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This supplementary appendix contains the proof of an auxiliary result used for the proofs in the

main text, as well as a description of the data and additional results for our empirical application,

and simulation results for the linear instrumental variables model.

Appendix A: Additional Proofs

Lemma 3 Under Assumption 5, q̂ !p q0 under all x0 2 XS.

Proof of Lemma 3 The proof is standard but is included for completeness. By Assumption 5(1),
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while by point-wise convergence
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Proof of Lemma 2

The proof is standard, but is included for completeness. If A
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DT (q)0Ŵ(q)DT (q)
��1 DT (q)0Ŵ(q)gT (q)
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Similar arguments, together with Lemma 3, establish that
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parameter vector, which take f (q) = q . To complete the proof, I need only show that the same

result holds for general f (·), which follows from D-method arguments. In particular, as noted in
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DT (q)0Ŵ(q)DT (q)
��1 DT (q)0Ŵ(q)
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by the Continuous Mapping Theorem, and by the triangle inequality
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Appendix B: Data Description and Additional Empirical Results

As noted in the main text, for the empirical application I follow Stock and Wright (2000) and use

an extension of the long annual dataset of Campbell and Shiller (1987), which consists of annual

US data from 1873 to 1993. As discussed in Stock and Wright (2000), the interest rate is the

nominal rate for four to six month commercial paper, while stock returns are based on the Cowles

Commission index for the first part of the sample, and the annual average price of the S&P monthly

composite index for the second part. Asset returns are converted to real terms using the producer

price index, and consumption is measured as real consumption of nondurables and services per

capita.

To complement the empirical results in the main text, here we discuss results from augmenting

the set of moments considered with moments which take Rt to equal the interest rate. As with our

treatment of the moments based on the equity return, we instrument these moments with a constant,
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Figure 2: Robust and non-robust confidence sets for full parameter vector q . The distortion cutoff
ĝ is equal to 69.99%.

Parameter CSR CSN ĝ

d [.01,1.1] [0,0.73] 65.72%
h [�1.15,�0.8][ [0.05,0.95][ [56.6,200] [109.3,153.1] 67.49%

Table 2: Confidence sets and distortion cutoffs ĝ for parameters d and h .

lagged consumption growth, and the first lag of the interest rate. Results from these specifications

are reported in Figure 2 and Table 2. As we see from these results, estimated risk aversion is much

larger with this choice of moments, and the maximal distortion cutoffs ĝ are likewise much larger

than in our baseline specifications.

Appendix C: IV Simulation Results

To illustrate the performance of the two-step procedure proposed in the main text, this appendix de-

scribes simulation results for the linear instrumental variables model. I first consider the simulation

performance of two-step procedures based on the first stage F-statistic with Stock and Yogo (2005)

(abbreviated SY for the remainder of this appendix) critical values in linear IV with homoskedastic

and non-homoskedastic errors, and then turn to the performance of the two-step approach proposed

in the main text.

As in the IV example in main text I focus on the linear IV model with a single endogenous

regressor, where there either are no additional exogenous regressors or any such regressors have
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already been partialled out.17 As before the model, written in reduced form, is

Y = Zp0b0 +V1

X = Zp0 +V2

for Z a T ⇥k matrix of instruments, X a T ⇥1 vector of endogenous regressors, Y a T ⇥1 vector of

outcome variables, and V1 and V2 both T ⇥1 vectors of residuals, where I assume that E [V1,tZt ] =

E [V2,tZt ] = 0 for Zt the transpose of row t of Z.

I am interested in constructing confidence sets for the scalar coefficient b , treating the k⇥ 1

vector of first-stage parameters p as nuisance parameters. A common nominal level 1�a con-

fidence set in empirical practice is the two stage least squares (2SLS) Wald confidence set, equal

to the two-stage least squares estimator b̂2SLS plus and minus a multiple of the standard error. We

can likewise construct Wald confidence sets based on other estimators b̂ , for example limited in-

formation maximum likelihood (LIML) or, in the heteroskedastic case, efficient two-step GMM

(2SGMM) or continuously updating GMM (CUGMM).

C.1 Two-Step F-Statistic Confidence Sets

All of these Wald confidence sets may exhibit large coverage distortions when the first-stage

parameter p0 is small. The first stage F-statistic aims to measure the magnitude of p and, for

p̂ = (Z0Z)�1 Z0X the OLS estimator of p and bS
p̂

an estimator for the variance of
p

T (p̂ �p0), is

equal to F = T
k p̂

0
bS�1

p̂

p̂. While the conventional first-stage F-statistic uses an estimator Ŝ
p̂

which

assumes the errors (V1,V2) are conditionally homoskedastic given Z, this can yield highly unreli-

able results when the errors are in fact heteroskedastic (or serially correlated or clustered). Hence,

throughout this section I will focus on the heteroskedasticity-robust F-statistic, which takes bS
p̂

to

be the White (1980) covariance matrix estimator, and one can likewise define serial-correlation

and clustering robust F-statistics when appropriate.

To construct a two-step confidence set as in (1) I also need to define an appropriate robust

confidence set CSR. For simplicity I consider confidence sets based on the S statistic of Stock and

Wright (2000), (8), where gT (b ) =
1
T ÂZt (Yt �bXt) and bSg (b ) is the usual heteroskedasticity-

17That is, for exogenous controls W and initial data
�

Ỹ , X̃ , Z̃,W
�

, Y = MWỸ , X = MW X̃ , Z = MW Z̃, where MW =

I �W (W 0W )�1 W 0.
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robust variance estimator for
p

T gT (b ). As shown by Stock and Wright (2000), the S statistic

evaluated at the true parameter value b0 will be approximately c

2
k distributed in large samples

regardless of identification strength, so the level 1�a confidence set for b based on this statistic

is CSS =
n

b : S (b )< c

2
k,1�a

o

.

In the rest of this section I focus on two-step confidence sets based on the first stage F-statistic.

In particular, I consider CS2 defined as in (1), with fICS = 1{F < c} for some cutoff c, let CSN

be some Wald confidence set, and take CSR = CSS. I study the coverage of these confidence

sets for different choices of Wald confidence set and cutoff. I first highlight that, as expected

given the results of SY, the conventional rule of thumb cutoff c = 10 does not control coverage

for two-step confidence sets even in homoskedastic models. Next, I study cutoffs based on SY,

which by their results ensure bounded coverage distortions in homoskedastic models. I provide

what is, to my knowledge, the first demonstration in the literature that the SY cutoffs fail to con-

trol coverage distortions under heteroskedasticity in over-identified models, even when using the

heteroskedasticity-robust F-statistic. While this result is unsurprising given that the results of SY

are derived only for models with homoskedastic errors, it raises questions about the widespread

application the first-stage F-statistic in empirical contexts with non-homoskedastic errors.

The simulations set b0 = 0 and assume that Zt is a collection of dummy variables for different

values of a categorical instrument Z̃t 2 {1, ...,k} . I take k 2 {5,10,20} and for each k consider

two calibrations: one with a moderate degree of endogeneity and the other with a very high degree

of endogeneity. In each calibration I consider a wide range of values for identification strength

(as measured by kp0k, where I hold p0/kp0k fixed) ranging from non-identification to very strong

identification, and report the smallest coverage probability for each confidence set over these dif-

ferent values, minkp0kPr
p0,b0 {b0 2CS}. All simulations are based on samples of 10,000 observa-

tions.18 Further details on the simulation design may be found at the end of this appendix.

C.1.1 The First Stage F-Statistic Under Homoskedasticity

I first study the performance of nominal 95% two-step confidence sets based on the F-statistic

together with different cutoffs c and Wald confidence sets CSN under homoskedasticity. I begin
18I take the sample size to be large to highlight that the poor performance of two-step confidence sets based on

the first-stage F-statistic under heteroskedasticity is not due to small-sample problems with heteroskedasticity-robust
covariance matrix estimation, and use this sample size throughout for consistency.
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with the usual LIML and 2SLS confidence sets. Next, I consider rule of thumb confidence sets

which take c = 10. Finally I use cutoffs based on critical values from SY, specifically c = 26.87,

c = 38.54, and c = 62.30 for k = 5, k = 10, and k = 20 respectively for CSN the 2SLS confidence

set, and c = 5.44, c = 3.68, and c = 3.21 for CSN the LIML confidence set.19 The results of SY

imply that in models with homoskedastic errors this choice of cutoffs ensures coverage distortions

no larger than 10%, and so coverage no less that 85%, for two-step confidence sets with nominal

coverage 95%.20

The results of this exercise are reported in Table 3. As expected, the rule of thumb cutoff of 10

does not ensure any fixed level of coverage for two-step confidence sets: while 2SLS confidence

sets based on the rule of thumb have coverage distortions less than 10% in the moderate endo-

geneity calibrations, they exhibit more substantial distortions in the high endogeneity calibrations,

and the degree of distortion is increasing in the number of instruments k. By contrast, two-step

confidence sets based on the cutoffs of SY have distortions not exceeding 10% (and thus coverage

not less than 85%) in all cases, also as expected.

C.1.2 The First Stage F-Statistic Under Heteroskedasticity

I next repeat the simulation exercise taking the errors to be heteroskedastic so Var ((V1,t ,V2,t) |Zt)

depends on Zt . Since 2SLS and LIML are inefficient under heteroskedasticity I also consider

confidence sets based on CUGMM and 2SGMM. When considering two-step confidence sets based

on SY I use LIML cutoffs for CUGMM and 2SLS cutoffs for 2SGMM.21

The minimal coverage for all confidence sets considered is reported in Table 4. As in the

homoskedastic case neither Wald confidence sets nor two-step confidence sets based on the rule of

thumb cutoffs control coverage distortions. Unlike in the homoskedastic case two-step confidence
19I obtain these cutoffs by taking fICS = 1 when the 5% F-test of SY cannot reject the hypothesis that the nominal

5% Wald test of interest has true size exceeding 10%. This results in a two-step confidence set with coverage at least
85%. While the Wald confidence set has coverage at least 90% under the alternative in the SY pretest, to obtain the
coverage of the two-step confidence set we must also account for errors due to the pretest itself. Taking this error into
account via a Bonferroni correction gives an 85% lower bound on the coverage of the two step confidence set. As clear
from Table 5, this additional correction is necessary (if potentially conservative) as two-step confidence sets based on
the SY pretest do not always have 90% coverage.

20My focus on maximal 10% distortions is not an endorsement of this choice of g , but rather due to the fact that
this is the smallest g achievable using the critical values published in SY. One could instead use the approach of SY to
derive pretests implying smaller values of g in the homoskedastic case.

21I also considered CUGMM and 2SGMM in the homoskedastic simulations but, unsurprisingly given the large
sample size, their behavior is indistinguishable from that of LIML and 2SLS respectively.
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Moderate Endogeneity High Endogeneity
Confidence Set k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

LIML CS 57.7% 38.2% 25.2% 11.1% 1.9% 0%
2SLS CS 58.8% 40.4% 42.7% 0% 0% 0%

Rule of thumb LIML CS 92.9% 93.1% 93.5% 90.4% 91.5% 91.4%
Rule of thumb 2SLS CS 90.4% 89.1% 89.2% 82% 76.1% 64.2%

SY LIML CS 91.6% 90.6% 89.4% 88.4% 89.2% 89.7%
SY 2SLS CS 92.6% 92.4% 93.6% 87.5% 87.7% 87.7%

Table 3: Minimal coverage for nominal 95% confidence sets in homoskedastic IV simulations
with 10,000 observations, based on 10,000 simulations. LIML CS and 2SLS CS are the usual
Wald confidence sets based on LIML and 2SLS, while the rule of thumb confidence sets are two-
step confidence sets using the rule-of-thumb cutoff c = 10 and the robust S (or Anderson-Rubin)
confidence set CSS. Finally, the SY confidence sets use the SY cutoffs discussed in the text along
with the robust S (or Anderson-Rubin) confidence set CSS, and have asymptotic coverage at least
85% in models with homoskedastic errors.

sets using the SY cutoffs also fail to control coverage distortions, for both efficient and inefficient

estimators. More generally, in many cases heteroskedasticity gives rise to far more pronounced

coverage shortfalls than those under homoskedasticity.

The central problem with two-step confidence sets based on the SY cutoffs under heteroskedas-

ticity is that the first stage F-statistic used with existing cutoffs is no longer a reliable indicator

of identification strength. Related to this finding, Antoine and Renault (2015) derive a measure

for identification that is closely related to the first-stage F-statistic under homoskedasticity but

may differ substantially under heteroskedasticity. Likewise, the unreliability of conventional F-

statistic-based assessments of 2SLS bias under heteroskedasticity was previously highlighted by

Bun and de Haan (2010) and Olea and Pfleuger (2013). I find, however, that the issue appears

especially stark when considering coverage. In Figure 3 I plot the coverage of Wald confidence

sets against the mean of the first-stage F-statistic for the model with ten instruments in the mod-

erate endogeneity calibration as I vary kp0k, noting that E [F ] is a strictly increasing function of

kp0k in this set-up. As this figure makes clear, even when the mean of the first stage F-statistic is

500, many nominal 95% Wald confidence sets exhibit coverage distortions exceeding 15%.22 A

still more extreme version of this issue arises in the high endogeneity calibration, where the 2SLS

confidence set has a 15% coverage distortion even when the mean of the first stage F-statistic is
22While the behavior of non-robust confidence sets is similarly poor under the other calibrations, the particular

ranking across confidence sets (i.e. which Wald confidence set exhibits the largest distortion) varies.
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Moderate Endogeneity High Endogeneity
Confidence Set k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

LIML CS 57.2% 41.3% 27.2% 6.5% 9.5% 1%
2SLS CS 38.3% 27.4% 37.2% 0% 0% 0%

CUGMM CS 28.2% 13% 31.7% 4.8% 0.5% 0%
2SGMM CS 20.6% 9.3% 30.2% 0% 0% 0%

Rule of thumb LIML CS 63.2% 44.8% 31.9% 21.8% 9.5% 1%
Rule of thumb 2SLS CS 55.1% 30.8% 41.8% 0% 0% 0%

Rule of thumb CUGMM CS 45.4% 18.4% 37.3% 71.5% 54.7% 13.1%
Rule of thumb 2SGMM CS 35.4% 13% 34.6% 1.9% 0% 0%

SY LIML CS 61.2% 43% 29.1% 21.8% 9.5% 1%
SY 2SLS CS 63.6% 40.2% 56.1% 0% 0% 0%

SY CUGMM CS 39.5% 15.3% 34.1% 63.2% 54.7% 3.1%
SY 2SGMM CS 46.7% 19.8% 49.2% 2.8% 0% 0%

Table 4: Minimal coverage for nominal 95% confidence sets in heteroskedastic IV simulations
with 10,000 observations, based on 10,000 simulations. LIML CS, 2SLS CS, CUGMM CS, and
2SGMM CS are the usual Wald confidence sets based on LIML, 2SLS, CUGMM, and 2SGMM,
while the rule of thumb confidence sets are two-step confidence sets using the rule-of-thumb cutoff
c = 10 and the robust S (or Anderson-Rubin) confidence set CSS. Finally, the SY confidence sets
use the SY cutoffs together with the robust S confidence set CSS, and have asymptotic coverage at
least 85% in models with homoskedastic errors.

100,000. Given these large distortions, it is unsurprising that two-step confidence sets based on the

first-stage F-statistic and known cutoffs fail to generate reliable two-step confidence sets in models

with heteroskedastic data.

Given these results, it is natural to ask whether some alternative cutoff, or alternative definition

of the F-statistic, might render this statistic more appropriate for judging identification strength in

over-identified heteroskedastic models. Olea and Pfleuger (2013) show that for the purpose of con-

trolling approximate bias, the answer is affirmative. Unfortunately, however, I have not succeeded

in obtaining an analogous result for controlling coverage. Direct extension of the results of SY is

far from straightforward, since SY use special structure of the IV model in the homoskedastic case

to substantially reduce the dimension of the parameter space, and derive their results by finding

the least-favorable error covariance structure. By contrast, in over-identified non-homoskedastic

models the simplifications used by SY do not apply, and finding the least-favorable covariance

structure appears daunting. Interestingly, in just-identified models with a single endogenous re-

gressor one can show that the structure of IV problem in the non-homoskedastic case continues to
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Figure 3: Coverage of Wald confidence sets plotted against the mean of the first stage F-statistic as
kp0k varies in the moderate endogeneity heteroskedastic linear IV calibration with k = 10.

be the same as that studied by SY, with the consequence that their results continue to apply in that

case provided we use the heteroskedasticity (or clustering or serial-correlation) robust F-statistic.

C.2 Performance of CS2 (g) in Linear IV

The previous section simulated the performance of two-step confidence sets based on the first-stage

F-statistic, and illustrated that while such confidence have well-controlled coverage distortions in

models with homoskedastic errors they can have large distortions in models with heteroskedastic

errors. In this section, I study the performance of the two-step confidence sets CS2 (g) suggested in

the main text in the same simulation designs and find that, as suggested by the theoretical results

in the main text, these confidence sets appear to have well-controlled coverage distortions.

C.2.1 Simulation Performance Under Homoskedasticity

I first return to the homoskedastic IV and simulate the coverage of the robust confidence sets

CSR and CSP (10%), as well as the two-step confidence sets CS2 (10%). For comparability with

the earlier results, in all cases I set a = 5% and g = 10% and continue to consider samples of
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Moderate Endogeneity High Endogeneity
Confidence Set k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

CSR 95% 94.6% 94.7% 94.8% 94.7% 94.6%
CSP (10%) 84.7% 85% 85.2% 85.4% 85.6% 84.3%
CS2 LIML 92.6% 92.4% 90.4% 86% 87% 85%

CS2 (10%) 2SLS 92.8% 92.8% 92.9% 86% 87% 85%

Table 5: Minimal coverage for confidence sets in homoskedastic IV simulations with 10,000 obser-
vations, based on 2,500 simulations. CSR and CSP (10%) are robust 95% and 85% confidence sets,
respectively, calculated as suggested in Section 3 for a = 5% and g = 10% based on the two-stage
least squares weight Ŵ(q) =

� 1
T Z0Z

��1. CS2 LIML and CS2 2SLS are two-step confidence sets
(1) based on LIML and 2SLS, calculated as described in Section 3 for a = 5% and g = 10%.

10,000 observations. By construction the robust confidence set CSR has coverage 95% under both

weak and strong identification, while CSP (10%) has sequential coverage 85% and the two step

confidence sets have sequential coverage at least 85%. The results, reported in Table 5, show that

the simulated coverage of CSR and CSP (10%) is quite close to their theoretical coverage, while the

minimal coverage of the two-step confidence sets is at least 85% in all cases.

Since pretests based on the SY critical values also guarantee coverage at least 85% under

homoskedasticity, it is interesting to compare their behavior to that of my ICS statistic (5). In

Figure 4 I plot the mean of my ICS statistic E [fICS (10%)] together with E
⇥

fICS,SY
⇤

, the mean

of the ICS statistic based on the first stage F-statistic with SY’s critical values, against the mean

of the first-stage F-statistic as I vary kp0k in the moderate endogeneity calibration with k = 10.

As we can see, my ICS procedure for LIML behaves quite similarly to that of SY, while my ICS

procedure for 2SLS indicates strong identification with substantially higher probability than that

of SY. Repeating this exercise for the other moderate endogeneity calibrations I find similar results

(not shown), while when I consider the high endogeneity calibrations I find no general ordering

between my ICS procedure and that of SY.

C.2.2 Two Step Confidence Sets Under Heteroskedasticity

Let us now return to the heteroskedastic linear IV calibrations. In particular, I consider the robust

confidence sets CSR and CSP (10%) based on both the inefficient 2SLS weight matrix Ŵ(q) =
� 1

T Z0Z
��1 and the efficient weight matrix Ŵ(q) = Ŝg (q)

�1, as well as two-step confidence sets

based on LIML, 2SLS, CUGMM, and 2SGMM. I again take a = 5% and g = 10% in all cases.

12
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Figure 4: E [fICS] = Pr{fICS = 1} plotted against the mean of the first stage F-statistic as kp0k
varies in the heteroskedastic linear IV calibration with moderate endogeneity and k = 10, where
SY LIML and SY 2SLS denote pretests based on the first stage F-statistic and the critical values
of Stock and Yogo (2005), while ICS LIML and ICS 2SLS use the ICS statistic fICS (10%) with
a = 5% and g = 10%.

We can see that as in the homoskedastic case my robust confidence sets CSR and CSP (10%) have

minimal coverage quite close to their theoretical coverage of 95% and 85%, respectively. Unlike

the procedures based on the first stage F-statistic, the confidence sets CS2 (10%) have minimal

coverage at least 85%.

C.3 IV Simulation Design

Heteroskedastic Case To examine the behavior of two-step confidence sets in simulation I need

to specify the process generating (Z,V1,V2) . My focus is on heteroskedasticity, so I consider mod-

els where (Zt ,V1,t ,V2,t) are independent across t but where Var
�

V1,t ,V2,t
�

�Zt
�

may depend on Zt . I

consider a categorical instrument and let Zt be a collection of dummy variables for different values

of Z̃t 2 {1, ...,k}, so Zt 2 {e1, ...,ek} where ei is the k⇥ 1 vector with 1 in the ith entry and zeros

everywhere else. I take Z̃t to be uniformly distributed so that Pr{Zt = ei}= 1
k for all i 2 {1, ...,k}

and set the true parameter value b0 = 0.
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Moderate Endogeneity High Endogeneity
Confidence Set k = 5 k = 10 k = 20 k = 5 k = 10 k = 20
CSR Inefficient 95.1% 94.7% 95.2% 94.7% 95.2% 94.6%

CSP (10%) Inefficient 84.7% 84.3% 85% 86% 85% 84.6%
CSR Efficient 95.1% 94.6% 94.7% 94.9% 94.5% 95%

CSP (10%) Efficient 84.9% 84.5% 84.6% 84.8% 85.4% 84%
CS2 (10%) LIML 94.1% 92.4% 93% 86.8% 86.8% 85.2%
CS2 (10%) 2SLS 93.7% 94% 94.3% 86.7% 86.6% 85.2%

CS2 (10%) CUGMM 95% 94.1% 93.4% 86.8% 92.6% 88.8%
CS2 (10%) 2SGMM 94.5% 94% 93.9% 86.8% 92.8% 88.8%

Table 6: Minimal coverage for confidence sets in heteroskedastic IV simulations with 10,000 ob-
servations, based on 2,500 simulations. CSR and CSP (10%) Inefficient are robust 95% and 85%
confidence sets (12) based on the two-stage least squares weight matrix Ŵ(q) =

� 1
T Z0Z

��1, calcu-
lated as discussed in the supplement for a = 5% and g = 10%. CSR and CSP (10%) Efficient are
robust confidence sets with Ŵ(q) = Ŝg (q)

�1 calculated as suggested in the main text for a = 5%
and g = 10%. CS2 (10%) LIML, CS2 (10%) 2SLS, CS2 (10%) CUGMM, and CS2 (10%) 2SGMM
are two-step confidence sets (1) based on LIML, 2SLS, CUGMM, and 2SGMM, calculated as
described in Section 3 for a = 5% and g = 10%.

Since the support of Zt is finite I model Var
�

V1,t ,V2,t
�

�Zt
�

fully flexibly and take

0

@

V1,t

V2,t

1

A |Zt ⇠ N (0,SV (Zt)) .

To explore the behavior of the model for different parameter values I randomly drew many values

of SV (Zt) and the direction of the first stage p0/kp0k. For each draw I considered a large range of

values for ||p0||, ranging from non-identification to very strong identification, and for the simula-

tions I focus on particular draws of SV (Zt) and p0/kp0k that generate large coverage distortions

for some values of kp0k. The full specification of SV (Zt) , as well as the accompanying p0/kp0k,

in these designs are reported at the end of this section.

I study models with five, ten, and twenty instruments (k 2 {5,10,20}) and in each case con-

sider two calibrations, one with a very high degree of endogeneity as measured by the correlation

between the errors V1,t and V2,t , and the other with more moderate endogeneity. The space of

possible covariance matrices is large, so there likely exist parameter values generating much more

pathological behavior for non-robust procedures than I report here. Consequently, my results give

only lower bounds for possible coverage distortions. In all cases I simulate samples of 10,000
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observations.

To give a sense of the parameter values used in the simulations, in Table 7 I report the (uncon-

ditional) correlation between V1,t and V2,t as well as

Stdev(Stdev(Vi,t |Zt))/Stdev(Vi,t), which is a natural measure for the degree of heteroskedasticity.

Moderate Endogeneity High Endogeneity
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

Corr (V1,t ,V2,t) -0.66 -0.59 -0.44 -1.00 1.00 -1.00
Stdev(Stdev(V1,t |Zt))/Stdev(V1,t) 0.40 0.53 0.44 0.56 0.55 0.51
Stdev(Stdev(V2,t |Zt))/Stdev(V2,t) 0.63 0.55 0.50 0.56 0.55 0.51

Table 7: Summary of linear IV calibration values. Note that Corr (V1,t ,V2,t) is in all cases strictly
less than one in absolute value, but the reported value is rounded to nearest 0.01.

Homoskedastic Case

For the homoskedastic case, I consider the same simulation calibrations described above, except

that in each case I eliminate heteroskedasticity by taking V1,t , V2,t to be independent of Zt with

0

@

V1,t

V2,t

1

A⇠ N (0,E [SV (Zt)]) .

Full Specification of SV (z) For Heteroskedastic Case

Finally, Tables 8-13 give the full specification of SV (Zt) for models with heteroskedastic errors.

In particular, recall that Zt is a vector of dummies generated from a categorical variable Z̃t . Hence,

here I report

SV (z̃) =

0

@

Var (V1,t |Zt = ez̃) Cov(V1,t ,V2,t |Zt = ez̃)

Cov(V1,t ,V2,t |Zt = ez̃) Var (V2,t |Zt = ez̃)

1

A .
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z̃ Var (V1,t |Zt = ez̃) Cov(V1,t ,V2,t |Zt = ez̃) Var (V2,t |Zt = ez̃) p0/kp0k
1 0.866 -0.528 1.273 0.616
2 3.365 -4.371 5.725 0.45
3 0.653 -0.512 0.414 0.021
4 2.95 -2.9 4.925 -0.327
5 5.84 -0.244 0.01 -0.558

Table 8: Specification of SV (z̃) and p0/kp0k in moderate endogeneity calibration with k = 5.

z̃ Var (V1,t |Zt = ez̃) Cov(V1,t ,V2,t |Zt = ez̃) Var (V2,t |Zt = ez̃) p0/kp0k
1 1.102 0.004 0.004 0.57
2 1.891 -2.045 2.789 -0.223
3 3.844 -3.969 4.264 0.478
4 3.457 -1.369 0.779 0.146
5 0.043 0.129 0.395 0.213
6 0.832 -2.383 7.026 0.08
7 1.111 -1.135 1.226 -0.167
8 2.254 -0.39 0.308 0.107
9 10.786 -2.859 1.709 -0.356

10 0.419 -0.934 6.099 -0.396

Table 9: Specification of SV (z̃) and p0/kp0k in moderate endogeneity calibration with k = 10.
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z̃ Var (V1,t |Zt = ez̃) Cov(V1,t ,V2,t |Zt = ez̃) Var (V2,t |Zt = ez̃) p0/kp0k
1 1.904 -1.037 0.791 -0.367
2 1.388 0.645 0.384 -0.166
3 1.391 0.392 0.161 0.184
4 5.13 -4.293 3.671 0.003
5 3.008 0.498 0.141 0.049
6 1.06 -1.499 2.224 0.142
7 1.523 -1.117 1.41 -0.091
8 0.25 -0.134 0.143 0.184
9 5.244 -1.832 0.64 0.34

10 2.4 -3.015 4.918 0.104
11 0.801 0.366 0.381 -0.196
12 1.377 -0.265 0.397 0.524
13 0.198 0.279 0.407 0.004
14 0.385 -0.148 3.186 -0.155
15 3.025 0.044 0.001 -0.289
16 0.055 -0.002 2.286 0.122
17 0.45 -0.415 0.745 0.22
18 0.596 -0.704 2.158 0.16
19 1.115 -0.291 1.731 0.311
20 1.823 -0.779 1.91 -0.079

Table 10: Specification of SV (z̃) and p0/kp0k in moderate endogeneity calibration with k = 20.

z̃ Var (V1,t |Zt = ez̃) Cov(V1,t ,V2,t |Zt = ez̃) Var (V2,t |Zt = ez̃) p0/kp0k
1 0.949 -1.13 1.345 0.098
2 0.97 -1.157 1.38 0.08
3 4.2·10�5 -5·10�5 5.8·10�5 -0.778
4 2.671 -3.184 3.796 0.407
5 2.982 -3.556 4.24 0.461

Table 11: Specification of SV (z̃) and p0/kp0k in high endogeneity calibration with k = 5.
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z̃ Var (V1,t |Zt = ez̃) Cov(V1,t ,V2,t |Zt = ez̃) Var (V2,t |Zt = ez̃) p0/kp0k
1 0.919 1.212 1.6 0.57
2 0.27 0.359 0.477 -0.223
3 1.695 2.245 2.975 0.478
4 0.65 0.861 1.142 0.146
5 0.094 0.128 0.174 0.213
6 0.084 0.11 0.145 0.08
7 2.642 3.508 4.658 -0.167
8 1.113 1.478 1.963 0.107
9 1.708 2.26 2.99 -0.356

10 2.6·10�5 3.2·10�5 3.8·10�5 -0.396

Table 12: Specification of SV (z̃) and p0/kp0k in high endogeneity calibration with k = 10.

z̃ Var (V1,t |Zt = ez̃) Cov(V1,t ,V2,t |Zt = ez̃) Var (V2,t |Zt = ez̃) p0/kp0k
1 35.398 -20.896 12.335 -0.367
2 1.197 -0.706 0.417 -0.166
3 2.6·10�4 -1.6·10�4 9.8·10�5 0.184
4 3.979 -2.349 1.387 0.003
5 9.336 -5.512 3.255 0.049
6 7.348 -4.338 2.561 0.142
7 7.202 -4.251 2.51 -0.091
8 0.932 -0.55 0.325 0.184
9 8.089 -4.775 2.818 0.34

10 0.462 -0.273 0.161 0.104
11 9.515 -5.617 3.316 -0.196
12 0.1 -0.059 0.035 0.524
13 2.795 -1.65 0.974 0.004
14 4.927 -2.909 1.717 -0.155
15 7.093 -4.187 2.471 -0.289
16 2.415 -1.426 0.842 0.122
17 4.03 -2.379 1.405 0.22
18 10.161 -5.999 3.542 0.16
19 6.511 -3.843 2.269 0.311
20 5.477 -3.233 1.909 -0.079

Table 13: Specification of SV (z̃) and p0/kp0k in high endogeneity calibration with k = 20.
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