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Abstract

We develop a simple approximation that relates the total external validity bias in
randomized trials to (i) bias from selection on observables and (ii) a measure for
the role of treatment effect heterogeneity in driving selection into the experimental
sample.
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1 Introduction

External validity has drawn attention in economics with the growth of randomized
trials. Randomized trials provide an unbiased estimate of the average treatment effect
in the experimental sample, but this may differ from the average treatment effect in the

population of interest. We will refer to such differences as “external validity bias.”
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One reason such differences may arise is because individuals (or other treatment
units) actively select into the experiment. For example, Bloom, Liang, Roberts and
Ying (2015) report results from an evaluation of working from home in a Chinese firm.
Workers at the firm were asked to volunteer for the experiment, and the study random-
ized among eligible volunteers. External validity bias arises here if the effects of the
treatment on the volunteers differ from effects in the overall population.

Papers that report experimental results often comment qualitatively on differences
between the sample and some population of interest, and sometimes provide a table
comparing means between groups (e.g. Bloom, Liang, Roberts and Ying (2015); At-
tanasio, Kugler and Meghir (2011); Muralidharan et al (2018)). Similar means are
taken as reassuring.

This comparison of means does not fully address external validity concerns. First,
external validity bias depends on both the difference in characteristics across groups and
the extent to which treatment effects vary based on these characteristics. Second, this
approach does not rule out differences in unobservable characteristics across groups.!
To partially address the first concern, we can formally adjust for observed differences
in covariates (e.g. Hotz et al, 2005, Stuart et al, 2011, Dehejia, Pop-Eleches and Samii,
2015). This is rarely done in practice, however, and does not address differences on
unobserved dimensions.?

Our goal is to provide a framework in which to consider selection on unobservables
when studying external validity. Under a simple model for selection and treatment
effects, if the degree of selection is small, external validity bias is approximately equal
to the bias due to selection on observables multiplied by a measure of the role of
treatment effect heterogeneity in driving selection. We suggest that researchers report
formal corrections for selection on observables and then use our result to benchmark
how much selection on unobservables would be required to overturn their findings. This

approach does not provide a definitive estimate of external validity bias, but offers a

IFor example, individuals could sort directly on their treatment effects, which in an instrumental
variables context Heckman et al (2006) describe as “essential heterogeneity.”
2A notable exception is Alcott (2015).



tractable language to frame the question.

There are alternatives to our approach. One could adopt an approach directly
grounded in economic theory, and estimate an model for the unobserved factors driving
selection into the sample (perhaps fitting a Roy model as in e.g. Borjas, 1987). This
has intuitive appeal, but in many settings it may be challenging to model selection. As
a result, many existing approaches to this problem do not directly model the selection
decision.

For example, Nyugen et al (2017) assume bounds on the bias from unobservables,
while Gechter (2016) restricts the level of dependence between the individual outcomes
in the treated and untreated states. If data from multiple experimental sites is avail-
able, Meager (2019) and Vivalt (2019) use Bayesian hierarchical approaches to assess
external validity under the assumption that the effects at observed and future sites are
exchangeable.

These alternatives have the advantage that, unlike our approach, they do not rely on
the assumption that the degree of selection is small. At the same time, Meager (2019)
and Vivalt (2019) require data from multiple sites, while the approaches of Nyugen
et al (2017) and Gechter (2016) require assumptions on, respectively, the bias from
unobservables and the dependence of treated and untreated potential outcomes. Our
approach also requires that researchers have a view on what degree of selection on
unobservables (relative to observables) they think is plausible in a given setting, but we

think that this will often be the case.

2 A Simple Approximation to External Validity Bias

2.1 Setup

We are interested in the effect of a binary treatment D; € {0,1} on an outcome Y;.
Adopting the standard potential outcomes framework (see e.g. Imbens and Rubin,
2015) we write the outcomes of unit 7 in the untreated and treated states as Y; (0),

Y; (1), respectively.?

3We assume throughout that all random variables considered have bounded fourth moments.



We observe an iid sample from a randomized experiment in a trial population with
distribution Pg, where treatment D); is randomly assigned. The experiment allows us
to unbiasedly estimate the average treatment effect in the trial population, Ep,[TE;] =
Ep,[Yi(1) — Yi(0)].

The trial population is a potentially non-representative subset of a larger target pop-
ulation, and we are interested in inference on the average treatment effect in the target
population. Let S; be a dummy equal to one if individual ¢ in the target population is a
member of the trial population. For P the distribution in the target population, our ob-
ject of interest is Ep[T'E;], while our experiment estimates Ep,[T'E;] = Ep[TE;|S; = 1].
The “external validity bias” is Ep [T E;] — Ep[TE;].

We do not observe the distribution of all variables in the target population, and
so cannot in general correct this bias. We assume, however that we know the target-
population-mean for a set of covariates C;, Ep[C;], where C; is also observed in the trial

population.?
2.2 A Simple Model

We next adopt a simple model for treatment effects and selection.

Assumption 1 For a set of unobservables U;,

TE;=a+Cy+Ud+e¢;

where Eple;|C;, U;] =0 and Cov (C;,U;) = 0.

Without additional restrictions on the unobservables U;, this assumption is with-
out loss of generality. In practice, however, we will typically want to assume that U,
consists of particular known (but unobserved) variables, which makes this restriction

substantive.

4For example, C; could contain demographic or geographic variables.



Assumption 2 For the same set of unobservables U;,
S; =1{Cik + Ut —v; > 0}

where v; is independent of (C;, U;, ;) under P and has support support equal to R. The
distribution function F, of v; is twice continuously differentiable with a bounded second

derivative.

Assumption 2 is equivalent to assuming that E [S;|C;, U;] = F, (Cik + U!T) where
0 < F,(Clk+Ut) <1 and aa—;Fv (v) is bounded. This implies that all values (C;, U;)

that arise in the target population also sometimes arise in the trial population.
2.3 Corrections for Selection on Observables

Assumptions 1 and 2 imply that

so the conditional average treatment effect given covariates and unobservables is the

same in the trial and target populations. The external validity bias is thus
Ep[TE) = Ep[TE] = (Ep, [C] - Ep [C) y + (En, [U] - Ep [U])'5. (2)

Hence, the external validity bias depends on (a) the shift in the mean of (C;, U;) be-
tween the trial and target populations and (b) the importance of (C;, U;) for predicting
treatment effects.®

If 6 = 0, so the unobservables do not predict treatment effects, then external validity
bias depends only on the difference in means for the covariates, Ep, [C;] — Ep [C;], and
the coefficient . As discussed in the introduction the difference of means is sometimes

reported, but the coefficient v is rarely discussed. We can, however, estimate v as the

®Many antecedents for (2) exist in the literature. See for example Nyugen et al (2017).



difference in coefficients 4 = 4y — 4o for (§0,%1) calculated from the regression

(2

of Y; on C; in the treatment and control groups. If we assume that 6 = 0 we can easily

estimate (and correct) external validity bias.
2.4 Small-Selection Approximation

If we do not assume § = 0, the external validity bias depends on terms we cannot
estimate. To make progress we consider settings where the degree of selection is small,
and in particular consider behavior as (k,7) — 0. We then relate the external validity
bias to the bias estimated by assuming that 6 = 0. Given that it is common not to
formally address external validity at all, we think that considering the case where the
degree of selection is small is a natural first step.

Let vg denote the probability limit of our estimate 4 obtained from regression (1) in
the trial population. The probability limit of our bias estimate based on observables is
(Epg [Ci] — Ep [Cy]) vs. This estimated bias bears an intuitive relationship to the true

bias when the degree of selection is small.

Proposition 1 Under Assumptions 1 and 2, for (k,7) = X+ (R, T) and (R, T) fized, as

A—=0
EPS [TEZ] — Ep [TEI] _ ’)//Ecli + 5’2(]7’

(Epy [Ci] = Ep[Ci]) s vV Eck
provided ¥ 3¢k # 0, where Yo = Varp (C;) and Xy = Varp (U;) .

— 0,

This is our main result, and links the (estimable) selection-on-observables bias to

the true external validity bias.
Validity of Approximation Proposition 1 discusses behavior as (k,7) — 0. This

can be interpreted as an approximation result, and shows that

v'Yok + 0" ST
Y'Yk

Eps [TE;| — Ep [TE;] = (Eps [Ci] — Ep [Ci]) 75
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in the sense that the difference is of lower order for (x, 7) small. Since in practice we are
interested in settings with a nonzero degree of selection, it is reasonable to ask when this
approximation will be reliable. The proof of Proposition 1 in Appendix A proceeds by (i)
taking a first-order Taylor approximation of F, (C/x + U/T) and (ii) approximating s
by v. We expect that the result of Proposition 1 will provide a reasonable approximation
so long as (a) F, (C{k + U/T) is not overly nonlinear over the region containing most

realizations of (C;, U;) and (b) vs is close to 7.

Interpretation: The key unknown term in Proposition 1 is the selection ratio

Y'Yk 40 EyT

v
Y'Yk

This ratio measures the relative importance of treatment effect heterogeneity in ex-

plaining the observed and unobserved drivers of selection. In particular,

W14 Covp (TE;, T Ul)7
Covp (TE;, 'C5)

where we can interpret £'C; and 7'U; as the observed and unobserved drivers of selection.

To develop intuition, we consider four special cases.

Special Case 1 § = 0: unobservables are unrelated to treatment effects, so ¥ = 1 and

the correction for observable differences discussed above is valid.

Special Case 2 7 = 0: unobservables may predict treatment effects but play no role
in selection. We again have ¥ = 1, so the correction for observable differences is

(approximately) valid.

Special Case 2 6 # 0, 7 # 0, but ¢’Xy7 = 0: unobservables predict both treatment
effects and selection, but the unobserved drivers of selection and treatment effects
are unrelated. Hence, ¥ = 1 and the correction for observable differences is

(approximately) valid.



Special Case 4 (v,0) x (k,7T): the same combinations of observables and unobserv-

ables matter for both selection and treatment effects. Hence,

2
Rty

U=
Rz,

for R% the R-squared from the regression of TE; on X;. Here, ¥ can be interpreted
as the proportional increase in R? from including the unobservables U; in an
(infeasible) regression of T'E; on covariates. This implies that ¥ > 1, so the

correction for observable differences is a lower bound on the true bias.

The fourth special case and the general case are likely to be of the most interest, since
they do not assume away bias from selection on unobservables. The result in the fourth
special case delivers sharper conclusions, since we get a lower bound on the external

validity bias, but the result in the general case is more widely applicable.

3 Illustrative Application

To illustrate, we apply our results to data from Bloom et al (2015). Workers at a
Chinese call center were given an opportunity to volunteer for a work-from-home pro-
gram. Approximately 50% volunteered, and treatment was randomized among eligible
volunteers. The results suggest substantial productivity gains from working from home.

A follow-up question is whether it would be productivity-enhancing to have many
or all eligible call center employees work from home. If the ATE estimated in the
experiment is valid for the entire workforce, the answer is likely yes. Given the sample
construction, however, it seems plausible that the ATE for the experimental sample is

not representative of the whole population.

Target Population Data The natural target population is the set of all eligible
workers. Bloom et al (2015) collect some basic characteristics for this population,
which are compared to characteristics of the volunteers in Table 1. There are some
differences: the volunteers have longer commutes, are more likely to be male, and are

more likely to have children.



Correcting for Observables We first correct for selection on observables. We esti-
mate v as the difference 4 = 41 —4q in coefficients from the regression (1), and estimate
the selection on observables bias as (E ps [Ci] — Ep [C’i]>/&5, where we use E to denote
the sample average.® Results are reported in Table 2, which shows that correcting for

observable differences slightly increases the estimated effect, from 0.271 to 0.2809.

Accounting for Unobservables We next consider the scope for further bias due to
selection on unobservables. We bound the target population average treatment effect
under the assumption that W € [1, 2], so bias due to unobservables operates in the same
direction as, and is no larger than, bias due to observables. Estimates are reported in
column three of Table 2. These are similar to the baseline results.

We then ask what value W (0) of the selection ratio ¥ would yield an average treat-
ment effect of zero in the target population. This value is equal -14.7, so the bias from
unobservables would have to be much larger than the estimated bias from observables,
and operate in the opposite direction, in order to overturn the main result.

Since the observables in this application include variables (e.g. commute time,
whether the worker has children) that seem likely to play an important role in the
decision to work from home, both approaches suggest to us that the results of Bloom
et al (2015) are robust to a wide range of plausible assumptions about the role of

unobservables.

6We take C; to include all of the variables reported in Table 1 and, for non-binary variables, their
squares.



Table 1: Observable Characteristics, Bloom et al (2015)

Variable Population: Mean (SD) Sample: Mean (SD)
Age 21.4 (3.30) 24.7 (3.65)
Gross Wage 3.13 (0.84) 3.09 (0.78)
Any Children 0.155 (0.362) 0.201 (0.402)
Married 0.265 (0.442) 0.310 (0.463)
Male 0.385 (0.487) 0.438 (0.497)
At Least Tertiary Educ 0.456 (0.498) 0.399 (.490)
Commute Time (Min) 96.9 (61.1) 111.7 (62.7)
Job Tenure 32.4 (19.7) 31.2 (20.6)

Notes: This table reports moments for the sample and target population in Bloom et al (2015).

Table 2: Application: Bloom et al (2015)

Outcome Baseline Effect Observable Adjusted | Bounds, ¥ € [1,2] | ¥(0)
Job Performance 0.271 0.289 [0.289, 0.309] -14.7
(0.22, 0.32) (0.23,0.34)

Notes: Bootstrapped 95% confidence intervals are reported below the baseline and observables-adjusted estimates. One
can also calculate confidence sets for the last two columns, but for brevity we do not explore this possibility here.

4 Conclusion

This paper considers the problem of external validity, and derives an approximation
which relates the total external validity bias to the bias from observables.

Our application to Bloom et al (2015) is representative of a class of applications
in which participants select in to a study (e.g. Attanasio, Kugler and Meghir (2011),
Gelber, Ibsen and Kessler (2016), Muralidharan et al (2018)). Our approach applies
more broadly, however, including to settings where researchers select a set of areas
or treatment units for their experiments (i.e. Muralidharan and Sundararaman (2011);
Olken et al (2014); Alcott (2015)).” The only additional data requirement to implement
our approach is knowledge of some characteristics of the target population. In many

cases one could use demographic variables, where moments in the target population

"Note that when the selection occurs at a different level than treatment, S; will not be iid across
units ¢ but our results continue to apply provided we define C; and U; to vary at same level as the
selection decision.
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may be available from public datasets.

Appendix A: Proof of Proposition 1

Note that under Assumptions 1 and 2, as in Olsen et al (2013),

Epg [TEi] — Ep[TE;] = Ep [(W; — 1) TE;] = Covp (W;, TE;)

_ Fy (Cz{""_UZ{T)
for Wi = Z T (0]
By the mean value theorem F), (Cjx + UjT) = F'(0)+f, (v]) (Cjx + U/T) for f, (-) the

(2

density of v; and v} an intermediate value. Since f, (-) is continuously differentiable with
a bounded derivative it is Lipschitz, and | f, (v) — f, (0)| < Kv for some constant K and
all v. As a result, |F, (0)+ f, (0) (C'k + UlT) — F, (C!k + U/T)| < K - (Clr + UlT)?.
Hence, for (k,7) = X (R, 7T), Covp (W;, TE;) is equal to

Covp ( E, (0) + fo (0) (CZ(/{ + UZ{T)

TE; )+0 (X) = A '+ Ulr, TE;)+0 (X
Bp [F, (0) + £, (0) (Cix + U] ’)*O( ) = AerCovp (Cir + Ulr. TE)+0 (V)

where ¢; = f, (0) /Ep [F, (0)] # 0. By Assumption 1, Covp (Clk + U/, TE;) = v'3ck+
8y, so Covp (Wi, TE;) = Ay (V' Sck + 0'Sy7) + O (A?) . By the same argument

Ep, [C;] — Ep [Ci] = Covp (W;, C;) = AeyCovp (Cik + Ujt, C;) = Aeri'S¢ + O ()\2) ,

and
Eps [TEZ] — Ep [TE/’z] _ Y Eclil —+ 5~ZUT X O (/\2) ’
(Eps [Ci] = Ep[Ci]) v VEck

where the denominator on the right hand side is nonzero by assumption.

This nearly completes the proof, except that the proposition replaces the ~ on
the left hand side by ~v5. Note, however, that random assignment implies vg =
Varp, (C’i)*1 Covp, (C;, TE;) . By arguments along the same lines as above, Varp, (C;)—
Varp (C;) = O (N) and Covp, (Cy, TE;) — Covp (C;, TE;) = O (\) as A — 0. Hence

(Epy [Ci] — Ep [Ci]) (vs —7) = O (X?),

11



from which the result follows immediately. [J
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