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Abstract

We consider how a �rm dynamically allocates business among several

suppliers to motivate them in a relational contract. The �rm chooses one

supplier who exerts private e�ort. Output is non-contractible, and each

supplier observes only his own relationship with the principal. In this

setting, allocation decisions constrain the transfers that can be promised

to suppliers in equilibrium. Consequently, optimal allocation decisions

condition on payo�-irrelevant past performance to make strong incen-

tives credible. We construct a dynamic allocation rule that attains �rst-

best whenever any allocation rule does. This allocation rule performs

strictly better than any rule that depends only on payo�-relevant infor-

mation.
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1 Introduction

Many �rms rely on relational contracts to motivate their suppliers. For ex-

ample, informal promises are an essential feature of the supply chains used

by Toyota, Honda, Chrysler, and �rms with �just-in-time� suppliers. In these

relational contracts, �rms promise monetary compensation to reward or pun-

ish their suppliers. They also promise to allocate business among suppliers

to strengthen their relationships (Dyer (1994), Krause et al (2000), Liker and

Choi (2004)). The �rm cannot formally commit to these promises; instead,

they are made credible by the understanding that if the �rm betrays a supplier,

their relationship sours and surplus is lost.

This paper explores how a principal (downstream �rm) can dynamically

allocate business among her agents (suppliers) to overcome this commitment

problem. In our framework, the principal repeatedly interacts with a group of

agents whose productivities vary over time. The principal allocates produc-

tion to a single agent in each period. The chosen agent exerts a binary e�ort

that determines the probability that the principal earns a pro�t. The parties

have deep pockets, so the chosen agent could in principle be motivated using

large bonuses and �nes. Output is not contractible, however, so players must

have the incentive to follow through on these payments. Compounding this

commitment problem, agents do not observe the details of one anothers' rela-

tionships with the principal, and so are unable to jointly punish the principal

if she reneges on one of them.

We show that allocation decisions make payments credible and so play a

central role in optimal relational contracts. The principal motivates an agent

by promising him bonuses and high future payments following success and

demanding �nes and low future payments following failure. If the principal or

an agent reneges on these promises, that player is punished with the breakdown

of the corresponding bilateral relationship. Consequently, an agent's payo� is

bounded from below by his outside option�he would renege on any payments

that gave him a lower payo�. His payo� is bounded from above by the total

surplus he produces in the future�the principal would renege on any payment
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that resulted in a higher payo�. Importantly, this upper bound depends on

the principal's future allocation decisions.

The principal would like to promise a large payo� to an agent who per-

forms well, so the upper bound on an agent's payo� binds when he produces

high output. To relax this binding constraint, an optimal relational contract

allocates more production to an agent after he performs well. We construct

a dynamic allocation rule�the Favored Supplier Allocation (FSA)�that

does this, and prove that it attains �rst-best whenever any allocation rule

does if the set of feasible agent productivities is not too dispersed. To attain

�rst-best, the FSA must allocate production to one of the most productive

agents in each period. Among those agents, the FSA chooses the one who has

produced high output most recently. Therefore, this allocation rule depends

both on an agent's current productivity and on his (payo�-irrelevant) past

performance. We show that conditioning on past performance is important:

the FSA attains �rst-best for a strictly wider range of discount factors than

any allocation rule that depends only on current productivities.

The FSA favors past success in that an agent is allocated production more

frequently following good performance. It also tolerates past failures : the

most recent high performer is allocated business, regardless of how many times

he has failed since his last success. The probability that an agent is chosen

decreases only if another agent has higher productivity, is allocated production,

and performs well.

These properties of the FSA re�ect how payments and allocation decisions

interact in a relational contract. We can construct transfers so that the prin-

cipal is indi�erent between allocation decisions and so is willing to implement

any allocation rule, including the FSA. An optimal allocation rule is therefore

only constrained by the need to give each agent strong incentives that are

credible in equilibrium. The FSA tolerates past failure because an agent can

be punished by low transfers following low output, regardless of the allocation

rule. In particular, an agent might be �favored� by the FSA but nevertheless

earn a low payo�. In contrast, an agent's maximum payo� following high out-

put is constrained by future allocation decisions; the FSA favors past successes
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to relax this constraint when it binds.

In many real-world supply chains, a supplier's past performance plays a

pivotal role in whether it is allocated production. Asanuma (1989) documents

that in the 1980s, Toyota preferentially allocated business to �rms that per-

formed well in the past. Farlow et al (1996) notes that Sun Microsystems

uses a similar system, and Krause et al (2000) survey manufacturing �rms

and conclude that many of them allocate business based on past performance.

These relationships are also shaped by the possibility of supplier failure. Con-

sistent with our intuition that the FSA �tolerates past failures,� Liker and Choi

(2004) argue that companies like Honda do not immediately withdraw busi-

ness following poor performance. Instead, they impose costs on the supplier�

intense scrutiny, extra shifts, and expedited delivery�while maintaining the

relationship. �Metalcraft,� the pseudonymous company studied by Kulp and

Narayanan (2004), is similarly hesitant to pull business from a supplier who

performs poorly.

The extensive case-study literature on allocation decisions in supply chains

has spurred a limited theoretical literature. Board (2011) is among the �rst

to formally model allocation dynamics. He argues that dynamics can arise in

a repeated hold-up problem if suppliers are liquidity constrained. In contrast,

our model considers a fundamentally di�erent contracting friction: limited

commitment by the principal (due to moral hazard with non-contractible out-

put), rather than liquidity constraints. Section 4 has a detailed comparison.

Other contributions include Taylor and Wiggins (1997), who compare com-

petitive and relational supply chains but do not consider dynamics, and Li,

Zhang, and Fine (2011), who focus on formal cost-plus contracts.

This paper is part of the growing literature on relational contracting spurred

by Bull (1987), Levin (2003), and MacLeod and Malcomson (1989). Malcom-

son (2012) has an extensive survey. Levin (2002) is among the �rst to consider

relational contracts with multiple agents. Calzolari and Spagnolo (2010) an-

alyze how the number of bidders in a procurement auction a�ects relational

incentives, but do not consider allocation dynamics. In related research, Bar-

ron and Powell (2015) expand the tools developed here to consider ine�cient
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policies in relational contracts.

Our model has private monitoring because each agent observes only his

own relationship with the principal; Segal (1999) makes a similar assump-

tion in his static analysis of formal contracts. This assumption implies that

agents cannot jointly punish the principal and so plays an essential role in

our dynamics. Games with private monitoring are di�cult to analyze because

players condition their actions on di�erent variables (see Kandori (2002) for an

overview). Nevertheless, a number of applied papers have investigated settings

with private monitoring (e.g., Ali and Miller (2013), Fuchs (2007), Harring-

ton and Skrzypacz (2011), Wolitzky (2013)). In principle, optimal equilibria

in our game could be non-recursive and hence very complicated. However,

we prove that a relatively simple, recursive allocation rule�the FSA�attains

�rst-best whenever any equilibrium does. To prove this result, we develop

tools to handle the complexities of private monitoring in our setting.

2 Model and Assumptions

2.1 Timing

Consider a repeated game with N + 1 players denoted {0, 1, ..., N}. Player 0

is the principal (�she�), while players i ∈ {1, ..., N} are agents (�he�). In each

period the principal requires a single good that can be supplied by any one of

the agents. Each agent's productivity is drawn from a �nite set and publicly

observed. After observing productivities, the principal allocates production

to one agent, who either accepts or rejects. If he accepts, that agent exerts

binary e�ort that determines the probability of high output, the value of which

depends on his productivity. Utility is transferable between the principal and

each agent. At the beginning of the game, the principal and each agent can

�settle up� by transferring money to one another. Payments are observed only

by the two parties involved.

Formally, we consider the in�nite repetition t = 1, 2, ... of the following

stage game with common discount factor δ:
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1. Productivities vt = (v1,t, ..., vN,t) for agents i ∈ {1, ..., N} are publicly

drawn from distribution F (v), with each vi,t ∈ {0, v1, ...., vK} ⊆ R+ for

K <∞.

2. The principal publicly chooses agent xt ∈ {1, ..., N} as the supplier.

3. The principal pays each agent i∈ {1, ..., N}, who simultaneously pays

the principal. De�ne wi,t ∈ R as the resulting net up-front payment to

agent i. Only the principal and agent i observe wi,t.

4. Agent xt rejects or accepts production, dt ∈ {0, 1}. dt is observed only

by the principal and xt. If dt = 0, then et = yt = 0.

5. If dt = 1, agent xt privately chooses e�ort et ∈ {0, 1} at cost cet, c > 0.

6. Output yt ∈ {0, vxt,t} is realized and observed only by agent xt and the

principal. Pr{yt = vxt,t|et} = pet with 1 ≥ p1 > p0 ≥ 0.

7. The principal pays each agent i ∈ {1, ..., N}, who simultaneously pays

the principal. De�ne τi,t ∈ R as the resulting net bonus to agent i. Only

the principal and agent i observe τi,t.

Let 1i,t be the indicator function for the event that agent i is allocated pro-

duction, 1i,t = 1{xt = i}. Then stage-game payo�s in period t are

ut0 = yt −
∑N

i=1(wi,t + τi,t)

uti = wi,t + τi,t − 1i,tcet

for the principal and agent i ∈ {1, ..., N}, respectively.1

Two features of this model warrant further discussion. First, each agent

observes only his own output and pay and cannot communicate with other

agents.2 As a result, the principal can renege on one agent without facing

1Requiring wi,t = τi,t = 0 for all i 6= xt would not change any of our results, though it
would alter our discussion of transfers in Section 4.

2If agents could directly pay one another, then they could use these payments to com-
municate. In that case, optimal allocation rules would typically be history-independent (see
Andrews and Barron (2013) for a proof).

6



punishment from the other agents. This assumption drives equilibrium dy-

namics. We explore it further and compare our results to a game with public

monitoring in Section 4. Second, the principal pays wi,t before the chosen

agent accepts or rejects production. This assumption simpli�es punishment

payo�s by ensuring that an agent can punish the principal if he receives an

out-of-equilibrium up-front payment. Adding a further round of transfers after

the agent accepts production but before he exerts e�ort would not change any

of our results.

2.2 Histories, Strategies, and Continuation Payo�s

The set of histories at the start of period T isHT
0 = {vt, xt, {wi,t}, dt, et, yt, {τi,t}}T−1

t=1 .

De�ne A as the set of all variables observed in a period, and for a ∈ A
de�ne HT

a as the set of histories immediately following the realization of a.

For example, (hT0 , vT , xT , {wi,T}i, dT , eT , yT ) ∈ HT
y . The set of histories is

H =
⋃∞
T=1

⋃
a∈A∪{0}HT

a .

For each agent i ∈ {1, ..., N}, let Ii : H → 2H be agent i's information

partition over histories. That is, Ii(h
t
a) equals the set of histories that agent

i cannot distinguish from hta ∈ Ht
a.
3 A strategy is a mapping from each

player's beliefs at each history to feasible actions at that history, and is denoted

σ = (σ0, ...., σN) ∈ Σ = Σ0 × ...× ΣN .

De�nition 1 For i ∈ {0, ...., N}, player i's continuation surplus equals Ui,t =∑∞
t′=0(1 − δ)δt

′
ut+t

′

i . De�ne i-dyad surplus as the total surplus produced by

agent i:

Si,t =
∞∑
t′=0

(1− δ)δt′1i,t+t′(yt+t′ − cet+t′).

Intuitively, i-dyad surplus is agent i's contribution to total surplus�the

surplus from those periods in which agent i is allocated production. We will

show that dyad surplus constrains the incentives that can be promised to agent

i, and so plays a critical role in our analysis. Note that an agent's beliefs

3For example, ∀i ∈ {1, ..., N}, Ii(hT0 ) = {vt, xt, wi,t, 1i,tdt, 1i,tet, 1i,tyt, τi,t}T−1t=1 .
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about his continuation surplus condition on his information, rather than the

true history: Eσ [Ui,t|Ii (ht)].
A relational contract is a Perfect Bayesian Equilibrium (PBE) of this game,

with equilibrium set Σ∗.4 We focus on optimal relational contracts, which max-

imize ex-ante total surplus among all relational contracts: maxσ∗∈Σ∗
∑N

i=0Eσ∗ [Ui,1].

This is equivalent to maximizing the principal's surplus because utility is trans-

ferable between the principal and each agent.5 An allocation rule is a mapping

from the histories immediately following the realization of {vi,t}Ni=1, ∪∞t=1Ht
v, to

the agent xt who is allocated production at that history. Without loss of gen-

erality, we restrict attention to the set of relational contracts in which players

do not condition on past e�ort choices.6

Let vmax,t = maxj vj,t be the maximum productivity in period t, and de-

�ne the set of most productive agents as Mt = {i|vi,t = vmax,t}. A �rst-best

relational contract is a relational contract that (i) always allocates produc-

tion to an agent in Mt, who (ii) chooses et = 1. De�ne the resulting �rst-

best total surplus V FB = E[vmax,tp1 − c]. Without loss of generality, assume

v1 < v2 < ... < vK . We maintain the following three assumptions for the

entire analysis.

Assumption 1 F is exchangeable: for any permutation φ, F (v) = F (φ(v)).

Assumption 2 If vi,t > 0 then vi,tp1 − c > vi,tp0, with Pr{vmax,t > 0} = 1.

Assumption 3 Pr{|Mt| > 1} > 0 and Pr{|Mt| = 1} > 0.

Assumption 1 implies that agents are symmetric, greatly simplifying our

analysis. By Assumption 2, et = 1 is e�cient in each period unless vxt,t = 0,

and it is always e�cient for an agent in Mt to exert e�ort. Assumption 3 has

4Adapted from Mailath and Samuelson (2006): a Perfect Bayesian Equilibrium is an
assessment (σ∗, µ∗) consisting of strategy pro�le σ∗ and beliefs about the true history µ∗ =
{µ∗i }Ni=0. σ

∗
i is a best response given µ

∗
i , which is updated by Bayes Rule whenever possible.

Otherwise, µ∗i assigns positive weight only to histories that are consistent with Ii (ht).
5Proof: for σ∗ ∈ Σ∗, agent i pays Eσ∗ [Ui,1] to the principal at the start of the game, or

else is punished with dt = 0 and wi,t = τi,t = 0 ∀t ≥ 1. The principal's payo� then equals

ex-ante total surplus
∑N
i=0Eσ∗ [Ui,1].

6The proof that this is without loss may be found in Andrews and Barron (2013).
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two implications that warrant further discussion: (i) multiple agents sometimes

have the same productivity in one period, and (ii) each agent is the unique

most productive agent with positive probability.

Consider implication (i). To attain �rst-best, an equilibrium must allocate

production in each period to one of the most productive agents in that period

(i.e. one of the agents in Mt). If Mt is always a singleton, then the �rst-

best allocation rule is uniquely determined by exogenous productivity draws.

Thus, ties are required for non-trivial allocation dynamics to arise in a �rst-

best relational contract. We discuss to what extent our intuition applies in

settings without ties in Section 4.

The assumption that productivities are sometimes tied seems reasonable

in real-world supply chains. For example, in their study of �Metalcraft,� Kulp

and Narayanan (2004) highlight an allocation decision in which at least three

suppliers have �comparable� productivities. Two suppliers have similar costs

and qualities, while the third has higher cost but higher quality. The case

emphasizes that �the costs associated with managing upstream suppliers [are]

hard to quantify objectively,� implying that it is di�cult to strictly rank suppli-

ers. More generally, a supplier's �productivity� includes many components�

manufacturing costs, quality, and expertise�that are either di�cult to mea-

sure or naturally discrete (see LaLonde and Pohlen (1996) for further discus-

sion). Hence, a �rm might naturally view several of its suppliers as equally

e�cient when it allocates production.

Implication (ii) of Assumption 3 is also crucial for equilibrium dynam-

ics, since otherwise the principal could attain �rst-best by allocating busi-

ness among a strict subset of agents. In practice, the relative productivities

of di�erent suppliers vary over time with changes in the downstream �rm's

needs and suppliers' capabilities. For example, Metalcraft sometimes chooses

�non-preferred� suppliers because preferred suppliers are unable to e�ciently

manufacture a given part. Similarly, Toyota asks several suppliers to sub-

mit proposals for a component, then chooses one based on the quality of its

proposal (vi,t) and its past performance. A supplier chosen in one model-cycle

might be less productive than other suppliers in the next. As a result, Toyota's
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suppliers have product portfolios that vary substantially over time (Asanuma

1989).

3 The Favored Supplier Allocation

This section gives conditions under which a simple dynamic allocation rule�

the Favored Supplier Allocation�is part of a �rst-best relational contract

whenever any relational contract attains �rst-best. The de�nition of the Fa-

vored Supplier Allocation, statement of the result, and intuition are given in

Section 3.1, with a formal proof in Section 3.2. Section 3.3 explores the incen-

tives of the Favored Supplier Allocation in more detail. We focus on strategies

yielding �rst-best total surplus, so our discussion assumes et = 1 in each period

unless otherwise noted.

3.1 Statement of the Main Result

Suppose the principal could commit to a transfer scheme as a function of

output. Then regardless of future allocation decisions, the principal could

write a short-term formal contract to hold an agent's payo� at 0 and motivate

him to work hard.7 As a result, an allocation rule that depends only on current

productivities and ignores past performance would be optimal.

In contrast, allocation dynamics play an important role in the game without

commitment. Our main result concerns what we call the Favored Supplier

Allocation, which allocates production among agents according to a simple

history-dependent rule.

De�nition 2 For each t ≥ 1, history ht0, and agent i, de�ne Ti(h
t
0) = max{t′ <

t|xt′ = i, yt′ > 0} as the most recent time agent i produced high output. The Fa-

vored Supplier Allocation (FSA) allocates production in each period to the e�-

cient agent who has most recently produced high output: xt ∈ arg maxi∈Mt Ti(h
t
0).

If Ti(h
t
0) = −∞ for all agents in Mt, then xt ∈Mt is chosen at random.

7For instance, the principal could set wxt,t = c − p1
c

p1−p0 , pay a bonus of c
p1−p0 if

yt = vxt,t, and pay no bonus if yt = 0.
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The Favored Supplier Allocation chooses the agent who has produced high

output most recently among those agents in Mt. If no agent in Mt has pro-

duced high output, then the supplier is chosen at random from that set. This

allocation rule favors past successes by choosing agents who have performed

well over those who have not, and choosing more recent high performers over

those who performed well in the distant past. It tolerates past failures by not

tracking past low output: the most recent high performer is chosen regardless

of his performance in other periods.

Consider a �rst-best relational contract that uses the Favored Supplier

Allocation. Because et = 1 in each period of this relational contract, an

agent's dyad-surplus at the start of a period depends only on the number of

agents who have produced high output more recently than him. De�ne SFSA(j) as

the expected dyad-surplus of the jth most recently productive agent�that is,

an agent for whom (j − 1) other agents have have produced high output more

recently. De�ne F k
(j) as the probability that both vmax,t = vk and the j−1 most

recently productive agents are unable to produce at time t, F(j) =
∑K

k=1 F
k
(j),

and F(N+1) = 0. Then it is straightforward to show that

SFSA(j) =
(
1− F(j)

)
δSFSA(j) +

∑N
k=1

(
F k

(j) − F k
(j+1)

)
(1− δ)(vkp1 − c)+(

F(j) − F(j+1)

)
δ
(
p1S

FSA
(1) + (1− p1)SFSA(j)

)
+ F(j+1)δ

(
p1S

FSA
(j+1) + (1− p1)SFSA(j)

)
.

There is one such equation for each j = {1, ..., N}, leading to a linear system

of N equations in the N unknowns
(
SFSA(1) , ..., SFSA(N)

)
. Details for how to solve

this system may be found online in the technical appendix.

Our main result �nds the lowest discount factor such that a relational

contract using the FSA attains �rst-best. If a further parameter condition

is satis�ed, then no relational contract attains �rst-best for smaller discount

factors, so the Favored Supplier Allocation attains �rst-best whenever any

allocation rule does.

Proposition 1 Let δFSA ∈ (0, 1) be the smallest δ such that δ
1−δS

FSA
(1) ≥

c
p1−p0 .

8 Then:

8Note that 1
1−δS

FSA
(1) is strictly increasing in δ.
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1. The FSA is part of a relational contract that attains �rst-best i� δ ≥
δFSA.

2. If δFSAvK − v1 ≤ (1 − δFSA)c p0/p1
p1−p0 , then no relational contract attains

�rst-best if δ < δFSA. So a relational contract using the FSA attains

�rst-best whenever any relational contract does.

Proof : See Section 3.2.

The threshold δFSA solves δFSA

1−δFSAS
FSA
(1) = c

p1−p0 . A unique solution always

exists because δ
1−δS

FSA
(1) is continuous and strictly increasing in δ ∈ (0, 1), tends

to in�nity as δ tends to one, and tends to zero as δ tends to zero. Note that the

parameter constraint in part 2 of the proposition is always satis�ed if K = 1,

since in this case vK = v1 and so δFSAvK − v1 < 0 < (1− δFSA)c p0/p1
p1−p0 .

We focus on developing intuition for Proposition 1 here, deferring the proof

to the next subsection. First, we consider how future allocation decisions con-

strain an agent's equilibrium incentives. As in Levin (2003) an agent's payo�

after he produces output is constrained by his expected future production.

Agent i's payo� can be no worse than his outside option, 0, since he can al-

ways deviate by rejecting future production. Agent i cannot earn more than

his expected i-dyad surplus, since the principal would renege on any larger

payo�, forfeit that agent's future output, and continue trading with the other

agents. Private monitoring leads to this upper bound: following a deviation

observed only by agent i, the principal stands to lose only the future surplus

produced by that agent. Therefore, the upper bound on an agent's reward for

high output�and hence his incentive to work hard�depends on his expected

dyad surplus following that output.

We show that these payo� bounds are the key constraints imposed by the

relational contract. In particular, for any allocation rule, we can construct a

relational contract in which (i) an agent earns the lower or upper bounds after

producing low or high output, respectively, and (ii) the principal earns payo�

0 at the start of each period and so is willing to implement the allocation rule.

Next, we consider optimal allocation dynamics. In any �rst-best relational
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contract the principal chooses exactly one agent in Mt in each period t. Con-

sider a period-t history such that agents 1 and 2 are both in Mt and last

produced high output in periods T1 and T2, respectively. Assume agent 1 has

produced high output more recently: T1 > T2. As argued above, agent i can

be provided stronger incentives to work hard in period Ti if his expected dyad

surplus following high output in that period is large. This i-dyad surplus is

larger if the principal allocates business to him in period t, but how much it

increases depends on two factors.

First, agent i's dyad surplus increases more if t−Ti is small since, from the

perspective of period Ti, surplus in period t is discounted by δt−Ti . Agent i's

expected dyad surplus also increases more if agent i believes that the period-

t history in question is probable, given his information in period Ti. If this

probability is larger for agent 1, then choosing agent 1 increases expected 1-

dyad surplus in T1 more than choosing agent 2 would increase expected 2-dyad

surplus in T2. In that case, an optimal allocation rule should choose the agent

inMt who produced high output most recently, which is exactly what the FSA

does.9

However, the informal logic outlined above is incomplete. In particular,

agent 1 in period T1 might assign a lower probability to a given period-t his-

tory than agent 2 in T2. Agents have di�erent beliefs about the true history

because they observe di�erent variables. For example, agent 2 might believe

a history in period t is probable given his information in T2, while agent 1

already knew this same history was impossible when he was chosen in period

T1. As a result of this di�culty, we do not prove Proposition 1 by formalizing

the above argument, but instead derive a condition that must be satis�ed by

any relational contract which attains �rst-best. This necessary condition is

implied by (but weaker than) the combination of two constraints. First, the

principal and each agent must be willing to pay their equilibrium transfers.

Second, given these transfers, each agent's incentive constraint to exert high

e�ort must hold at every on-path history. Crucially, the necessary condition

we derive depends only on agents' beliefs at the beginning of the game and

9We thank an anonymous referee for suggesting an intuition along these lines.
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so avoids the complications that arise from di�erences in beliefs. Under the

parameter restriction in part 2 of Proposition 1, we show that relational con-

tracts satisfying this necessary condition exist only if δ ≥ δFSA, which proves

that the FSA attains �rst-best whenever any relational contract does.

3.2 Proof of Proposition 1

Let σFSA be a strategy pro�le that uses the Favored Supplier Allocation. De-

pendence on strategies σ is suppressed wherever possible without loss of clar-

ity. Our proof consists of four lemmas. Lemma 1 gives necessary and su�cient

conditions for an allocation rule and e�ort choices to be part of a relational

contract. Lemma 2 then establishes a necessary condition for strategies to be

part of a �rst-best relational contract. Under a parameter condition, Lemma

3 shows that this necessary condition holds for any �rst-best strategy pro�le

σ only if it holds for σFSA. Finally, Lemma 4 shows that the necessary condi-

tion established by Lemma 2 holds only if a �rst-best relational contract using

the FSA exists. Hence we establish that, under a parameter condition, no

relational contract may attain �rst-best unless one that uses the FSA does so.

The �rst step of the proof is to identify necessary and su�cient conditions

for an allocation rule and sequence of e�ort choices to be part of a relational

contract.

Lemma 1 1. Let σ∗ be a PBE in which et = 0 whenever vxt,t = 0. Then

(1− δ) c
p1−p0 ≤ δEσ∗

[
Sxt,t+1 | Ixt

(
hty
)]
,

∀ on-path hty ∈ Ht
y such that et = 1, yt > 0.

(1)

2. Let strategy σ be such that et = 0 if vxt,t = 0, total surplus equals V , and

(1) holds. There exists a relational contract σ∗ such that (i) total surplus

equals V , and (ii) the joint distribution over {vt, xt, yt}Tt=1 is identical to

that implied by σ for all T ≥ 1.

Proof: See the supplement.�
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Constraint (1) requires that a chosen agent xt expect at least S̃ = 1−δ
δ

c
p1−p0

dyad surplus whenever he exerts e�ort (et = 1) and produces high output

(yt > 0). The right-hand side of this constraint equals the largest payo� an

agent can receive following high output. Since the lowest payo� an agent can

receive following low output equals 0, (1) is a necessary condition for agent

xt's incentive constraint for high e�ort to hold.

Lemma 1 implies that (i) each agent's equilibrium incentives can be sum-

marized by his dyad surplus following high e�ort and high output, and (ii)

we can induce the principal to follow any allocation rule in equilibrium. To

prove this lemma, we construct transfers so that each agent i earns E [Si,t|ht0]

continuation surplus at the start of each period. Then the principal earns 0

and so is willing to follow the equilibrium allocation rule. Agent xt is will-

ing to pay his expected continuation surplus as a �ne following low output

because he would lose that surplus following a deviation. So agent xt earns

δE[Sxt,t+1|Ixt(hty)] if yt > 0 and 0 if yt = 0, which can be plugged into his e�ort

incentive constraint to yield (1). This construction ensures that the principal

is willing to pay the equilibrium wxt,t to the agent who is allocated production

in each period, while that agent is willing to pay a �ne if his output is low.

Ceteris paribus, an allocation rule and e�orts that satisfy (1) at δ also

satisfy (1) for δ′ > δ. Hence, Lemma 1 implies part 1 of Proposition 1.

Condition (1) depends on agent beliefs and so is challenging to check for an

arbitrary strategy pro�le. We handle this complication by �nding necessary

conditions for (1) to be satis�ed at each history, which is required in any �rst-

best relational contract. To satisfy (1), an allocation rule must ensure that

each agent expects at least δS̃ dyad-suplus whenever that agent produces high

output.

Let H (ht) = {i : there exists s < t such that xs = i, ys > 0} denote the

set of agents who have produced high output before period t. For any �rst-

best strategy σ, de�ne βLi,s = Prσ {xt = i, i /∈ H(ht)} as the probability that

agent i is allocated production and has never produced high output in the

past, and βHi,s (k) = Prσ
{
vmax,t = vk, xt = i, i ∈ H(ht)

}
as the probability that

vmax,t = vk, agent i is allocated production, and i has produced high output
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in the past. Let V FB
k = vkp1 − c.

De�nition 3 For any �rst-best strategy σ, de�ne the expected obligation

owed to agent i at time t, Ωi,t, as Ωi,0 = 0 and

Ωi,t ≡ βLi,tp1δS̃ − (1− δ)
K∑
k=1

βHi,t (k)V FB
k +

Ωi,t−1

δ
. (2)

For each t ≥ 1, one can show that Eσ[Si,t] ≥ Ωi,t in any �rst-best relational

contract, where the expectation is taken with respect to beliefs at the start of

the game. The �rst term in Ωi,t is a lower bound on the additional expected i-

dyad surplus in equilibrium based on agent i's output in period t: he produces

high output for the �rst time in that period with probability βLi,tp1, in which

case he must produce δS̃ expected dyad surplus in the continuation game

by (1). In subsequent periods, agent i produces some of this dyad surplus

whenever he is chosen as the supplier. The second term captures this fact:

the probability that agent i has both previously produced high output and is

allocated production in period t with vmax,t = vk is βHi,t(k), and in this case i

produces (1 − δ)V FB
k surplus. The �nal term,

Ωi,t−1

δ
, captures any expected

dyad surplus from previous periods that agent i has not yet supplied.

If Ωi,t diverges to∞, then (1) does not hold in expectation across histories

and so must be violated at some history on the equilibrium path. Thus, Ωi,t

must be bounded from above in any �rst-best relational contract.

Lemma 2 In any �rst-best relational contract σ, lim supt→∞Ωi,t <∞ for all

i ∈ {1, ..., N}.

Proof: Let bLi (ht) = 1 {xt = i} 1 {i 6∈ H (ht)} indicate the event that i is al-
located production in period t and has never previously produced high output.

De�ne 1i,t (k) = 1
{
xt = i, vmax,t = vk

}
, and let bHi (ht, k) = 1i,t (k) 1 {i ∈ H (ht)}

indicate the event that i is allocated production in period t, has previously pro-

duced high output, and the maximal productivity is vk.

In a �rst-best relational contract, (1) must hold the �rst time an agent

produces yt > 0. Multiplying both sides of (1) by bLi (ht) 1 {yt > 0} δt, summing

16



across s = 1, ..., t, and taking expectations in t = 0 yields

t∑
s=1

δsβLi,sp1δS̃ ≤ Eσ

[
t∑

s=1

∞∑
s′=1

K∑
k=1

(1− δ)δs+s′bLi (hs) 1 {ys > 0} bHi
(
hs+s

′
, k
)
V FB
k

]
.

(3)

We can isolate expectations that depend on events in periods s > t by rewriting

the right-hand side

R(i, t) + Eσ

[
t∑

s=1

1 {i ∈ H (hs)}
K∑
k=1

(1− δ)δsbHi (hs, k)V FB
k

]
, (4)

where R(i, t) = (1− δ)Eσ
[
1 {i ∈ H (ht+1)}

∑∞
s=t+1

∑K
k=1 δ

sV FB
k bHi (hs, k)

]
.

Since Eσ
[
bHi (hs, k) 1 {i ∈ H (hs)}

]
= βHi,s (k), we can re-arrange (3) to ob-

tain Ωi,t ≤ δ−tR(i, t). But δ−tR(i, t) ≤ δV FB
K , so lim supt→∞Ωi,t ≤ δV FB

K in

any �rst-best relational contract.�

The FSA treats agents symmetrically ex-ante, so its implied obligation

is symmetric as well, ΩFSA
i,t = ΩFSA

t . We next show that if ΩFSA
t diverges,

then under a parameter restriction obligation must diverge for any �rst-best

strategy.

Lemma 3 Suppose δV FB
K ≤ V FB

1 + p1δS̃. If lim supt→∞ΩFSA
t =∞, then for

any �rst-best strategy σ, ∃i ∈ {1, ..., N} such that limt→∞Ωi,t =∞.

Proof: Given any strategy σ, de�ne a symmetric strategy pro�le by random-

izing agent identities in t = 1 and then playing as in σ. Obligation diverges

in the symmetric strategy pro�le only if it diverges for at least one agent in σ.

So we can restrict attention to symmetric strategy pro�les.

Given a symmetric �rst-best strategy σ̃ with obligation Ω̃t, Lemma A.2

proves that ΩFSA
t ≤ Ω̃t for all t if δV

FB
K ≤ V FB

1 + p1δS̃. The proof constructs

a decreasing sequence of obligations Ωn
t such that Ω0

t = Ω̃t and limn→∞Ωn
t =

ΩFSA
t . We use the restriction δV FB

K ≤ V FB
1 + p1δS̃ to prove that obligation is

minimized by an allocation rule that chooses agents who have already produced
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high output whenever at least one such agent is in Mt. Then ΩFSA
t ≤ Ω̃t for

any symmetric σ̃, implying Lemma 3.�

Lemma 3 shows that, under a parameter condition, divergent FSA obliga-

tion implies divergent obligation for all �rst-best strategies. Thus, Lemmas

2 and 3 together imply that �rst-best is attainable only if ΩFSA
t is bounded

above as t→∞. The �nal step of our proof shows that ΩFSA
t diverges exactly

when the Favored Supplier Allocation is not part of a relational contract that

attains �rst-best.

Lemma 4 If δ < δFSA, then lim supt→∞ΩFSA
t =∞.

Proof: We need only show that lim supt→∞ΩFSA
t = ∞ if SFSA(1) < S̃, since

this condition is equivalent to δ < δFSA. Using the de�nition of SFSA(1) and

repeating the derivation of (3)-(4) with SFSA(1) in place of S̃ yields

t∑
s=1

δsβL,FSAs p1δS
FSA
(1) −

t∑
s=1

δs
K∑
k=1

βH,FSAs (k)V FB
k = RFSA (t) (5)

where βL,FSAs , βH,FSAs (k), and RFSA(t) are the analogues for βLi,s, β
H
i,s, and

R(i, t) if σ = σFSA, where we drop the i index because the FSA is symmetric.

The argument in Lemma 2 implies that 0 ≤ δ−tRFSA(t) ≤ δV FB
K for all t.

The left-hand side of (5) equals δtΩFSA
t if S̃ = SFSA(1) . It follows that ΩFSA

t is

asymptotically bounded for S̃ = SFSA(1) , from which it is straightforward to see

that it diverges for S̃ > SFSA(1) . �

Finally, we relax the condition δV FB
K ≤ V FB

1 +p1δS̃ from Lemma 3. If this

condition holds at δFSA, then it holds a fortiori for δ < δFSA. So Lemmas

2-4 imply that no relational contract attains �rst-best for δ < δFSA. The

parameter constraint at δFSA may be written δFSAvK−v1 ≤ (1−δFSA)c p0/p1
p1−p0 .�

3.3 Implications of Proposition 1

This section presents two corollaries of Proposition 1 that explore the incen-

tives provided by the Favored Supplier Allocation. The �rst proves that the
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FSA performs strictly better than a natural benchmark: an allocation rule

that does not condition on past performance. The second considers the role

of information in the FSA.

A relational contract is stationary if on the equilibrium path, actions in one

period are independent of previous periods and of t. Corollary 1 proves that a

relational contract using the Favored Supplier Allocation attains �rst-best for

a strictly wider parameter range than any stationary relational contract.

Corollary 1 Let δStat ∈ (0, 1) satisfy 1−δStat

δStat
c

p1−p0 = 1
N
V FB. Then (i) a sta-

tionary relational contract attains �rst-best if and only if δ ≥ δStat, and (ii)

δStat > δFSA.

Proof: See the supplement. �

A stationary allocation rule does not respond to past performance to make

large rewards to high performers credible, and so cannot perform as well as a

relational contract that uses the FSA. To illustrate this point, Figure 1 shows

how δFSA and δStat change with the parameters p1 and Pr {|Mt| = 2} in a

two-agent example, holding the other parameters constant.

Finally, we consider the role of information in the Favored Supplier Alloca-

tion. The constraint (1) must hold only with respect to agent xt's information,

Ixt(h
t
y). In particular, the allocation rule might satisfy (1) but �conceal infor-

mation� by setting δE[Sxt,t+1|hty] < (1− δ) c
p1−p0 for some hty, so that agent xt

would be unwilling to exert e�ort if he learned the true history. The Favored

Supplier Allocation does not conceal information in this way.

Corollary 2 In any �rst-best relational contract σFSA that uses the Favored

Supplier Allocation, (1) holds with respect to the true history:

(1− δ) c
p1−p0 ≤ δEσFSA

[
Sxt,t+1 | hty

]
,

∀ on-path hty ∈ Ht
y such that et = 1, yt > 0.

(6)

Proof: EσFSA

[
Sxt,t+1|hty

]
= SFSA(1) if yt > 0, so (6) holds for δ ≥ δFSA. �
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Figure 1: Comparing δFSA and δStat. Both panels assume N = 2, p0 = 0, c = 5,

K = 1, and v1 = 10. The left panel holds p1 = 0.9 and varies δ and Pr {|Mt| = 2}. The

right panel holds Pr {|Mt| = 2} = 0.8 and varies δ and p1. In region A, both stationary

and non-stationary relational contracts can attain �rst-best. In region B, no stationary

relational contract attains �rst-best, but one that uses the FSA does. In region C no �rst-

best relational contract exists.

It can be shown that (6) is a necessary and su�cient condition (in the sense

of Lemma 1) for an allocation rule to be part of a belief-free equilibrium.10

Hence, Corollary 2 implies that under the conditions of Proposition 1, a belief-

free equilibrium that uses the Favored Supplier Allocation attains �rst-best

whenever any Perfect Bayesian Equilibrium does.

If �rst-best is not attainable, then optimal equilibria do not necessarily sat-

isfy (6). Andrews and Barron (2013) considers an example in which �rst-best

is unattainable and constructs a relational contract that strictly dominates

any relational contract satisfying (6). Hence, when �rst-best is unattainable,

the principal can use the fact that agents do not observe the true history to

induce more e�ort, but (under the conditions of Proposition 1) concealing in-

formation cannot expand the set of discount factors for which �rst-best can

be attained.

10See Ely, Hörner, and Olszewski (2005) for further discussion of belief-free equilibria.
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4 Discussion

Alternative Transfer Schemes - In the proof of Lemma 1, transfers en-

sure that each agent's continuation payo� equals his dyad surplus. Therefore,

the principal's continuation payo� equals 0 in every period except the very

start of the game. This section discusses alternative transfers schemes that

also implement the FSA, including schemes in which the principal earns a

strictly positive payo� in each period.

Consider the following equilibrium. Every agent pays a �xed �participation

fee� to the principal in each period. The principal allocates production as in the

FSA, pays the chosen agent a bonus if he produces high output, and otherwise

demands a �ne from that agent. Participation fees are bounded below by 0 and

bounded above by the amount an agent currently in the last rank of the FSA

would be willing to pay, δSFSA(N) . Hence, the principal's continuation payo�

in each period can be anywhere between 0 and NδSFSA(N) in these relational

contracts.

In Appendix B, we show that a relational contract of this form attains

�rst-best whenever δ ≥ δFSA. Each agent is induced to exert e�ort by a

combination of bonuses and �nes. The principal's payo� is independent of

the allocation decision and so she is willing to follow the FSA. Agent i stops

paying his participation fee if he observes a deviation, so the principal has

an incentive to pay a bonus if an agent produces high output. As a result,

the principal can earn a strictly positive continuation payo� in a relational

contract that implements the FSA. Furthermore, if δ > δFSA, then we can

reduce the participation fees paid by non-suppliers without decreasing the

surplus earned by the principal. Indeed, for su�ciently patient players the

principal can earn the entire expected surplus in each period and motivate

agents through bonuses.

In practice, agent participation fees might take the form of �pay-to-play�

contracts, in which a supplier makes an explicit monetary payment to secure a

spot in the downstream �rm's supply chain. More generally, suppliers might be

�awarded� a routine contract that gives them negative economic pro�t in each
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period. A supplier accepts this negative-pro�t contract in the hopes of being

allocated more lucrative contracts in the future. In that case, the negative-

pro�t contract serves as a participation fee paid by all suppliers and entails no

non-contractible e�ort, while the allocation decision determines which supplier

receives a contract that requires non-contractible e�ort in each period.

The Role of Private Monitoring - In our model, allocation dynamics

arise because each agent observes only his own relationship with the principal.

Indeed, it can be shown that a stationary allocation rule would be optimal

under public monitoring. Suppose that all variables except e�ort et are publicly

observed. Agents can still earn no less than 0 in equilibrium. However, the

agents can now jointly punish the principal if she betrays any one of them.

So the principal is willing to pay the total continuation surplus produced by

every agent, δE
[∑N

i=1 Si,t+1|hty
]
, following high output. Every agent can be

motivated equally well regardless of the allocation rule because these bounds

are the same for each agent. In particular, a stationary allocation rule would

be optimal. See Barron and Powell (2015) for details.

Relationship to Board (2011) - In Board (2011), the principal chooses to

invest in a single agent in each period at a cost that varies across agents. The

chosen agent earns a payo� from which he can choose to repay the principal.

In a principal-optimal equilibrium, the principal promises future rent to an

agent to induce him to repay today. These rents serve as �switching costs�

that encourage the principal to bias trade towards a group of �insider� agents.

Our paper di�ers from Board's analysis in two crucial ways. First, the

allocation rule matters for fundamentally di�erent reasons in the two papers.

In Board, suppliers are liquidity-constrained. As a result, the principal must

promise her agents rents to solve the hold-up problem. The principal then

prefers to trade with agents who have already been promised rents, since she

would have to promise additional rents to trade with an agent who has not

already been chosen. Board shows that these biases arise if the principal

can commit to an allocation scheme, then proves that identical biases are
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optimal without commitment if players are patient. In contrast, our allocation

dynamics arise precisely because the principal cannot commit. We do not

have liquidity constraints, so the principal need not promise her agents rents to

motivate them; indeed, our equilibrium construction in Proposition 1 requires

the agents to pay the principal. In our setting, the allocation rule induces the

principal not to renege on her promised compensation to the agents.

Second, we consider a setting with moral hazard. As noted in the intro-

duction, occasional failures are an inescapable feature of many business rela-

tionships. This focus leads to new equilibrium dynamics. Our results apply to

the setting without moral hazard by setting p1 = 1 and p0 = 0. While Propo-

sition 1 applies in this case, the FSA would make no distinction between past

allocation decisions and past performance on the equilibrium path because

high output would occur with probability one. The fact that the FSA tracks

the past successes of each agent, but ignores the past failures, is a potentially

surprising result of allowing moral hazard.

Conclusion - The Favored Supplier Allocation entails meaningful dynamics

only if the set of most productive agents, Mt, contains multiple agents with

positive probability in each period. If productivities {vi,t}i were instead drawn

from a continuous distribution, then Mt would be a singleton in each period

and hence every �rst-best allocation rule would be stationary.

However, non-stationary allocation rules can still be optimal if �rst-best

is unattainable. A suitable analogue of Lemma 1 continues to hold in this

setting, so non-stationarity arises from a straightforward generalization of (1).

Dynamics might be required for the principal to credibly promise su�ciently

strong incentives to motivate high e�ort, even though they would imply that

less productive agents are sometimes allocated production. However, con-

structing optimal equilibria if �rst-best is unattainable is intractable with a

continuum of productivities. Andrews and Barron (2013) analyze optimal rela-

tional contracts if �rst-best is unattainable using an example with two feasible

productivities, but a full characterization is di�cult even in this simple setting.

While we have focused on supplier relationships, allocation rules matter
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in many settings. Managers allocate tasks and promotions among their em-

ployees. CEOs allocate scarce time and attention among their divisions. Our

analysis suggests that these policies may be fundamentally shaped by commit-

ment problems in long-term relationships.
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