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This appendix contains asymptotic results and proofs for the paper “Conditional
Linear Combination Tests for Weakly Identified Models,” by Isaiah Andrews.

Appendix 1: Asymptotic Properties of CLC Tests
The results of Sections 3-7 of the main text treat the limiting random variables
(g, �g, “) as observed and consider the problem of testing H0 : m = 0, µ œ M against
H1 : m œ M(µ)\{0}, µ œ M. In this appendix, we show that under mild assump-
tions our results for the limit problem (2) imply asymptotic results along sequences of
models satisfying (1). We first introduce a useful invariance condition for the weight
function a and then prove results concerning the asymptotic size and power of CLC
tests.

We previously wrote the weight functions a of CLC tests as functions of D alone,
since in the limit problem the parameter “ is fixed and known. In this appendix,
however, it is helpful to instead write a(D, “). Likewise, since the estimator µ̂D used
in plug-in tests may depend on “, we will write it as µ̂D (D, “).

Appendix 1.1 Postmultiplication Invariant Weight Functions

Our weak convergence assumption (1), together with the continuous mapping theorem,
implies that DT æd D for D normally distributed, where we assume that D is full
rank almost surely for all (◊, “) œ � ◊ �. In many applications such convergence will
only hold if we choose an appropriate normalization when defining �gT , which may
seem like an obstacle to applying our approach. In the linear IV model for instance,
the appropriate definition for �gT will depend on the strength of identification.

35



Example I: Weak IV (Continued) In Section 2 we assumed that the instruments
were weak, with fiT = cÔ

T
, and showed that �gT =

Ô
T �̂≠ 1

2
ff

ˆ
ˆ—

fT (—0) converged in
distribution. If on the other hand the instruments are strong, fiT = fi1 and ||fi1|| > 0,
then ˆ

ˆ—
fT (—) æp E [XtZt] ”= 0 so

Ô
T �̂≠ 1

2
ff

ˆ
ˆ—

fT (—0) diverges and we should instead
take �gT = �̂≠ 1

2
ff

ˆ
ˆ—

fT (—0).⇤
This apparent dependence on normalization is not typically a problem, however,

since many CLC tests are invariant to renormalization of (gT , �gT , “̂). In particular,
for A any full rank p ◊ p matrix consider the transformations

h�g (�gT ; A) = �gT A

h� (�; A) =
Q

a

S

U 1 0
0 A

T

V ¢ Ik

R

b
Õ

�
Q

a

S

U 1 0
0 A

T

V ¢ Ik

R

b

and let h“ (“; A) be the transformation of “ such that � (h“ (“; A)) = h� (� (“) ; A) .

Let
h (gT , �gT , “̂; A) = (gT , h�g (�gT ; A) , h“ (“̂; A)) (21)

and note that the statistics JT and KT are invariant to this transformation for all full
rank matrices A, in the sense that their values based on (gT , �gT , “̂) are the same as
those based on h (gT , �gT , “̂; A). Thus if we choose a weight function a(D, “) which
is invariant, the CLC test „a(DT ,“̂) will be invariant as well. Formally, we say that
the weight function a(D, “) is invariant to postmultiplication if for all full-rank p ◊ p

matrices A we have
a(D, “) = a (h�g (D; A) , h“ (“; A)) ,

where we have used the fact that D calculated using h (g, �g, “; A) is equal to h�g (D; A) .

Invariance to postmultiplication is useful since to obtain results for invariant tests
based on (g̃T , �g̃T , “̃) it su�ces that there exist some sequence AT such that

(gT , �gT , “̂) = h (g̃T , �g̃T , “̃; AT )

satisfies the weak convergence assumption (1), without any need to know the correct
sequence AT for a given application. Thus, in the linear IV example discussed above
we can take �gT as originally defined and make use of results derived under the
convergence assumption (6) without knowing identification strength in a given context.
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The class of postmultiplication-invariant weight functions a is quite large, and
includes all the weight functions discussed above. In particular we can choose the
minimax regret weight function aMMR to be invariant to postmultiplication. Likewise,
provided we take the estimator µ̂D(D, “) to be equivariant under transformation by
h, so that h�g (µ̂D(D, “); A) = µ̂D (h�g (D; A) , h“ (“; A)), the plug-in weight function
aP I will be invariant as well.

Appendix 1.2 Asymptotic Size and Power of CLC Tests

Let F (g, �g, “) denote the distribution of (g, �g, “) in the limit problem, noting that
the marginal distribution for “ in the limit problem is a point mass. Since we have as-
sumed that D is full rank almost surely, J and K are F -almost-everywhere continuous
functions of (g, �g, “) and the continuous mapping theorem implies

(JT , KT , DT ) æd (J, K, D) .

To obtain asymptotic size control for the CLC test

„a(DT ,“̂) = 1 {(1 ≠ a (DT , “̂)) · KT + a (DT , “̂) · ST > c– (a (DT , “̂))}

all we require is that a be almost-everywhere continuous. Indeed, this test is asymp-
totically conditionally similar in the sense discussed by Jansson and Moreira (2006).

Proposition 1 Assume (gT , �gT , “̂) satisfies the weak convergence assumption (1)
and let a(D, “) be F (g, �g, “)-almost-everywhere continuous for (◊0, “) œ {◊0} ◊ �.
Then under (◊0, “) we have that

lim
T æŒ

ET,(◊0,“)
Ë
„a(DT ,“̂)

È
= –. (22)

Moreover, for F the set of bounded functions f(D) which are F (g, �g, “)-almost-
everywhere continuous under (◊0, “),

lim
T æŒ

ET,(◊0,“)
Ë1

„a(DT ,“̂) ≠ –
2

f (DT )
È

= 0 ’f œ F . (23)

It is important to note that Proposition 1 only establishes sequential size control,
and depending on the underlying model establishing uniform size control over some
base parameter space may require substantial further restrictions. In Example I,
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however, we can use results from D. Andrews et al. (2011, henceforth ACG) to prove
that a large class of CLC tests based on postmultiplication-invariant weight functions
control size uniformly in heteroskedastic linear IV with a single endogenous regressor.
Unfortunately, however, matters are less clear in the case with multiple endogenous
regressors. In that context, D. Andrews and Guggenberger (2014) show that while
K tests have uniformly correct asymptotic size over a large parameter space, the
asymptotic size of QCLR tests depends on the construction of the weighting function
r (D) . Correspondingly, only a subset of conditional linear combination tests will have
correct asymptotic size in that context.

Example I: Weak IV (Continued) Define �̂ and �̂ in the usual way (detailed in
the proof of Proposition 2 below). Define a parameter space � of null distributions as
in ACG Section 3, noting that “ consists of the elements of (�F , �F , �F ) in the nota-
tion of ACG. Building on results in ACG it is straightforward to prove the following
proposition:

Proposition 2 Consider the CLC test „a(DT ,“̂) based on a postmultiplication-invariant
weight function a(D, “) which is continuous in D and “ at all points with ||D|| > 0
and satisfies

lim
”æ0

A
sup

(D,“):||D||>Á,maxeig(�D)Æ”

a(D, “)
B

= lim
”æ0

A
inf

(D,“):||D||>Á,maxeig(�D)Æ”
a(D, “)

B
= a0 (24)

for some constant a0 œ [0, 1], maxeig (A) the maximal eigenvalue of A, and all Á > 0.
The test „a(DT ,“̂) is uniformly asymptotically similar on �:

lim
T æŒ

inf
⁄œ�

ET,⁄

Ë
„a(DT ,“̂)

È
= lim

T æŒ
sup
⁄œ�

ET,⁄

Ë
„a(DT ,“̂)

È
= –.

The assumption (24), together with the assumed postmultiplication invariance of
a (D, “) and the restrictions on the parameter space �, ensures that under sequences
with

Ô
T ||fiT || æ Œ we have that a (DT , “̂) æp a0 asymptotically, and hence that un-

der all strongly identified sequences the test converges to the linear combination test
„a0 . We show in the next section that for a0 = 0 this condition plays an important
role in establishing asymptotic e�ciency of CLC tests in linear IV under strong iden-
tification, and will verify this condition for PI tests „P I in linear IV. The conditions
needed to ensure that aP I satisfies the continuity conditions in Proposition 2 are much
less clear, but we can always create a su�ciently continuous weight function ã which
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approximates aP I arbitrarily well by calculating aP I on a grid of values for (D, “) and
taking ã to continuously interpolate between these values.18⇤

Power results in the limit problem (2) also imply asymptotic power results un-
der (1). In particular, for a (D, “) almost everywhere continuous with respect to
F (g, �g, “), the asymptotic power of „a(DT ,“̂) is simply the power of „a(D,“) in the
limit problem.

Proposition 3 Assume (gT , �gT , “̂) satisfies the weak convergence assumption (1)
and let a(D, “) be F (g, �g, “)-almost-everywhere continuous for some (◊, “) œ � ◊ �.

Then under (◊, “)

lim
T æŒ

ET,(◊,“)
Ë
„a(DT ,“̂)

È
= Em,µD,“

Ë
„a(D,“)

È

where m = m(◊, ◊0, “) and µD are the parameters in the limit problem.

Thus, under mild continuity conditions on a(D, “), the asymptotic size and power
of tests under (1) are just their size and power in the limit problem. Moreover,
su�ciently continuous postmultiplication invariant weight functions a(D, “) which
select a fixed weight a0 under strong identification yield uniformly asymptotically
similar tests in heteroskedastic linear IV.

Appendix 1.3 Asymptotic E�ciency Under Strong Identifica-
tion

The power results above concern the asymptotic properties of CLC tests under general
conditions that allow for weak identification, but since the commonly-used non-robust
tests are e�cient under strong identification we may particularly want to ensure that
our CLC tests share this property.

As noted in Section 3, under strong identification we typically have that �◊◊ =
0, �◊g = 0, that µ is full rank, and that M(µ) = {µ · c : c œ Rp} . We say that
(gT , �gT , “̂) converges to a Gaussian shift model under (◊, “) if (gT , �gT , “̂) æd

(g, �g, “) for Q

a g

vec(�g)

R

b ≥ N

Q

a

Q

a µ · b

vec(µ)

R

b ,

Q

a I 0
0 0

R

b

R

b (25)

18To ensure that ã is invariant to postmultiplication we can fix ||D|| = 1 in the grid used to calculate
ã and evaluate ã for other values by rescaling the problem to ||D|| = 1 using the transformation (21).
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where µ is full rank and b œ Rp. Under strong identification, general GMM models
parametrized in terms of local alternatives converge to Gaussian shift models. In many
cases strong identification is not necessary to obtain convergence to (25), however, and
sequences of models between the polar cases of weak and strong identification, like the
“semi-strong” case discussed in D. Andrews and Cheng (2012), often yield Gaussian
shift limit problems under appropriately defined sequences of local alternatives.

Example I: Weak IV (Continued) Suppose that fiT = rT c for c œ Rp with
||c|| > 0 for any sequence {rT }Œ

T =1 such that rT æ r as T æ Œ and
Ô

TrT æ Œ. For
0 < r < Œ this is the usual, strongly identified case, while for r = 0 this is falls into
the “semi-strong” category of D. Andrews and Cheng (2012): the first stage converges
to zero, but at a su�ciently slow rate that many standard asymptotic results are pre-
served. Let �̃ be a consistent estimator for limT æŒ V ar

31Ô
TfT (—0)Õ , r≠1

T fT (—0)Õ
2Õ

4

and define g̃T (—) =
Ô

T �̃≠ 1
2

ff fT (—) and “̃ = vec
1
�̃

2
as before. Consider sequences of

local alternatives with —T = —0 + bú

rT

Ô
T

and let �g̃T = r≠1
T �̃≠ 1

2
ff

ˆ
ˆ—

fT (—). As T æ Œ,

(g̃T , �g̃T , “̃) converges to the Gaussian shift limit problem (25) with µ = E [ZtZ Õ
t] c

and b = bú.⇤
In the Gaussian shift limit problem (25), the Neyman Pearson Lemma implies

that the uniformly most powerful level – test based on (J, K, D) is „K as defined in
(16). Further, under the weak convergence assumption (1) for (g, �g) as in (25) the
test „KT

= 1
Ó
KT > ‰2

p,1≠–

Ô
is asymptotically e�cient in the sense of Mueller (2011)

for a family of elliptically-contoured weight functions.19 Under strong identification
„KT

= 1
Ó
KT > ‰2

p,1≠–

Ô
is also generally equivalent to the usual Wald tests, though

we will need conditions beyond (1) to establish this. It is straightforward to show
that a CLC test based on the weight function a (D, “) will share these properties,
and so be asymptotically e�cient under sequences converging to (25), if and only if
a (DT , “̂) æp 0 under such sequences.

Proposition 4 Denote by Ac the class of weight functions functions a(D, “) that are
continuous in both D and “ for all full-rank D. Fix (◊, “) œ � ◊ � with ◊ ”= ◊0 and

19Formally, in the limit problem µ = �g is known so to derive weighted average power optimal
tests we need only consider weights on b. For any weights G (b) with density g (b) that depends on b
only through ÎµbÎ, so that g (b) Ã g̃ (ÎµbÎ) , „K is weighted average power maximizing in the limit
problem and by Mueller (2011) „KT is asymptotically optimal over the class of tests with correct
size under (1) and (25).
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suppose that (gT , �gT , “̂) converges weakly to the Gaussian shift limit problem (25)
with b ”= 0. For a (D, “) almost-everywhere continuous with respect to the limiting
measure F (g, �g, “) under (◊, “),

lim
T æŒ

ET,(◊,“)
Ë
„a(DT ,“̂)

È
= sup

ãœAc

lim
T æŒ

ET,(◊,“)
Ë
„ã(DT ,“̂)

È

if and only if a (D, “) = 0 almost surely with respect to F (g, �g, “). Thus

lim
T æŒ

ET,(◊,“) [„KT
] = sup

ãœAc

lim
T æŒ

ET,(◊,“)
Ë
„ã(DT ,“̂)

È
.

Using this proposition, it is easy to see that the condition (24) that we used to
ensure uniformly correct size for CLC tests in linear IV Example I will also ensure
asymptotic e�ciency under strong and semi-strong identification provided a0 = 0.

It is straightforward to give conditions under which MMRU tests select a (µD, “) =
0 asymptotically in sequences of models converging to Gaussian shift experiments:

Theorem 5 Suppose that for some pair (µD, “) œ MD ◊ � with µD full-rank and
�◊g (“) = �◊◊ (“) = 0, for all C > 0 and all sequences (µD,n, “n) œ MD ◊ � such that
(µD,n, “n) æ (µD, “) we have

dH (MD (µD,n, “n) fl BC , {µD · b : b œ Rp} fl BC) æ 0

where BC = {m : ||m|| Æ C} and dH (A1, A2) is the Hausdor� distance between the
sets A1 and A2,

dH (A1, A2) = max
I

sup
x1œA1

inf
x2œA2

Îx1 ≠ x2Î , sup
x2œA2

inf
x1œA1

Îx1 ≠ x2Î
J

.

Then for —u
m,µD,n,“n

= supaœ[0,1] Em,µD,n,“n [„a] and all (µD,n, “n) æ (µD, “) the MMRU
weight

aMMRU (µD,n, “n) = arg min
aœ[0,1]

sup
mœMD(µD,n,“n)

1
—u

m,µD,n,“n
≠ Em,µD,n,“n [„a]

2

satisfies aMMRU (µD,n, “n) æ 0.

Using Theorem 5 we can show that PI tests will be e�cient under strong and semi-
strong identification in Example I, while MMR tests will be e�cient under strong and
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semi-strong identification in Example II, where the MMR and MMRU tests coincide.

Example I: Weak IV (Continued) Define (gT , �gT , “̂) as in Section 1, and as
above let fiT = rT c for c œ Rp with ||c|| > 0. For simplicity we take µ̂D = DT but the
extension to other estimators is straightforward.

Corollary 2 Provided
Ô

TrT æ Œ, we have that in the linear IV model aP I (µ̂D, “̂) æp

0 and thus that the PI test based on (gT , �gT , “̂) is e�cient under strong and semi-
strong identification.⇤

Example II: Minimum Distance (Continued) We can model semi-strong iden-
tification in this example by taking �÷ = rT �÷,0 where rT æ 0 and r≠1

T �̂÷ æp �÷,0,
noting that rT = 1

T
is the typical strongly identified case. Again define “̂ = vec

1
�̂÷

2

and note that M (“̂) =
;

�̂≠ 1
2

÷ (f (◊) ≠ f (◊0))
<

. Defining gT (◊) = �̂≠ 1
2

÷ (÷̂ ≠ f(◊)) and

�gT (◊) = ˆ
ˆ◊

gT (◊) = �̂≠ 1
2

÷
ˆ
ˆ◊

f(◊) as before, a global identification assumption yields
that PI tests are asymptotically e�cient.

Corollary 3 Assume that ◊ is in the interior of � and that for all ” > 0 there exists
Á (”) > 0 such that ||f(◊̃) ≠ f(◊)|| < Á(”) implies ||◊̃ ≠ ◊|| < ”. Provided rT æ 0, the
MMR weight function aMMR satisfies aMMR (“̂) æp 0 and the MMR test is e�cient
under strong and semi-strong identification.⇤

Hence, in our examples the plug-in test „P I is asymptotically e�cient under strong
and semi-strong identification.

Appendix 2: Proofs

Proof of Theorem 2

Statement (1) follows from results in Monti and Sen (1976) and Koziol and Perl-
man (1978). Specifically, both papers note that if (A, B) ≥

1
‰2

k≠p (·A) , ‰2
p (·B)

2
and

(·A, ·B) = ⁄ · (tA, tB) for tA, tB Ø 0 then for „ any size – test for H0 : ·A = ·B = 0
based on (A, B) there exists some ⁄̄ > 0 such that for 0 < ⁄ < ⁄̄,

E(·A,·B) [„] Æ E(·A,·B)

C

1
I

tA

k ≠ p
A + tB

p
B > c

JD
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for c the 1 ≠ – quantile of a tA

k≠p
‰2

k≠p + tB

p
‰2

p distribution. Statement (1) then follows
immediately by the fact that (J, K) |D = d ≥

1
‰2

k≠p (·J) , ‰2
p (·K)

2
.

Establishing statement (2) is similarly straightforward. In particular for FtK ,tJ

as described in Theorem 2, Koziol and Perlman note that we can use the Neyman
Pearson Lemma to establish that the weighted average power maximizing level – test
based on (A, B) ≥

1
‰2

k≠p (·A) , ‰2
p (·B)

2
is „ú

F = 1
Ó

tK

tK+1A + tJ

tJ +1B > c
Ô
, where c is

the 1 ≠ – quantile of a tK

tK+1‰2
p + tJ

tJ +1‰2
k≠p distribution. In particular, for �– the class

of level – tests based on (A, B),

„ú
F œ arg max

„œ�–

ˆ
T (d)

E·A,·B
[„] dF (·A, ·B).

Statement (2) again follows from the fact that (J, K) |D = d ≥
1
‰2

k≠p (·J) , ‰2
p (·K)

2
.

Proof of Theorem 3

By the independence of J, K, and D under the null, conditional on the event D = d

K + a(D) · J |D = d ≥ ‰2
p + a(d) · ‰2

k≠p.

Hence
Pr {K + a(D) · J > c– (a (D))| D = d} = –

so Em=0,µD

Ë
„a(D)

--- D = d
È

= – for all d in the support of D and all values µD.
Em=0,µD

Ë
„a(D)

È
can then be written as

ˆ
Em=0,µD

Ë
„a(D)

--- D = d
È

dFD =
ˆ

–dFD = –

for FD the distribution of D, proving the theorem.

Proof of Lemma 1

We prove that Em,µD

Ë
„a(D)|D

È
Ø – almost surely, from which Em,µD

Ë
„a(D)

È
Ø –

follows immediately. Fix some CLC weight function a (D) . Recall that conditional
on D = d, J and K are independently distributed ‰2

k≠p (·J) and ‰2
k (·k) , respectively,

and
K + a(D) · J |D = d ≥ ‰2

p (·K) + a(d) · ‰2
k≠p (·J) .
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The CLC test „a(D) will reject if and only if K+a(d)·J > c– (a (d)), and the conditional
probability of this event under ·J = ·K = 0 is –. To establish the result, we need
only show that the probability of this event is at least – under any pair (·J , ·K) ”= 0.
However, this follows from the form of the CLC test statistic and the observation that
a noncentral ‰2 distribution is increasing in its noncentrality parameter (in the sense
of first-order stochastic dominance).

Proof of Theorem 4

We first argue that conditional on D = d the test „QCLRr is exactly equivalent to the
level – test that rejects for large values of the statistic K + q–(r(d))

q–(r(d))+r(d) · J . This result
is trivial for r (d) = Œ. For r (d) < Œ and K > 0 or J ≠ r (D) > 0, note first that
for fixed d the QCLR statistic is strictly increasing in (J, K). Further, for any L > 0,
the L level set of the QCLRr statistic is of the form L = K + L

L+r(d) · J so that fixing
D = d,

Ó
(J, K) œ R2

+ : QCLRr = L
Ô

=
I

(J, K) œ R2
+ : L = K + L

L + r(d) · J

J

.

To verify that this is the case, note that if we plug K = L ≠ L
L+r(d) · J into the

QCLRr statistic and collect terms we have

QCLRr = 1
2

Q

caL + r (d)
L + r (d) · J ≠ r(d) +

ı̂ıÙ
A

L + r (d) + r (d)
L + r (d) · J)

B2

≠ 4J · r(d)

R

db .

However,
A

L + r(d) + r (d)
L + r (d) · J

B2

≠ 4J · r(d) =
A

L + r (d) ≠ r (d)
L + r (d) · J

B2

and thus for K = L ≠ L
L+r(d) · J ,

QCLR = 1
2

Q

caL + r (d)
L + r (d) · J ≠ r(d) +

ı̂ıÙ
A

L + r (d) ≠ r (d)
L + r (d) · J

B2
R

db .

Since we’ve taken K = L≠ L
L+r(D) ·J and we know K Ø 0, we have that J Æ L+r (d).

Thus L + r (d) ≠ r(d)
L+r(d) · J Ø 0 and we can open the square root and collect terms to
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obtain QCLRr = L on the set
Ó
(J, K) œ R2

+ : L = K + L
L+r(d) · J

Ô
, as we claimed.

Conditional on D = d the rejection region of „QCLRr is
I

(J, K) œ R2
+ : q– (r(d)) < K + q– (r(d))

q– (r(d)) + r(d) · J

J

.

Since J and K are pivotal under the null,

Prm=0,µD

I

q– (r(d)) < K + q– (r(d))
q– (r(d)) + r(d) · J

----- D = d

J

= –,

so since K + q–(r(d))
q–(r(d))+r(d) ·J is continuously distributed with support equal R+, q– (r(d))

must be the 1 ≠ – quantile of this random variable. Hence, if we define the test „ã(D)

as in (18) with ã(D) = q–(r(D))
q–(r(D))+r(D) , we can see that c– (ã (d)) = q– (d) and thus that

„QCLRr = „ã(d) conditional on D = d. Since this holds for all d, „QCLRr © „ã(D).

Thus, for any function r : D æ R+ fi {Œ} there is a function ã : D æ [0, 1] such that
„QCLRr © „ã(D).

To prove the converse, that for any CLC test „a(D) for a : D æ [0, 1] we can
find a function r : D æ R+ fi {Œ} yielding the same test, fix the function a(D) and
note that q–(r(D)) is a continuous function of r(D) which is deceasing in r(D) and
is bounded below by ‰2

p,1≠– and above by ‰2
k,1≠– (see Moreira (2003)). Hence for any

value d, as r(d) goes from zero to infinity q–(r(d))
q–(r(d))+r(d) varies continuously between zero

and one, with limr(d)æ0
q–(r(d))

q–(r(d))+r(d) = 1 and limr(d)æŒ
q–(r(d))

q–(r(d))+r(d) = q–(Œ)
q–(Œ)+Œ = 0. If

a (d) = 0 define r̃ (d) = Œ. If a (d) > 0, note that there exists a value rú < Œ such
that a(d) > q–(rú)

q–(rú)+rú , so by the intermediate value theorem we can pick r̃(d) œ [0, rú]
such that a(d) = q–(r̃(d))

q–(r̃(d))+r̃(d) . Repeating this exercise for all values d we can construct
a function r̃ : D æ R+ fi {Œ} such that „a(D) © „QCLRr̃ , completing the proof.

Proof of Proposition 1

The discussion preceding Proposition 1 establishes that under (◊0, “), (JT , KT , DT ) æd

(J, K, D) and “̂ æp “. Since we assume that a (D, “) is almost everywhere continuous
with respect to the limiting distribution F and c– (a) is a continuous function of a,
the Continuous Mapping Theorem establishes that

KT + a (DT , “̂) JT ≠ c– (a (DT , “̂)) æd K + a (D, “) J ≠ c– (a (D, “)) .
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Since zero is a point of continuity of the distribution of the right hand side this implies
that

PrT,(◊0,“) {KT + a (DT , “̂) JT > c– (a (DT , “̂))} æ
Prm=0,µD

{K + a (D, “) J > c– (a (D, “))} = –

which proves (22). To prove (23) note that the results above establish that „a(D,“) is
almost-everywhere continuous with respect to F , and hence for f œ F

1
„a(DT ,“̂) ≠ –

2
f (DT ) æd

1
„a(D,“) ≠ –

2
f (D) .

Since the left hand side is bounded, convergence in distribution implies convergence
in expectation, proving (23).

Proof of Proposition 2

Let us take the estimator �̂ to be

�̂ =
Q

a �̂ff �̂f—

�̂—f �̂——

R

b =

1
T

q
t

Q

a ft(—0) ≠ fT (—0)
ˆ

ˆ—
ft(—0) ≠ ˆ

ˆ—
fT (—0)

R

b
1

ft(—0)Õ ≠ fT (—0)Õ ˆ
ˆ—

ft(—0)Õ ≠ ˆ
ˆ—

fT (—0)Õ
2

and

�̂ =
Q

a Ik �̂≠ 1
2

ff �̂f—�̂≠ 1
2

ff

�̂≠ 1
2

ff �̂—f �̂≠ 1
2

ff �̂≠ 1
2

ff �̂——�̂≠ 1
2

ff

R

b .

These choices imply that our ST and KT coincide exactly with AR and LM in ACG,
and that our DT is

Ô
T �̂≠ 1

2
ff D̂ for D̂ as in ACG. To prove the proposition we will rely

heavily on their results. ACG consider two cases: sequences ⁄T for which
Ô

T ||fiT ||
converges to a constant and those for which it diverges to infinity.

Let us begin by considering the case where
Ô

T ||fiT || converges. ACG establish
that for this case their (LM, AR, D̂) converges in distribution to

1
‰2

1, ‰2
k≠1, D̃

2
where

all three random variables are independent and D̃ has a non-degenerate Gaussian
distribution. Since �̂ff æp �ff which is full-rank by assumption, this proves that
(KT , ST , DT ) æd

1
‰2

1, ‰2
k≠1, D

2
where again all the variables on the RHS are mutu-

ally independent and D has a non-degenerate Gaussian distribution. Thus, by the
Continuous Mapping Theorem and consistency of �̂◊g and �̂◊◊, which under the null
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follows from (6.7) and (6.9) in ACG, we have that

(1 ≠ a(DT , “̂)) KT + a(DT , “̂)ST ≠ c– (a(DT , “̂)) æd

(1 ≠ a(D, “)) K + a(D, “)S ≠ c– (a(D, “))

which establishes correct asymptotic size under sequences with
Ô

T ||fiT || converging.
Next, consider the case where

Ô
T ||fiT || diverges. Let

(g̃T , �g̃T , “̃) = h
1
gT , �gT , “̂; ||fiT ||≠1

2
,

and define the random variables D̃T , �̃, and �̃D accordingly. ACG equation (6.22)
establishes that in this case D̃T æp Dú for ||Dú|| > 0, and equations (6.7) and (6.21)
together establish that �̃D æp 0. Our assumption on a(D̃T , “̃) thus implies that
a(D̃T , “̃) æp a0. Since ACG establish the convergence in distribution of (LM, AR)
under sequences of this type, we have that

1
1 ≠ a(D̃T , “̃)

2
KT + a(DT , ›T )ST ≠ c– (a(DT , ›T )) æd (1 ≠ a0) K + a0S ≠ c– (a0)

and thus that the CLC test „a(D̃T ,“̃) has asymptotic rejection probability equal to –

under these sequences. By the assumed invariance the postmultiplication, however,
this implies that „a(DT ,“) has asymptotic rejection probability – as well.

To complete the proof, following ACG we can note that the above argument verifies
their Assumption Bú and that we can thus use ACG Corollary 2.1 to establish the
result.

Proof of Proposition 3

Follows by the same argument as the first part of Proposition 1.

Proof of Proposition 4

As discussed in the text, „K is e�cient in the limit problem (25) by the Neyman-
Pearson Lemma, and „KT

= „ã(DT ,“̂) for ã (D, “) © 0, ã œ Ac, so

lim
T æŒ

ET,(◊,“) [„KT
] = sup

ãœAc

lim
T æŒ

ET,(◊,“)
Ë
„ã(DT ,“̂)

È
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follows from Proposition 3.
If a (D, “) = 0 almost surely, then we have that limT æŒ ET,(◊,“)

Ë
„a(DT ,“̂)

È
=

limT æŒ ET,(◊,“) [„KT
] by Proposition 3. If, on the other hand, Pr {a (D, “) ”= 0} =

” > 0, note that D = µ is non-random in the limit problem, so this implies that
a (µ, “) = aú ”= 0. Note, however, that the test „aú does not satisfy the necessary con-
dition for a most powerful test given in Theorem 3.2.1 in Lehmann and Romano and
thus has strictly lower power than the test „K in the limit problem, which together
with Proposition 3 implies that limT æŒ ET,(◊,“)

Ë
„a(DT ,“̂)

È
< limT æŒ ET,(◊,“) [„KT

].

Proof of Theorem 5

Define ML = {µD · b : b œ Rp} . Note that for any ’ > 0, there exists C’ > 0 such
that

inf
aœ[0,1]

inf
mœML:||m||>C’

Em,µD,“ [„a] > 1 ≠ ’.

Note further that C’ æ Œ as ’ æ 0. Since the test „K is UMP over the class
of tests depending on (J, K, D) against m œ ML for �D = 0, we can see that for
—u

m,µD,“ = supaœ[0,1] Em,µD,“ [„a] we have —u
m,µD,“ = Em,µD,“ [„K ] ’m œ ML. Thus,

sup
mœML

1
—u

m,µD,“ ≠ Em,µD,“ [„a]
2

= sup
mœML

(Em,µD,“ [„K ] ≠ Em,µD,“ [„a]) .

Next note that, as discussed in the proof of Proposition 4, none of the tests „a : a œ
(0, 1] satisfy the necessary condition for an optimal test against m œ ML for �D = 0
given in Lehman and Romano Theorem 3.2.1. Thus if we define

Á(a) = sup
mœML

(Em,µD,“ [„K ] ≠ Em,µD,“ [„a])

we have that Á(a) > 0 ’a œ (0, 1]. Moreover for all a there is some mú œ ML such
that

Á(a) = Emú,µD,“ [„K ] ≠ Emú,µD,“ [„a] ,

which can be seen by noting that for ’ = Á(a)
2 , BC = {m : ||m|| Æ C}, and A =

ML fl BC
C’

(for BC
C’

the complement of BC’
)

sup
mœA

(Em,µD,“ [„K ] ≠ Em,µD,“ [„a]) Æ 1 ≠ Á (a)
2
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by the definition of C’ . Thus, for Ã = ML fl BC’
,

Á(a) = sup
mœÃ

(Em,µD,“ [„K ] ≠ Em,µD,“ [„a]) .

Since Ã is compact and Em,µD,“ [„K ] ≠ Em,µD,“ [„a] is continuous in m, the sup must
be attained at some mú œ Ã.

Since Em,µD,“ [„a] is continuous in a for all m, the fact that

Á (a) = sup
mœML

(Em,µD,“ [„K ] ≠ Em,µD,“ [„a])

is achieved implies that Á (a) is continuous in a. We know that Á(0) = 0 by definition,
so 0 is the unique minimizer of Á(a) over [0, 1]. By the compactness of [0, 1], this implies
that for any ” > 0 there exists Á̄ (”) > 0 such that Á(a) < Á̄ (”) only if a < ”. Further,
by the intermediate value theorem there exists a(”) > 0 such that Á (a(”)) = Á̄(”)

2 .
To prove Theorem 5 we want to show that under the assumptions of the theorem,

for all ‹ > 0 there exists N such that n > N implies

arg min
aœ[0,1]

sup
mœMD(µD,n,“n)

1
—u

m,µD,n,“n
≠ Em,µD,n,“n [„aú ]

2
< ‹.

Fixing ‹, let Á̄ú = Á̄ (‹), aú = a(‹), for Á̄ (·) and a (·) as defined above. Let ’ú = Á̄ú

4 ,
and take Cú to be such that

inf
mœRk:||m||>Cú

Em,µD,“ [„aú ] > 1 ≠ ’ú.

Under our assumptions and the continuity of Em,µD,“ [„a] in (m, µD, “, a), there exists
some N such that for n > N ,

inf
aœ[‹,1]

sup
mœMD(µD,n,“n)flBCú

1
—u

m,µD,n,“n
≠ Em,µD,n,“n [„a]

2
> 3’ú

while
sup

mœMD(µD,n,“n)flBCú

1
—u

m,µD,n,“n
≠ Em,µD,n,“n [„aú ]

2
< 3’ú

and
sup

mœMD(µD,n,“n)flBC
Cú

1
—u

m,n ≠ Em,µD,n,“n [„aú ]
2

< 2’ú.
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Thus, for n > N we have

supmœMD(µD,n,“n)
1
—u

m,µD,n,“n
≠ Em,µD,n,“n [„aú ]

2
<

infaœ[‹,1] supmœMD(µD,n,“n)flBCú

1
—u

m,µD,n,“n
≠ Em,µD,n,“n [„a]

2

and thus that a (µD,n, “n) < ‹ since aú < ‹. Since we can repeat this argument for all
‹ > 0 we obtain that a (µD,n, “n) æ 0 as desired.

Proof of Corollary 2

Let (g̃T , �g̃T , “̃) = h
1
gT , �gT , “̂; r≠1

T /
Ô

T
2

for h as defined in (21), and note that
this is the same definition of (g̃T , �g̃T , “̃) given near the beginning of Appendix 1.
By the postmultiplication-invariance of plug-in tests with equivariant µ̂D, tests based
on (g̃T , �g̃T , “̃) with plug-in estimate µ̃D = D̃T will be the same as those based on
(gT , �gT , “̂) with estimate µ̂D = DT . To prove the result we will focus on tests based
on (g̃T , �g̃T , “̃).

As established in the main text, (g̃T , �g̃T , “̃) converges in distribution to (g, �g, “)
in a Gaussian shift model with µ = E [ZtZt]Õ c and b = bú. Note that in linear IV we
have

MD (µD, “) =
Ó
(I ≠ �—g · b)≠1 µD · b : b œ R

Ô
.

Hence, for any sequence (µD,n, “n) with µD,n æ µ, ||µ|| > 0, and �—g (“n) æ 0 we can
see that for any C > 0

dH (MD (µD,n, “n) fl BC , {µD · b : b œ Rp} fl BC) æ 0,

so by Theorem 5 we have that aP I (µD,n, “n) æ 0. Note, however, that under our
assumptions (µ̂D, “̂) æp (µ, “) with ||µ|| > 0 and �—g (“) = �D (“) = 0. Thus, the
Continuous Mapping Theorem yields that aP I (µ̂D, “̂) æp 0.

Proof of Corollary 3

Note that

M (“̂) =
;

�̂≠ 1
2

÷ (f (◊) ≠ f (◊0)) : ◊ œ �
<

= r
≠ 1

2
T

;1
r≠1

T �̂÷

2≠ 1
2 (f (◊) ≠ f (◊0)) : ◊ œ �

<
.
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For any sequence r≠1
T �÷,T æ �÷,0 and BC = {m œ Rp : ||m|| Æ C} for C > 0 we have

that

lim
T æŒ

dH

1Ó
r

≠ 1
2

T

!
r≠1

T �÷,T

"≠ 1
2 (f (◊) ≠ f (◊0)) : ◊ œ �

Ô
fl BC ,

Ó
r

≠ 1
2

T �≠ 1
2

÷,0 (f (◊) ≠ f (◊0)) : ◊ œ �
Ô

fl BC

2
= 0.

From the definition of di�erentiability, we know that

lim
◊æ◊0

f (◊) ≠ f (◊0) ≠ ˆ
ˆ◊Õ f (◊0) (◊ ≠ ◊0)

||◊ ≠ ◊0||
= 0.

Thus, for any sequence ”T æ 0,

lim
”T æ0

sup
||◊≠◊0||Æ”T

1
”T

A

f (◊) ≠ f (◊0) ≠ ˆ

ˆ◊Õ f (◊0) (◊ ≠ ◊0)
B

= 0.

Moreover, by our identifiability assumption on ◊0 we know that for any constant
K > 0,

lim
T æŒ

sup
◊:r≠ 1

2
T ||�≠ 1

2
÷,0 f(◊)≠�≠ 1

2
÷,0 f(◊0)||ÆK

||◊ ≠ ◊0|| = 0.

Combined with the previous equation, this implies that

lim
T æŒ

sup
◊:r≠ 1

2
T ||�≠ 1

2
÷,0 f(◊)≠�≠ 1

2
÷,0 f(◊0)||ÆK

r
≠ 1

2
T

.....�≠ 1
2

÷,0 (f (◊) ≠ f (◊0)) ≠ �≠ 1
2

÷,0
ˆ

ˆ◊Õ f (◊0) (◊ ≠ ◊0)
..... = 0

which in turn shows that for any C > 0, provided ◊ belongs to the interior of �

dH

3
r

≠ 1
2

T

;
�≠ 1

2
÷,0 (f (◊) ≠ f (◊0)) : ◊ œ �

<
fl BC , r

≠ 1
2

T

;
�≠ 1

2
÷,0

ˆ

ˆ◊Õ f (◊0) · b : b œ Rp
<

fl BC

4
æ 0.

Thus, we see that for any r≠1
T �÷,T æ �÷,0 the convergence required by Theorem

5 holds, so for the corresponding sequence {“T }Œ
T =1 we have that aMMR (“T ) æ 0.

Hence, by the Continuous Mapping Theorem we have that under our assumptions
aMMR (“̂) æp 0.

One can show that sequences of local alternatives of the form ◊T = ◊0 + r
1
2
T bú yield

Gaussian Shift limit problems in this model. The fact that aMMR (“̂) æp 0 implies, by
Proposition 4, that the MMR test is asymptotically e�cient against such sequences,
and hence that the MMR test is asymptotically e�cient under strong and semi-strong
identification, as we wanted to prove.
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