatment Assignment

An analyst must make a clinical recommendation to an audience of physicians on the
basis of the available evidence. Say that each physician’s goal is to achieve the best average
outcome for patients with each of a given set of attributes (e.g., diagnoses). We suppose
these attributes are discrete, as in Manski (2004), and study the problem of recommending
treatment to patients in a given attribute cell.

Formally, denote the available treatments (e.g., medications) by t € {1,..., T} for T >
2. Suppose that the analyst observes data from a trial where n > 1 units (e.g., patients)
are randomly allocated to each treatment ¢, and that for each unit i, the analyst measures
a binary outcome Y; (e.g., an indicator for the resolution of symptoms). Let us further
assume that patient outcomes are exchangeable, so it is without loss to represent the data
for treatment ¢ as a fraction of successes X, € {0, %, ..., 1}, with nX; following a binomial
distribution. The sample space is then

T
;cz{o,l,...,l}.
n

The unknown parameter is (64, ..., 67), where 6, denotes the success probability for
units assigned to treatment ¢. We assume each 6, lies in a nontrivial interval &, C (0, 1),
so the parameter space is @ = @] < (0, 1)”. We take the audience to consist of all possible
priors A =A(0).

Each physician’s decision consists of either picking a treatment ¢ or declining to do so.
Formally we take the decision space to be D = {1, ..., T} U {¢}, where ¢« corresponds to
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not picking a treatment. The physician’s objective is to pick the best treatment which,
following Manski (2004), we formalize by considering the regret loss

—0;+max6, ifd#.,
L, 0)= !
, 6) max 6, ifd=r1.
t

Declining to pick a treatment yields greater loss than picking any given treatment (e.g.,
because the patient cannot self-prescribe).

Again consider two rules. The first rule, c*, takes ¢*(X) = argmax, X, if the argmax is
unique and otherwise randomizes uniformly over argmax, X,. The second rule, ¢, takes
¢(X) = if argmax, X, ={1,..., T} and ¢(X) = ¢*(X) otherwise. As in Section 3, the
comparison of these two rules reveals a conflict in dominance ordering between the com-
munication and decision models.

CLAIM 4: (i) Rule c* dominates rule ¢ under the decision model. (ii) Rule ¢ dominates rule
¢* under the communication model.

Start with the decision model. The rule c¢* is a special case of what Manski (2004)
termed the “conditional empirical success” rule, and is related to the empirical welfare
maximization procedures studied by Kitagawa and Tetenov (2018) and Athey and Wa-
ger (2021). Classical decision-theoretic results for selection problems (Lehmann (1966),
Eaton (1967)) imply that the rule ¢* minimizes decision risk uniformly over A = A(®)
among rules that are invariant with respect to permutations of the treatments, and that c*
is an optimal decision rule for any agent a* with a permutation-invariant prior.® By con-
trast, because the rule ¢ sometimes fails to make a recommendation, thus choosing the
bad decision d = «, the rule ¢ is not an optimal decision rule for any agent a € A.

Next, consider the communication model. Any agent can construct c*(X) given ¢(X)
for any X € X. Proposition 1 therefore implies that rule ¢ achieves weakly lower risk than
rule ¢*. Note, however, that ¢(X) cannot be constructed from c*(X), because ¢*(X) does
not inform the agent when there has been a tie. Intuitively, this results in a loss of useful
information for an agent a whose prior is such that they prefer to follow the rule ¢* only
when the data are informative about the optimal treatment. For this reason, Proposition 1
further implies that ¢ dominates ¢* under the communication model.

In fact, the tension between the decision and communication models is stronger than
what is captured by Claim 4. Because d = ¢ is a bad decision, any rule that sometimes
recommends it is inadmissible in decision risk. But because the decision space is too small
to convey the full data, T+ 1= |D| < |X| = (n+ 1)7, and distinct realizations of the data
imply distinct optimal actions for some agent, any rule that does not sometimes report
¢(X) = v is inadmissible in communication risk.

CLAIM 5: There exists no rule c that is admissible under both the decision model and the
communication model.

We prove Claim 5 as a consequence of a more general result for situations with finite

decision and sample spaces. Loosely, if there is a decision that is always unappealing and
the decision space is too small to convey the actionable information in the data, then

The results of Stoye (2009) further imply that ¢* is a minimax decision rule in the case of T = 2.
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there exists no rule that is feasible and admissible in both the decision model and the
communication model.

In practice, analysts in situations like the one we have modeled sometimes express their
ignorance rather than choosing a concrete recommendation at random. UpToDate is a
private publisher that synthesizes medical research into clinical recommendations. As in
the communication model, readers of these recommendations include practitioners who
are free to make different clinical decisions. On the choice among selective serotonin
reuptake inhibitors (SSRIs) to treat unipolar major depression in adults, UpToDate says,
“Given the lack of clear superiority in efficacy among antidepressants, selecting a drug
is based on other factors, such as ... patient preference or expectations” (Simon (2019)).
Such a report seems more similar to ¢ than to c¢*, and thus more consistent with the
predictions of the communication model than with the predictions of the decision model.

4.2. Discussion

The example illustrates a tension between the decision and communication models that
arises when the data are completely uninformative. Reporting that findings are inconclu-
sive arises in many situations like the one illustrated by the UpToDate quote. Appendix B
extends the analysis to demonstrate a case in which the communication model favors re-
porting ¢« even when the data are informative, provided the amount of information in the
data is small in comparison to the audience’s priors.

Claim 5 holds for any signal space S containing D. Indeed, it seems plausible that an
analyst concerned with communication risk might wish to convey more than simply “I
don’t know.” The UpToDate article that we quote at the end of Section 4.1, for example,
discusses the evidence before stating its conclusion, noting that some evidence in favor
of a particular selection of SSRIs failed to replicate in a second meta-analysis, and that
“randomized trials have found no evidence that one antidepressant [SSRI] is superior in
preventing relapse or recurrence” (Simon (2019)).

The conclusion of Claim 5 also holds if we restrict D to contain only the feasible treat-
ments {1, ..., T}, provided that the signal space S contains at least one element that is
notin {1, ..., T'}. Intuitively, in this case the rule ¢ is simply infeasible under the decision
model, but remains superior to the (feasible) rule ¢* under the communication model.

5. ADDITIONAL OPTIMALITY CRITERIA

In this section, we look beyond dominance comparisons to consider two other optimal-
ity criteria: optimality in weighted average risk, and minimaxity. To derive our results, we
impose the following regularity conditions.

ASSUMPTION 1: There exists a o-finite measure which dominates F, for all 6 € ©. The
loss function L(d, 0) is nonnegative and lower semicontinuous in d for all 6 € ©.

The existence of a dominating measure is a weak condition that holds in all of our
examples. Likewise, the loss functions in our examples are continuous in ¢, which implies
lower semicontinuity.

ASSUMPTION 2: The decision space is a subset of Euclidean space, D C R? for q finite,
and is closed. Moreover, either (i) D is bounded or (ii) limy . L(d, 6) = oo for all 6.

Assumption 2 holds in all of our examples. See Assumption 3 in Appendix A for a
weaker condition sufficient for our results.
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5.1. Weighted Average Risk

Let w be a distribution on .4 and define
pulc) = / RO dw(a),  p(c)= / R () dw(a)
A A

to be the weighted average decision risk and the weighted average communication risk of
rule ¢, respectively. Any rule ¢ € B that minimizes weighted average decision risk p,,(c)
is a Bayes decision rule (e.g., Lehmann and Casella (1998, p. 6), Robert (2007, p. 63)).
Bayes decision rules have strong optimality properties in the classical setting.”

For given weights w, weighted average risk defines a complete ordering on the set of
rules, whereas dominance and admissibility define only partial orderings. These orderings
are closely related.

PROPOSITION 3: Suppose Assumptions 1 and 2 hold. (i) If, under a given model, rule ¢
dominates rule c', and the risk function for c is bounded and continuous in a, then c has
strictly lower weighted average risk than ¢’ with respect to any weights o with full support on
A. (ii) If the risk functions for all rules are bounded and continuous in a, then any rule that
minimizes weighted average risk with respect to full-support weights w is admissible.

Intuitively, if ¢ dominates ¢/, then at least one agent a is worse off under ¢ than under
¢/, and no agent is better off. As long as w puts weight on agents in a neighborhood of a,
and agents in that neighborhood have risk similar to a’s, ¢ will be strictly preferred to ¢’
under weighted average risk.

An implication of Proposition 3 is that if there is a conflict in dominance ordering (as
in Section 3) or a conflict in admissibility (as in Section 4) between the communication
and decision models, then (under the given conditions) there is a conflict in the ordering
of weighted average risks with respect to full-support weights. The following corollary
illustrates for the case of a conflict in admissibility.

COROLLARY 1: Suppose that decision and communication risk are bounded and contin-
uous in a for all ¢ € B. If there is no rule that is admissible under both the decision and
communication models, then any rule c that minimizes weighted average risk for some full-
support weights o under the decision model is inadmissible, and does not minimize weighted
average risk under any full-support weights w*, under the communication model.

Under the conditions of Corollary 1, any Bayes decision rule based on full-support
weights o is inadmissible for communication, and does not minimize weighted average
communication risk for any full-support weights, including weights w* # w.

5.2. Maximum Risk

We will say that a rule ¢* is minimax under a given model if it minimizes the maximum
risk possible under the set of priors in the audience. Formally, rule ¢* is minimax if

Rle) = RfpRa(@, - Rile) = plup R

"In particular, Complete Class Theorems show that, in many cases, any rule that cannot be expressed as
Bayes is dominated by one that can be.
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under the decision and communication models, respectively. Since we evaluate perfor-
mance with respect to a class of priors, minimaxity in the decision model corresponds
to robust Bayes optimality (also called I'-minimaxity—see, e.g., Gilboa and Schmeidler
(1989), Stoye (2012)).

The max-min inequality implies that inf..ssup,_, R.(c) > sup,_, inf.cs R,(c). If the re-
verse is true, so that inf.czsup,_, R.(c) =sup,_, inf..s R,(c), we will say that a minimax
theorem holds under the decision model.®

THEOREM 1: If a minimax theorem holds under the decision model, then any rule c* that
is minimax under the decision model is minimax under the communication model.

PROOF: By the definitions of decision and communication risk, for all a € A,
infyes R,(c’) < Ri(c) for all ¢ € C, and R%(c) < R,(c) forall c € B. By the first inequality
and the max-mininequality, sup,_ , inf.cs R,(¢) < sup,_, inf.cc R} (c) < inf.sup,., Ri(c).
Since R}(c) < R,(c), however, inf..csup,_, Ri(c) < inf.czsup,_, R,(c). If a minimax
theorem holds under the decision model, this implies that inf..csup, , Ri(c) =
inf.c.ssup,_, R.(c), and any rule ¢* with R,(c*) = inf.czsup,., R,(c) must also have
R,(c*) =inf..c sup,., R:(c) and therefore be minimax under the communication model.

Q.E.D.

Thus, if a minimax theorem holds under the decision model, there is no conflict between
the decision and communication models when the analyst seeks to minimize maximum
risk.

Theorem 1 holds for all S 2 D. Hence, for minimax communication, there is no gain
from enlarging the signal space beyond D, or from communicating information other than
a recommended decision, provided a minimax theorem holds. The literature has derived
minimax rules in a wide range of frequentist decision problems, and Theorem 1 implies
that these will also be minimax communication rules for the maximal audience A = A(®),
provided a minimax theorem holds. Theorem 1 also implies that robust Bayes decision
rules with respect to a class of priors .A are robust communication rules with respect to
the same class of priors, provided a minimax theorem holds.

The next proposition, proved in Appendix A as a consequence of a more general result
building on arguments from Strasser (1985), gives sufficient conditions for a minimax
theorem to hold. To state the proposition, we say that A is convex if, for any a, a’ € A and
anyAe (0,1),A-a+(1—A)-a €A

PROPOSITION 4: Suppose Assumptions 1 and 2 hold. If the audience A is convex, then a
minimax theorem holds under the decision model, and there exists a minimax rule c*.

Convexity of A holds for the maximal audience A = A(0), as well as for the classes
of priors studied in Gilboa and Schmeidler (1989). We next discuss an example that il-
lustrates the differences between minimizing weighted average risk and minimizing max-
imum risk, and also highlights the role played by convexity of .4 in Proposition 4.

8Viewing the decision model as a zero-sum game between the analyst and nature, a minimax theorem holds
if and only if this game has a value (von Neumann and Morgenstern (1944)).
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5.3. Combining Multiple Moments

An analyst observes data X € R* and is interested in a scalar parameter 7. An economic
model imposed by the analyst implies a sample moment function g(7) = X — G7, for G a
known, nonrandom k-vector. Under the analyst’s model, the sample moments g(7) have
mean 0 at the true value of 7. The economic model may be misspecified, however, so
that the true mean of g(r) is given by (7', v'), where (7, y) are nuisance parameters with
dim(n) 4+ dim(y) = k. Thus, 6 = (7, 1, ). We formalize the idea that 7 is the parameter
of interest by taking D =R and L(d, §) = (d — 7).

We further assume that

g(T)NN((n/’ ’)//),O'Z‘Ik), (1)

where o? > 0 is a commonly known variance and [, is the identity matrix. Armstrong
and Kolesar (2021) showed that (under regularity conditions) locally misspecified mo-
ment condition models, including nonlinear models with multiple parameters, are asymp-
totically equivalent to a version of (1) where the moment function depends on multiple
parameters and has an unrestricted, but known, variance matrix.’

Suppose all agents a € A believe that 6 follows a multivariate normal distribution with
7L (n,y) and 7 ~ N(0, p?) for p, > 0. Agents are concerned about misspecification,
and each agent a believes that n = 1, and y ~ N (0, pf/ - Ijimcy)) for p, > 0. Thus, agents
are certain, but may disagree, about the extent of misspecification of the first dim(n) mo-
ments, and are uncertain, in a commonly-agreed way, about the extent of misspecification
of the remaining dim(y) moments.

We will consider an audience A and weights w such that beliefs about n follow
n. ~ N (0, p% - Liim(y)) under w, for p, > 0. Under such weights, we can characterize rules
that minimize weighted average risk under both the decision and communication mod-
els. Towards such a characterization, decompose X = (X e X5) and G = (G’n, G:/) con-
formably with (', y') and assume that G,,, G, #0. Let 7, = (G’,]G,,)‘lG/nX,7 be the max-
imum likelihood estimate (absent misspecification) based on the first dim(n) moments,
and define 7, analogously. Note that Var(7,(0) = o, = o - ¢, for ¢, = (G,G,)~", and
likewise for 7.

CLAIM 6: Any rule c,, that minimizes weighted average risk under the decision model takes

(024 p2y) -yt (24 P20,) - 4y
a2+ (4 p2) "+ (24 p2y)

cw(X) = cw(%na é\-y) =

almost surely. One rule ¢ that minimizes weighted average risk under the communication
model takes

IR I
o T+ (o +0,) -7,

c(X)=c(T,,Ty) = —
ol + 0,7+ (o) + pyy)

The rule c,, does not minimize weighted average risk under the communication model, and
the rule ¢t does not minimize weighted average risk under the decision model. Moreover, no
other rule achieves strictly lower communication risk than c’ for any agent.

IStarting with the representation in Armstrong and Kolesar (2021, equation 4), one can obtain (1) by par-
tialling out model parameters other than 7, and then normalizing the variance of the sample moments.
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Both ¢, (7,, 7,) and ¢’ (7,, 7,) are weighted averages of the prior mean (i.e., 0) and the
maximum likelihood estimates (7,, 7). The weighted averages differ in the weight they
place on 7,, the maximum likelihood estimate based on the block of moments about which
the agents disagree. Each agent a is confident that the bias of 7, for 7 is (G;]G,,)’IG;,na.
Under the decision model, disagreement about the magnitude of the bias translates into
a larger expected distance between 7, and 7. Under the communication model, such dis-
agreement is irrelevant, because each agent a can readily compute their posterior mean

— / -1 /
a’nz(GnGn) Gnna
o ko (o] + i)

E,[7I¢} (79, )] = ¢ (75, 7)) —

that adjusts c (7,, 7,) for the bias in 7,. As a result, ¢} (7,, 7,) places more weight on
7, than does ¢, (7,, 7,). And because E,[7|c’(7,, 7,)] coincides with agent a’s posterior
mean E,[7|X] based on the full data, no communication rule can be better than ¢! from
the agent’s point of view.

In the limit taking disagreement to zero, p, — 0, the two rules coincide, whereas in
the limit taking disagreement to infinity, p,, — oo, ¢, (7,, 7,) places no weight on 7,,, and
¢t (7,,7,) is unaffected. By contrast, the rules ¢, and ¢’ are similar in how they treat
agents’ uncertainty about v, and in the limit as p, — oo both rules place no weight on 7.
Thus, the decision and communication models both predict that the analyst will down-
weight moments about whose validity the audience is very uncertain. In contrast to the
communication model, however, the decision model further predicts that the analyst will
down-weight moments about whose misspecification audience members disagree, even if
each audience member is certain in their belief.

In practice, analysts frequently choose from among a large set of potentially misspec-
ified moments when estimating economic models. Nakamura and Steinsson (2018) ad-
vocated estimating structural models of the macroeconomy by targeting “identified mo-
ments” that correspond to direct estimates of causal effects (see also Dridi, Guay, and Re-
nault (2007)). Nakamura and Steinsson (2018) argued that, although the assumptions jus-
tifying the causal interpretation of identified moments “are typically controversial,” these
moments are sensitive to a relatively narrow range of modeling assumptions. By contrast,
other moments one could target, for example unconditional means and variances, are
likely to be sensitive to the specification of many different aspects of the model. Targeting
identified moments may therefore allow audience members to form more precise beliefs
about the likely impact of misspecification on the analyst’s estimate. In this sense, the
recommendation to target identified moments, in preference to moments whose behavior
under misspecification is harder to assess, seems more consistent with the predictions of
the communication model than with those of the decision model.

It is also possible to characterize minimax rules in this example.

CLAIM 7: Any rule ¢, that is minimax under the decision model takes

(‘73 + pi‘”v)il " Ty

éw(X):éw(%n’ %y) = 1
o+ (o5 +pyU)

almost surely, and therefore coincides with c,, in the limit as p, — oo. The rule ¢, is not
minimax under the communication model.
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Because any decision rule that puts weight on 7, can be arbitrarily bad for sufficiently
large n,, the rule ¢, puts no weight on 7,. Ignoring 7,, is unappealing under the communi-
cation model, however, because 7, is informative about 7, and, as discussed above, agents
can account for the bias in 7, in formulating their optimal decision, no matter how large
is 1,.

Proposition 4 does not apply in this setting because the audience A is not convex. If we
replace the audience A with its convex hull, then by Proposition 4 and Theorem 1, ¢, is
a minimax rule under the communication model. Intuitively, convexifying the audience
means that if there exist agents a and a’ who disagree about 7, there exists a third agent
a” who puts equal weight on the two beliefs. Convexity thus turns disagreement about
how to interpret 7, into uncertainty, and so implies that minimax communication rules
should put no weight on 7,. This illustrates the role of the convexity restriction on A in
Proposition 4.

Discussion

Under the communication model, rule ¢* is more appealing than rule ¢, because agents
can adjust for the bias in 7,, when forming their own decisions or judgments. To make
the appropriate adjustment, agents need to know the weight that ¢’ (7,, 7,) places on 7.
Andrews, Gentzkow, and Shapiro (2020) discussed the situation where weights are data-
dependent, in which case it is appealing (from the standpoint of communication risk) for
the analyst to report the weights to the audience.

Under the communication model, the rule c* (7, 7,) is as good, for any agent, as hav-
ing access to the full data X .!° This property of the example depends on the assumption
that all agents have the same prior variance for 6. In situations with more heterogeneity in
agents’ beliefs, there need not be a low-dimensional sufficient statistic. Appendix C con-
siders a setting where each component of g(r) is subject to an additional disturbance, on
which agents have mean-zero Gaussian priors with potentially different prior variances.
In this case, any coarsening of the data increases communication risk for some agent,
and an analyst concerned with communication risk in such a setting might be expected
to report X to the audience. DellaVigna (2018) advocated reporting X as good practice
when estimating structural models in behavioral economics. Appendix C shows that, as
the size of the additional disturbance becomes small, ¢*(7,, 7,) achieves communication
risk arbitrarily close to that from observing X . If there are communication constraints (say
because k is large or some data must remain confidential), ¢ (7,, 7,) therefore remains
appealing under the communication model.

6. CONCLUSIONS

We propose a model of scientific communication in which the analyst’s report is de-
signed to convey useful information to the agents in the audience, rather than, as in a
classical model of statistics, to make a good decision or guess on these agents’ behalf. We
exhibit settings in which the proposed model predicts very different reporting rules from
the classical model. We argue that, in some practical situations similar to these settings,
scientists’ reports appear more consistent with the predictions of the proposed model
than with the predictions of the classical model.

!0In particular, ¢ (7, 7,) is marginally sufficient for = with respect to A in the sense of Raiffa and Schlaifer
(1961).
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APPENDIX A: PROOFS
Proofs of Claims

PROOF OF CLAIM 1: To see that ¢’ dominates ¢ under the decision model, note that
Pr,{c(X) <0} > Oforalla € A, and

E,[L(c(X), 8)lc(X) < 0] > E,[L(c'(X), 6)|c(X) <0],

while the two rules achieve the same loss when ¢(X) > 0. Dominance in the decision
model follows immediately.

For dominance in the communication model, consider an agent with an N (u, 1) prior
on 0 — OC, truncated at zero. This agent’s posterior on 67 — OC after observing c(X)=

-2 0'2

isan N ( 1+0'_2 I 1+o'_2 d, (14057271 truncated at zero, for &2 =5+ <. This agent’s op-
timal decision is thus a strictly i 1ncreasrng function of ¢(X). Since ¢’ (X ) 1s a non-invertible
transformation of ¢(X), and argmin,_,, E,[L(d, 0)|c’(X)]1is a singleton by strict convexity

of the loss, for almost every d < 0

argminE, [L(d 0)|c(X) = ]ﬂargmmE [L(d 0)|c'(X)= ]:(ZJ.

deD deD

Proposition 1 thus implies that ¢ dominates ¢’ in the communication model. Q.E.D.

PROOF OF CLAIM 2: For part (i) of the claim, consider an agent with a dogmatic prior
that 6. = 0 with probability 1. Suppose further that this agent has an N (u, 1) prior on 67.
This agent’s posterior on the average treatment effect after observing (X¢, X7) will be

__2
an N (; 1_2 w4 UT_Z X7, (14 672)7") distribution truncated at zero, for 2 = "—2 . Hence,

this agent S optlrnal action is a strictly increasing transformation of X7. Under the agent’s
prior, however, c(X) is equal to X7 plus standard normal noise, so the agent cannot
implement this optimal action based on observing c(X') alone. Proposition 1 thus implies
that ¢” dominates ¢ under the communication model.

Part (ii) of the claim is immediate from Proposition 2. Q.E.D.

PROOF OF CLAIM 3: Part (i) of the claim follows from standard results on the positive-
part James—Stein estimator (see, e.g., Efron and Morris (1973)). For part (ii) of the claim,
consider an agent with an N(u, I;) prror on the vector of average treatment effects, and
note that this agent’s posterior mean is a one-to-one transformation of ¢(X) = X; — X¢.
Hence, the conclusion follows from Proposition 1 by an argument similar to the proof of
Claim 1. QO.E.D.

PROOF OF CLAIM 4: Under the decision model, all agents a € A strictly prefer to ran-
domize uniformly over d € {1, ..., T} rather than taking d = ¢. That ¢* dominates ¢ in the
decision model follows immediately.

For part (ii) of the claim, note that ¢ yields weakly smaller communication risk for
all agents than c¢* by part (i) of Proposition 1. To show strict inequality for some agents,
consider agents a for whom E,[6,| argmax, X, = {1, ..., T'}] is non-constant across ¢, while
for all X, argmax, E,[0,|c*(X)] = ¢*(X). Any agent a* with a permutation-invariant prior
has ¢*(X) € argmax, E,-[0,|c*(X)], so we can find agents a of the sort we desire by slightly
perturbing such a prior. When argmax, X, = {1, ..., T'}, the decision taken by these agents
is uniformly randomized under the rule c*, while under the rule ¢, they are able to pick a
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decision they strictly prefer to uniform randomization. Dominance in the communication
model follows by Proposition 1. QE.D.

DEFINITION 1: Suppose X is finite, and let PP be the set of partitions of X', with generic
element P € P. Let P* denote the subset of P such that for every cell X, € P € P*, each
agent has at least one decision d € D that is optimal for every x € &X,. That is,

deD

P = {PEP: { ﬂ argminEa[L(d, 6)|X=x]} #QPforall X, eP, a EA}.

XEX)

The effective size of the sample space X, denoted N (X, A), is the minimal size of a
partition in P*, N(X, A) = min{|P|: P € P*}.

PROPOSITION 5: Suppose that D and X are finite, that L(d, 0) is bounded, and that there
exists a decision d € D with L(d, 0) > L(d', 0) for all 6 € O and some d' € D, with strict

inequality for all § € ® C @. Suppose further that Pr,{@} > 0 for some a € A, and that F,
has support X forall 6 € O.If N(X, A) > |D|, then any rule c that is admissible in decision
risk is inadmissible in communication risk and vice versa.

PROOF OF CLAIM 5: We prove this result building on Proposition 5. First, note that
choosing d’ = 1 yields strictly lower loss than choosing d = « for all 6 € ®, which verifies
the condition on the loss. Next, note that the effective size N(X, A(0)) of the sample
space is bounded below by the size N (X, A) for a restricted audience .A € A(®). Con-
sider the audience consisting of only three agents, ay, a;, and a,. Agent a,y has a uniform
prior on @. This implies that 6, is independent of 6, for all s # ¢. By the monotone like-
lihood ratio property of the binomial distribution, provided argmax, X, is unique, this
agent strictly prefers to set d = argmax, X,. When argmax, X, is not unique, by con-
trast, this agent strictly prefers d € argmax, X, to d ¢ argmax, X,, but is indifferent among
d € argmax, X,.

Note, next, that

f(X;6)da(6)

a(0|X) =
/f(X; 0)da(8)
12}

, Ea[GlX]z/Hda(0|X)
[¢]

for f(X; 6) the probability mass function of F,, where F, has full support for all 6 € 6.
Hence, E,[0|X] is continuous in a (for the L; norm on .4). Thus, there exists an open
neighborhood N (ay) around a, such that all agents a € N (ay) strictly prefer to set d €
argmax, X, to d ¢ argmax, X, for all realizations of X. Within this neighborhood, there is
an agent a; who strictly prefers d = 1 when argmax, X, = {1, ..., T}, and an agent a, who
strictly prefers d = 2 conditional on the same event. This immediately implies, however,

that N (X, /i) > T + 1, since

(argminEaO[L(d, 0)|X], argminE,, [L(d, 6)|X], argminE,, [L(d, 0)|X])

deD deD deD

(arg max X,, argmax X,, argmax X, ,) when argmax X, is a singleton,
t t t t

(argmaxXt,l,Z) when argmax X, ={1,..., T},
t t

where the right-hand side takes 7"+ 1 distinct values. Q.E.D.
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PROOF OF CLAIM 6: Note that p,(c) = R,,(c) for a,(0) = [, a(@)dw(a) forall @ C
0. Hence, weighted average decision risk is simply the decision risk for the agent with the
weighted average prior, a,. However, the rule ¢, (X)) corresponds to the posterior mean
for this prior, and hence is the almost-surely unique optimal rule in the decision model.

For the communication model, by contrast, note that E,[7|c!(7,, 7,)] = E,[7|X] cor-
responds to agent a’s posterior mean. Hence, ¢’ (7,, 7,) allows all agents to obtain the
same risk as if they observed the full data, and so is optimal in the communication model.
By contrast, for all agents a € A, Var,(c: (7, Ty)|¢o (75, Ty)) > 0, s0 ¢’ (7,, T,) has strictly
lower weighted average risk than ¢, (7,, 7,) under the communication model. Q.E.D.

PROOF OF CLAIM 7: Note that for all ¢, sup,., R.(c) =sup,, p.,(c). Hence, to obtain a
minimax decision rule, we want to solve min.5sup,, p.,(c). Note, next, that the decision
risk of ¢,(7,, 7,) is the same for all a € A, and that ¢,(7,, 7,) corresponds to a Bayes
decision rule for an agent with an infinite-variance normal prior on 7, and independent
N(0, o?) and N (0, pf, - Laim(y)) priors on 7 and v, respectively. Denote the corresponding
(limit of) weights by «*, and note that for all a € A,

Ra(éw) = pw*(éw) = Igiélpw*(c)‘

Since p,(¢,) = p.+(C,) for all w, it follows immediately that ¢, is a minimax decision
rule. Since the loss function is strictly convex, it is almost surely unique. Finally, building
%M for all a, and that
o7 “+H(oyt+pyy)

E.[(E.[7I¢, (7, T,)]1 — Eul7|c! (7, 7,)])*] = € > 0 for a constant . Hence ¢,, is not mini-
max under the communication model. O.E.D.

on the proof of Claim 6, note that E,[7|¢,(T,,T,)] =

Proofs of Propositions

PROOF OF PROPOSITION 1: For part (i) of the proposition, under the garbling con-
dition, an agent who observes c(X) can generate draws from the distribution of
¢ (X)|c(X), X by applying ¢ to the observed report c(X). This, however, implies that
EJ[L(d, 0)|c(X), ¢'(X)] = E.L(d, 0)|c(X)], so

Ry(¢) =B, [ inf E,[L(d, 0)|e(X)] | = Ey[inf Eo[L(d, 0)I¢'(X)]] = Ra(c).

For part (ii) of the proposition, let us write £ € & for the event that

argminE,[L(d, 6)|c(X)]NargminE,[L(d, 6)|c'(X)] = 0.
deD deD

Note that E,[L(d, 0)|c(X), ] = E,[L(d, 6)|c(X)], and consider f : X — D such that
f(X) lies in argmin,_,, E,[L(d, 0)|c'(X)] almost surely. By definition, E,[L(f(X), 0) —
ming.p E,[L(d, 0)|c(X)]|E] > 0, so since

E,[L(F(X), 0) - minE,[L(d, )le(X)]|X \ €] 0,
the result follows. Q.E.D.
PROOF OF PROPOSITION 2: Sufficiency of ¢(X) implies that for any other report ¢'(X)
and any prior a, the distribution of 6|c(X), ¢/(X) is the same as that of 6|c(X). Hence,

E.[L(d, 0)|c(X), ' (X)]=E,L(d, 6)|c(X)], and the argument is the same as in part (i)
of Proposition 1. Q.E.D.



2136 1. ANDREWS AND J. M. SHAPIRO

ASSUMPTION 3: Either (i) D is compact or (ii) D is locally compact with a countable base,
and {d : L(d, 0) <1} is compact forall ] e R and 0 € 0.

LEMMA 1: Under Assumption 1, Assumption 2 implies Assumption 3.

PROOF OF LEMMA 1: Case (i) of Assumption 2 trivially implies case (i) of Assump-
tion 3. For case (ii), closed subsets of Euclidean spaces are locally compact, and lower
semicontinuity of L implies that {d : L(d, 6) <1} is closed for all /. Assumption 2(ii) im-
plies that {d : L(d, 0) <[} is bounded. O.E.D.

Lemmas 2 and 3, Proposition 4, Corollary 2, or their proofs, consider generalized de-
cision functions. For H the space of bounded continuous functions 4 : D — R, and M
the set of bounded signed measures on &, define the class of generalized decision func-
tions G as the set of bilinear functions g : H x M — R with (i) |g(h, w)| < |Allellpll1, (i)
g(h,u)>0if h>0and >0, and (iii) g(1, ) = |||y if w > 0. For ¢ € B, let ¢(+; x) be
the measure on D implied by c(x), define g.(h, u) = fX fD h(d)dc(d; x) du(x), and note
that {g. : c € B} € G. Further, for ¢, : D — R define W(g, ¢, a) = [, g(¢y, Fy) da(9), and
note that W(g., L,a) =R,(c).

LEMMA 2: Under Assumption 1, decision risk is lower semicontinuous in a for all ¢ € C.
Under Assumptions 1 and 3, the same holds for communication risk.

PROOF OF LEMMA 2: Theorem 42.3 of Strasser (1985) establishes that G is convex,
and compact in the weak topology (i.e., the topology such that g, — g if and only if
gr(h, ) — g(h,w) for all (h,n) € H x M). Let Ly(d) = L(d, 6). Since L(d, ) is
lower semicontinuous in d for all §, Lemma 47.2 of Strasser (1985) establishes that
8(Lo, ) =sup,.., &, u) for L, the set of bounded, nonnegative, and continuous func-
tions ¢ : D — R with ¢ < L,. Note that g(¢, n) is continuous with respect to the product
of the weak topology on G and the L, topology on M.

Next, define L to be the set of functions ¢ with ¢, € L, for all # and Supy 4 Z,(d) finite,
and let W(g, l,a) = f@ g(fg, Fy)da(6). W(g, ?, a) is lower semicontinuous with respect
to the product of the weak topology on G and the L, topology on .A. Since G is compact in
the weak topology, the theorem of the maximum implies that inf,.; W (g, , a) is likewise
lower semicontinuous on A (see Lemma 17.30 in Aliprantis and Border (2006)).

The supremum of a family of lower semicontinuous functions remains lower semicon-
tinuous, so both sup;_: W(g, ¢, a) and sup; s inf,eg W(g, ¢, a) are lower semicontinuous
in a. For the former, note that sup;_; W (g, l,a)= W(g, L, a) (again by Lemma 47.2 of
Strasser (1985)). For the latter, note that £ is convex, while G is convex and compact in
the weak topology. W (g, ?, a) is lower semicontinuous in g and continuous in ‘ (for the
uniform topology on £). Hence, Sion’s (1958) minimax theorem (Corollary 3.3 in Sion
(1958)) implies that

supinf W (g, l,a)= infsup W (g, l,a)= infWi(g,L,a).
ief 8¢ 8€Y jer 8€g
Hence, inf,.g W (g, L, a) is lower semicontinuous in a.
To complete the proof, we need to relate these results back to attainable risk functions.
For decision risk, recall that {g.: ¢ € B} C G and note that W(g., L, a) = R,(c), so we
have proved lower semicontinuity of R, in a.
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For communication risk, consider case (i) in Assumption 3. Theorem 43.2 of Strasser
(1985) implies that for each g € G, there exists some ¢ € B with g.(h, n) = g(h, w)
for all w > 0 and all lower semicontinuous functions % that are bounded from below.
Hence, inf,c; W(g, L, a) =inf..c W(g., L, a). Next, consider case (ii). Theorem 43.5 of
Strasser (1985) implies that for each g € G, there exists ¢ € B such that g.(h, u) < g(h, )
for all 4 with compact sublevel sets {d : h(d) < [}. Hence, again inf... W(g., L,a) =
inf,eg W(g, L, a). However, inf..c W(g, L, a) is equal to the communication risk based
on observing the full data, so the conclusion is immediate by considering the special case
where the data X are reduced to just the analyst’s report. Q.E.D.

PROOF OF PROPOSITION 3: We discuss the argument for the decision model, while the
result for the communication model follows by the same argument. Lemma 2 implies
that R,(c) is lower semicontinuous in a, while R,(c) is continuous in a by assumption.
Hence, R,(¢’) — R,(c) is lower semicontinuous. Dominance of ¢ means that {a : R,(¢') —
R,(c) < 0} is empty, while {a : R,(c') — R,(c) > 0} is nonempty, and is open by lower
semicontinuity. Since w has full support, this implies that

po(€) = pulc) = / 1{R,(¢') = Ru(c) > 0} (Ru(c) — Ru(c)) dw(a) > O.

A

Since R,(c¢) is bounded p,, (c¢) is finite, proving part (i) of the proposition.

For part (ii) of the proposition, suppose towards contradiction that the rule ¢ minimizes
weighted average risk, but is dominated by another rule ¢”. The proof of part (i) implies
that p,(c) > p,(c"), which contradicts weighted average optimality of c. Q.E.D.

PROOF OF COROLLARY 1: By Proposition 3, under the conditions of the corollary any
rule that minimizes weighted average risk with respect to full-support weights in a given
model is admissible in that model. Hence, if the set of admissible rules for the decision and
communication model do not overlap, weighted average risk optimality in the decision
model implies inadmissibility, and hence non-optimality in weighted average risk for any
full-support weights, in the communication model. Q.E.D.

LEMMA 3—Extension of Lemma 46.1 in Strasser (1985): Suppose that L is bounded
and continuous. For every continuous f : A — R, the following two statements are equiva-
lent: (i) there exists g € G such that f(a) > W(g,L,a) forall a € A, (ii) [ f(a)dw(a) >
inf{/ W(g,L,a)dw(a): g € G} for every weight function w on A.

PROOF OF LEMMA 3: That (i) implies (ii) is immediate. To show that (ii) implies (i),
note that Theorem 45.6 of Strasser (1985) (taking M, = {f} and M, ={W(g,L,a): g€
G}) implies that for C(.A) the set of continuous functions on A, there exists some g in the
closure of W =, ,{g € C(A): § > W(g, L, )} with g < f. Theorem 42.3 of Strasser
(1985) establishes that G is convex, and compact in the weak topology. Hence, W is closed
by Remark 45.4 of Strasser (1985), and g € W. Thus, (ii) implies (i), and we have estab-
lished equivalence. QE.D.

COROLLARY 2—Extension of Corollary 46.2 in Strasser (1985): The conclusion of
Lemma 3 holds for any loss function L that is lower semicontinuous in d.

PROOF OF COROLLARY 2: That (i) implies (ii) is again immediate. To obtain (i) from
(i), define £ as in the proof of Lemma 2. Condition (ii) implies that [ f(a)dw(a) >
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inf{ fW(g,Z a)dw(a): g € G} for all w and all ¢ € £. Hence, by Lemma 3, for each
? e L the set {g €G:W(g,{,a) < f(a) for all a € A} is nonempty. Note that this set is
decreasing as 7 increases pointwise, so since L is the pointwise upper bound of £, Cantor’s

intersection theorem implies that {g € G : W (g, L, a) < f(a) for all a € A} is nonempty,
which in turn implies (i). Q.E.D.

PROOF OF PROPOSITION 4: As discussed in Section 5.2, we need only show that

1nfsupR (o) < supmfR (o).

SENTE acA €€

To do so, note that sup,_,inf..s R,(c) < sup,inf.sp.(c), and let f(a) be the con-
stant function equal to sup, inf..sp,(c) for all a. By construction, f f(a)dw(a) =
inf{[W(g,L,a)dw(a) : g € G} for all w, so by Corollary 2, there exists g* € G with
f(a) >W(g*,L,a)forallac A

For case (i) in Assumption 3, Theorem 43.2 of Strasser (1985) implies that there ex-
ists some c* € B with g.(L,u) = g*(L, n) for all u > 0. For case (ii), Theorem 43.5
of Strasser (1985) implies that there exists ¢* € B such that g..(L, n) < g*(L, n). For
these ¢*, sup,. AR (c*) < sup, inf..5 p,(c) by construction. Since A is convex, however,
sup,, 1nfc€B p.(c) is equal to sup,_, infccs R,(¢), so inf.ezsup,. , R.(¢c) <sup, , R,(c*) <
sup,.,inf.cs R,(c) and c* is a mlmmax rule under the decision model. QO.E.D.

PROOF OF PROPOSITION 5: We first argue that any rule ¢ that is admissible in deci-
sion risk must use the decision d with probability zero. Specifically, consider any a with

Pr,{®} > 0, and a rule ¢ with Pr{c(X) = d|X = x} > 0 for some x. By our full-support
assumption, Pr,{c(X) = d|0 € O} > 0, and conditional on 6 € 0, the rule c yields strictly
higher expected loss than the rule ¢’ which chooses d’ whenever ¢ chooses d and agrees
with ¢ otherwise. By assumption, ¢’ has weakly lower loss for all parameter values 6 ¢ O,
and so dominates c¢. Hence, any rule admissible in the decision model must choose d with
probability zero.

We next show that any rule that chooses d with probability zero is inadmissible
in the communication model. Consider any such rule ¢, and for each d € D, de-
fine X(d) = {x € X|Pr{c(X) =d|X =x} > 0}. If ﬂxex(d) argmin,_, E,[L(d, 6)|X =
x] is nonempty for all d* € D\ {d} and a € A, then we can show that N(X, A) <
|D| — 1. Hence, since N(X,A) > |D|, there exist d* € D\ {d}, a € A such that
MNeexr argming , B, [L(d, 6)|X = x] = @. For d* € argmin,_,, E,[L(d, 0)|c(X) = d*],
there exist X € X'(d*) and d** € D such that

E.[L(d™*, 0)|X = %] < E[L(d", 0)|X = %].

Consider the rule c* that is equal to ¢ except that it reports d when X = X. By Proposi-
tion 1, ¢* dominates ¢ in communication risk.

Hence, we have shown that any rule admissible in the decision model must choose d
with probability zero, while any rule that chooses d with probability zero is inadmissible
in the communication model. QO.E.D.

APPENDIX B: EXTENSION OF OPTIMAL TREATMENT ASSIGNMENT EXAMPLE

This section extends the analysis of optimal treatment assignment in Section 4 to show
that when agents have sufficiently informative priors, it may be communication-preferred
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to report « even in some cases without exact ties. To develop these results, we consider a
restricted audience A C A(O).

CLAIM 8: Suppose that for an audience A and some nonempty set £ C X,

argmaxE,[0,|X] =argmaxE,[6;] forall ac A X e€&. 2)
t t

Then the rule ¢ which takes ¢(X) = c¢*(X) when X ¢ £ and ¢(X) = v when X € £ has
weakly lower communication risk for all a € A than does the rule c*.

CLAIM 9: Ifin addition to t@e conditions of Claim 8, (i) {X : argmax, X, ={1,..., T}} N
E # W, (ii) there exists a € A with argmax, E,[6,|c*(X)] = ¢*(X) for all X, and (iii)
argmax, E,[6,] is a singleton, then ¢ dominates c* in communication risk.

PROOF OF CLAIM 8: Note that all agents have the option to choose d € argmax, E,[6,]
conditional on observing ¢(X) = «, while choosing d € argmax, E,[6,|c(X)] conditional
on observing ¢(X) # ¢. By the definition of &, this yields a weakly lower expected loss for
agent a than choosing some d € argmax, E,[6,|c*(X)]. O.E.D.

PROOF OF CLAIM 9: If argmax, E,[6,] is a singleton for a given agent a and (2) holds,
then, conditional on X € &, agent a strictly prefers not to randomize their decision. At the
same time, since argmax, E,[6,|c*(X)] = ¢*(X), under the rule ¢* this agent’s decision is
random conditional on the data when

XeSﬂ{X:argmaxXt={1,...,T}}.
‘

As in the proof of Claim 8, since the agent is free to choose d = ¢(X) conditional on
¢(X) # ¢ and d = argmax, E,[0,] conditional on ¢(X) = ¢, we see that ¢ yields a strictly
lower communication risk for this agent. Since we have shown in the proof of Claim 8 that
¢ yields weakly lower communication risk than ¢* for all a € A, ¢ dominates ¢*. Q.E.D.

APPENDIX C: EXTENSION OF COMBINING MULTIPLE MOMENTS EXAMPLE

Building on Section 5.3, now suppose that X = G7 + (v, y') + v + &, where & ~
N(0, o 1;). The analyst again observes X, while the variance o > 0 is commonly known,
and the loss is L(d, #) = (d — 7)*. The unknown parameters are 6 = (7,7, v,v). All
agents a € A have N (0, p?) priors on 7, dogmatic priors on n with Pr,{n =n,} =1, and
N(O, pi - Lyim(y)) priors on vy independent of 7.

If each agent a believes that Pr,{v = 0} = 1, the analysis in this extension coincides with
that in Section 5.3. Instead, suppose that each agent a believes that v ~ N(0,V,) for I, a
positive semidefinite matrix, and that v is independent of (7, 1, v). To express agent a’s
posterior mean for 7 conditional on X under this assumption, define

0 0

Ve d 2
H,=0"I; +
k |:0 pi'ldim(y)

} 1V, o= (GE1G)".

Agent a’s posterior mean for 7 (and hence optimal decision) is

1

cX)=—
@ oLt e

(G'ENX = (n:,0)))-
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Further suppose that the set of I, matrices over the audience is given by V={V, :a
A} = ¢ - {p.s.d. 2 e R&* ;|| Q| < 1}, for | - || the Frobenius norm and ¢ > 0. Hence, as
{ — 0, the situation converges to that described in Section 5.3.

We first show that X is a minimal (marginally) sufficient statistic for 7 in this setting.
Note that since matrix inversion is a homeomorphism between {Z,: a € A} and {5, :a €

A}, {E.!: a € A} has a nonempty interior. This implies, however, that for any X, X e RF
with X # X, there exists a € A such that ¢*(X) — ¢*(X) = %ﬁ_}m # 0, that is, for

whom these two realizations of the data imply different optimal decisions.
We next show that the communication risk of ¢*(7,, 7,) as described in Section 5.3
approaches that of the optimal rule based on X as ¢ — 0. Note that 5! is continu-

ous in V,, s0 as V, — 0, ;' — 5", where V;, =0, and ¢“(X) — E,[7|c}(,, 7,)] for
each realization of X. The dominated convergence theorem thus implies that as V, — 0,
R (X) — R:(c!), as we aimed to show.
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