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This appendix contains asymptotic results and proofs for the paper “Conditional
Linear Combination Tests for Weakly Identified Models,” by Isaiah Andrews.

Appendix 1: Asymptotic Properties of CLC Tests

The results of Sections 3-7 of the main text treat the limiting random variables
(9, Ag,~) as observed and consider the problem of testing Hy : m = 0, u € M against
Hy :m € M(p)\{0},r € M. In this appendix, we show that under mild assump-
tions our results for the limit problem (2) imply asymptotic results along sequences of
models satisfying (1). We first introduce a useful invariance condition for the weight
function a and then prove results concerning the asymptotic size and power of CLC
tests.

We previously wrote the weight functions a of CLC tests as functions of D alone,
since in the limit problem the parameter v is fixed and known. In this appendix,
however, it is helpful to instead write a(D,~). Likewise, since the estimator fip used

in plug-in tests may depend on 7, we will write it as fip (D, 7).

Appendix 1.1 Postmultiplication Invariant Weight Functions

Our weak convergence assumption (1), together with the continuous mapping theorem,
implies that Dy —4 D for D normally distributed, where we assume that D is full
rank almost surely for all (6,v) € © x I'. In many applications such convergence will
only hold if we choose an appropriate normalization when defining Agr, which may
seem like an obstacle to applying our approach. In the linear IV model for instance,

the appropriate definition for Agr will depend on the strength of identification.
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Example I: Weak IV (Continued) In Section 2 we assumed that the instruments
a1
were weak, with 77 = =, and showed that Agr = \/Tfo2 % fr(Bo) converged in
distribution. If on the other hand the instruments are strong, 7 = m; and ||m|| > 0,
Al

then a%fT(/B) —1>p E[X:Z] # 0 so ﬁﬂff%fgp(ﬁo) diverges and we should instead
take Agr = Q;f%fT(ﬁo)D

This apparent dependence on normalization is not typically a problem, however,
since many CLC tests are invariant to renormalization of (g7, Agr,4). In particular,

for A any full rank p x p matrix consider the transformations

hag (Agr; A) = AgrA

@fk)'z( 1)

and let h, (7; A) be the transformation of v such that X (h, (7; A4)) = hs (X (y); A).
Let

10
A

0

hz(EQA): ( A

h(gr, Agr,4; A) = (g7, hag (Agr; A) , by (55 A)) (21)

and note that the statistics Jr and K are invariant to this transformation for all full
rank matrices A, in the sense that their values based on (g7, Agr,#) are the same as
those based on h (gr, Agr,%; A). Thus if we choose a weight function a(D, ) which
is invariant, the CLC test ¢4p,4) Will be invariant as well. Formally, we say that
the weight function a(D, ) is invariant to postmultiplication if for all full-rank p x p

matrices A we have

a(D,v) =a (hAg (D; A) ’ hV (7; A)) )

where we have used the fact that D calculated using h (g, Ag,v; A) is equal to ha, (D; A) .
Invariance to postmultiplication is useful since to obtain results for invariant tests

based on (gr, Agr,7) it suffices that there exist some sequence Ar such that

(gT7 AgT7 &) =h (gT’ A§T7 ;5/; AT)

satisfies the weak convergence assumption (1), without any need to know the correct
sequence Ar for a given application. Thus, in the linear IV example discussed above
we can take Agr as originally defined and make use of results derived under the

convergence assumption (6) without knowing identification strength in a given context.
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The class of postmultiplication-invariant weight functions a is quite large, and
includes all the weight functions discussed above. In particular we can choose the
minimax regret weight function ay g to be invariant to postmultiplication. Likewise,
provided we take the estimator jip(D,) to be equivariant under transformation by
h, so that ha, (ip(D,7); A) = fip (hag (D; A), by (75 A)), the plug-in weight function

ap; will be invariant as well.

Appendix 1.2 Asymptotic Size and Power of CLC Tests

Let F(g,Ag,~) denote the distribution of (g, Ag,~) in the limit problem, noting that
the marginal distribution for 7 in the limit problem is a point mass. Since we have as-
sumed that D is full rank almost surely, J and K are F-almost-everywhere continuous

functions of (¢, Ag,~y) and the continuous mapping theorem implies
(Jr, K7, Dr) —q (J,K, D).
To obtain asymptotic size control for the CLC test
Ga(nrs) = {1 —a(Dr,%)) - Kr + a(Dr,¥) - St > ca (a (D1, 9))}

all we require is that a be almost-everywhere continuous. Indeed, this test is asymp-

totically conditionally similar in the sense discussed by Jansson and Moreira (2006).

Proposition 1 Assume (gr, Agr,4) satisfies the weak convergence assumption (1)
and let a(D,~) be F (g, Ag,~)-almost-everywhere continuous for (6y,v) € {6y} x T
Then under (0y,~) we have that

Jim Br o) |Guors)| = o (22)

Moreover, for F the set of bounded functions f(D) which are F (g, Ag,~y)-almost-

everywhere continuous under (6y,7),

Jim Bz g, ) [ (€anrs) — @) £ (Dr)| =0 Vf € F. (23)

It is important to note that Proposition 1 only establishes sequential size control,
and depending on the underlying model establishing uniform size control over some

base parameter space may require substantial further restrictions. In Example I,
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however, we can use results from D. Andrews et al. (2011, henceforth ACG) to prove
that a large class of CLC tests based on postmultiplication-invariant weight functions
control size uniformly in heteroskedastic linear IV with a single endogenous regressor.
Unfortunately, however, matters are less clear in the case with multiple endogenous
regressors. In that context, D. Andrews and Guggenberger (2014) show that while
K tests have uniformly correct asymptotic size over a large parameter space, the
asymptotic size of QCLR tests depends on the construction of the weighting function
r (D) . Correspondingly, only a subset of conditional linear combination tests will have

correct asymptotic size in that context.

Example I: Weak IV (Continued) Define Q and 3 in the usual way (detailed in
the proof of Proposition 2 below). Define a parameter space A of null distributions as
in ACG Section 3, noting that 7 consists of the elements of (Qp,'r, X ) in the nota-
tion of ACG. Building on results in ACG it is straightforward to prove the following

proposition:

Proposition 2 Consider the CLC test ¢q(p,. 5) based on a postmultiplication-invariant
weight function a(D,~y) which is continuous in D and v at all points with ||D|| > 0
and satisfies

lim sup a(D,v) | = lim inf a(D,y) | =ap (24)
020 \ (D,4):]|D||>e, mazeig(Sp)<é 8=0 \ (Dy):||D||>e,mazeig(Sp)<s
for some constant ay € [0, 1], mazeig (A) the mazimal eigenvalue of A, and all e > 0.

The test ¢q(py5) 95 uniformly asymptotically similar on A:

711_{20 /{Ielg Er [Qba(DT,'V)} = TIE};O S;Elg Er {%(DT,@)} = .

The assumption (24), together with the assumed postmultiplication invariance of
a (D,~) and the restrictions on the parameter space A, ensures that under sequences
with v/T||7r|| — oo we have that a (Dr,4) —, ao asymptotically, and hence that un-
der all strongly identified sequences the test converges to the linear combination test
®ao- We show in the next section that for ay = 0 this condition plays an important
role in establishing asymptotic efficiency of CLC tests in linear IV under strong iden-
tification, and will verify this condition for PI tests ¢p; in linear IV. The conditions
needed to ensure that ap; satisfies the continuity conditions in Proposition 2 are much

less clear, but we can always create a sufficiently continuous weight function @ which
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approximates ap; arbitrarily well by calculating ap; on a grid of values for (D, ) and
taking @ to continuously interpolate between these values.!®[]

Power results in the limit problem (2) also imply asymptotic power results un-
der (1). In particular, for a(D,~) almost everywhere continuous with respect to
F(g,Ag,7), the asymptotic power of ¢q(p, ) is simply the power of ¢4p) in the

limit problem.

Proposition 3 Assume (gr, Agr,4) satisfies the weak convergence assumption (1)
and let a(D, ) be F (g, Ag,~)-almost-everywhere continuous for some (0,v) € © x I
Then under (0,7)

) (batpr)] = Brmpnr [Gatn )]
where m = m(0,0y,v) and up are the parameters in the limit problem.

Thus, under mild continuity conditions on a(D, ), the asymptotic size and power
of tests under (1) are just their size and power in the limit problem. Moreover,
sufficiently continuous postmultiplication invariant weight functions a(D,~) which
select a fixed weight ag under strong identification yield uniformly asymptotically

similar tests in heteroskedastic linear IV.

Appendix 1.3 Asymptotic Efficiency Under Strong Identifica-
tion

The power results above concern the asymptotic properties of CLC tests under general
conditions that allow for weak identification, but since the commonly-used non-robust
tests are efficient under strong identification we may particularly want to ensure that
our CLC tests share this property.

As noted in Section 3, under strong identification we typically have that g9 =
0, Xy, = 0, that p is full rank, and that M(u) = {n-c:ceRP}. We say that
(97, Agr,4) converges to a Gaussian shift model under (0,v) if (g7, Agr,d) —a

(9, Ag, ) for
g N o (25)
vec(Ag) vec(p) )\ 0 0

18To ensure that @ is invariant to postmultiplication we can fix || D|| = 1 in the grid used to calculate
a and evaluate a for other values by rescaling the problem to ||D|| = 1 using the transformation (21).

39



where p is full rank and b € RP. Under strong identification, general GMM models
parametrized in terms of local alternatives converge to Gaussian shift models. In many
cases strong identification is not necessary to obtain convergence to (25), however, and
sequences of models between the polar cases of weak and strong identification, like the
“semi-strong” case discussed in D. Andrews and Cheng (2012), often yield Gaussian

shift limit problems under appropriately defined sequences of local alternatives.

Example I: Weak IV (Continued) Suppose that mp = rpe for ¢ € RP with
||| > 0 for any sequence {ry}o_, such that rp — r as T — oo and v/Try — co. For
0 < r < oo this is the usual, strongly identified case, while for » = 0 this is falls into
the “semi-strong” category of D. Andrews and Cheng (2012): the first stage converges
to zero, but at a sufficiently slow rate that many standard asymptotic results are pre-
served. Let  be a consistent estimator for limg_,., Var ((\/TfT (Bo) ,rpt fr (ﬁo)/>/>

and define gr(3) = VT Q;fé fr(B) and ¥ = vec (Q) as before. Consider sequences of

local alternatives with 8y = Gy + TTI’—\/T and let Agr = r;lflj%h(ﬁ). As T — oo,
(g1, Agr,7) converges to the Gaussian shift limit problem (25) with u = F[Z,Z]] c
and b = b*.[]

In the Gaussian shift limit problem (25), the Neyman Pearson Lemma implies
that the uniformly most powerful level « test based on (J, K, D) is ¢ as defined in
(16). Further, under the weak convergence assumption (1) for (g, Ag) as in (25) the
test ¢r, =1 {KT > X?),pa} is asymptotically efficient in the sense of Mueller (2011)
for a family of elliptically-contoured weight functions.!® Under strong identification
O, =1 {KT > X;%,l—a} is also generally equivalent to the usual Wald tests, though
we will need conditions beyond (1) to establish this. It is straightforward to show
that a CLC test based on the weight function a(D,~) will share these properties,
and so be asymptotically efficient under sequences converging to (25), if and only if

a(Dr,%) —, 0 under such sequences.

Proposition 4 Denote by A, the class of weight functions functions a(D,~) that are
continuous in both D and ~y for all full-rank D. Fiz (0,v) € © x I with 0 # 6y and

9Formally, in the limit problem p = Ag is known so to derive weighted average power optimal
tests we need only consider weights on b. For any weights G (b) with density ¢ (b) that depends on b
only through [|ub||, so that g (b) oc g (||ud]|), ¢k is weighted average power maximizing in the limit
problem and by Mueller (2011) ¢k, is asymptotically optimal over the class of tests with correct
size under (1) and (25).
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suppose that (gr, Agr,%) converges weakly to the Gaussian shift limit problem (25)
with b # 0. For a(D,) almost-everywhere continuous with respect to the limiting

measure F (g, Ag,~) under (6,7),

Jim Er g ) (Patora] = sup Hm B |ba(pr )]

if and only if a (D,~) = 0 almost surely with respect to F (g, Ag,~y). Thus

Hm Eroy [0xr] = sup lim Ero. [Pacora) -

Using this proposition, it is easy to see that the condition (24) that we used to
ensure uniformly correct size for CLC tests in linear IV Example I will also ensure
asymptotic efficiency under strong and semi-strong identification provided ay = 0.

It is straightforward to give conditions under which MMRU tests select a (up,7y) =

0 asymptotically in sequences of models converging to Gaussian shift experiments:

Theorem 5 Suppose that for some pair (up,v) € Mp x I' with pp full-rank and
Yog (7) =299 () =0, for all C > 0 and all sequences (ppn,vn) € Mp x I' such that
(/"LD,TLJIYTZ) — (/VLD77> we hav@

dy (./\/lD (,qu,’yn) ﬂBc,{,uD-b b e Rp}ﬂBc) —0

where Bo = {m : ||m|| < C} and dy (A1, As) is the Hausdorff distance between the
sets A1 and As,

dy (A1, Ay) = max{ sup inf |[|z1 — 29|, sup in£ |x1 — x2||} :
1

x1 €A T2€A2 2oE€Ag T1

Then for By, iy, . v = SWac(0.1] Ermoin i [$a] and all (ipn,vn) — (up, ) the MMRU
weight

aMMRU ([‘LDJH ’yn) - arg m(l)% Sup (/B:InvﬂD,na'Yn - Ean'D,ann |:¢a:|)
ae[ ’ ]mGMD(/JD,n,'Yn

satisfies ayry (D n, Yn) — 0.

Using Theorem 5 we can show that PI tests will be efficient under strong and semi-

strong identification in Example I, while MMR tests will be efficient under strong and
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semi-strong identification in Example II, where the MMR and MMRU tests coincide.

Example I: Weak IV (Continued) Define (g7, Agr,4) as in Section 1, and as
above let mp = rpc for ¢ € RP with ||¢|| > 0. For simplicity we take fip = Dy but the

extension to other estimators is straightforward.

Corollary 2 Provided /Trr — 0o, we have that in the linear IV model apy (i, ) =
0 and thus that the PI test based on (g7, Agr,?) is efficient under strong and semi-

strong identification.C]

Example II: Minimum Distance (Continued) We can model semi-strong iden-

tification in this example by taking €2, = r7€), o where rr — 0 and r;lﬁn —p o,
1
T

and note that M (3) = {Q; S(F0)—f (90))}. Defining gr(8) = Oy % (7 — £(6)) and

noting that rr = # is the typical strongly identified case. Again define 4 = vec (Qn)

Al
Agr(8) = Zgr(8) = Q, 2L f(6) as before, a global identification assumption yields
that PI tests are asymptotically efficient.

Corollary 3 Assume that 0 is in the interior of © and that for all 6 > 0 there exists
£ (6) > 0 such that ||f(0) — £(0)|| < &(8) implies |0 — 0|| < 6. Provided rp — 0, the
MMR weight function ayar satisfies aymr () —p 0 and the MMR test is efficient

under strong and semi-strong identification.[]

Hence, in our examples the plug-in test ¢ p; is asymptotically efficient under strong

and semi-strong identification.

Appendix 2: Proofs

Proof of Theorem 2

Statement (1) follows from results in Monti and Sen (1976) and Koziol and Perl-
man (1978). Specifically, both papers note that if (A4, B) ~ (Xifp (Ta) s X5 (TB)) and
(Ta,7B) = A - (ta,tp) for ta, tg > 0 then for ¢ any size « test for Hy : 74 = 75 = 0
based on (A, B) there exists some A > 0 such that for 0 < A < ),

ta 193
E(TA’TB) [¢] < E(TA’TB) |} {k‘ —pA + ?B > C}
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for ¢ the 1 — o quantile of a kt—j‘p X%_p + %B X;Z; distribution. Statement (1) then follows
immediately by the fact that (J, K)|D =d ~ (Xifp (1) X2 (TK))

Establishing statement (2) is similarly straightforward. In particular for Fy, ¢,
as described in Theorem 2, Koziol and Perlman note that we can use the Neyman

Pearson Lemma to establish that the weighted average power maximizing level a test
based on (A, B) ~ (Xifp (Ta) X (TB)) is ¢ = 1{ KA+ LB > c}, where ¢ is

tr+1 ty+1

the 1 — a quantile of a t;ﬁlxg + t;jrlxi_p distribution. In particular, for ®, the class

of level « tests based on (A, B),

¢} € arg max/ E. s 0] dF (Ta, TB).
0€Pe JT(a)

Statement (2) again follows from the fact that (J, K)|D = d ~ <Xi—p (1), X5 (TK)> :

Proof of Theorem 3

By the independence of J, K, and D under the null, conditional on the event D = d
K +a(D)-J|D=d~ x>+ a(d) - x;_,.

Hence
Pr{K+a(D)-J>cy(a(D))|D=d} =«

SO Epm—o,up [qﬁa(p)‘ D = d} = « for all d in the support of D and all values up.

Ep—oup {gba(D)] can then be written as

/ Em=o,p | Gap)| D = d| dFp = / adFp = o

for F'p the distribution of D, proving the theorem.

Proof of Lemma 1

We prove that E,, ,, {¢G(D)|D} > « almost surely, from which E,, ,, [%(D)} > «
follows immediately. Fix some CLC weight function a (D). Recall that conditional
on D =d, J and K are independently distributed x7_, (7;) and xj () , respectively,
and

K +a(D)-J|D = d~ x, (&) + a(d) - xi_, (7).
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The CLC test ¢q(py will reject if and only if K+a(d)-J > ¢, (a (d)), and the conditional
probability of this event under 7; = 75 = 0 is a. To establish the result, we need
only show that the probability of this event is at least o under any pair (7, 7x) # 0.
However, this follows from the form of the CLC test statistic and the observation that
a noncentral y? distribution is increasing in its noncentrality parameter (in the sense

of first-order stochastic dominance).

Proof of Theorem 4

We first argue that conditional on D = d the test ¢gcrr, is exactly equivalent to the
level « test that rejects for large values of the statistic K + % -J. This result
is trivial for r (d) = co. For r(d) < oo and K > 0 or J —r (D) > 0, note first that
for fixed d the QCLR statistic is strictly increasing in (J, K). Further, for any L > 0,
the L level set of the QC LR, statistic is of the form L = K + —%— . J so that fixing

L+r(d)
D=d,

2 2 L
{(J,K)€R+:QCLRr:L}:{(J,K)ERJF:L:KJFHT(CZ).J}.

To verify that this is the case, note that if we plug K = L — % - J into the

L+r
QCLR, statistic and collect terms we have

QC’LRT1(L—|—%-J?‘(d)%—d([ﬁ—r(d}%—%-ﬂ) 4J-r(d)).

2 L+r( Lrl
However,
<L+'r’(d)+Ljr(f)(d>‘J> — 47 r(d) = (LJ”(d)_L:(?C"i)(cl)'J)

andthusforK:L—#r(d)-J,

1 r(d) B o or(d) 2
QOLR2(L+L+T(d)-J r(d)+\l<L+T(d) It @ J))

Since we've taken K = L — ﬁ(D) -J and we know K > 0, we have that J < L+ (d).

Thus L+ r (d) — Li(;l() 3 ~J = 0 and we can open the square root and collect terms to
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obtain QCLR, = L on the set {(J, K)eRY:L=K+ L+r( B J}, as we claimed.

Conditional on D = d the rejection region of ¢gcrr, is

Wlrd)
r(d) ‘]}'

{(J, K) €RY 1 qa(r(d) < K+ (f('d» n

Since J and K are pivotal under the null,

Ga (r(d))
Pr— o (r(d) < K + JID=d; =
r O,up {q (T( )) o (T’(d)) + T‘(d)
so since K + 7(61“(%)?7"( = J is continuously distributed with support equal R, g, (r(d))

must be the 1 — o quantile of this random variable. Hence, if we define the test ¢z p

as in (18) with a(D) = %, we can see that ¢, (a(d)) = ¢, (d) and thus that

®QcLr, = ®a) conditional on D = d. Since this holds for all d, ¢gcrr, = ¢a)-
Thus, for any function r : D — R} U {oo} there is a function a : D — [0, 1] such that

bQeLR, = Pa(D)-

To prove the converse, that for any CLC test ¢qp) for a : D — [0,1] we can
find a function r : D — R U {oo} yielding the same test, fix the function a(D) and
note that ¢, (r(D)) is a continuous function of r(D) which is deceasing in r(D) and

is bounded below by x2, _, and above by x7,_, (see Moreira (2003)). Hence for any

qa(r(d))

value d, as r(d) goes from zero to infinity a0 Ty Varies continuously between zero

. . o(r(d . o (r(d o (00
and one, with lim, (40 m = 1 and lim,(g)—00 qa(qr(fi)gﬁz(d) = qaq(oi)ﬁoo =0.If

a(d) = 0 define 7 (d) = oco. If a(d) > 0, note that there exists a value * < oo such

that a(d) > qaq(jji;?”, so by the intermediate value theorem we can pick 7(d) € [0, r7]

such that a(d) = % Repeating this exercise for all values d we can construct

a function 7 : D — Ry U {oo} such that ¢,p) = ¢ocrr,, completing the proof.
Proof of Proposition 1

The discussion preceding Proposition 1 establishes that under (6o, ), (Jr, K1, D7) —4
(J,K,D) and 4 —, . Since we assume that a (D, ) is almost everywhere continuous
with respect to the limiting distribution F' and ¢, (a) is a continuous function of a,

the Continuous Mapping Theorem establishes that

Kr +a(Dr,7) Jr = ca(a(Dr,7)) =a K +a(D,7)J = ca(a(D,7)).
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Since zero is a point of continuity of the distribution of the right hand side this implies

that
Pre o {Er +a(Dp, %) Jp > co (a(Dp, %))} —
Prop—ou, {K+a(D,y)J > cq(a(D,7))} =«

which proves (22). To prove (23) note that the results above establish that ¢qp ) is

almost-everywhere continuous with respect to F', and hence for f € F

(¢a(DTﬁ) - 04) f(Dr) —a <¢a(D,7) - 04) f(D).

Since the left hand side is bounded, convergence in distribution implies convergence

in expectation, proving (23).

Proof of Proposition 2

Let us take the estimator € to be

O ( g?ff g?ffi ) _
Qar Qss
1zt( A ) (fulBo)' = fr (Bo)' G5 hilBo) = 330r (B0)" )

2 f(Bo) — 2 fr (o)

and ) )
5 ( A ) |
QpfQorldyf 27 Qosldyf
These choices imply that our Sy and Kr coincide exactly with AR and LM in ACG,
and that our Dr is \/TQ;JC%ZA) for D as in ACG. To prove the proposition we will rely
heavily on their results. ACG consider two cases: sequences Ay for which v/T||mr]|
converges to a constant and those for which it diverges to infinity.

Let us begin by considering the case where v/T||mp|| converges. ACG establish
that for this case their (LM, AR, lA)) converges in distribution to (X%, o1, l~)> where
all three random variables are independent and D has a non-degenerate Gaussian
distribution. Since fo —p §2¢p which is full-rank by assumption, this proves that
(Kr,St, Dr) —q (X%, X34, D) where again all the variables on the RHS are mutu-
ally independent and D has a non-degenerate Gaussian distribution. Thus, by the

Continuous Mapping Theorem and consistency of f]gg and f]@g, which under the null
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follows from (6.7) and (6.9) in ACG, we have that

(1 - a(DT/S/)) Kr + CL(DT/S/)ST — Ca (a(DT/?)) —d
(1 —a(D,7)) K +a(D,7)S — ca (a(D,7))

which establishes correct asymptotic size under sequences with +/T||77|| converging.

Next, consider the case where v/T||mp|| diverges. Let

(gTy AgTaﬁ/) =h (gT7 AgT”?? ||7TT||_1) ’

and define the random variables Dy, 3, and ¥p accordingly. ACG equation (6.22)
establishes that in this case Dy —, D* for ||D*|| > 0, and equations (6.7) and (6.21)
together establish that Sp —p 0. Our assumption on a(f)Tﬁ) thus implies that
a(Dp,%) =, ag. Since ACG establish the convergence in distribution of (LM, AR)

under sequences of this type, we have that

(1 —a(Dr, ﬁ)) Kp + a(Dp,&r)Sr — co (a(Dr, &) —a (1 — ao) K + agS — cq (ao)

ol
under these sequences. By the assumed invariance the postmultiplication, however,

and thus that the CLC test ¢a( i) has asymptotic rejection probability equal to «

this implies that ¢,(p; ) has asymptotic rejection probability a as well.
To complete the proof, following ACG we can note that the above argument verifies
their Assumption B* and that we can thus use ACG Corollary 2.1 to establish the

result.

Proof of Proposition 3

Follows by the same argument as the first part of Proposition 1.

Proof of Proposition 4

As discussed in the text, ¢k is efficient in the limit problem (25) by the Neyman-

Pearson Lemma, and ¢, = ¢ap,45) for a(D,v) =0, a € A, so

Fm Ergoy [0xr] = sup lim Ero. (Pa(0r.)]
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follows from Proposition 3.

If a(D,y) = 0 almost surely, then we have that limy_. Er g.) [gzﬁa(DTﬁ)}
im0 Er,(0,4) [0K7) by Proposition 3. If, on the other hand, Pr{a(D,v) # 0} =
0 > 0, note that D = g is non-random in the limit problem, so this implies that
a(p,v) = a* # 0. Note, however, that the test ¢,« does not satisfy the necessary con-
dition for a most powerful test given in Theorem 3.2.1 in Lehmann and Romano and
thus has strictly lower power than the test ¢x in the limit problem, which together

with Proposition 3 implies that limy_,o Er 0, {qba( DT,&)} < limyp_yo0 Er(0,9) [PKr]-

Proof of Theorem 5

Define My = {up -b:b e RP}. Note that for any ¢ > 0, there exists C; > 0 such
that

nf f B ) .
aél[%),l] meMLl;Ihm||>C< DY [Qb ] > ¢

Note further that C; — oo as ¢ — 0. Since the test ¢x is UMP over the class
of tests depending on (J, K, D) against m € M/ for ¥p = 0, we can see that for

u
m,[1p,Y

= SUPue(0,1] Empupny [@a] we have By = Ep (9] ¥Ym € My, Thus,

SUD (B s — By [8a]) = SUD (B (0] = By [00]) -

meMyp, meMy,

Next note that, as discussed in the proof of Proposition 4, none of the tests ¢, : a €
(0, 1] satisfy the necessary condition for an optimal test against m € M for Xp =0

given in Lehman and Romano Theorem 3.2.1. Thus if we define

e(a) = sup (Empupny [9x] = Emppy [Pal)

meMy,

we have that e(a) > 0 VYa € (0,1]. Moreover for all a there is some m* € M/, such
that

8((1) = Em*#D,’Y [¢K] - Em*,#DN [(bll] )

which can be seen by noting that for ( = @, Be = {m:|lm|| < C}, and A =
Mpn BgC (for Bg< the complement of B, )

Slég (Em’“D’7 [(bK] - Emn“D,’Y [¢a]) <1- ¢ (Qa)
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by the definition of C,. Thus, for A= M;nN Be,,

e(a) = sup (Einpupy (0] = Emup o [9])

meA

Since A is compact and Ey, ;) [0x] — Emjup - [¢a] is continuous in m, the sup must
be attained at some m* € A.

Since Ey, up ~ [@a) is continuous in a for all m, the fact that

e(a) = sup (Enpupy [9x] — Empup,y [0a])
meMy
is achieved implies that € (a) is continuous in a. We know that €(0) = 0 by definition,
so 0 is the unique minimizer of €(a) over [0, 1]. By the compactness of [0, 1], this implies
that for any ¢ > 0 there exists € (§) > 0 such that e(a) < £(9) only if a < 0. Further,
by the intermediate value theorem there exists a(d) > 0 such that € (a(J)) = %)
To prove Theorem 5 we want to show that under the assumptions of the theorem,

for all v > 0 there exists N such that n > N implies

arg min su u - E, 1) <.
gae[o,ﬂ meMD(#IJ)D,n,’Yn) ( LD, nyTn yHD,nsTYn [¢ ])
Fixing v, let & = & (v), a* = a(v), for £(-) and a (-) as defined above. Let (* = %,
and take C* to be such that
inf — Epyupy[@a] > 1= C

meRFE:||m||>C*

Under our assumptions and the continuity of E,, ., [¢a] in (M, pip, 7, @), there exists
some N such that for n > N,

infl Sup ( ;Lnuu'D,na'Yn - EmnufD,na'Yn [¢a]) > 3C*
a€lv, ]mEMD(,uD,n;yn)ﬂBc*

while

Sup ( ;’L’LvﬂD,na'Yn - EW,MD,n,’yn [¢a*]) < BC*
mEMD(ﬂD,7L’7n)mBC*

and
sup ( mn — Emup o [%*]) <2¢".

mGMD (MD,nu'Yn)mBg*
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Thus, for n > N we have

u

SumeMD(ND,n»'Yn) ( MWD iy Tn - EmnuD,nv'Yn [¢a*]) <

infae[’/vl] SupmeMD(uD,n,'yn)ﬁBc* (6%,#&7“% - Em,.U»D,nﬁn [Qsa])

and thus that a (1up ,, 7,) < v since a* < v. Since we can repeat this argument for all

v > 0 we obtain that a (ftpn, ) — 0 as desired.

Proof of Corollary 2

Let (gr, Agr,7) = h(gT,AgT,ﬁ;rfl/\/T> for h as defined in (21), and note that
this is the same definition of (gr, Agr,?) given near the beginning of Appendix 1.
By the postmultiplication-invariance of plug-in tests with equivariant fip, tests based
on (§r, Agr,7) with plug-in estimate fip = Dy will be the same as those based on
(91, Agr,4) with estimate fip = Dp. To prove the result we will focus on tests based
on (gr, Agr,7)-

As established in the main text, (g7, Agr,7) converges in distribution to (g, Ag, )
in a Gaussian shift model with y = F[Z;Z;]' c and b = b*. Note that in linear IV we

have
Mo (pp, ) = {(I = sy -b) " ip - b: b € R}

Hence, for any sequence (fip , Vo) With pp, — g, ||| > 0, and Xg, (7,) — 0 we can
see that for any C' > 0

drr (Mp (D, Yn) N Be, {pup -b: b € R”} N Bo) — 0,

so by Theorem 5 we have that ap; (tpn,7n) — 0. Note, however, that under our
assumptions (fip,d) —p (i,7y) with [|p|| > 0 and g, () = Xp (y) = 0. Thus, the
Continuous Mapping Theorem yields that apy (fip, %) —, 0.

Proof of Corollary 3

Note that

[N

M@ = {03 0= 1600 =t {(r7'Q,) " (7(0)~ F(B0)) : 6 € O}
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For any sequence r7'Q, 7 — Q,0 and Bo = {m € R? : ||m|| < C} for C > 0 we have
that

lim dgy ({r;% (r;lﬂn,T)’% (f(0)—f(00):0€ @} N Be, {r;%g;é (f(0)—f(6)):0€ @} N Bc) =0.

T— o0

From the definition of differentiability, we know that

L F(O) = F(B0) = 0 f (60) (0~ 00)

=0.
600 16 = 6ol

Thus, for any sequence ép — 0,

T— é(ﬂ@—f@@—afwMW—%ﬁzo

70 119—0o|| <o o0

Moreover, by our identifiability assumption on 6, we know that for any constant
K >0,
lim sup 116 — 6o]| = 0.
1

T—o0 1 1 1
0:r 2 ||Qn’02 f(9)—Qnyg (60)||I<K

Combined with the previous equation, this implies that

0

Q3 (F(0) = £ (00)) — 2~ f (60) (0 — 0)

o0’ =0

lim sup T
T—o0 1

_1 _1
0:r. 21192, § F(6)—

_1
L2 f00)I<K

which in turn shows that for any C' > 0, provided # belongs to the interior of ©

dn <r;5 {9;0 (F(0)— F(8): 0 € @}ch,rgé {Q;éjalf(eo)-b:beRp}mBC> 0.

Thus, we see that for any r7'Q, 7 — Q,0 the convergence required by Theorem
5 holds, so for the corresponding sequence {vyr};_, we have that ayng (y7) — 0.
Hence, by the Continuous Mapping Theorem we have that under our assumptions
aymr (5) =, 0. 1

One can show that sequences of local alternatives of the form 0 = 6y + r7.b* yield
Gaussian Shift limit problems in this model. The fact that apar (§) —, 0 implies, by
Proposition 4, that the MMR test is asymptotically efficient against such sequences,
and hence that the MMR test is asymptotically efficient under strong and semi-strong

identification, as we wanted to prove.
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