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Abstract

Policymakers, firms, and researchers often choose among multiple options based

on estimates. Sampling error in the estimates used to guide choice leads to a

winner’s curse, since we are more likely to select a given option precisely when we

overestimate its effectiveness. This winner’s curse biases our estimates for selected

options upwards and can invalidate conventional confidence intervals. This paper

develops estimators and confidence intervals that eliminate this winner’s curse. We

illustrate our results by studying selection of job training programs based on esti-

mated earnings effects and selection of neighborhoods based on estimated economic

opportunity. We find that our winner’s curse corrections can make an economically

significant difference to conclusions, but still allow informative inference.
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1 Introduction

Policymakers, researchers, and firms frequently select among multiple options (e.g. treat-

ments, policies, or strategies) based on their estimated effects, picking the option that

appears “best” according to some criterion. When the estimates used to guide our choices

are uncertain, data-driven selection gives rise to a winner’s curse and the selected option

will systematically underperform on average relative to our initial estimate. This winner’s

curse arises because we are more likely to select a given option precisely when we overes-

timate its effectiveness. Hence, we encounter this winner’s curse even in settings where the

estimates used to guide our choice are unbiased, for example coming from a randomized

trial. Problems related to the winner’s curse have previously been discussed in a range

of contexts including genome-wide association studies (e.g. Zhong and Prentice, 2009; Xu,

Craiu, and Sun, 2011; Ferguson et al., 2013) and online A/B tests (Lee and Shen, 2018).

As an example, consider the JOBSTART demonstration, which was a randomized

trial evaluating the effectiveness of different job-training and job-placement programs for

high-school dropouts across 13 different sites in the US. The experiment found limited and

statistically insignificant earnings effects at 12 of the 13 sites, but found that the remaining

program generated large and statistically significant effects (see Cave et al., 1993, for a com-

plete description). A subsequent replication study attempted to mimic the successful pro-

gram at a further 12 sites, but found disappointing results. Miller et al. (2005) describe this

replication study in detail and discuss multiple factors that may have led to the disappoint-

ing outcome including implementation flaws, differences in the demographics of participants

across sites, and changing labor market conditions. Note, however, that the apparently suc-

cessful JOBSTART site was selected for replication based on noisy estimates. Do we need to

appeal to implementation issues and other challenges to explain the disappointing outcomes

in the replication, or should we have expected as much based purely on the winner’s curse?

In this paper we answer this and other questions by developing estimators and con-

fidence intervals that correct for the winner’s curse. Specifically, we develop estimators

with controlled median bias (e.g. which are equally likely to over- and under-estimate the

effectiveness of the selected option) and confidence intervals with guaranteed coverage (e.g.

which cover the true effectiveness of the selected option with probability at least 95%).

In developing these corrections we consider two different notions of “correct” inference:

conditional inference that holds fixed the option selected (e.g. conditioning on the identity

of the best-performing site in the JOBSTART experiment), and unconditional inference
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that considers performance on average across options selected.

Our analysis of conditional inference builds on the rapidly growing literature on selective

inference (e.g. Fithian, Sun, and Taylor, 2017,Tian and Taylor, 2018), which derives optimal

conditional confidence intervals in a range of settings, as well as classical results from the

statistics literature (Pfanzagl, 1979, 1994). Similarly, our analysis for the unconditional

case is related to the large literature on post-selection inference (e.g. Romano and Wolf,

2005; Berk et al., 2013). For the unconditional case we recommend a new hybrid approach,

which combines conditional and unconditional methods and which we find performs quite

well in simulations. Conditional inference gives stronger statistical guarantees but tends

to produce noisier point estimates and wider confidence intervals relative to the hybrid

approach. We consequently recommend hybrid inference as the default approach except

in cases where there is a specific need for conditional guarantees.

For simplicity, we focus on the case where our initial estimates, e.g. the site-specific

estimates in the JOBSTART experiment, are normally distributed with known variance.

While exact normality rarely holds in practice, standard approaches to inference, e.g.

based on t-statistics, rely on an assumption of approximate normality. Our finite-sample

results for the normal model translate to approximate results for feasible versions of our

procedures, based on asymptotically normal estimators and consistent variance estimates,

and we show in the appendix that the resulting asymptotic approximations are uniformly

valid over a large class of data generating processes. By contrast, procedures which either

ignore the winner’s curse or are not shown to be uniformly valid over appropriate data

generating processes can yield unreliable inferences, even in large samples.

In the next section we introduce both the winner’s curse we study and our corrections

in a simplified setting based on the JOBSTART demonstration. Simulations calibrated

to the JOBSTART estimates show that there is scope for a winner’s curse in this setting,

with conventional estimators overestimating the average treatment effect of the selected

site about 85% of the time, and conventional 95% confidence intervals covering the true

effect only about 80% of the time. Interestingly, however, when we apply our corrected

inference approach to the actual JOBSTART data, we find that both the conditional and

hybrid approaches yield results similar to conventional methods, and strongly suggest that

the differences between the findings in Cave et al. (1993) and Miller et al. (2005) cannot

be explained by the winner’s curse alone. By contrast, projection inference, which is a

type of unconditional inference applied elsewhere in the literature (e.g. Berk et al., 2013),

yields substantially less precise conclusions.
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For our second application, we consider the problem of targeting neighborhoods based

on estimated economic mobility. In cooperation with the Seattle and King County public

housing authorities, Bergman et al. (2023) conduct an experiment encouraging housing

voucher recipients to move to high-opportunity neighborhoods, which are selected based on

census-tract level estimates of economic mobility from Chetty et al. (2020). We consider

an analogous exercise in the 50 largest commuting zones (CZs) in the US, selecting top

tracts based on estimated economic mobility and examining conventional and corrected

inference on the average mobility in selected tracts, relative to the average tract where

a voucher-recipient household with children lived in 2018.

Calibrating simulations to the Chetty et al. (2020) data, we again find that conventional

approaches suffer from severe bias in many CZs, while our corrected inference procedures

eliminate these biases. Applying our procedures to the original data we find lower mobility,

and higher uncertainty, for selected tracts than conventional approaches, but our results

nonetheless strongly indicate gains from moving to selected tracts. Specifically, across the

50 CZs the average conventional estimate implies that target tracts are associated with

a 12.25 percentile-point higher income in adulthood (for children growing up in households

at the 25th percentile of the income distribution) relative to the average tract in which a

voucher-recipient household lived in 2018, while the average hybrid estimate is 10.27, and

the average conditional estimate is 8.19. The average width of conventional confidence

intervals is 1.13 percentile points, while the average width of hybrid confidence intervals

is 3.58, and the average width of conditional confidence intervals is 21.46, highlighting the

price of conditional guarantees in this setting.

An alternative route to correct the winner’s curse is sample splitting. Split-sample

inference divides the data into two parts, where the “winning” option is selected using

the first part of the data, and inference is based on the second part of the data. Since this

approach uses separate data for selection and inference it eliminates the winner’s curse,

but will also result in worse selections on average. In our simulations calibrated to the

JOBSTART demonstration, for instance, we find that split-sample selection of the target

site (using half of the data for selection and the other half for inference) reduces the average

treatment effect from the selected site by over 25%. Moreover, since only part of the data

is used for inference, split-sample inference is also statistically inefficient.

A final option for correcting the winner’s curse is to apply Bayesian methods. One can

show that Bayesian methods eliminate the winners curse on average under the researcher’s

prior distribution. This result is, however, sensitive to the prior: for instance, the posterior
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median under a given prior will have positive bias under some values for the true effects

and negative bias under others, so if we care about performance at a particular true

effect value, or average performance under a different prior than the one used to form the

posterior, Bayesian approaches can yield invalid inferences even without the winner’s curse.

In settings with data on many parallel units (e.g. an experiment run at a large number

of different sites) one response is to adopt an empirical Bayes approach and estimate the

prior from the data. Empirical Bayes approaches that assume a normal prior (e.g. a

normal distribution for tract-level economic mobility conditional on tract-level covariates)

are widely used in applications, including by Chetty et al. (2020).

As with other Bayesian approaches, empirical Bayes based on a normal prior will not

in general correct for the winner’s curse when the true distribution of effects is non-normal,

and we find that the normal approximation is an imperfect fit to the distribution of effects

in Chetty et al. (2020).1 Consequently, while empirical Bayes methods reduce the winner’s

curse in this setting they do not fully correct it, and the coverage of empirical Bayes

credible sets in our simulations ranges between 1% and over 80% across different CZs, with

lower coverage on average in CZs where the normal approximation is worse. One potential

response is to relax the normality assumption, and Empirical Bayes has been shown to

correct for the impact of certain forms of selection in situations where we either treat

the prior nonparametrically (Efron, 2011) or can correct for misspecification of the prior

(Armstrong, Kolesar, and Plagborg-Moller, 2022). We are unaware, however, of results

showing that empirical Bayes approaches correct the winner’s curse in general settings.

The problem we consider, inference on the true effect of the estimated “best” option,

is distinct from and complementary to several other problems considered in the recent

literature. Gu and Koenker (2023) study the problem of optimal selection, and more

generally optimal ranking, from a decision-theoretic perspective, examining potential loss

functions and recommending a nonparametric empirical Bayes approach. By contrast,

our analysis takes the rule used to select the “winner” as given and conducts inference on

the true effect of the selected option. Similarly, Mogstad et al. (2022) consider inference

on the ranking of different units, proposing valid confidence intervals for e.g. the rank of

a particular experimental site. This is again distinct from our analysis, which conducts

1The connection between empirical Bayes approaches using normal priors and shrinkage estimators
(Efron and Morris, 1975) implies that particular forms of empirical Bayes can yield improved point
estimates even when the normal prior is incorrect. However, these results do not imply that empirical
Bayes yields correct inference, even in settings without a winner’s curse.
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inference on the effect of the option estimated to have a given rank.2

In the next section we illustrate the winner’s curse and our corrected inference tech-

niques in the context of the JOBSTART example. Section 3 looks beyond this example to

introduce the setting for our general results, shows how our setting nests many problems

of interest, motivates the question of inference after selection, and discusses the distinction

between conditional and unconditional inference. Sections 4 and 5 state our conditional

and unconditional inference results, respectively. Section 6 discusses the practical im-

plementation of our procedure, and recaps the steps needed to apply our approach in

practice. Finally, Section 7 presents our application to neighborhood effects based on

Chetty et al. (2020) and Bergman et al. (2023). The online appendix presents proofs,

supporting theoretical results, additional details and results for the empirical applications,

and an additional empirical application based on Karlan and List (2007).

2 Revisiting the JOBSTART Demonstration

We begin by revisiting the results of the JOBSTART demonstration, which was a random-

ized controlled trial investigating the effectiveness of a combination of basic skills education,

occupational training, support services, and job placement assistance for low-skilled high

school dropouts. Implemented between 1985 and 1988 in the 13 sites listed in Table I,

experimental participants were randomized into either a treatment group, who received

access to JOBSTART services, or a control group, who did not. The experimental sites

differed in their program structures, in their local labor market and recruiting demograph-

ics and, presumably, in unmeasured staff and center competencies. Full details of the

demonstration are available in Cave et al. (1993).

Table I presents estimates of the average treatment effect (ATE) on cumulative earnings

over the third and fourth years of the study at each of the 13 sites, alongside sample sizes,

imputed standard errors, and the average cumulative earnings for the control group.3 The

overall effects of the demonstration on earnings were muted.4 The one exception was the

2While in this paper we focus on inference on the “winning” or first-ranked option, Andrews et al.
(2022) extends our results to cover inference on options ranked two or lower.

3While Cave et al. (1993) report point estimates for each of the 13 sites (see Table 5.13 of Cave et al.,
1993), they do not report standard errors for these estimates, instead reporting only statistical significance
at the 1%-, 5%- or 10%-levels. In personal correspondence Fred Doolittle, one of the authors of Cave et al.
(1993), indicated that the standard errors and microdata from this study are no longer accessible. To conduct
our analysis we thus impute standard errors for the site-specific ATE estimates based on other results
reported in Cave et al. (1993). See Appendix A for the (restrictive) assumptions that justify this imputation.

4Cave et al. (1993) report that the overall cost of the demonstration was not repaid through increases
in earnings or other quantified benefits to individuals in treated groups by the end of the follow-up period.
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Center for Employment Training (CET) in San Jose, CA, where per-capita earnings for

the treatment group in months 25-48 of the experiment exceeded those for the control

group by more then $6,500, and this difference was significant at the 1% level.

Based on the success of the CET in the JOBSTART experiment, as well as in another

multi-site randomized trial of job-training and related services called the Minority Female

Single Parent Demonstration (Burghardt et al., 1992), which again found large positive

effects at the CET, the CET program was promoted as a possible model for non-residential

federal assistance. To investigate if the CET model could be successfully replicated else-

where, the US Department of Labor launched the Evaluation of the Center for Employment

Training Replication Sites in 1992 (Miller et al., 2005). The evaluation (which we henceforth

refer to as the replication study) recruited individuals at 12 sites (different from the original

13 JOBSTART sites), over a period from 1995 to 1999. Full details of the replication study

are provided in Miller et al. (2005). The results of the replication study were disappointing

relative to those observed at the CET in the JOBSTART experiment: across the 12

replication sites the total earnings effect for the third and fourth years of the study period

was -$1135, with an imputed standard error of $1315.5 A t-test for equality of the effect in

the replication study and the initial CET estimate yields a t-statistic of 3.86, so we strongly

reject equality of the initial and replication effects at conventional significance levels.

A possible explanation for the disappointing results in the replication study, discussed

extensively by Miller et al. (2005), is that not all of the sites in the replication study adhered

closely to the design of the CET program. Specifically, Miller et al. (2005) review the key

elements of the CET model and conclude that of the 12 replication sites only four achieved

high fidelity to the CET program. Across these four high-fidelity sites the total earnings ef-

fect for the third and fourth years of the study was -$1556, with an imputed standard error of

$2607. While the standard error is larger in this case, this estimate is still significantly lower

than the CET estimate: a t-test for equality of the two coefficients yields a t-statistic of 2.7.

Miller et al. (2005) discuss a number of factors beyond program differences that may

have led to disappointing results in the replication study, including differences in the pool

However, there were clearer effects on some other outcomes, particularly the likelihood of passing the
General Educational Development (GED) examination or completing high school.

5Miller et al. (2005) report p-values for earnings effects in each year separately, but do not report a p-
value or standard error for the combined earnings effect in years 3 and 4. The correct standard error for the
combined effect depends on the correlation of the single-year estimates, which is not reported by Miller et al.
(2005). To obtain a standard error, we thus use the reported estimates and p-values to infer standard errors
for years 3 and 4 separately, and define our imputed standard error as the upper bound on the standard
error for the sum, corresponding to the case of perfect positive correlation between the single-year estimates.
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of experimental participants, stronger labor market conditions, and more availability of

training opportunities besides the experimental treatment. There is another potentially

important factor, however: the CET program was selected for replication in part based on

its promising performance in the JOBSTART experiment. Since the JOBSTART estimates

were themselves noisy, we should expect treatment effect estimates from the “best” site

to be biased upwards entirely apart from any implementation differences or changes in

the economic environment. It is thus natural to ask if the replication results are truly

indicative of changes in ATEs (whether due to implementation challenges or other factors)

or if we can explain the disappointing performance in the replication experiment purely

based on the winner’s curse. Going a step further, could such disappointing performance

have been predicted even without running the replication study?

We next explain why selection of the “best” site based on noisy data will lead to

winner’s curse bias, and then explore the scope for bias using simulations calibrated to the

JOBSTART data. We then introduce our methods for correcting the winner’s curse and

apply these methods to the JOBSTART and replication results, where we find that the

winner’s curse cannot explain the differences between the findings in Cave et al. (1993) and

Miller et al. (2005), corroborating the conclusion of Miller et al. (2005) that the treatment

effects differed between the original and replication experiments due to other factors. In

particular, the independent success of the CET in the Minority Female Single Parent

Demonstration suggests that specific aspects of the CET, for instance connections with

employers in San Jose which were not replicated at other sites, may have played a role.

2.1 Winner’s Curse in the JOBSTART Demonstration

As in most economic applications, inference in the JOBSTART demonstration was based

on the assumption (justified by the central limit theorem) that point estimates were

approximately normally distributed. If we index the 13 sites by θ∈Θ and write X(θ) for

the estimate at site θ, this corresponds to an assumption that X(θ)≈dN(µX(θ),ΣX(θ)),

where ≈d denotes approximate equality in distribution, µX(θ) is the ATE at site θ, and

ΣX(θ) is the variance of the estimator at this site. Let us assume for simplicity that

this normal approximation holds exactly, X(θ)∼N(µX(θ),ΣX(θ)), and that ΣX(θ) is

known. As we discuss in Section 6 below, our results for the finite-sample normal model

translate to asymptotic results under minimal regularity conditions, so to build intuition

for both winner’s curse bias and our proposed solutions it suffices to consider the case

where estimates are normally distributed with known variance.
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The JOBSTART estimates are statistically independent across the 13 sites, so if we letX

and µX denote the 13-dimensional vectors collecting estimates and ATEs across sites, respec-

tively, we have X∼N(µX,ΣX) for ΣX the diagonal matrix with diagonal elements ΣX(θ).

The CET delivered the largest estimate in the JOBSTART experiment, and was selected for

replication. To model this situation formally, suppose that after observing estimates X we

are interested in the effect at the site with the largest estimate, θ̂=argmaxθ∈ΘX(θ).6 Our

quantity of interest is thus µX(θ̂), the true effect associated with the estimated best site.7

Inference on µX(θ̂) raises an immediate challenge: while X(θ) unbiasedly estimates

µX(θ) at each site, X(θ̂) systematically over-estimates µX(θ̂). To see why, suppose we

select a specific site θ̃∈Θ. By the definition of θ̂ we select this site only when X(θ̃)≥X(θ)

for all θ 6= θ̃. This implies that once we condition on selecting site θ̃, the distribution of

X(θ̃) is shifted upwards and X(θ̃) has positive median bias as an estimator for µX(θ̃):8

PrµX

{
X(θ̃)≥µX(θ̃)|θ̂= θ̃

}
>

1

2
for all µX.

The same holds for all θ̃∈Θ, so X(θ̂) is also biased upwards unconditionally:

PrµX

{
X(θ̂)≥µX(θ̂)

}
>

1

2
for all µX.

Similarly, conventional t-statistic-based confidence intervals may undercover.

Selection of the “winning” site thus implies a sharp theoretical prediction for the direction

of bias. The magnitude of the bias depends on the data generating process, however, and

the scope for bias is reduced when there is a clear best site in the sense that one site θ̃ has

µX(θ̃)�µX(θ) for all θ 6= θ̃ relative to the size of the standard errors. In this case we will

almost always select θ̂= θ̃, so the effect of selection will be minimal. Since the variance of our

6Since the CET also had the most statistically significant estimate we could alternatively define θ̂ to select
the largest t-statistic. Selection based on t-statistics generates qualitatively similar biases to those we discuss
below and, as shown in Section 3, our corrections also apply in that case. Our analysis also abstracts from the
success of the CET in the Minority Female Single Parent Demonstration, which contributed to its selection
as a model for replication (Miller et al., 2005). The participants in the replication study (16-21 year old
out-of-school youth) much more closely reflect those in JOBSTART (17 to 21 year-old high school dropouts)
than those in the MFSPD (single mothers belonging to an ethnic minority group, with an average age of 28).

7This is distinct from the problem of inference on the effect of the true best site, µX(θ∗) for
θ∗∈argmaxθ∈ΘµX(θ). Inference on µX(θ∗) would allow us to make statements about the effect of the
“best” program in the JOBSTART demonstration, but would not in general indicate which program
generated this effect. See Dawid (1994) for further discussion of this distinction and an argument in favor

of inference on µX(θ̂).
8It also has positive mean bias, but we focus on median bias for consistency with our later results.
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ATE estimates is decreasing in the sample size, this might suggest that the winner’s curse is

a purely “small sample” issue: if we hold the site-specific ATEs fixed and increase the sample

size, so long as there is not an exact tie for the “best” site (i.e. there is a unique value θ∗ that

maximizes µX(θ)) there will eventually be a clear winner, and winner’s curse bias will be

negligible. Hence, we might be tempted to conclude that the winner’s curse is a non-issue so

long as sample sizes are not too small or, equivalently, the standard errors are not too large.

This intuition is incomplete at best. First, for a given sample size near-ties in the

site-specific ATEs yield very similar behavior to exact ties, and the fact that the winner’s

curse would eventually go away if we had more data is not especially consoling. Moreover,

no matter how large the sample size or how small the standard errors, there exist near-ties

sufficiently close that inference ignoring selection remains unreliable. Hence, what matters

for inference is neither whether there are exact ties, nor the sample size or standard errors

as such, but instead how close the best-performing treatments are to each other relative to

the degree of sampling uncertainty. So long as the gaps between the site-specific treatment

effects are modest relative to sampling uncertainty, as is often the case in practice, there

is scope for winner’s curse bias.

2.2 JOBSTART Simulations

To explore the quantitative importance of the winner’s curse, we calibrate simulations based

on the JOBSTART data. Specifically, we draw X∼N(µX,ΣX) where ΣX is the diagonal

matrix with the squared JOBSTART standard errors (i.e. the square of the fifth column

in Table I) along the diagonal, and µX =s·µ̂X for µ̂X the JOBSTART point estimates (i.e.

the fourth column in Table I) and s a scaling factor. For each data realization we select the

“winning” site θ̂=argmaxθ∈ΘX(θ), and conduct inference on the site-specific ATE µX(θ̂).

Figure I examines the performance of conventional estimators and confidence intervals

in this setting. The first panel shows the coverage of the conventional point estimate ±
1.96 standard error confidence intervals, while the second plots the difference between the

over-estimation probability and one half, PrµX{X(θ̂)≥µX(θ̂)}− 1
2
, and the third plots

the median bias in dollars for the ATE on cumulative earnings in years three and four,

MedµX(X(θ̂)−µX(θ̂)). On the horizontal axis we vary the scaling factor s. The scaling

s=1 corresponds to the JOBSTART point estimate µX = µ̂X, while s>1 increases the

difference between the site-specific ATEs and s<1 decreases the differences between the

site-specific ATEs.

Due to estimation error the JOBSTART point estimates will tend to overstate the
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differences of the site-specific ATEs, so it is not clear that the results for s=1 are necessarily

the best reflection of the underlying data generating process in this setting. In particular,

if we imagine sampling sites independently from a population of potential sites, the average

variance of the site-specific estimates will correspond to the variance of the site-specific

ATEs, plus the average sampling variance. To offset this effect, we compute the value of

s such that the variance of s·µ̂X(θ) across θ∈Θ matches an unbiased estimator for the

variance of the site-specific ATEs. This yields a scaling s∗ slightly above s=0.5, which

we focus on in our discussion and plot as a vertical line in all figures.

The results in Figure I show that conventional inference procedures can suffer from

substantial distortions, where the severity of these distortions is larger for smaller scaling

factors s. In the case where the treatment effect is zero at all sites (corresponding to s=0),

we have a more than 99.9% probability of overestimating the effect at the selected site, the

point estimate has a median bias of more than $2,750, and the conventional confidence

interval has coverage below 75%. As s increases these issues grow less severe. At our

preferred scaling s∗, we still have a nearly 90% chance of overestimating the true effect, while

the conventional estimator is biased upwards by nearly $2,000, and the conventional 95%

confidence interval has true coverage probability below 82%. As we make s still larger these

distortions further attenuate, and standard approaches appear quite reliable for s≥1.5.

2.3 Corrected Inference Procedures

Our goal in this paper is to develop corrections that eliminate the winner’s curse bias.

This section briefly describes our corrected inference procedures in the context of the

JOBSTART example, while Sections 4 and 5 below develop them in full generality.

For x∈R13, let x(−θ) denote the vector x excluding the element corresponding to θ, and

let FTN(·;µ,θ̃,x(−θ̃)) be the cumulative distribution function for a N(µ,ΣX(θ̃)) distribution

truncated to the interval [maxθ∈Θ\{θ̃}x(θ),∞].9 One can show that FTN(x(θ̃);µ,θ̃,x(−θ̃))
is strictly decreasing in µ. For µ̂α the unique solution to FTN(X(θ̂);µ,θ̂,X(−θ̂))=1−α in

µ, Proposition 2 below shows that

PrµX

{
µ̂α≥µX(θ̂)|θ̂= θ̃

}
=α for all θ̃∈Θ and all µX.

Hence, µ̂α is α-quantile unbiased for the ATE at the estimated best site conditional on

its location. That is, among those draws of the data where this particular site “wins,” we

9Recall that for Φ the cumulative distribution function of a standard normal distribution, the

distribution function of a N(ν,σ2) distribution truncated to the interval [a,b] is Φ((x−ν)/σ)−Φ((a−ν)/σ)
Φ((b−ν)/σ)−Φ((a−ν)/σ) .
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over-estimate the ATE at this this site with probability exactly α.

Using this result, we can eliminate the biases discussed above. The estimator µ̂1/2

is median unbiased and the equal-tailed confidence interval CIET =
[
µ̂α/2,µ̂1−α/2

]
has

conditional coverage 1−α, where we say that an interval CI has conditional coverage 1−α
if it covers the ATE at the estimated best site with at least this probability conditional

on its location, regardless of the value of the ATEs across sites:

PrµX

{
µX(θ̂)∈CI|θ̂= θ̃

}
≥1−α for θ̃∈Θ and all µX. (1)

By the law of iterated expectations, CIET also has unconditional coverage 1−α:

PrµX

{
µX(θ̂)∈CI

}
≥1−α for all µX. (2)

Unconditional coverage is easier to attain, however, so relaxing the coverage requirement

from (1) to (2) allows shorter confidence intervals in some cases.

Conditional and unconditional coverage requirements address different questions, and

which is more appropriate depends on the problem at hand. If we only need to ensure that

our confidence intervals cover the true ATE with probability at least 1−α on average across

the realizations of the estimated best site, it suffices to require unconditional coverage. If

we instead care about performance only in a subset of instances, for instance only for when

we estimate a particular site to be best, then conditional coverage may be more appropriate.

We discuss the choice between conditional and unconditional inference methods at length

in Section 3 below. Since conditional coverage is more demanding and can sometimes

result in much wider confidence intervals, we recommend unconditional inference as the

default approach when there is not a clear reason to require conditional coverage.

We are unaware of alternatives in the literature that ensure conditional coverage (1).

For unconditional coverage (2), however, one can form an unconditional confidence interval

by projecting a simultaneous confidence set for the ATEs at all sites, µX. In particular, let

cα denote the 1−α quantile of maxθ|ξ(θ)|/
√

ΣX(θ) for ξ∼N(0,ΣX). If we define CIP as

CIP =

[
X(θ̂)−cα

√
ΣX(θ̂),X(θ̂)+cα

√
ΣX(θ̂)

]
,

then one can show that this interval has correct unconditional coverage for the ATE at

the estimated best site - see Section 5 below.

Figure II plots the median length in dollars of 95% confidence intervals CIET and CIP ,
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along with the conventional confidence interval.10 As Figure II illustrates, the median length

of CIET is shorter than that of CIP once s is sufficiently large, and eventually converges to

the length of the conventional interval. When s is small, on the other hand, CIET can be

substantially wider than CIP . This reflects that in these cases the estimated ATE at the

winning site is frequently close to the estimated ATE at the next-best site. For the truncated

normal distribution used to compute CIET , an observation close to the lower endpoint

provides evidence of a small mean but little precision about the exact value, leading to

long confidence intervals. These features become still more pronounced if we consider

higher quantiles of the length distribution: to illustrate, Figure III plots the 95th percentile

of the distribution of length.11 One can show (see Proposition 7 in Appendix C) that the

endpoints of CIET are optimal quantile unbiased estimators. So long as we impose correct

conditional coverage, there is hence little scope to improve conditional performance. If we

instead focus on unconditional performance, by contrast, improved performance is possible.

To improve performance we propose a hybrid inference approach, which combines the

conditional and projection approaches. Hybrid inference first computes a level β<α projec-

tion interval CIβP , and then considers conditional inference given the location of the winning

site and that its ATE lies within the projection interval CIβP . For FH
TN(x(θ̃);µ,θ̃,x(−θ̃)) the

cumulative distribution function for a N(µ,ΣX(θ̃)) distribution truncated to the interval[
max

{
max
θ∈Θ\{θ̃}

x(θ),x(θ̃)−cβ
√

ΣX(θ̃)

}
,x(θ̃)+cβ

√
ΣX(θ̃)

]

and evaluated at x(θ̃), one can show that this function is again strictly decreasing in µ.

For µ̂Hα the unique solution to FH
TN(X(θ̂);µ,θ̂,X(−θ̂)) =1−α in µ, Proposition 5 below

shows that µ̂Hα is α-quantile unbiased conditional on the event
{
µX(θ̂)∈CIβP

}
. Since

PrµX

{
µX(θ̂)∈CIβP

}
≥1−β one can further show that µ̂Hα is nearly α-quantile unbiased

for the ATE at the estimated best site,∣∣∣PrµX{µ̂Hα ≥µX(θ̂)
}
−α
∣∣∣≤β ·max{α,1−α} for all µX.

10We focus on median length, rather than mean length, because the results of Kivaranovic and Leeb
(2021) imply that CIET has infinite expected length.

11In both Figures II and III the lengths of conditional confidence intervals feature steep declines over
a particular range of s values (slightly below 0.5 in Figure II, and slightly above 1 in Figure III). These
steep declines reflect changes in the frequency with which sites with particularly noisy estimates are
picked as we vary s.
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We again form level 1−α equal-tailed confidence intervals based on these estimates, where

to account for the dependence on the projection interval we adjust the quantile considered

and take CIHET =

[
µ̂Hα−β

2(1−β)
,µ̂H

1− α−β
2(1−β)

]
. See Section 5.2 for details on this adjustment. By

construction, hybrid intervals are never longer than the level 1−β projection interval CIβP .

For all results reported in this paper we set β= α
10

=0.5%.

Due to their dependence on the projection interval, hybrid intervals do not in general

have correct conditional coverage (1). By relaxing the conditional coverage requirement,

however, we obtain improvements in unconditional performance, as illustrated in Figure II,

where we see that the hybrid confidence intervals have shorter median length than the uncon-

ditional interval CIP for all parameter values considered.12 The gains relative to conditional

confidence intervals CIET are large for many values of true ATEs, and Figure III shows

that these gains are even more pronounced for higher quantiles of the length distribution.

The improved unconditional performance of the hybrid confidence intervals is achieved

by requiring only unconditional, rather than conditional, coverage. To illustrate, Figure

7 in Appendix A shows the conditional coverage of our conditional, hybrid, and projection

intervals. As expected, only the conditional interval ensures correct conditional coverage.

2.4 Winner’s Curse Corrections in the JOBSTART Demonstration

Having introduced our corrected inference procedures, we now return to the data from

the JOBSTART demonstration, and ask how accounting for the winner’s curse affects our

conclusions. Table II reports point estimates and 95% confidence intervals for the ATE at

the CET/San Jose using (i) the conventional approach, (ii) our conditional median unbiased

estimator µ̂1
2

and conditional interval CIET , (iii) the projection confidence interval CIP

and (iv) the hybrid estimator µ̂H1
2

and hybrid confidence interval CIHET . We see that our

conditional and hybrid adjustments make only a minimal difference in this case: the point

estimates differ by at most $3, while the length of the hybrid and conditional intervals is

within about 4% of the length of the conventional interval. The one exception is the projec-

tion interval, which is over 47% longer than the conventional interval. Hence, correcting for

the winner’s curse in the JOBSTART data changes our conclusions very little, unless we

focus on the projection approach, which necessarily implies longer confidence intervals.13

Given that adjusting for the winner’s curse has little effect on our conclusions from the

12One can also compare the median absolute error of conventional, conditional, and hybrid point
estimators. We find that the performance differences in this application are limited.

13Intuitively, the gap between estimates for the CET/San Jose and the other sites is sufficiently large
to indicate a “clear winner,” similar to our simulation results with s large.
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JOBSTART experiment, one would expect it to also have little impact on our interpretation

of the replication study. To explore this formally, we extend our theoretical results to derive

winner’s-curse-adjusted forecasts for the estimates in the replication study. Specifically,

given the JOBSTART results and a standard error for the replication study, Section 4.1

and Appendix E show how to compute intervals which are guaranteed to cover the result in

a follow-up study with a given probability (e.g. 95%) either conditional on θ̂ (for our condi-

tional approach) or unconditionally (for our hybrid approach), under the assumption that

the effects in the original and replication studies are the same. Table III reports forecast in-

tervals based on the JOBSTART data, reporting separate intervals for the set of all 12 sites

and the 4 high-fidelity sites. Comparing these forecast intervals to the point estimates from

the replication study, we see that the forecast intervals include only positive values and so ex-

clude the replication point estimates. This can be interpreted as a rejection of the hypothesis

that the effects in the JOBSTART and replication studies are the same at the 5% signifi-

cance level, and the third column of Table III computes the associated p-values of this test.

Hence, even after correcting for the winner’s curse, we find strong evidence that the ATEs

in the initial and replication studies were different, which suggests a role for other explana-

tions such as those discussed by Miller et al. (2005). Specifically, Miller et al. (2005) argue

that the high effectiveness of the CET found in JOBSTART and the Minority Female Single

Parent Demonstration was due to unique features of the CET, including close connections

with local employers, a clear organizational focus on employment as the goal, little upfront

screening of applicants, training in occupations demanded by the local labor market, rela-

tively intensive services concentrated over a short period of time, strong job placement efforts,

and a high-wage labor market. Our empirical results suggest that these or other features of

the CET program could not be adequately reproduced at the sites in the replication study.

The use of our conditional and hybrid approaches is important for the result obtained

in this application. While we do not know of a method to produce a non-conservative

forecast interval using the projection approach, the 95% projection confidence interval

based on the Cave et al. (1993) results overlaps with the conventional 95% confidence

interval for the average effect in the high-fidelity sites, but not for the full 12 sites in Miller

et al. (2005). Hence, if we relied on the projection approach to correct for the winner’s

curse, our conclusions about the comparison between JOBSTART and the replication

experiment would depend on the set of sites considered.

An important limitation of our analysis is that since Cave et al. (1993) do not report stan-

dard errors for the site-specific ATE estimates in the JOBSTART demonstration, our analy-
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sis relies on standard errors imputed (under restrictive assumptions) using other information

in Cave et al. (1993). To examine the sensitivity of our conclusions to these imputations,

we consider proportionately scaling up the standard errors at all sites, and ask how much

we would need to scale up the standard errors in order to not reject equality of the effects in

Cave et al. (1993) and Miller et al. (2005) at the 5% level. The resulting scalings are reported

in the last column of Table III, and range from 1.72 to 1.84 depending on the method and the

set of replication sites considered. Focusing on the smallest of these, if we scaled up the stan-

dard errors in Cave et al. (1993) by a factor of 1.72, this would imply a standard error at the

CET/San Jose of approximately $2573. This would imply, however, that the CET/San Jose

estimate in Cave et al. (1993) is insignificantly different from zero at the 1% significance level,

inconsistent with the reported significance levels in Cave et al. (1993). Hence, even correct-

ing for the winner’s curse and possible inaccuracy in our imputed standard errors, it seems

likely that the treatment effects in Cave et al. (1993) and Miller et al. (2005) were different.

Alternative Correction: Split-Sample Approaches An alternative approach to

correct for the winner’s curse is sample splitting. In the context of the JOBSTART

example, sample splitting would entail dividing the data at each site into two parts, where

we would use the first part to select among the sites and the second to conduct inference.

This ensures that selection and inference are based on independent observations and so

eliminates the winner’s curse.

While sample splitting avoids the winner’s curse, it comes at a cost on multiple dimen-

sions. First, and most importantly, selecting a site based on only part of the data leads to

worse selections on average. To illustrate this point, Appendix A explores the performance

of split-sample approaches in our JOBSTART simulations, focusing on the case where we

use half the data for selection and the other half for inference. Using just half the data

for selection substantially reduces the ATEs for selected sites, and we find that (at our

preferred scaling s∗) selecting the target site based on half of the data means that the

selected site has an ATE $514 lower, on average, relative to the case where we use the

full data. This is over 26% of the ATE under full-data selection at this scaling. Second,

even if we are comfortable with the poorer targeting that results from sample splitting,

conventional split-sample inference is statistically inefficient, yielding wider confidence

intervals and noisier point estimates than necessary (Fithian, Sun, and Taylor, 2017).

Alternative Correction: Bayesian Methods One may also correct for the winner’s

curse using Bayesian methods. Under a given prior distribution π for µX, the posterior
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distribution given X, π(µX|X), fully summarizes our beliefs given the observed data. Since

the identity of the “winner” is just a function of X, further conditioning on the winner

does not change our posterior, π(µX|X,θ̂)=π(µX|X).

Using the law of iterated expectations one can show that if CR is a level 1−α credible

set for µX(θ̂) (that is, a set which contains µX(θ̂) with probability 1−α under our posterior

distribution), then Prπ

{
µX(θ̂)∈CR|θ̂

}
=1−α so CR has conditional coverage 1−α under

the prior. It is critical for this calculation, however, that the probability is computed under

the prior π. If the data are drawn in some other way (for instance under a fixed parameter

value µX), Bayes credible sets do not in general have correct conditional coverage (1)

or unconditional coverage (2).14 One response to this sensitivity to the prior is to adopt

an empirical Bayes perspective and try to estimate the prior (e.g. the distribution of

site-specific ATEs) from the data. Such estimation seems likely to be challenging given

data from only 13 sites as in the current example, but we discuss the performance of

empirical Bayes approaches in another context in Section 7 below.

3 Setting and Inference Problem

We now move beyond the JOBSTART example to introduce the general class of problems

we study, which covers many other settings of potential interest. We then frame and

motivate the question of inference-after-selection and discuss the choice between conditional

and unconditional inference.

Let Θ be a finite set of options (e.g. treatments or policies). For each option θ∈Θ we

observe a two-dimensional vector of estimates (X(θ),Y (θ))′∈R2, where X(θ) will be used

to select among options while Y (θ) estimates a quantity of interest associated with option

θ. For |Θ|-dimensional vectors X=
(
X(θ1),...,X

(
θ|Θ|
))′

and Y =
(
Y (θ1),...,Y

(
θ|Θ|
))′

that

collect these estimates, we assume that (X,Y ) follow a joint normal distribution,(
X

Y

)
∼N(µ,Σ) (3)

for

E

[(
X(θ)

Y (θ)

)]
=µ(θ)=

(
µX(θ)

µY (θ)

)
,

14Indeed, conventional confidence sets correspond to Bayes credible sets under a flat prior, and we
have already observed that they can undercover.
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Σ(θ,θ̃)=

(
ΣX(θ,θ̃) ΣXY (θ,θ̃)

ΣYX(θ,θ̃) ΣY (θ,θ̃)

)
=Cov

((
X(θ)

Y (θ)

)
,

(
X(θ̃)

Y (θ̃)

))
,

where Σ is known while µ is unknown. We abbreviate Σ(θ,θ) to Σ(θ).

This model arises naturally as an asymptotic approximation in settings where we have

asymptotically normal vectors of estimates (X̃n,Ỹn) and a consistent estimator Σ̃n for their

variance matrix. Section 6 and Appendix F discuss the implementation of our approach

using non-normal estimates and estimated variances, and show that in that case our

procedures are uniformly asymptotically valid over large classes of data generating processes.

We assume that an option θ̂ is selected by picking the “winner” based on X,

θ̂=argmax
θ∈Θ

X(θ), (4)

where we further assume that θ̂ is unique unless otherwise noted. We are interested in

inference (e.g. estimators and confidence sets) for µY (θ̂), the mean of the element of Y (θ)

associated with the selected option. Before turning to our formal inference goals and

results, we discuss the motivation and interpretation of this setup, where one first selects a

target by maximizing X(θ) and then conducts inference on an associated target parameter.

Motivation for “Picking the Winner” Our analysis takes as given that θ̂ is chosen

to maximize X(θ). We view this as a reasonable point of departure since selection of this

form arises in many different contexts. Moreover, while we do not study the problem of

optimal selection in this paper, many previous recommendations from the optimal selection

literature give rise to selections that can be written in the form (4).

Selecting θ̂ to maximize X(θ) seems particularly natural when our goal is to maximize

µX(θ). In the JOBSTART example of the last section, for instance, X(θ) corresponded

to the estimated ATE at site θ, while µX(θ) was the associated site-specific ATE. If our

goal is to select the site where treatment is most effective it thus seems natural to pick

θ̂ corresponding to the largest estimate. A number of recent papers in the econometrics

literature propose selection rules of this form and prove that they are optimal in various

senses, including Manski (2004), Hirano and Porter (2009), and Kitagawa and Tetenov

(2018b).15 There is also a large statistics literature which considers the problem of optimal

15Manski (2004) and Hirano and Porter (2009) study the problem of assigning a binary treatment
based on a discrete covariate, which can be cast into our setting by letting θ index the possible treatment
allocations (e.g. if there are three covariate values we could treat people with the first only, or with the
first and second but not the third, and so on). Manski (2004) and Hirano and Porter (2009) establish
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assignment. Lehmann (1966) and Eaton (1967) prove that θ̂ defined as in (4) corresponds

to an optimal selection under a variety of optimality criteria when ΣX = V ar(X) is

proportional to the identity matrix, while Gupta and Miescke (1988) refer to θ̂ as the

“natural rule” and discuss criteria under which this rule is optimal for general ΣX.

By defining X(θ) appropriately, “picking the winner” also nests a number of additional

cases that may not be immediately obvious:

• Selection Based on Multiple Outcomes In many contexts there will be multiple

outcomes that matter for our choice of θ̂. In the JOBSTART example, for instance,

we might care not just about earnings but also about educational attainment. So

long as we can combine the outcomes of interest into a single index, for instance

treating a completed GED as equivalent to a specific increase in earnings, we can

cast this into our setting by defining X(θ) as the estimated effect on the index.

• Selection Relative to a Fixed Threshold Suppose that we are picking between

two options, Θ ={0,1}, and that we want to pick option 1 only if the associated

estimate exceeds a threshold c. For instance, we might estimate the marginal value

of public funds (MVPF) for some program (Hendren and Sprung-Keyser, 2020) and

keep the program in place if and only if the estimated MVPF exceeds one. If we

begin with a normally distributed estimate X∗, we can cast this into our setting by

defining X(0)=c and X(1)=X∗, so X(1)>X(0) if and only if X∗>c.

• Selection Based on Statistical Significance Suppose that we want to pick the

option that has the largest t-statistic against the null hypothesis of zero effect. If for

each option θ we have a normally distributed estimate X∗(θ) with standard error

σ∗(θ), we can cast this into our setting by defining X(θ) =X∗(θ)/σ∗(θ), so that

largest element of X corresponds to the largest t-statistic.16

• Selection Based on Posterior Means As discussed in Gupta and Miescke (1988),

a Bayesian looking to maximize the value of µX(θ) associated with their selection

would pick the option with the largest posterior mean. If we observe normally dis-

tributed estimates X∗∼N(µ∗X,Σ
∗
X) and have a normal prior µ∗X∼N(η,Ω), however,

finite-sample and asymptotic optimality properties for θ̂ in this setting, respectively, while Kitagawa and
Tetenov (2018b) prove rate-optimality for analogous assignment rules in settings with continuous covariates.

16We might also want to incorporate a fixed significance threshold, for instance if we only pick one
of the initial options when we conclude it is significantly better than zero based on a two-sided t-test.
To cast this into our setting we can add an extra element θnull to Θ, and define X(θnull)=1.96 so we
select θnull when none of our estimates is positive and significant at the 5% level.
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the vector of posterior means X=(Σ∗−1
X +Ω−1)−1

(
Σ∗−1
X X∗+Ω−1η

)
is also normally

distributed, and selection based on the posterior mean fits our setting.17 Since many

forms of linear shrinkage (e.g. ridge regression) are numerically equivalent to Bayes

posterior means, selection based on such estimates is also covered.

• Selection Based on Model-Implied Estimates While the our examples consider

selection based on estimates which do not impose an explicit economic model, selec-

tion using model-implied estimates also fits our setting. To illustrate, suppose that in

the JOBSTART context we had a model which implied that we could write the ATE

in site θ as µX(θ)=µ∗X(Wθ,γ) for Wθ a vector of observed site-level characteristics

and γ a vector of model parameters. If we have an estimator γ̂ for γ, standard

regularity conditions (e.g. asymptotic normality of γ̂, differentiability of µ∗X in γ) will

imply that the plug-in estimates µ∗X(Wθ,γ̂) are normally distributed in large samples.

Hence we can cast this example into our setting by taking X(θ)=µ∗X(Wθ,γ̂).

While selection of the form (4) covers many cases of interest, there are some situations

that do not fit this model of selection. For instance, we might want to select the site with

the largest estimated earnings increase, but restrict ourselves to those sites with a non-

negative estimated effect on GED completion, which cannot naturally be cast into the form

(4). In Appendix C we state theoretical results that allow for general conditioning events

(specifically, we develop results that condition on γ(X)= γ̃ for γ(·) a user-selected function).

The generality of these results means, however, that to apply them in practice some details

would have to worked out on a case-by-case basis. We have worked out results for two

alternative forms of selection in companion papers, considering selection on the absolute

value of X(θ) (or more generally on ‖X(θ)‖ when X(θ) may be vector-valued) in Andrews,

Kitagawa, and McCloskey (2021), and considering inference on the kth-best option in

Andrews et al. (2022). In the present paper we focus on selection of the form (4) because

it allows us to give fully worked out results that cover many cases of practical interest.

Motivation for Inference After Selection Taking as given the rule used to select θ̂,

our goal is to construct estimators and confidence intervals for µY (θ̂). In many cases, as in

Section 2 above, we are interested in the mean of the same variable that drives selection so

X=Y and µX=µY . In other settings, however, we may select on one variable but want

to do inference on the mean of another. Continuing with the JOBSTART example, we

17Note that in this case we use the prior only to inform the definition of X, and our inference results
will not rely on the prior being correct.
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might select θ̂ based on outcomes for all individuals, but want to conduct inference on

average outcomes for some subgroup defined using covariates, for instance focusing on the

effect for women. In this case we would define Y (θ) to be the estimated average outcome

for women at site θ. As with the definition of X, our framework can incorporate a wide

range of different target parameters by defining Y appropriately.

It is important to emphasize that since we take the rule generating θ̂ as given, the goal

of inference on µY (θ̂) is not to guide the choice among the options Θ.18 Instead we aim

to conduct inference on a quantity of interest associated with the choice that was already

made. Inference of this sort may be of interest for a variety of reasons. First, we may

be interested in µY (θ) for the same sorts of scientific reasons that motivate other ex-post

program evaluations not linked to an explicit prospective treatment choice problem. Second,

in cases where a treatment or policy corresponding to θ has already been implemented

and the results were not as hoped (as in the JOBSTART example) we may be interested

in inference on µY (θ) in order to understand whether the disappointing results could be

explained solely based on the winner’s curse or whether there seem to be other factors

at play. And third, in cases where some treatment or policy is going to be implemented

in the future, we may be interested in forecasting the effect that it is going to have.

Unconditional and Conditional Inference For all of these purposes, we need reliable

estimates and confidence sets for µY (θ̂). In particular, we will say that an estimator µ̂Y

of µY (θ̂) is unconditionally median unbiased if

Pr
{
µ̂Y ≥µY (θ̂)

}
=

1

2
for all µ, (5)

while a confidence interval CI has unconditional coverage 1−α if

Pr
{
µY (θ̂)∈CI

}
≥1−α for all µ. (6)

Note that these probability statements integrate over the distribution of both X and Y,

so the selection θ̂ and thus the target parameter µY (θ̂) are random variables. Hence, these

notions of unbiasedness and coverage correspond to the case where we are interested in

average performance across all realizations of θ̂.

In some cases, however, all realizations of θ̂ may not be of equal interest. For instance,

18Indeed, if we were to change our choice based on our winner’s curse-corrected estimates and confidence
intervals, this would effectively change the definition of θ̂, and so would necessitate further corrections
to ensure valid inference.
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it may be that only some of the options in Θ represent treatments that could plausibly be

implemented, and we might only be interested in performance conditional on recommending

one of these. Or if θ̂ is selected based on statistical significance, we might only be interested

in results in the case where at least one treatment yields a significant result, as otherwise we

think the findings are unlikely to be circulated or published. To formally discuss such cases,

let us introduce a binary (latent) variable S∈{0,1}, where we are interested in performance

when S=1 but not when S=0. The corresponding performance measures are thus

Pr
{
µ̂Y ≥µY (θ̂)|S=1

}
, Pr

{
µY (θ̂)∈CI|S=1

}
.

We assume that S is conditionally independent of (X,Y ) given θ̂, so selection S depends

on (X,Y ) only through θ̂.19 If we are willing to explicitly model the distribution of S

conditional on θ̂ then we can use this model to correct for selection, as in the publication

bias corrections of Andrews and Kasy (2019). In many contexts, however, the appropriate

model for S|θ̂ is unclear. To ensure median unbiasedness and correct coverage for all

possible conditional distributions of S|θ̂ it is necessary and sufficient to ensure conditional

median unbiasedness and conditional coverage given each possible realization of θ̂:

Pr
{
µ̂Y ≥µY (θ̂)|θ̂= θ̃

}
=

1

2
for all θ̃∈Θ and all µ, (7)

Pr
{
µY (θ̂)∈CI|θ̂= θ̃

}
≥1−α for all θ̃∈Θ and all µ. (8)

Conditional median unbiasedness and coverage (7) and (8) are strictly stronger guaran-

tees than their unconditional analogs (5) and (6). Hence they restrict the set of procedures

we consider and can come at a substantial cost in terms of other performance criteria (e.g.

the precision of estimators or the length of confidence intervals). We thus recommend that

researchers view the unconditional criteria (5) and (6) as the “default” option, and enforce

the more restrictive conditional criteria (7) and (8) only in settings where they need to

guard against specific selection concerns.

Decision-Theoretic Motivation One can also relate our inference-after-selection prob-

lem to a formal decision-theoretic model, detailed in Appendix B. This model has two

stages, where in the first stage a decisionmaker selects an option θ∈Θ to maximize some

19This assumption is restrictive, and in Appendix C we extend our conditional inference results to
cover the more general case where there is an additional variable γ̂=γ(X) such that S is independent

of (X,Y ) conditional on the pair (θ̂,γ̂).
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objective, while in the second stage they report an interval that trades off (i) the probability

of covering µY (θ̂) and (ii) the length of the interval. Decisionmakers have lexicographic

preferences and strictly prioritize performance in the first stage, for instance because they

value a better treatment recommendation more than precise inference, or because there

are in fact different decisionmakers in the two stages and the first-stage decisionmaker is

indifferent to the second-stage loss. We show that for a class of second-stage loss functions,

minimax decision rules for the second stage necessarily ensure either unconditional or condi-

tional coverage, depending on whether or not the second stage includes a selection problem.

Hence, our coverage criteria emerge as necessary (although not in general sufficient) con-

ditions for minimaxity in the second-stage problem. Importantly, both criteria imply that

we need to cover µY (θ̂), the parameter associated with the (known) selected option, not

the parameter µY (θ∗) associated with the (unknown) best option θ∗=argmaxθ∈ΘµX(θ).

4 Conditional Inference

While we recommend unconditional inference as the default option, our recommended

unconditional inference procedures build on our conditional inference approach. Hence,

we start by discussing conditional inference.

Our goal in this section is to develop estimators that are conditionally median-unbiased

in the sense of (7), and confidence intervals that have conditional coverage 1−α in the

sense of (8). Our approach will be based on conditionally quantile unbiased estimators,

where we say that µ̂α is an α-quantile conditionally unbiased estimator if its overestimation

probability conditional on θ̂ is exactly α:

Prµ

{
µ̂α≥µY (θ̂)|θ̂= θ̃

}
=α for all θ̃∈Θ and all µ. (9)

Since θ̂ is chosen as a function of X, conditioning on
{
θ̂= θ̃

}
is the same as conditioning

on X falling in the set X (θ̃)=
{
X : θ̂= θ̃

}
.20 Hence, we are interested in inference on µY (θ̃)

conditional on
{
X∈X (θ̃)

}
. Note, however, that since (X,Y ) are unconditionally normally

distributed, their joint distribution conditional on
{
X∈X (θ̃)

}
is multivariate truncated

normal, and correlation between X and Y (θ̃) implies that conditional on
{
θ̂= θ̃

}
, Y (θ̃)

is no longer N(µY (θ̃),ΣY (θ̃)) distributed. To develop conditional inference procedures we

20If θ̂ is non-unique with positive probability, we change the conditioning event from θ̂ = θ̃ to
θ̃∈argmaxX(θ).
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thus need to understand the conditional distribution of Y (θ̃) given
{
X∈X (θ̃)

}
.

To account for the effect of conditioning, let

Zθ̃=X−
(

ΣXY (·,θ̃)/ΣY (θ̃)
)
Y (θ̃). (10)

This corresponds to the residual from the regression of X on Y (θ̃) under their joint

(unconditional) distribution. One can show that Zθ̃ is a minimal sufficient statistic for

µX relative to the distribution of (X,Y (θ̃)), so the conditional distribution of (X,Y (θ̃))|Zθ̃
depends only on the parameter of interest µY (θ̃). This remains true when we condi-

tion on
{
X∈X (θ̃)

}
, and the conditional distribution of Y (θ̃) given

{
θ̂= θ̃,Zθ̃=z

}
is a

N
(
µY (θ̃),ΣY (θ̃)

)
distribution truncated to the set

Y(θ̃,z)=
{
y :z+

(
ΣXY (·,θ̃)/ΣY (θ̃)

)
y∈X (θ̃)

}
. (11)

To derive estimators and confidence intervals based on this result, we need a tractable

characterization for Y(θ̃,z). The following proposition, based on Lemma 5.1 of Lee et al.

(2016), provides one such characterization.

Proposition 1

Let ΣXY (θ̃) = Cov(X(θ̃),Y (θ̃)). For Zθ̃(θ) = X(θ)− ΣXY (θ,θ̃)

ΣY (θ̃)
Y (θ̃) the element of Zθ̃

corresponding to θ, define

L(θ̃,Zθ̃)= max
θ∈Θ:ΣXY (θ̃)>ΣXY (θ̃,θ)

ΣY (θ̃)
(
Zθ̃(θ)−Zθ̃(θ̃)

)
ΣXY (θ̃)−ΣXY (θ̃,θ)

,

U(θ̃,Zθ̃)= min
θ∈Θ:ΣXY (θ̃)<ΣXY (θ̃,θ)

ΣY (θ̃)
(
Zθ̃(θ)−Zθ̃(θ̃)

)
ΣXY (θ̃)−ΣXY (θ̃,θ)

,

and

V(θ̃,Zθ̃)= min
θ∈Θ:ΣXY (θ̃)=ΣXY (θ̃,θ)

−
(
Zθ̃(θ)−Zθ̃(θ̃)

)
.

If V(θ̃,z)≥0, then Y(θ̃,z)=
[
L(θ̃,z),U(θ̃,z)

]
. If V(θ̃,z)<0, then Y(θ̃,z)=∅.

Thus, Y(θ̃,z) is an interval bounded above and below by functions of z. To understand

the form of these bounds, consider any θ̃∈Θ and any z and y. For any θ∈Θ we can use

(10) to solve for the implied X(θ), x(θ;y,z)=z(θ)+ΣXY (θ,θ̃)/ΣY (θ̃)y. To have y∈Y(θ̃,z),
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however, we must have x(θ;y,z)≤x(θ̃;y,z) for all θ∈Θ. Collecting and rearranging these

inequalities yields the result. One can further show that the requirement that V(θ̃,Zθ̃)≥0

holds whenever θ̂= θ̃. Hence, in applications we can safely ignore this constraint and

calculate only L(θ̂,Zθ̂) and U(θ̂,Zθ̂).

Using Proposition 1 it is straightforward to construct quantile-unbiased estimators

for µY (θ̂). Let FTN(y;µY (θ̃),θ̃,z) denote the distribution function for a N
(
µY (θ̃),ΣY (θ̃)

)
distribution truncated to Y(θ̃,z). This function is again strictly decreasing in µY (θ̃), so

we can define µ̂α as the unique solution to FTN(Y (θ̂);µ,θ̃,Zθ̃)=1−α in µ. This estimator

is conditionally α-quantile unbiased for any α∈(0,1).

Proposition 2

For any α∈(0,1), µ̂α is conditionally α-quantile-unbiased in the sense of (9).

Hence, µ̂1
2

is conditionally median-unbiased in the sense of (7), while the equal-tailed

interval CIET =
[
µ̂α/2,µ̂1−α/2

]
has conditional coverage 1−α in the sense of (8). We show in

Proposition 7 in the online appendix that under mild conditions, results in Pfanzagl (1979)

and Pfanzagl (1994) imply that µ̂α is optimal in the class of quantile-unbiased estimators.

One can further show that in the case where the selection problem is “easy” in

the sense that θ̂ takes a given value with high probability, the median unbiased es-

timator and equal-tailed confidence interval reduce to the usual ones. To state this

result, let CIN denote the conventional confidence interval which ignores selection,

CIN =

[
Y (θ̂)−cα/2,N

√
ΣY (θ̂),Y (θ̂)+cα/2,N

√
ΣY (θ̂)

]
, where cα,N is the 1− α-quantile

of the standard normal distribution. As we already saw in the simulation results of Section

2, this interval has approximately correct coverage when Prµ

{
θ̂= θ̃

}
is close to one, so one

might worry that our conditional inference procedures will be unnecessarily conservative in

this case. As also previewed in Section 2 this problem does not arise, since the conditional

and conventional approaches agree in this case.

Proposition 3

Consider any sequence of values µm such that Prµm

{
θ̂= θ̃

}
→1 as m→∞. Then under

µm, CIET→pCIN and µ̂1
2
→pY (θ̃) both conditional on θ̂= θ̃ and unconditionally, where

for confidence intervals →p denotes convergence in probability of the endpoints.

Additional Theoretical Results Appendix C generalizes our conditional inference

results in two directions. First, we consider the case where the selection S depends not

only on θ̂ but also on an additional variable γ̂=γ(X), and show that our results extend
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immediately to inference conditional on
{
θ̂= θ̃,γ̂= γ̃

}
. Second, we show how to construct

an alternative type of optimal confidence interval, uniformly most accurate unbiased

confidence intervals, which ensure that no incorrect parameter value is covered with prob-

ability higher than 1−α. These unbiased intervals are somewhat more computationally

demanding to construct than the equal-tailed intervals.

In the remainder of this section we briefly discuss two other points related to conditional

inference, first providing forecast intervals and then discussing split-sample inference.

4.1 Forecast Intervals

Rather than simply conducting inference on µY (θ̃) we might be interested in forecasting

subsequent outcomes, for instance results in a follow-up experiment as in the JOBSTART

example discussed in Section 2. This is a somewhat different problem than inference on

µY (θ̃) since we must also account for the randomness in the subsequent outcome.

To pose this forecasting problem, suppose that in addition to observing (X,Y ) as in

(3), in the future we will observe an independent normal draw Y2 ∼N(µY ,ΣY2) where

we assume that the effect in the two stages is the same, E[Y ]=E[Y2]=µY , and ΣY2 is

known (for instance because we know the sample size in the follow-up experiment). The

assumption that Y and Y2 have the same mean implies that for Y1−2 =Y −Y2,(
X

Y1−2

)
∼N

((
µX

0

)
,

(
ΣX ΣXY

ΣYX ΣY +ΣY2

))
.

Hence the distribution of (X,Y1−2) has the same form as that of (X,Y ) except that we

know the mean of Y1−2 is equal to zero.

We can use the same arguments as above to construct a confidence interval for µY1−2(θ̃)=

E[Y (θ̃)−Y2(θ̃)] conditional on θ̂= θ̃. Denote this confidence interval by CI1−2
ET , and note

that since µY1−2(θ̃)=0 by assumption, this interval covers zero with probability 1−α,

Prµ

{
0∈CI1−2

ET |θ̂= θ̃
}

=1−α for all θ̃∈Θ and all µ. (12)

Once we have observed (X,Y (θ̂)), however, we can solve for the range of values for Y2(θ̂)

such that 0 lies in the implied interval CI1−2
ET , FI =

{
Y2(θ̂):0∈CI1−2

ET

}
. Equation (12)

immediately implies that this forecast interval covers Y2(θ̂) with probability 1−α,

Prµ

{
Y2(θ̂)∈FI|θ̂= θ̃

}
=1−α for all θ̃∈Θ and all µ,
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so we have guaranteed coverage.21 Appendix E provides further discussion.

4.2 Sample Splitting

An alternative remedy for winner’s curse bias is to split the sample. If we have inde-

pendent and identically distributed observations and select θ̂1 based on the first half of

the data, conventional estimates and confidence intervals for µY (θ̂1) constructed using

the second half of the data will be conditionally valid given θ̂1. In large samples, 50-50

sample splits yield a pair of independent and identically distributed normal draws (X1,Y1)

and (X2,Y2), both of which follow the normal model (3), albeit with a different scaling

for (µ,Σ) than in the full-sample case.22 Conventional sample splitting procedures cal-

culate θ̂1 as in (4), replacing X by X1, and use Y2 for inference. Independence of X1

and Y2 implies that the conventional 95% sample-splitting confidence interval for µY (θ̂1),[
Y2(θ̂1)−1.96

√
ΣY (θ̂1),Y2(θ̂1)+1.96

√
ΣY (θ̂1)

]
, has correct conditional coverage given θ̂1,

and Y2(θ̂1) is conditionally median-unbiased for µY (θ̂1).

Sample splitting resolves the winner’s curse but comes at multiple costs. First, and

most importantly, θ̂1 is based on less data than in the full-sample case. As discussed in

the JOBSTART example, this will result in noisier choices of the target θ̂1 and so will be

undesirable in contexts where we care about the quality of the selection made (e.g. treatment

choice problems). Second, split-sample inference effectively throws away the first half of

the data after using it to pick θ̂1, and so is inefficient – see Fithian, Sun, and Taylor (2017).

5 Unconditional Inference

We next turn to unconditional inference. As a first result, note that conditional median

unbiasedness and conditional coverage imply their unconditional analogs provided θ̂ is

unique with probability one.

Proposition 4

Suppose that θ̂ is unique with probability one for all µ. Then conditional median unbiased-

ness (7) implies unconditional median unbiasedness (5), and correct conditional coverage

(8) implies correct unconditional coverage (6).

For uniqueness of θ̂ it suffices that the elements of X are not perfectly positively correlated.

21FI is a predictive interval based on a similar test: see e.g. Chapter 10 in Young and Smith (2005).
22An analogous statement is also true for uneven sample splits.
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Lemma 1

Suppose that at most one θ∈Θ has ΣX(θ)=0 and for all other θ, θ̃∈Θ such that θ 6= θ̃,

X(θ) and X(θ̃) are not perfectly positively correlated. Then θ̂ is unique with probability

one for all µ.

Hence, to ensure unconditional median unbiasedness and unconditional coverage we may

continue to use the conditional procedures developed in the last section. Relaxing our re-

quirements to unconditional median unbiasedness and unconditional coverage may, however,

allow us to improve performance in some settings. This section explores this possibility.

5.1 Projection Confidence Intervals

One approach to obtain an unconditional confidence interval for µY (θ̂) is to start with a joint

confidence set for the vector µY ∈R|Θ| and then report the implied interval for µY (θ̂). To

formally describe this approach, let cα denote the 1−α quantile of maxθ|ξ(θ)|/
√

ΣY (θ) for

ξ∼N(0,ΣY ). Note that this corresponds to the 1−α quantile of the maximum absolute stu-

dentized estimation error for µY ,maxθ∈Θ|Y (θ)−µY (θ)|/
√

ΣY (θ), from which it follows that

CSµY =
{
µY : |Y (θ)−µY (θ)|≤cα

√
ΣY (θ) for all θ∈Θ

}
is a level 1−α confidence set for µY , Prµ{µY ∈CSµY }≥1−α. If we then define

CIP =
{
µY (θ̂):∃µ̃∈CSµY such that µY (θ̂)=µ̃Y (θ̂)

}
=

[
Y (θ̂)−cα

√
ΣY (θ̂),Y (θ̂)+cα

√
ΣY (θ̂)

]
as the projection of CSµY on the dimension corresponding to θ̂, then since µY ∈CSµY
implies µY (θ̂)∈CIP , CIP satisfies the unconditional coverage requirement (6).23

The width of the projection interval CIP depends on the variance ΣY (θ̂) but does not

otherwise depend on the data.24 To account for the randomness of θ̂, the critical value cα is

23Similar projection approaches were used by Romano and Wolf (2005) in the context of multiple testing,
by Kitagawa and Tetenov (2018a) for inference on welfare at an estimated optimal policy, and by a large and
growing statistics literature on post-selection inference including Berk et al. (2013), Bachoc, Preinerstorfer,
and Steinberger (2020) and Kuchibhotla et al. (2020). An advantage of the projection method, not shared by
the conditional or hybrid approaches, is that the projection method is valid without any restriction on how
selection is performed, that is, we can construct projection intervals without specifying how θ̂ depends onX.

24The projection interval described here is “balanced” in the same sense as a “balanced” simultaneous
confidence band/set: it adds and subtracts the same multiple of the standard deviation from the estimate of

µY (θ̂) regardless of the value θ̂ takes. With little modification to our analysis, one could consider alternative

projection intervals, for instance optimized to have shorter length at some θ̂ values in exchange for greater
length at others. See Freyberger and Rai (2018), Olea and Plagborg-Moller (2019), and Frandsen (2020).
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typically larger than the conventional two-sided normal critical value. For instance, if ΣY

is diagonal (so the elements of Y are independent), cα is approximately equal to 2.24 when

|Θ|=2, 2.8 when |Θ|=10, and 3.28 when |Θ|=50. Hence, as we already saw in Section

2, CIP will be conservative in cases where θ̂ takes a given value θ̃ with high probability.25

To improve performance in such cases, we propose a hybrid inference approach.

5.2 Hybrid Inference

As shown in Section 2, the conditional and projection approaches each have good un-

conditional performance in some cases, but neither is fully satisfactory. Hybrid inference

combines the approaches to obtain good performance over a wide range of parameter values.

As with our conditional approach, hybrid inference will be based on conditionally

quantile-unbiased estimators. Hybrid inference changes the conditioning event, however,

and conditions both on θ̂= θ̃ and on the event that µY (θ̂) lies in the level 1−β projection

confidence interval CIβP for 0≤β<α. The implied set of values for Y (θ̃) becomes

YH(θ̃,µY (θ̃),z)=Y(θ̃,z)∩
[
µY (θ̃)−cβ

√
ΣY (θ̃),µY (θ̃)+cβ

√
ΣY (θ̃)

]
.

Let FH
TN(y;µY (θ̃),θ̃,z) denote the distribution function for a N(µY (θ̃),ΣY (θ̃)) distribution

truncated to YH(θ̃,µY (θ̃),z) and define µ̂Hα to solve FH
TN(Y (θ̂);µ,θ̂,Zθ̃)=1−α in µ. The

hybrid estimator µ̂Hα is α-quantile unbiased conditional on µ(θ̂)∈CIβP .

Proposition 5

For α∈ (0,1), µ̂Hα is unique and µ̂Hα ∈CI
β
P . If θ̂ is unique almost surely for all µ, µ̂Hα is

α-quantile unbiased conditional on µY (θ̂)∈CIβP :

Prµ

{
µ̂Hα ≥µY (θ̂)|µY (θ̂)∈CIβP

}
=α for all µ.

Proposition 5 implies several notable properties for the hybrid quantile-unbiased es-

timator µ̂Hα . First, since Prµ

{
µY (θ̂)∈CIβP

}
≥1−β, one can show that

∣∣∣Prµ{µ̂Hα ≥µY (θ̂)
}
−α
∣∣∣≤β ·max{α,1−α} for all µ.

Indeed, rather than using such “balanced” projection intervals for the application in Section 7, we instead
use fixed-length projection intervals for computational reasons. See Appendix G for details.

25Zrnic and Fithian (2022) propose a novel unconditional inference approach, building on projection
ideas, that allows the length of the interval to adjust when there is a clear winner.
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This implies that the absolute median bias of µ̂H1
2

(measured as the deviation of the overesti-

mation probability from 1/2) is bounded above by β/2. On the other hand, since µ̂H1
2

∈CIβP

we have
∣∣∣µ̂H1

2

−Y (θ̂)
∣∣∣ ≤ cβ√ΣY (θ̃), so the difference between µ̂H1

2

and the conventional

estimator Y (θ̂) is bounded above by half the width of CIβP .

As with the quantile-unbiased estimator µ̂α, we can form confidence intervals based

on hybrid estimators. In particular, the interval [µ̂Hα/2,µ̂
H
1−α/2] has coverage 1−α condi-

tional on µY (θ̂)∈CIβP . This is not fully satisfactory, however, as Prµ{µY (θ̂)∈CIβP}<1.

Hence, to ensure correct coverage, we define the level 1−α hybrid confidence interval

as CIHET =

[
µ̂Hα−β

2(1−β)
,µ̂H

1− α−β
2(1−β)

]
. With this adjustment, hybrid confidence intervals have

coverage at least 1−α both conditional on µY (θ̂)∈CIβP and unconditionally.

Proposition 6

Provided θ̂ is unique with probability one for all µ, the hybrid confidence interval CIHET has

coverage 1−α
1−β conditional on µY (θ̂)∈CIβP :

Prµ

{
µY (θ̂)∈CIHET |µY (θ̂)∈CIβP

}
=

1−α
1−β

for all µ.

Moreover, its unconditional coverage is between 1−α and 1−α
1−β :

inf
µ
Prµ

{
µY (θ̂)∈CIHET

}
≥1−α, sup

µ
Prµ

{
µY (θ̂)∈CIHET

}
≤ 1−α

1−β
.

Hybrid confidence intervals strike a balance between the conditional and projection

approaches. The maximal length of hybrid confidence intervals is bounded above by

the length of CIβP . For small β, hybrid confidence intervals will be close to conditional

confidence intervals, and thus to conventional confidence intervals, when θ̂= θ̃ with high

probability. For β > 0, however, hybrid confidence intervals do not fully converge to

conventional confidence intervals as Prµ

{
θ̂= θ̃

}
→1, which is a disadvantage of hybrid

intervals relative to the conditional approach. Nevertheless, our simulations in Section 2 find

similar performance for the hybrid and conditional approaches in cases with a clear winner.

While hybrid confidence intervals combine the conditional and projection approaches,

they can yield overall performance more appealing than either. In Section 2 we found that

hybrid confidence intervals had a shorter median length for a wide range of parameter values

than did either the conditional or projection approaches used in isolation. Our simulation
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results in Section 7 below provide further evidence of outperformance in realistic settings.

One can also use our hybrid approach to develop unconditional forecast intervals analogous

to the conditional forecast intervals we discussed in Section 4.1. See Appendix E for details.

Choice of β To use the hybrid approach we must select the coverage β of the initial

projection interval CIβP . Intuitively this choice trades off the length of CIβP , which bounds

the worst-case length of CIHET in the poorly-separated case, against the length of CIHET in

the well-separated case. The length of CIHET in the well-separated case is bounded above

by the length of the level 1−α
1−β conventional confidence interval. For the standard choice of

α=5%, choosing β= α
10

=0.5% implies that the CIHET has half-length no more than 2.0025

standard errors in the well-separated case, compared to a half-length of 1.96 standard

errors for the conventional 95% interval. Hence, we suggest β= α
10

as a default choice, and

use this value of β in our simulations and applications.26

6 Feasible Inference and Large-Sample Results

Our results have so far assumed that (X,Y ) are jointly normal with known variance Σ.

While exact normality is rare in practice, standard approaches to inference rely on the

assumption that estimators are approximately normally distributed with a variance that we

can estimate well, typically justified by appealing to large-sample asymptotic results. Our

results for the finite-sample normal model translate to asymptotic results under the same

conditions. In this section we summarize how to implement our estimators and confidence

intervals in practice and briefly describe the translation of our finite-sample results to

asymptotic results. Appendix F provides formal theoretical results demonstrating the

uniform asymptotic validity of our approach over large classes of data generating processes.

Suppose that for sample size n we have vectors of estimates (X̃n,Ỹn) where we define

the option of interest as θ̂n=argmaxθ∈ΘX̃n(θ). We are interested in the mean of Ỹn(θ̂n).

We write (X̃n,Ỹn) rather than (X,Y ) to emphasize that (i) (X̃n,Ỹn) may be non-normal,

unlike (X,Y ) and (ii) (X̃n,Ỹn) are associated with the sample of size n. In the JOBSTART

example discussed in Section 2, for instance, θ indexes treatments, X̃n(θ) is the ATE

26Romano, Shaikh, and Wolf (2014) and McCloskey (2017) likewise find this choice to perform well in two
different settings when using a Bonferroni correction. A simple Bonferroni approach for our setting intersects
a level 1−β projection confidence interval CIβP with a level 1−α+β conditional interval that conditions only

on θ̂= θ̃. Bonferroni intervals differ from our hybrid approach in two respects. First, they use a level 1−α+β
conditional confidence interval, while the hybrid approach uses a level 1−α

1−β conditional interval, where 1−α
1−β ≤

1−α+β. Second, the conditional interval used by the Bonferroni approach does not condition on µY (θ̃)∈
CIβP , while that used by the hybrid approach does. Consequently, one can show that hybrid confidence

intervals exclude the endpoints of CIβP almost surely, while the same is not true of Bonferroni intervals.
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estimate at site θ, and Ỹn(θ)=X̃n(θ). While (X̃n,Ỹn) may be non-normally distributed, we

assume that they are asymptotically normal in the usual sense: once recentered by vectors

(µ̃X,n,µ̃Y,n) and scaled by
√
n, their joint distribution is approximately normal for large n,

√
n

(
X̃n−µ̃X,n
Ỹn−µ̃Y,n

)
⇒N(0,Σ), (13)

where⇒ denotes convergence in distribution. In the JOBSTART example, µ̃X,n(θ)=µ̃Y,n(θ)

is the ATE at site θ. We further assume that we have a variance estimator Σ̃n such that

n · Σ̃n is consistent for the asymptotic variance Σ. In the JOBSTART example, since

Ỹn(θ)=X̃n(θ) and the estimates are independent across sites, Σ̃n consists of four copies of

a diagonal matrix Σ̃X,n, where the diagonal entry of Σ̃X,n corresponding to site θ is simply

the squared standard error for that site.

More broadly, (X̃n,Ỹn) can be any vectors of asymptotically normal estimators, and we

should calculate Σ̃n however we usually would for inference on (µ̃X,n,µ̃Y,n), including correc-

tions for clustering, serial correlation, and so on in the usual way. Feasible inference based on

our approach simply substitutes (X̃n,Ỹn) and Σ̃n in place of (X,Y ) and Σ in all expressions.

Alternatively, to implement our approach directly, one should compute

Z̃θ̂,n=X̃n−
(

Σ̃XY,n(·,θ̂n)/Σ̃Y,n(θ̂n)
)
Ỹn(θ̂n),

and then calculate Y(θ̂n,Z̃θ̂,n)=
[
L(θ̂n,Z̃θ̂,n),U(θ̂n,Z̃θ̂,n)

]
, where

L(θ̂n,Z̃θ̂,n)= max
θ∈Θ:Σ̃XY,n(θ̂n)>Σ̃XY,n(θ̂n,θ)

Σ̃Y,n(θ̂n)
(
Z̃θ̂,n(θ)−Z̃θ̂,n(θ̂n)

)
Σ̃XY,n(θ̂n)−Σ̃XY,n(θ̂n,θ)

,

U(θ̂n,Z̃θ̂,n)= min
θ∈Θ:Σ̃XY,n(θ̂n)<Σ̃XY,n(θ̂n,θ)

Σ̃Y,n(θ̂n)
(
Z̃θ̂,n(θ)−Z̃θ̂,n(θ̂n)

)
Σ̃XY,n(θ̂n)−Σ̃XY,n(θ̂n,θ)

.

For FTN(y;µY (θ̃), Z̃θ̃,n) the distribution function for a N
(
µY (θ̃),Σ̃Y,n(θ̃)

)
distribution

truncated to Y(θ̃,Z̃θ̃,n), the conditional estimator µ̂α,n is then the unique solution to

FTN(Ỹn(θ̂n);µ,Z̃θ̂,n) = 1−α in µ. Our conditionally median unbiased estimator is µ̂1
2
,n,

while our conditional equal-tailed confidence interval is CIET,n=
[
µ̂α

2
,n,µ̂1−α

2
,n

]
.

To implement our hybrid approach, one must also approximate the projection critical

value cβ, which can be done by simulation. Specifically, for S a large number (e.g. S=104),
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independently draw S normal random vectors ξ1,...,ξS where for each s, ξs∼N(0,Σ̃Y,n). For

each S compute the maximum absolute studentized deviation maxθ∈Θ|ξs(θ)|/
√

Σ̃Y,n(θ),

and define ĉβ as the 1−β quantile of these maximum absoluate deviations across the

simulation draws. Define

YH(θ̃,µY (θ̃),Z̃θ̃,n)=Y(θ̃,Z̃θ̃,n)∩
[
µY (θ̃)−ĉβ

√
Σ̃Y,n(θ̃),µY (θ̃)+ĉβ

√
Σ̃Y,n(θ̃)

]
,

and let FH
TN(y;µY (θ̃),Z̃θ̃,n) denote the distribution function for a N

(
µY (θ̃),Σ̃Y,n(θ̃)

)
dis-

tribution truncated to YH(θ̃,µY (θ̃), Z̃θ̃,n). The conditional estimator µ̂Hα,n is then the

unique solution to FH
TN(Ỹn(θ̂n); µ̂, Z̃θ̂,n) = 1− α in µ. Our approximately median un-

biased hybrid estimator is µ̂H1
2
,n
, while our hybrid equal-tailed confidence interval is

CIHET,n=

[
µ̂Hα−β

2(1−β) ,n
,µ̂H

1− α−β
2(1−β) ,n

]
.

Appendix F shows that this plug-in approach yields uniformly asymptotically valid

inference on µY,n(θ̂n). Loosely speaking, we suppose that the data in the sample of size n

can be generated from any distribution P in a class Pn. We show that if the classes Pn are

such that as n→∞ (i) the convergence in distribution (13) holds uniformly over P ∈Pn,
where the variance Σ may depend on P, (ii) n·Σ̃ is consistent for Σ, and (iii) the diagonal

elements of Σ are bounded above and away from zero and the pairwise correlations in Σ are

bounded away from one, then all of our finite-sample results for the normal model translate

to asymptotic results. These conditions are quite weak, and the asymptotic normality and

consistent variance estimation that we require is precisely the same as that used to justify

standard t-statistic-based inference. Hence our approach may be applied when, absent

winner’s curse concerns, we would usually apply standard large-sample inference methods.

The uniformity of our asymptotic approximations is important, since it ensures that

our procedures remain reliable even in cases where there are ties or near-ties for the “best”

option, as in the normal model when multiple choices θ imply nearly the same value of µX(θ).

In this sense, uniform asymptotic validity is the asymptotic analog of our requirement in

the normal model that our procedures be valid no matter the value of µ. By contrast, for

procedures that are not uniformly valid, even for arbitrarily large samples there exist data

generating processes where the procedure yields unreliable results, and these distortions

(e.g. undercoverage for confidence sets) can be quantitatively large. Consequently, results

from winner’s curse corrections that are not uniformly asymptotically valid, or for which

uniform asymptotic validity has not been established, should be treated with caution.
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One limitation of our uniformity results is that we treat the dimension of (X̃n,Ỹn) (i.e.

|Θ|) as fixed when n→∞, which rules out settings where the number of options considered

grows with the sample size. Extension of our results to high-dimensional settings where

|Θ| grows with n is an interesting topic for future work.

7 Application: Neighborhood Effects

We next discuss simulation and empirical results based on Chetty et al. (2020) and Bergman

et al. (2023). Earlier work, including Chetty and Hendren (2018a) and Chetty and Hendren

(2018b) argues that the neighborhood in which a child grows up has a long-term causal

impact on income in adulthood, as well as other outcomes. Moreover, they show that the

causal impact of moving to a given neighborhood is closely related to the average outcome

for children already living there, and that these causal effects explain much of the observed

difference in average outcomes across neighborhoods.

Motivated by these findings, Bergman et al. (2023) partnered with the public housing

authorities in Seattle and King County in Washington State in an experiment aiming to help

housing voucher recipients with children move to a set of higher-opportunity target neighbor-

hoods. Bergman et al. (2023) choose target neighborhoods based on the Chetty et al. (2020)

“Opportunity Atlas.” This atlas compiles census-tract level estimates of economic mobility

for communities across the United States. Bergman et al. (2023) define target neighbor-

hoods by selecting approximately the top third of tracts in Seattle and King County based

on estimated economic mobility, where their measure for economic mobility is the average

household income rank in adulthood for children growing up at the 25th percentile of the in-

come distribution (see Chetty et al., 2020). They then make “relatively minor” adjustments

to the set of target tracts based on other criteria (Bergman et al., 2023, Appendix A).

A central empirical question in this setting is whether families moving to the target

tracts will in fact experience the positive outcomes predicted based on the Opportunity

Atlas estimates and the hypothesis of neighborhood effects. Once long-term outcomes for

the experimental sample are available, researchers will be able to answer this question by

comparing outcomes for children in treated families to the Opportunity Atlas estimates

used to select the target tracts in the first place. Such a comparison is complicated by

the winner’s curse, however: the Atlas estimates were already used to select the target

tracts, so the conventional estimate for the causal effect of the selected tracts will be

systematically biased upwards. Our winner’s curse corrections address precisely this bias.

Motivated by related concerns, Chetty et al. (2020) and Bergman et al. (2023) adopt a
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shrinkage or empirical Bayes approach. Their estimates correspond to Bayesian posterior

means under a prior that takes tract-level economic mobility to be normally distributed

conditional on a vector of observable tract characteristics, and then estimates mean and

variance hyperparameters from the data. One can show (see Appendix G.3) that if the

normal prior correctly describes the distribution of economic mobility, then the poste-

rior median for average economic mobility over selected tracts will be median-unbiased

under the prior, and Bayesian credible sets will have correct coverage. This guarantee

for the empirical Bayes approach depends critically on the correct specification of the

prior, however: if the distribution across tracts is non-normal, then these empirical Bayes

estimates and credible sets do not in general solve the winner’s curse. By contrast, our

results ensure correct coverage and controlled median bias for all possible distributions

of economic mobility across tracts. Given the widespread use of normality-based empirical

Bayes approaches in applications, we include empirical Bayes procedures in our analysis.

Simulation Results To examine the extent of winner’s curse bias and the performance

of different corrections, we calibrate simulations to the Opportunity Atlas data. For each

of the 50 largest CZs in the United States we treat the (un-shrunk) tract-level Opportunity

Atlas estimates as the true values.27 We then simulate estimates by adding normal noise

with standard deviation equal to the Opportunity Atlas standard error.28 Since these simu-

lations impose normality of the estimation errors by construction, they are not informative

about the quality of the normal approximation for these errors.29

We are interested in understanding the extent to which programs like the one studied in

Bergman et al. (2023), which target tracts with higher estimated mobility, succeed in picking

higher-mobility tracts relative to the tracts in which voucher-recipent households currently

live. Specifically, we define target tracts in each CZ as the top third of tracts for estimated

economic mobility.30 Our parameter of interest is then the average economic mobility across

27We use un-shrunk estimates here, rather than e.g. the normal distribution implicit in empirical Bayes,
since the distribution of estimates in many CZs is strongly suggestive of non-normality. See Appendix
G.6 for details. Using the realized estimates will tend to overstate the variance of mobility across tracts,
but since the winner’s curse is more severe when true effects are close together this should bias us against
finding distortions from the winner’s curse.

28We base our estimates in this setting on the public Opportunity Atlas estimates and standard errors
since we do not have access to the underlying microdata. We also do not have access to the correlation
structure of the estimates across tracts. Such correlations arise from individuals who move across tracts, and
there are few movers between most pairs of tracts, so we expect that these omitted correlations are small.

29Appendix H reports additional simulation and empirical results, based on an experiment by Karlan
and List (2007) studying charitable giving, where we we have access to the microdata and so do not
have to impose normality. We find that our approaches continue to perform well in that setting.

30We select the target tracts based on the un-shrunk estimates, rather than shrunk estimates as in
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targeted tracts, minus the weighted-average mobility across all tracts in the CZ, where we

weight based on the number of voucher-recipient households with children in each tract.31

Formally, let T be the set of tracts in a given CZ and Θ the set of selections from T
containing one third of tracts, rounded down, Θ={θ⊂T : |θ|=b|T |/3c}. Let µt be the

true economic mobility for tract t (that is, the average household income rank in adulthood

for children growing up in this tract and in households at the 25th percentile of the income

distribution). Define X(θ) as the average estimate over tracts in θ, X(θ)= 1
|θ|
∑

t∈θµ̂t, and

let θ̂ select the top third of tracts, θ̂= argmaxθ∈ΘX(θ). For ct the number of voucher

households with children in tract t in 2018, the year Bergman et al. (2023)’s experiment

began, our quantity of interest is µY (θ̂) = 1

|θ̂|

∑
t∈θ̂µt−

∑
t∈T ctµt∑
t∈T ct

, and we correspondingly

define Y (θ)= 1

|θ̂|

∑
t∈θ̂µ̂t−

∑
t∈T ctµ̂t∑
t∈T ct

.32 We study the performance of conventional estimates

and confidence intervals, empirical Bayes estimates and credible sets based on a normal

prior, and our corrected estimates and confidence intervals.

Figure IV reports results based on ten thousand simulation draws. Panel (a) plots the

distribution of the mean of our target parameter, E
[
µY (θ̂)

]
, across the 50 CZs considered.

Targeted tracts are associated with higher than-average mobility (that is, E
[
µY (θ̂)

]
>0)

across all 50 CZs, though the magnitude ranges from a 6.44 to 18.04 percentile-point

difference in earnings between the target tracts and the weighted CZ average. Panel (b)

plots the distribution of the standard deviation of mobility across the 50 CZs, which ranges

from 4.65 percentile points to 8.98 percentile points. Panel (c) shows the distributions of

the median bias for the estimators we consider. As expected the conventional estimator

is biased upwards, with magnitude ranging from 0.72 percentile points to 1.88 percentile

Bergman et al. (2023). We do this because we find that selecting based on un-shrunk estimates yields
slightly higher average mobility for selected tracts than selecting on shrunk estimates, and because
selection based on shrunk estimates introduces nonlinearity (due to estimation of the degree of shrinkage
to use) which complicates conditional and hybrid inference.

31Specifically, we compute weights based on data from US Department of Housing and Urban
Development (2018).

32µY (θ̂) corresponds to the average change in tract-level mobility from moving a randomly selected
voucher-recipient household with children from their initial location in the CZ to a randomly selected
target tract. There are several reasons this need not correspond to the average treatment effect from
the experiment in Bergman et al. (2023). First, even with additional support to move to one of the
targeted tracts, some households may choose to locate elsewhere. If this is unrelated to baseline location
and location choice conditional on moving to a target tract, the average effect in this case will simply be
a scaled-down version of µY (θ̂). Second, households that do move to a targeted tract will not in general
choose a tract uniformly at random. Given realized location choices for treatment and control households,
one could re-define µY (θ̂) to address both of these issues. We do not pursue this extension, however,
as data on location choice under treatment exists only for the Seattle CZ, where Bergman et al. (2023)
conducted their experiment, and is not publicly available even there.
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points, while the sign of the bias for empirical Bayes varies across CZs, with the bias

ranging from -1.24 percentile points to 0.3 percentile points. Hence we see that both the

conventional and empirical Bayes estimates exhibit bias in this application. The conditional

estimator is median unbiased up to simulation error, while the hybrid estimator is very close

to median unbiased. Panel (d) plots the distributions of the median absolute estimation

error for the four estimators. The conventional estimator has the largest median absolute

estimation error in most CZs, while the empirical Bayes estimator typically has the smallest.

The conditional and hybrid estimators are in the middle, with quite similar median absolute

estimation errors for this application. Finally, panels (e) and (f) plot the distributions of

coverage and median length of confidence intervals. We see that the conventional confidence

interval severely under-covers in all 50 CZs. The coverage of empirical Bayes intervals,

credible sets for a normal prior, differs widely across CZs, ranging from less than 1% to over

80%.33 Conditional confidence intervals have coverage equal to 95% up to simulation error

in all CZs, while the hybrid intervals have coverage very close to 95% in all cases. Finally,

projection intervals have coverage nearly equal to 100% in all CZs. Turning to median length,

we see that hybrid intervals are longer than empirical Bayes and conventional confidence

intervals (which both have incorrect coverage), but with a median length under 5 percentile

points in all CZs, are considerably shorter than conditional and projection intervals.

Empirical Results We next apply the winner’s curse corrections directly to the Op-

portunity Atlas data. As in the simulations we select the top third of census tracts in each

CZ based on the conventional estimates. Our parameter of interest is the average mobility

across the selected tracts, less the weighted average over the CZ. We report results for

conventional, empirical Bayes, and hybrid estimates and intervals, as well as projection

intervals in Figure V, while for visibility we defer the results for conditional intervals to

Figure 9 in Appendix G. For comparison, we also plot the within-CZ standard deviation of

mobility.34 The conventional estimates range from 7.1 to 18.6 percentile points across CZs

(or, dividing the estimate in each CZ by the within-CZ standard deviation, from 1.7 to 2.4

standard deviations). Both the empirical Bayes and hybrid corrections shift the estimates

downward, with empirical Bayes estimates ranging from 5.2 to 17.4 percentile points (1.2 to

33In Appendix G.6, we show that the coverage of empirical Bayes intervals in a given CZ is correlated
with the quality of the normal approximation to the true distribution of economic mobility in that CZ.
This highlights the fragility of empirical Bayes corrections for the winner’s curse when the normality
assumption on the distribution of true effects, µt in this example, fails.

34We estimate this by the square root of the difference between the sample variance of the tract-level
estimates and the average squared standard error.
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2.3 standard deviations) and hybrid estimates ranging from 4 to 17.2 percentile points (0.9

to 2.3 standard deviations). Hence, while both the empirical Bayes and hybrid corrections

somewhat deflate the estimates, they remain uniformly positive across CZs. Moreover, the

effect sizes are large in both percentile point and standard deviation terms. Comparing the

empirical Bayes and hybrid approaches, the hybrid estimate is slightly lower on average

but the two estimators are not ordered: for instance, the hybrid estimate is smaller than

empirical Bayes in Chicago, but larger in New York.

Turning to confidence intervals we see that, as expected given our simulation results,

the coverage-maintaining hybrid intervals (with an average length of 3.3 percentile points,

or 0.6 standard deviations) are wider than the under-covering empirical Bayes intervals

(0.6 percentile points, or 0.1 standard deviations), but considerably shorter than projection

intervals (6.2 percentile points, or 1.1 standard deviations). Hybrid and projection intervals

exclude zero in all CZs, suggesting that, under the hypothesis of neighborhood effects, there

is real scope for selecting higher-mobility neighborhoods based on the Opportunity Atlas,

albeit less than the conventional estimates suggest. The results for conditional procedures

in Figure 9 of Appendix G are qualitatively similar, but the conditional intervals are

much longer on average (with a mean length of 19.1 percentile points, or 3.3 standard

deviations). This length is heavily influenced by a small number of long intervals, and the

median length is substantially lower (at 10.6 percentile points, or 1.6 standard deviations).

Conditional intervals lie above zero in 28 of the 50 CZs, but include zero in the other 22.

Hence, if we are satisfied with unconditional coverage we find strong evidence that selected

tracts are better than average, while if we demand conditional coverage results are more

mixed, and depend on which CZ we consider.

Overall, these results show that accounting for the winner’s curse in this setting makes

an economically significant difference: the average hybrid estimate (10.27 percentile points)

is nearly 20% smaller than the average conventional estimate (12.25 percentile points).

That said, even this smaller estimate is economically large. Correcting for the winner’s curse

also increases our degree of uncertainty, but provided we are satisfied with unconditional

inference we are still able to draw highly informative inferences in this setting. Specifically,

we conclude that targeting tracts based on estimated opportunity succeeds in selecting

higher-opportunity tracts on average. Moreover, even after accounting for uncertainty the

effect sizes are large: in all but two CZs the lower bounds of both the hybrid and projection

intervals exceed the within-CZ standard deviation of mobility across tracts. The use of

unconditional rather than conditional inference is important for this conclusion, since if we
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instead consider conditional intervals we are sometimes unable to reject zero. This reflects

the fact that conditional inference is highly demanding in this setting due to the enormous

number of ways that we may select a third of tracts in a given CZ. In our view there is not

an obvious reason to require conditional validity in this application: the question of primary

interest is whether targeting tracts based on economic opportunity will succeed in selecting

high-opportunity tracts, which is inherently an unconditional question since it concerns the

method for selecting tracts rather than the specific set of tracts selected in a particular CZ.

It is useful to compare our results with those of Mogstad et al. (2022), who study the

problem of inference on ranks and consider the Opportunity Atlas data for Seattle as an

example. They show that if one forms simultaneous confidence sets for differences between

individual tracts, one can say very little about which tracts are best. Hence, we can say

little about the effect of moving an individual from an arbitrary non-target tract to an

arbitrary target tract, and can likewise say little about the average treatment effect of

shifting households from one group of tracts to the other if we allow arbitrary location

choices within each group of tracts. We consider a complementary exercise, inference on

the average mobility over the selected sets of tracts, corresponding to uniformly distributed

location choices. For this problem we find strong evidence that selected tracts are, as

a group, better than average. These exercises answer different questions, and the more

positive result obtained in our case reflects that it is much easier statistically to distinguish

average mobility across groups of selected tracts than it is to rank individual tracts.

8 Conclusion

This paper considers a form of the winner’s curse that arises when we select one of several

options based on noisy estimates. We propose corrected inference procedures that eliminate

the winner’s curse either conditional on the selection made or unconditionally. Since

conditional inference is statistically more demanding and can yield less precise conclusions,

we recommend a novel (unconditional) hybrid procedure as a default approach when there

is not a clear reason for one to condition. Using data from Cave et al. (1993) and Chetty

et al. (2020), we find that our corrected inference procedures can make an economically

significant difference, but continue to allow precise inference. For other recent applications

of these methods see Banerjee et al. (2022) and Bergeron et al. (2022)

Our results suggest possible directions for future work. While our inference results

build on the statistics literatures on selective inference (e.g. Fithian, Sun, and Taylor,

2017) and post-selection inference (e.g. Berk et al., 2013), our hybrid approach is novel
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relative to both, and the analysis of McCloskey (2023) shows that hybrid inference may

be helpful in other settings considered by these literatures. Similarly, Andrews, Roth, and

Pakes (2022) show that a version of our hybrid approach offers a useful tool in moment

inequality settings. Finally, inference distortions due to data-driven selection are known to

arise in many other contexts, including adaptive experiments (see e.g. Zhang, Janson, and

Murphy, 2020). While some inference results are already available for adaptive experiments,

the extension of our analysis to cover such settings, and more broadly the impact of the

winner’s curse on optimal experimental design, is an interesting question for future work.
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Table I

Site nT nC ATE Estimate S.E. Control Mean
Atlanta Job Corps 33 36 $2093 $2288.40 $10112
CET/San Jose 84 83 $6547 $1496.17 $12362
Chicago Commons 40 35 -$1417 $2168.21 $11726
Connelley (Pittsburgh) 91 93 $785 $1681.92 $6685
East LA Skills Center 50 56 $1343 $1735.51 $13158
EGOS (Denver) 103 95 $401 $1329.05 $10690
Phoenix Job Corps 70 64 -$1325 $1598.03 $8198
SET/Corpus Christi 125 122 $485 $971.05 $7992
El Centro (Dallas) 93 86 $336 $1523.33 $11057
LA Job Corps 116 115 -$121 $1409.79 $12757
Allentown (Buffalo) 71 64 $904 $1814.10 $6577
BSA (New York City) 60 57 $1424 $1768.44 $10499
CREC (Hartford) 52 47 -$1370 $1860.45 $11124

Results for the 13 sites in the JOBSTART demonstration. The first column indicates the site, the

second (nT ) reports the number of treated individuals at that site, the third (nC) the number of control

individuals, the fourth the estimated average treatment effect on cumulative earnings in years three and

four following random assignment (months 25-48), the fifth an imputed standard error, and the sixth the

mean cumulative earnings for the control group in years three and four. We use imputed standard errors

because Cave et al. (1993) report statistical significance at the 1%, 5%, and 10% levels but not standard

errors, t-statistics or precise p-values. See Appendix A for the (restrictive) assumptions that underlie this

imputation.
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Table II

Method Point Estimate CI
Conventional $6547 ($3615, $9479)
Conditional $6544 ($3485, $9478)
Projection $6547 ($2232, $10862)
Hybrid $6545 ($3420, $9538)

Point estimates and 95% confidence intervals for the ATE of the CET/San Jose program using the

treatment-control differences and imputed standard errors from Table I.
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Table III

Method Forecast Interval p-value for Equality S.E. Scaling
All 12 Sites

Conditional ($2609,$10449) 2×10−4 1.84
Hybrid ($2531,$10529) 2×10−4 1.82

High Fidelity Sites
Conditional ($634,$12436) 8×10−3 1.76
Hybrid ($520,$12556) 7×10−3 1.72

Forecasting results for replication of the CET program using imputed standard errors for both the

replication study across all 12 replication sites and the four high fidelity sites. The first column indicates

whether the conditional or hybrid approach was used for forecasting. The second column reports 95%

forecast intervals for the estimated ATE. The third column reports p-values for testing equality of the

ATEs in the original and replication studies. The fourth column reports the amount by which the imputed

standard errors for the Cave et al. (1993) estimates must be scaled for a test of the ATEs in the original

and replication studies to fail to reject at the 5% significance level.
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Figure I: Coverage, over-estimation probability, and median bias in dollars for the ATE on
cumulative earnings in years three and four in simulations calibration to JOBSTART data,
where X∼N(s·µ̂X,Σ) for µ̂X the JOBSTART point estimates and Σ the diagonal matrix with
the squared JOBSTART standard errors on the diagonal. The horizontal axis varies the scaling
factor s, and our preferred scaling s∗ is marked with a vertical line.
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Figure II: Median length for 95% confidence intervals in simulations calibrated to the results of
the JOBSTART demonstration, where X∼N(s·µ̂X,Σ) for µ̂X the JOBSTART point estimates
and Σ the diagonal matrix with the squared JOBSTART standard errors on the diagonal. The
horizontal axis varies the scaling factor s, and our preferred scaling s∗ is marked with a vertical line.
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Figure III: 95th percentile length for 95% confidence intervals in simulations calibrated to
the results of the JOBSTART demonstration, where X∼N(s·µ̂X,Σ) for µ̂X the JOBSTART
point estimates and Σ the diagonal matrix with the squared JOBSTART standard errors on the
diagonal. The horizontal axis varies the scaling factor s, and our preferred scaling s∗ is marked
with a vertical line.
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Figure IV: Simulation results from calibration to the Chetty et al. (2020) Opportunity Atlas.
Panel (a) shows the distribution of average improvement in economic mobility in selected tracts,
relative to the within-CZ weighted average, across the 50 largest CZs. A coefficient of 0.1 implies
that the target tracts are associated with a 10 percentile point higher average household income,
in adulthood, relative to the weighted average across the CZ. Panel (b) shows the distribution
of within-CZ standard deviation of mobility. Panel (c) shows the distributions of median biases
of different estimators across the 50 CZs. Panel (d) plots the distributions of median absolute
error across the same CZs. Note that the results for the conditional and hybrid fully overlap
in this case. Panel (e) shows the distribution of coverage of confidence intervals across the 50
largest CZs, while panel (f) does the same for their median lengths. All quantities reported
are unconditional, and so aggregate across values of θ̂.
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Figure V: Estimates and confidence intervals for average economic mobility for selected census
tracts based on the Chetty et al. (2020) Opportunity Atlas, relative to the within-CZ average,
weighted by number of voucher recipient households with children. CZs are ordered by the magni-
tude of the conventional estimate. A coefficient of 0.1 implies that the target tracts are associated
with a 10 percentile point higher average household income in adulthood, for children growing up in
households at the 25th percentile of the income distribution, relative to the weighted average across
the CZ. Diamonds plot the estimated standard deviation of mobility across all tracts in each CZ.

52


