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CONDITIONAL LINEAR COMBINATION TESTS FOR WEAKLY
IDENTIFIED MODELS

BY ISAIAH ANDREWS1

We introduce the class of conditional linear combination tests, which reject null hy-
potheses concerning model parameters when a data-dependent convex combination of
two identification-robust statistics is large. These tests control size under weak iden-
tification and have a number of optimality properties in a conditional problem. We
show that the conditional likelihood ratio test of Moreira (2003) is a conditional lin-
ear combination test in models with one endogenous regressor, and that the class of
conditional linear combination tests is equivalent to a class of quasi-conditional likeli-
hood ratio tests. We suggest using minimax regret conditional linear combination tests
and propose a computationally tractable class of tests that plug in an estimator for a
nuisance parameter. These plug-in tests perform well in simulation and have optimal
power in many strongly identified models, thus allowing powerful identification-robust
inference in a wide range of linear and nonlinear models without sacrificing efficiency
if identification is strong.

KEYWORDS: Instrumental variables, nonlinear models, power, size, test, weak iden-
tification.

1. INTRODUCTION

RESEARCHERS IN ECONOMICS ARE FREQUENTLY INTERESTED IN inference on
causal or structural parameters. Unfortunately, in cases where the data contain
only limited information useful for estimating these parameters, commonly
used approaches to estimation and inference can break down and researchers
who rely on such techniques risk drawing highly misleading inferences. Models
where the usual approaches to inference fail due to limited information about
model parameters are referred to as weakly identified. A large and growing lit-
erature develops identification-robust hypothesis tests, which control size re-
gardless of identification strength and so limit the probability of rejecting true
hypotheses in weakly identified contexts. The results to date on the power of
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identification-robust tests are, however, quite limited. In this paper, we de-
velop powerful identification-robust tests applicable to a wide range of mod-
els. Our approach relies on two innovations. First, we introduce a novel class
of procedures, the class of conditional linear combination tests, which includes
many known robust tests. Second, we suggest choosing conditional linear com-
bination tests that minimize maximum regret, which is an intuitive optimality
criterion not previously applied in this setting.

We consider tests based on the generalized Anderson–Rubin (S) statistic
introduced by Stock and Wright (2000) and the score (K) and conditioning
(D) statistics introduced by Kleibergen (2005). Tests based on S have stable
power but are inefficient under strong identification, while tests based on K
are efficient when identification is strong but can have low power when identi-
fication is weak. In many models, D can be viewed as measuring identification
strength, and its behavior governs the performance of tests based on K. Tests
based on these three statistics (or their analogs for generalized minimum dis-
tance, generalized empirical likelihood, or other settings) comprise the bulk
of procedures which have been studied in the weak-identification literature to
date.

We show that, conditional on D, tests which reject when convex combina-
tions of the S and K statistics are large are admissible, locally most powerful
against particular sequences of alternatives, and weighted average power maxi-
mizing for a continuum of different weight functions. Motivated by these facts,
we propose the class of conditional linear combination (CLC) tests, which use
information from D to determine how to weight the S and K statistics, and
select critical values based on D in such a way that all tests in this class have
correct size. Further, all CLC tests are unbiased, in the sense that their rejec-
tion probability under any alternative is at least as high as their rejection prob-
ability under the null. The class of conditional linear combination tests is large,
and includes the S test of Stock and Wright (2000) and K test of Kleibergen
(2005) for GMM and the conditional likelihood ratio (CLR) test of Moreira
(2003) for linear instrumental variables (IV) models with a single endogenous
regressor. More generally, we prove that the class of CLC tests is equivalent
to a suitably defined class of quasi-CLR tests. All CLC tests are unbiased, so
one implication of this result is that all quasi-CLR tests are unbiased as well.
This is to our knowledge a new result even for the CLR test in linear IV with
homoscedastic errors and a single endogenous regressor.

Our second innovation is to use minimax regret CLC tests. This approach
selects CLC tests with power functions as close as possible to the power enve-
lope for this class in a uniform sense. By construction, these tests minimize the
largest margin by which the power of the test selected could fall short relative
to any other CLC test the researcher might have picked, thus minimizing the
extent to which a researcher might regret their choice. Minimax regret has re-
cently seen use in other areas of economics and econometrics (see Stoye (2009)
for references) but has not to our knowledge been applied to the problem of se-
lecting powerful tests for weakly identified models. Minimax regret tests must
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be obtained numerically which, while quite straightforward for some models,
can be computationally daunting for others. In contexts where calculating true
minimax regret tests is infeasible, we suggest a class of computationally simple
plug-in minimax regret tests that plug in an estimate for a nuisance parameter.

We show that our plug-in tests perform well in linear IV. Specifically, in
linear IV with homoscedastic Gaussian errors and one endogenous regres-
sor, we show that plug-in minimax regret tests using reasonable plug-in esti-
mators match the near-optimal performance of the CLR test established by
D. Andrews, Moreira, and Stock (2006, henceforth AMS). Given that much
of the data encountered in econometric practice is dependent (serially or spa-
tially correlated, clustered), heteroscedastic, or both, however, it is of consid-
erable interest to examine the performance of weak instrument-robust tests
more broadly. To this end, we calibrate a simulation to match heteroscedas-
tic time-series data used by Yogo (2004) and find that our plug-in minimax
regret test substantially outperforms Kleibergen’s (2005) quasi-CLR test for
general GMM models. We further find that our approach offers power compet-
itive with the conditional QLR test of I. Andrews and Mikusheva (2016a) and
the weighted average power optimal MM1-SU and MM2-SU tests of Moreira
and Moreira (2015, henceforth MM). The under-performance of Kleibergen’s
quasi-CLR test can be traced to the fact that the K statistic may perform espe-
cially poorly in non-homoscedastic IV. Kleibergen’s test uses the CLR weight
function, which is optimal under homoscedasticity but does not account for de-
terioration in the performance of the K statistic when we move away from the
homoscedastic case. In contrast, the plug-in test proposed in this paper success-
fully accounts for the covariance structure of the data and delivers powerful,
stable performance in both the homoscedastic and non-homoscedastic cases.

We consider inference on parameters in linear IV and minimum distance
models as recurring examples. Similarly to Müller (2011), we assume that cer-
tain functions of the data converge in distribution to random variables in a
limit problem and use this limit problem to study the performance of differ-
ent procedures. To formally justify this approach, in the Supplement we derive
a number of asymptotic results, showing that the asymptotic size and power
of CLC tests under the assumed convergence are simply their size and power
in the limit problem. We further show that a large class of CLC tests control
size uniformly in heteroscedastic linear IV with a single endogenous regressor.
Moreover, we give conditions under which CLC tests, and plug-in minimax
regret tests in particular, will be asymptotically efficient under strong identifi-
cation, in the sense of being asymptotically uniformly most powerful in classes
of tests depending on (S�K�D). Applying these results to our examples, we
show that the tests we propose are asymptotically efficient in linear IV and
minimum distance models when identification is strong.

Before proceeding, it is worth relating the approach taken in this paper to
the recent econometric literature on optimal testing in non-standard mod-
els, including Müller (2011), Elliott, Müller, and Watson (2015), Montiel-Olea
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(2016), and MM. The approaches studied in those papers apply under a weak
convergence condition like the one we assume, and in each case the authors
derived tests maximizing weighted average power. If a researcher has a well-
defined weight function over the alternative with respect to which they want to
maximize average power, these approaches deliver optimal tests, either over
the class of all tests or over the class of tests satisfying some auxiliary restric-
tions, and have a great deal to recommend them. In general, these tests are not
available in closed form and will depend on the weight function chosen, how-
ever, and the nature of this dependence in a given context can be quite opaque.
Consequently, in cases where the researcher has no particular weight function
in mind, it can be unclear what a given choice of weight function will imply for
the power of the resulting test. Indeed, as MM showed in their linear IV simu-
lations, weighted average power optimal tests may sometimes have low power
over empirically relevant regions of the parameter space. MM addressed this
issue by restricting attention to classes of locally unbiased tests (their LU and
SU tests).2 Here, we take a different approach and adopt a minimax regret per-
spective which attempts to pick tests that lie as close as possible to the power
envelope for the class of CLC tests. Relative to the papers discussed above,
the approach of this paper greatly restricts the class of tests considered, first
in confining attention to tests that depend only on S, K, and D, and then in
further focusing on CLC tests. While this restriction reduces the strength of
optimality statements, it renders the resulting tests much more transparent:
conditional on D, the procedures discussed in this paper are simply tests based
on a known convex combination of the S and K statistics, making it simple
to understand their behavior. For example, it is easy to show that CLC tests
are unbiased, while determining whether a given weighted average power op-
timal test is unbiased is typically a challenging exercise. This transparency has
other advantages, and it is relatively straightforward to give conditions under
which CLC tests will be efficient under strong identification. This is particu-
larly true of plug-in minimax regret tests which, while not generally optimal
from a minimax regret perspective, yield easy-to-characterize behavior under
strong-identification asymptotics. In contrast, weighted average power optimal
tests need not be efficient under strong identification, though Elliott, Müller,
and Watson (2015) and Moreira and Moreira (2015) suggested particular tests
which they showed are efficient under strong identification.

In the next section, we outline the weak convergence assumption that will
form the basis of our analysis and illustrate this assumption using our IV and
minimum distance examples. In Section 3, we define several statistics including
S, K, and D and discuss tests which have been proposed based on these statis-
tics. Section 4 considers the testing problem conditional on D, characterizes
the class of tests based on (S�K�D) which are admissible in this conditional

2An earlier paper, Moreira and Moreira (2010), discussed the issue of approximating weighted
average power optimal similar tests of a given size, but did not discuss the IV example.
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problem, and shows that tests based on linear combinations of S and K are
conditionally locally most powerful and weighted average power maximizing.
Section 5 defines CLC tests and proves the equivalence of the class of CLC
tests and a class of quasi-CLR test. Section 6 defines minimax regret CLC tests
and plug-in tests. Section 7 shows that suitably defined plug-in minimax regret
tests match the near-optimal performance of the CLR test under homoscedas-
ticity and are competitive with existing alternatives in simulations calibrated
to Yogo’s (2004) data. Asymptotic results and all proofs may be found in the
Supplement (I. Andrews (2016)). An empirical application, discussion of im-
plementation, details of our examples, and additional simulation results may
be found in the Supplemental Material, which is included with the replication
files. To illustrate the application of our approach to a nonlinear example, we
also apply our results to a generalized minimum distance approach to infer-
ence on new Keynesian Phillips curve parameters studied in Magnusson and
Mavroeidis (2010).

2. WEAKLY IDENTIFIED LIMIT PROBLEMS

In this section, we describe a class of limit problems that arise in many weakly
identified contexts and illustrate this class with two examples. We assume a
sequence of models indexed by sample size T , where sample T has distribu-
tion FT(θ�γ) for θ ∈ Θ a p-dimensional parameter of interest and γ ∈ Γ an l-
dimensional consistently estimable nuisance parameter. We will be concerned
with testing H0 : θ = θ0 and assume we observe three objects: a k × 1 vec-
tor gT (θ0) which will typically be an appropriately scaled moment vector or
distance function, a k × p matrix �gT(θ0) which will often be some transfor-
mation of the Jacobian of gT (θ) with respect to θ, and an estimate γ̂ for γ. We
assume that for all fixed (θ�γ) ∈ Θ× Γ we have

(1)
(

gT (θ0)

�gT (θ0)

)
→d

(
g

�g

)
and γ̂ →p γ under the sequence of data-generating processes FT(θ�γ), where

(2)
(

g

vec(�g)

)
∼ N

((
m

vec(μ)

)
�

(
I Σgθ

Σθg Σθθ

))
�

and m = m(θ�θ0�γ) ∈ M(μ�γ) for a set M(μ�γ) ⊆ R
k which may depend

on μ ∈ M and γ. Here we use vec(A) to denote vectorization, which maps
the k×p matrix A to a kp× 1 vector. We further assume that Σθg and Σθθ are
continuous functions of γ and are thus consistently estimable. We will generally
suppress the dependence of the terms in the limit problem on the parameters
(θ�γ), writing simply m, μ, and so forth. We are interested in problems where
the null hypothesis θ = θ0 implies m = 0, and will focus on testing H0 : m = 0,
μ ∈ M against H1 :m ∈M(μ) \ {0}, μ ∈ M.
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Limit problems of the form (2) arise in a wide variety of weakly identified
models. In the remainder of this section, we show that weakly identified instru-
mental variables and minimum distance models generate limit problems of this
form, deferring some derivations to the Supplemental Material. In the Supple-
mental Material, we also show that weakly identified GMM models give rise to
limiting problems of the form (2).

EXAMPLE I—Weak IV: Consider a linear instrumental variables model with
a single endogenous regressor, written in reduced form,

Y = Zπβ+ V1�(3)

X =Zπ + V2�

for Z a T × k matrix of instruments, X a T × 1 vector of endogenous regres-
sors, Y a T × 1 vector of outcome variables, and V1 and V2 both T × 1 vectors
of residuals. We are interested in testing a hypothesis H0 : β = β0 about the
scalar coefficient β. As elsewhere in the literature (see, e.g., AMS), we can ac-
commodate additional exogenous regressors, but omit such variables here to
simplify the exposition.

The identifying assumption in IV models is that E[V1�tZt] =E[V2�tZt] = 0 for
Zt the transpose of row t of Z, which allows us to view linear IV as a special
case of GMM with moment condition

(4) ft(β) = (Yt −Xtβ)Zt

and identifying assumption Eβ[ft(β)] = 0 (where Eθ[X] denotes the expecta-
tion of X under true parameter value θ). For fixed π �= 0, it is straightforward
to construct consistent, asymptotically normal GMM estimates based on (4)
and to use these estimates to test hypotheses about β. The standard asymp-
totic approximations to the distribution of estimators and test statistics may,
however, be quite poor if π is small relative to the sample size. To derive bet-
ter approximations for this weakly identified case, following Staiger and Stock
(1997) we can model the first-stage parameter π as changing with the sample
size, taking πT = c√

T
for a fixed vector c ∈R

k.
To derive the limit problem (2) for this model, define fT (β) = 1

T

∑
ft(β) and

let Ω be the asymptotic variance matrix of
√
T(fT (β0)

′�− ∂
∂β
fT (β0)

′)′,

(5) Ω=
(
Ωff Ωfβ

Ωβf Ωββ

)
= lim

T→∞
Var

⎛⎝√
T

⎛⎝ fT (β0)

− ∂

∂β
fT (β0)

⎞⎠⎞⎠ 


We assume that Ωff is full-rank. For Ω̂ a consistent estimator of Ω, define

gT (β) = √
TΩ̂

− 1
2

ff fT (β), �gT(β) = −√
TΩ̂

− 1
2

ff
∂
∂β
fT (β), and γ̂ = vec(Ω̂). For θ =
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β, Θ = R, γ = vec(Ω), and Γ the set of values γ such that Ω(γ) is symmetric
and positive definite, for all (θ�γ) ∈Θ× Γ , under mild conditions

(6)
(

gT (β0)

�gT (β0)

)
→d

(
g

�g

)
∼N

((
m
μ

)
�

(
I Σgθ

Σθg Σθθ

))

so (1) and (2) hold here with m = Ω
− 1

2
ff QZc(β − β0), μ = Ω

− 1
2

ff QZc ∈ M = R
k,

Σgθ = Ω
− 1

2
ff ΩfβΩ

− 1
2

ff , Σθθ = Ω
− 1

2
ff ΩββΩ

− 1
2

ff , and QZ = plimT→∞
1
T
Z′Z. Note that

for any μ, m ∈ M(μ) = {b · μ : b ∈ R} and m = 0 when β = β0. To derive this
limit problem, we have imposed very little structure on the data-generating
process, and so can easily accommodate heteroscedastic, clustered, or serially
correlated data and other features commonly encountered in applied work.

EXAMPLE II—Minimum Distance: A common approach to estimating
econometric models is to choose structural parameters to match some vec-
tor of sample moments or reduced-form parameter estimates. In minimum
distance or moment-matching models, for θ a p × 1 vector of structural pa-
rameters and η a k × 1 vector of reduced-form parameters or moments, the
model implies that η= f (θ) for some function f . We assume that f (θ) is con-
tinuously differentiable and that f (θ) and its Jacobian can be calculated either
directly or by simulation. Suppose we have an estimator η̂ for the reduced-
form parameter η that, together with an estimator Ω̂η for the variance of

η̂, satisfies Ω̂
− 1

2
η (η̂ − η) →d N(0� I). Under strong identification asymptotics,

η̂ − η = Op(
1√
T
) and we have the usual asymptotic distribution for the struc-

tural parameter estimates θ̂ = arg minθ(η̂− f (θ))′Ω̂−1
η (η̂− f (θ)) and the stan-

dard test statistics. If there is limited information about the structural parame-
ters θ, these approximations may be quite poor. One way to model this issue is
to take the variance of the reduced-form parameter estimates to be constant,
with Ω̂η →p Ωη for Ωη non-degenerate, which implies that η̂ is not consis-
tent for η. Such sequences can often be justified by modeling the variance
of the data-generating process as growing with the sample size. In this case,
the nonlinearity of f (θ) will remain important even in large samples, render-
ing conventional asymptotic approximations unreliable, and the model will
be weakly identified in the sense of I. Andrews and Mikusheva (2016b).3 Let

gT (θ) = Ω̂
− 1

2
η (η̂ − f (θ)), �gT(θ) = ∂

∂θ′gT (θ) = Ω̂
− 1

2
η

∂
∂θ′ f (θ), and γ̂ = vec(Ω̂η).

3Note that this is distinct from the type of weak identification for minimum distance models
considered in Magnusson (2010) and Magnusson and Mavroeidis (2010), which relates to asymp-
totically non-negligible variability in the Jacobian of a distance function. For an application of the
results of this paper to the model considered in Magnusson and Mavroeidis (2010), see Section F
of the Supplemental Material.
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For γ = vec(Ωη) and Γ again the set of γ values corresponding to symmetric
positive definite matrices, we have that under (θ�γ) ∈ Θ× Γ , γ̂ →p γ and

(7)
(

gT (θ0)

vec
(
�gT(θ0)

))
→d

(
g

vec(�g)

)
∼ N

((
m

vec(μ)

)
�

(
I 0
0 0

))
�

where m ∈ M = {Ω− 1
2

η (f (θ) − f (θ0)) : θ ∈ Θ} and μ = Ω
− 1

2
η

∂
∂θ′ f (θ0) (see the

Supplemental Material for details).

As these examples highlight, limit problems of the form (2) arise in a wide
variety of econometric models with weak identification. In the Supplemental
Material, we show that GMM models that are weakly identified in the sense
of Stock and Wright (2000) generate limit problems of the form (2), and Ex-
ample I could be viewed as a special case of this result.4 As Example II illus-
trates, however, the limit problem (2) is more general. The Supplemental Ma-
terial provides another non-GMM example, considering a weakly identified
generalized minimum distance model studied by Magnusson and Mavroeidis
(2010).5

Since the limit problem (2) appears in a wide range of weakly identified con-
texts, for the next several sections we focus on tests in this limit problem. Sim-
ilarly to Müller (2011), we consider the problem of testing H0 : m = 0, μ ∈ M

against H1 :m ∈M(μ) \ {0}, μ ∈ M with the limiting random variables (g, �g,
γ) observed and seek to derive tests with good properties. In the Supplement,
we argue that, under mild assumptions, results for the limit problem (2) can be
viewed as asymptotic results along sequences of models satisfying (1).

3. PIVOTAL STATISTICS UNDER WEAK IDENTIFICATION

As noted in the Introduction, under weak identification many commonly
used test statistics are no longer asymptotically pivotal under the null. To ad-

4Whether the set M(μ) imposes meaningful restrictions on m will, however, depend on the
particular GMM model under consideration. If M(μ) imposes no restriction on m, M(μ) = R

k

for all μ ∈ M, the plug-in approach developed below will not in general be appealing, as the
statistic D tells us nothing about how to weight the S and K statistics. Examples of this type
include the nonlinear Euler Equation and Quantile IV models considered in I. Andrews and
Mikusheva (2016a). One could address these examples by extending the approach of this paper
to use the conditioning statistic of I. Andrews and Mikusheva (2016a), but such an extension is
beyond the scope of this paper.

5Other examples may be found in Guggenberger and Smith (2005, proofs for Theorems 4
and 6), who showed that such convergence also holds in weakly identified Generalized Empirical
Likelihood (GEL) models with independent data, both with and without strongly identified nui-
sance parameters. Guggenberger, Ramalho, and Smith (2012, proofs for Theorems 3.2 and 4.2)
extended these results to time-series GEL applications, further highlighting the relevance of the
limit problem (2).
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dress this issue, much of the literature on identification-robust testing has fo-
cused on deriving statistics that are asymptotically pivotal or conditionally piv-
otal even when identification is weak. Many of the statistics proposed in this
literature can be written as functions of the S statistic of Stock and Wright
(2000) and the K and D statistics of Kleibergen (2005), or their analogs in
non-GMM settings. In this section, we define these statistics, which will play a
central role in the remainder of the paper, and develop some results concern-
ing their properties.

When testing H0 :m= 0, μ ∈ M in (2), a natural statistic is

(8) S = g′g ∼ χ2
k

(
m′m

)



Under the null S is χ2 distributed with k degrees of freedom, while under
the alternative it is non-central χ2 distributed with non-centrality parameter
m′m = ‖m‖2. Statistics asymptotically equivalent to (8) for appropriately de-
fined gT have been suggested in a number of contexts by a wide range of papers,
including Anderson and Rubin (1949) for linear IV, Stock and Wright (2000)
for GMM, Magnusson and Mavroeidis (2010) for minimum distance mod-
els, and Ramalho and Smith (2004), Otsu (2006), Guggenberger and Smith
(2005, 2008), and Guggenberger, Ramalho, and Smith (2012) for generalized
empirical likelihood (GEL) models.

While S is a natural statistic for testing H0 : m = 0, μ ∈ M, tests based
on this statistic are inefficient under strong identification in over-identified
models—see Kleibergen (2005). To overcome this problem, Moreira (2001)
and Kleibergen (2002) proposed a weak identification-robust score statistic for
linear IV models which is efficient under strong identification, and Kleibergen
(2005) generalized this statistic to GMM. Following Kleibergen (2005), define
D as the k×p matrix such that

(9) vec(D) = vec(�g)−Σθgg

and note that(
g

vec(D)

)
∼N

((
m

vec(μD)

)
�

(
I 0
0 ΣD

))
�

where vec(μD) = vec(μ) − Σθgm, μD ∈ MD, ΣD = Σθθ − ΣθgΣgθ, and m ∈
MD(μD),

MD(μD)= {
m :m ∈M(μ) for vec(μ)= vec(μD)+Σθgm

}



MD plays a role similar to M, defining the set of values m consistent with a
given mean μD for D. The matrix D can be interpreted as the part of �g that
is uncorrelated with g which, since D and g are jointly normal, implies that D
and g are independent. In many models, D is informative about identification:
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in linear IV (Example I), for instance, D is a transformation of a particular
first-stage parameter estimate.

Kleibergen defined the K statistic as

(10) K = g′D
(
D′D

)−1
D′g = g′PDg


Under the null K is independent of D, and has a χ2
p distribution. Kleibergen

(2005) showed that in GMM, his K test is a score test based on the continu-
ously updating GMM objective function, and subsequent work has developed
related statistics in a number of other settings, all of which yield the K statistic
(10) in the appropriately defined limit problem. In particular, Magnusson and
Mavroeidis (2010) proposed such a statistic for weakly identified generalized
minimum distance models, while Ramalho and Smith (2004), Guggenberger
and Smith (2005, 2008), and Guggenberger, Ramalho, and Smith (2012) dis-
cussed analogs of K for GEL models.

Kleibergen (2005) defined J as the difference between the S and K statistics

J = S −K = g′(I −D
(
D′D

)−1
D

)
g = g′(I − PD)g

and noted that under the null J is χ2
k−p distributed and is independent of

(K�D). Moreira (2003) considered the problem of testing hypotheses on the
parameter β in weak IV (Example I) when the instruments Z are fixed and the
errors V are normal and homoscedastic with known variance. Moreira derived
a conditional likelihood ratio statistic which, for p = 1 and r(D) = D′Σ−1

D D, is

(11)
1
2
(
K + J − r(D)+

√(
K + J + r(D)

)2 − 4J · r(D)
)



Under the null the CLR statistic has distribution

(12)
1
2

(
χ2

p +χ2
k−p − r(d)+

√(
χ2

p +χ2
k−p + r(d)

)2 − 4χ2
k−p · r(d)

)
conditional on D = d, where χ2

p and χ2
k−p are independent χ2 random variables

with p and k − p degrees of freedom, respectively. The size α CLR test then
rejects when the CLR statistic (11) exceeds qα(r(D)), the 1−α quantile of (12)
for d =D.

Given this definition, it is natural to consider the class of quasi-CLR
(QCLR) tests obtained by using other functions r : D → R ∪ {∞}, where for
r(D) = ∞ we define the QCLR statistic (11), denoted by QCLRr , to equal K.
This class nests the quasi-CLR tests of Kleibergen (2005), Smith (2007), and
Guggenberger, Ramalho, and Smith (2012).

For the remainder of the paper, we will focus on the class of tests that can
be written as functions of the S, K, and D statistics. While, as the discussion
above suggests, this class includes most of the identification-robust procedures
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proposed in the literature to date, it does rule out some robust tests. In par-
ticular, D. Andrews and Cheng (2012, 2013) and D. Andrews and Guggen-
berger (2014) derived identification-robust tests that cannot in general be writ-
ten as functions of (S�K�D) and so fall outside the class studied in this paper.
Likewise, I. Andrews and Mikusheva (2016a) and I. Andrews and Mikusheva
(2016b) considered tests which in general fall outside the class considered here.
Further, except in special cases, weighted average power optimal tests based on
(g��g), and in particular the tests proposed by MM for linear IV, will depend
on g through more than just S, K, and D and so fall outside this class.

3.1. Distribution of J and K

Since the J and K statistics will play a central role in the remainder of the
analysis, we discuss their respective properties in the model (2). Note that con-
ditional on D = d for d full rank, the K and J statistics are independent with
distribution K|D= d ∼ χ2

p(τK(d�m)) and J|D = d ∼ χ2
k−p(τJ(d�m)), where

(13) τK(D�m)= m′PDm� τJ(D�m)= m′(I − PD)m


The K statistic picks out a particular (random) direction corresponding to
the span of D and restricts attention to deviations from m = 0 along this di-
rection. In contrast to the K statistic, the S statistic treats all deviations from
m = 0 equally and its power depends only on ‖m‖, which may be quite appeal-
ing in cases where MD(μD) imposes few restrictions on the possible values of
m. To give a sense of the properties of the K statistic, we return to Examples I
and II introduced above.

EXAMPLE II—Minimum Distance (Continued): We established in (7) that
�g is non-random, so D = �g = μ = μD. To simplify the exposition, assume
for this section that Ωη = I. Since M = {(f (θ)− f (θ0)) : θ ∈ Θ}, we have that
under alternative θ, the non-centrality parameters in the J and K statistics are(

τJ(θ)� τK(θ)
) = ((

f (θ)− f (θ0)
)′
(I − Pμ)

(
f (θ)− f (θ0)

)
�(

f (θ)− f (θ0)
)′
Pμ

(
f (θ)− f (θ0)

))



Since μ = ∂
∂θ′ f (θ0), this means that under alternative θ, the non-centrality

parameter τK is the squared length of f (θ) − f (θ0) projected onto the
model’s tangent space at the null parameter value, while τJ is the squared
length of the residual from this projection. If f (θ) is linear so f (θ) =
∂
∂θ′ f (θ0)(θ − θ0) and M = { ∂

∂θ′ f (θ0) · b : b ∈ R
p}, τJ ≡ 0 and the K test φK

will be uniformly most powerful in the class of tests based on (S�K�D).
As argued in I. Andrews and Mikusheva (2016b), under conventional (strong-
identification) asymptotics, minimum distance models are approximately lin-
ear, confirming the desirable properties of the K statistic in this case. Un-
der weak identification, however, nonlinearity of f (θ) may remain important
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even asymptotically. To take an extreme case, if there is some θ ∈ Θ such that
‖f (θ)−f (θ0)‖> 0 and ∂

∂θ
f (θ0)

′(f (θ)−f (θ0))= 0, the K statistic will not help
in detecting such an alternative and the optimal test against θ based on (J�K)
depends on J alone.

EXAMPLE I—Weak IV (Continued): In the limit problem (6), �g is random
and may be correlated with g, so D �= �g and μD = μ−Σθgm. Since m= μ(β−
β0),

μD = μ−Σθgμ(β−β0)= (
I −Σθg(β−β0)

)
μ


Note that if μ is proportional to an eigenvector of Σθg corresponding to a
nonzero eigenvalue λ, then for (β − β0) = λ−1 we have that μD = 0. Hence
for some (Σθg�μ) combinations, while μ may be quite large relative to both
Σθg and Σθθ, there will be some alternatives β under which μD = 0. When
this occurs, the direction of the vector D bears no relation to the direction
of m or μ and the K statistic picks a direction entirely at random and so loses
much of its appeal. The well-known non-monotonicity of the power function
for tests based on K is a consequence of this fact. If, as in the homoscedastic
model considered by AMS, Ω as defined in (5) has Kronecker product struc-
ture Ω= A⊗B for a 2 × 2 matrix A and a k×k matrix B, then there is a value
β= βAR defined by AMS where μD = 0 regardless of the true value μ.

The case where Ω has Kronecker product structure is extreme in that μD = 0
at βAR regardless of the true value μ. However, tests based on the K statistic
face other challenges in the non-Kronecker case. In particular, in the Kro-
necker product case μD ∝ μ and so, as long as μD �= 0, the mean of D has the
correct direction, while in contrast, μD �∝ μ in the general (non-Kronecker)
case. An extreme version of this issue arises if there is some value β∗ such that
(I − Σθg(β

∗ − β0))μ �= 0 but μ′(I − Σθg(β
∗ − β0))μ = 0. For this value of β∗,

we have that μD �= 0 but μ′
Dm = 0, and hence the K statistic tends to focus on

directions that yield low power against alternative β∗. Likewise, if we try to as-
sess the reliability of the K statistic by measuring the norm of D, we risk being
led astray in this case.

To summarize, tests based on K have good power when the direction of D
is similar to that of m, but may have poor power otherwise. By contrast, the
S test (8) has power that depends only on ‖m‖ and thus does not suffer from
the spurious loss of power that can affect tests based on K. The question in
constructing tests based on (S�K�D) (or equivalently (J�K�D)) is thus how to
use the information contained in D to combine the S and K statistics to retain
the advantages of each while ameliorating their deficiencies.

4. OPTIMAL TESTS IN A CONDITIONAL PROBLEM

After restricting attention to tests that depend on the data only through
(S�K�D), we are interested in constructing powerful tests for the null H0 :
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m = 0, μ ∈ M against the alternative H1 : m ∈ M(μ) \ {0}, μ ∈ M. As a first
step, we consider the subproblem that arises after we condition on the realized
value of D. Conditional on the event D = d (for d full rank), J and K are in-
dependent and distributed χ2

k−p(τJ(d�m)) and χ2
p(τK(d�m)), respectively, for

τJ and τK as defined in (13). Once we condition on D = d, our null hypothesis
H0 :m = 0, μ ∈M can be rewritten as H0 : τJ = τK = 0.

A first task is to characterize the set of possible values for the non-centrality
parameters (τJ� τK) under the alternative H1. Let MD(d) denote the set of
values μD ∈ MD such that d is in the support of D. If ΣD is full rank, then
MD(d) = MD, since the support of D is the same for all μD ∈ MD, but if ΣD is
reduced rank (e.g., ΣD = 0), then we may have MD(d)⊂ MD. Letting M̃(d)=⋃

μD∈MD(d)M(μD), we see that conditional on D = d, m may take any value in
M̃(d) and still be consistent with both m ∈M(μD) and d lying in the support
of D. Hence, the non-centrality parameters (τJ� τK) may take any value in the
set

(14) T (d)=
⋃

m∈M̃(d)

(
τJ(d�m)�τK(d�m)

)



Conditional on D = d, our problem becomes one of testing H0 : τJ = τK = 0
against the alternative H1 : (τJ� τK) ∈ T (d) \ {0} based on observing (J�K) ∼
(χ2

k−p(τJ)�χ
2
p(τK)). Note that in Example I (linear IV), we have that T (d) =

R
2
+ for all d provided M =R

k and ΣD is full rank.
If either τJ or τK is known to be zero, then there is a uniformly most powerful

test conditional on D = d. In particular, if we know that τK = 0 (T (d) = A ×
{0} for A �= {0}), then the test

(15) φJ = 1
{
J > χ2

k−p�1−α

}
is a uniformly most powerful level α test of H0 : τJ = τK = 0 against H1 :
(τJ� τK) ∈ T (d) \ {0}.6 Likewise, if τJ is known to be zero (T (d) = {0} × A),
then the test

(16) φK = 1
{
K >χ2

p�1−α

}
is uniformly most powerful. Unfortunately, when neither τK nor τJ is restricted
to be zero, there is not in general a uniformly most powerful test in this prob-
lem, and different alternatives (τJ� τK) imply different optimal tests. To pro-
ceed, we study the class of tests that are admissible in the conditional problem
in the case with T (d)=R

2
+.

6For a non-randomized test φ, we denote rejection by φ = 1 and non-rejection by φ = 0.
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4.1. Admissible Tests in the Conditional Problem

A result from Marden (1982) establishes that the class of admissible tests in
the conditional problem has a simple form when T (d)= R

2
+.

THEOREM 1—Marden (1982): Let J ∼ χ2
k−p(τJ) and K ∼ χ2

p(τK) be inde-
pendent and let φ be a test of H0 : τJ = τK = 0 against H1 : (τJ� τK) ∈ T (d) \ {0}
for T (d)=R

2
+. φ is admissible in the class of tests which depend on (J�K) if and

only if it is almost surely equal to 1{(√J�
√
K) /∈ C} for some set C satisfying

1. C is closed and convex,
2. C is monotone decreasing, that is, x ∈ C and yi ≤ xi ∀i implies y ∈ C.

Thus, a test φ is admissible in the conditional problem only if its accep-
tance region in (

√
J�

√
K) space is almost everywhere equal to a closed, convex,

monotone decreasing set. It is important to note that Theorem 1 concerns only
admissibility in the problem where we have conditioned on D= d. Admissibil-
ity in this conditional problem for all values d is not sufficient for admissibility
as a test of H0 :m= 0, μ ∈ M against H1 :m=M(μ) \ {0}, μ ∈ M in the origi-
nal problem. However, the set of tests which are admissible in the conditional
problem for almost all d form an essentially complete class: that is, for any test
φ, we can find a test φ̃ which has weakly lower size and higher power than φ
and is admissible in the conditional problem for almost every d (with respect
to the distribution of D, FD).

Theorem 1 implies that the tests φJ and φK defined in (15) and (16) are
admissible in the conditional problem for all non-singular d with T (d) = R

2
+

and all significance levels. The test

(17) φS = 1
{
S > χ2

k�1−α

}
is likewise admissible for all d with T (d) = R

2
+. For all functions r : D →

R+ ∪ {∞}, the level α QCLR test based on the statistic QCLRr defined in (11)
is admissible for all d with T (d) = R

2
+ as well: this follows immediately from

Theorem 1 together with Theorem 4 below. More broadly, we can see that for
any functions A(j�k�d) and c(d) such that A has closed, convex, and mono-
tone decreasing lower sets in (

√
j�

√
k) space for all d, the test that rejects

when A(J�K�D) > c(D) will be admissible in the conditional problem for all
d with T (d) = R

2
+. Thus, the class of tests which are potentially admissible in

the conditional problem is still extremely large, so we consider two additional
optimality criteria in the conditional problem: local power and weighted aver-
age power.

4.2. Optimality of Linear Tests in the Conditional Problem

Tests which reject when a linear combination of the J and K statistics is large
are both locally most powerful against sequences of alternatives approaching
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(τJ� τK) = 0 linearly and weighted average power maximizing for scaled χ2

weight functions.

THEOREM 2—Monti and Sen (1976), Koziol and Perlman (1978): Let J ∼
χ2

k−p(τJ) and K ∼ χ2
p(τK) be independent and let Φα denote the class of size α

tests of H0 : τJ = τK = 0 against H1 : (τJ� τK) ∈ T (d) \ {0} for T (d) = R
2
+. Fix a

constant a ≥ 0, and let φa = 1{K + a · J > cα(a)} for cα(a) the 1 − α quantile of
a χ2

p + a ·χ2
k−p distribution.

1. Let (τJ� τK)= λ · (ak−p

p
�1). For any test φ ∈ Φα, there exists λ̄ > 0 such that

if 0 < λ< λ̄,

E(τJ�τK)[φ] ≤ E(τJ�τK)[φa]

2. Let FtJ�tK (τJ� τK) be the distribution function for (τJ� τK) ∼ (tJ · χ2

k−p� tK ·
χ2

p). For any (tJ� tK) with tJ
tK

tK+1
tJ+1 = a, the test φa solves the weighted average power

maximization problem

φa ∈ arg max
φ∈Φa

∫
E(τJ�τK)[φa(D)]dFtJ�tK (τJ� τK)


Theorem 2 follows immediately from results in Monti and Sen (1976) and
Koziol and Perlman (1978) on the optimal combination of independent non-
central χ2 statistics. Theorem 2(1) shows that the test based on K + a · J is lo-
cally most powerful against sequences of alternatives with τJ/τK = ak−p

p
. The-

orem 2(2) establishes that φa maximizes weighted average power in the condi-
tional problem for a continuum of different weight functions corresponding to
scaled χ2 distributions.

EXAMPLE I—Weak IV (Continued): In the linear IV model, τK = (β −
β0)

2(μ′d)2/d′d, while τJ = (β − β0)
2μ′μ − τK . Thus, one can show that

for ϕ the angle between μ and d, τK = (β − β0)
2μ′μ cos2(ϕ), τJ = (β −

β0)
2μ′μ sin2(ϕ), and τJ/τK = tan2(ϕ). Hence, if ϕ were known, the locally most

powerful test in the conditional problem would take a(d) = 1
k−1 tan2(ϕ). Con-

sequently, if we knew that the direction of d were similar to that of μ, the
locally most powerful test would heavily weight K, while if we thought the di-
rections were different, we would prefer to put more weight on J. The form of
the weighted average power optimal test is less transparent, but again shows
that when we think the direction of μ and d is similar, we want to put most
weight on K, while when their directions differ, we want to put more weight
on J.

Theorem 2 shows that, among the large class of tests which are admissi-
ble in the conditional problem, tests based on linear combinations of the J
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and K statistics have particularly good properties. In addition to satisfying the
conditional admissibility requirement given by Theorem 1, they maximize lo-
cal power against sequences of alternatives with τJ

(k−p)

p

τK
= a. Indeed, one can

show that the power of any size α test φ in the conditional problem is (weakly)
exceeded by the power envelope for the class of size α linear combination tests
once τJ +τK is sufficiently small, regardless of the direction of (τJ� τK). Against
non-local deviations, on the other hand, Theorem 2(2) shows that the linear
combination test with weight a on J maximizes weighted average power for
a continuum of scaled χ2 weights with tJ

tK

tK+1
tJ+1 = a. As noted by Koziol and

Perlman (1978), taken together these results show that tests based on linear
combinations of the J and K statistics have good power against a wide range
of alternatives in the conditional problem. In the next section, we define the
class of tests that yield linear combination tests conditional on D= d and show
that CLR and Quasi-CLR tests are members of this class.

5. CONDITIONAL LINEAR COMBINATION TESTS

If we restrict attention to tests which yield level α linear combination tests
conditional on D = d, we obtain the class of conditional linear combination
tests. For a weight function a :D → [0�1], the corresponding conditional linear
combination test, φa(D), rejects when a convex combination of the S and K
statistics weighted by a(D) exceeds a conditional critical value7:

φa(D) = 1
{(

1 − a(D)
) ·K + a(D) · S > cα

(
a(D)

)}
(18)

= 1
{
K + a(D) · J > cα

(
a(D)

)}



We take the conditional critical value cα(a) to be the 1−α quantile of a χ2
p +a ·

χ2
k−p distribution. This choice ensures that φa(D) will be conditionally similar,

and thus similar, for any choice of a(D). Stated formally, we have the following:

THEOREM 3: For any weight function a : D → [0�1], the test φa(D) defined
in (18) is conditionally similar with Em=0�μD

[φa(D)|D] = α almost surely for all
μD ∈ MD. Hence, Em�μD

[φa(D)] = α for all (m�μD) ∈ H0 and φa(D) is a similar
test.

While we could construct a family of CLC tests based on some conditional
critical value function other than cα(a) that does not impose conditional simi-
larity, restricting attention to conditionally similar tests is a simple way to en-
sure correct size regardless of our choice of a(D), and is equivalent to similarity

7Note that in defining conditional linear combination tests here, we restrict to a ∈ [0�1], so
that the S and K tests are the extremes in the class. The extension to a ∈R+ is straightforward.
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if MD contains an open set, as will typically be the case (e.g., in Example I). Re-
stricting attention to similar CLC tests has the further advantage that all such
tests are unbiased, in that their power against any alternative is at least equal
to α:

LEMMA 1: For any weight function a :D → [0�1], the test φa(D) defined in (18)
is unbiased both conditional on D and unconditionally, in the sense that for any
m, Em�μD

[φa(D)|D] ≥ α almost surely, and Em�μD
[φa(D)] ≥ α.

Interestingly, the class of QCLR tests is precisely the same as the class of
CLC tests. Formally, for any function r :D → R+ ∪ {∞}, define the quasi-CLR
statistic QCLRr as in (11) and let qα(r(d)) be the 1 − α quantile of (12). Then
we have the following:

THEOREM 4: For any function r :D → R+ ∪ {∞}, if we take

φQCLRr
= 1

{
QCLRr > qα

(
r(D)

)}
�

then for ã(D) = qα(r(D))

qα(r(D))+r(D)
we have φQCLRr

≡ φã(D). Conversely, for any a :D →
[0�1], there exists an r̃ :D → R+ ∪{∞} such that φa(D) ≡φQCLRr̃

. Hence, the class
of CLC tests for a :D → [0�1] is precisely the same as the class of QCLR tests for
r :D → R+ ∪ {∞}.

Theorem 4 shows that the QCLR test φQCLRr
is a conditional linear combi-

nation test with weight function a(D) = qα(r(D))

qα(r(D))+r(D)
. In particular, this result

establishes that the CLR test of Moreira (2003) for linear IV with a single en-
dogenous regressor is a CLC test. In the remainder of the paper, our exposition
focuses on CLC tests, but by Theorem 4, all of our results apply to QCLR tests
as well. An immediate corollary of this result, together with Lemma 1, is that
all QCLR tests are unbiased. This is, to the best of our knowledge, a new result
even for the CLR test.8

COROLLARY 1: For any function r : D → R+ ∪ {∞}, the Quasi-CLR test
φQCLRr

is unbiased both conditional on D and unconditionally, in the sense that
for any m, Em�μD

[φQCLRr
|D] ≥ α almost surely and Em�μD

[φQCLRr
] ≥ α.

It is worth highlighting a subtlety in Theorem 4. While φQCLRr
≡ φã(D), it is

not the case that QCLRr =K+ ã(D) ·J, nor that QCLRr = f (K+ ã(D) ·J) for
any function f . Indeed, for fixed D, the level sets of K+ ã(D) ·J in (J�K) space
will be linear and parallel. By contrast, while the proof of Theorem 4 shows
that the level sets of QCLRr are linear, they are not parallel. Thus, while for

8AMS showed that the CLR test satisfies a necessary condition for unbiasedness, but not that
it is unbiased.
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any given α and d we can choose ã so that QCLRr exceeds its 1−α conditional
quantile if and only if K + ã(d) · J exceeds its own 1 − α conditional quantile,
the QCLR and CLC test statistics are not equivalent in some broader sense.

6. OPTIMAL CLC TESTS

For any weight function a :D → [0�1], we can define a CLC test φa(D) for H0

against H1 using (18). While any such test controls size by Theorem 3, the class
of such CLC tests is large and we would like a systematic way to pick weight
functions a yielding tests with good power properties.

A natural optimality criterion, after restricting attention to CLC tests, is
minimax regret. To define a minimax regret CLC test, for any (m�μD) ∈ H1

define β∗
m�μD

= supa∈AEm�μD
[φa(D)] for A the class of measurable functions

a : D → [0�1]. β∗
m�μD

gives the highest attainable power against alternative
(m�μD) in the class of CLC tests and, as we vary (m�μD), defines the power
envelope for this class. For a given a ∈ A, we can then define the regret asso-
ciated with φa(D) against alternative (m�μD) as β∗

m�μD
− Em�μD

[φa(D)], which
is the amount by which the power of the test φa(D) falls short of the high-
est power we might have attained against this alternative by choosing some
other CLC test. We can then define the maximum regret for a test φa(D) as
sup(m�μD)∈H1

(β∗
m�μD

− Em�μD
[φa(D)]), which is the largest amount by which the

power function of φa(D) falls short of the power envelope for the class of CLC
tests. A minimax regret choice of a ∈A is

aMMR ∈ arg min
a∈A

sup
(m�μD)∈H1

(
β∗

m�μD
−Em�μD

[φa(D)]
)



As an optimality criterion, this is an intuitive choice: having already restricted
attention to the class of CLC tests, focusing on MMR tests minimizes the max-
imal extent to which the test we choose could under-perform relative to other
CLC tests.

EXAMPLE II—Minimum Distance (Continued): Calculating the MMR test
in Example II is straightforward. In particular, D= μ is non-random, so rather
than picking a function from D to [0�1], we are simply picking a number a

in [0�1]. Moreover, we know that in this example m = m(θ) = Ω
− 1

2
η (f (θ) −

f (θ0)) and μD = μ = Ω
− 1

2
η

∂
∂θ
f (θ0), so the maximum attainable power against

alternative θ is simply β∗
θ = supa∈[0�1] Em(θ)�μ[φa] which we can calculate for any

value θ. To solve for the MMR test φMMR, we need only calculate aMMR =
arg mina∈[0�1] supθ∈Θ(β

∗
θ −Em(θ)�μ[φa]).

6.1. Plug-in Minimax Regret Tests

While finding the MMR test is straightforward in Example II, Example I
is less tractable in this respect. In this example, D is random, so solving for
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φMMR requires that we optimize over the class A of functions. In most cases,
finding even an approximate solution to this optimization problem is extremely
computationally costly, rendering φMMR unattractive in many applications. To
overcome this difficulty, we suggest a computationally tractable class of plug-in
tests.

There are two aspects of Example II which make calculating φMMR straight-
forward. First, rather than optimizing over the space of functions A, we need
only optimize over numbers in [0�1]. Second, μ = μD is known, so in solving
the minimax problem we need only search over θ ∈ Θ rather than over some
potentially higher dimensional space of values for (m�μD) ∈ H1.

To construct a test for the general case with similarly modest computa-
tional requirements, imagine first that μD is known. Let us restrict atten-
tion to unconditional linear combination tests with a(D) ≡ a(μD) ∈ [0�1].
The power envelope for this class of unconditional linear combination tests
is βu

m�μD
= supa∈[0�1] Em�μD

[φa]. A minimax regret unconditional (MMRU) test
φMMRU = φaMMRU(μD) then uses

(19) aMMRU(μD) ∈ arg min
a∈[0�1]

sup
m∈MD(μD)

(
βu

m�μD
−Em�μD

[φa]
)



Just as when we derived φMMR for Example II above, here we need only opti-
mize over a ∈ [0�1] and m ∈ MD(μD), rather than over a ∈ A and (m�μD) ∈
H1.9

In defining φMMRU, we assumed that μD was known, which is unlikely to
hold in contexts like Example I where D is random. Note, however, that for
any estimator μ̂D which depends only on D, aMMRU(μ̂D) can be viewed as a
particular weight function a(D) and the plug-in minimax regret (PI) test

(20) φPI = φaPI(D) = 1
{
K + aMMRU(μ̂D) · J > cα

(
aMMRU(μ̂D)

)}
is a CLC test and so controls size by Theorem 3. Moreover, to calculate this
test, we need only solve for aMMRU taking the estimate μ̂D to be the true value,
so this test remains computationally tractable.

It is important to note that φPI is not in general a true MMR test. First, φPI

treats the estimated value μ̂D as the true value, and hence does not account for
any uncertainty in the estimation of μD. Second, even taking the value μD as
given, φPI restricts attention to unconditional linear combination tests, which
represent a strict subset of the possible functions a ∈A. Despite these potential
shortcomings, we find that PI tests perform quite well in simulation, and show
in the Supplement that PI tests will be asymptotically optimal under strong
identification in our examples.

To use PI tests in a given context, we need only choose the estimator μ̂D.
While the MLE for μD based on D, μ̂D = D, is a natural choice, we may be

9When the argmin is non-unique, we select the largest value a belonging to the argmin.



2174 ISAIAH ANDREWS

able to do better in many cases. In particular, in weak IV (Example I) with ho-
moscedastic errors, estimation of μ̂D is related to a problem of non-centrality
parameter estimation, allowing us to use results from that literature.

EXAMPLE I—Weak IV (Continued): Consider the case studied by AMS
where Ω = A ⊗ B has Kronecker product structure. Results in AMS show
that (J�K�D′Σ−1

D D) is a maximal invariant under rotations of the instru-
ments, where D′Σ−1

D D ∼ χ2
k(μ

′
DΣ

−1
D μD).10 AMS showed that the distribution

of (J�K�D′Σ−1
D D) depends on c = √

TπT only through the non-centrality pa-
rameter r = μ′

DΣ
−1
D μD.

Note that the MLE μ̂D = D for μD based on D implies a severely biased es-
timator for r, r̂ = D′Σ−1

D D, with E[r̂] =E[D′Σ−1
D D] = r +k. The problem of es-

timating r relates to the well-studied problem of estimating the non-centrality
parameter of a non-central χ2 distribution, and a number of different estima-
tors have been proposed for this purpose, including r̂MLE, the MLE for r based
on r̂ (which is not available in closed form), and r̂PP = max{r̂ − k�0}, which is
the positive part of the bias corrected estimator r̂ − k.11 Both r̂MLE and r̂PP are
zero for a range of values r̂ > 0 so we also consider an estimator proposed by
Kubokawa, Roberts, and Saleh (1993),

r̂KRS = r̂ − k+ e− r̂
2

( ∞∑
j=0

(
− r̂

2

)j 1
j!(k+ 2j)

)−1

�

which is smooth in r̂ and greater than zero whenever r̂ > 0. We show in Sec-
tion 7 below that estimators μ̂D corresponding to all three non-centrality esti-
mators r̂MLE, r̂PP, and r̂KRS yield PI tests φPI with good power properties, where,
for each estimator r̂i, we let μ̂D = D · √r̂i/r̂.

7. PERFORMANCE OF PI TESTS IN WEAK IV

In this section, we examine the performance of PI tests in linear IV with
weak instruments (Example I). For comparability with the previous literature,
we first consider the homoscedastic model studied by AMS. Since data encoun-
tered in empirical practice commonly violate this homoscedasticity assump-
tion, we then consider the performance of PI tests in a model calibrated to
match the heteroscedastic time-series data used by Yogo in his (2004) study on
the effect of weak instruments on estimation of the elasticity of intertemporal
substitution.

10It suffices to note that (J�K�D′Σ−1
D D) is a one-to-one transformation of Q as defined in

AMS.
11 r̂PP has been shown to dominate r̂MLE in terms of mean squared error but is itself inadmissible

(Saxena and Alam (1982)).
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7.1. Homoscedastic Linear IV

AMS considered the linear IV model Example I with homoscedastic normal
errors and showed that in this case the CLR test of Moreira (2003) is nearly
uniformly most powerful in a class of two-sided tests invariant to rotations of
the instruments, in the sense that the power function of the CLR test is uni-
formly close to the power envelope for this class. Müller (2011) then showed
that the CLR test is nearly asymptotically uniformly most powerful in the class
of invariant two-sided tests that have correct size under (6) with the additional
restriction that Ω = A ⊗ B for A and B symmetric positive-definite matrices
of dimension 2 × 2 and k × k, respectively. As Mueller noted, matrices Ω of
this form arise naturally only for serially uncorrelated homoscedastic IV mod-
els, limiting the applicability of this result. Nonetheless, if our plug-in minimax
regret approach is to work well in this benchmark case, it should match the
near-optimal performance of the CLR test. In the homoscedastic case, one
can show that the plug-in weight functions depend on D only through r̂, so in
Section D.1.1 of the Supplemental Material, we directly compare the plug-in
weights to the CLR weight function.

7.1.1. Power Simulation Results

To study the power of the PI tests, we follow the simulation design of
AMS and consider a homoscedastic normal model with a known reduced-
form covariance matrix. Like AMS, we consider models with five instruments,
reduced-form error correlation ρ equal to 0.5 or 0.95, and concentration (iden-
tification strength) parameter λ= μ′μ equal to 5 and 20. To examine the effect
of changing the number of instruments, as in AMS we also consider models
with two and ten instruments, in each case fixing ρ equal to 0
5 and letting λ
equal 5 and 20. The resulting power plots (based on 10,000 simulations) are
reported in the Supplemental Material. For brevity, here we report only the
maximal power shortfall of each test, measured as the maximal distance from
the power functions of the CLR, PI, AR, and K tests to the power envelope for
the class consisting of these tests alone. These values can be viewed as a mea-
sure of maximum regret relative to this restricted set of tests. As Table I makes
clear, the PI tests considered largely match the near-optimal performance of
the CLR test. The one exception is the PI test using the badly biased estima-
tor r̂ for r, which systematically overweights the K statistic and consequently
under-performs relative to the other tests considered. As these results high-
light, in one of the only weakly identified contexts where a near-UMP test is
known, reasonable implementations of the plug-in testing approach suggested
in this paper are near-optimal as well.

7.2. Linear IV With Unrestricted Covariance Matrix

The near-optimal performance of PI tests in linear IV models where Ω has
Kronecker product structure is promising, but is of limited relevance for em-
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TABLE I

MAXIMAL POWER SHORTFALL RELATIVE TO OTHER TESTS CONSIDERED, IN LINEAR IV
MODEL WITH HOMOSCEDASTIC ERRORSa

CLR PI-r̂ PI-r̂MLE PI-r̂PP PI-r̂KRS AR K

k= 2 1
18% 1
44% 0
72% 0
72% 0
88% 9
40% 29
96%
k= 5 2
14% 5
90% 1
37% 1
07% 2
04% 25
05% 53
71%
k= 10 3
51% 13
21% 2
29% 2
18% 4
00% 30
76% 64
62%

aFor each k (number of instruments), we calculate the pointwise maximal power of the tests studied. For each
test, we report the largest margin by which the power of that test falls short of pointwise maximal power. CLR de-
notes the CLR test of Moreira (2003), while PI-r̂, PI-r̂MLE, PI-r̂PP, and PI-r̂KRS denote the PI tests with weight
functions aMMRU(r̂), aMMRU(r̂MLE), aMMRU(r̂PP), and aMMRU(r̂KRS), respectively. AR is the Anderson–Rubin
test (equivalent to the S test) and K is Kleibergen’s (2002) K test.

pirical work. Economic data frequently exhibit heteroscedasticity, serial de-
pendence, clustering, and other features that render Kronecker structure for
Ω implausible. It is natural to ask whether PI tests continue to have good power
properties in this more general case. As an alternative CLC test, we consider
Kleibergen’s (2005) quasi-CLR test, which takes r(D) = D′Σ−1

D D and can be
viewed as a heteroscedasticity and autocorrelation-robust version of the CLR
test, as well as the K and Anderson–Rubin (S) tests.

We also consider the conditional QLR test of I. Andrews and Mikusheva
(2016a) and the MM1-SU and MM2-SU tests of MM. The conditional QLR
test is a direct generalization of the CLR test of Moreira (2003) to the non-
homoscedastic case, and rejects when a quasi-likelihood ratio statistic based
on the continuously updating GMM objective exceeds its conditional critical
value given D. The MM tests, on the other hand, maximize weighted average
power, for weights which depend on the covariance matrix Σ, over a class of
similar tests satisfying a sufficient condition for local unbiasedness (their SU
tests). We show in the Supplemental Material that all conditional linear com-
bination tests are SU tests, and thus that the MM1-SU and MM2-SU tests
have, by construction, weighted average power at least as great as all CLC tests
under their respective weight functions. MM presented extensive simulation
results which show that these tests perform very well in models where Ω has
Kronecker structure, as well as in examples with non-Kronecker structure.12

There are a multitude of ways in which Ω may depart from Kronecker struc-
ture, and it is far from clear ex ante how the power of the tests we con-
sider may be expected to compare under different departures. To assess the

12For the MM tests, we follow Moreira and Moreira (2015) and set the tuning parameters σ
and ς to one-tenth of the sample size in each case (yielding values between 7.5 and 12). In earlier
versions of this paper, written prior to the circulation of Moreira and Moreira (2015), we instead
followed Moreira and Moreira (2013) and set both tuning parameters equal to 1. Results based
on this choice of tuning parameters may be found in the Supplemental Material.
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relative performance of all the tests we consider at parameter values rele-
vant for empirical practice, we calibrate our simulations based on data from
Yogo (2004).13 Yogo considered estimation of the elasticity of intertemporal
substitution in eleven developed countries using linear IV and argued that es-
timation of this parameter appears to suffer from a weak instruments prob-
lem.14 Yogo noted that both the strength of identification and the degree of
heteroscedasticity appear to vary across countries, making his data set espe-
cially interesting for our purposes since it allows us to explore the behavior of
the tests considered for a range of empirically relevant parameter values.

7.2.1. Power Simulation Results

We simulate the behavior of tests in the weak IV limit problem (6), and
so require estimates for μ and Ω. To obtain these estimates, for each of the
11 countries in Yogo’s data we calculate μ̂ and Ω̂ based on two-stage least
squares estimates for the elasticity of intertemporal substitution, where Ω̂ is
a Newey–West covariance matrix estimator using three lags.15 A detailed de-
scription of this estimation procedure, together with the implementation of all
tests considered, is given in the Supplemental Material. In particular, for the
PI test we consider an estimator μ̂D which corresponds to the positive-part
non-centrality estimator r̂PP in the homoscedastic case discussed above.16 The
resulting power curves (based on 5,000 simulations for all tests) are plotted in
Figures 1–2. Since for many countries the power curves are difficult to distin-
guish visually, in Table II we list the maximum regret for each test relative to
the other tests studied, repeating the same exercise described above for the
homoscedastic case.

Both the figures and the table highlight that while for many of the coun-
tries the K, QCLR, PI, MM, and QLR tests all perform well, as in the ho-
moscedastic case there are some parameter values where the K test suffers
from substantial declines in power relative to the other tests. In contrast to
the homoscedastic case, the QCLR test does not fully resolve these issues. In-
stead, in cases where the K test exhibits especially large power declines, as in

13Note that simulation results on the power of the conditional QLR test in these calibrations
are also reported in the supplement to I. Andrews and Mikusheva (2016a).

14The countries considered are Australia, Canada, France, Germany, Italy, Japan, the Nether-
lands, Sweden, Switzerland, the United Kingdom, and the United States. For comparability, we
use Yogo’s quarterly data for all countries, which in each case cover a period beginning in the
1970s and ending in the late 1990s, and take the endogenous regressor to be a risk-free interest
rate.

15While the model assumptions imply that the GMM residuals ft(β) are serially uncorrelated
at the true parameter value, the derivatives of the moment conditions ∂

∂β
ft(β) may be serially

dependent.
16Specifically, we take μ̂D = D ·

√
max{D′Σ−1

D D− k�0}/D′Σ−1
D D. When μ̂D = 0, as suggested

by footnote 9, we set aPI(D) = 1.
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FIGURE 1.—Power functions for QCLR, AR (or S), K, PI, MM1-SU, MM2-SU, and QLR tests
in simulation calibrated to Yogo (2004) data with four instruments.
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FIGURE 2.—Power functions for QCLR, AR (or S), K, PI, MM1-SU, MM2-SU, and QLR tests
in simulation calibrated to Yogo (2004) data with four instruments.

TABLE II

MAXIMAL POINTWISE POWER SHORTFALL RELATIVE TO OTHER TESTS CONSIDERED, FOR
SIMULATIONS CALIBRATED TO MATCH DATA IN YOGO (2004)a

QCLR AR K PI MM1-SU MM2-SU QLR

Australia 4
06% 15
68% 6
28% 3
26% 1
68% 0
78% 1
72%
Canada 11
46% 20
98% 14
08% 10
06% 4
56% 4
88% 8
46%
France 5
16% 18
28% 5
48% 4
56% 2
12% 1
76% 2
60%
Germany 7
50% 20
90% 21
88% 6
94% 6
20% 6
38% 14
44%
Italy 9
86% 14
72% 14
14% 5
46% 1
50% 2
22% 3
38%
Japan 33
22% 16
56% 77
44% 7
32% 4
12% 4
66% 8
16%
Netherlands 10
34% 17
54% 16
88% 7
74% 1
62% 2
28% 2
28%
Sweden 4
56% 19
06% 4
78% 3
78% 1
92% 2
62% 1
04%
Switzerland 8
28% 21
36% 8
94% 7
86% 7
20% 6
96% 2
44%
United Kingdom 31
46% 18
86% 37
32% 12
88% 8
04% 7
04% 13
80%
United States 14
40% 17
22% 15
92% 8
74% 8
16% 6
36% 3
56%

aQCLR denotes the quasi-CLR test of Kleibergen (2005), while PI is the plug-in test discussed in Section 7.2.1.
AR is the Anderson–Rubin (or S) test, K is Kleibergen’s (2005) K test, and MM1-SU and MM2-SU are the weighted
average power optimal SU tests of Moreira and Moreira (2013).
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the simulations calibrated to match data from Japan and the United Kingdom,
the QCLR test suffers from substantial power loss as well. While the QCLR
test reduces power loss relative to the K test, the PI, MM1-SU, MM2-SU, and
QLR tests do substantially better. While the power of the AR test is stable, for
all countries its maximal power shortfall exceeds 10%.

The relatively poor performance of the QCLR test is driven by the fact,
discussed above, that in the non-homoscedastic case the K statistic may fo-
cus on directions yielding low power. Since Kleibergen’s QCLR test uses the
CLR weight function, which is optimal in the homoscedastic case, it does not
account for the fact that K may have worse performance when Σ lacks Kro-
necker product structure. In contrast, the PI test takes both the structure of
Σ and the estimated value μ̂D into account when calculating aPI(D), and so
performs well in both the homoscedastic and non-homoscedastic cases. Addi-
tional (unreported) simulation results show that the PI test has power quite
close to the infeasible MMRU test based on knowledge of the true μD, and the
power of this MMRU test never exceeds that of the PI test by more than 2.6%
in the designs considered here.

There is not a strict ranking among the PI, MM1-SU, MM2-SU, and QLR
tests, and none of these tests has power dominating any of the others. Judged in
terms of maximal power deficiency relative to the other tests considered, the
MM2-SU test performs best, followed by the MM1-SU test, the PI test, and
finally the QLR test.17 As noted above, the PI test is unbiased, while the MM
tests are locally unbiased and display no bias in these simulations. By contrast,
as noted in I. Andrews and Mikusheva (2016a), the QLR test is not in general
unbiased, and shows a small degree of bias in the calibration to German data.
Overall, the four tests appear competitive, though the MM2-SU test has the
smallest maximal power deficiency.18

8. CONCLUSION

This paper considers the problem of constructing powerful identification-
robust tests for a broad class of weakly identified models. We show that tests
which reject when a convex combination of the S and K statistics is large have
a number of desirable power properties in a conditional problem. Restricting

17The choice of tuning parameters in the MM1-SU and MM2-SU tests is important for this
result. If one instead uses tuning parameters as in Moreira and Moreira (2013), then the PI
test has the smallest maximal power deficiency. Results under this alternative choice of tuning
parameters may be found in the Supplemental Material.

18Additional simulation results based on calibrations to the Yogo data, using an equity return
as the endogenous regressor rather than the risk-free rate, are reported in Moreira and Moreira
(2015). Their simulation results did not consider the conditional QLR test but again found the PI
test competitive with the MM tests, with power exceeding the MM1-SU test in several designs.
They found the best overall performance for the MM2-SU test and argued that this in part reflects
the benefit of allowing dependence on the data beyond the S, K, and D statistics.
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attention to conditionally similar procedures which yield such convex combi-
nations, we construct the class of conditional linear combination (CLC) tests.
We show that CLC tests are unbiased, and further that the class of CLC tests
is equivalent to an appropriately defined class of quasi-conditional likelihood
ratio tests. To pick from the class of CLC tests, we suggest using MMR tests
when feasible and PI tests when MMR tests are too difficult to compute. We
show that PI tests match the near-optimal performance of the CLR test of
Moreira (2003) in homoscedastic linear IV and are competitive with other re-
cently proposed approaches in simulations calibrated to match an IV model
with heteroscedastic time-series data.
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