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Abstract

We propose a local measure of the relationship between parameter estimates and the moments

of the data they depend on. Our measure can be computed at negligible cost even for com-

plex structural models. We argue that reporting this measure can increase the transparency of

structural estimates, making it easier for readers to predict the way violations of identifying

assumptions would affect the results. When the key assumptions are orthogonality between

error terms and excluded instruments, we show that our measure provides a natural extension

of the omitted variables bias formula for nonlinear models. We illustrate with applications to

published articles in several fields of economics.
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1 Introduction

One of the drawbacks commonly attributed to structural empirical methods is a lack of trans-
parency. Heckman (2010) writes that “the often complex computational methods that are required
to implement [structural estimation] make it less transparent” (358). Angrist and Pischke (2010)
note that it is often “hard to see precisely which features of the data drive the ultimate results” (21).

In this paper, we suggest a way to improve the transparency of common structural estimators.
We consider a researcher who computes an estimator θ̂ of a finite-dimensional parameter θ with
true value θ0. Under the researcher’s maintained assumptions a0, θ̂ is consistent and asymptoti-
cally normal. Not all readers of the research accept a0, however, and different readers entertain
different alternatives. To assess the potential bias in θ̂ under some alternative a 6= a0, a reader
needs to know two things: how a would change the moments of the data that the estimator uses as
inputs, and how changes in these moments affect the estimates. We say that research is transparent

to the extent that it makes these steps easy, allowing a reader to assess the potential bias for a range
of alternatives a 6= a0 she finds relevant.

Linear regression analysis is popular in part because it is transparent. Estimates depend on a
set of intuitive variances and covariances, and it is straightforward to assess how these moments
would change under violations of the identifying assumptions. Well-understood properties of linear
models—most prominently, the omitted variables bias formula—make it easy for readers to guess
how these changes translate into bias in the estimates. We do not need to have access to the data to
know that a regression of wages on education would be biased upward by omitted skill, and we can
form a guess about how much if we have a prior on the likely covariance properties of the omitted
variable.

Our analysis is designed to make this kind of transparency easier to deliver for nonlinear mod-
els. We derive a measure of the sensitivity of an estimator to perturbations of different moments
of the data, exploiting the same local linearization used to derive standard asymptotics. If a reader
can predict the effect of an alternative a on the moments, our measure allows her to translate this
into predicted bias in the estimates. We show that the measure can be used to predict the effect
of omitted variables in a large class of nonlinear models—providing an analogue of the omitted
variables bias formula for these settings—and also to predict the effect of many other potential
violations of identifying assumptions. Because our approximation is local, the predictions will be
valid for alternatives a that are close to a0 in an appropriate sense.

We assume that θ̂ minimizes a criterion function ĝ(θ)′Ŵ ĝ(θ), where ĝ(θ) is a vector of mo-
ments or other statistics, Ŵ is a weight matrix, and both are functions of the realized data. This
class of minimum distance estimators (MDEs) includes generalized method of moments (GMM),
classical minimum distance (CMD), maximum likelihood (MLE), and their simulation-based ana-
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logues (Newey and McFadden 1994), and so encompasses most of the workhorse methods of
structural point estimation.

For any a in a set A of alternative assumptions, we follow the literature on local misspecifi-
cation (e.g., Newey 1985; Conley et al. 2012) and define a local perturbation of the model in the
direction of a such that the degree of misspecification shrinks with the size of the sample. For any
such perturbation, we assume that

√
nĝ(θ0) converges in distribution to a random variable g̃(a).

We show that
√

n
(
θ̂ −θ0

)
then converges in distribution to a random variable θ̃ (a) and θ̂ has

first-order asymptotic bias:

E
(
θ̃ (a)

)
= ΛE(g̃(a)) ,

for a matrix Λ. An analogous relationship holds when the outcome of interest is a function of θ̂ ,
such as a counterfactual experiment or welfare calculation.

The matrix Λ, which we call sensitivity, plays a central role in our analysis. It can be written as
Λ =−(G′WG)−1 G′W , where G is the Jacobian of the probability limit of ĝ(θ) at θ0 and W is the
probability limit of Ŵ . Since standard approaches to inference on θ employ plug-in estimates of
G and W , sensitivity can be consistently estimated at essentially zero computational cost in most
applications.

Intuitively, Λ is a local approximation to the mapping from moments to estimated parameters.
A reader interested in an alternative a can use Λ to predict its effect on the results, provided she can
form a guess as to the induced bias in the moments E(g̃(a)). We argue theoretically, and illustrate
in our applications, that predicting the way a affects the moments is straightforward in many cases
of interest.

One leading special case is where ĝ(θ) is additively separable into a term ŝ dependent on the
data (but not the parameters) and a term s(θ) dependent on the parameters (but not the data). This
class includes CMD, additively separable GMM or simulated method of moments, and indirect
inference. Here, the key identifying assumptions a0 imply that ŝ converges in probability to the
model analogues s(θ0). Natural alternatives a involve misspecification of s(θ0) and mismeasure-
ment of ŝ. It is often straightforward to say how a given alternative a would impact the asymptotic
behavior of the moments ĝ(θ0) = ŝ− s(θ0). If the researcher reports Λ in her paper, a reader can
use Λ to predict the effect of such alternatives on the estimator.

A second special case is where ĝ(θ) is the product of a vector of instruments Z and a vector
of structural residuals ζ̂ (θ), so θ̂ is a nonlinear instrumental variables (IV) estimator. Here, the
key identifying assumptions a0 specify orthogonality between Z and ζ̂ (θ). We show that in this
case Λ can be used to construct a nonlinear-model analogue to the omitted variables bias formula
that can be reported directly in a research paper. This allows readers to predict the effect of any a
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from a class of perturbations that introduce omitted variables correlated with the instruments. Just
as with the standard omitted variables bias formula, the key input the reader must provide is the
hypothesized coefficients from a regression of the omitted variable on the instruments. Our results
for this case generalize the findings of Conley et al. (2012) on the effect of local misspecification
in a linear IV setup.

We illustrate the utility of our approach with three applications. The first is to DellaVigna et
al.’s (2012) model of charitable giving. The authors use a field experiment in conjunction with a
structural model to distinguish between altruistic motives and social pressure as drivers of giving.
They find that social pressure is an important driver and that the average household visited by
their door-to-door solicitors is made worse off by the solicitation. We compute the sensitivity
of the estimated social pressure to the moments used in estimation, and find that a key driver is
the extent to which donations bunch at exactly $10. This is consistent with the model’s baseline
assumptions, under which (i) households pay a social pressure cost if they give less than $10,
but pay no cost if they give $10 or more, and (ii) there are no reasons to bunch at $10 absent
social pressure. We then show how a reader can use our sensitivity measure to assess the bias if
the second assumption is relaxed—e.g., if some fraction of households give $10 because it is a
convenient cash denomination. We find that the estimated social pressure is biased upward in this
case.

Our second application is to Gourinchas and Parker’s (2002) model of lifecycle consumption.
The model allows both consumption-smoothing (“lifecycle”) and precautionary motives for sav-
ings. The authors find that precautionary incentives dominate at young ages, while lifecycle mo-
tives dominate later in life, providing a rationale for the observed combination of a hump-shaped
consumption profile and high marginal propensity to consume out of income shocks at young ages.
We show that our sensitivity measure provides intuition about the consumption profiles the model
interprets as evidence of smoothing and precautionary motives respectively. We then show how a
reader could use our measure to assess sensitivity to violations of two key assumptions: separabil-
ity of consumption and leisure in utility, and the absence of unobserved income sources. We show
that realistic violations of separability could meaningfully affect the results. For example, varying
shopping intensity as in Aguiar and Hurst (2007) would mean that the estimates understate the
importance of precautionary motives relative to lifecycle savings. We also show that the presence
of within-family transfers, a potential source of unobserved income, would have a similar effect.

Our final application is to Berry et al.’s (1995, henceforth “BLP”) model of automobile demand
and pricing. The model yields estimates of the markups firms charge on specific car models. These
markups are a measure of market power and an input into evaluation of policies such as trade
restrictions (BLP 1999), mergers (Nevo 2000), and the introduction of new goods (Petrin 2002).
The moments ĝ(θ) used to estimate the model are products of vehicle characteristics—used as
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instruments—with shocks to demand and marginal cost, and the key identifying assumption is that
the instruments are orthogonal to the shocks. We show how a reader could use our sensitivity
measure to assess a range of violations of these assumptions including economies of scope and
correlation between demand errors and the composition of product lines. We find that each of
these violations could lead to economically meaningful bias in the estimated markups.

We emphasize two limitations to our approach. The first is that our sensitivity measure is
a local approximation. For small deviations away from the baseline assumptions a0, we can be
confident it will deliver accurate predictions. For larger deviations, it may still provide valuable
intuition, subject to the usual limitations of linear approximation. When there are specific large
deviations of interest, we recommend that authors evaluate them using standard sensitivity analysis.
The transparency our measure offers is a complement to this, allowing readers to build additional
intuition about the impact of a broad set of alternatives. In the online appendix, we compare our
local sensitivity measure to a measure of global sensitivity for DellaVigna et al. (2012) and BLP
(1995).

The second limitation is that the units of Λ are contingent on the units of ĝ(θ). Changing the
measurement of an element ĝ j (θ) from, say, dollars to euros, changes the corresponding elements
of Λ. This does not affect the bias a reader would estimate for specific alternative assumptions, but
it does matter for qualitative conclusions about the relative importance of different moments.

The remainder of the paper is organized as follows. Section 2 situates our approach relative
to prior literature. Section 3 defines sensitivity and characterizes its properties. Section 4 derives
results for the special cases of CMD and IV. Section 5 develops an alternative notion of sensitiv-
ity that does not rely on large-sample approximations. Section 6 considers estimation. Section 7
presents our applications, and section 8 concludes. Appendix A discusses some common alterna-
tives, and the online appendix extends our main results along several dimensions.

2 Relationship to Prior Literature

Transparency as defined here serves a distinct purpose from either traditional (global) sensitivity
analysis or estimation under partial identification. In sensitivity analysis, a researcher shows how
the results change under particular prominent alternatives a. Transparency is different because
it allows readers to consider a large space of alternatives, including those not anticipated by the
researcher in advance. In estimation under partial identification, a researcher computes bounds
on θ0 assuming only that some set Ã contains a valid collection of assumptions. This does not
replace transparency because the implied bounds could be very wide if we take Ã to include all
possible alternatives of interest, and because bounds do not tell a given reader which element of
the identified set corresponds to her own beliefs.
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What our measure captures is also distinct from identification. A model is identified if, under its
assumptions, alternative values of the parameters imply different distributions of observable data
(Matzkin 2013). This is a binary property, and a property of a model rather than of an estimator.
Our analysis takes as given that a model is identified, and describes the way a specific estimator
maps data features into results. We see this as a complement to, not a substitute for, formal analysis
of identification.

That said, we do think that some informal discussions of identification that have appeared in
structural papers under the heading of identification may be usefully reframed in terms of sensitiv-
ity. These discussions often describe the extent to which particular parameters are “identified by”
specific moments of the data. As Keane (2010) notes, these discussions are hard to understand as
statements about identification in the formal sense.1 Because identification is a binary property,
claims that a moment is the “main” or “primary” source of identification have no obvious formal
meaning.2 Authors often acknowledge the imprecision of their statements by saying they discuss
identification “loosely,” “casually,” or “heuristically.”3 Sensitivity gives a formal, quantitative lan-
guage in which to describe the relative importance of different moments for determining the value
of specific parameters, and we think it may be closer to the concept that many authors have in
mind when discussing identification informally. Transparency as we define it provides a rationale
for why such discussions are valuable.

Our work has a number of antecedents. Our approach is related to influence function calcula-
tions for determining the distribution of estimators (Huber and Ronchetti 2009), and is particularly
close to the large literature on local misspecification (e.g., Newey 1985; Berkowitz et al. 2008;
Guggenberger 2012; Conley et al. 2012; Nevo and Rosen 2012; Kitamura et al. 2013; Glad and
Hjort 2016; Kristensen and Salanié forthcoming). Our results also relate to the literature on sensi-

1Keane (2010) writes: “Advocates of the ‘experimentalist’ approach often criticize structural estimation because,
they argue, it is not clear how parameters are ‘identified’. What is meant by ‘identified’ here is subtly different from the
traditional use of the term in econometric theory — i.e., that a model satisfies technical conditions insuring a unique
global maximum for the statistical objective function. Here, the phrase ‘how a parameter is identified’ refers instead
to a more intuitive notion that can be roughly phrased as follows: What are the key features of the data, or the key
sources of (assumed) exogenous variation in the data, or the key a priori theoretical or statistical assumptions imposed
in the estimation, that drive the quantitative values of the parameter estimates, and strongly influence the substantive
conclusions drawn from the estimation exercise?” (6).

2Altonji et al. (2005) write: “Both [exclusion restrictions and functional form restrictions] contribute to iden-
tification.... We explore whether the source of identification is primarily coming from the exclusion restrictions or
primarily coming from the functional form restrictions” (814). Goettler and Gordon (2011) write: “The demand-side
parameters... are primarily identified by [a set of moments].... The supply-side parameters... are primarily identified
by [a different set of moments]” (1161). DellaVigna et al. (2012) write: “Though the parameters are estimated jointly,
it is possible to address the main sources of identification of individual parameters” (37). (Emphasis added.)

3Einav et al. (2015) write: “Loosely speaking, identification [of three key parameters] relies on three important
features of our model and data...” (869). Crawford and Yurukoglu (2012) write: “One may casually think of [a set
of moments] as ‘empirically identifying’ [a set of parameters]” (662). Gentzkow et al. (2014) offer a “heuristic”
discussion of identification which they conclude by saying: “Although [we treat] the different steps as separable, the...
parameters are in fact jointly determined and jointly estimated” (3097). (Emphasis added.)
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tivity analysis (including Leamer 1983; Sobol 1993; Saltelli et al. 2008; Chen et al. 2011). Our
focus is on local, rather than global, deviations from the assumed model, and the sample sensitivity
we derive in section 5 is a natural local sensitivity measure from the perspective of this literature.

Relative to the existing literature on local misspecification, our main contribution is the pro-
posal to report sensitivity alongside structural estimates, as a way to increase transparency and
make it easier for readers to build intuition about the forms of misspecification they find most im-
portant. In this sense, our approach is similar to Müller’s (2012) measure of prior sensitivity for
Bayesian models, which allows readers to adjust reported results to better reflect their own priors.
A second contribution of this paper is to characterize the finite-sample derivative of the minimum
distance estimator with respect to perturbations of the estimation moments, and to show that this
derivative’s limiting value is the sensitivity matrix.

In appendix A, we discuss two alternative approaches that have appeared in the literature.
One is to ask how parameter estimates change when a moment of interest is dropped from the
estimation. We show that the limiting value of this change is the product of our sensitivity measure
and the degree of misspecification of the dropped moment. The other is to ask how the value of
the moments simulated from the model change when we vary a particular parameter. We show that
this has a limiting value proportional to a generalized inverse of our measure.

3 Measure

We have observations Di ∈D for i= 1, ...,n, which comprise a sample D∈Dn. A set of identifying
assumptions a0 implies that Di follows F (·|θ ,ψ), where θ is a P-dimensional parameter of interest
with true value θ0 and ψ is a possibly infinite-dimensional nuisance parameter with true value ψ0.
When it does not introduce ambiguity, we abbreviate the distribution F (·|θ0,ψ0) of Di under this
model by F , and the sequence of distributions of the sample by Fn ≡ {×nF}n.

The estimator θ̂ solves

(1) min
θ∈Θ

ĝ(θ)′Ŵ ĝ(θ) ,

where Θ is a compact subset of RP known to contain θ0 in its interior. The object ĝ(θ) is a J-
dimensional function of parameters and data continuously differentiable in θ with Jacobian Ĝ(θ).
We assume that under Fn, and thus under the assumptions a0, (i)

√
nĝ(θ0)

d→ N (0,Ω); (ii) Ŵ

converges in probability to a positive semi-definite matrix W ; (iii) ĝ(θ) and Ĝ(θ) converge uni-
formly in probability to continuous functions g(θ) and G(θ); and (iv) G′WG = G(θ0)

′WG(θ0)

is nonsingular. We further assume that g(θ)′Wg(θ) has a unique minimum at θ0. Under these
assumptions, θ̂ is consistent, asymptotically normal, and asymptotically unbiased with variance
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Σ = (G′WG)−1 G′WΩWG(G′WG)−1 (Newey and McFadden 1994).

Definition. The sensitivity of θ̂ to ĝ(θ0) is

Λ =−
(
G′WG

)−1 G′W.

Example. (OLS) Suppose the data are Di = (Yi,Xi). The baseline assumptions a0 imply that

(2) Yi = X ′i θ0 + εi,

with E(εi|Xi) = 0. The regression coefficient of Y on X can be written as a GMM estimator with
ĝ(θ) = 1

n ∑i Xi (Yi−X ′i θ) and W = I. Thus, linear regression is a special case of minimum distance
estimation as in (1). Noting that G =−E(XiX ′i ) =−ΩXX , we have Λ = Ω

−1
XX .

While the estimator θ̂ is derived under the assumptions a0, we may be concerned that the data
generating process is in fact described by alternative assumptions a. We follow the literature on
local misspecification (e.g., Newey 1985; Conley et al. 2012) and focus on perturbations that allow
the degree of misspecification to shrink with the size of the sample. Define a family of distributions
indexed by µ ∈ [0,1],

F (µ)≡ F (·|θ0,ψ0,µ) ,

such that F (0)=F (·|θ0,ψ0) denotes the distribution of the data under a0 and F (1)=F (·|θ0,ψ0,1)
denotes the distribution of the data under a. One such F (µ), for instance, assumes that a fraction
µ of the observations are drawn from a distribution consistent with a, while the remaining 1− µ

are drawn from a distribution consistent with a0.
We say that a sequence {µn}∞

n=1 is a local perturbation if under Fn (µn): (i) θ̂
p→ θ0; (ii)

√
nĝ(θ0) converges in distribution to a random variable g̃; (iii) ĝ(θ) and Ĝ(θ) converge uniformly

in probability to g(θ) and G(θ); and (iv) Ŵ
p→W . Any sequence µn such that Fn (µn) is contiguous

to Fn (0) (see van der Vaart 1998) and under which
√

nĝ(θ0) has a well-defined limiting distribution
is a local perturbation. Under this approach, we wish to relate changes in the expectation of g̃ to
the first-order asymptotic bias of the estimator, which we generally abbreviate to “asymptotic bias”
for ease of exposition.

Example. (OLS, cont’d) Suppose that under alternative assumptions a, the data are in fact gener-
ated by

Yi = X ′i θ0 +Vi + εi,

where the scalar Vi is an omitted variable potentially correlated with Xi and E(εi|Xi) = 0 still. The
mean of the OLS moment condition is E [ĝ(θ0)] = E [XiVi] = ΩXV , where ΩAB denotes E [AiB′i] for
vectors A and B.
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To define a local perturbation corresponding to this alternative, let F (µ) be the distribution of
data from the model

(3) Yi = X ′i θ0 +µVi + εi,

and consider the sequence µn =
1√
n . Analyzing the behavior of θ̂ under this assumption, we can

show that
√

nĝ(θ0) converges to a random variable g̃ with expectation ΩXV , and
√

n
(
θ̂ −θ0

)
converges to a random variable θ̃ OLS with expectation

E
(

θ̃
OLS
)

= Ω
−1
XX ΩXV

= ΛE(g̃) .

The expression Ω
−1
XX ΩXV is the large-sample analogue of the standard omitted variables bias for-

mula. Sensitivity Λ thus gives an expression for asymptotic omitted variables bias analogous to
the usual finite-sample expression.

The standard omitted variables bias formula shows that to predict the bias in the estimator for a
specific omitted variable, a reader need only be able to form a guess as to the coefficients Ω

−1
XX ΩXV

from a regression of the omitted variable on the endogenous regressors. The matrix Ω
−1
XX —our

sensitivity measure Λ in this case—translates the deviation ΩXV in the moments into bias in the
estimator. Our main result extends this logic to our more general setup.

Proposition 1. For any local perturbation {µn}∞

n=1,
√

n
(
θ̂ −θ0

)
converges in distribution under

Fn (µn) to a random variable θ̃ with

θ̃ = Λg̃

almost surely. This implies in particular that the first-order asymptotic bias E
(
θ̃
)

is given by

E
(
θ̃
)
= ΛE(g̃) .

Proof. See appendix.

Two extensions are immediate.

Remark 1. In some cases, we are interested in the sensitivity of a counterfactual or welfare cal-
culation that depends on θ̂ , rather than the sensitivity of θ̂ per se. Suppose c(·) is a continuously
differentiable function not dependent on the data, with non-zero gradient C =C (θ0) =

∂

∂θ
c(θ0) at

θ0. Then under any local perturbation, the delta method implies that
√

n
(
c
(
θ̂
)
− c(θ0)

)
converges

in distribution to c̃ =CΛg̃. We will refer to CΛ as the sensitivity of c
(
θ̂
)
.
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Remark 2. We may be interested in the sensitivity of some elements of the parameter vector holding
other elements constant. Decomposing θ into subvectors (θ1,θ2), the conditional sensitivity of the
first subvector, fixing the second, is

Λ1 =−
(
G′1WG1

)−1 G′1W,

for G1 =
∂

∂θ1
g(θ1,0,θ2,0), where θ1,0 and θ2,0 are the true values of θ1 and θ2 respectively. Condi-

tional sensitivity Λ1 measures the asymptotic bias of θ̂1 under local perturbations when θ̂2 is held
fixed at θ2,0.

An alternative to our local perturbation approach is to consider how the probability limit of θ̂

changes under a fixed alternative a—that is, to consider misspecification that does not vanish as
the sample size grows large. We show in the online appendix that if the probability limits of θ̂ and
ĝ(θ0) under assumptions a are θ (a) and g(a) respectively, we have

θ (a)−θ0 ≈ Λ [g(a)−g(a0)]

= Λg(a) ,

for a close to a0 in an appropriate sense. This probability limit approach has the drawback that
the fixed misspecification becomes arbitrarily large relative to sampling error in a large sample,
making it difficult to apply this approach to adjust inference for the induced bias. For this reason,
we follow the literature in focusing on local perturbations. However, the intuition delivered by the
two approaches is similar.

Other extensions can also be developed. Our MDE setup directly accommodates maximum
likelihood or M-estimators with θ̂ = argminθ

1
n ∑i m(Di,θ) if we take ĝ(θ) to be the first-order

conditions of the objective and assume that these suffice to identify θ . Our results can also be
extended to accommodate, say, models with local maxima or minima in the objective following
the reasoning in Newey and McFadden (1994, section 1). The online appendix shows how to
extend our asymptotic results to the case where the sample moments ĝ(θ) are non-differentiable,
as in many simulation-based estimators.

4 Special Cases

Two special cases encompass the applications we present below and provide a template for many
other cases of interest. Particular transformations of Λ are sometimes more readily interpretable
in certain applications. Below we provide guidance on what we think researchers should report in
each case.
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4.1 Classical Minimum Distance

The first case of interest is where ĝ(θ) = ŝ− s(θ) for sample statistics ŝ and corresponding pre-
dictions s(θ) under the model. We refer to this class collectively as classical minimum distance
estimators. Our definition of this case includes estimation by additively separable GMM, simu-
lated method of moments, and indirect inference (Gourieroux et al. 1993; Smith 1993). Examples
include the estimators of DellaVigna et al. (2012) and Gourinchas and Parker (2002) which we
discuss below, as well as a large number of other papers in industrial organization (e.g., Goettler
and Gordon 2011), labor (e.g., Voena 2015), finance (e.g., Nikolov and Whited 2014), and macro
(e.g., Christiano et al. 2005).

Definition. θ̂ is a classical minimum distance (CMD) estimator if ĝ(θ)= ŝ−s(θ) , where E(ŝ)=

s(θ0) and s(·) is a function that does not depend on the data.

When θ̂ is a CMD estimator, sensitivity is Λ = (S′WS)−1 S′W, where S is the matrix of partial
derivatives of s(θ) evaluated at θ0. A natural category of perturbations to consider in this case
are additive shifts of the moment functions due to either misspecification of s(θ) or measurement
error in ŝ. In such cases, we obtain a simple characterization of the asymptotic bias of the CMD
estimator.

Proposition 2. Suppose that θ̂ is a CMD estimator and under Fn (µ) ŝ = s̃+ µη̂ , where η̂ con-

verges in probability to a vector of constants η and the distribution of s̃ does not depend on µ .

Take µn =
1√
n , and suppose that Ŵ

p→W under Fn (µn). Then E
(
θ̃
)
= Λη .

Proof. See appendix.

Since the data affects the CMD estimator through the vector of sample statistics ŝ, in this setting
we suggest either reporting an estimate of Λ (if the units of the elements of s(θ) are naturally
comparable), or else multiplying each element Λp j of Λ by the standard deviation

√
Ω j j of the jth

moment, so the elements can be interpreted as the effect of a one-standard-deviation change in the
moment on the parameters. A reader can then estimate the asymptotic bias associated with any
alternative assumptions a, provided she can build intuition about the way they change the statistics
ŝ.

Example. (Indirect Inference) Suppose that each element ŝ j is the coefficient from a descriptive
regression of some outcome Yi j on some predictor Xi j, with Yi j and Xi j functions of the underly-
ing data Di. Suppose that the model is exactly identified. Under assumptions a0, E

[
Yi j|Xi j

]
=

s j (θ0)Xi j for all j, so E(ŝ) = s(θ0). Sensitivity is Λ = S−1.
Under alternative a, the model omits important correlates of Yi j; in a sample of size n, E

[
Yi j|Xi j

]
=

s j (θ0)Xi j +
1√
nVi j for an omitted variable Vi j. Applying proposition 2, the asymptotic bias of the
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estimator is
E
(
θ̃
)
= S−1

Ω
−1
XX ΩXV .

In this case, sensitivity links the omitted variables bias in the individual regression coefficients ŝ j

to the induced asymptotic bias in θ̂ .

4.2 Instrumental Variables

The second case of interest is where the parameters of interest are estimated by nonlinear instru-
mental variables, with moments formed by interacting the instruments with estimated structural
errors. Among the examples of this case are the BLP application discussed below and a large set
of related demand models, as well as other structural models employing instrumental variables for
identification.

Definition. θ̂ is an instrumental variables (IV) estimator if ĝ(θ) = 1
n ∑i Zi⊗ ζ̂i (θ), where Zi is

a vector of instruments and ζ̂i (θ) is a function of data and parameters with E
(

ζ̂i (θ0) |Zi

)
= 0

under Fn.4

When θ̂ is an IV estimator, sensitivity is Λ =−
(

Ω
′

ZX̃WΩZX̃

)−1
Ω
′

ZX̃W, where ΩZX̃ =E(ZiX̃ ′i )

and X̃i are the “pseudo-regressors” ∂ ζ̂i (θ0)/∂θ .
A natural perturbation to consider in this case is the introduction of an omitted variable Vi that

causes the errors ζi to be correlated with the instruments Zi. We provide sufficient conditions for
this form of misspecification to be a local perturbation. These conditions apply more generally
than nonlinear IV.

Assumption 1. The observed data Di = [Yi,Xi] consist of i.i.d. draws of endogenous variables Yi

and exogenous variables Xi, where Yi = h(Xi,ζi;θ) is a one-to-one transformation of the vector

of structural errors ζi given Xi and θ with inverse ζ̂ (Yi,Xi;θ) = ζ̂i (θ). There is also an unob-

served (potentially omitted) variable Vi. Under Fn: (i) ζi is continuously distributed with full

support conditional on Xi; (ii) (ζi,Xi,Vi) has a density f with respect to some base measure v; (iii)√
f (ζi,Xi,Vi) is continuously differentiable in ζi; (iv) we have

0 < E

(V ′i
∂

∂ζ
f (ζi,Xi,Vi)

f (ζi,Xi,Vi)

)2< ∞;

4For notational simplicity we have assumed that all the instruments Zi are interacted with each element of ζ̂i (θ).
The results derived below continue to apply, however, if we use different instrument sets for different elements of
ζ̂i (θ) .
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and (v) the moments are asymptotically linear in the sense that

√
nĝ(θ0) =

1√
n ∑

i
ϕ (ζi,Xi,Vi,θ0)+op (1) ,

where ϕ (ζi,Xi,Vi,θ0) has finite variance.

The main substantive restriction imposed by assumption 1 is that the structural errors have full
support and map one-to-one to the outcomes Yi. This is satisfied, for example, in BLP (1995) and
similar models of aggregate demand. The remaining assumptions are regularity conditions that
hold in a wide range of contexts.

Proposition 3. Suppose that θ̂ is an IV estimator satisfying assumption 1, and that under Fn (µ)

we have ζ̂i (θ0) = ζ̃i + µVi, where Vi is an omitted variable with 1
n ∑i Zi⊗Vi

p→ ΩZV 6= 0 and the

distribution of ζ̃i does not depend on µ . Then, taking µn =
1√
n , we have E

(
θ̃
)
= ΛΩZV .

Proof. See appendix.

Proposition 3 directly generalizes the omitted variables bias formula to locally misspecified
nonlinear models. If we consider any just-identified instrumental variables model, then we can
restate the conclusion of proposition 3 as

E
(
θ̃
)
=−Ω

−1
ZX̃ ΩZV .

This is a more general analogue of the omitted variables bias formula: rather than the coefficients
from a regression of the omitted variable on the regressors, the asymptotic bias is now given by
the coefficients from a two-stage least squares regression of the omitted variable on the pseudo-
regressors, using Z as instruments.

If a researcher reports Λ, a reader can predict the asymptotic bias due to any omitted variable
provided she can predict its covariance ΩZV with the instruments. To simplify the reader’s task fur-
ther, we recommend that researchers report an estimate of ΛΩZZ , possibly multiplied by a scaling
matrix that makes the units more comparable across elements of Z. Given ΛΩZZ , the additional
input the reader must provide is the coefficients from a regression of the omitted variable on the
excluded instruments—exactly the same input needed to apply the omitted variables bias formula
for OLS.

Remark 3. Suppose γ = Ω
−1
ZZ ΩZV are the coefficients from a regression of the omitted variable Vi

on the instruments Zi. Then under the hypotheses of proposition 3, E
(
θ̃
)
= (ΛΩZZ)γ .

As a final example, we re-derive the asymptotic bias expression of Conley et al. (2012) for the
linear IV model with locally invalid instruments.
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Example. (2SLS) Suppose the data are Di = [Yi,Xi,Zi] and the expression for Yi under the assumed
model is the same as in equation (2) with E(εi|Zi)= 0 and E(εi|Xi) 6= 0. The 2SLS estimator can be
written as a GMM estimator with ĝ(θ) = 1

n ∑i Zi⊗ (Yi−X ′i θ) and Ŵ =
(1

n ∑i ZiZ′i
)−1

. Sensitivity
Λ in this case is Λ =

(
Ω′ZX Ω

−1
ZZ ΩZX

)−1
Ω′ZX Ω

−1
ZZ . Conley et al. (2012) consider a perturbed model

in which εi is replaced by 1√
nZiγ +εi. Applying remark 3, we see that the asymptotic bias of 2SLS

is
E
(
θ̃
)
=
(
Ω
′
ZX Ω

−1
ZZ ΩZX

)−1
Ω
′
ZX γ.

This is the expression Conley et al. (2012) derive in section III.C.

5 Sample Sensitivity

In our analysis thus far we have focused on the sensitivity of the asymptotic behavior of an esti-
mator to changes in identifying assumptions. A distinct but related question is how our estimator
θ̂ would change if we used the alternative assumptions a in estimation. In this section, we derive a
sensitivity measure which answers this question, and show that it coincides asymptotically with Λ.

Suppose that under the alternative assumptions a we can calculate the probability limit of our
moment conditions at the true parameter value, g(a) = plim ĝ(θ0) . We can use this knowledge to
calculate “corrected” moments ĝa (θ) = ĝ(θ)−g(a) , which under assumptions a again have mean
zero at the true parameter value. For a CMD model where we think measurement error biases the
first entry of ŝ upwards by one unit, for instance, we can take g(a) to be the vector with one in
the first entry and zeros everywhere else. Likewise, for an IV model where we think there is an
omitted variable Vi that is correlated with the instruments, we can take g(a) = ΩZZγ for γ again
the regression coefficient of Vi on Zi.

It is natural to ask how the estimator θ̂ a derived under a differs from the estimator θ̂ derived
under a0. To provide an approximate answer to this question which can be used to consider many
different alternatives a, as in our analysis of asymptotic bias we will consider local approximations.
In particular, suppose we can construct a family of moment functions

ĝ(θ ,µ) = (1−µ) · ĝ(θ)+µ · ĝa (θ) .

Define θ̂ (µ) to solve

(4) min
θ∈Θ

ĝ(θ ,µ)′Ŵ ĝ(θ ,µ) .

For this section, we assume that ĝ(θ) is twice continuously differentiable on Θ.
Define the sample sensitivity of θ̂ to ĝ

(
θ̂
)

as
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Λ̂S =−
(

Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ̂
)
+ Â
)−1

Ĝ
(
θ̂
)′

Ŵ ,

where
Â =

[ (
∂

∂θ1
Ĝ
(
θ̂
)′)

Ŵ ĝ
(
θ̂
)

...
(

∂

∂θP
Ĝ
(
θ̂
)′)

Ŵ ĝ
(
θ̂
) ]

.

Sample sensitivity measures the derivative of θ̂ with respect to perturbations of the moments
without any assumptions on the data generating process. Specifically, if θ̂ is the unique solution to
(1) and lies in the interior of Θ, then

(5)
∂

∂ µ
θ̂ (0) = Λ̂S (ĝa (θ)− ĝ(θ)) ,

whenever Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ̂
)
+ Â is non-singular. (This is proved in the online appendix as a conse-

quence of a more general result.) Thus, if we consider a first-order approximation we obtain

θ̂
a− θ̂ ≈ Λ̂S (ĝa (θ)− ĝ(θ)) ,

which is analogous to our proposition 1, except that rather than approximating the asymptotic bias
of an estimator, we are now approximating the estimator’s finite-sample value relative to a correctly
specified alternative.

As is intuitively reasonable, the sample sensitivity Λ̂S relates closely to Λ introduced above. To
formalize this relationship, we make an additional technical assumption.

Assumption 2. For 1 ≤ p ≤ P and Bθ a ball around θ0, supθ∈Bθ
‖ ∂

∂θp
Ĝ(θ)‖ is asymptotically

bounded.5

This condition is satisfied if, for example, ∂

∂θp
Ĝ(θ) converges to a continuous function ∂

∂θp
G(θ)

uniformly on Bθ . Assumption 2 is sufficient to ensure that Â
p→ 0. Since the sample analogues of

G and W converge to their population counterparts, Λ̂S converges to Λ.

Proposition 4. Consider a local perturbation µn such that assumption 2 holds under Fn (µn).

Λ̂S
p−→ Λ under Fn (µn) as n→ ∞.

Proof. See appendix.

Remark 4. In contrast to proposition 1, the statement in equation (5) does not rely on asymptotic
approximations. Consequently, we can use Λ̂S even in settings where conventional asymptotic
approximations are unreliable, such as models with weak instruments or highly persistent data. In

5In particular, for any ε > 0, there exists a finite constant r (ε) such that
limsupn→∞ Pr

{
supθ∈Bθ

‖ ∂

∂θp
Ĝ(θ)‖> r (ε)

}
< ε .
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such cases, however, the connection between Λ̂S and Λ generally breaks down, and neither measure
necessarily provides a reliable guide to bias.

6 Estimation

Because consistent estimators of G and W are typically needed to perform inference on θ , a con-
sistent plug-in estimator of sensitivity is available at essentially no additional computational cost.

Definition. Define plug-in sensitivity to be

Λ̂ =−
(

Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ̂
))−1

Ĝ
(
θ̂
)′

Ŵ .

Proposition 5. For any local perturbation {µn}∞

n=1, Λ̂
p−→ Λ under Fn (µn) .

Proof. By assumption Ĝ(θ)
p−→G(θ) uniformly in θ , so consistency of θ̂ implies that Ĝ

(
θ̂
) p−→G.

Since G′WG has full rank and Ŵ
p→W , the result follows by the continuous mapping theorem.

Analogous results apply to transformations of sensitivity, such as the measure ΛΩZZ suggested for
instrumental variables models.

Turn next to inference. Under standard regularity conditions the bootstrap will provide a valid
approximation to the sampling variability of Λ̂. To illustrate, we present bootstrap confidence
intervals on functions of Λ for our application to BLP (1995) below. An important caveat is that,
under local perturbations, Λ̂ has asymptotic bias of order 1√

n (just as θ̂ does). Thus, the location
(but not the width) of bootstrap confidence intervals is distorted and their coverage is not correct.

7 Applications

7.1 Charitable Giving

DellaVigna et al. (2012) use data from a field experiment to estimate a model of charitable giving.
In the experiment, solicitors go door-to-door and either ask households to donate or ask households
to complete a survey. The two charities in the experiment are the East Carolina Hazard Center
(ECU) and the La Rabida Children’s Hospital (La Rabida). In some treatments, households are
warned ahead of time via a flyer that a solicitor will be coming to their home, and in others they
are both warned and given a chance to opt out. Households’ responses to these warnings, as
well as variation across treatments in amounts given and survey completion, pin down preference
parameters that allow the authors to assess the welfare effects of solicitation. The main findings
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are that social pressure is an important driver of giving and that the average visited household is
made worse off by the solicitation.

The model is a two-period game between a solicitor and a household. In the first period,
the solicitor may notify the household of the upcoming solicitation, in which case the household
can undertake costly effort to avoid it. If the household does not avoid the solicitation, then the
household chooses an amount to donate to the charity. The household may receive utility from
giving due to altruism (concern for the total resources of the charity) or warm glow (direct utility
from giving). The household may also experience social pressure, which is modeled as a cost that
decreases linearly in the donation up to a threshold amount d∗, after which social pressure is zero.
The game is solved via backward induction, with households rationally anticipating future social
pressure. The threshold d∗ is taken to be the sample median donation amount of $10.

The estimator solves (1) with moments

ĝ(θ) = ŝ− s(θ) ,

where the statistics ŝ include the share of households opening the door in each treatment, the share
giving donations in various ranges in the charity treatments, the share completing the survey in the
survey treatments, and the share opting out when this was allowed, and s(θ) is the expected value
of each statistic under the model, computed numerically by quadrature. The parameter vector θ

includes determinants of the distribution of altruism and the social pressure cost of choosing not
to give. Key parameters, including the cost of social pressure, are allowed to differ between the
two charities ECU and La Rabida. The weight matrix Ŵ is equal to the diagonal of the inverted
variance-covariance matrix of the observed statistics ŝ. Under the assumed model Fn, E(ŝ)= s(θ0).
This is a CMD estimator as defined above.

A reader of the paper might be concerned that several of the model’s assumptions, including
the functional forms for the distribution of altruism, the utility function, and the social pressure
cost, may not hold exactly. We can apply our measure to make the mapping from moments to
estimates more transparent, and so allow a reader to estimate the asymptotic bias under various
violations of these assumptions.

We consider a perturbed model under which ŝ = s̃+ µη where η is a vector of constants and
the distribution of s̃ does not depend on µ . By proposition 2, under the local perturbation µn =

1√
n ,

the first-order asymptotic bias is then E
(
θ̃
)
= Λη . We estimate Λ with its plug-in using estimates

of G and W provided to us by the authors.6 We focus on the sensitivity of the estimated social

6We are grateful to Stefano DellaVigna and his co-authors for providing these inputs. We received the parameter
vector θ̂ , covariance matrix Ω̂, Jacobian Ĝ, and weight matrix Ŵ resulting from 12 runs of an adaptive search algo-
rithm. These values differ very slightly from those reported in the published paper, which correspond to 500 runs.
To evaluate specific forms of misspecification, we code our own implementation of the prediction function s(θ) and
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pressure in the ECU charity solicitations. We show analogous results for the La Rabida social
preference parameter in the online appendix.

Figure 1 plots the column of the estimated Λ corresponding to the per-dollar social pressure
cost θ cost of not giving to ECU.7 The estimated value of this parameter is $0.14 with a standard
error of $0.08 (DellaVigna et al. 2012). Because the moments are probabilities, we scale the
estimated Λ so that it can be read as the effect of a one-percentage-point violation of the given
moment condition on the asymptotic bias in θ cost .

Figure 1 provides useful qualitative lessons about the estimator. We indicate with solid circles
the elements that DellaVigna et al. (2012) single out as important for this parameter: donations at
$10, donations less than $10, and the share of people opening the door in the treatment where they
were warned by a flyer. DellaVigna et al. (2012) write: “The [social pressure] is identified from two
main sources of variation: home presence in the flyer treatment . . . and the distribution of small
giving (the higher the social pressure, the more likely is small giving and in particular bunching
at [$10])” (38). Figure 1 lines up well with these expectations, reinterpreted as statements about
sensitivity rather than identification. Estimated social pressure is increasing in the share of people
bunching at $10 and decreasing in the share donating less than $10. Estimated social pressure is
also decreasing in the share of people opening the door in the flyer treatment, reflecting the model’s
prediction that a household that anticipates high social pressure costs should not open the door. The
absolute magnitude of sensitivity is highest for bunching at $10. These qualitative patterns might
lead a reader to be particularly concerned about alternative assumptions a that affect the likelihood
that households give exactly $10.

To illustrate the way sensitivity can be used to assess specific alternatives, suppose households
have reasons other than social pressure to give exactly $10, for example because this is a convenient
cash denomination. In particular, suppose that 99 percent of households obey the model, while 1
percent of households obey the model in all ways except that they choose an exogenous donation
amount d̃ (e.g., $10) conditional on giving. The values of η implied by this alternative can be
easily computed using the expected values s

(
θ̂
)

of the statistics ŝ reported in the appendix of the
original article.8 Figure 1 can then be used to estimate the implied asymptotic bias in estimated
social pressure.

confirm that our calculation of s
(
θ̂
)

closely matches the published results.
7We plot the sensitivities with respect to the elements of ĝ(θ0) associated with the ECU treatments.
8Consider the steps for computing η when d̃ = 10. We begin by altering the expected values s(θ̂) of the statistics

ŝ reported by DellaVigna et al. (2012) in two ways. First, for each ECU treatment we set the probability of giving
$10 to the total predicted probability of giving. Second, we set the probabilities for giving positive amounts other
than $10 to zero. We then compute η by multiplying the difference between our alternative predicted probabilities
and the original ones by 0.01, the share of model violators. To illustrate, the component of η for the probability of
giving exactly $10 under the flyer treatment is 0.01× (0.0451−0.0056). Multiplying by the sensitivity of ECU social
pressure cost to this probability, which equals 7.455, gives 0.0029. Asymptotic bias is just the sum of such values—a
large majority of which are zero—over all moments.

18



Figure 2 shows the implied asymptotic bias for a range of alternative values of the exogenous
gift amount d̃. As expected, the largest asymptotic bias arises when d̃ = 10, exactly the threshold
at which DellaVigna et al.’s (2012) model assumes that social pressure ceases. Other exogenous
giving levels imply much smaller asymptotic bias. The asymptotic bias at d̃ = 10 is equal to
0.008, implying that the estimated social pressure is overstated by roughly five percent of the
baseline estimate. If the share of households giving exogenously at $10 were 10 percent, the
projected asymptotic bias would be 0.08, implying the estimated social pressure is overstated by
more than 50 percent of the baseline estimate. The online appendix compares these local estimates
of sensitivity to a global analogue of sample sensitivity.

The authors could of course have estimated this specific alternative model and reported it as
part of their robustness analysis. The value of figure 1 is that it allows readers to evaluate this and a
wide range of other alternatives themselves. The qualitative patterns provide guidance about which
kinds of violations of the model’s assumptions are likely to be most important, and the quantitative
values provide an estimate of the magnitude of the asymptotic bias for specific alternatives.

7.2 Lifecycle Consumption

Gourinchas and Parker (2002) estimate a structural model of lifecycle consumption with uncertain
income. In the model, households’ saving decisions are driven by both precautionary and lifecycle
motives. The estimates suggest that precautionary motives dominate up to the mid-40s, with con-
sumers acting as “buffer stock” agents who seek to maintain a target level of assets and consume
any additional income over that threshold. Lifecycle savings motives (i.e., saving to smooth con-
sumption at retirement) dominate at older ages, with consumers acting in rough accordance with
the permanent income hypothesis. The results provide an economic rationale for both the hump-
shaped consumption profile and the high marginal propensity to consume out of income shocks at
young ages observed in the data.

Households in the model live and work for a known, finite number of periods. In each period of
working life each household receives exogenous labor income that is the product of permanent and
transitory components. The permanent component evolves (in logs) as a random walk with drift.
The transitory component is an i.i.d. shock that is either zero or is lognormally distributed. House-
holds choose consumption in each period of working life to maximize the expected discounted
sum of an isoelastic felicity function, and receive a reduced-form terminal payoff for retirement
wealth.

The data D are aggregated to a vector ŝ consisting of average log consumption at each age e,
adjusted in a preliminary stage for differences in family size, cohort, and regional unemployment
rates. The parameters of interest θ are the discount factor, the coefficient of relative risk aversion,
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and two parameters governing the payoff in retirement. The model also depends on a second
vector of parameters χ , including the real interest rate and the parameters of the income generating
process, for which the authors compute estimates χ̂ of the true values χ0 in a first stage. Under the
assumed model Fn

ŝe = se (θ0,χ0)+ εe,

where se (θ ,χ) is the average log consumption predicted by the model and εe is a measurement
error satisfying E(εe) = 0 for all e.

The estimator θ̂ solves (1) with moments

ĝ(θ) = ŝ− s(θ , χ̂) .

The weight matrix Ŵ is a constant that does not depend on the data. Following the authors’ initial
approach to inference (Gourinchas and Parker 2002, Table III), we proceed as if χ̂ is also a constant
that does not depend on the data.9 The estimator is then a CMD estimator as defined above.

The condition E(ŝ) = s(θ0,χ0) depends on a number of underlying economic assumptions. A
central one is that consumption and leisure are separable. This implies that the level of income in
a given period is not correlated with the marginal utility of consumption. Subsequent literature,
however, has shown that working can affect marginal utility in important ways. Aguiar and Hurst
(2007) show that shopping intensity increases when consumers work less, implying that lower
income increases the marginal utility a consumer can obtain from a given expenditure on con-
sumption. Aguiar and Hurst (2013) show that a meaningful portion of consumption goes to work
related expenses, implying a second reason for non-separability. Since work time and work-related
expenses both vary systematically with age, these forces would change the age-consumption pro-
file relative to what the Gourinchas and Parker (2002) model would predict.

Another important assumption is that there are no unobserved components of income that vary
systematically over the lifecycle. If younger consumers receive transfers from their families, for
example, consumption relative to income would look artificially high at young ages. An example
is the in-kind housing support from parents studied by Kaplan (2012). Gourinchas and Parker
(2002) note that their data exhibit consumption in excess of income in the early years of adulthood
(something that is impossible under the assumptions of their model), and they speculate that this
could be explained by such unobserved transfers.

We show how a reader can use sensitivity to asses the asymptotic bias introduced by violations
of these assumptions. We focus on the sensitivity of the two key preference parameters—the

9If we instead let χ̂ depend on the data, the analysis below and, by lemma 1, its interpretation in terms of mis-
specification are preserved, provided that the distribution of χ̂ does not vary with the perturbation parameter µ . This
assumption seems reasonable in this context because estimation of χ̂ is based on separate data that does not involve
the consumption observations underlying ŝ.
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discount factor and the coefficient of relative risk aversion—which in turn determine the relative
importance of consumption smoothing and precautionary incentives.10 Each violation we consider
leads to a divergence between observed consumption and the consumption quantity predicted by
the model. Formally, we consider perturbed models Fn (µ) under which ε = ε̃ + µη , where the
distribution of ε̃ does not depend on µ and η is a vector of constants that will differ depending
on the alternative model at hand. We take µn =

1√
n . By proposition 2, the asymptotic bias is then

E
(
θ̃
)
= Λη . We estimate the model using the authors’ original code and data, and then estimate

Λ with its plug-in.11

Figure 3 plots the columns of the estimated Λ corresponding to the discount factor and the
coefficient of relative risk aversion. The two plots are essentially inverse to one another. This
reflects the fact that both a higher discount factor and a higher coefficient of relative risk aversion
imply the same qualitative change in the consumption profile: lower consumption early in life and
greater consumption later in life. A change in consumption at a particular age that leads to higher
estimates of one parameter thus tends to be offset by a reduction in the other parameter in order
to hold consumption at other ages constant. The two parameters are separately identified because
they have different quantitative implications at different ages, depending on the relative importance
of precautionary and lifecycle savings.

Figure 3 reveals useful qualitative lessons about the estimator. The plots suggest that we can
divide the lifecycle into three periods. Up to the late 30s, saving is primarily precautionary, so risk
aversion matters comparatively more than discounting and higher consumption is interpreted as
evidence of low risk aversion. From the late 30s to the early 60s, incentives shift toward retirement
savings, so discounting matters comparatively more than risk aversion and higher consumption is
interpreted as evidence of a low discount factor. From the early 60s on, retirement savings contin-
ues to be the dominant motive, but now we are late enough in the lifecycle that high consumption
signals the household has already accumulated substantial retirement wealth and thus is interpreted
as evidence of a high discount factor. These divisions align well with the phases of precautionary
and lifecycle savings that Gourinchas and Parker (2002) highlight in their figure 7.

Figure 3 also permits readers to form quantitative intuitions about the asymptotic bias in the
estimator. Suppose, for example, that a reader believes that 26-year-olds overstate their consump-
tion by 1 percent (0.01 log points). Then the reader believes that the estimated discount factor is
biased (asymptotically) upwards by 0.0006 = 0.01×0.06 where 0.06 is roughly the sensitivity of
the discount factor to the moment corresponding to log consumption at age 26.

10We fix the two retirement parameters at their estimated values for the purposes of our analysis.
11We are grateful to Pierre-Olivier Gourinchas for providing the original GAUSS code, first-stage parameters, and

input data. We use the published parameter values as starting values. We compute sensitivity at the value θ̂ to which
our run of the solver converges, and report this value as the baseline estimate in table 1 below. This value is similar,
though not identical, to the published parameters.
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A range of economically interesting assumptions η can be translated into implied asymptotic
bias using the elements of figure 3. To illustrate, table 1 shows the first-order asymptotic bias as-
sociated with each of four specific perturbations. First, to allow for variable shopping intensity, we
define the elements ηe to match the age-specific log price increments that Aguiar and Hurst (2007)
estimate in column 1 of their table I. Second, to allow for work-related consumption expenses,
we define ηe so that true consumption at each age is overstated by five percent of work-related
expenses as calculated in Aguiar and Hurst’s (2013) table 1 and figure 2a. Third, to allow for
young consumers receiving family transfers, we choose ηe so that true average consumption prior
to age 30 is one percent below average income (rather than above average income as the raw data
suggest). Finally, to allow older consumers to make corresponding transfers to their children, we
choose ηe so that consumption from ages 50 through 65 is overstated by an annual amount whose
lifetime sum is equal to the cumulative gap between consumption and income over ages 26 through
29.

The first row of table 1 shows that if shopping intensity changes with age as in Aguiar and
Hurst (2007), the estimated discount factor is overstated by 0.4 percentage points and the esti-
mated coefficient of relative risk aversion is understated by roughly a third of its corrected value.
The second row shows that if there are significant work-related expenses as in Aguiar and Hurst
(2013), the estimated discount factor and coefficient of relative risk aversion are asymptotically
biased in the opposite direction. The third row shows that if part of the measured consumption of
young workers is funded by unobserved transfers, the discount factor is overstated by more than a
percentage point and the coefficient of relative risk aversion is understated by half of its corrected
value. The fourth row shows that allowing for older consumers to fund such transfers has a more
modest effect in the opposite direction. The final row shows the net effect when we account for
transfers both from the old and to the young.

Importantly, each of these alternatives can be contemplated based only on figure 3 and other
basic information provided in Gourinchas and Parker (2002) (e.g., the average log consumption and
income at each age). This illustrates the sense in which a plot like figure 3 can aid transparency
by letting readers consider the effects of different forms of misspecification on the asymptotic
behavior of the estimator, without direct access to the estimation code or data.

7.3 Automobile Demand

BLP (1995) use data on US automobiles from 1971 to 1990 to estimate a structural model of
demand and pricing. The model yields estimates of markups and cross-price elasticities, which
can in turn be used to evaluate changes such as trade restrictions (BLP 1999), mergers (Nevo
2000), and the introduction of a new good (Petrin 2002). We follow BLP (1995) in suppressing
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the time dimension of the data in our notation.
The data D = [S,P,X ,Z] consist of a vector of endogenous market shares S; a vector of en-

dogenous prices P; a matrix X of exogenous car characteristics such as size and mileage; and a
matrix Z =

[
Zd Zs

]
of instruments partitioned into those used to estimate the demand-side and

supply-side equations respectively. An observation i is a vehicle model. The instruments Z are
functions of X , with row Zi containing functions of the number and characteristics X−i of models
other than i (including other car models produced by the same firm).12

The demand model is a random-coefficients logit in which the utility from purchasing a given
vehicle model i depends on its characteristics Xi and an unobserved preference factor ξi. The
marginal cost of producing vehicle model i likewise depends on its characteristics Xi and an unob-
served cost factor ωi. Consumers make purchase decisions to maximize utility. Multi-product firms
set prices simultaneously to maximize profits. Equilibrium prices correspond to a Bertrand-Nash
equilibrium.

Under the assumed model Fn,
S = s(X ,ξ ,ω;θ0)

P = p(X ,ξ ,ω;θ0) ,

where E(ξi|Zdi) = E(ωi|Zsi) = 0. The function s(·) maps primitives to market shares under the
assumption of utility maximization. The function p(·) maps primitives to prices under the assump-
tion of Nash equilibrium.

Because the functions s(·) and p(·) are known and invertible, it is possible to compute the
errors ξ̂i (θ) and ω̂i (θ) implied by given parameters and data. The estimator θ̂ solves (1) with
moments

12The elements of Zdi are (i) a constant term (equal to one); (ii) horsepower per 10 pounds of weight; (iii) an
indicator for standard air conditioning; (iv) mileage measured in ten times miles per dollar (miles per gallon divided
by the average real retail price per gallon of gasoline in the respective year); (v) size (length times width); (vi) the sum
of (i)-(v) across models other than i produced in the same year by the same firm as i; and (vii) the sum of (i)-(v) across
models produced in the same year by rival firms. This yields 15 instruments, of which all except (i)-(v) are “excluded”
in the sense that they do not also enter the utility function directly. We drop two of these instruments—the sums of (v)
across same-firm and rival-firm models—because they are highly collinear with the others. This leaves 13 instruments
(8 excluded) for estimation. The elements of Zsi are (i) a constant term; (ii) the log of horsepower per 10 pounds of
weight; (iii) an indicator for standard air conditioning; (iv) the log of ten times mileage measured in miles per gallon;
(v) the log of size; (vi) a time trend equal to the year of model i minus 1971; (vii) mileage measured in miles per dollar;
(viii) the sum of (i)-(vi) across models other than i produced in the same year by the same firm as i; and (ix) the sum of
(i)-(vi) across models produced in the same year by rival firms. This yields 19 instruments, of which all except (i)-(vi)
are excluded. The inclusion of (vii) as an excluded instrument in Zsi is motivated by the assumption that marginal cost
depends on miles per gallon but not on the retail gasoline price (which creates variation in miles per dollar conditional
on miles per gallon). The sum of (vi) across rival firms’ models is dropped due to collinearity, leaving 18 instruments
(12 excluded) for estimation. We demean all instruments other than those involving the constant terms.
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ĝ(θ) =
1
n

[
∑i Z

′
di⊗ ξ̂i (θ)

∑i Z
′
si⊗ ω̂i (θ)

]
.

The weight matrix is the inverse of the variance-covariance matrix of ĝ
(
θ̂ FS), where θ̂ FS denotes

the first-stage estimator.
The demand and supply moment conditions E(ξi|Zdi) = 0 and E(ωi|Zsi) = 0 encode distinct

economic assumptions. The demand-side condition E(ξi|Zdi) = 0 requires that the unobserved
component ξi of the utility from purchasing model i is mean-independent of the number and char-
acteristics of cars other than i in a given year. The assumption is especially reasonable if the
determinants of ξi are unknown until after product line decisions are made. The assumption could
be violated if ξi depends on anticipated shocks to preferences that affect the number of models
introduced or their characteristics. Draganska et al. (2009), Fan (2013), and Wollmann (2016) es-
timate models in which firms’ choices of products and product characteristics depend on consumer
demand.

The supply-side condition E(ωi|Zsi) = 0 requires that the unobserved component ωi of the
marginal cost of producing model i is mean-independent of the number and characteristics of cars
other than i. This assumption could be violated if a firm’s product line affects the cost of producing
a given model through economies of scope or scale. Levitt et al. (2013) show that learning-by-
doing leads to large economies of scale in automobile production, though the effects they document
accrue within rather than across models.13

We show how a reader can use sensitivity to assess the asymptotic bias in the estimated markup
implied by violations of the exclusion restrictions. We estimate the model using BLP’s (1995) data
and our own implementation of the authors’ estimator.14 We consider a perturbed model Fn (µ)

under which the instruments influence the structural errors, i.e.

(6)

[
ξ̂i (θ0)

ω̂i (θ0)

]
=

[
ξ̃i

ω̃i

]
+µ

[
Z
′
diγd

Z
′
siγs

]
,

where the distribution of
[

ξ̃i ω̃i

]′
does not depend on µ . We consider the sequence of pertur-

13BLP (1995) also discuss the possibility of within-model increasing returns, finding some support for it in their
reduced-form estimates (876).

14We obtained data and estimation code for BLP (1999) from an archived version of Jim Levinsohn’s web page
(https://web.archive.org/web/20041227055838/http://www-personal.umich.edu/∼jamesl/verstuff/instructions.html,
accessed July 16, 2014). We confirm using the summary statistics in BLP (1995) that the data are the same as those
used in the BLP (1995) analysis. Since the algorithms in the two papers are almost identical, we follow the BLP
(1999) code as a guide to implementing the estimation, and in particular follow the algorithm in this code for choosing
which instruments to drop due to collinearity. We use the published BLP (1995) parameters as starting values and in
computing importance sampling weights. We compute sensitivity at the parameter vector θ̂ we estimate, which is
similar though not identical to the published estimates.
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bations µn =
1√
n and assume that the regularity conditions of assumption 1 are satisfied. Letting

C denote the gradient of the markup, defined as the ratio of price minus marginal cost to price,
with respect to θ at θ0, remark 1 and remark 3 imply that the asymptotic bias in the markup is

CΛΩ̃ZZγ , where Ω̃ZZ =

[
E(ZdiZ′di) 0

0 E(ZsiZ′si)

]
and γ =

[
γd γs

]′
.15 We estimate C, Λ and

Ω̃ZZ with their respective plug-ins. The vector of constants γ encodes a reader’s beliefs about the
excludability of the instruments, with γ = 0 corresponding to BLP’s (1995) assumptions.

Figure 4 plots the estimated value of CΛΩ̃ZZK, where K is a diagonal matrix whose diag-
onal elements are normalizing constants that allow us to interpret γ as the effect (in percent of
the average price) of a one-standard-deviation change in each instrument on willingness-to-pay
(for demand-side instruments Zdi) or marginal cost (for supply-side instruments Zsi). Elements of
CΛΩ̃ZZK corresponding to demand-side instruments are plotted on the left; elements correspond-
ing to supply-side instruments are plotted on the right.16

Figure 4 delivers some qualitative lessons that are useful in thinking about BLP’s (1995) es-
timator. It shows that the asymptotic bias in the average markup is very sensitive to whether the
number of different vehicle models produced by the firm influences marginal costs directly, sug-
gesting that firm-level economies of scope may be a particularly important threat to the validity
of the estimates. More broadly, the plot shows that beliefs about the excludability of supply-side
instruments really matter. This is consistent with a sense in the literature that the supply-side
moments play a critical role in estimation.17

A reader can use figure 4 to assess the asymptotic bias associated with a range of specific
alternatives. On the supply side, we suppose that, for a car with average marginal cost at the
midpoint sample year, removing a different car from the firm’s product line increases the marginal
cost by one percent of the average price, say because of lost economies of scope. On the demand
side, we assume that removing a car from a firm’s product line decreases the average willingness
to pay for the firm’s other cars by one percent of the average price, say because buyers have a
preference for buying a car from a manufacturer with a more complete line of cars. We also repeat
both exercises for the effect of removing a car from rival firms’ product lines, which could matter
because of industry-wide economies of scope (on the supply side) or effects on consumer search

15Sensitivity is
Λ =−

(
Ω
′
ZX̃WΩZX̃

)−1
Ω
′
ZX̃W,

where the pseudo-regressors are X̃i =
[

∂ ξ̂i(θ0)
∂θ

∂ω̂i(θ0)
∂θ

]′
.

16The online appendix provides a table showing the standard deviation of each instrument so that a reader can easily
transform γ into native units. The online appendix also reports an analogue of figure 4 based on sample sensitivity.

17In the original article, BLP (1995) note that they had estimated the model with the demand moments alone and
found that this led to “much larger estimated standard errors” (875). In subsequent work, the authors recall finding
that “estimates that used only the demand system were too imprecise to be useful” (BLP 2004, 92).
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behavior (on the demand side).
Table 2 shows that all of these beliefs imply meaningful first-order asymptotic bias in the es-

timated average markup. The first violation of the supply-side exclusion restrictions, for example,
would mean that the estimated markup of 0.33 is biased (asymptotically) downward by 17 per-
centage points, implying a corrected estimate of 0.50. The violation of the demand-side exclusion
restrictions has an effect of similar magnitude, biasing the markup downward by 13 percentage
points. The online appendix compares these local estimates of sensitivity to a global analogue of
sample sensitivity.

Importantly, all of the asymptotic bias calculations reported in table 2 can be read off of figure
4: the estimated biases correspond to the lengths (and signs) of their corresponding elements in
the plot times the standard deviations of their associated instruments, which are reported in the
online appendix. An implication is that a reader interested in any particular violation γ of the
exclusion restrictions can approximate its effect by reading the appropriate elements of the plot.
For example, a reader who thinks that a one-standard-deviation increase in fuel economy increases
marginal cost by two percent can learn that this implies a positive asymptotic bias of 0.0018 =

0.0013× 0.6981× 2 in the average markup. A reader could also combine multiple elements of
figure 4 to approximate the effect of multiple violations of the exclusion restrictions—say, a direct
effect of both number of cars and fuel economy on marginal cost.

8 Conclusions

We propose a method for increasing the transparency of structural estimates by permitting readers
to quantify the effects of a wide range of violations of identifying assumptions on the asymptotic
behavior of the estimator. We provide several formal interpretations of our proposed approach and
we illustrate it with three substantive applications. In all three cases, we argue that readers of the
original article would have benefited from the information we propose to present.
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Table 1: Asymptotic bias of preference parameters in Gourinchas and Parker (2002) under partic-
ular local violations of identifying assumptions

Bias in Bias in
discount factor coefficient of relative

risk aversion

Consumption and leisure are nonseparable:
Shopping intensity changes with age 0.0041 -0.2913
Exclude 5% of work-related expenses -0.0073 0.3997

Consumption includes interhousehold transfers:
Consumption at early ages includes transfers in 0.0107 -0.6022
Consumption at later ages includes transfers out -0.0041 0.2673
Include both early and late transfers 0.0065 -0.3349

Baseline estimate 0.9574 0.6526

Note: The table reports the estimated first-order asymptotic bias in Gourinchas and Parker’s (2002) published param-
eter values under various forms of misspecification, as implied by proposition 2. Our calculations use the plug-in
estimator of sensitivity. We consider perturbations under which measured log consumption overstates true log con-
sumption at each age e by an amount equal to ηe/

√
n. In the row labeled “shopping intensity changes with age,” ηe

is chosen to match the age-specific log price increment estimated in Aguiar and Hurst (2007, column 1 of table I).
Aguiar and Hurst (2007) report these increments for ages 30 and above. We set increments for younger ages to zero.
In the row labeled “exclude 5% of work-related expenses,” ηe is chosen so that the true consumption at each age e is
overstated by five percent of work-related expenses as calculated in Aguiar and Hurst (2013, table 1 and figure 2a).
In the row labeled “consumption at early ages includes transfers in,” ηe is chosen so that true average consumption
prior to age 30 is one percent below average income. In the row labeled “consumption at later ages includes transfers
out,” ηe is chosen so that from age 50 through age 65 consumption is overstated by a constant annual amount whose
lifetime sum is equal to the total gap between consumption and income over ages 26 through 29. In the row labeled
“include both early and late transfers,” ηe combines the early age and later age transfers.
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Table 2: Asymptotic bias of average markup in BLP (1995) under particular local violations of the
exclusion restrictions

Bias in
average markup

Violation of supply-side exclusion restrictions:
Removing own car increases average marginal cost -0.1731
by 1% of average price (0.0433)

Removing rival’s car increases average marginal cost 0.2095
by 1% of average price (0.0689)

Violation of demand-side exclusion restrictions:
Removing own car decreases average willingness to pay -0.1277
by 1% of average price (0.0915)

Removing rival’s car decreases average willingness to pay 0.2515
by 1% of average price (0.1285)

Baseline estimate 0.3272
(0.0392)

Note: The average markup is the average ratio of price minus marginal cost to price across all vehicles. The table
reports the estimated first-order asymptotic bias in the parameter estimates from BLP’s (1995) estimator under various
forms of misspecification, as implied by proposition 3 under the setup in equation (6). Our calculations use the plug-in
estimator of sensitivity. In the first two rows, we set Vdi = 0 and Vsi =−0.01

(
P/mc

)
Numi, where Numi is the number

of cars produced by the [same firm / other firms] as car i in the respective year, mc is the sales-weighted mean marginal
cost over all cars i in 1980, and P is the sales-weighted mean price over all cars i in 1980. In the second two rows, we
set Vsi = 0 and Vdi = 0.01

(
P/Kξ

)
Numi, where Kξ is the derivative of willingness to pay with respect to ξ for a 1980

household with mean income. Standard errors are obtained from a non-parametric block bootstrap over sample years
with 70 replicates. We hold the average price P, the marginal cost mc, and the derivative Kξ constant across bootstrap
replications.
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Figure 1: Sensitivity of ECU social pressure cost in DellaVigna et al. (2012) to local violations of
identifying assumptions
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Notes: The plot shows one-hundredth of the absolute value of plug-in sensitivity of the social pressure cost
of soliciting a donation for the East Carolina Hazard Center (ECU) with respect to the vector of estimation
moments, with the sign of sensitivity in parentheses. While sensitivity is computed with respect to the
complete set of estimation moments, the plot only shows those corresponding to the ECU treatment. Each
moment is the observed probability of a response for the given treatment group. The leftmost axis labels in
larger font describe the response; the axis labels in smaller font describe the treatment group. Filled circles
correspond to moments that DellaVigna et al. (2012) highlight as important for the parameter.
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Figure 3: Sensitivity of select parameters in Gourinchas and Parker (2002) to local violations of
identifying assumptions
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Notes: Each plot shows the plug-in sensitivity of the parameter named in the plot title with respect to the
full vector of estimation moments, which are the mean adjusted log of consumption levels at each age.
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A Relationship to Alternative Measures of Sensitivity to Mo-
ments

A.1 Dropping Moments

One common method for assessing the relevance of particular moments is to re-estimate the model
parameters after dropping the corresponding moment condition from the function ĝ(θ) (see, e.g.,
Altonji et al. 2005). The following result specifies how this procedure is related to sensitivity Λ.

Corollary 1. Consider the setup of proposition 1, and suppose that under the local perturbation

{µn}∞

n=1 only one moment j is potentially misspecified (E(g̃k) = 0 for k 6= j). Let θ̂ j be the estima-

tor that results from excluding the jth moment condition and suppose that this estimator satisfies

our maintained assumptions for θ̂ . Then, under Fn (µn), the difference between the first-order

asymptotic biases of
(
θ̂ j−θ0

)
and

(
θ̂ −θ0

)
is Λ. jE

(
g̃ j
)
, for Λ. j the jth column of Λ.

Proof. Applying proposition 1, under Fn (µn),
√

n
(
θ̂ −θ0

)
converges in distribution to a random

variable with mean Λ. jE
(
g̃ j
)
, and

√
n
(
θ̂ j−θ0

)
converges in distribution to a random variable

with mean zero.

Dropping moments does not yield an analogue of Λ. Rather, when a given moment j is suspect
(and the other moments are not), re-estimating after dropping the moment gives an asymptotically
unbiased estimate of Λ. jE

(
g̃ j
)
, the product of the sensitivity of the original estimator to moment

j and the degree of misspecification of moment j.
Dropping moments need not be informative about what moments “drive” a parameter in the

sense that changing the realized value of the moment would affect the realized estimate. Consider,
for example, an over-identified model for which all elements of ĝ

(
θ̂
)

happen to be exactly zero.
Then dropping any particular moment leaves the parameter estimate unchanged, but changing its
realized value will affect the parameter estimate so long as its sample sensitivity is not zero.

A.2 Effect of Parameters on Moments

Another common method for assessing the importance of moments is to ask (say, via simulation)
how the population values of the moments change when we vary a particular parameter of interest
(see, e.g., Goettler and Gordon 2011; Kaplan 2012; Berger and Vavra 2015; and Morten 2016).

This approach yields an estimate of minus one times a right inverse of our sensitivity measure.
The large-sample effect of a small change in the parameters θ on the moments is given by G.

Recalling that Λ = −
(

G
′
WG

)−1
G
′
W , we have −ΛG = I, so that Λ is a left inverse of −G.

When G is square, Λ = (−G)−1. When θ̂ is a CMD estimator, and ĝ(θ) = ŝ− s(θ), we have
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−G = ∂

∂θ
s(θ0), so Λ is minus one times a left inverse of the matrix we obtain by perturbing the

parameters and looking at the resulting changes in the model’s predictions s(θ).
The matrix G is not a measure of the sensitivity of an estimator to misspecification. Indeed,

G is not a property of the estimator at all, but rather a (local) property of the model. A moment can
respond to a change in the value of a parameter even if that moment plays no role in estimation
at all. This is true, for example, for an over-identified MDE in which we set the elements of Ŵ

corresponding to a particular moment equal to zero.

B Proofs for Results in Main Text

B.1 Proof of Proposition 1

Because θ0 ∈ interior (Θ) and ĝ(θ) is continuously differentiable in θ , the following first-order
condition must be satisfied with probability approaching one as n→ ∞:

Ĝ
(
θ̂
)′

Ŵ ĝ
(
θ̂
)
= 0.

By the mean value theorem,

ĝ
(
θ̂
)
= ĝ(θ0)+ Ĝ

(
θ
)(

θ̂ −θ0
)
,

for some θ ∈
(
θ0, θ̂

)
which may vary across rows. Substituting this expression into the first-order

condition yields
Ĝ
(
θ̂
)′

Ŵ ĝ(θ0)+ Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ
)(

θ̂ −θ0
)
= 0.

Rearranging, we have (
θ̂ −θ0

)
= L̂ĝ(θ0) ,

where L̂ =−
(

Ĝ
(
θ̂
)′

Ŵ Ĝ
(
θ
))−1

Ĝ
(
θ̂
)′

Ŵ .

We know that θ̂
p→ θ0 under Fn (µn), so θ

p→ θ0. This plus uniform convergence of Ĝ(θ) to
G(θ) implies that under Fn (µn), Ĝ

(
θ̂
)

and Ĝ
(
θ
)

both converge in probability to G. Recalling
that Λ =−(G′WG)−1 G′W , the above, along with Ŵ

p→W , implies L̂
p→ Λ.

Then

√
n
[(

θ̂ −θ0
)
−Λĝ(θ0)

]
=
√

n
[
L̂ĝ(θ0)−Λĝ(θ0)

]
=

(
L̂−Λ

)√
nĝ(θ0) ,

which converges in probability to zero by Slutsky’s theorem (using the fact that
√

nĝ(θ0) con-
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verges in distribution). Therefore, under Fn (µn),
√

n
(
θ̂ −θ0,Λĝ(θ0)

)
converges in distribution to

a random vector
(
θ̃ ,Λg̃

)
with Pr

{
θ̃ = Λg̃

}
= 1. This implies in particular that E

(
θ̃
)
= ΛE(g̃).

B.2 Proof of Proposition 2

We begin by stating and proving an additional lemma, from which proposition 2 then follows.

Lemma 1. Consider a sequence {µn}∞

n=1. Suppose that under Fn (µn)

ĝ(θ) = â(θ)+ b̂,

where the distribution of â(θ) is the same under Fn (0) and Fn (µn) for every n, and
√

nb̂ converges

in probability. Also, Ŵ
p→W under Fn (µn).18 Then {µn}∞

n=1 is a local perturbation.

Proof. Uniform convergence of Ĝ(θ) to G(θ) in probability under Fn (µn) follows from the fact
that b̂ does not depend on θ and that the distribution of â(θ) is unaffected by µ . Convergence in
distribution of

√
nĝ(θ0) follows from the fact that

√
nâ(θ0) converges in distribution and

√
nb̂ con-

verges in probability. That θ̂
p→ θ0 then follows from the observation that ĝ(θ)′Ŵ ĝ(θ) converges

uniformly in probability to g(θ)′Wg(θ).

Turning now to proposition 1, that {µn}∞

n=1 is a local perturbation follows from lemma 1 with
â(θ) = s̃− s(θ) and b̂ = µnη̂ . The expression for E

(
θ̃
)

then follows by proposition 1.

B.3 Proof of Proposition 3

To prove this result, we again state and prove an additional lemma, which then implies the propo-
sition.

Lemma 2. Consider a sequence {µn}∞

n=1 with µn =
µ∗√

n for a constant µ∗. Suppose that assumption

1 holds, and that under Fn (µ) we have ζ̂i (θ0) = ζ̃i+µVi, where the distribution of
(

ζ̃i,Xi,Vi

)
does

not depend on µ . Then {µn}∞

n=1 is a local perturbation.

Proof. By assumption 1 part (ii) we know that (ζi,Xi,Vi) has density f (ζi,Xi,Vi) with respect to ν

under F (0). Thus, the density f (ζi,Xi,Vi|µ) is given by f (ζi−µVi,Xi,Vi). By assumption 1 part

18This is true in particular if Ŵ either does not depend on the data or is equal to w
(
θ̂ FS
)
, where w(·) is a continuous

function and θ̂ FS is a first-stage estimator that solves (1) for Ŵ equal to a positive semi-definite matrix W FS not
dependent on the data. In the latter case, the fact that ĝ(θ)′W FSĝ(θ) converges uniformly to g(θ)′W FSg(θ) implies
that we have θ̂ FS p→ θ0 by theorem 2.1 of Newey and McFadden (1994). Thus, Ŵ

p→W by the continuous mapping
theorem.
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(iii),
√

f (ζi−µVi,Xi,Vi) is continuously differentiable in ζi, which implies that

∂

∂ µ

√
f (ζi−µVi,Xi,Vi) =−

1
2

V ′i
∂

∂ζi
f (ζi−µVi,Xi,Vi)√

f (ζi−µVi,Xi,Vi)

is continuous in µ for all (ζi−µ ·Vi,Xi,Vi). By assumption 1 part (iv) we know that

0 <
∫ (V ′i

∂

∂ζi
f (ζi,Xi,Vi)

f (ζi,Xi,Vi)

)2

f (ζi,Xi,Vi)dν < ∞,

but using the linear structure of the model we see that this is equal to the information matrix for µ

Iµ =
∫ (V ′i

∂

∂ζi
f (ζi−µVi,Xi,Vi)

f (ζi−µVi,Xi,Vi)

)2

f (ζi−µVi,Xi,Vi)dν ,

for all µ . Thus, the information matrix for estimating µ is continuous in µ , finite, and non-zero.
Given these facts, lemma 7.6 of van der Vaart (1998) implies that the family of distributions

F (µ) is differentiable in quadratic mean in a neighborhood of zero. Thus, if we take µn = µ∗√
n ,

then by theorem 7.2 of van der Vaart (1998) we have that under Fn (0) ,

log
dFn (µn)

dFn (0)
=

1√
n ∑

i
µ
∗
V ′i

∂

∂ζi
f (ζi,Xi,Vi)

f (ζi,Xi,Vi)
− 1

2
(µ∗)2 Iµ +op (1) .

Moreover, the Cauchy-Schwarz inequality, assumption 1 parts (iv) and (v), and the central limit
theorem imply that under Fn (0),( √

nĝ(θ0)

log dFn(µn)
dFn(0)

)
d→ N

((
0

−1
2 (µ

∗)2 Iµ

)
,

(
Ω µ∗Ξ

µ∗Ξ (µ∗)2 Iµ

))
,

for Ξ the asymptotic covariance of
√

nĝ(θ0) and 1√
n ∑i

(
V ′i

∂

∂ζi
f (ζi,Xi,Vi)

)
/ f (ζi,Xi,Vi) . However,

by LeCam’s first lemma (lemma 6.4 in van der Vaart 1998), this implies that the sequences Fn (0)
and Fn (µn) are contiguous. Moreover, by LeCam’s third lemma (example 6.7 of van der Vaart
1998),

√
nĝ(θ0)

d−→ N (µ∗Ξ,Ω)

under Fn (µn) . Furthermore, contiguity immediately implies that the other conditions for a local
perturbation are satisfied, since any object which converges in probability under Fn (0) must, by
the definition of contiguity, converge in probability to the same limit under Fn (µn) .
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Returning to proposition 3, that {µn}∞

n=1 is a local perturbation follows from lemma 2. The
expression for E

(
θ̃
)

then follows by proposition 1.

B.4 Proof of Proposition 4

Proof. Since µn is a local perturbation, θ̂
p−→ θ0 under Fn (µn) . Thus, since we have assumed that

ĝ(θ) and Ĝ(θ) converge uniformly to limits g(θ) and G(θ),

(
ĝ
(
θ̂
)
, Ĝ
(
θ̂
)
,Ŵ
) p−→ (g(θ0) ,G(θ0) ,W ) .

However, we have also assumed that supθ∈Bθ
‖ ∂

∂θp
Ĝ(θ)‖ is asymptotically bounded for 1≤ p≤

P, which, by the consistency of θ̂ , implies that
{

∂

∂θp
Ĝ
(
θ̂
)}P

p=1
is asymptotically bounded as well.

Thus, since g(θ0) = 0, we see that Â
p−→ 0. Finally, since we have assumed that G′WG has full

rank, the continuous mapping theorem implies that Λ̂S
p−→ Λ.
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