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Abstract

In models with potential weak identification researchers often decide whether to report a

robust confidence set based on an initial assessment of model identification. Two-step pro-

cedures of this sort can generate large coverage distortions for reported confidence sets, and

existing procedures for controlling these distortions are quite limited. This paper introduces a

generally-applicable approach to detecting weak identification and constructing two-step con-

fidence sets in GMM. This approach controls coverage distortions under weak identification

and indicates strong identification with probability tending to one when the model is well-

identified.
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1 Introduction

In contexts where weak identification is a concern, empirical researchers in economics frequently

calculate statistics intended to measure identification strength. If these statistics indicate that iden-

tification is not “too” weak, researchers proceed as usual and calculate non-robust confidence sets,

while if weak identification is detected researchers may calculate identification-robust confidence

sets, look for a different specification, or simply decide not to report results. The latter two ap-

proaches can lead to enormous coverage distortions for reported confidence sets, so here I focus on

the case where researchers use the first-step identification assessment to decide between reporting

robust and non-robust confidence sets.

We can view such procedures as two-step confidence sets, where the first step assesses iden-

tification strength and the second step reports a confidence set chosen based on this assessment.

Such two-step procedures underlie many of the applications of identification-robust methods in

empirical practice, where robust confidence sets are often computed only after researchers ob-

serve evidence suggestive of weak identification.1 Unless carefully constructed, such procedures

can undermine coverage guarantees for robust techniques and result in very poor performance for

reported confidence sets.

Using the results of Stock and Yogo (2005), one can show that in the linear IV model with

homoskedastic errors, two-step confidence sets based on the first stage F-statistic ensure bounded

coverage distortions. The results of Stock and Yogo do not apply to linear IV models with het-

eroskedastic, clustered, or serially correlated data, however, much less to nonlinear models. In-

deed, even in the linear IV model with heteroskedasticity, two-step confidence sets based on the

first stage F-statistic can exhibit enormous coverage distortions.2

To bridge this gap between empirical practice and the theoretical econometric literature, this

paper introduces a widely applicable method for constructing two-step confidence sets with con-

trolled coverage distortions. In cases where the model is well-identified, and thus non-robust con-

fidence sets are reliable, the proposed method indicates this and reports non-robust confidence sets

with probability tending to one. The idea behind this approach is simple: in well-identified models
1Of the 38 empirical papers calculating robust tests or confidence sets based on Moreira (2003) which themselves

have over 20 citations (based on a Google Scholar search on 3/4/2014), for example, 35 report first stage F-statistics,
33 have a first stage F smaller than 15 in some specification, and 29 have a first stage F smaller than 10.

2For demonstration of this point in simulation, see Section C in the Supplementary Appendix.
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many different test statistics are asymptotically equivalent local to the true parameter value. Using

this equivalence, for any g > 0 we can construct identification-robust confidence sets with coverage

1�a � g which are contained in the usual non-robust level 1�a confidence set with probability

tending to one if the model is well-identified. A natural way to gauge identification is thus to check

if this containment occurs. I show that the resulting two-step confidence sets have coverage at least

1�a � g . Moreover, I note that rather than picking a bound g on coverage distortion ex-ante,

researchers can report robust and non-robust confidence sets along with a distortion cutoff ĝ: read-

ers whose tolerance for distortion is less than ĝ should focus on the robust confidence set, while

readers with a higher tolerance for distortion can focus on the non-robust confidence set.

To implement my approach in (linear or nonlinear) generalized method of moments (GMM)

models, I extend the results of Kleibergen (2005) and Chaudhuri and Zivot (2011) and derive

identification-robust test statistics which are locally asymptotically equivalent to conventional test

statistics in well-identified models, both for tests of the full GMM parameter vector and for tests

of lower-dimensional parameters. I then construct identification-robust confidence sets by com-

bining these statistics with the S statistic of Stock and Wright (2000) using the linear combination

approach discussed by Andrews (2016). For lower-dimensional parameters these confidence sets

are based on the projection method, but the choice of test statistic limits the efficiency loss in

well-identified models.

The next section introduces my approach for combining robust and non-robust procedures to

construct two-step confidence sets with bounded coverage distortions in general models. Section

3 discusses particular confidence sets which can be used to implement this approach in GMM,

while Section 4 details the steps needed for implementation and derives results for the nonlinear

Euler equation model of Hansen and Singleton (1982). Proofs of all results stated in the paper are

given in the Appendix, while the proof of an auxiliary lemma, details and additional results for the

empirical application, and simulation results for the linear IV model are given in the Supplementary

Appendix.
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2 Valid Two-Step Confidence Sets

Throughout the paper I suppose that we observe a sample of size T drawn from distribution

FT (b0,y0) , where b 2B✓Rp is finite-dimensional while y 2Y is potentially infinite-dimensional.

I assume we are interested in constructing a confidence set for the parameter b , treating y as a

nuisance parameter. The distribution FT need not be explicitly specified, so this accommodates

both parametric and semiparametric models, including moment condition models estimated using

GMM. While the primary focus of this paper will be on GMM models, for this section nothing is

gained by limiting attention to GMM so I do not impose this restriction.

As noted above, when researchers are concerned that conventional inference procedures may

be unreliable due to weak identification, they often assess the identification status of the model

based on some statistic or collection of statistics. I consider the case where a researcher wants to

report an identification-robust confidence set if this initial step indicates weak identification, but

will otherwise report a non-robust confidence set. To formally describe the resulting confidence set,

following D. Andrews and Cheng (2012) I represent the first-stage identification diagnostic using

an identification category selection (ICS) statistic fICS 2 {0,1}, where fICS = 0 is interpreted as

evidence of strong identification and fICS = 1 is interpreted as evidence of weak identification. The

rule of thumb for the first stage F-statistic in linear IV, for example, indicates weak identification

when the first stage F-statistic is smaller than ten and so can be represented as fICS = 1{F < 10}.

Denoting the robust and non-robust confidence sets by CSR and CSN respectively, the procedure

described above yields the two-step confidence set CS2,

CS2 =

8

>

<

>

:

CSN if fICS = 0

CSR if fICS = 1
. (1)

I will be interested in the probability that this two-step confidence set covers the true parameter

value: PrT,(b0,y0) {b0 2CS2} .
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2.1 Sequential and Asymptotic Coverage Probability

The finite-sample coverage probability PrT,(b0,y0) {b0 2CS2} is typically difficult to analyze di-

rectly. I thus follow the usual approach and instead consider the limiting coverage probability

as the sample size grows. While the traditional justification of non-robust tests (see for exam-

ple Newey and McFadden (1994)) considers point-wise asymptotic approximations where we fix

(b0,y0) and take the sample size T to infinity, the weak identification literature following Staiger

and Stock (1997) has shown that these approximations may be quite misleading in contexts with

potential identification failure. To derive alternative approximations this literature instead models

parameters as drifting with the sample size, so the true parameters in the sample of size T are

(b0,T ,y0,T ) . More recently, the literature on robust inference has focused on asymptotic cover-

age, defined as the lower limit of the minimal finite-sample coverage probability. Formally, the

asymptotic coverage probability of CS is

ACP(CS) = liminf
T!•

inf
(b0,y0)2B⇥Y

PrT,(b0,y0) {b0 2CS} .

To discuss my results it is helpful to have compact notation for discussing limiting coverage

under particular sequences of parameter values. In particular, let

x0 =
�

(b0,T ,y0,T )
 •

T=1 2 X = P•
T=1 (B⇥Y) (2)

denote a sequence of true parameter values, with X the space of all such sequences. Define the

sequential coverage probability of confidence set CS under the sequence of true parameter values

x0 as the lower limit of the coverage probability under x0

SCP(CS,x0) = liminf
T!•

PrT,x0

�

b0,T 2CS
 

= liminf
T!•

PrT,(b0,T ,y0,T)
�

b0,T 2CS
 

.

Likewise, define the sequential coverage probability of confidence set CS under the set of se-

quences eX ⇢ X as the minimal sequential coverage probability under x0 2 eX,

SCP
⇣

CS,eX
⌘

= inf
x02eX

SCP(CS,x0) .
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Note that sequential coverage probability under X as defined in (2) is simply the asymptotic cover-

age probability

SCP(CS,X) = ACP(CS) .

We can use sequential coverage to formalize what we mean by “robust” and “non-robust” confi-

dence sets. In particular, I assume we consider two sets of parameter sequences, XS and XW , which

I will refer to as “strong” and “potentially weak” (or for brevity simply “weak”), respectively. I

assume that the non-robust confidence set CSN has sequential coverage at least 1�a under strong

identification

SCP(CSN ,XS)� 1�a, (3)

but impose no restriction on the performance of this confidence set under weak identification. By

contrast, I assume that the robust confidence set CSR has coverage at least 1�a under both weak

and strong identification

SCP(CSR,XS [XW ) = min{SCP(CSR,XS) ,SCP(CSR,XW )}� 1�a. (4)

Thus, the robust confidence set CSR is “more robust” than CSN in the sense that it has correct

sequential coverage for a larger set of sequences.

Example: Linear IV To illustrate the different notions of limiting coverage described above,

consider the linear IV model with a single endogenous regressor. The model, written in reduced

form, is
Y = Zpb +V1

X = Zp +V2

for Z a T ⇥k matrix of instruments, X a T ⇥1 vector of endogenous regressors, Y a T ⇥1 vector of

outcome variables, and V1 and V2 both T ⇥1 vectors of residuals, where I assume that E [V1,tZt ] =

E [V2,tZt ] = 0 for Zt the transpose of row t of Z. For simplicity I assume that either there are no

exogenous regressors or that any such regressors have already been partialled out.3 The nuisance

parameter y in this context will index both the first stage parameter p and the joint distribution of
3That is, for exogenous controls W and initial data

�

Ỹ , X̃ , Z̃,W
�

, Y = MWỸ , X = MW X̃ , Z = MW Z̃, where MW =

I �W (W 0W )�1 W 0.
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(Z,V1,V2) .

Conventional (strong-instrument, point-wise) asymptotic approximations correspond to fixing

(b0,T ,y0,T ) = (b0,y0) at some value with p0 6= 0 and taking T to infinity. Thus, if we define XS to

be a set of such sequences, the usual Wald confidence sets have correct sequential coverage under

XS. By contrast, the weak instrument asymptotics considered by Staiger and Stock (1997) set

p0,T = 1p
T

p

⇤, while uniform asymptotic results for confidence sets, like those of D. Andrews and

Guggenberger (2016), allow arbitrary sequences of values (b0,T ,p0,T ) 2 B⇥P ✓ R1 ⇥Rk. Both

the results of Staiger and Stock (1997) and those of D. Andrews and Guggenberger (2016) also

allow drifting sequences of distributions for (Z,V1,V2) . If we define XW to be a set of sequences

satisfying the assumptions of Staiger and Stock (1997) then all the identification-robust confidence

sets discussed in the weak instruments literature have correct sequential coverage under XW . If, on

the other hand, we take XW to be the set of all sequences X over a base parameter space B⇥Y,

then as noted in D. Andrews and Guggenberger (2016) commonly-used robust confidence sets will

have correct sequential coverage (and thus correct uniform asymptotic coverage) under appropriate

restrictions on Y.

Defining “Strong” and “Weak” Sequences As the above discussion suggests, even in the linear

IV model one may potentially define XW in a number of different ways. Indeed, this reflects

the state of the literature, where a number of different devices have been used to model weak

identification, including the drifting parameter asymptotics considered in Staiger and Stock (1997)

and D. Andrews and Cheng (2012), and the drifting moment condition asymptotics considered

in Stock and Wright (2000) and Chaudhuri and Zivot (2011). The goal of this paper is to show

how, given a definition of weak identification and corresponding robust confidence sets, one may

construct a two-step confidence set with bounded coverage distortions. While I will generally take

XS to consist of conventional pointwise asymptotic sequences, with (b0,T ,y0,T ) = (b0,y0) fixed,

my construction does not depend on the definition of XW . Indeed, since results in the literature

assume different definitions of XW it is helpful to leave the definition of XW flexible in this section,

though in the next section I impose assumptions on XW to derive robust confidence sets for GMM

models.
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2.2 Coverage Bounds for Two-Step Confidence Sets

The coverage assumptions (3) and (4) for CSN and CSR imply an initial bound on the sequential

coverage of CS2:

Lemma 1 Under (3) and (4),

1. SCP(CS2,XW )� 1�a � sup
x02XW

limsupT!• PrT,x0 {fICS = 0}

2. SCP(CS2,XS)� 1�a �min
n

a,sup
x02XS

limsupT!• PrT,x0 {fICS = 1}
o

.

These bounds are tight, in the sense that one cannot obtain a sharper bound without additional

conditions on the behavior of (CSN ,CSR,fICS). In particular, without further restrictions the se-

quential coverage of CS2 under XW may be arbitrarily close to zero.

To construct fICS yielding such additional restrictions, I observe that a number of asymptotic

simplifications arise in well-identified models. As I show for GMM models in the next section, we

can often construct preliminary robust confidence sets CSP (g) with coverage 1�a � g which are

contained in the non-robust confidence set CSN with probability tending to one when the model is

well-identified. Formally, I assume:

Assumption 1 We have a preliminary confidence set CSP (g) such that:

1. SCP(CSP (g) ,XW )� 1�a � g

2. PrT,x0 {CSP (g)✓CSR}= 1 for all T and x0 2 X

3. inf
x02XS liminfT!• PrT,x0 {CSP (g)✓CSN}= 1.

This assumption requires the existence of a preliminary confidence set that (1) has sequential

coverage at least 1�a � g when identification is weak, (2) is contained in CSR with probability

one, and (3) is contained in CSN with probability tending to one under strong identification. While

this might seem quite demanding, in the next section I construct confidence sets CSP (g) which

satisfy these conditions in GMM. Such a preliminary confidence set allows a natural pretest for

identification strength, however, since if we see that CSP (g) is not contained in CSN this suggests

that the model may not be well-identified.
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In addition to being intuitively reasonable, this approach to assessing identification implies sev-

eral good properties for the resulting two-step confidence sets. Formally, this approach corresponds

to the ICS statistic

fICS (g) = 1{CSP (g) 6✓CSN} . (5)

For this choice of ICS statistic the two-step confidence set CS2 =CS2 (g) as defined in (1) contains

the preliminary confidence set CSP (g) by construction, and thus has coverage at least 1�a � g

under weak identification. Moreover, CS2 (g) coincides with CSN with probability tending to one

when the model is well identified. Formally:

Theorem 1 Under Assumption 1 together with (3), for fICS as defined in (5) the two step confi-

dence set CS2 (g) has the following properties:

1. SCP(CS2 (g) ,XW )� 1�a � g

2. SCP(CS2 (g) ,XS)� 1�a

3. inf
x02XS liminfT!• PrT,x0 {CS2 (g) =CSN}= 1.

Further, sup
x02XS

limsupT!• PrT,x0 {fICS (g) = 1}= 0.

Thus, given a preliminary confidence set satisfying Assumption 1, we can easily construct two-step

confidence sets with coverage at least 1�a �g. A natural question is then how we ought to choose

g . The next section shows that by reporting results appropriately the choice of g can be left to the

reader.

2.3 Reporting Results

The discussion above assumed a fixed maximal coverage distortion g . In practice, however, differ-

ent readers may be comfortable with different levels of distortion so it may be preferable to report

both robust and non-robust confidence sets, together with some indication of the reliability of the

non-robust confidence set.

To this end, let us specify some minimal value of g, gmin � 0. Suppose that for g � gmin we

can define a family of preliminary robust confidence sets CSP (g) which are decreasing in g in the
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sense that

CSP (g̃)✓CSP (g) for all g̃ � g.

Further, let us assume CSP (gmin) ✓ CSR, so that the full family of preliminary confidence sets is

contained in our robust confidence set. Define ĝ to be the smallest value such that CSP (ĝ)✓CSN ,

ĝ = min{g � gmin : CSP (g)✓CSN} .

ĝ is the smallest distortion g such that fICS (g) will indicate strong identification in this realization

of the data.4 Hence I will refer to ĝ as the distortion cutoff. Note that by Theorem 1, ĝ !p gmin

under strong identification.5

Suppose that rather than reporting the two-step confidence set CS2 (g) we instead report (CSN ,CSR, ĝ) .

A reader who adopts the rule that they will focus on CSN when ĝ  g and on CSR when ĝ > g is

then effectively constructing the two-step confidence set,

CS2 (g) =

8

>

<

>

:

CSN if ĝ  g

CSR if ĝ > g

=

8

>

<

>

:

CSN if fICS (g) = 0

CSR if fICS (g) = 1

which is the same as CS2 (g) based on fICS (g) as in (5). Thus, it follows immediately from The-

orem 1 that this confidence will have asymptotic coverage at least 1�a � g under both weak and

strong identification. Thus, by reporting (CSN ,CSR, ĝ) we provide the ingredients to construct a

variety of two-step confidence sets and supply more information than reporting CS2 (g) alone.

3 Two-Step Confidence Sets for GMM

The two-step procedures described above require three inputs: the non-robust confidence set CSN ,

the robust confidence set CSR, and the family of preliminary confidence sets CSP (g). To discuss

concretely how to construct these confidence sets, here I consider models identified by moment

equalities and estimated by GMM and provide sufficient conditions to apply Theorem 1.
4If CSP (g) 6✓CSN for all g 2 [gmin,1�a], define ĝ = 1�a .
5Taking gmin = 0 allows the widest possible range of values for ĝ . However, this choice may sometimes result in

undesirable properties for CSR, as in the GMM case discussed below, so it is helpful to allow gmin > 0.
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I consider a GMM model with a k-dimensional continuously differentiable moment condition

gt (q) which has mean zero when the m-dimensional parameter q is equal to its true value q0,T . In

the linear IV model discussed above, for example, gt (q) = Zt (Yt �Xtq) . To reflect the fact that

we are frequently interested in inference on a lower-dimensional function of model parameters, I

suppose we are interested in inference on a p-dimensional parameter (p  m) b = f (q) for f a

continuously differentiable function such that ∂

∂q

0 f (q0,T ) has full rank for all T . For example we

may be interested in constructing a confidence set for the ith element of the structural parameter

vector and so take f (q) = qi. Note that we may also take f (q) = q , in which case q = b and we

are conducting inference on the full parameter vector.

Let gT (q) =
1
T Ât gt (q) be the sample average of gt (q), and let bSg, bS

qg, and bS
q

be consistent

estimators for Var
�

p
T gT (q)

�

,Cov
⇣p

T vec
⇣

∂

∂q

0 gT (q)
⌘

,
p

T gT (q)
⌘

, and Var
⇣p

T vec
⇣

∂

∂q

0 gT (q)
⌘⌘

respectively. I assume we have some estimator q̃ for q which under strong identification is first-

order equivalent to
b

q = argmin
q

gT (q)
0
bW(q)gT (q) (6)

for bW(q) a symmetric positive-definite weighting matrix which I assume converges uniformly in

probability to a full-rank matrix-valued function W(q) under strong identification.6 Estimators q̃

in this class include one-step GMM, efficiently and inefficiently weighted two-step GMM, contin-

uously updating GMM, and many others.

The most common non-robust confidence set for b0 = f (q0) is based on the Wald statistic,

W (b ) = T ·
�

f
�

q̃

�

�b

�0
bS�1

b̃

�

f
�

q̃

�

�b

�

(7)

for bS
b̃

an estimator for the asymptotic variance of
p

T b̃ =
p

T f
�

q̃

�

. Under strong-instrument

asymptotics b̃ is
p

T consistent for q0 and the Wald statistic diverges to infinity outside
p

T neigh-

borhoods of the true parameter value.

Unfortunately, when identification is weak the distribution of the Wald statistic W (b ) depends

on nuisance parameters, making construction of identification-robust confidence sets based on this

statistic challenging in most models. To avoid these issues while constructing CSR and CSP (g)

satisfying our requirements, here I proceed in two steps. First, I seek analytically simple test

6By first-order asymptotic equivalence, I mean that
p

T
⇣

b

q � q̃

⌘

!p 0 under x0 2 XS.
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statistics that are locally asymptotically equivalent to W (b ) in the well-identified case. Second,

I exploit the simple form of these statistics to create identification-robust analogs which remain

locally equivalent to W (b ) when the model is well-identified.

To obtain analytically simpler analogs of the Wald statistic W (b ), note that Section 9 of Newey

and McFadden (1994) establishes that conventional GMM estimators are asymptotically equivalent

to one-step estimators with starting values in a
p

T neighborhood of the true parameter value.

Formally, define the one-step estimator with initial value q as

q̄ (q) = q �
✓

∂

∂q

gT (q)
0
bW(q)

∂

∂q

gT (q)

◆�1
∂

∂q

gT (q)
0
bW(q)gT (q) .

q̄ (q) is first-order asymptotically equivalent to q̃ under strong identification provided the ini-

tial value q lies in a
p

T -neighborhood of q0.7 Analogously, we can interpret b̄ (q) = f (q) +
∂

∂q

f (q)
�

q̄ (q)�q

�

as a one-step estimator for b , where we have linearized the function f around

q . Thus, in well-identified models we can construct Wald statistics based on b̄ (q) and they will

be first-order asymptotically equivalent to W ( f (q)) local to the true value of q . Consequently, if

we can find identification-robust versions of these one-step Wald statistics then we can use these

to construct CSR and CSP (g) .

3.1 Robust Confidence Sets

Unfortunately, when identification is weak even Wald statistics based on b̄ (q) behave irregularly.

In particular, as noted by Kleibergen (2005), under weak identification the Jacobian ∂

∂q

gT (q) is

asymptotically random and correlated with the moment condition gT (q) , with the result that the

distribution of b̄ (q0,T ) is non-standard and depends on unknown parameters.

Happily, the relatively simple structure of b̄ (q0,T ) allows the adaptation of the approach of

Kleibergen (2005) to address these issues. To eliminate asymptotic dependence between the mo-

ment conditions and their Jacobian ∂

∂q

gT (q0), Kleibergen (2005) orthogonalizes the Jacobian with

respect to the moment conditions, and the same approach proves fruitful in the present context.
7This is shown formally in the proof of Lemma 2 in the Supplementary Appendix.
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Define

DT (q) =



∂

∂q1
gT (q)�bS

q1g(q)bSg(q)
�1gT (q), ... ,

∂

∂qm
gT (q)�bS

qmg(q)bSg(q)
�1gT (q)

�

where bS
qig(q) is the k⇥ k block of bS

qg(q) corresponding to qi. One can show that DT (q0,T ) will

be asymptotically uncorrelated with gT (q0,T ) even when identification is weak, while DT (q0,T ) is

asymptotically equivalent to ∂

∂q

gT (q0,T ) when identification is strong. If we then define

q

⇤ (q) = q �
⇣

DT (q)
0
bW(q)DT (q)

⌘�1
DT (q)

0
bW(q)gT (q)

and b

⇤ (q) = f (q)+ ∂

∂q

f (q)(q ⇤ (q)�q) to be the analogs of q̄ and b̄ which replace ∂

∂q

gT (q)

by DT (q), then this substitution makes no difference (asymptotically) in the well-identified case,

while the Wald statistic based on b

⇤ (q0,T ) will be robust to weak identification. For

M (q) = bW(q)DT (q)
�

DT (q)
0Ŵ(q)DT (q)

��1 ∂

∂q

0 f (q)0

this test statistic (which following Kleibergen (2005) I label a K statistic) is

KW, f (q) = T · (b ⇤ (q)� f (q))0
⇣

M (q)0 bSg(q)M (q)
⌘�1

(b ⇤ (q)� f (q))

To derive the limiting distribution of KW, f (q0,T ), I make the following assumptions:

Assumption 2 For all x0 2 XW [XS, under x0 we have that for JT,x (q) = ET,(bT ,yT )

h

∂

∂q

0 gT (q)
i

,

1p
T

T

Â
t=1

0

@

gt(q0,T )

vec
⇣

∂

∂q

0 gt(q0,T )� JT,x0 (q0,T )
⌘

1

A!d

0

@

yg

y

q

1

A⇠ N

0

@0,

0

@

Sg Sgq

S
qg S

q

1

A

1

A

where Sg is positive definite and

0

@

Sg Sgq

S
qg S

q

1

A= lim
T!•

VarT,x0

0

@

1p
T

T

Â
t=1

0

@

gt(q0,T )

vec
⇣

∂

∂q

0 gt(q0,T )
⌘

1

A

1

A .

Assumption 3 We have estimators bSg (q0,T ) ,bS
qg (q0,T ) and bS

q

(q0,T ) which converge in proba-
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bility to fixed Sg, Sgq

, and S
q

under all x0 2 XW [XS. Further, bW(q0,T )!p W for a non-stochastic

symmetric positive-definite limit W.

Assumption 4 For all x0 2 XW [XS there exist sequences of full-rank normalizing matrices L1,T

and L2,T of dimension m⇥m and p⇥ p, respectively, such that

1. DT (q)L1,T !d D for a Gaussian random matrix D which is full rank almost surely, but

whose variance may be degenerate

2. L2,T
∂

∂q

0 f (q0,T )L1,T ! F for a full-rank matrix F

Further, the elements of L1,T are of order O
�

p
T
�

.8

Assumption 2 requires that the moment function and its Jacobian be jointly asymptotically nor-

mal. Assumption 3 requires that (a) we have consistent estimators for the various terms appearing

in the asymptotic variance of
⇣

gT (q0,T ) ,
∂

∂q

gT (q0,T )
⌘

and (b) the weighting matrix bW(q0,T ) be

consistent for some well-behaved limit. Assumption 4 is more opaque, but can easily be verified in

many leading cases. For example, Kleibergen (2005) considers the case where
p

T JT,x0 converges

to a finite matrix J, in which case we can take L1,T =
p

T Im and L2,T = 1p
T

Ip. More broadly,

this assumption holds under the commonly-used weakly-identified GMM embedding of Stock and

Wright (2000). In essence, this assumption requires the existence of a pair of normalizations for

DT and ∂

∂q

0 f (q0,T ) such that both of these terms converge to well-behaved limits.9

Given these assumptions, both KW, f (q0,T ) and the difference S (q0,T )�KW, f (q0,T ) between

KW, f (q0,T ) and the S statistic of Stock and Wright (2000),

S(q) = T ·gT (q)
0
bSg (q)

�1 gT (q) , (8)

have a well-behaved limiting distribution even under weak identification:

8That is, they are bounded above in absolute value by C
p

T for some constant C.
9These assumptions are stronger than necessary for our purposes. In particular, using sub-sequencing arguments

as in D. Andrews et al. (2011) one can relax all of these assumptions to require only that for any subsequence
�

b0,T (n),y0,T (n)
�

of a sequence x0 2 XW [XS, there exist a further subsequence along which the stated conditions
hold.
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Theorem 2 Under Assumptions 2, 3, and 4, under all x0 2 XW ,

�

KW, f (q0,T ) ,S (q0,T )�KW, f (q0,T )
�

!d

⇣

c

2
p,c

2
k�p

⌘

and KW, f (q0,T ) and S (q0,T )�KW, f (q0,T ) are asymptotically independent.

If we take bW(q) to be the efficient GMM weighting matrix, KW, f (q) simplifies to the K statistic of

Kleibergen (2005) when we test the full parameter vector, while for f (q) which selects a subvector

of q (e.g. the first parameter alone) KW, f is numerically equal to the LMe f f statistic proposed by

Chaudhuri and Zivot (2011). Thus, this result is a natural generalization of the results of those

papers to allow (a) nonlinear functions f of the parameters and (b) inefficient weighting matrices

(bW(q) 6= bSg (q)
�1).

For the case where we consider hypotheses on the full parameter vector f (q) = q and use

the efficient weighting matrix, the results of D. Andrews and Guggenberger (2016) establish a

parameter space on which the conclusion of Theorem 2 holds uniformly. It seems likely that an

analogous result might be available for the more general case considered here under suitable con-

ditions. Since my focus is on translating valid robust confidence sets to valid two-step confidence

sets rather than on establishing uniform asymptotic validity for robust confidence sets, however, I

do not pursue such an extension here. Nonetheless, given such uniformity results one could define

XW to be the set X of all sequences on the appropriate base parameter space and the remainder of

the analysis would proceed unchanged.

3.2 Localizing the Confidence Set

Given the results of Theorem 2, we can construct robust confidence sets for b = f (q). In particular,

define

CSK,q =
�

q : KW, f (q) c

2
p,1�a

 

CSK =
�

f (q) : q 2CSK,q
 

=

⇢

b : min
q :b= f (q)

KW, f (q) c

2
p,1�a

�

.

CSK,q collects the set of values q where KW, f (q) falls below a c

2
p critical value, and so will

cover q0,T with probability tending to a by Theorem 2. CSK then takes the image of the initial
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confidence set CSK,q under f (·) to construct a confidence set for f (q). This is known as the

projection method, and ensures correct (albeit potentially conservative) coverage for f (q0,T ).

It may seem reasonable to consider CSK as the basis for CSR and CSP (g). In particular, as

noted above (and established formally in the Supplementary Appendix) KW, f (q) is asymptotically

equivalent to W ( f (q)) local to q0,T in the well-identified case, and we can construct the non-robust

Wald confidence set in a manner analogous to CSK ,

CSN,q =
�

q : W ( f (q)) c

2
p,1�a

 

CSN =
�

f (q) : q 2CSN,q
 

=
�

b : W (b ) c

2
p,1�a

 

. (9)

Unfortunately, however, the confidence set CSK is not in general asymptotically equivalent to

the confidence set CSN based W (b ), either globally or locally. For global equivalence, Kleibergen

(2005) showed that for b = q and bW(q) the efficient weighting matrix, KW, f (q) can be interpreted

as a score statistic based on the continuously updating GMM objective function. In over-identified

models, this statistic is thus equal to zero at any critical point of the continuously updating GMM

objective. Similar issues arise more broadly, and even in well-identified models confidence sets

based on KW, f (q) are not necessarily consistent for q0,T . Thus, since Wald confidence sets are

consistent when b is well-identified we see that CSN and CSK are not globally equivalent. When

b = q one can show that CSN and CSK are equivalent on
p

T neighborhoods of the true parameter

value, but when b = f (q) is of lower dimension even this local equivalence fails, because while the

test statistics W ( f (q)) and KW, f (q) are asymptotically equivalent local to q0,T , the minimization

in the definition of CSK means that this does not suffice to imply local equivalence of CSN and

CSK .

To construct robust confidence sets satisfying the requirements of Assumption 1, it is thus

insufficient to use the statistic KW, f (q) alone. Instead, I combine this statistic with the S statistic

as defined in (8). The S statistic diverges to infinity outside
p

T -neighborhoods of q0,T in well-

identified models, so considering this statistic limits attention to regions of the parameter space on

which KW, f (q) is asymptotically equivalent to W ( f (q)). In the case where b = q and we use the

efficient weighting matrix, Andrews (2016) establishes a number of desirable properties for tests
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based on linear combinations

KW, f (q)+a ·S (q) , (10)

so here I consider test statistics of this form.10

Let H (x;a,k, p) be the cumulative distribution function for a (1+a) ·c2
p +a ·c2

k�p distribution

and H�1 (1�a;a,k, p) the 1�a quantile of this distribution.11 For a given value of g let a(g)

solve

H�1 (1�a � g;a(g) ,k, p) = c

2
p,1�a

for c

2
p,1�a

the 1�a quantile of a c

2
p distribution. Define the preliminary robust confidence set

through

CSP,q (g) =
�

q : KW, f (q)+a(g) ·S (q)< c

2
p,1�a

 

CSP (g) =
�

f (q) : q 2CSP,q (g)
 

=
n

b : min
q :b= f (q)

�

KW, f (q)+a(g) ·S (q)
�

< c

2
p,1�a

o

.
(11)

Analogously, define the robust confidence set

CSR,q =
�

q : KW, f (q)+a(g) ·S (q) H�1 (1�a;a(g) ,k, p)
 

CSR =
�

f (q) : q 2CSR,q
 

=
�

b : min
q :b= f (q)

�

KW, f (q)+a(g) ·S (q)
�

 H�1 (1�a;a(g) ,k, p)
 

.
(12)

Theorem 2 implies that CSP (g) has sequential coverage probability at least 1�a � g under both

XW and XS while CSR has sequential coverage at least 1�a , as desired.

Corollary 1 Under the conditions of Theorem 2,

SCP(CSP (g) ,XW [XS)� 1�a � g

SCP(CSR,XW [XS)� 1�a.
10Note that here I consider linear combination statistics of the form K (b )+a ·S (b ) while Andrews (2016) considers

statistics of the form (1� ã) ·K (b )+ ã ·S (b ). For a = ã/(1� ã) the level 1�a confidence sets based on these two
definitions are equivalent. I use the formulation in the present paper rather than that in Andrews (2016) to simplify the
expression for CSP (g) below.

11Note that by (1+a) ·c

2
p +a ·c

2
k�p I mean the distribution for the linear combination of c

2 variables.
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Thus, since CSP (g)✓CSR by construction these choices satisfy Assumption 1(1) and (2). Hence,

to apply Theorem 1, all that remains is to give sufficient conditions for Assumption 1(3).

The role of a ·S (q) The term a ·S (q) in (10) serves two conceptually distinct purposes. First,

it overcomes the issue discussed at the start of this section and ensures that confidence sets based

on the linear combination statistic (10), including both CSP (g) and CSR, will be consistent in the

strongly-identified case. Second, since CSP (g) is formed by comparing these linear combination

statistics to a c

2 critical value the value a is also tied to the coverage distortion g of this preliminary

confidence set. There are alternative ways to construct CSP (g) which avoid this one-to-one link

between a and g , but since in constructing CSP (g) we want both a > 0 and g > 0, setting a = a(g)

avoids introducing additional free parameters and so is a natural choice.

3.3 Asymptotic Results Under Strong Identification

We next establish conditions under which the confidence sets CSR and CSP (g), along with the

Wald confidence set (9), satisfy Assumption 1. To this end, I impose standard conditions for the

consistency of q̂ :

Assumption 5 For all x0 2 XS the following conditions hold:

1. gT (q)!p limT!• ET,x0 [gT (q)] uniformly over the compact parameter space Q for q , and

limT!•
�

�ET,x0 [gT (q)]
�

� is uniformly bounded

2. ET,x0 [gT (q0)] = 0 8T

3. Ŵ(q)!p W(q) uniformly over Q for W(q) continuous and everywhere positive definite with

a uniformly bounded maximal eigenvalue and minimal eigenvalue bounded away from zero

4. For all e > 0 there exists d > 0 such that

✓

lim
T!•

ET,x0 [gT (q)]

◆0
W(q)

✓

lim
T!•

ET,x0 [gT (q)]

◆

< d

only if kq �q0k< e.
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Assumption 5(1) requires that the sample average of the moment condition gT (q) be uniformly

close to its mean in large samples, while Assumption 5(3) requires that the weighting matrix be

well-behaved. Assumptions 5(2) and (4) are identification conditions, which ensure that the popu-

lation objective function is small if and only if evaluated in a neighborhood of the true parameter

value, and Assumption 5(4) will fail in contexts where weak- or partial-identification issues arise.

Provided these conditions hold, standard arguments yield the consistency of q̂ . Next, I consider an

assumption yielding asymptotic normality of q̂ .

Assumption 6 The following conditions hold for all x0 2 XS

1. q0 belongs to the interior of Q

2. gT (q) and Ŵ(q) are almost surely continuously differentiable on some open ball B(q0)

around q0

3. For

J(q) = lim
T!•

JT,x0 (q) = lim
T!•

ET,x0



∂

∂q

0gT (q)

�

,

J(q) is continuous at q0, GT (q) =
∂

∂q

0 gT (q) !p J(q) uniformly on B(q0), and J (q0) is

full-rank

4. sup
q2B(q0)

�

�

�

�

∂vec(Ŵ(q))
∂q

0

�

�

�

�

= Op(1)

5. Ŝg(q)!p Sg(q) uniformly on B(q0), and Sg (q)= limT!•VarT,x0(
p

T gT (q)) is continuous

in q and everywhere positive-definite on B(q0)

Assumption 6(1) rules out cases where the true parameter value lies near the boundary of the

parameter space. Assumption 6(2) requires that the moment condition and weight function both

be smooth, while (3) and (4) require that their derivatives be well-behaved. Finally, Assumption

6(5) requires that we have a uniformly consistent estimator for Sg (q) on a neighborhood of q0.

Assumptions 2, 5, and 6 together establish Assumption 1(3). Stated formally:

Theorem 3 Under Assumptions 2, 5, and 6, for CSP (g) as defined in (11), CSN as in (9), and

g > 0

inf
x2XS

liminf
T!•

PrT,x {CSP (g)✓CSN}= 1.
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Thus, we see that for the proposed (CSR,CSP (g) ,CSN) , Assumptions 2-6 provide sufficient

conditions for Assumption 1 and thus allow us to apply Theorem 1. Thus we can construct two-

step confidence sets with bounded sequential coverage distortions in potentially nonlinear GMM

models. Further, as in Section 2.3, rather than picking a value g we can instead report (CSR,CSN,ĝ)

for CSR based on KW, f (q)+a(gmin) ·S (q) .

Linear IV Simulations As a complement to these theoretical results, Section C of the Supple-

mentary Appendix simulates the performance of CSR, CSP (g), and CS2 (g) in the linear IV model

with a single endogenous regressor. These simulations confirm the good coverage properties of

these confidence sets in models with both weak and strong identification. Moreover, in linear IV

models with homoskedastic errors where one can use the results of Stock and Yogo (2005) to con-

struct two-step confidence sets based on the first stage F-statistic, the approach developed here is

found to be competitive and indicates weak identification substantially less often in some contexts.

4 Empirical Illustration and User’s Guide

To illustrate the application of the two-step confidence sets developed above I revisit the nonlinear

Euler equation model of Hansen and Singleton (1982). As noted by Hansen et al. (1996) and

Stock and Wright (2000) there is evidence of weak identification in this context, so it is a natural

setting in which to examine the performance of the procedures proposed here. I also detail the

steps needed to calculate CSR, CSN , and ĝ in practice.

The parameters in this model are q = (d ,h), which represent the discount factor and the coef-

ficient of relative risk aversion, respectively. The moments are

gt (q) =

 

d

✓

Ct

Ct�1

◆�h

Rt �1

!

Zt

for Ct aggregate consumption in period t, Rt an aggregate stock return from t�1 to t, and Zt a vector

of instruments. Following Stock and Wright (2000) I use an extension of the long annual dataset of

Campbell and Shiller (1987) and take the vector Zt to contain a constant, Ct�1/Ct�2, and Rt�1. For

further discussion of the data, see Section B of the Supplementary Appendix. As noted by Stock
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and Wright, results in this context are quite sensitive to the details of the chosen specification, and

there is evidence of model misspecification. Here, I follow the CRRA-1 specification of Stock and

Wright (2000) except for covariance matrix estimation, where unlike Stock and Wright (2000) I

use the Newey and West (1987) covariance estimator with four lags to allow for serial dependence

in ∂

∂q

0 gt (q) .12

I compute CSR, CSN , and ĝ for both the full parameter vector q and for each parameter sep-

arately, corresponding to three different choices of f (q): f (q) = q , f (q) = d , and f (q) = h .

In all cases I set a = 5% and gmin = 5%, so robust confidence sets have coverage at least 95%.

The next section walks through the steps required to implement my suggested approach for a given

f (q) in detail, while the following section presents results.13

4.1 Calculating CSR, CSN , and ĝ

This section details the steps needed to implement the approach developed above for a given choice

of f and discusses my particular implementation choices in this application. Note that when one

considers multiple choices of f (q), as I do in the nonlinear Euler equation application, one can

economize on computation by running steps 1-3 below for all choices of f (q) at the same time.

For expositional simplicity, however, I assume a fixed choice of f (q) in this discussion.

1: Choose Weighting Matrix and Estimator To implement this approach, we first need to

choose a weighting matrix W(q) to use in estimation, since this choice affects both the robust and

non-robust confidence sets. In this application I use the continuously updating GMM estimator of

Hansen et al. (1996), which is given by (6) with bW(q) = bS(q)�1 the efficient weighting matrix. I

then define the Wald statistic (7) where bS
b̂

is the usual GMM variance estimator for f
�

q̂

�

bS
b̂

=

✓

∂

∂q

f
�

q̂

�

∂

∂q

0gT (q)
0
bS
�

q̂

��1 ∂

∂q

0gT (q)
∂

∂q

f
�

q̂

�0
◆�1

.

2: Choose a Grid of Parameter Values To calculate robust confidence sets we need to collect

the set of all parameter values where the identification-robust test statistics fall below given thresh-
12See Kleibergen (2005) on the importance for allowing for serial correlation in this setting.
13Matlab code for performing these calculations with user-specified moment functions and weighting matrices, as

well as for replicating the results below, is available on my website: http://economics.mit.edu/faculty/iandrews
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olds. To facilitate these computations, as is common in the identification-robust inference literature

we can take a discrete approximation QD to the parameter space. In this application I consider

q = (d ,h) 2 QD = {0.6,0.6025, ...,1.1}⇥{�6 : �5.975, ...,60} .

Let us label the elements of QD as
�

q1,q2, ...,q|QD|
 

.14

3: Calculate Test Statistics Given a discrete approximation to the parameter space, we next need

to calculate our test statistics at each point in QD. For each qi 2 QD we can first calculate gT (qi) ,

bS(qi), and DT (qi). This suffices to let us calculate S (qi) as well as KW, f (qi), while we can calcu-

late the Wald statistic W ( f (qi)) based on (7). Let us store the values
�

S (qi) ,KW, f (qi) ,W (qi) : qi 2 QD
 

.

4: Calculate a(gmin) Next, we need to determine the value a(gmin) to use in the construction of

the robust confidence set CSR. By definition a(gmin) solves

Pr
n

(1+a(gmin)) ·c

2
p +a(gmin) ·c

2
k�p  c

2
p,1�a

o

= 1�a � gmin.

To find this value in practice, we can take independent draws from c

2
p and c

2
k�p distributions and

solve numerically for the value a which sets the 1�a � g quantile of the corresponding linear

combination of these draws to c

2
p,1�a

.15

5: Calculate CSR, CSN Now that we have a(gmin) we are ready to calculate the confidence

sets CSR and CSN . In particular, we can first calculate the critical value used to construct CSR,

H�1 (1�a;a(gmin) ,k, p), by taking the 1 � a quantile of a (1+a(gmin)) · c

2
p + a(gmin) · c

2
k�p

distribution. The robust confidence set for f (q) is then

CSR =
�

f (qi) : qi 2 QD,KW, f (qi)+a ·S (qi) H�1 (1�a;a(gmin) ,k, p)
 

.

14Rather than considering grids in the parameter space, which will become computationally daunting when the
dimension of the parameter is moderate or high, one could instead use Markov chain Monte Carlo methods based on
the identification-robust test statistics, as suggested by Chernozhukov et al. (2009). Given the low dimension of the
parameter space in the present application, however, I focus on the discrete approximation.

15All results reported here are based on one million simulation draws.
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Likewise, the non-robust confidence set is

CSN =
�

f (qi) : qi 2 QD,W ( f (qi)) c

2
p,1�a

 

.

6: Calculate ĝ Finally, we need to calculate the distortion cutoff ĝ. Note that if gmin = 0 then for

the discretized problem we consider here ĝ solves

min
qi2QD:W ( f (qi))>c

2
p,1�a

KW, f (qi)+a(ĝ) ·S (qi) = c

2
p,1�a

since for any g larger than this,

�

qi 2 QD : KW, f (qi)+a(g) ·S (qi) c

2
p,1�a

 

✓
�

qi 2 QD : W ( f (qi)) c

2
p,1�a

 

.

Thus, if for any value gmin we define

ã = max
qi2QD

c

2
p,1�a

�KW, f (qi)

S (qi)
1
�

W ( f (qi))> c

2
p,1�a

 

then for

g̃ = 1�a �Pr
n

(1+ ã) ·c

2
p + ã ·c

2
k�p  c

2
p,1�a

o

we see that ĝ = max{g̃,gmin} . Hence, given the discretization of the parameter space we can easily

determine ĝ from the quantities calculated above.

4.2 Empirical Results

Figure 1 reports joint confidence sets for the full parameter vector q in this application, while

Table 1 reports marginal confidence sets for the parameters d and h separately. In all cases the

robust confidence sets have larger volume than the non-robust ones. Nonetheless, we see that

the distortion cutoff ĝ is 10.42% for the joint confidence set and just 6.64% for both marginal

confidence sets. Thus, while a reader interested in two-step confidence sets and willing to accept

at most a 5% coverage distortion should focus on the robust confidence sets in all cases, a reader

willing to accept a 10% coverage distortion could use the non-robust marginal confidence sets for
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Figure 1: Robust and non-robust confidence sets for full parameter vector q . The distortion cutoff
ĝ is equal to 10.42%.

Parameter CSR CSN ĝ

d [0.6,1.1] [0.867,0.948] 6.64%
h [�6,�5.3][ [�1.45,1.95][ [5.25,35.7][ [54,60] [�1.1,1.95] 6.64%

Table 1: Confidence sets and distortion cutoffs ĝ for parameters d and h .

d and h .

A notable feature of these results is that the distortion cutoff ĝ is the same for the parameters

d and h in this application. This results from the fact the continuously updating GMM objective

function in this application has a saddle point. Using the results of Kleibergen (2005) one can show

that all optimally weighted KW, f statistics are equal to zero at this saddle point by construction, and

ĝ must be large enough to ensure that CSP (ĝ) excludes this point. The minimal value g required

for this purpose is the same for both d and h , however, and in both cases this value also suffices to

ensure that CSP (g) is also contained in CSN . Thus, in this application ĝ is the same for both d and

h .

As suggested above, results in this setting are quite sensitive to the specification considered.

While our baseline moments take Rt to be an equity return, if we add moments which take Rt

to be an interest rate, then as elsewhere in the consumption-based asset pricing literature (e.g.

Lettau and Ludvigson, 2009) we obtain a much larger estimate of risk aversion. Moreover, in these

specifications we obtain larger ĝ , equal to 65.72% and 67.49% for d and h , respectively. Details
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of these results are provided in Section B of the Supplementary Appendix.

5 Conclusion

This paper develops two-step confidence sets with controlled coverage distortions in GMM mod-

els. The particular implementation I propose is based upon generalizations of the statistics studied

by Kleibergen (2005) and Chaudhuri and Zivot (2011), but there are many other ways one could

construct confidence sets CSR and CSP (g) satisfying the requirements of Theorem 1, and the com-

parative performance of different choices is an interesting question for future research. Likewise,

while I have established the validity of the confidence sets I construct under particular sequences

of parameter values, conditions for uniform asymptotic validity are an interesting open question.
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Appendix

This Appendix contains proofs for results stated in the paper. Proofs for an auxiliary lemma,

additional details on the empirical application, and simulation results for the linear IV model are

given in the Supplementary Appendix.16

16Available at http://economics.mit.edu/faculty/iandrews
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Proof of Lemma 1

To prove (1), note that for any x0 2 X and any T ,

PrT,x0

�

b0,T 2CS2
 

� PrT,x0

�

b0,T 2CSR
 

�PrT,x0 {fICS = 0} .

By (4) SCP(CSR,XW )� 1�a , so Lemma 1(1) follows immediately from the definition of sequen-

tial coverage probability.

To prove (2), note that

PrT,x0

�

b0,T 2CS2
 

� PrT,x0

n

�

b0,T 2CSN
 

\
�

b0,T 62CSR and fICS = 1
 C
o

� PrT,x0

�

b0,T 2CSN
 

�PrT,x0

�

b0,T 62CSR and fICS = 1
 

,

and

PrT,x0

�

b0,T 62CSR and fICS = 1
 

 min
�

PrT,x0

�

b0,T 62CSR
 

,PrT,x0 {fICS = 1}
 

.

By (3) SCP(CSN ,XS)� 1�a so

SCP(CS2,XS)� 1�a � sup
x02XS

limsup
T!•

min
�

PrT,x0

�

b0,T 62CSR
 

,PrT,x0 {fICS = 1}
 

but sup
x02XS

limsupT!• PrT,x0

�

b0,T 62CSR
 

 a by assumption, implying the result.⇤

Proof of Theorem 1

To establish (1), note that by Assumption 1(2), PrT,x0 {CSP (g)✓CSR} = 1 for all T and x0 2 X.

Thus by the definition of CS2, PrT,x0 {CSP (g)✓CS2} = 1 for all T and x0 2 X. Consequently,

PrT,x0

�

b0,T 2CSP (g)
 

 PrT,x0

�

b0,T 2CS2 (g)
 

, so (1) follows immediately from Assumption

1(1). (2) follows immediately from Lemma 1(2) and Assumption 1(3). (3) is implied by

sup
x02XS

limsup
T!•

PrT,x0 {fICS = 1}= 0,
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which is an immediate consequence of Assumption 1(3).⇤

Proof of Theorem 2

We can re-write KW, f as

KW, f (q) =

T ·gT (q)0Ŵ(q)DT (q)L1,T

⇣

L0
1,T DT (q)0Ŵ(q)DT (q)L1,T

⌘�1
L0

1,T
∂

∂q

0 f (q)0L0
2,T

⇥
✓

L2,T
∂

∂q

0 f (q)L1,T

⇣

L0
1,T DT (q)0Ŵ(q)DT (q)L1,T

⌘�1
L0

1,T DT (q)0Ŵ(q) Ŝ(q)

⇥ Ŵ(q)DT (q)L1,T

⇣

L0
1,T DT (q)0Ŵ(q)DT (q)L1,T

⌘�1
L0

1,T
∂

∂q

0 f (q)0L0
2,T

◆�1

⇥L2,T
∂

∂q

0 f (q)L1,T

⇣

L0
1,T DT (q)0Ŵ(q)DT (q)L1,T

⌘�1
L0

1,T DT (q)
0 Ŵ(q)gT (q) .

By Lemma 1 of Kleibergen (2005),
�

p
T gT (q0,T ) ,

p
T vec

�

DT (q0,T )� JT,x
��

converges to (yg,yD)

which are mutually independent. By assumption the elements of L1,T are of order
p

T , so 1p
T

L1,T =

O(1) and
�

p
T gT (q0,T ) ,DT (q0,T )L1,T

�

are asymptotically independent as well. In particular,
�

p
T gT (q0,T ) ,DT (q0,T )L1,T

�

!d (yg,D) where yg|D ⇠ N (0,Sg) .

We can further re-write KW, f (q) as

T ·gT (q)0Ŝg (q)
� 1

2 P
⇣

Ŝg (q)
1
2 Ŵ(q)DT (q)L1,T

⇣

L0
1,T DT (q)0

⇥Ŵ(q)DT (q)L1,T
��1 L0

1,T
∂

∂q

0 f (q)0L0
2,T

⌘

Ŝg (q)
� 1

2 gT (q) .

where P(X) = X (X 0X)�1 X 0 denotes the projection matrix onto X . By Assumptions 3 and 4 and

the Continuous Mapping Theorem,

Ŝg (q0,T )
1
2 Ŵ(q0,T )DT (q0,T )L1,T

⇣

L0
1,T DT (q0,T )0Ŵ(q0,T ) Ŝg (q0,T )Ŵ(q0,T )

⇥ DT (q0,T )L1,T )
�1 L0

1,T
∂

∂q

0 f (q0,T )0L2,T !d S
1
2
g WD(D0WSgWD)�1 F 0

where the sole random component on the right hand side is D, and the right hand side has rank

p almost surely. Together with the fact that S� 1
2

g yg|D ⇠ N (0, Ik), this implies by the Continuous

Mapping Theorem that
�

KW, f (q0,T ) ,DT (q0,T )L1,T
�

!d
�

K̃W, f ,D
�

where K̃W, f |D ⇠ c

2
p, since con-

ditional on D, K̃W, f is a quadratic form in a standard-normal random vector and a rank-p projection
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matrix.

One can handle S (q0,T )�KW, f (q0,T ) in a similar manner. In particular, note that

S (q)�KW, f (q) = T gT (q)0Ŝg (q)
� 1

2
⇣

I �P
⇣

Ŝg (q)
1
2 Ŵ(q)DT (q)L1,T

⇣

L0
1,T

⇥ DT (q)0Ŵ(q) Ŝg (q)Ŵ(q)DT (q)L1,T
��1 L0

1,T
∂

∂q

0 f (q)0L0
2,T

⌘⌘

Ŝg (q)
� 1

2 gT (q) .

so
�

KW, f (q0,T ) ,S (q0,T )�KW, f (q0,T ) ,DT (q0,T )L1,T
�

!d
�

K̃W, f , S̃� K̃W, f ,D
�

where
�

K̃W, f , S̃� K̃W, f
�

|D ⇠
⇣

c

2
p,c

2
k�p

⌘

and
�

K̃W, f , S̃� K̃W, f
�

are independent conditional on D.

Thus
�

K̃W, f , S̃� K̃W, f
�

are independent and distributed
⇣

c

2
p,c

2
k�p

⌘

unconditionally as well, which

establishes the result. ⇤

Proof of Corollary 1 I prove the statement for CSP (g), since the statement for CSR follows by

the same argument. Define

CSP,q (g) =
�

q : KW, f (q)+a(g) ·S (q) c

2
p,1�a

 

and note that since linear combinations of c

2 random variables are continuously distributed and

KW, f (q)+a ·S (q) = (1+a) ·KW, f (q)+a ·
�

S (q)�KW, f (q)
�

, Theorem 2 implies that

lim
T!•

PrT,x0

�

KW, f (q0,T )+a(g) ·S (q0,T ) c

2
p,1�a

 

= 1�a � g.

Thus,

lim
T!•

PrT,x0

�

q0,T 2CSP,q (g)
 

= 1�a � g.

Note, however, that q0,T 2CSP,q implies that f (q0,T ) 2CSP (g) . Thus, we obtain

liminf
T!•

PrT,x0

�

q0,T 2CSP,q (g)
 

� 1�a � g,

as desired.⇤

The proof of Theorem 3 uses the following Lemma, which is proved the Supplementary Ap-

pendix.
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Lemma 2 Let
�

A
q ,T

 

be a sequence of random sets such that limsupT!• Pr
x0,T

�

A
q ,T = /0

 

< 1

and sup
q2A

q ,T
kq �q0k = Op

⇣

1p
T

⌘

(where I define the sup to be zero if A
q ,T is empty). Under

Assumptions 2, 5, and 6, under all x0 2 XS

sup
q2A

q ,T

�

�W ( f (q))�KW, f (q)
�

�= op(1).

Proof of Theorem 3

For S (q) as in (8), note that Assumption 5 implies that for any e > 0,

inf
kq�q0k�e

S (q)!p •.

Thus, if we define A
q ,T =

n

q : a(g) ·S (q) c

2
p,1�a

o

then sup
q2A

q ,T
kq �q0k= op (1). A mean-

value expansion yields that gT (q) = gT (q0)+GT (q ⇤)(q �q0). Since

sup
q2B(q0) kGT (q)� J(q)k = op(1), and sup

q2B(q0)

�

�Ŝg(q)�Sg(q)
�

� = op(1) for an open ball

B(q0) around q0 as in Assumption 6 and J(q) and Sg(q) are continuous in q ,

sup
q2A

q ,T

�

�S (q)�T (gT (q0)+ J (q0)(q �q0))
0

⇥Sg (q0)
�1 (gT (q0)+ J (q0)(q �q0))

�

�

�

= op(1)
.

Thus, for any e > 0 and for l the minimal eigenvalue of Sg (q0)
�1 ,

PrT,x0

⇢

inf
q2A

q ,T

⇣

S (q)�lT kgT (q0)+ J (q0)(q �q0)k2
⌘

>�e

�

! 1.

Since
p

T gT (q0) = Op(1) by Assumption 2, this implies that sup
q2A

q ,T
kq �q0k = Op

⇣

1p
T

⌘

.

Thus A
q ,T =

n

q : a(g) ·S (q) c

2
p,1�a

o

shrinks towards q0 at rate
p

T .

Next, note that KW, f (q) � 0 by construction, so KW, f (q) + a(g) · S (q) � a(g) · S (q) and

CSP (g) ✓ A
q ,T . By standard results on the distribution of tests for over-identifying restrictions

inf
q

S (q)!d c

2
k�p, so since

KW, f (q)+a(g) ·S (q)� KW, f (q)+a(g) · inf
q

S (q)
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and by Lemma 2 sup
q2A

q ,T

�

�KW, f (q)�W ( f (q))
�

�= op(1), we obtain that if k > p then

PrT,x0

⇢

inf
q2A

q ,T

�

KW, f (q)+a(g) ·S (q)�W ( f (q))
�

> 0
�

! 1

with the consequence that PrT,x {CSP (g)✓CSN}! 1, as we wanted to show. If on the other hand

k = p then KW, f (q)+a(g) ·S (q) = (1+a(g))KW, f (q) and the same conclusion follows from the

fact that sup
q2A

q ,T

�

�KW, f (q)�W ( f (q))
�

�= op(1).⇤
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