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This supplement provides proofs and additional results for the paper “Inference for
Linear Conditional Moment Inequalities.” Appendix A proves the results stated in the
main text. Appendix B proves validity of our tests in the finite-sample normal model when
the dual problem has a non-unique solution. Appendix C discusses an estimator for the
variance ⌦(PD|Z,�0), and provides sufficient conditions for it to be uniformly consistent.
Appendix D provides sufficient conditions for Assumption 4 in the main text. Appendix
E discusses how to quickly compute the bounds Vlo

n,0 and Vup

n,0 used by the conditional and
hybrid tests. Finally, Appendix F discusses connections to LICQ conditions considered in
the previous literature, while Appendix G provides further details on our simulations.

A Proofs for Results in Main Text
Proof of Lemma 1 Observe that �̂=� only if Yn,0 lies in the polyhedron {y :(���̃)0y�
0,8�̃2V (Xn,0,�0)}. The result is then immediate from Lemma 5.1 in Lee et al. (2016).
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where we showed above that the expression on the right-hand side is equal to Vlo,�j
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Proof of Lemma 3 Towards contradiction, suppose the conclusion of the lemma fails.
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This contradicts (17), completing the proof. ⇤
The following result characterizes the vertices of the dual vertex set.

Lemma A.1 Suppose �2F(X,�). Then �2V (X,�) if and only if �=AB(X,�)�1
e1, for
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and B⇢{1,...,p+k+1} with |B|=k and 12B, where MB denotes the rows of the matrix
M contained in B.

Proof of Lemma A.1 From Theorem 8.4 and statement (23) in Section 8.5 in Schrijver
(1986), v2 {x2Rk :Wx b} is a vertex of {x2Rk :Wx b} if and only if there exists
B⇢{1,...k} such that WB is invertible and WBx=bB, where WB denotes the rows of W
corresponding with the indices in B, and bB is defined analogously. Observe that F(X,�)
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where W is (2(p+1)+k)⇥k and b is (2(p+1)+k)⇥1. Thus, �2F(X,�) is a vertex if and
only if �=W

�1
B

bB for some index set B⇢{1,...,2(p+1)+k} with |B|=k such that WB

is invertible.
Next, observe that �2F (X,�) satisfies �0�=1 and thus must be non-zero. Since bB=0

unless B contains an index corresponding with a row of W containing either �0 or ��0, it fol-
lows that if there is a vertex corresponding withB thenB must always contain one such index.
Moreover, it’s clear that B can select at most one of each pair of inequalities of the opposite
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sign, since WB is full-rank. Further, we claim that every vertex corresponds with an index B

that only selects from the rows of the matrix Q :=(�, X)0 and not from the matrix �(�, X)0.
To show this, let B⇢{1,...,2(p+1)+k} with |B|=k such that WB is invertible, and suppose
there is a vertex corresponding to B. Let B̃ be the analogous index that replaces all the
indices ofB corresponding to rows of�Qwith the analogous rows ofQ. By the preceeding ar-
gument, B selects exactly one of the rows of Q corresponding to �0 or��0. Suppose first that
B selects the row corresponding to ��. Without loss of generality, order the remaining rows
of W so that B and B̃ differ in the first w positions and agree otherwise. Then we can write
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as we wished to show. We have thus established that �2F(X,�) is a vertex if and only
if it takes the form A
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To prove our remaining results it is helpful to introduce some additional notation. Let
�(X,�) be a matrix whose rows collect the elements of V (X,�),

V (X,�)=
�
�2Rk :�0=e

0
j
�(X,�) for some j2{1,...,dim(�(X,�)�)}

 
.

We first prove a lemma describing how �(X,�) varies with �.

Lemma A.2 Suppose Assumption 1 holds. For �=
p
Diag(TT 0) and �=

p
Diag(T⌦T 0)

for some positive-definite ⌦, �(X,�)=⇤(X,�)�(X,�) where ⇤(X,�) is a diagonal matrix
with ⇤jj(X,�)= 1

e
0
j�(X,�)� .

Proof of Lemma A.2 This follows by an argument as in Lemma A.1 of Rambachan
& Roth (2022), but is included for completeness. Recall that the elements of �(X,�) take
the form AB(X,�)�1

e1 for B such that AB(X,�) is invertible and AB(X,�)�1
e1�0. Fix

a B corresponding to a vertex in V (X,�). Write
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where B1 and B2 are the subsets of B corresponding to the rows of X 0 and �I respectively.

Since AB(X,�) has rank k, it follows that L :=

"
(X 0)B1
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#
has rank k�1. Thus, the

space of vectors v such that Lv=0 is a 1-dimensional linear subspace. Note, however,
that by construction if #=AB(X,�̃)�1

e1 for some �̃ such that AB(X,�̃) is full-rank, then
AB(X, �̃)# = e1 and hence L# = 0. It follows that if AB(X,�) is also full rank then
AB(X,�)/AB(X,�). Note further that from the definition of the vertex set, we must have
that (AB(X,�)�1

e1)0�=1. Thus, if AB(X,�) and AB(X,�) both have full rank then

AB(X,�)�1
e1=

(AB(X,�)�1
e1)0�

(AB(X,�)�1e1)0�
AB(X,�)�1

e1=
1

(AB(X,�)�1e1)0�
AB(X,�)�1

e1.

Note that Lemma A.1 implies that AB(X,�)�1
e12V (X,�), since AB(X,�)/AB(X,�)�0

and AB(X,�)�=1 by construction. By an analogous argument reversing the roles of �
and �, we can show that if B corresponds to a vertex of V (X,�), then a re-scaling of
AB(X,�)�1

e1 is also a vertex of V (X,�) provided that AB(X,�) is full-rank.
It thus remains to show that AB(X,�) has full rank and satisfies AB(X,�)�1

e1 � 0

if and only if AB(X,�) does. To this end, suppose that AB(X,�) has full rank and
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AB(X,�)�1
e1�0. Let #=AB(X,�)�1

e1 and note that by construction #�0, �0#=1, and
L#=0. Note, however, that the structure of � implies that �j =0 if and only if �j =0,
so �0#= 1 and #� 0 implies that �0#> 0. Hence, since L#= 0 while �0#> 0, we see
that �0 is linearly independent of L, and thus AB(X,�) has full rank. Moreover, by the
argument above, we have that AB(X,�)�1

e1 is a positive rescaling of AB(X,�)e1, and thus
AB(X,�)�1

e1�0, as needed. Since we can repeat the same argument reversing the roles
of � and �, we have established the desired result. ⇤

Proof of Lemma 4 The first part of the Lemma follows immediately from Lemma A.2
above. To show the second part, let ⌘̂†=max�2V†(Xn,0,�̂n,0)�

0
Yn,0 denote the analog to ⌘̂n,0

using V† instead of V , and define other variables subscripted with † analogously. Observe
that by construction, ⌘̂†= ⌘̂n,0 unless ⌘̂n,00. Next, consider the modified least favorable
critical value, c↵,LF,†, which is the 1�↵ quantile of max�2V†(Xn,0,�̂n,0)�

0
⇠, for ⇠⇠N(0,b⌃n,0).

By construction, max�2V†(Xn,0,�̂n,0)�
0
⇠=max�2V (Xn,0,�̂n,0)�

0
⇠ unless max�2V (Xn,0,�̂n,0)�

0
⇠0.

Now, for any �1,† 2 V†(Xn,0,�̂n,0), we have that �01,†⇠ max�2V†(Xn,0,�̂n,0)�
0
⇠, and �

0
1,†⇠ ⇠

N(0,�01,†b⌃n,0�1,†), which has median of zero. It follows that for ↵<0.5, the 1�↵ quantile
of max�2V†(Xn,0,�̂n,0)�

0
⇠ is weakly positive, and hence that c↵,LF = c↵,LF,†. We have thus

established the result for the LF test.
Next consider the conditional test. By construction the conditional test never rejects

when ⌘̂n,00, so we will consider the case where ⌘̂n,0>0. As argued above, in this case ⌘̂n,0=
⌘̂†, and moreover, �̂= �̂† from the definition of V†(Xn,0,�̂n,0). Finally, recall that Lemma 5.1
in Lee et al. (2016) implies that Vlo

n,0 and Vup

n,0 are the minimum and maximum of the set

⇢
�̂
0
y|y s.t. �̂0y� max

�̃2V (Xn,0,�̂n,0)
�̃
0
y and S(y,�̂)=Sn,0,�̂

�
.

Since max�̃2V (Xn,0,�̂n,0)�̃
0
y is equal to max�̃2V†(Xn,0,�̂n,0)�̃

0
y whenever the former is positive,

we see that Vup

n,0 =Vup

† , since Vup

n,0� ⌘̂n,0 > 0. Further, since V†(Xn,0,�̂n,0)✓V (Xn,0,�̂n,0),
we have that �̂0y�max�̃2V†(Xn,0,�̂n,0)�̃

0
y whenever �̂0y�max�̃2V (Xn,0,�̂n,0)�̃

0
y. It follows that

Vlo

† Vlo

n,0. Note, however, that the critical value for the conditional test is increasing in
the value of Vlo

n,0, and thus c↵,C � c↵,C,†. It follows that ⌘̂n,0 >c↵,C only if ⌘̂† >c↵,C,†, as
we wished to show. The desired result for the hybrid test follows immediately from the
arguments for the LF and conditional tests. ⇤

Following D. Andrews et al. (2019), we establish size control using a subsequencing
argument.
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Lemma A.3 Under Assumptions 1, 2, and 3, to show that a test � which (i) depends on
the data through

⇣
Yn,0,Xn,0,

b⌃n,0

⌘
and (ii) does not reject when ⌘̂n,0=�1 has uniformly

correct asymptotic size,

limsup
n!1
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PD|Z2PD|Z

sup
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EPD|Z [�]↵,

it suffices to show that limsup
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�
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=
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0
j
�(Xnl,0,�)TT

0�(Xnl,0,�)ej, either  j,nl
= 0 for all l or

 j,nl
6=0 for all l

3. If  j,nl
>0 for some j then for  nl

=maxj j,nl
,  �1

nl
�(Xnl,0,�)T!⇧⇤ for ⇧⇤ 6=0

4. If  nl
>0, then  �1
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⇤2 [�1,0]dim(Yn,0)

5. For �(⌦)=
p
Diag(T 0⌦T) and ⇤(X,�) as defined in Lemma A.2, ⇤(Xnl,0,�(⌦(PD|Z,nl
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)))!

⇤⇤ for ⇤⇤ a diagonal, positive-definite matrix. Likewise, ⇤(Xnl,0,�̂nl,0)!p ⇤⇤ for
�̂nl,0=�(⌦̂nl,0).

Proof of Lemma A.3 We establish that if size control fails, then there always exists
a sequence satisfying the conditions of the lemma under which size control also fails.

If size control fails, then

limsup
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[�]�↵+". Since � is assumed not to
reject when ⌘̂n,0=�1, it must be that min�maxje0jXnt,0� is finite for all t, since otherwise
⌘̂nt,0=�1 with probability 1 and the test never rejects. Since ⌦

�
PD|Z,n1

t
,�0,n1

t

�
2⌦�̄ for

all t by assumption, and ⌦�̄ is compact, there exists a further subsequence {n2
t
}✓{n1

t
}

with ⌦
�
PD|Z,n2

t
,�0,n2

t

�
!⌦⇤2⌦�̄.

For each t, �
�
Xn

2
t ,0
,�
�

is a matrix with dim(Yn,0) columns, and a uniformly bounded
number of rows. Hence there exists a subsequence {n3

t
}✓{n2

t
} along which the dimension of

�
�
Xn

3
t ,0
,�
�

is constant. For each j and any subsequence {nr}✓{n}, either  j,nr =0 infinitely
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often or not. We can thus extract a further subsequence {n4
t
}✓{n3

t
} along which part (2) of

the lemma holds. If  j,n
4
t
=0 for all j then part (3) of the lemma is vacuous, while if  j,n

4
t
>0

for some j,  �1
j,n

4
t

��e0
j
�
�
Xn

4
t ,0
,�
�
T
��=1 by construction, so  �1

n
4
t

��e0
j
�
�
Xn

4
t ,0
,�
�
T
��1 for all j,

and there exists a subsequence {n5
t
}✓{n4

t
} along which  �1

n
5
t
�
�
Xn

5
t ,0
,�
�
T!⇧⇤

, where ⇧⇤ 6=0

since  �1
n
5
t

��e0
j
�
�
Xn

5
t ,0
,�
�
T
��=1 for at least one j, thus establishing part (3) of the lemma.

Part (4) of the lemma is again vacuous if  nl
=0. Otherwise, note that since

max
j

e
0
j
�(Xn,0,�)µn,0=min

�

max
j

e
0
j
(µn,0�Xn,0�)

whenever the solution is finite, �
�
Xn

5
t ,0
,�
�
µn

5
t ,0
0 for all t. For any subsequence {nr}✓{n5

t
}

and any j,  �1
nr
e
0
j
�(Xnr,0,�)µnr,0 is either bounded or unbounded as r!1, allowing us to

extract a further subsequence {n6
t
}✓{n5

t
} along which  �1

n
6
t
e
0
j
�
�
Xn

6
t ,0
,�
�
µn

6
t ,0
!⌫

⇤
j
2 [�1,0].

Starting from {n5
t
} and iterating this argument over the rows of  �1

n
5
t
�
�
Xn

5
t ,0
,�
�
µn

5
t ,0

delivers
a subsequence {ns} satisfying properties (1)-(4) of the lemma.

Next, let M be the matrix that selects the non-zero rows of T , and observe that
M also selects the non-zero elements of � and of �(⌦) for any positive definite ⌦.
Let �0

n,j
= e

0
j
(�(Xn,0,�)). By construction, �0

n,j
� = (M�n,j)0(M�) = 1. Since M� > 0

and M�n,j � 0 by construction, it follows that ||M�n,j|| is bounded. However, for
�n,0=�(⌦(PD|Z,n,�0,n)), we have |�0

n,j
�n,0|= |(M�n,j)0(M�n,0)| ||M�n,j||·||M�n,0||, where

part (ii) of Assumption 1 implies that ||M�n,0|| is also bounded. It follows that there exists
a subsequence

�
n
j

l

 
✓ {ns} such that �0

n
j
l ,j
�
n
j
l ,0

converges. Moreover, the limit must be
strictly positive, since by construction �0

n
j
l ,j
�=1 and �

n
j
l ,j
�0, whereas the fact that the

eigenvalues of ⌦
n
j
l ,0

are bounded from below implies �
n
j
l ,0
�c� for some c>0. Iterating this

argument for each j, we obtain a subsequence {nl}✓{ns} such that �0
nl,j
�nl,0 converges

to a positive limit for all j. The jth diagonal element of ⇤
�
Xnl,0,�(⌦(PD|Z,nl

,�0,nl
))
�

is
1/(�0

nl,j
�nl,0), and hence ⇤

�
Xnl,0,�(⌦(PD|Z,nl

,�0,nl
))
�
!⇤⇤ for ⇤⇤ a positive-definite and

diagonal matrix, which establishes that the sequence also meets the first part of condition
(5). To establish the second part of condition (5), observe that

|�0
n,j
�̂nl,0��0n,j�nl,0|= |(M�n,j)

0
M(�̂nl,0��nl,0)| ||M�n,j||·||M(�̂nl,0��nl,0)||!p0.

However, the jth diagonal element of ⇤(Xnl,0,�nl,0) is equal to 1/(�0
n,j
�nl,0), which we

showed above converges to a positive constant e0
j
⇤⇤

ej. The continuous mapping theorem
thus implies that e0

j
⇤(Xnl,0,�̂nl,0)ej=1/(�0

n,j
�̂nl,0)!pe

0
j
⇤⇤

ej.
We have thus established that there exists a sequence satisfying the conditions of the
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lemma under which size control fails, as we wished to show. ⇤

Proof of Proposition 1 By construction, the least favorable test never rejects when
⌘̂n,0 = �1. Hence, by Lemma A.3, it suffices to show size control for sequences
�
nl,PD|Z,nl

,�0,nl

 
satisfying the conditions of the lemma.

Note that by Lemma A.2 we can write

⌘̂nl,0=max
j

�
e
0
j
�(Xnl,0,�̂nl,0)Ynl,0

 
=max

j

{e0
j
⇤(Xnl,0,�̂nl,0)�(Xnl,0,�)Ynl,0}

=max
j

�
e
0
j
⇤(Xnl,0,�̂nl,0)(�(Xnl,0,�)(Ynl,0�µnl,0)+�(Xnl,0,�)µnl,0)

 
.

Assumption 1 implies that we can re-write Ynl,0�µnl,0 as T(Unl,0�⇡nl,0). Hence,

⌘̂nl,0=max
j

�
e
0
j
⇤(Xnl,0,�̂nl,0)(�(Xnl,0,�)T(Unl,0�⇡nl,0)+�(Xnl,0,�)µnl,0)

 
.

First consider the case where  nl
=0. This implies that �(Xnl,0,�)T=0 for all l, which

in turn implies that �(Xnl,0,�)Ynl,0 0 with probability one since �0,nl
2BI(PD|Z,nl

) by
construction and thus �(Xnl,0,�)µnl,00. The least favorable test never rejects in this case,
since ↵< 1

2 implies that c↵,LF
⇣
Xn,0,

b⌃n,0

⌘
�0.

Next consider the case where  nl
> 0. Assumption 3 implies that Ynl,0�µnl,0 !d

N(0,T⌦⇤
T

0). Parts (3) and (4) of Lemma A.3 thus imply that

 
�1
nl
(�(Xnl,0,�)T(Unl,0�⇡nl,0)+�(Xnl,0,�)µnl,0)!N

⇣
⌫
⇤
,⇧⇤⌦⇤⇧⇤0

⌘

By part (5) of Lemma A.3, ⇤(Xnl,0,�̂nl,0)!p⇤⇤, for ⇤⇤ diagonal and positive definite, so
by the continuous mapping theorem,

 
�1
nl
⇤(Xnl,0,�̂nl,0)(�(Xnl,0,�)T(Unl,0�⇡nl,0)+�(Xnl,0,�)µnl,0)

!dG
⇤⇠N

⇣
⇤⇤
⌫
⇤
,⇤⇤⇧⇤⌦⇤⇧⇤0⇤⇤

⌘
.

Hence, by another application of the continuous mapping theorem,  �1
nl
⌘̂nl,0!dmaxje0jG

⇤
,

where since ⇤⇤
⌫
⇤0, the limiting distribution is continuous at all strictly positive values.

To show size control for the least favorable test, we must further show convergence of
the critical value. To this end, note that Assumptions 1 and 2, together with convergence
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of ⇤(Xnl,0,�̂nl,0), imply that

 
�2
nl
�(Xnl,0,�̂nl,0)b⌃n,0�(Xnl,0,�̂nl,0)

0!p⇤
⇤⇧⇤⌦⇤⇧⇤0⇤⇤

,

where the limit is nonzero. Note, moreover, that

c↵,LF

⇣
Xnl,0,

b⌃n,0

⌘
= nl

·c↵,LF
⇣
Xnl,0, 

�2
nl
·b⌃n,0

⌘
.

Hence, c↵,LF

⇣
Xnl,0, 

�2
nl
·b⌃n,0

⌘
converges in probability to c

⇤
↵,LF

, the 1� ↵ quantile of
maxje0jG̃ for G̃⇠N

�
0,⇤⇤⇧⇤⌦⇤⇧⇤0⇤⇤�, where c

⇤
↵,LF

>0 for ↵< 1
2. Note further that

�LF =1
n
⌘̂nl,0>c↵,LF

⇣
Xnl,0,

b⌃n,0

⌘o
=1
n
 
�1
nl
⌘̂nl,0>c↵,LF

⇣
Xnl,0, 

�2
nl
·b⌃n,0

⌘o
,

so by another application of the continuous mapping theorem,

�LF!d1

⇢✓
max

j

e
0
j
G

⇤
◆
>c

⇤
↵,LF

�
,

which implies that limsup
s!1EPD|Z ,nl

[�LF ]↵, as we wanted to show. ⇤

Proof of Proposition 2 We first prove the result for the conditional test. As in Lemma
A.3, we use a subsequencing argument. Specifically, begin with sequences of sample sizes,
data generating processes, and null parameter values {ns}✓{n}, {PD|Z,ns}2P1

D|Z, and
{�0,ns}2⇥1

s=1BI(PD|Z,ns). Observe that whether V†(Xns,0,�̂ns,0) is empty depends only on
Xns,0. If Xns,0 is such that V†(Xn,0,�̂ns,0) is empty, then ⌘̂n,00 with probability 1, and thus
the conditional and hybrid tests never reject. For the remainder of the proof, we therefore
consider sequences where Xns,0 is such that V†(Xns,0,�̂ns,0) is non-empty, which implies
that min�maxje0jXn,0�>�1, and thus ⌘̂ns,0 is finite with probability 1. It then suffices
to establish size control for the test �C,†, since �C�C,† with probablity 1 by Lemma 4.

Let M be the selection matrix such that M 0
T picks out the nonzero rows of T , and

note that by construction �†(Xn,0,�)MM
0
�=◆, where �† denotes the subset of rows of �

corresponding with vertices in V†(Xn,0,�) and ◆ is the vector of ones. Since M
0
� is strictly

positive, �†(Xn,0,�)M is a non-negative matrix with a uniformly bounded number of rows
and uniformly bounded row-sums. There thus exists a subsequence of sample sizes {nr}✓
{ns} such that �†(Xnr,0,�)M has fixed dimensions and �†(Xnr,0,�)M!�⇤

†M for �⇤
† a non-

negative matrix with �⇤
†�=◆. Since ⌦

�
PD|Z,nr,�0,nr

�
2⌦�̄ for all r by assumption, and ⌦�̄
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is compact, there exists a further subsequence {nt}✓{nr} with ⌦
�
PD|Z,nt,�0,nt

�
!⌦⇤2⌦�̄.

Note, next, that

�†(Xnt,0,�)Ynt,0=�†(Xnt,0,�)(Ynt,0�µnt,0)+�†(Xnt,0,�)µnt,0

=�†(Xnt,0,�)MM
0
T(Unt,0�⇡nt,0)+�†(Xnt,0,�)µnt,0, (18)

where �†(Xnt,0,�)µnt,00 for all t since �0,nt2BI(PD|Z,nt). Assumptions 1 and 3 imply that

Unt,0�⇡nt,0!dN(0,⌦⇤),

so for ⌃⇤=T⌦⇤
T

0,

�†(Xnt,0,�)MM
0
T(Unt,0�⇡nt,0)!dN

⇣
0,�⇤

†MM
0⌃⇤

MM
0�⇤0

†

⌘
=N

⇣
0,�⇤

†⌃
⇤�⇤0

†

⌘
(19)

by the continuous mapping theorem, where Assumption 4 implies that the diagonal elements
of �⇤

†T⌦
⇤
T

0�⇤0
† =�⇤

†⌃
⇤�⇤0

† are bounded away from zero. As argued in the proof of Lemma
A.3, we can extract a further subsequence {nl} where

�†(Xnl,0,�)µnl,0!⌫
⇤2 [�1,0]dim(�

⇤
†�).

By an argument analogous to that for part (5) of Lemma A.3, we can also choose {nl}
such that, for �nl,0 = �(⌦(PD|Z,nl

,�0,nl
)) and �̂nl,0 = �(⌦̂nl,0), ⇤† (Xnl,0,�nl,0)! ⇤⇤

† and
⇤†(Xnl,0,�̂nl,0)!p⇤⇤

† for ⇤⇤
† diagonal and positive definite.

Note next that if ⌘̂†!p�1 (because ⌫⇤
j
=�1 for all j) then the rejection probability

of the test �C,† converges to zero. If instead ⌘̂† 6!p�1, then it must be that ⌫⇤
j
>�1

for some j. Let M+ be a selection matrix such that M+⌫
⇤ picks out the finite elements

of ⌫⇤. Note that for any � corresponding to a row of �†(Xnl,0,�̂n,0) not selected by M+,
PrPD|Z,nl

{�̂†=�}!0, and thus asymptotically neither �̂† nor ⌘̂† is affected by �0Ynl,0. By an
argument analogous to that in the proof to Lemma 2, one can also show that asymptotically
�
0
Ynl,0 does not affect the values of Vlo

n,0,† or Vlo

n,0,†. The asymptotic behavior of the �C,†
test is thus determined by (M+�†(Xnl,0,�̂n,0)Ynl,0,M+�†(Xnl,0,�̂n,0)b⌃n,0�†(Xnl,0,�̂n,0)

0
M

0
+).

Next, observe from equations (18) and (19), combined with the fact that �†(Xn,0,�̂n,0)=

⇤†(Xn,0,�̂n,0)�†(Xn,0,�), that

M+�†(Xn,�̂n,0)(Yn,0�µn,0)!dN(0,M+⇤
⇤
†�

⇤
†⌃

⇤�⇤0
† ⇤

⇤
†M

0
+).
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Further, since M+�†(Xnl,0,�)µnl,0 converges to a finite vector by construction, we have that

M+(�†(Xnl,0,�̂n,0)��†(Xnl,0,�nl,0))µnl,0=M+(⇤†(Xnl,0,�̂nl,0)�⇤†(Xnl,0,�nl,0))�†(Xnl,0,�)µnl,0!p0,

where we use the fact that ⇤†(Xnl,0,�nl,0)!⇤⇤
† and ⇤†(Xnl,0,�̂nl,0)!p⇤⇤

†. Hence,

M+�†(Xnl,0,�̂nl,0)Ynl,0�M+�†(Xnl,0,�nl,0)µnl,0!dG
⇤⇠N(0,M+⇤

⇤
†�

⇤
†⌃

⇤�⇤0
† ⇤

⇤
†M

0
+),

where Assumption 4 implies (i) that the diagonal elements of the limiting variance are
nonzero and (ii) that no two rows of G⇤ are perfectly positively correlated. Further, by
the continuous mapping theorem

M+�†(Xnl,0,�̂nl,0)b⌃n,0�†(Xnl,0,�̂nl,0)
0
M

0
+!pM+⇤

⇤
†�

⇤
†⌃

⇤�⇤0
† ⇤

⇤
†M

0
+.

These are precisely the conditions assumed in Andrews et al. (2021), which we shorthand as
AKM, to establish uniform asymptotic size control, so we can use their results to establish
size control in our setting.

Specifically, to connect our setting to that in AKM, let Xn and Yn in the notation
of AKM both be equal to M+�†(Xnl,0,�̂n,0)Ynl,0, and let µX,n and µY,n both be equal to
M+�†(Xnl,0,�nl,0)µnl,0. Let ĵ be the row of M+�†(Xnl,0,�̂n,0) corresponding to �̂†, and let
�̂†,⇤ be the ĵth row of M+�†(Xnl,0,�nl,0). We have established that Assumptions 2-4 of
AKM hold under the sequence {nl,PD|Z,nl

,�0,nl
}, so Proposition 10 in AKM establishes

that for µ̂↵,nl
the ↵-quantile unbiased estimator for �̂0†,⇤µnl,0 (see AKM for details),

limsup
l!1

���PrPD|Z,nl

�
µ̂↵,n� �̂0†,⇤µnl,0

 
�↵
���=0.

The quantile unbiased estimator is closely related to our conditional test, however: the �C,†
test rejects if and only if µ̂↵,nl

>0 and ⌘̂†>0, provided that the test statistic and critical
value for the �C,† test are determined only by the vertices in M+�†(Xnl,0,�̂nl,0), which we
have established occurs w.p.a. 1. Since �̂0†,⇤µnl,00 under the null hypothesis, this suffices
to establish that limsup

l!1PrPD|Z,nl
{�C,†=1}↵, as we wanted to show. As in the proof

of Lemma A.3, this implies size control for the conditional test.
Next consider the hybrid test. For µ̂H

↵,nl
the ↵-quantile hybrid estimator of AKM with
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conditioning event
n
⌘̂c,LF,†(Xnl,0,

b⌃nl,0),�̂†=�
o
, Proposition 12 of AKM implies that

limsup
l!1

���PrPD|Z,nl

n
µ̂
H

↵,nl
� �̂0†,⇤µnl,0|⌘̂†c,LF,†(Xnl,0,

b⌃nl,0),�̂†=�
o
�↵
���PrPD|Z,nl

n
⌘̂†c,LF,†(Xnl,0

b⌃nl,0),�̂†=�
o

is equal to 0. Since the vertex set is finite, it follows that

limsup
l!1

���PrPD|Z,nl

n
µ̂
H

↵,nl
� �̂0†,⇤µnl,0|⌘̂†c,LF,†(Xnl,0,

b⌃nl,0)
o
�↵
���PrPD|Z,nl

n
⌘̂†c,LF,†(Xnl,0

b⌃nl,0)
o
=0.

Note, however, that the �H,† test rejects only if ⌘̂†>c,LF,† or µ̂H
↵�
1� ,nl

>0 (again, assuming
the test is determined only by the vertices of M+�†(Xnl,0,�̂nl,0)), and 0� �̂0†,⇤µnl,0, so

PrPD|Z,nl
{�H,†=1}PrPD|Z,nl

n
⌘̂†>c↵,LF,†(Xnl,0,

b⌃nl,0)
o
+

PrPD|Z,nl

n
µ̂
H
↵�
1� ,n
� �̂0†,⇤µnl,0|⌘̂†c↵,LF,†(Xnl,0,

b⌃nl,0)
o
PrPD|Z,nl

n
⌘̂†c↵,LF,†(Xnl,0,

b⌃nl,0)
o
.

Proposition 1 establishes that liminfl!1PrPD|Z,nl
{⌘̂†c,LF,†}�1�, so

limsup
l!1

PrPD|Z,nl
{�H,†=1}+↵�

1� (1�)=↵,

implying size control for the hybrid test. ⇤

B Non-Unique Dual Solutions
We now consider the behavior of the conditional test in the finite sample normal model with-
out assuming that the dual solution is unique. Recall that we define �̂ as the argmax in the
dual problem, so �̂ is set-valued when the dual solution is non-unique. We show that a ver-
sion of the conditional test which chooses an arbitrary dual solution when there is multiplicity
is well-defined with probability 1 in the finite-sample normal model and also controls size.

We first show that we can partition the set of vertices into disjoint subsets V1,...,Vm

such that the set of optimal vertices is one of the Vj with probability 1.

Lemma B.1 For every (µn,0,Xn,0,⌃0), there exists a finite collection of disjoint sets
V = {V1, ...,Vm} such that V (Xn,0,�0) = V1 [ ... [ Vm and Pr{�̂ 2 V} = 1 under the
finite-sample normal model (9).
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Proof of Lemma B.1 Let �,�̃,�̌2V (Xn,0,�0). Observe that �,�̃2 �̂ only if �0Yn,0= �̃0Yn,0.
However, for Yn,0⇠N(µn,0,⌃0),

Pr{�0Yn,0= �̃
0
Yn,0}2{0,1}.

Moreover, Pr{�0Yn,0= �̃
0
Yn,0}=1 and Pr{�0Yn,0= �̌

0
Yn,0}=1 if and only if Pr{�0Yn,0=

�̃
0
Yn,0 = �̌

0
Yn,0} = 1. It follows that we can partition V (Xn,0,�0) into distinct equiva-

lence classes V1,...,Vm where �,�̃2V (Xn,0,�) are contained in the same Vj if and only if
Pr{�0Yn,0= �̃0Yn,0}=1. Towards contradiction, suppose that Pr{�̂2V}<1. Then it must
be that either (i) there exists �,�̃2Vj such that Pr{�2 �̂,�̃ 62 �̂}>0, or (ii) there exists
� 2Vj, �̃ 2Vj0 for j 6= j

0 such that Pr{� 2 �̂,�̃ 2 �̂}> 0. Note, however, that � 2 �̂,�̃ 62 �̂
only if �0Yn,0 6= �̃

0
Yn,0, and by construction if �,�̃ 2Vj then Pr{�0Yn,0 6= �̃

0
Yn,0}=0 so (i)

cannot be satisfied. Likewise, � 2 �̂,�̃ 2 �̂ only if �0Yn,0 = �̃
0
Yn,0, and by construction if

�2Vj,�̃2Vj0 then Pr{�0Yn,0= �̃0Yn,0}=0 so (ii) cannot be satisfied. We have thus reached
a contradiction. ⇤

Our next result establishes that if one computes the conditional test using the formulas
for Vlo

n,0,V
up

n,0 in (14), then one obtains the same values regardless of which element of Vj

one chooses. Together with the previous lemma, this result implies that a modified version
of the conditional test which chooses arbitrarily among the optimal vertices is well-defined
with probability 1 in the finite sample normal model.

Lemma B.2 Let V1,...,Vm be as defined in Lemma B.1. Suppose Yn,0 follows the finite
sample normal model (9). If �(1),�(2)2Vj for some j, then with probability 1 the values for
Vlo

n,0 and Vup

n,0 given in (14) are the same if one sets �=�(1) or �=�(2).

Proof of Lemma B.2 By construction, if �(1),�(2)2Vj then Pr{�0(1)Yn,0=�0(2)Yn,0}=1

for Yn,0 ⇠ N(µn,0,⌃0). It follows that (�(1)� �(2))0⌃0 = 0 and �
0
(1)⌃�(1) = �

0
(2)⌃�(2). It

is then immediate that for any �̃ 2 V (Xn,0,�0), �0(1)⌃0�̃ = �
0
(2)⌃0�̃. Note, however,

that the formulas for Vlo

n,0 and Vup

n,0 in (14) depend on � only through the expressions
�
0⌃0�,�

0⌃0�̃,⌃0�, and �
0
Yn,0. Since we have shown that with probability 1 all of these

expressions obtain the same value if we set �=�(1) as if we set �=�(2), the result follows.
⇤

Finally, we establish that the conditional test which chooses arbitrarily among the
optimal dual vertices controls size in the finite-sample normal model.
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Proposition B.1 Consider a version of the conditional test where the critical values are
determined by the formulas for Vlo

n,0,V
up

n,0 in (14) setting �=h(�̂) for any arbitrary (possibly
randomized) function h(·) that selects among the elements of �̂. Let �h

C
denote the indicator

for whether the test rejects. Then under the finite sample normal model (9), E[�h
C
]↵

whenever µn,02Mn,0.

Proof of Proposition B.1 Observe that the proof to Lemma 1 does not rely on
uniqueness of the dual, and thus the statement of Lemma 1 holds replacing the condi-
tioning event �̂ = � with � 2 �̂. Moreover, by Lemma B.1, there is some j such that
Pr{1{�2 �̂}=1{�̂=Vj}}=1. It follows that the statement of Lemma 1 also holds if we
replace the conditioning event �̂=� with �̂=Vj. Additionally, by Lemma B.2, the values of
Vlo

n,0,V
up

n,0 are the same for all �2Vj. Thus, the conclusion of Lemma 1 holds if we condition
on �̂=Vj and replace all instances of � with h(�̂). By the same argument as in Section
3.3 for the unique-solution case, it then follows that E[�h

C
|�̂=Vj]↵ for µn,02Mn,0. But

Lemma B.1 implies that E[�h
C
]=
P

j
E[�h

C
|�̂=Vj]P{�̂=Vj}, from which unconditional size

control is immediate. ⇤

By analogous arguments, one can also establish that the hybrid test is well-defined with
probability 1 and controls size in the finite sample normal model when there is multiplicity
in the dual.

C Asymptotic Variance Estimation

Assumption 2 requires the existence of a uniformly consistent estimator b⌦n,0 for the con-
ditional variance ⌦

�
PD|Z,�0

�
. Here, we establish the uniform consistency of the matching

estimator discussed in Section 5.3 under mild conditions. For brevity, we shorthand Ui(�0)

as Ui,0.
Following Abadie et al. (2014), we consider the nearest-neighbor variance estimator given

in (16). The intuition for the estimator b⌦n,0 is straightforward: provided the conditional
mean and variance of Ui,0 given Zi=z are smooth in z, if Z`Z(i) is close to Zi, then the mean
and variance of Ui,0|Zi will be nearly the same as the mean and variance of U`Z(i),0|Z`Z(i).
Hence, the variance of Ui,0�U`Z(i),0 will be approximately twice the variance of Ui,0|Zi, and
the approximation error will vanish as Z`Z(i) approaches Zi. If the support of Zi is compact,
however, then with a large enough sample we are guaranteed to have observations quite “close”
to almost all of our observations, and b⌦n,0 will converge to the average conditional variance
⌦
�
PD|Z,�0

�
. The next assumption formalizes the conditions needed for this argument.
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Assumption C.1 For �max (A) the maximal eigenvalue of a matrix A, the following
conditions hold

1. {Zi}1i=1✓Z for Z a compact set

2. limsup
n!1sup

PD|Z2PD|Z
sup

�02BI(PD|Z)
1
n

P
EPD|Z

⇥
kUi,0k4|Zi

⇤
is finite

3. µPD|Z (z,�0)=EPD|Z [Ui,0|Zi=z] is Lipschitz in z with Lipschitz constant uniformly
bounded over PD|Z2PD|Z, �02BI(PD|Z), and is uniformly bounded over PD|Z2PD|Z,
�02BI(PD|Z)

4. VPD|Z(z,�0)=EPD|Z

⇥
Ui,0U

0
i,0|Zi=z

⇤
is Lipschitz in z with Lipschitz constant uniformly

bounded over PD|Z2PD|Z, �02BI(PD|Z)

5. sup
PD|Z2PD|Z

sup
�02BI(PD|Z)

sup
z2Z�max

⇣
V arPD|Z(Ui,0|Zi=z)

⌘
is finite

6. For b⌃Z=dV ar(Zi) the sample variance of Zi, b⌃Z!⌃Z for a positive-definite limit ⌃Z

Assumption C.1(1) is used only to establish that the average distance between Zi

and Z`Z(i) converges to zero, 1
n

P��Zi�Z`Z(i)

��!0. Hence, one may instead assume this
condition directly. Assumption C.1(2) and (5) restrict the variance and fourth moment of
Ui,0, and are satisfied under a wide range of data generating processes. Assumption C.1(3)
and (4) impose Lipschitz continuity on the mean and second moment of Ui,0, consistent
with the heuristic argument given above. Finally, Assumption C.1(6) requires only that
b⌃Z converge to a positive-definite limit.

Proposition C.1 Under Assumptions 1 and C.1, for b⌦n,0 as defined in (16) and all ">0

lim
n!1

sup
PD|Z2PD|Z

sup
�02BI(PD|Z)

PrPD|Z

n���b⌦n,0�⌦
�
PD|Z,�0

����>"
o
=0,

so Assumption 2 holds.

C.1 Proof of Variance Consistency

We first prove two auxiliary lemmas, which we then use to prove Proposition C.1.

Lemma C.1 Under Assumption C.1,

1

n

nX

i=1

⇣
U`Z(i),0U

0
`Z(i),0

�VPD|Z(Zi,�0)
⌘
!p0

uniformly over PD|Z2PD|Z, �02BI(PD|Z).
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Proof of Lemma C.1 Note that we can write

1

n

nX

i=1

⇣
U`Z(i),0U

0
`Z(i),0

�VPD|Z(Zi,�0)
⌘
=

1

n

nX

i=1

⇣
U`Z(i),0U

0
`Z(i),0

�VPD|Z

�
Z`Z(i),�0

�⌘
+
1

n

nX

i=1

⇣
VPD|Z

�
Z`Z(i),�0

�
�VPD|Z(Zi,�0)

⌘
,

so to prove the result it suffices to show that both terms tend to zero. To show that the
second term tends to zero, note that by the triangle inequality and Assumption C.1(4),

�����
1

n

nX

i=1

⇣
VPD|Z

�
Z`Z(i),�0

�
�VPD|Z(Zi,�0)

⌘�����
1

n

nX

i=1

���VPD|Z

�
Z`Z(i),�0

�
�VPD|Z(Zi,�0)

���

K

n

nX

i=1

��Zi�Z`Z(i)

��

for K the upper bound on the Lipschitz constant. Note, next, that since Z is compact
by Assumption C.1(1), the proof of Lemma 1 of Abadie & Imbens (2008) implies that

1

n

nX

i=1

��Zi�Z`Z(i)

��!0.

Thus, we immediately see that 1
n

P
n

i=1

⇣
VPD|Z

�
Z`Z(i),�0

�
�VPD|Z(Zi,�0)

⌘
!0 uniformly over

PD|Z2PD|Z and �02BI(PD|Z).

We next show that

1

n

nX

i=1

⇣
U`Z(i),0U

0
`Z(i),0

�VPD|Z

�
Z`Z(i),�0

�⌘
!p0.

To do so, note first that the number of observations that can be matched to a given Zi,
|{j :`Z(j)=i}|, is bounded above by the so-called “kissing number” which is a finite function
K(dim(Zi)) of the dimension of Z (see Abadie et al. (2014)). Since Ui,0 is independent
across i, this implies that for (A)jk the (j,k) element of a matrix A,

V ar

 
1

n

nX

i=1

⇣
U`Z(i),0U

0
`Z(i),0

�VPD|Z

�
Z`Z(i),�0

�⌘

jk

|{Zi}1i=1

!
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K(dim(Zi))
2
V ar

 
1

n

nX

i=1

�
Ui,0U

0
i,0

�
jk
|{Zi}1i=1

!

=
K(dim(Zi))

2

n2

nX

i=1

V ar

⇣�
Ui,0U

0
i,0

�
jk
|Zi

⌘
.

By Assumption C.1(2) and Chebyshev’s inequality, however, this implies that

1

n

nX

i=1

⇣
U`Z(i),0U

0
`Z(i),0

�VPD|Z

�
Z`Z(i),�0

�⌘
!p0,

uniformly over PD|Z2PD|Z and �02BI(PD|Z), which completes the proof. ⇤

Lemma C.2 Under Assumption C.1,

1

n

nX

i=1

⇣
Ui,0U

0
`Z(i),0

�µPD|Z(Zi,�0)µPD|Z(Zi,�0)
0
⌘
!p0,

uniformly over PD|Z2PD|Z and �02BI(PD|Z).

Proof of Lemma C.2 Note that we can write

1

n

nX

i=1

⇣
Ui,0U

0
`Z(i),0

�µPD|Z(Zi,�0)µPD|Z(Zi,�0)
0
⌘

=
1

n

nX

i=1

⇣
Ui,0U

0
`Z(i),0

�µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0⌘

+
1

n

nX

i=1

⇣
µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0�µPD|Z(Zi,�0)µPD|Z(Zi,�0)
0
⌘
.

We first show the initial term converges in probability to zero, and then do the same for
the second term.

By independence,

E

h
Ui,0U

0
`Z(i),0

�µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0|Zi,Z`Z(i)

i
=0,

while the variance of the jkth element is

V arPD|Z

✓⇣
Ui,0U

0
`Z(i),0

�µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0⌘

jk

|Zi,Z`Z(i)

◆
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=EPD|Z

⇣
Ui,0,jU`Z(i),0,k�µPD|Z ,j(Zi,�0)µPD|Z ,k

�
Z`Z(i),�0

�⌘2
|Zi,Z`Z(i)

�

=
µ
2
PD|Z ,j

(Zi,�0)V arPD|Z

�
U`Z(i),0,k|Z`Z(i)

�
+V arPD|Z(Ui,0,j|Zi)µ2

PD|Z ,k

�
Z`Z(i),�0

�

+V arPD|Z(Ui,0,j|Zi)V arPD|Z

�
U`Z(i),0,k|Z`Z(i)

�
.

Assumption C.1(5) thus implies that for some constant C,

V arPD|Z

✓⇣
Ui,0U

0
`Z(i),0

�µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0⌘

jk

|Zi,Z`Z(i)

◆


⇣
µ
2
PD|Z ,j

(Zi,�0)+µ
2
PD|Z ,k

�
Z`Z(i),�0

�
+C

⌘
C

,

which, together with Assumption C.1(3) and the finiteness of the “kissing number” K(dim(Zi))

(see the proof of Lemma C.1 above) implies that

limsup
n!1

sup
PD|Z2PD|Z

sup
�02BI(PD|Z)

V ar

 
1

n

nX

i=1

⇣
Ui,0U

0
`Z(i),0

�µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0⌘|{Zi}1i=1

!
=0,

and thus by Chebyshev’s inequality that

1

n

nX

i=1

⇣
Ui,0U

0
`Z(i),0

�µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0⌘!p0,

uniformly over PD|Z2PD|Z, �02BI(PD|Z), as we wanted to show.
To complete the proof, we need only show that

1

n

nX

i=1

⇣
µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0�µPD|Z(Zi,�0)µPD|Z(Zi,�0)
0
⌘
.

converges to zero uniformly over PD|Z2PD|Z, �02BI(PD|Z). Note, however, that by the
triangle inequality and Assumption C.1(3),

�����
1

n

nX

i=1

⇣
µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0�µPD|Z(Zi,�0)µPD|Z(Zi,�0)
0
⌘�����

 1

n

nX

i=1

���µPD|Z(Zi,�0)µPD|Z

�
Z`Z(i),�0

�0�µPD|Z(Zi,�0)µPD|Z(Zi,�0)
0
���
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 1

n

nX

i=1

���µPD|Z(Zi,�0)
���·
���µPD|Z

�
Z`Z(i),�0

�
�µPD|Z(Zi,�0)

���

K

n

nX

i=1

���µPD|Z(Zi,�0)
���·
��Z`Z(i)�Zi

��KC

n

nX

i=1

��Z`Z(i)�Zi

�� (20)

for K a Lipschitz constant and C a constant. As above, since Z is compact by Assumption
C.1(1), the proof of Lemma 1 of Abadie & Imbens (2008) implies that

1

n

nX

i=1

��Zi�Z`Z(i)

��!0,

and thus that (20) converges to zero uniformly over PD|Z2PD|Z, �02BI(PD|Z). ⇤

Proof of Proposition C.1 Following proof of Lemma A.3 in Abadie et al. (2014), note
that

b⌦n,0=
1

2n

nX

i=1

�
Ui,0�U`Z(i),0

��
Ui,0�U`Z(i),0

�0

=
1

2n

nX

i=1

Ui,0U
0
i,0+

1

2n

nX

i=1

U`Z(i),0U
0
`Z(i),0

� 1

2n

nX

i=1

�
Ui,0U

0
`Z(i),0

+U`Z(i),0U
0
i,0

�
.

Assumption C.1(2) together with Chebyshev’s inequality implies that

1

2n

nX

i=1

⇣
Ui,0U

0
i,0�VPD|Z(Zi,�0)

⌘
!p0

uniformly over PD|Z2PD|Z, �02BI(PD|Z). Since

V ar(Ui,0|Zi)=VPD|Z(Zi,�0)�µPD|Z(Zi,�0)µPD|Z(Zi,�0)
0
,

however, we see that

1

n

nX

i=1

V arPD|Z(Ui,0|Zi)=
1

n

nX

i=1

VPD|Z(Zi,�0)�
1

n

nX

i=1

µPD|Z(Zi,�0)µPD|Z(Zi,�0)
0
.

Thus, to prove that

b⌦n,0�
1

n

nX

i=1

V arPD|Z(Ui,0|Zi)!p0,
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it suffices to prove that

1

n

nX

i=1

⇣
U`Z(i),0U

0
`Z(i),0

�VPD|Z(Zi,�0)
⌘
!p0

and
1

n

nX

i=1

⇣
Ui,0U

0
`Z(i),0

�µPD|Z(Zi,�0)µPD|Z(Zi,�0)
0
⌘
!p0,

where the first statement follows from Lemma C.1 and the second from Lemma C.2. Since

1

n

nX

i=1

V arPD|Z(Ui,0|Zi)�⌦
�
PD|Z,�0

�
!0

uniformly over PD|Z2PD|Z and �02BI(PD|Z) by Assumption 1, however, the result follows
by the triangle inequality. ⇤

D Sufficient Conditions for Assumption 4
We now provide lower-level sufficient conditions for Assumption 4 for the case where the
degeneracy in ⌃0 arises from moment equalities represented as inequalities, or other moment
pairs which cannot bind simultaneously. This setting is similar to that in Assumption E.3.2
in Kaido et al. (2018).

Assumption D.1 We can write Yi(�0)=TUi(�0)+⇣i(�0), where ⇣i(�0) is non-stochastic
conditional on Zi, and Ui(�0) satisfies the conditions of Assumption 1. Further, we can
decompose Un,0=

1p
n

P
Ui(�0) as Un,0=(U 0

n,0,1,U
0
n,0,2)

0, where the matrix T takes the form

T=

2

64
Idim(Un,0,1) 0

�Idim(Un,0,1) 0

0 Idim(Un,0,2)

3

75,

while ⇣i(�0)=[⇣i1(�0)0 ⇣i2(�0)0 ⇣i3(�0)0]0 with ⇣i1(�0)+⇣i2(�0)0 (elementwise).35 We can
likewise decompose Xn,0=TQn,0 for a comformable matrix Qn,0.

We note that Assumption D.1 is trivially satisfied with T =I when E[V ar(Yi(�0)|Zi)] is
guaranteed to be full rank.

35Observe that e
0
jE[Ui(�0) + ⇣i1 � Q�|Zi] + e

0
jE[�Ui(�0) + ⇣2i + Q�|Zi] = ⇣1i + ⇣2i, regardless of

E[Ui(�0)|Zi], and thus the null hypothesis can only possibly be satisfied if ⇣i1+⇣i20.
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Our second primitive condition ensures that for n sufficiently large, Xn,0 lies in a set on
which the distance between distinct vertices of V (X,�) is bounded away from zero (where
�=
p
diag(TT 0)). Let B denote the set of B⇢{1,...,k+p+1} with |B|=k and 12B.

Assumption D.2 For n sufficiently large and all �0, Xn,0 is contained in a set X such
that for some constant !>0 and any distinct B,B

02B, either

1. AB(X,�)�1
e1=AB0(X,�)�1

e1 for all X 2X such that AB(X,�) and AB0(X,�) are
full-rank, OR

2. ||AB(X,�)�1
e1�AB0(X,�)�1

e1||�! for all X2X such that AB(X,�) and AB0(X,�)

are full-rank

where the matrix AB(X,�) is as defined as in Lemma A.1.

Recall from Lemma A.1 that each vertex in V (X,�) corresponds to AB(X,�)�1
e1 for some

B, so Assumption D.1 guarantees that the distance between distinct vertices of V (X,�)

is bounded from below over X2X . We note that Assumption D.2 is satisfied trivially if
Xn,0/||Xn,0|| is constant, since in that case V (Xn,0,�) is constant.

Proposition D.1 Assumptions D.1 and D.2 imply Assumption 4.

To prove Proposition D.1, we first establish some auxilliary lemmas. In the following
results, we partition a vertex �2V (X,�) as (�01,�02,�03)0 comformably with the blocks of T in
Assumption D.1. We also define VB⇤(X,�)⇢V (X,�) to be the subset of V (X,�) such that
max{e0

j
�1,e

0
j
�2}=0 for each j=1,...,dim(�1). Intuitively, VB⇤(X,�) is the set of vertices

that have at most one positive entry corresponding with each pair of matching moments
of opposite signs.

Lemma D.1 If Assumption D.1 holds, then for any �,�̃2VB⇤(X,�) and c�0,

||(��c·�̃)0T ||�k�1
2 ||��c·�̃||.

Proof of Lemma D.1 To establish the result, it suffices to show that

||(��c·�̃)0T ||1� ||��c·�̃||1, (21)

where ||x||1=max{|x1|,...,|xk|} is the `1 norm. The desired result then follows from the
fact that for any x2Rk, ||x||� ||x||1�k�

1
2 ||x||.

63



Clearly, the inequality (21) holds trivially when ��c·�̃=0, so for the remainder of the
proof we consider the case where ||��c·�̃||1=m>0. Write

(��c·�̃)0T=

 
�1��2
�3

!0

�c·
 
�̃1��̃2
�̃3

!0

.

It is clear from the previous display that if |�3,j�c · �̃3,j|=m for some j, then ||(��c ·
�̃)0T ||1�m. Consider next the case where |�1,j�c·�̃1,j|=m for some j. Suppose first that
�1,j >c·�̃1,j�0. By the definition of VB⇤(X,�), this implies that �2,j =0. Hence the jth
element of (��c·�̃)0T is equal to

�1,j��̃1,j| {z }
=m

+c·�̃2,j| {z }
�0

�m,

which implies that ||(��c·�̃)0T ||1�m. Likewise, if c·�̃1,j >�1,j�0, then we know that
�̃2,j=0, and thus the jth element of (��c·�̃)0T is equal to

�1,j�c·�̃1,j| {z }
=�m

� �1,j|{z}
�0

�m,

which implies that ||(��c·�̃)0T ||1�m. We have thus established that ||(��c·�̃)0T ||1�m
when |�1,j�c�̃1,j|=m for some j. The case where |�2,j�c�̃2,j|=m for some j can be
handled analogously. ⇤

Lemma D.2 If Assumption D.1 holds, then there exists a constant c� > 0 such that
c
�1
�
�j(X,�(⌦))c� for all ⌦2⌦�̄ and for all j and X, where the function �j(X,�) is

as given in Lemma 4.

Proof of Lemma D.2 Recall from the proof of Lemma A.2 that �j(X,�)=1/((AB(X,�)�1
e1)0�(⌦))

for some index set B. Since by construction (AB(X,�)�1
e1)0�=1, we have that

�j(X,�)=
(AB(X,�)�1

e1)0�

(AB(X,�)�1e1)0�(⌦)
.

Since AB(X,�)�1
e1, �, and �(⌦) are all non-negative vectors by construction, it thus suffices

to establish that c
�1
�
��(⌦) c�� (where the inequalities hold elementwise). Observe,

however, that �j = ||Tj||, whereas �(⌦)j =
p
Tj⌦T 0

j
. However, since the eigenvalues of

⌦ are bounded above and below by �̄ and �̄
�1 respectively, we have that for every j,

||Tj||2�̄�1Tj⌦T 0
j
 �̄||Tj||2, and hence c

�1
�
vj�(⌦)jc�vj for c�= �̄

1
2 . ⇤
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Proof of Proposition D.1 First, we show that V †(X,�)✓VB⇤(X,�) for all �. Suppose
that �2V †(X,�). By part 1 of Lemma 4, �=�(�)�̄ for a scalar function �(�) and vector
�̄ (both depending on X). Under the structure imposed by Assumption D.1, the fact that
� 2V †(X,�) implies that for some �̃, �̃=�(�̃)�̄ is a Lagrange multiplier for the primal
linear program

⌘̂=min
⌘,�

⌘ subject to
✓
Tu+

⇣
⇣
0
1 ⇣

0
2 ⇣

0
3

⌘0
�TQ�⌘·�̃

◆

for some u such that ⌘̂>0. Observe, however, that the constraints in the linear program
corresponding with �̃1,j and �̃2,j can bind simultaneously only if

e
0
j
(u�Q�⇤)+e

0
j
⇣1= ⌘̂e

0
j
�̃=�e0

j
(u�Q�⇤)+e

0
j
⇣2,

for �⇤ an optimizer to the linear program for ⌘̂. This implies that ⌘̂= 1
2e0j�̃

e
0
j
(⇣1+⇣2)0.

Since ⌘̂>0, it must be that at most one of the moments corresponding with �̃1,j and �̃2,j
is binding. Hence, complementary slackness implies that min{e0

j
�̃1,e

0
j
�̃2}=0, and thus that

min{e0
j
�1,e

0
j
�2}=0 since �/ �̃. It follows that �2VB⇤(X,�), as we wished to show.

Next, note that since every ⌦2⌦�̄ has eigenvalues bounded below by assumption,
Assumption 4 can fail only if there exists a sequence of ⌦m 2 ⌦�̄, Xm 2 X , distinct
vertices �m, �̃m 2 V†(Xm,�(⌦m)), and values cm � 0 such that ||(�m� cm · �̃m)0T ||! 0

as m!1. From Lemma D.1 combined with the argument in the previous paragraph,
it follows that Assumption 4 can fail only if there exist a sequence of distinct vertices
�m,�̃m2VB⇤(Xm,�(⌦m)) and values cm�0 such that ||�m�cm·�̃m||!0 as m!1. Towards
contradiction, suppose that such a sequence exists. Since by construction �0

m
�m= �̃0

m
�m=1,

where �m = �(⌦m), we have that |�0
m
(�m�cm · �̃m)|= |1�cm|. By the Cauchy-Schwarz

inequality, it follows that ||�m�cm·�̃m||� |1�cm|/||�m||. However, since ⌦m has eigenvalues
bounded above, ||�m|| is bounded above, and thus it must be that cm!1. Note further
that �2

m,j
=Tj⌦mT

0
j
, where by Assumption D.1, ||Tj||=1, and thus �2

m,j
� �̄�1. Since the

elements of �m>0 are bounded away from zero while �m,�̃m�0 and �0
m
�m= �̃0�m=1, we

know that ||�m|| and ||�̃m|| are both bounded above. It follows that we can find a convergent
subsequence indexed by r such that �r!�. This, together with the fact that ||�r�cr ·�̃r||!0

and cr!1 implies that �̃r!� as well. Thus, we see that Assumption 4 can be violated only
if we can find a sequence of distinct vertices �r and �̃r in VB⇤(Xr,�r) such that �r��̃r!0.

The fact that �r��̃r!0 further implies that there exist a sequence of distinct vertices
#s and ṽs in VB⇤(Xs,�) such that #s� #̃s ! 0. To see this, recall that we can write
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�r=�Br(Xr,�r)�Br(Xr,�), where �Br(X,�)=ABr(X,�)�1
e1 and �B(·,·) is a scalar which

we showed to be bounded both above and away from zero in Lemma D.2. Since the set of
possible values for Br is finite, we can extract a subsequence r1 on which Br1 is constant. We
can likewise extract a further subsequence r2 on which B̃r2 is constant, where B̃r is defined
analogously to Br, i.e. �̃r=�B̃r

(Xr,�r)�B̃r
(Xr,�). Since the values of the �(·) functions are

bounded both above and away from zero, we can extract a further subsequence s along
which �Bs(Xs,�s)!�

⇤
>0 and �

B̃s
(Xs,�s)! �̃

⇤
>0. Since �s!� and �Bs(Xs,�s)!�

⇤, it
follows that #s=�Bs(Xs,�)! 1

�⇤�. Likewise, we have that #̃s=�B̃s
(Xs,�)! 1

�̃⇤�. However,
by construction #0

s
�= #̃0

s
�=1, which implies

1= lim
s!1

#
0
s
�=

1

�⇤
�
0
�= lim

s!1
#̃s�=

1

�̃⇤
�
0
�,

and hence �⇤= �̃⇤. It follows that #s�#̃s!0.
However, by construction #s=AB(Xs,�)�1

e1 and #̃s=A
B̃
(Xs,�)�1

e1 with #s 6= #̃s. It
follows that ||AB(Xs,�)�1

e1�AB̃
(Xs,�)�1

e1||!0, which contradicts Assumption D.2. ⇤

E Computation of Vlo

n,0 and Vup

n,0

We now provide additional details on the computation of the truncation points Vlo

n,0 and
Vup

n,0 for the conditional and hybrid tests. Equation (14) gives formulas for Vlo

n,0 and Vup

n,0 that
require taking a maximum/minimum over all of the dual vertices, which may be computation-
ally challenging in practice. To facilitate computation, we provide two results which together
allow for rapid calculation of these endpoints even when the number of dual vertices is large.

Our first result provides conditions under which Vlo

n,0 and Vup

n,0 can be calculated as the
maximum/minimum over sets with at most k elements.

Lemma E.1 Suppose the primal problem (10) has a solution (⌘⇤,�⇤). Let B⇢ {1,...,k}
denote the set of binding moments at (⌘⇤,�⇤).36 Let Wn,0=(b�n,0, Xn,0) and let MB be the
matrix so that MBWn,0 selects the rows of Wn,0 corresponding with the index set B. If |B|=
p+1, Wn,0,B is invertible (i.e., the primal solution is non-degenerate), and e

0
1W

�1
n,0,B�0, then

the vector � with MB�=(e01W
�1
n,0,B)

0 and remaining elements equal to 0 is a solution to the
dual problem. Moreover, for L=(I�Wn,0W

�1
n,0,BMB) and �=b⌃n,0�/(�0b⌃n,0�), we have that

Vlo

n,0= max
j:(L�)j<0

�
(LSn,0,�)j
(L�)

j

and Vup

n,0= min
j:(L�)j>0

�
(LSn,0,�)j
(L�)

j

(22)

36That is, Yn,0,B �Xn,0,B�
⇤ = ⌘

⇤ · �̂n,0,B and Yn,0,�B �Xn,0,�B�
⇤
< ⌘

⇤ · �̂n,0,�B, where we use the
notation �B to denote rows not contained in B.
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for Vlo

n,0,V
up

n,0 as defined in (14).

Proof of Lemma E.1 It is straightforward to verify that � satisfies the Karush-Kuhn-
Tucker (KKT) conditions at (⌘⇤,�⇤). The KKT conditions are necessary and sufficient for
the solution to a linear program, and thus � is a solution to the dual problem. (In fact, if
the primal is non-degenerate, then the dual is unique (e.g. Wachsmuth 2013, Theorem 1(v)),
so � must be the unique dual solution, �̂=�.) Observe that when (⌘⇤,�⇤) is a solution to
the primal problem with rows indexed by B binding, then (⌘⇤,�⇤0)0=W

�1
n,0,BMBYn,0. Since

the KKT conditions are necessary and sufficient, it follows that �0y=max�̃2V (Xn,0,�̂n,0)�̃
0
y

if and only if Ly=y�Wn,0W
�1
n,0,BMBy0. But we argued in the proof to Lemma 4 that

when �̂=�, Vlo

n,0 and Vup

n,0 are respectively the minimum and maximum of the set

⇢
�
0
y|y s.t. �0y� max

�̃2V (Xn,0,�̂)
�̃
0
y and S(y,�)=Sn,0,�

�
,

which by the preceeding argument is equivalent to the set

{�0y|y s.t. Ly0 and S(y,�)=Sn,0,�}.

The result then follows from Lemma 5.1 in Lee et al. (2016). ⇤
Since the dual-simplex method naturally returns the solution ⌘⇤ and optimizer �⇤, it is

straightforward to verify that Wn,0,B is invertible and e
0
1W

�1
n,0,B�0. If these conditions are

met, then Vlo

n,0,V
up

n,0 can be calculated using (22), which is computationally straightforward
since it involves a maximum/minimum over sets of at most k elements. For cases where
the conditions for Lemma E.1 are not met, the following result provides a useful alternative
method for computing Vlo

n,0,V
up

n,0.

Lemma E.2 Suppose � is a solution to the dual problem and �0b⌃n,0�>0. Then the values
of Vlo

n,0 and Vup

n,0 associated with � correspond, respectively, to the minimum and maximum
of the convex set

C=

(
c|c= max

�̃2V (Xn,0,�̂n,0)
�̃
0

 
Sn,0,�+

c

�0b⌃n,0�

b⌃n,0�

!)
.
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Proof of Lemma E.2 Recall that the values of Vlo

n,0 and Vup

n,0 associated with � are the
minimum and maximum of the set

C̃=

⇢
�
0
y|y s.t. �0y� max

�̃2V (Xn,0,�̂n,0)
�̃
0
y and S(y,�)=Sn,0,�

�
.

From the definition of S(y,�) =
✓
I�
⇣
�
0b⌃n,0�

⌘�1b⌃n,0��
0
◆
y, we have that y= S(y,�)+

(�0y)/
⇣
�
0b⌃n,0�

⌘
·b⌃n,0�, from which it follows that

C̃=

(
�
0
y|y s.t. �0y� max

�̃2V (Xn,0,�̂n,0)
�̃
0

 
Sn,0,�+

�
0
y

�0b⌃n,0�

b⌃n,0�

!
and S(y,�)=Sn,0,�

)
.

To establish that C̃ =C, it thus suffices to show that {�0y|S(y,�) = Sn,0,�}=R, which
follows from the assumption that �0b⌃n,0�>0 along with the fact that if S(y,�)=s then
S

⇣
y+a·b⌃n,0�,�

⌘
= s for any a 2 R (which follows immediately from the definition of

S(y,�)). Finally, convexity follows immediately from the form of C̃ and the fact that
max�̃2V (Xn,0,�̂n,0)�̃

0
y is convex in y. ⇤

Lemma E.2 implies that Vlo

n,0,V
up

n,0 can be calculated via a bisection method. The intuition
for the algorithm is as follows. By construction, ⌘̂n,02C. If there is some large value M

such that M 62C, then we know that Vup

n,0 lies between ⌘̂n,0 and M. We start by testing
whether the midpoint between ⌘̂n,0 and M falls in the set C by solving the linear program
in the definition of C. If this point lies within C, then we can test the midpoint between the
previously tested value and M , whereas if it does not, then we can test the midpoint between
⌘̂n,0 and the previous midpoint. We can proceed in this way to narrow down the range in
which Vup

n,0 must fall. This tends to be computationally efficient, since the range in which
Vup

n,0 can lie is reduced by a factor of 2 in each step. Algorithm E.1 below formally describes
the algorithm used for bisection (and is implemented in our Matlab code). We recommend
initializing the value of M to some large value such that, for computational purposes, if
Vup

n,0>M then it would suffice to set Vup

n,0=1.37 Note that the formulas in Lemma E.2
require knowledge of a dual solution �. Fortunately, the dual-simplex method returns a
dual solution by default, and thus � can be obtained at no additional computational cost.

We note that whenever the conditions of Lemma E.1 are met, the dual solution is

37In our implementation, we set M=max

✓
100,⌘̂n,0+20

q
�0b⌃�

◆
, which guarantees that M is at least

20 standard deviations above ⌘̂n,0.
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unique, since non-degeneracy in the primal implies uniqueness in the dual (e.g. Wachsmuth
2013, Theorem 1(v)). If the conditions of Lemma E.1 are not met, then the dual may or
may not be unique. A researcher interested in testing whether the dual is unique can use
the algorithm suggested by Appa (2002) to verify the uniqueness of a linear program. We
note, however, that as described in Appendix B, uniqueness of the dual is not needed for
the validity of the our tests in the finite-sample normal model. Tests based on the formulas
given in Lemma E.2 using an arbitrarily-chosen dual solution therefore remain valid in the
finite-sample normal model. Our conditions for asymptotic size control do imply, however,
that the dual will be unique with probability tending to one.

Algorithm E.1 Bisection Method for Calculating V
up

n,0

1: procedure computeVUP
2: if CheckIfInC(M) then

3: V
up

n,0 1
4: else

5: lb ⌘̂n,0

6: ub M

7: while ub�lb>TolV do

8: mid 1
2(lb+ub)

9: if CheckIfInC(mid) then

10: lb mid
11: else

12: ub mid
13: V

up

n,0 1
2(lb+ub)

where we define the functions:
1: function LPValue(c)
2: return

max�̃�̃0
⇣
Sn,0,�+

b⌃n,0�

�0b⌃n,0�
c

⌘

subject to �̃�0,W 0
n,0�̃=e1

3: function CheckIfInC(c)
4: if | c�LPV alue(c)|<TolLP then

5: return True
6: else

7: return False
8:
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F Connections to LICQ
We now briefly discuss the connections and differences between Assumption 4 and linear
independence constraint qualification (LICQ) conditions that have been imposed in the
literature. We refer the reader to Kaido et al. (2021) for detailed discussion of constraint
qualifications in the moment inequality literature, and Section 3 of Rambachan & Roth
(2022) for additional results for our conditional test under LICQ.

We focus on the special case where the target parameter is scalar (�2R) and enters the
moments linearly, which simplifies exposition and facilitates comparisons to other papers that
consider the LICQ or closely related assumptions in the linear case (e.g. Cho & Russell 2021,
Gafarov 2019, Kaido & Santos 2014). That is, we consider moments of the form Yi�Xi,���
Xi,��, where Yi2Rk, Xi,�2Rk, Xi,�2Rk⇥p, and (Yi,Xi,�,Xi,�) doesn’t depend on � or �.

To give a formal definition of LICQ, we introduce the following notation. Let
Xi =(Xi,�,Xi,�) and ⌧ =(�,�0)0, so that we can write the moments as Yi�Xi⌧ . Define
T={⌧ |EP [Yi�Xi⌧ ]0} to be the set of values for ⌧ such that the unconditional moments
are satisfied, and define the set of support points in direction p by S(p)={⌧ |p0⌧=sup

⌧̃2Tp
0
⌧̃}.

We will be most interested in the support points in the directions e1 and �e1, so that the
optimization in the definition of S(p) corresponds with the upper and lower bounds for
�. We say that LICQ holds in the direction p if for all ⌧⇤2S(p), the matrix XB has full
row rank, where X=EP [Xi] and B is the set of rows such that EP [Yi,B�Xi,B⌧

⇤]=0.38

We now show that LICQ implies uniqueness in a “population version” of the dual
problem for our test statistic. Specifically, for any �2Rk with �>0, let

⌘(Y,X,�,�)=min
⌘,�

⌘ s.t. Y �X���X���·⌘.

We then have the following result for the dual problem to ⌘(Y,X,�,�).

Lemma F.1 Let �ub=sup
⌧2Te

0
1⌧ and µ=EP [Yi]. If LICQ holds in the direction e1, then

for any �>0, ⌘(µ,X,�
ub
,�) has a unique dual solution, i.e. there is a unique solution to

max
�2V (X�,�)

�
0(µ�X��

ub).

38LICQ is typically defined in terms of the Jacobian of the expectation of the moments with respect
to ⌧ , but in our linear setting the Jacobian of EP [Yi�Xi⌧ ] is simply �X.
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Proof of Lemma F.1 We first show that ⌘(µ,X,�
ub
,�) = 0. Since �ub = sup

⌧2Te
0
1⌧

by definition, we must have that ⌘(µ,X,�
ub
,�)0. Towards contradiction, suppose that

⌘(µ,X,�
ub
,�)<0. Then there exists �⇤ such that µ�X��

ub�X��
⇤
<0. But then for some

✏>0, µ�X�(�ub+✏)�X��
⇤
<0, which is a contradiction, since it implies that sup

⌧2Te
0
1⌧>�.

We thus see that if �⇤ is a solution for ⌘(µ,X,�
ub
,�), then (�ub

,�
⇤0)0 2S(e1). Hence,

LICQ implies that for B the set of binding moments at �⇤, we have that XB=(X�,B,X�,B)

has rank |B|. It follows that X�,B has rank |B|�1. However, observe that there can be
no �̃ such that X�,B�̃> 0, since if there were, then for ✏> 0 sufficiently small we would
have that µB�X�,B�

ub�X�,B(�⇤+✏�̃)<0 while the remaining moments are still slack, and
thus ⌘(µ,X,�

ub
,�)<0. Since �B>0, it follows that WB=(�B,X�,B) has rank |B|. Note

that WB is the gradient of the binding constraints at the optimum to ⌘(µ,X,�
ub
,�). Since

the gradient of the binding constraints has full-rank, Theorem 1(v) in Wachsmuth (2013)
implies that ⌘(µ,X,�

ub
,�) has a unique Lagrangian, i.e. a unique dual solution. ⇤

It is worth noting that uniqueness of max�2V (X�,�)�
0(µ�X��

ub) can imply restrictions
on the possible values of µ — for example, if X�=0 and X�=�=◆, then it implies that µ has
a unique maximal element. By comparison, Assumption 4 implies that with probability ap-
proaching 1, the sample dual problem (i.e., the dual to ⌘(Yn,0,Xn,0,�0,�̂n,0)) has a unique so-
lution. When X�=0 and X�=�=◆, this is satisfied if ⌃ is full-rank, regardless of the value of
µ. More generally, as shown in Section D, for a wide variety of settings Assumption 4 can be
guaranteed to holds under restrictions onXn,0 and⌃ only, without imposing restrictions on µ.

G Simulation Details

G.1 Moment Inequality Specification

We adopt the notation of Example 3 in the main text, so Jf,i,t is the set of products
marketed by firm f in market i in period t, and �⇡(Jf,i,t,J 0

f,i,t
) is the difference in expected

profits from marketing Jf,i,t rather then J
0
f,i,t

. Following Wollmann (2018), and as discussed
in the main text, the fixed cost to firm f of marketing product j at time t is �(�c,f+�ggj)
if the product was marketed last year (j2Jf,i,t�1), and �c,f+�ggj otherwise. Here �c,f is
a per-product cost which is constant across products but may differ across firms, while gj

is the gross weight rating of product j.
If we begin with the case where fixed costs are constant across firms (�c,f =�c for all

f) and again let 1{·} denote the indicator function, we obtain four conditional moment
inequalities by adding and subtracting one product at a time from the set marketed. For
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instance, similar to the Example 3, if firm f markets product j at both t�1 and t, then for

m
1(✓)j,f,i,t⌘�[�⇡(Jf,i,t,Jf,i,t\j)�(�c+�ggj)�]⇥1{j2Jf,i,t,j2Jf,i,t�1},

we must have E[m1(✓)j,f,i,t|Vf,i,t]0 for all variables Vf,i,t in the firm’s information set when
time-t production decisions were made, since otherwise the firm would have chosen not to
market product j in period t. We can analogously obtain moments m2(✓)j,f,i,t,...,m4(✓)j,f,i,t

corresponding with the cases where a firm markets product j only at period t, only at
period t�1, or in neither period.

We obtain two further conditional moment inequalities by considering the case where
a firm markets a product of a given weight gj but not a higher or lower weight gj0. For
example, we obtain the moment

m
5
j,f,i,t

(✓)⌘

�
 P

j02J�(j,f,i,t)[�⇡(Jf,i,t,(Jf,i,t\j)[j0)��g(gj�gj0)]
#J�(j,f,i,t)

!
⇥1{j2Jf,i,t,j /2Jf,i,t�1},

where J�(j,f,i,t) is the set of products not marketed by firm f at time t or t�1 with weight
below gj. We likewise construct a moment for heavier products that were not marketed.

As in Wollmann, there are nine firms (F=9). To generate data we model the expected
and observed profits for firm f from marketing product j in market i in period t, denoted
by ⇡⇤

j,f,i,t
and ⇡j,f,i,t respectively, as

⇡
⇤
j,f,i,t

=⌘j,i,t+✏j,f,i,t, and ⇡j,f,i,t=⇡⇤j,f,i,t+⌫j,i,t+⌫j,f,i,t,

where the ⌫ terms are mean zero disturbances that arise from expectational and measure-
ment error and the ⌘ and ✏ terms represent product-, market-, and firm-specific profit shifters
known to the firm when marketing decisions are made. The distributions of these errors
are calibrated to match moments in Wollmann’s data, as described in the next section.39

As described below, each simulated dataset is a cross-section containing data on one
period for 500 markets following the sequential process described above. The moments

39The terms ⌘j,i,t and ⌫j,i,t reflect product/market/time “shocks” that are known and unknown to the
firms, respectively, when they make their decisions. Shocks of this sort are an important aspect of Wollmann’s
setting. Note that Wollmann also estimates (point-identified) demand and variable cost parameters in
a first step, while for simplicity we treat the variable profits ⇡j,f,i,t as known to the econometrician.
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used in our simulations are then averages (over markets i) of

1

J

X

j

⇣
m

l

j,f,i
(✓)⌦Z̃j,f,i

⌘0
, (23)

where we also average over all firms f assumed to share the same fixed cost �f,c. Since we
consider a single period for each market i in cross-section, we suppress the time subscript.
We present results both for the case where Z̃j,f,i includes only a constant, and for the
case where all moments are interacted with a constant and the first four moments are
additionally interacted with the common profit-shifters ⌘,

Z̃j,f,i=(1,⌘+
j,i
,⌘

�
j,i
),

for q+=max{q,0} and q
�=�min{q,0}. In the model with a single constant term, �c,f=�c

for all f, this generates 6 and 14 moment inequalities. We also present results when the
nine firms are divided into three groups each with a separate constant term, and when
each firm has a separate constant term. For each specification we consider the first four
moments separately for the firm(s) associated with distinct parameters �c,f , but average
the last two moments across all firms as they do not depend on the constant terms. This
generates 14 and 38 moments for the three group classification, and 38 and 110 moments
when each firm has a separate constant term. To estimate the conditional variance ⌃=⌦,

in each specification we define the value of the instrument Zi in market i as the Jacobian
of (23) with respect to the linear parameters (�g,{�c,f}).

G.2 Data-generating Process Details

G.2.1 Competition and Firm Decisions

We now describe the data-generating process for a single market, suppressing the i subscript
for notational brevity. We consider competition between F firms, who in each period decide
which set of products to offer. Firm f estimates that marketing product j in period t will
earn variable profits ⇡⇤

jft
, and chooses to market the product if and only if the expected

profits exceed the fixed costs. Thus, if a firm marketed product j in period t�1, then the
firm chooses to market j in period t if and only if

⇡
⇤
jft
��✓c��✓ggj >0.
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If the firm did not market the product j in period t�1, then it chooses to add product
j if and only if

⇡
⇤
jft
�✓c�✓ggj >0.

G.2.2 Distributional Assumptions

We set ⇡⇤
jft

=⌘jt+✏jft, the sum of a product-level shock that is common to all firms and a
firm-product idiosyncratic shock. We assume that ⌘jt⇠N (0,�2

⌘
). If j was not marketed in

the previous period, then ✏jft⇠N (�µf+�✓ggj,�2✏ ); if the product was marketed previously,
then ✏jft⇠N (µf+✓ggj,�2✏ ). Note that the mean profitability of marketing a product depends
on a firm-specific mean, µf , which allows us to match the firm-level market shares observed
in Wollmann’s data. We also construct the mean of the ✏jft term to depend on the product’s
weight and whether it was marketed in the previous period in a way that guarantees that
all simulated products will be offered with the same probability in our simulations.

While firms make their decisions using ⇡⇤
jft

, we assume that the econometrician observes
only ⇡jft=⇡⇤jft+⌫jt+⌫jft. The ⌫ terms represent measurement or expectational errors. We
assume that ⌫jt and ⌫jft are independently drawn from a normal distribution with mean
0 and variance �2

⌫
.

G.3 Calibration

We calibrate our parameters to estimates and moments reported in the November 2014 ver-
sion of Wollmann. We set F=9 to match the number of firms in Wollmann’s data, and G=

22 to match the number of unique values of GWR. We use ✓c=129.73, ✓g=�21.38, and �=
0.386 to match the results from the estimates in Table VII in Wollmann.40 We set the values
of g to be 22 evenly spaced points between 12,700 and 54,277 to match the lowest and highest
GWR figures reported in Table II, which gives the average GWR for different buyer types.

To calibrate the remaining parameters, we simulate data according to the process
described above, and set the parameters to match moments of the simulated data to those
in Wollmann’s data. In order to simulate the data for the calibration, we first fix standard
normal draws that are used to construct the ⌘, ✏, and ⌫ shocks. These standard normals
draws are then scaled by the desired variance parameters in each simulation. Letting Jft

denote the set of products offered by firm f in period t, the simulations begin in state 0
with Jf0=; for all firms. We then simulate Jft and ⇡⇤ going forward using the dynamics

40Note that Wollmann denotes by � 1
� what we have been calling �.
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described above. We discard the first 1,000 periods as burnout so as to obtain draws from
the stationary distribution, and calibrate the model using 27,000 subsequent periods. After
discarding 1,000 draws, we obtain essentially identical results if we begin from the state
where all products are in the market in rather than all products out of the market.

The remaining parameter values to calibrate are {µf},�⌘,�✏,�⌫. The intuition for the
calibration is as follows. The firm-specific means µf affect the number of products each
firm offers, and so we calibrate these to match the market shares and total number of
products offered in Wollmann’s data. The �✏ and �⌘ terms affect how often firms add
and remove products, and so we calibrate these to match the variability of the number
of products offered over time in Wollmann’s data. Lastly, we calibrate �⌫, which governs
the variance of the expectational/measurement error. We do not have direct measures of
the variability of firm profits in Wollmann’s data, but if markups are constant, then the
variance in firm profits is one-to-one with the variance of quantity sold, and so we calibrate
�⌫ to match the variability of quantities sold assuming mark-ups are fixed at 35%.

Specifically, the calibration uses the following steps:
1) We first calibrate (�⌘,�✏) and the µf terms to match the market shares and variability

of products offered in Wollmann. This calibration process involves an inner and outer loop,
described below.

a) The inner loop for µf . Given a guess for (�⌘,�✏), we calibrate µf to match the market
share and average number of products in Wollmann’s data. Market shares are taken from
Table III in Wollmann. Wollmann does not provide the mean number of products offered
by year, only the min and max, so we approximate it by taking the midpoint between the
two extremes, which gives 48 total products per year on average.

b) In the outer loop, we calibrate (�⌘,�✏) to match a measure of the variability of the
number of products offered in Wollmann’s data. In particular, Table I in Wollmann lists
9-year averages for the total number of products offered for three 9-year periods (he has
27 years of data). We run 1,000 simulations of 27 periods, and for each 27-year period
we calculate the average number of products offered within each 9-year subinterval, just
as Wollmann does. We then calibrate �⌘ so that the average variance in the number of
products offered across three consecutive 9 year periods matches that in Wollmann’s data.

The simulated variance comes very close to the target variance whenever �⌘ = �✏,
regardless of scaling. We therefore choose �⌘=�✏=30, which gives that the variance of
⇡
⇤ is roughly half of the variance of ⇡.

2) Lastly, we calibrate �⌫ to match a moment implied by the variability in quantity
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sold across time in Wollmann. If prices and markups are relatively constant, then the
variance in quantities will be well-approximated by a constant times the variance in profits:
V ar(⇡jft)⇡ p̄2m̄2

V ar(Qjft), where p̄ and m̄ are the average prices and markups.41 For our
calibration, we set p̄ to be the average price in Wollmann’s data ($66,722), and set m̄ equal to
0.35. As with the number of products offered, Wollmann does not report annual quantities,
but rather the average for three 9-year periods. We thus use a procedure analogous to that
described in step 1b) to match the variance of the 9-year averages of quantity sold.

G.3.1 Calibrated Parameters

Tables G.1 and G.2 show the calibrated values for the µf and variance parameters, respec-
tively.

Table G.1: Calibrated µf Parameters

Firm µf

Chrysler 74.31
Ford 98.36
Daimler 114.69
GM 80.11
Hino 67.71
International 110.63
Isuzu 80.15
Paccar 114.63
Volvo 94.17

G.3.2 Sampling from the DGP

Wollmann’s data involves observations of sequential periods from the same market. If we
were to construct moments at the product-period level in this setting, then the sequential
nature of the model would induce serial correlation in the realizations of the moments.

41This is because if prices and costs are constant across firms,

⇡jft=Qjft(p�c)

=Qjft
p�c
p

p

=Qjft⇥m⇥p.

Thus, V ar(⇡jft)=m
2
p
2
V ar(Qjft) when p and c are constant, and this holds approximately with averages

if the variance in m and p is small relative to that in Q.
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Table G.2: Calibrated Variance Parameters

Parameter Value
�⌘ 30.00
�✏ 30.00
�⌫ 57.96

Although ⌃ can be estimated in this setting, accounting for serial correlation substantially
complicates covariance estimation. Since covariance estimation is not the focus of this paper,
and Wollmann (2018) performs inference assuming no serial correlation, we instead focus on a
modified DGP corresponding to a cross-section of independent markets, a common setting in
the industrial organization literature. To do this, we sample from the stationary distribution
of the calibrated DGP described above as follows. We draw a 51,000 period sequential
chain, and discard the first 1,000 observations as a burn-in period. For each simulated
dataset, we then randomly subsample 500 periods from this chain. This cross-sectional
set-up also allows us to consider specifications with more moments than in Wollmann.

G.4 Implementation Details

G.4.1 Parameter Grids

For procedures that require test inversion for the parameter of interest, we invert tests over
a discretized parameter space.42 For �g and the cost of the mean-weight truck, we use 1,001
gridpoints (plus estimates of the identified set bounds); for �, we use 100 gridpoints for
our main simulations, and 1,000 gridpoints for timing comparisons.

G.4.2 Implementation of LF and LFP tests

To calculate the LFP critical values, we draw a fixed matrix ⌅ of standard normal draws
of size k⇥10,000, and we use these for all of our calculations. Since the LF procedure is
more computationally intensive, we calculate it using a matrix of size k⇥1000.

In simulating the draws for the LF approach, in certain very rare cases we encountered
computational issues in which the linear program for one of the draws did not converge.
In these cases, we treat the draw as if it were infinity, which pushes the estimated critical
value slightly higher. However, in all specifications this happens in no more than 0.01% of

42For the LF and LFP approaches, we do not need to discretize the parameter space when the parameter
of interest enters the moments linearly, since the endpoints of the confidence set can be calculated
analytically using linear programming, as discussed in Section 5.
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cases (of approximately 50 million simulations), and is thus unlikely to have any substantial
impact on our results.

G.4.3 Implementation of the sCC and sRCC tests

We implement the sCC and sRCC tests using code provided by the authors. The refinement
needed for the sRCC test is difficult to compute with many moments and many parameters.
Thus, when our specification has both 100+ moments and 10+ parameters, we instead
report the results of a test that rejects whenever the sRCC test rejects. In particular, the
refinement to the sRCC test can matter only when there is one active moment (r̂=1) and the
test statistic falls between the 1�↵ and 1�↵/2 quantile of the �2 distribution with 1 degree
of freedom. For specifications with 100+ moments and 10+ parameters, we thus report
the power of the test that rejects when either the sCC test rejects or the refinement could
matter. The power and size of this test can thus be viewed as upper bounds on the power
and size of the sRCC test, and its runtime is a lower bound on the runtime of the sRCC test.

G.4.4 Implementation of the AS and KMS tests

We next describe the implementation of the AS and KMS tests, which uses the Matlab pack-
age developed by Kaido et al. (2017). The Matlab package is developed for the case where
the moments are additively separable in the data and the parameters, i.e. when the moments
take the formE[m(Di)]�g(✓)0, where ✓ is a vector of parameters and the target parameter
takes the form l

0
✓. Note that in our first two simulation designs, where the target parameter

is �g or the cost of the mean-weight truck (and � is known), the moments take the form
E[Yi|Xi]�Xi�0 and the target parameter is l0�. The moments thus take the form needed
to use the Matlab package conditional onXi. The Matlab package, however, uses a bootstrap
procedure that samples from the unconditional distribution of the data, which is unsuitable
for our setting. To use the package in our setting with conditional moments, we adopt the fol-
lowing procedure. Given Yn,0,Xn,0,

b⌃n,0, we draw Y
⇤
i
⇠N(n�1

2Yn,0,
b⌃n,0) independently for i=

1,...,n.43 We then provide the Matlab package with the data (Y ⇤
i
)n
i=1 and set m(Y ⇤

i
)=Y

⇤
i

and
g(✓)=Xn,0✓. This ensures that the bootstrap distribution of the sample mean of Y ⇤

i
(scaled

by
p
n) within the Matlab package approximates the conditional distribution of Yn,0|Xn,0.

We use the default tolerances in the Matlab package except we halve the default
tolerance for the objective (i.e., we set EAM_obj_tol and EAM_thetadistort to 0.005/2).
Tightening the objective tolerance appears to reduce numerical precision errors that can, for

43We re-center and re-scale the draws so that the sample mean of Y ⇤
i is exactly n

�1
2Yn,0 and the sample

covariance is b⌃n,0.
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instance, lead the estimated bounds for the AS test to be tigher than for the KMS test. On
the other hand, the tighter tolerances increase runtime and lead to some convergence issues.
In the specification with the most moments and parameters, the KMS test fails to converge
correctly in 6% of the cases with the tigher tolerances. We discard all such draws and
report size and excess length conditional on the algorithm converging correctly. We obtain
qualitatively similar results using the default tolerances, which have fewer convergence
issues but are less numerically precise.

G.5 Additional Simulation Results

This appendix reports additional simulation results to complement the results reported
in Section 6 of the main text. Figures G.1-G.2 show comparisons analogous to Figure 1
except for the alternative parameters �g and �. Figures G.3-G.5 show comparisons of the
hybrid to the LFP, sCC, and sRCC tests, while Figures G.6-G.7 show comparisons to the
AS and KMS tests.
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Figure G.1: Rejection probabilities for 5% tests of ✓g

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments

(e) 10 Parameters, 38 Moments (f) 10 Parameters, 110 Moments
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Figure G.2: Rejection probabilities for 5% tests of �

(a) 3 Parameters, 6 Moments
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(b) 3 Parameters, 14 Moments
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(c) 5 Parameters, 14 Moments
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(d) 5 Parameters, 38 Moments
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(e) 11 Parameters, 38 Moments
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(f) 11 Parameters, 110 Moments
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Figure G.3: Rejection Probabilities for 5% tests of Cost of Mean-Weight Truck:
Comparisons to Cox & Shi (2022) and LFP tests

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments

(e) 10 Parameters, 38 Moments (f) 10 Parameters, 110 Moments
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Figure G.4: Rejection Probabilities for 5% tests of ✓g: Comparisons to Cox & Shi (2022)
and LFP tests

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments

(e) 10 Parameters, 38 Moments (f) 10 Parameters, 110 Moments
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Figure G.5: Rejection Probabilities for 5% tests of �: Comparisons to Cox & Shi (2022)
and LFP tests

(a) 2 Parameters, 6 Moments
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(b) 2 Parameters, 14 Moments
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(c) 4 Parameters, 14 Moments
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(d) 4 Parameters, 38 Moments
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(e) 10 Parameters, 38 Moments
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(f) 10 Parameters, 110 Moments
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Figure G.6: Rejection Probabilities for 5% tests of Cost of Mean-Weight Truck:
Comparisons to AS and KMS tests

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments
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Figure G.7: Rejection Probabilities for 5% tests of ✓g: Comparisons to AS and KMS tests

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments
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