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Abstract

Motivated by the problem of sustaining cooperation in large communities with lim-

ited information, we analyze the relationship between population size, discounting, and

monitoring in repeated games with individual-level noise. We identify the ratio of the

discount rate and the per-capita channel capacity of the monitoring structure as a key

determinant of the possibility of cooperation. If this ratio is large, cooperation is im-

possible: all repeated-game Nash equilibrium payoffs are consistent with approximately

myopic play. Conversely, if this ratio is small and the monitoring structure is given

by random monitoring, where each player is monitored with the same probability in

every period, cooperation is possible: a folk theorem holds. Moreover, if attention is re-

stricted to linear perfect public equilibria (which model collective incentive-provision),

cooperation is possible only under much more severe parameter restrictions.
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Two neighbours may agree to drain a meadow which they possess in common;

because it is easy for them to know each other’s mind; and each must perceive

that the immediate consequence of his failing in his part is the abandoning of the

whole project. But it is very diffi cult, and indeed impossible, that a thousand

persons should agree in any such action; it being diffi cult for them to concert so

complicated a design, and still more diffi cult for them to execute it; while each

seeks pretext to free himself of the trouble and expense, and would lay the whole

burden on others.

– David Hume, A Treatise of Human Nature

1 Introduction

Hume’s intuition notwithstanding, large groups of individuals often have a remarkable ca-

pacity for cooperation, even in the absence of external contractual enforcement (Ostrom,

1990; Ellickson, 1991; Seabright, 2004). Cooperation in large groups usually seems to rely

on accurate monitoring of individual agents’actions, together with sanctions that narrowly

target deviators. These are key features of the community resource management settings

documented by Ostrom (1990), as well as the local public goods provision environment stud-

ied by Miguel and Gugerty (2005), who in a development context found that parents who

fell behind on their school fees and other voluntary contributions faced social sanctions.1

Large cartels appear to operate on similar principles. For example, the Federation of Que-

bec Maple Syrup Producers– a government-sanctioned cartel that organizes more than 7,000

producers, accounting for over 90% of Canadian maple syrup production– strictly monitors

its members’ sales, and producers who violate its rules regularly have their sugar shacks

searched and their syrup impounded, and can also face fines, legal action, and ultimately the

seizure of their farms (Kuitenbrouwer, 2016; Edmiston and Hamilton, 2018). In contrast,

we are not aware of any evidence that individual maple syrup producers– or the parents

studied by Miguel and Gugerty, or the farmers, fishers, and herders studied by Ostrom– are

motivated by the fear of starting a price war or other general breakdown of cooperation.

The principle that large-group cooperation requires precise monitoring and personalized

1Similar effects have also been found in the context of group lending (Karlan, 2007; Feigenberg, Field,
and Pande, 2013).
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sanctions seems like common sense, but it is not reflected in current repeated game models.

The standard analysis of repeated games with patient players (e.g., Fudenberg, Levine, and

Maskin, 1994; henceforth FLM) fixes all parameters of the game except the discount factor

δ and considers the limit as δ → 1. This approach does not capture situations where, while

players are patient (δ ≈ 1), they are not necessarily patient in comparison to the population

size N (so (1− δ)N may or may not be close to 0). In addition, since standard results are

based on statistical identification conditions that hold generically regardless of the number

of players, they also do not capture the possibility that more information may be required

to support cooperation in larger groups. Finally, since there is typically a vast multiplicity

of cooperative equilibria in the δ → 1 limit, standard results also say little about what kind

of strategies must be used to support large-group cooperation: for example, whether it is

better to rely on personalized sanctions (e.g., fines) or collective ones (e.g., price wars).

This paper extends the standard analysis of repeated games with imperfect monitoring

by letting the population size, discount factor, stage game, and monitoring structure all vary

together. These aspects of the repeated game can vary in a general manner: we assume

only a uniform upper bound on the magnitude of the players’ stage-game payoffs and a

uniform lower bound on the amount of “individual-level noise.”Our main results provide

necessary and suffi cient conditions for cooperation as a function of N , δ, and a measure

of the “informativeness” of the monitoring structure. We also show that cooperation is

possible only under much more restrictive conditions if society exclusively relies on collective

sanctions, such as price wars (or, a la Hume, “the abandoning of the whole project”). In sum,

we show that large-group cooperation requires a lot of patience and/or a lot of information,

and cannot be based on collective sanctions for reasonable parameter values.

We now preview our main ideas and results. We model individual-level noise by assum-

ing that each player i’s action ai stochastically determines an individual-level outcome xi,

independently across players, and that the distribution of observed signals y (the outcome

monitoring structure) depends on the action profile a = (ai) only through the outcome pro-

file x = (xi). This setup follows earlier work by Fudenberg, Levine, and Pesendorfer (1998;

henceforth FLP) and al-Najjar and Smorodinsky (2000, 2001; henceforth a-NS). We find that

a useful measure of the informativeness of the outcome monitoring structure is its channel

capacity, C. This is a standard measure in information theory, which in our context is defined

as the maximum expected reduction in uncertainty (entropy) about the outcome profile x

2



that results from observing the signal y. Channel capacity obeys the elementary inequality

C ≤ log |Y |, where Y is the set of possible signal realizations. Due to this inequality, using

channel capacity permits more general results as compared to measuring informativeness by

the number of possible signal realizations (as FLP and a-NS do). At the same time, channel

capacity is convenient to work with, as it lets us apply tools from information theory such

as Pinsker’s inequality and the chain rule for mutual information, which play key roles in

our analysis.

Our first result (Theorem 1) is that if (1− δ)N/C– the ratio of the discount rate 1−δ and
the per-capita channel capacity C/N– is large, then cooperation is impossible: all repeated

game Nash equilibrium payoffs are consistent with approximately myopic play. This result

builds on a general necessary condition for cooperation in repeated games that we establish

in a companion paper (Sugaya and Wolitzky, 2023a; henceforth SW). Compared to that

result, the key difference is that here we consider games with individual-level noise, which

allows a connection between the main information measure in SW (the χ2-divergence of the

signal distribution following a deviation from the equilibrium signal distribution) and the

channel capacity of the outcome monitoring structure.

Our second result (Theorem 2) provides a partial converse to Theorem 1 for a specific

monitoring structure: random monitoring, where in each period a certain number M out of

the N players are chosen at random and their outcomes are perfectly revealed, while nothing

is learned about the other players’outcomes. Under random monitoring, channel capacity is

proportional to the number of monitored playersM , and we show that if (1− δ)N log (N) /M

is small then cooperation is possible: a large set of payoffs arise as perfect equilibria in the

repeated game, i.e., a folk theorem holds. This result implies that the condition on δ, N ,

and C in Theorem 1 is tight up to log (N) slack. Moreover, while random monitoring is

admittedly special, in Appendix B we generalize Theorem 2 to a similar result that holds

for any public, product-structure monitoring (Theorem 4).

Our final result (Theorem 3) considers the implications of restricting society to “col-

lective” sanctions and rewards under public monitoring. We formalize this restriction by

focusing on linear perfect public equilibria, where all on-equilibrium-path continuation payoff

vectors lie on a line in RN . When the stage game is symmetric and the line in question is

the 45◦ line, linear equilibria reduce to strongly symmetric equilibria, which are a standard

model of collusion through the threat of price wars (Green and Porter, 1984; Abreu, Pearce,
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and Stacchetti, 1986; Athey, Bagwell, and Sanchirico, 2004). We show that if there exists

ρ > 0 such that (1− δ) exp (N1−ρ) is large, then all equilibrium payoffs are consistent with

approximately myopic play. Since this condition holds even if N → ∞ much slower than

δ → 1, we interpret this result as a near-impossibility theorem for large-group cooperation

based on collective incentives.2

1.1 Related Literature

Prior research on repeated games has established folk theorems in the δ → 1 limit for fixed

N , as well as “anti-folk”theorems in the N → ∞ limit for fixed δ, but has not considered

the case where N and δ vary together.

The closest paper is our companion work, SW. That paper establishes general necessary

and suffi cient conditions for cooperation in repeated games as a function of discounting and

monitoring. Relative to SW, the current paper introduces two features that are specific

to large-population games: individual-level noise and the possibility that N varies together

with discounting and monitoring. Individual-level noise is crucial for our anti-folk theorem

(Theorem 1), while letting N vary with discounting and monitoring is the key novelty in our

folk theorems (Theorems 2 and 4).

The most relevant folk theorems are due to FLM, Kandori and Matsushima (1998), and

SW. However, these papers fix the stage game while taking δ → 1 (and also letting monitoring

vary, in the case of SW), and their proof approach does not easily extend to the case where

N and δ vary together. Our proof of Theorems 2 and 4 takes a different approach, which is

based on “block strategies”as in Matsushima (2004) and Hörner and Olszewski (2006), and

involves a novel application of some large deviations bounds.

Other than that in SW, the most relevant anti-folk theorems are those of FLP, a-NS, Pai,

Roth, and Ullman (2014), and Awaya and Krishna (2016, 2019). Following earlier work by

Green (1980) and Sabourian (1990), these papers establish conditions under which play is

approximately myopic as N →∞ for fixed δ.3 These conditions can be adapted to the case

2It is well-known that strongly symmetric equilibria are typically less effi cient than general perfect public
equilibria (see, e.g., FLM). Our result is instead that the relationship between N and δ required for any
non-trivial incentive provision differs dramatically between strongly symmetric/linear equilibria and general
ones.

3Awaya and Krishna instead establish conditions under which cheap talk is valuable. Green and
Sabourian’s papers impose a continuity condition on the mapping from action distributions to signal distri-
butions. Continuity is implied by FLP/a-NS’s individual noise assumption.
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where N , δ, and monitoring vary together, but the results so obtained are weaker than ours,

and are not tight up to log terms. The key difference is that these results rely on bounds on

the strength of players’incentives that have a worse order in 1 − δ than that given in SW.
In sum, the earlier literature established anti-folk theorems as N →∞ for fixed δ, while our

paper tightly (up to log terms) characterizes the tradeoff among N , δ, and monitoring.4

Since the monitoring structure varies with δ in our model, we also relate to repeated

games with frequent actions, where the monitoring structure varies with δ in a particular,

parametric manner (e.g., Abreu, Milgrom, and Pearce, 1991; Fudenberg and Levine, 2007,

2009; Sannikov and Skrzypacz, 2007, 2010). The most relevant results here are Sannikov

and Skrzypacz’s (2007) theorem on the impossibility of collusion with frequent actions and

Brownian noise, as well as a related result by Fudenberg and Levine (2007). These results

relate to our anti-folk theorem for linear equilibrium, as we explain in Section 5.5

Finally, in Sugaya and Wolitzky (2021) we studied the relationship among N , δ, and

monitoring in repeated random-matching games with private monitoring and incomplete

information, where each player is “bad”(i.e., a Defect commitment type) with some prob-

ability. In that model, society has enough information to determine which players are bad

after a single period of play, but this information is disaggregated, and supporting coopera-

tion requires suffi ciently quick information diffusion. In contrast, in the current paper there

is complete information and monitoring can be public, so the analysis concerns monitoring

precision (the “amount”of information available to society) rather than the speed of infor-

mation diffusion (the “distribution”of information). In general, whether the key obstacle to

cooperation is that societal information is insuffi cient or disaggregated distinguishes “large-

population repeated games,”such as FLP, a-NS, and the current paper, from “community

enforcement”models, such as Kandori (1992), Ellison (1994), and our earlier paper.

2 Model

We consider a general model of repeated games with individual-level noise and imperfect

monitoring.

4Farther afield, there is also work suggesting that repeated-game cooperation is harder to sustain in larger
groups based on evolutionary models (e.g., Boyd and Richerson, 1988), simulations (e.g., Bowles and Gintis,
2011; Chapter 4), and experiments (e.g., Camera, Casari, and Bigoni, 2013).

5Another somewhat related question is the rate of convergence of the equilibrium payoff set as δ → 1
(Hörner and Takahashi, 2016; Sugaya and Wolitzky, 2023b).
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Stage Games. A stage game G = (I, A, u) consists of a finite set of players I =

{1, . . . , N}, a finite product set of actions A = ×i∈IAi, and a payoff function ui : A→ R for

each i ∈ I. The interpretation is that ui (a) is player i’s expected payoff at action profile a.

We denote the range of player i’s payoff function by ūi = maxa,a′ ui (a)− ui (a′).

Noise. There is a finite product set of individual outcomes X = ×i∈IXi and a row-

stochastic noise matrix πi ∈ [0, 1]Ai×Xi for each player i such that, when action profile a ∈ A
is played, outcome profile x ∈ X is realized with probability πa,x =

∏
i π

i
ai,xi

. We call the

pair (X, π) a noise structure. Let πi = minai,xi π
i
ai,xi

and assume that πi > 0 for each i: we

call this assumption individual-level noise. The point of this setup is that signals will depend

on a only through x.6

For a natural example of a noise structure, suppose that there is some independent noise

in the execution of the players’actions, so that ai is player i’s intended action and xi is her

realized action. In this case, X = A, and πai,a′i is the probability that player i “trembles”to

a′i when she intends to take ai. We refer to this example as noisy actions.

Monitoring. An outcome monitoring structure (Y, q) consists of a finite product set

of signal profiles Y = ×i∈IY i and a family of conditional probability distributions q (y|x).

The distribution of signal profiles thus depends only on the realized outcome profile. The

outcome monitoring structure (Y, q) is a primitive object in our model: we are interested in

properties of (Y, q) that (together with the other model primitives) are necessary or suffi cient

for supporting cooperative outcomes.

Given an outcome monitoring structure (Y, q), we denote the probability of signal profile

y at action profile a by p (y|a) =
∑

x πa,xq (y|x). We refer to the pair (Y, p) as the action

monitoring structure induced by (X, π, Y, q). The action monitoring structure (Y, p) is a

derived object in our model: it plays an important role in our analysis, but we will avoid

imposing assumptions directly on (Y, p), and instead consider the implications of properties

of the noise structure (X, π) and the outcome monitoring structure (Y, q) for (Y, p).7

6Since we will assume that players do not observe their own payoffs in addition to their signals, it is
natural to require that players’realized payoffs are determined by their signals, and hence depend on a only
through x. However, this assumption is not necessary for our analysis.

7Our companion paper, SW, allows general monitoring structures and directly considers properties of the
action monitoring structure (Y, p). The current paper imposes the additional structure that (Y, p) factors
into a noise structure (X,π) and an outcome monitoring structure (Y, q). This additional structure lets us
formulate the individual-level noise assumption.
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Let Ȳ ⊆ Y denote the set of signal profiles y such that there exists an outcome profile x

at which q (y|x) > 0. Since πi > 0 for each i, at any action profile a, signals are supported

on Ȳ : p (y|a) > 0 iff y ∈ Ȳ .

Mutual Information and Channel Capacity. Given a distribution of outcomes

ξ ∈ ∆ (X), a standard measure of the informativeness of a signal y about the realized

outcome x is the mutual information between x and y, defined as

I (ξ) =
∑

x∈X,y∈Ȳ

ξ (x) q (y|x) log

(
q (y|x)∑

x′∈X ξ (x′) q (y|x′)

)
.8

Mutual information measures the expected reduction in uncertainty (entropy) about x that

results from observing y. The mutual information between x and y is an endogenous object

in our model, as it depends on the distribution ξ of x, which in turn is determined by the

players’actions, a. Next, denote the set of outcome distributions ξ that can arise for some

action distribution α under noise structure (X, π) by

ϑ =

{
ξ ∈ ∆ (X) : ∃α ∈ ∆ (A) such that ζ (x) =

∑
a∈A

α (a) πa,x for all x ∈ X
}
.

Finally, define the channel capacity of the tuple (X, π, Y, q) as

C = max
ξ∈ϑ

I (ξ) .

Channel capacity is an exogenous measure of the informativeness of y about x, as it is defined

as a function of only the noise structure (X, π) and the outcome monitoring structure (Y, q).9

Note that C is no greater than the entropy of the signal y, which in turn is at most log |Y |
(Theorem 2.6.3 of Cover and Thomas, 2006; henceforth CT). Channel capacity plays a

central role in information theory, because it is the maximum rate at which information can

be transmitted over a noisy channel (Shannon’s channel coding theorem, CT Theorem 7.7.1).

Our analysis does not use this theorem; we only use channel capacity as an exogenous upper

bound on mutual information. In turn, mutual information arises in our analysis because

8In this paper, all logarithms are base e.
9We define C as the maximum of I (ζ) over ζ ∈ ϑ rather than ζ ∈ ∆ (X), because only ζ ∈ ϑ can ever

arise. This definition makes Theorem 1 (the only result stated in terms of C) stronger than it would be if
we instead took the maximum over all ζ ∈ ∆ (X).
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it obeys useful properties, in particular the chain rule (CT, Theorem 2.5.2) and Pinsker’s

inequality (CT, Lemma 11.6.1). These properties play key roles in the proof of Theorem 1.10

Some Special Monitoring Structures. Some of our results will assume that moni-

toring is public and has a product structure. A monitoring structure (Y, q) is public if all

players observe the same signal: yi = yj for all i, j ∈ I, y ∈ Y . In this case, we ease no-

tation by identifying the public signal with any one player’s signal. A public monitoring

structure (Y, q) has a product structure if there exists sets (Yi)i∈I and a family of conditional

distributions (qi (yi|xi))i∈I,,yi∈Yi,xi∈Xi such that Y =
∏

i Yi and q (y|x) =
∏

i qi (yi|xi) for all
y, x: that is, the public signal y consists of conditionally independent signals of each player’s

individual outcome.11 Note that if (Y, q) is public and has a product structure, then so does

(Y, p), meaning that there exists a family of conditional distributions (pi (yi|ai))i∈I,,yi∈Yi,ai∈Ai
(given by pi (yi|ai) =

∑
xi
πiai,xiqi (yi|xi)) such that p (y|a) =

∏
i pi (yi|ai) for all y, a.

A particular public, product monitoring structure is random monitoring. Under random

monitoring, at the end of every period a certain number M of players are selected uniformly

at random, and the public signal perfectly reveals their identities and their realized individual

outcomes. That is, under random monitoring of M players, Yi = Xi ∪ {∅} for all i, and

qi (yi|xi) =


M
N

if yi = xi,

0 if yi ∈ Xi\ {xi} ,
1− M

N
if yi = ∅.

Note that the channel capacity of random monitoring is no more than M log (maxi |Xi|).

Repeated Games. A repeated game with individual-level noise Γ = (G,X, π, Y, q, δ)

is described by a stage game, a noise structure, an outcome monitoring structure, and a

discount factor δ ∈ [0, 1). In each period t = 1, 2, . . ., (i) the players observe the outcome

of a public randomizing device zt drawn from the uniform distribution over [0, 1], (ii) the

players take actions a, (iii) the outcome x is drawn according to πa,x, (iv) the signal y is

10We are not the first to recognize the value of entropy methods in repeated games. These methods have
previously been used to study issues including complexity and bounded recall (Neyman and Okada, 1999,
2000; Hellman and Peretz, 2020), communication (Gossner, Hernández, and Neyman, 2006), and reputation
effects (Gossner, 2011; Ekmekci, Gossner, and Wilson, 2011; Faingold, 2020). However, other than sharing
a reliance on entropy methods, our results and proofs are not very related to these papers’.
11Our notation is thus that Y i denotes the set of possible signals observed by player i (for any monitoring

structure), while Yi denotes the set of public signals of player i’s individual outcome (for public, product
structure monitoring).

8



drawn according to q (y|x), and (v) each player i observes yi.12 A history hti for player i at

the beginning of period t thus takes the form hti =
(

(zt′ , ai,t′ , y
i
t′)
t−1

t′=1 , zt

)
, while a strategy

σi for player i maps histories hti to distributions over actions ai,t. A repeated game outcome

µ ∈ ∆ ((A×X × Y )∞) (not to be confused with a single profile of individual outcomes x)

is a distribution over infinite paths of actions, individual outcomes, and signals. Players

maximize discounted expected payoffs with discount factor δ.

Under public monitoring, the public history ht at the beginning of period t takes the form

ht =
(
(zt′ , yt′)

t−1
t′=1 , zt

)
. A strategy σi for player i is public if it depends on player i’s history

hti only through its public component h
t. A perfect public equilibrium (PPE) is a profile of

public strategies that, beginning at any period t and any public history ht, forms a Nash

equilibrium from that period on.13 The set of PPE payoff vectors is denoted by E ⊆ RN .
For any ū > 0 and π > 0, we say that a repeated game Γ is (ū, π)-bounded if the range

of stage-game payoffs is bounded above by ū and individual-level noise is bounded below by

π: that is, if ūi ≤ ū and πi ≥ π for all i. Note that if Γ is (ū, π)-bounded then |Xi| ≤ 1/π

for all i.

Target Payoffs. Finally, we define some relevant sets of payoff vectors. The feasible

payoff set is F = co
{
{u (a)}a∈A

}
⊆ RN (where co denotes convex hull). Let F ∗ ⊆ F denote

the set of payoff vectors that weakly Pareto-dominate a payoff vector which is a convex

combination of static Nash payoffs: that is, v ∈ F ∗ if v ∈ F and there exists a collection

of static Nash equilibria (αn) and non-negative weights (βn) such that v ≥
∑

n βnu (αn)

and
∑

n βn = 1.14 For each v ∈ RN and ε > 0, let Bv (ε) =
∏

i [vi − ε, vi + ε] and let

B (ε) =
{
v ∈ RN : Bv (ε) ⊆ F ∗

}
. That is, B (ε) is the set of payoff vectors v ∈ RN such that

the cube with center v and side-length 2ε lies entirely within F ∗.

Next, a manipulation for a player i is a mapping si : Ai → ∆ (Ai). The interpretation is

that when player i is “supposed to play”ai, she instead plays si (ai). Player i’s gain from

manipulation si at a (possibly correlated) action profile distribution α ∈ ∆ (A) is

gi (si, α) =
∑
a

α (a) (ui (si (ai) , a−i)− ui (a)) .

12Our analysis and results are unchanged if each player i also observes her own individual outcome xi.
13As usual, this definition allows players to consider deviations to arbitrary, non-public strategies; however,

such deviations are irrelevant because, whenever a player’s opponents use public strategies, she has a public
strategy as a best response.
14Here and throughout, we linearly extend payoff functions to mixed actions.
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Player i’s maximum gain at α ∈ ∆ (A) is ḡi (α) = maxsi:Ai→∆(Ai) gi (si, α). For any ε > 0,

the set of action distributions consistent with ε-myopic play is

A (ε) =

{
α ∈ ∆ (A) :

1

N

∑
i

ḡi (α) ≤ ε

}
,

and the set of payoff vectors consistent with ε-myopic play is

W (ε) =
{
v ∈ RN : v = u (α) for some α ∈ A (ε)

}
.

That is, an action distribution α is consistent with ε-myopic play if the per-player average

deviation gain at α is less than ε. Note that ḡi (α) is convex as the maximum of affi ne

functions, and hence A (ε) and W (ε) are convex sets.

Our anti-folk theorem will provide conditions under which all repeated game equilibrium

payoff vectors are contained in the set W (ε), while our folk theorem will provide conditions

under which all payoff vectors in the set B (ε) can be attained as repeated game equilibria.

These results are interesting insofar as W (ε) is “small” and B (ε) is “large.”As a check

that B (ε) is indeed reasonably large, in Appendix A we consider a canonical public-goods

game where each player chooses Contribute or Don’t Contribute, and a player’s payoff is

the fraction of players who contribute less a constant c ∈ (0, 1) (independent of N) if she

contributes herself. In this game, we show that for every v ∈ (0, 1− c) there exists ε > 0

such that the symmetric payoff vector where all players receive payoff v lies in B (ε), for all

N . We discuss W (ε) in Section 6, following our main results.

3 Non-Cooperation under Insuffi cient Monitoring

3.1 Anti-Folk Theorem

Our first result is that whenever per-capita channel capacity is much smaller than the dis-

count rate, all Nash equilibrium payoff vectors are consistent with approximately myopic

play. Cooperation in large groups thus requires a lot of information or a low discount rate.

Theorem 1 Fix any ū > 0 and π > 0. For any ε > 0, there exists k > 0 such that, in any
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(ū, π)-bounded repeated game where

(1− δ)N
C

> k,

all Nash equilibrium payoff vectors are consistent with ε-myopic play.

We emphasize that Theorem 1 holds for all monitoring structures (including private

monitoring) and all Nash equilibria (so no equilibrium refinement is needed).

When N is large, the implied necessary condition for cooperation– that (1− δ)N/C is

not too large– is easier to satisfy in some classes of repeated games than in others. For

example, if the space of possible signal realizations Y is fixed independently of N , then,

since C ≤ log |Y |, the necessary condition implies that δ must converge to 1 at least as fast

as N →∞, which is a restrictive condition. This negative conclusion applies for traditional
applications of repeated games with public monitoring where the signal space is fixed inde-

pendent of N , such as when the public signal is the market price facing Cournot competitors,

the level of pollution in a common water source, the output of team production, or some

other aggregate statistic.

However, in other types of games C naturally scales linearly with N , so that (1− δ)N/C
is small whenever players are patient (regardless of the population size). In repeated games

with random matching (Kandori, 1992; Ellison, 1994; Deb, Sugaya, and Wolitzky, 2020),

players match in pairs each period and yit = am(i,t),t, where m (i, t) ∈ I\ {i} denotes player i’s
period-t partner. In these games, C = N log |Ai|, so per-capita channel capacity is indepen-
dent of N . Intuitively, in random matching games each player gets a distinct signal of the

overall action profile, so the total amount of information available to society is proportional

to the population size. Channel capacity also scales linearly with N in public-monitoring

games where the public signal is a vector that includes a distinct signal of each player’s ac-

tion, as in the ratings systems used by websites like eBay and AirBnB. In general, C/N may

be constant in games where players are monitored “separately,”rather than being monitored

jointly through an aggregate statistic.

Remark 1 In applications like Cournot competition, pollution, or team production, the sig-

nal space may be modeled as a continuum, in which case the constraint C ≤ log |Y | is
vacuous. However, our results extend to the case where Y is a compact metric space and

there exists another compact metric space Z and a function fN : XN → Z (which can vary
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with N) such that the signal distribution admits a conditional density of the form qY |Z (y|z),

where Y , Z, and qY |Z are fixed independent of N . (For example, in Cournot competition

z is industry output and y is the market price, which depends on z and a noise term with

variance fixed independent of N .) In this case,

C = max
ξ∈ϑ

∫
y∈Ȳ

∑
x∈X

ξ (x) qY |Z
(
y|fN (x)

)
log

(
qY |Z

(
y|fN (x)

)∑
x′∈X ξ (x′) qY |Z (y|fN (x′))

)
,

which is bounded by

C̄ = max
qZ∈∆(Z)

∫
y∈Ȳ

∫
z∈Z

qZ (z) qY |Z (y|z) log

(
qY |Z (y|z)∫

z′∈Z qZ (z′) qY |Z (y|z′)

)
.

Since C̄ is independent of N , it follows that C is bounded independent of N .

Remark 2 Prior results by FLP, a-NS, and Pai, Roth, and Ullman (2014) establish anti-

folk theorems as N → ∞ for fixed δ. If we fix a noise structure and a product monitoring

structure and let N and δ vary together (with the same noise and monitoring structure for

each player), the arguments in these papers could be used to show that cooperation is impos-

sible if (1− δ)2N →∞. In contrast, Theorem 1 implies the stronger result that cooperation

is impossible if (1− δ)N → ∞. As we will explain, the improvement comes from applying

results from SW together with entropy methods. Moreover, Theorem 2 will imply that the

relationship between 1− δ and N in Theorem 1 is tight up to log terms.

The remainder of this section proves Theorem 1. The proof proceeds in three steps,

each of which is fairly straightforward given the right definitions and prior results. First, we

define a measure of the detectability of a manipulation under the induced action monitoring

structure (Y, p), and we show that every Nash equilibrium payoff vector is attained by an

action distribution where the average deviation gain is bounded in terms of the ratio of

the average detectability and the discount rate (Lemma 1). This lemma is an extension of

Theorem 1 of SW. Second, we show that with individual-level noise, detectability for each

player is bounded by the mutual information between that player’s individual outcome xi and

the signal profile y (Lemma 2). This lemma follows from the Cauchy-Schwarz and Pinsker

inequalities. Third, we show that with individual-level noise, the average across players i of

the mutual information between xi and y is bounded by the channel capacity C (Lemma 3).

12



This lemma follows from the chain rule for mutual information and the definition of channel

capacity. Combining the three lemmas delivers the theorem.

3.2 Bounding Incentives by Detectability

Our first lemma requires some terminology. First, define the detectability of a manipulation

si at an action profile distribution α as

χ2
i (si, α) =

∑
a∈A,y∈Ȳ

α (a) p (y|a)

(
p (y|a)− p (y|si (ai) , a−i)

p (y|a)

)2

. (1)

Note that detectability is a function of the induced action monitoring structure (Y, p). In-

deed, when α (a) = 1 for some action profile a, detectability is the χ2-divergence of the

manipulated signal distribution p (·|si (ai) , a−i) from the prescribed distribution p (·|a). The

χ2-divergence is a standard measure of statistical distance. Note that it is well-defined

because p has full support on Ȳ .

Second, denote the variance of player i’s payoff under an action profile distribution α ∈
∆ (A) by Vi (α) = Vara∼α (ui (a)). For any set of players J ⊆ I, action profile distribution

α ∈ ∆ (A), and profile of manipulations sJ = (si)i∈J for players i ∈ J , we also define “group
average”versions of the deviation gain gi, detectability χ2

i , and payoff variance Vi, by

gJ (sJ , α) =
1

|J |
∑
i∈J

gi (si, α) , χ2
J (sJ , α) =

1

|J |
∑
i∈J

χ2
i (si, α) , and VJ (α) =

1

|J |
∑
i∈J

Vi (α) .

Third, given a repeated game outcome µ ∈ ∆ ((A×X × Y )∞), let αµt ∈ ∆ (A) denote

the marginal distribution of period-t action profiles under µ, and define αµ ∈ ∆ (A), the

occupation measure over action profiles induced by µ, by

αµ (a) = (1− δ)
∞∑
t=1

δt−1αµt (a) for each a ∈ A.

Note that the payoff vector under repeated game outcome µ equals

(1− δ)
∞∑
t=1

δt−1
∑
a∈A

αµt (a)u (a) =
∑
a∈A

(1− δ)
∞∑
t=1

δt−1αµt (a)u (a) =
∑
a∈A

αµ (a)u (a) = u (αµ) .

(2)
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The occupation measure is thus a suffi cient statistic for the players’payoffs.

Now we can state our first lemma, which bounds the players’gains from manipulations at

an equilibrium outcome as a function of the discount factor, the detectability of the manipu-

lations, and the on-path variance of the players’payoffs, where deviation gain, detectability,

and variance are all evaluated at the equilibrium occupation measure.

Lemma 1 For any Nash equilibrium outcome µ, any set of players J , and any profile of

manipulations sJ , we have

gJ (sJ , α
µ) ≤

√
δ

1− δχ
2
J (sJ , αµ)VJ (αµ). (3)

In particular, any Nash equilibrium payoff vector is consistent with ε-myopic play, where

ε = max
sI ,a

√
δ

1− δχ
2
I (sI , a) ū2.

Proof. The special case of Lemma 1 where J is required to be a singleton is Theo-

rem 1 of SW.15 The result for general J follows as a corollary, because if gi (si, αµ) ≤√
(δ/ (1− δ))χ2

i (si, αµ)Vi (αµ) for each i ∈ I, then by Cauchy-Schwarz, for any J ⊆ I,

gJ (sJ , α
µ) =

1

|J |
∑
i∈J

gi (si, α
µ) ≤ 1

|J |
∑
i∈J

√
δ

1− δχ
2
i (si, αµ)Vi (αµ)

≤ 1

|J |

√
δ

1− δ
∑
i∈J

χ2
i (si, αµ)

∑
i∈J

Vi (αµ) =

√
δ

1− δχ
2
J (sJ , αµ)VJ (αµ).

The logic behind the singleton case of Lemma 1 is discussed at length in SW. Briefly, the

bound, (3), comes from considering a player’s incentive to manipulate according to si in each

period, and decomposing the variance of continuation payoffs across periods. An important

feature is that (3) is of order (1− δ)−1/2, whereas simpler bounds that consider incentives

in a single period only are naturally of order (1− δ)−1. This difference is a key reason why

Theorem 1 gives a tighter relationship between 1 − δ and N , as compared to prior results.
But it is not the whole story, because Lemma 1 relates 1 − δ and the maximum average

15Theorem 1 of SW is actually more general, in that it applies for any Nash equilibrium outcome in a
“blind”variant of the repeated game Γ, which has more equilibria than Γ itself. Theorem 1 in the current
paper likewise extends to the “blind game.”SW also do not assume individual-level noise.
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detectability maxsI ,a χ
2
I (sI , a), which in general is not tightly related to N . However, as we

now show, average detectability can be bounded by per-capita channel capacity in games

with individual-level noise.

3.3 Bounding Detectability by Channel Capacity

We start with an intermediate lemma, which follows from standard inequalities.

Lemma 2 For any player i, any manipulation si, and any action profile a, we have

χ2
i (si, a) ≤ 4Ia (xi; y)

π2
, (4)

where Ia (xi; y) denotes the mutual information between xi and y when action profile a is

played.

Proof. For any a ∈ A, let Pra denote the resulting probability distribution over (X, Y ). For

any xi ∈ Xi, y ∈ Y , and a ∈ A, we have Pra (xi, y) = πai,xi Pra (y|xi) = p (y|a) Pra (xi|y).

Hence, since πai,xi ≥ π, we have

(Pra (y|xi)− p (y|a))2 =

(
p (y|a)

πai,xi
(Pra (xi|y)− πai,xi)

)2

≤
(
p (y|a)

π
(Pra (xi|y)− πai,xi)

)2

.

(5)

For any player i, manipulation si, and action profile a, we thus have

χ2
i (si, a) =

∑
y(∈Ȳ )

(p (y|a)− p (y|si (ai) , a−i))2

p (y|a)
=
∑
y

(∑
xi

(
πai,xi − πsi(ai),xi

)
Pra (y|xi)

)2

p (y|a)

=
∑
y

(∑
xi

(
πai,xi − πsi(ai),xi

)
(Pra (y|xi)− p (y|a))

)2

p (y|a)

≤
∑
xi

(
πai,xi − πsi(ai),xi

)2
∑
y

∑
xi

(Pra (y|xi)− p (y|a))2

p (y|a)

≤ 2

π2

∑
y

p (y|a)
∑
xi

(Pra (xi|y)− πai,xi)
2 ≤ 2

π2

∑
y

p (y|a)

(∑
xi

|Pra (xi|y)− πai,xi|
)2

≤ 4

π2

∑
y

p (y|a)
∑
xi

Pra (xi|y) log

(
Pra (xi|y)

πai,xi

)
=

4I (xi; y|a)

π2
,
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where the first inequality follows by Cauchy-Schwarz, the second follows by (5) and∑
xi

(
πai,xi − πa′i,xi

)
≤ 2, the third is immediate, and the fourth follows by Pinsker’s in-

equality (CT, Lemma 11.6.1).

We can now use Lemma 2, the chain rule for mutual information, and the independence

of individual-level noise to bound average detectability by per-capita channel capacity.

Lemma 3 For any set of players J , any profile of manipulations sJ , and any action profile

a, we have

χ2
J (sJ , a) ≤ 4C

π2 |J | . (6)

Proof. By Lemma 2, for any set of players J ⊆ I, any profile of manipulations sJ , and any

action profile a ∈ A, we have

χ2
J (sJ , a) =

1

|J |
∑
i∈J

χ2
i (si, a) ≤ 4

π2 |J |
∑
i∈J
I (xi; y|a) =

4

π2 |J |I (xJ ; y|a) ,

where the last equality follows by the chain rule for mutual information (CT, Theorem 2.5.2),

because (xi)i∈J are independent conditional on a. The proof is completed by showing that

I (xJ ; y|a) ≤ C. This holds because I (xJ ; y|a) = I (x; y|a)−I
(
xI\J ; y|a, xJ

)
≤ I (x; y|a) ≤ C,

where the equality follows by the chain rule, the first inequality follows because mutual

information is non-negative (CT, Theorem 2.6.3), and the second inequality follows by the

definition of channel capacity, because the distribution of x given a lies in ϑ .

Theorem 1 now follows immediately from Lemmas 1 and 3.

Proof of Theorem 1. By Lemmas 1 and 3, all repeated game Nash equilibrium payoff

vectors are consistent with ε-myopic play, where

ε =

√
δ

1− δ ×
4C

π2N
× ū2.

For any fixed ū, π > 0, taking (1− δ)N/C suffi ciently large makes ε as small as desired.

Without individual-level noise, detectability under (Y, p) cannot be bounded by the chan-

nel capacity of (Y, q), and Theorem 1 fails. For example, suppose that the stage game is an

N -player prisoner’s dilemma with a binary public signal y, where y = 0 if every player co-

operates, and y = 1 if any player defects. Obviously, mutual cooperation is a repeated game

equilibrium outcome for a moderate discount factor, independent of N : under grim trigger

16



strategies where the signal y = 1 triggers permanent mutual defection, each player’s incen-

tives in this game are the same as in a 2-player prisoner’s dilemma with perfect monitoring.

This observation is consistent with Lemma 1 because detectability is infinite in this example:

when the other players cooperate, a deviation to defection is perfectly detectable. However,

channel capacity in this example is log 2, so detectability is infinitely greater than channel

capacity. Thus, without individual noise, a monitoring structure can detect deviations (and

support strong incentives) even if it not very “informative”in terms of channel capacity. In

contrast, Theorem 1 shows that with individual noise, only informative signals can support

strong incentives.

4 Cooperation under Random Monitoring

4.1 Folk Theorem

Our second result is a folk theorem for repeated games with random monitoring, which lets

the discount factor, the noise structure, the number of monitored players M , and the stage

game (including the number of players) vary simultaneously. This result implies that the

relationship among N , δ, and C in Theorem 1 is tight (up to a log (N) term).

We require that individual-level noise is not too extreme. Specifically, define the maxi-

mum detectability of a noise structure (X, π) as

∆ = sup

∆̃ :
∑

xi:πai,xi≥∆̃

πai,xi

(
πai,xi − πa′i,xi

πai,xi

)2

≥ ∆̃ for all i ∈ I, ai 6= a′i ∈ Ai

 .

This quantity is equal to the maximum detectability maxi,si,α χ
2
i (si, α) of the action moni-

toring structure (Y, p) induced by the noise structure (X, π) together with perfect monitoring

of outcomes (i.e., q (y|x) = 1 {y = x}), when we ignore outcomes that occur with probability
less than ∆.

For example, with noisy actions (i.e., X = A), maximum detectability satisfies

∆ > min
i,ai 6=a′i

πai,ai − 2πa′i,ai ,
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and is thus close to 1 when the “tremble probability”1−πai,ai is close to 0 for all i and ai.16

Our folk theorem for random monitoring is as follows.

Theorem 2 Fix any ū > 0 and ∆ > 0. For any ε > 0, there exists k > 0 such that, in any

(ū, 0)-bounded repeated game with random monitoring of M players and a noise structure

with maximum detectability ∆, where

(1− δ)N log (N)

M∆
< k,

we have B (ε) ⊆ E.

Theorem 2 implies that the relationship among N , δ, and C in Theorem 1 is tight up to

a log (N) term. To see this, note that in a (ū, π)-bounded game, random monitoring of M

players has a channel capacity of at most M log (1/π). Thus, under random monitoring of

M players with a noise structure with any fixed maximum detectability ∆ > 0, Theorem 1

implies that all Nash equilibrium payoff vectors are consistent with approximately myopic

play if (1− δ)N/M → ∞, while Theorem 2 implies that a perfect folk theorem holds if

(1− δ)N log (N) /M → 0.

In Appendix B, we generalize Theorem 2 from random monitoring to arbitrary public,

product-structure monitoring. This more general result (Theorem 4) is no harder to prove

than Theorem 2, but it is less tightly connected to Theorem 1 because it relies on statistical

conditions which are imposed directly on the action monitoring structure (Y, p). For this

reason, we defer Theorem 4 to the appendix.

4.2 Overview of the Proof of Theorem 2

Theorem 2 (as well as its generalized version, Theorem 4) is a folk theorem for PPE in

repeated games with public monitoring.17 The standard proof approach, following FLM and

Kandori and Matsushima (1998), relies on transferring continuation payoffs among the play-

ers along hyperplanes that are tangent to the boundary of the PPE payoffset. Unfortunately,

16This follows because
∑
xi:πai,xi≥πai,ai−2πa′

i
,ai

πai,xi

(πai,xi−πa′i,xi
πai,xi

)2

≥
(
πai,ai−πa′i,ai

)2
πai,ai

≥ πai,ai − 2πa′i,ai .
17Specifically, it is a “Nash threat”folk theorem, as F ∗ is the set of payoffs that Pareto-dominate a convex

combination of static Nash equilibria. To extend this result to a “minmax threat” theorem, players must
be made indifferent among all actions in the support of a mixed strategy that minmaxes an opponent. This
requires a stronger identifiability condition, similar to Kandori and Matsushima’s assumption (A1).
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this approach encounters diffi culties when N and δ vary simultaneously. The problem is that

when N is large, changing each player’s continuation payoff by a small amount can result in

a large overall movement in the continuation payoff vector. Mathematically, FLM’s proof re-

lies on the equivalence of the L1 norm and the Euclidean norm in RN . Since this equivalence

is not uniform in N , their proof does not apply when N and δ vary simultaneously.18

Our proof (which is sketched in Appendix C, with details deferred to the online appendix)

is instead based on the “block strategy” approach introduced by Matsushima (2004) and

Hörner and Olszewski (2006) in the context of repeated games with private monitoring. We

view the repeated game as a sequence of T -period blocks, where T is a number proportional

to 1/ (1− δ). At the beginning of each block, a target payoff vector is determined by public
randomization, and with high probability the players take actions throughout the block that

deliver the target payoff. Players accrue promised continuation payoff adjustments whenever

they are monitored, and the distribution of target payoffs in the next block is set to deliver

the promised adjustments. To provide incentives, the required payoff adjustment when a

player is monitored is of order N/M , the inverse of the monitoring probability. By the law

of large numbers, when T � N/M , with high probability the total adjustment that a given

player accrues over a T -period block is much smaller than T ∼ 1/ (1− δ), and is thus small
enough that it can be delivered by appropriately specifying the distribution of target payoffs

at the start of the next block.

The main diffi culty in the proof is caused by the low-probability event that a player

accrues an unusually large total adjustment over a block, so that at some point there is no

room to provide additional incentives. In this case, the player can no longer be incentivized

to take a non-myopic best response, and all players’ behavior in the current block must

change. Hence, if any player’s payoff adjustment is “abnormal,”all players’payoffs in the

block may be far from the target equilibrium payoffs.

The proof ensures that rare payoff-adjustment abnormalities do not compromise either ex

18With random monitoring of M players, the per-period movement in each player’s continuation payoff
required to provide incentives is of order (1− δ)N/M , so the movement of the continuation payoff vec-
tor in RN is O

(
(1− δ)N3/2/M

)
. For any ball B ⊆ F ∗, consider the problem of generating the point

v = argmaxw∈B w1 using continuation payoffs drawn from B. To satisfy promise keeping, player 1’s contin-
uation payoff must be within distance O (1− δ) of v, so the largest possible movement along a translated
tangent hyperplane is O

(√
1− δ

)
. FLM’s proof approach thus requires that (1− δ)N3/2/M �

√
1− δ, or

equivalently (1− δ)N3/M2 � 1, while we assume only (1− δ)N log (N) /M � 1. Hence, while the condi-
tions for Theorem 4 are tight up to log (N) slack, FLM’s approach would instead require slack N2/M ≥ N .
On the other hand, in SW, we extend FLM’s proof to give a folk theorem where discounting and monitoring
vary simultaneously for a fixed stage game. There, FLM’s approach works because N is fixed.
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ante effi ciency or the players’incentives. Effi ciency is preserved if the block-length T is large

enough that the probability that any player’s payoff adjustment is abnormal is small. Since

the per-period payoff adjustment for each player is O (N/M) and the length of a block is

O (1/ (1− δ)), standard concentration bounds imply that the probability that a given player’s
payoffadjustment is abnormal is exp (−O (M/ ((1− δ)N))). Hence, by the union bound, the

probability that any player’s adjustment is abnormal is at mostN exp (−O (M/ ((1− δ)N))),

which converges to 0 when (1− δ)N log (N) /M → 0. This step accounts for the log (N)

gap between Theorem 1 and 2.

Finally, since all players’payoffs are affected whenever any player’s payoff adjustment

becomes abnormal, incentives would be threatened if a player’s action influenced the prob-

ability that other players’adjustments become abnormal. We avoid this problem by letting

each player’s adjustment depend only on the public signals of her own actions. Such a sep-

aration of payoff adjustments across players is possible under product structure monitoring.

We do not know if Theorems 2 and 4 can be extended to non-product structure monitoring

without introducing qualitatively larger (i.e., polynomial) slack.

5 Non-Cooperation under Collective Sanctions

We now consider an arbitrary public monitoring structure and a restricted class of equilibria–

linear perfect public equilibria– which model collective incentive provision. We will show

that cooperation is possible in this class of equilibria only if the discount rate is extremely

small relative to the population size. We view this result as a near-impossibility theorem

for large-group cooperation under collective sanctions. Put more colorfully, the result for-

malizes Hume’s intuition that large groups cannot support cooperation by threatening “the

abandoning of the whole project.”

We say that a PPE is linear if all continuation payoff vectors lie on a line: for each player

i 6= 1, there exists a constant bi ∈ R such that, for all public histories h, h′, we have wi (h′)−
wi (h) = bi (w1 (h′)− w1 (h)), where wi (h) denotes player i’s equilibrium continuation payoff

at history h. Relabeling the players if necessary, we can take |bi| ≤ 1 for all i without

loss. Note that if bi ≥ 0 for all i then the players’preferences over histories are all aligned;

while if bi < 0 for some i then the players can be divided into two groups with opposite

preferences. This notion of linear equilibrium generalizes strongly symmetric equilibrium
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(SSE) in symmetric games, where bi = 1 for all i.

Our result for linear PPE is as follows.

Theorem 3 Fix any ū > 0 and π > 0. For any ε > 0 and ρ > 0, there exists k > 0 such

that, in any (ū, π)-bounded repeated game with public monitoring where

(1− δ) exp
(
N1−ρ) > k,

all linear PPE payoff vectors are consistent with ε-myopic play.

Theorem 3 differs from Theorem 1 in the required relationship between N and δ, and also

in that Theorem 3 holds for any outcome monitoring precision. Intuitively, this is because

optimal linear PPE take a bang-bang form even when the realized outcome profile is perfectly

observed, so a binary signal that indicates which of two extreme continuation payoff vectors

should be implemented is as effective as any more informative signal.

The proof of Theorem 3 is deferred to the online appendix. To see the main idea, consider

the case where the game is symmetric and bi = 1 for all i, so linear equilibria are SSE. Suppose

also that we are in the noisy action case (X = A) with binary actions and symmetric noise,

so that |Ai| = 2 and πai,ai = 1 − π, πai,a′i = π for each ai 6= a′i. Finally, suppose we

wish to enforce a symmetric pure action profile ~a0 = (a0, . . . , a0), where ḡi (~a0) = ν. By

standard arguments, an optimal SSE takes the form of a “tail test,”where the players are

all punished if the number n of players for whom xi = a0 falls below a threshold n∗. Due to

individual-level noise, when N is large the distribution of n is approximately normal, with

mean (1− π)N and standard deviation
√
π (1− π)N . Denote the threshold z-score of a

tail test with threshold n∗ by z∗ = (n∗ − (1− π)N) /
√
π (1− π)N , let φ and Φ denote the

standard normal pdf and cdf, and let x ∈ [0, ū/ (1− δ)] denote the size of the penalty when
the tail test is failed. We then must have

φ (z∗)√
π (1− π)N

x ≥ ν and Φ (z∗)x ≤ ū,

where the first inequality is incentive compatibility, and the second inequality says that the

expected penalty cannot exceed the stage-game payoff range. Dividing the first inequality

by the second, we obtain
φ (z∗)

Φ (z∗)
≥ ν

√
π (1− π)N

ū
.
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The left-hand side of this inequality is the Mills ratio of the standard normal distribution,

which is approximately equal to |z∗| when z∗ < 0. Hence, |z∗| must increase at least linearly
with

√
N . But since φ (z∗) decreases exponentially with |z∗|, and hence exponentially with

N , Theorem 3 now follows from incentive compatibility, which implies that the product of

φ (z∗) /
√
π (1− π)N and ū/ (1− δ) must exceed ν.19

The analysis of tail tests as optimal incentive contracts under normal noise goes back to

Mirrlees (1975). The logic of Theorem 3 shows that the size of the penalty in a Mirrleesian

tail test must increase exponentially with the variance of the noise.20 Theorem 3 is related

to Proposition 1 of Sannikov and Skrzypacz (2007), which is an anti-folk theorem for SSE in

a two-player repeated game where actions are observed with additive, normally distributed

noise, with variance proportional to (1− δ)−1.21 As a tail test is optimal in their setting,

the reasoning just given implies that incentives can be provided only if (1− δ)−1 increases

exponentially with the variance of the noise. Since in their model (1− δ)−1 increases with

variance only linearly, they likewise obtain an anti-folk theorem. Similarly, Proposition 2

of Fudenberg and Levine (2007) is an anti-folk theorem in a game with one patient player

and a myopic opponent, where the patient player’s action is observed with additive, normal

noise, with variance proportional to (1− δ)−ρ for some ρ > 0; and their Proposition 3 is a

folk theorem when the variance is constant in δ. Theorem 3 suggests that their anti-folk

theorem extends whenever variance asymptotically dominates
(
log (1− δ)−1)1/(1−ρ)

for some

ρ > 0, while their folk theorem extends whenever variance is asymptotically dominated by(
log (1− δ)−1)1/(1+ρ)

for some ρ > 0.

19Conversely, if πai,ai is suffi ciently large for each ai and (1− δ) exp
(
N1+ρ

)
→ 0 for some ρ > 0, then a

folk theorem holds for linear equilibria. Intuitively, a target action profile a can now be enforced by a tail
test where the players are all punished only if xi 6= ai for every player i.
20We are not aware of a reference to this point in the literature.
21Their interpretation is that the players change their actions every ∆ units of time, where δ = e−r∆

for fixed r > 0 and variance is inversely proportional to ∆, for example as a consequence of observing the
average increments of a Brownian process.
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6 Discussion

6.1 How Large is W (ε)?

Recall that Theorem 1 gives conditions under which all equilibrium payoffs lie in the set

W (ε) =

{
v ∈ RN : v = u (α) for some α such that

1

N

∑
i

ḡi (α) ≤ ε

}
.

Payoffs in W (ε) are attained by action distributions where the per-player average deviation

gain is less than ε; however, a few players can have large deviation gains. A more stan-

dard notion of “ε-myopic play” is that all players’deviations gains are less than ε. The

corresponding payoff vectors are the static ε-correlated equilibrium payoffs, given by

CE (ε) =
{
v ∈ RN : v = u (α) for some α such that ḡi (α) ≤ ε for all i

}
.

We now compare the sets W (ε) and CE (ε). We first give an example where W (ε) and

CE (ε) are very different (and W (ε) cannot be replaced by CE (ε) in Theorem 1). We then

give a condition under which maximum per-capita utilitarian welfare
∑

i vi/N is “similar”in

W (ε) and CE (c
√
ε), for a constant c. Intuitively, W (ε) and CE (ε) can be very different if

incentive constraints bind for only a few players, and these players’actions have large effects

on others’payoffs; while maximum utilitarian welfare in W (ε) and CE (c
√
ε) are similar if

each player’s action has a small effect on every opponent’s payoff.

For an example where W (ε) and CE (ε) differ, consider a “product choice”game where

player 1 is a seller who chooses high or low quality (H or L), and the other N − 1 players

are buyers who choose whether to buy or not (B or D). If the seller takes a1 ∈ {H,L} and
a buyer i takes ai ∈ {B,D}, this buyer’s payoff is given by

B D

H 1 0

L −1 0

,

while the seller’s payoff is given by

2k

N
− 1 {a1 = H} ,
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where k ∈ {0, 1, . . . , N} is the number of buyers who take B. Suppose also that X = A and

πi = π ∈ (0, 1/3) for all i. Note that this game is (3, π)-bounded.

In this game, for any ε > 0, when N is suffi ciently large, we have (H,B, . . . , B) ∈ A (ε),

and hence (1, 1, . . . , 1) ∈ W (ε). This follows because the per-player average deviation gain

at action profile (H,B, . . . , B) equals 1/N : the seller has a deviation gain of 1, while each

buyer has a deviation gain of 0. Thus, Theorem 1 does not preclude (1, 1, . . . , 1) (or any

convex combination of (1, 1, . . . , 1) and (0, 0, . . . , 0)) as an equilibrium payoff vector, even

when (1− δ)N/C is very large. This is reassuring, because the monitoring structure given

by perfect monitoring of the seller’s realized action (i.e., Y = {H,L}, q (y|x) = 1 {y = x1})
has channel capacity log 2 and supports the payoff vector(

1− 3π

1− 2π
,
1− 3π

1− 2π
, . . . ,

1− 3π

1− 2π

)
, for all δ >

1

2− 3π
and all N ≥ 2.22

In contrast, the greatest symmetric payoffvector in CE (ε) is (ε, ε, . . . , ε), because the seller’s

deviation gain equals the probability that she takes H.

Intuitively, even though the effi cient action profile (H,B, . . . , B) is not a static ε-correlated

equilibrium, it can be supported as a repeated game equilibrium with “not very informative”

monitoring. The reason is that only one player (the seller) is tempted to deviate at the effi -

cient action profile, so monitoring one player suffi ces to support this action profile regardless

of the population size (the number of buyers).

Next, for any d ∈ (0, ū), say that per-capita externalities are bounded by d if
∣∣ui (a′j, a−j)− ui (a)

∣∣ ≤
d/N for all i 6= j, a′j, a. For example, in a repeated random matching game, d can be taken

as the maximum impact of a player’s action on her partner’s payoff, which is independent

of N . In contrast, in the product choice game, per-capita externalities cannot be bounded

uniformly in N , because the seller exerts an externality of 2 on each buyer who purchases.

In games with bounded per-capita externalities, maximum per-capita utilitarian welfare

in W (ε) and CE
(√

8dε
)
are “similar.”

Proposition 1 Assume that per-capita externalities are bounded by d. Then, for any ε ∈
22This is a standard calcuation, which results from considering “forgiving trigger strategies”that prescribe

Nash reversion with probability φ when y = L. The smallest value of φ that induces the seller to take H is
given by φ = (1− δ) / (δ − 3δπ), and substituting this into the value recursion v = (1− δ) (1) + δ (1− πφ) v
yields v = (1− 3π) / (1− 2π).
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(0, d) and any v ∈ W (ε), there exists v′ ∈ CE
(√

8dε
)
such that

1

N

∣∣∣∣∣∑
i∈I

(vi − v′i)
∣∣∣∣∣ ≤

√
2ε

d
ū.

6.2 Conclusion

This paper has developed a theory of large-group cooperation based on repeated games with

individual-level noise where the population size, discount factor, stage game, and monitoring

structure all vary together in a flexible manner. Our main results establish necessary and

suffi cient conditions for cooperation, which identify the ratio of the discount rate and the

per-capita channel capacity of the outcome monitoring structure as a key statistic. For a

class of monitoring structures, our necessary and suffi cient conditions coincide up to log (N)

slack. We also show that cooperation in a linear equilibrium is possible only under much more

stringent conditions. This last result demonstrates a sense in which large-group cooperation

must rely on personalized sanctions.

Our results raise several questions for future theoretical and applied research. On the

theory side, this paper has focused on insuffi cient monitoring precision as an obstacle to

large-group cooperation. In reality, insuffi cient precision coexists with other obstacles to

cooperation, such as monitoring being decentralized (as in community enforcement models)

and the possibility that some players may be irrational or fail to understand the equilibrium

being played (as in our earlier work, Sugaya and Wolitzky, 2020, 2021). Combining these

features may help develop a richer and more realistic perspective on the prospects for large-

group cooperation.

As for applied work, more systematic empirical or experimental evidence on the determi-

nants of cooperation in large-population repeated games would be valuable.23 In particular,

our results predict that, while either personalized or collective sanctions can work in small

groups, personalized sanctions are much more effective in large groups. It would be interest-

ing to test this prediction.

23Camera and Casari (2009) and Duffy and Ochs (2009), among others, run experiments on repeated
games with random matching and private monitoring, i.e., community enforcement. As explained in the
introduction, community enforcement raises additional issues beyond the ones we focus on, which arise even
under public monitoring. Camera, Casari, and Bigoni (2013) include a treatment with public monitoring
(without individual-level noise), where they find that larger groups cooperate less.
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Appendix

A The Set B (ε) in A Public-Goods Game

Consider the public-goods game where each player chooses Contribute or Don’t Contribute,

and a player’s payoff is the fraction of players who contribute less a constant c ∈ (0, 1)

(independent of N) if she contributes herself. Fix any v ∈ (0, 1− c), let v = (v, . . . , v) ∈ RN ,
and let ε = cv (1− c− v) /4 > 0. We show that Bv (ε) ⊆ F for all N . Since no one

contributing is a Nash equilibrium with 0 payoffs, this implies that Bv (ε) ⊆ F ∗, and hence

v ∈ B (ε), for all N .

Fix any N . Since the game is symmetric, to show that Bv (ε) ⊆ F it suffi ces to show

that, for any number n ∈ {0, . . . , N}, there exists a feasible payoff vector where n “favored”
players receive payoffs no less than v + ε, and the remaining N − n “disfavored” players

receive payoffs no more than v− ε. First, consider the mixed action profile α1 where favored

players contribute with probability v+ε
1−c and disfavored players always contribute. At this

profile, favored players receive payoff f (n) := n
N
v+ε
1−c +

(
1− n

N

)
(1) − cv+ε

1−c , while disfavored

players receive payoff g (n) := n
N
v+ε
1−c +

(
1− n

N

)
(1) − c. Now consider the mixed action

profile α2 where favored players contribute with probability (v+ε)2

(1−c)f(n)
and disfavored players

contribute with probability v+ε
f(n)
. Note that each player’s payoff at profile α2 equals her

payoff at profile α1 multiplied by v+ε
f(n)
. Therefore, at profile α2, favored players receive payoff

f (n) v+ε
f(n)

= v + ε, while disfavored players receive payoff

g (n)
v + ε

f (n)
=

(
f (n)−

(
1− v + ε

1− c

)
c

)
v + ε

f (n)

≤ v + ε−
(

1− v + ε

1− c

)
c (v + ε) (since f (n) ≤ 1)

≤ v − ε (since ε = cv (1− c− v) /4).
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B A More General Folk Theorem

For any η > 0, we say that a public action monitoring structure (Y, p) satisfies η-individual

identifiability if

∑
yi:pi(yi|ai)≥η2

pi (yi|ai)
(
pi (yi|ai)− pi (yi|αi)

pi (yi|ai)

)2

≥ η2 for all i ∈ I, ai ∈ Ai, αi ∈ ∆ (Ai\ {ai}) .

(7)

This condition is a variant of FLM’s individual full rank condition and Kandori and Mat-

sushima’s (1998) assumption (A2”). It says that the detectability of a deviation from ai to

any mixed action αi supported on Ai\ {ai} is at least η2, from the perspective of an observer

who ignores signals that occur with probability less than η2 under ai. Intuitively, this re-

quires that deviations from ai are detectable, and that in addition detection does not rest on

very rare signal realizations. This assumption will ensure that players can be incentivized

through rewards whose variance and maximum absolute value are both of order (1− δ) /η2.24

Our general folk theorem is as follows.

Theorem 4 Fix any ū > 0. For any ε > 0, there exists k > 0 such that, for any (ū, 0)-

bounded repeated game with public, product-structure monitoring satisfying η-individual iden-

tifiability and
(1− δ) log (N)

η2
< k, (8)

we have B (ε) ⊆ E.

To prove Theorem 2 from Theorem 4, it suffi ces to show that random monitoring ofM/N

players with a noise structure with ∆ detectability satisfies
√

∆M/N -individual identifiabil-

ity. To see this, note that, under random monitoring of M/N players, we have

pi (yi|ai) =

 M
N
πai,yi if yi ∈ Xi,

1− M
N

if yi = ∅.

24If (7) were weakened by taking the sum over all yi (rather than only yi such that pi (yi|ai) ≥ η2), player i
could be incentivized by rewards with variance O

(
(1− δ) /η2

)
, but not necessarily with maximum absolute

value O
(
(1− δ) /η2

)
. Our analysis requires controlling both the variance and absolute value of players’

rewards, so we need the stronger condition.
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We then have

∑
yi:pi(yi|ai)≥∆M/N

pi (yi|ai)
(
pi (yi|αi)− pi (yi|ai)

pi (yi|ai)

)2

=
M

N

∑
xi:πai,xi≥∆

πai,xi

(
πai,xi − πa′i,xi

πai,xi

)2

≥ ∆M

N
.

Hence, random monitoring of M/N players with a noise structure with ∆ detectability

satisfies
√

∆M/N -individual identifiability.

C Sketch of the Proof of Theorem 4

Fix any v ∈ B (ε). We show that, for suffi ciently large δ, the cube Bv (ε/2) is self-generating.

Since B (ε) is compact, this implies that, for suffi ciently large δ, B (ε) is self-generating, and

hence B (ε) ⊆ E.

Since Bv (ε/2) is a cube, for each extreme point v∗ ∈ Bv (ε/2), there exists ζ ∈ {−1, 1}N

such that v∗i ∈ argmaxw∈Bv(ε/2) ζ iwi for all i. To self-generate Bv (ε/2), it is suffi cient that,

for each ζ ∈ {−1, 1}N and v∗ satisfying v∗i ∈ argmaxw∈Bv(ε/2) ζ iwi for all i, we can find a

number T ∈ N, a T -period strategy σ, and a history-contingent continuation payoffw
(
hT+1

)
such that the following three conditions hold:

Promise Keeping v∗i = (1− δ)
∑T

t=1 δ
t−1Eσ [ui (at)] + δTEσ

[
wi
(
hT+1

)]
for all i.

Incentive Compatibility σ̃i = σi is optimal in the T -period repeated game with objective

Eσ̃i,σ−i
[
(1− δ)

∑T
t=1 δ

t−1ui (a) + δTwi
(
hT+1

)]
, for all i.

Self Generation w
(
hT+1

)
∈ Bv (ε/2) for all hT+1.

Since Bv (ε/2) is the cube with center v and side-length ε, and v∗i ∈ argmaxw∈Bv(ε/2) ζ iwi

for all i, we have w
(
hT+1

)
∈ Bv (ε/2) iff ζ i

(
wi
(
hT+1

)
− vi

)
∈ [−ε, 0] for all i. Thus, defining

ψi
(
hT+1

)
=
(
δT/ (1− δ)

) (
wi
(
hT+1

)
− v∗i

)
, we can rewrite the above conditions as

Promise Keeping vi = 1−δ
1−δT E

σ
[∑T

t=1 δ
t−1u (at) + ψi

(
hT+1

)]
for all i.

Incentive Compatibility σ̃i = σi is optimal in the T -period repeated game with objective

Eσ̃i,σ−i
[∑T

t=1 δ
t−1u (a) + ψi

(
hT+1

)
|σ′i, σ−i

]
, for all i.

Self Generation − δT

1−δε ≤ ζ iψi
(
hT+1

)
≤ 0 for all i, hT+1. Moreover, since limδ→1− δT

1−δε =

−∞, it suffi ces to require that ζ iψi
(
hT+1

)
≤ 0 for all i, hT+1.
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Fix ζ and v∗, and take T = O
(
(1− δ)−1). We construct a T -period strategy σ and a

“reward function”ψi
(
hT+1

)
that satisfy the above conditions.

By (7), for each recommendation ri, there exists fi,ri (yi) such that (i) augmenting player

i’s utility by fi,ri (yi) incentivizes her to take ri, (ii) the expectation of fi,ri (yi) when

player i takes ri equals 0, and (iii) the variance of fi,ri (yi) is of order η2. Indeed, these

properties are achieved by taking fi,ri (yi) proportional to the likelihood ratio difference

minαi∈∆(Ai\{ai}) (pi (yi|ai)− pi (yi|αi)) /pi (yi|ai). (See Lemma 4.)
Since v ∈ B (ε) and v∗ ∈ Bv (ε/2), there exists ᾱ ∈ ∆ (A) such that ζ i (ui (ᾱ)− v∗i ) = ε/2.

Suppose that the recommendation profile r is drawn according to ᾱ by public randomization

(and players follow their recommendations), and define the reward function ψ̃i
(
hT+1

)
=∑

t δ
t−1fi,ri,t (yi,t)−ζ i 1−δT

1−δ
ε
2
. We call ψ̃i

(
hT+1

)
the “base reward.”We show that this strategy

and reward function satisfy promise keeping and incentive compatibility, and also satisfy self

generation with high probability. We then show how to modify the strategy and reward

function to ensure that self generation is always satisfied.

Since fi,ri (yi) has 0 mean, promise keeping is immediate:

vi =
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1ui (a) + ψ̃i
(
hT+1

)]
= ui (ᾱ)− ζ i

ε

2
= v∗i .

Next, incentive compatibility holds because

Eσ̃i,σ−i
[

T∑
t=1

δt−1ui (at) + ψ̃i
(
hT+1

)]
= Eσ̃i,σ−i

[
T∑
t=1

δt−1
(
ui (at) + fi,ri,t (yi,t)

)]
− 1− δT

1− δ ζ i
ε

2
,

so the augmented per-period payoff is ui (a)+fi,ri,t (yi,t). Moreover, since the variance of fi,ri

is O (η2) and T is O
(
(1− δ)−1), by a standard concentration inequality, the self generation

constraint ζ iψ̃i
(
hT+1

)
≤ 0 holds for all i with probability at least

N exp

(
−

1−δT
1−δ ζ i

ε
2√

Tη2

)
≈ exp

(
−

√
(1− δ) logN

η2

)
.

Therefore, by (8), self generation holds with high probability when k is small. (See Lemmas

5 and 7.)

We now modify the strategy and reward to satisfy self-generation at every history. To
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this end, define a stopping time as the first period τ such that

ζ i

τ∑
t=1

δt−1fi,ri,t (yi,t) > f̄, (9)

where f̄ is a positive constant less than
((

1− δT
)
/ (1− δ)

)
ε/2. That is, in (the random)

period τ , for a player, the base reward ψ̃i
(
hT+1

)
becomes abnormal. If no such period arises,

define τ = T . By the same concentration argument as above, abnormality does not happen

to any player’s base reward (that is, τ = T ) with high probability: in particular,

Pr (τ < T ) ≈ exp

(
−

√
(1− δ) logN

η2

)
. (10)

We now define the modified strategy.

If τ = T , then in every period r is drawn according to ᾱ and the reward equals ψ̃i
(
hT+1

)
.

If τ < T , then let I∗ be the set of players whose base reward satisfies (9). For each i ∈ I∗,
we add or subtract a constant from the rewards of players −i to satisfy self generation. Since
monitoring has a product structure, players −i cannot control the realization of player i’s
reward. Thus, this addition or subtraction does not affect incentives.

If I∗ is a singleton, I∗ = {i}, then player i starts taking a static best response. Meanwhile,
players −i take r−i drawn from ᾱ if ζ i = 1, and take static Nash actions

(
αNEj

)
j 6=i if

ζ i = −1. Let ui (ζ i) be player i’s resulting instantaneous payoff. Since v
∗ ∈ F ∗, we have

ζ i (ui (ζ i)− ui (ᾱ)) ≥ 0. Hence, if player i’s period t reward is fixed at ui (ᾱ) − ui (ζ i), self
generation is satisfied, and player i’s period t augmented payoff equals ui (ᾱ). If instead

|I∗| ≥ 2, then all players’subsequent rewards equal 0.

Since τ = T with high probability by (10), expected payoffs under the modified strategy

and reward are close to v. Further adjusting the rewards by a small constant thus achieves

promise keeping. Moreover, self generation now holds by construction. Finally, for any

period t > τ , incentive compatibility holds, because either a player’s reward is fixed and she

is supposed to take a static best response, or she is incentivized by the base reward function.

To complete the proof, it remains to establish incentive compatibility for periods t ≤ τ .

For t ≤ τ , player i’s augmented period t payoff is ui (ai, r−i) + fi,ri (yi)). Thus, to show that

it is optimal for player i to follow her recommendation, it suffi ces to show that she cannot

gain by manipulating the stopping time τ .
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Since monitoring has a product structure, player i cannot influence others’ rewards.

Player i also cannot improve her augmented period t payoffby manipulating her own reward,

because both ui (r)+fi,ri,t (yi,t)) and ui (ζ i)+ui (ᾱ)−ui (ζ i)) equal u (ᾱ) regardless of whether

t ≤ τ or t > τ . However, there is one potential benefit from manipulation: once τ realizes

with I∗ = {i}, the chance of a constant being added or subtracted from player i’s reward

vanishes, but if τ first realizes with I∗ 6= {i}, this addition or subtraction occurs. To prevent
this adjustment from affecting player i’s incentive, a “fictitious”recommendation r̃t is drawn

according to ᾱ, and a fictitious signal ỹ is drawn according to p (ỹ|r̃), and the base rewards are
updated according to the fictitious recommendations and signals even when t > τ . (See (25)

for the definition of the fictitious recommendations and signals.) If player j 6= i’s fictitious

base reward satisfies (9), we add or subtract a constant from player i’s reward. (See (26)

for the definition of the event that induces this addition or subtraction. Note also that

this fictitious update of player j’s base reward is used solely to satisfy player i’s incentives

and does not affect player j’s reward.) Given this modification, player i does not have an

incentive to manipulate her own reward to manipulate the distribution of τ (see Lemma 6),

and hence incentive compatibility holds (Lemma 8).

D Proof of Proposition 1

We establish the stronger conclusion that, for any v ∈ W (ε) and any c ≥
√

8d/ε, there

exists v′ ∈ CE (cε) such that
∣∣∑

i∈I (vi − v′i)
∣∣ /N ≤ 4ū/c. (The stated conclusion follows by

taking c =
√

8d/ε.) Fix ε ∈ (0, d) and α ∈ A (ε). Let J = {i : ḡi (α) > cε/2}, and note
that |J | ≤ 2N/c. Let α̃ ∈ ∆ (A) be an action distribution that has the same marginal on

AI\J as α and that satisfies ḡi (α̃) ≤ cε for all i ∈ J : for example, take a Nash equilibrium
in the game among the players in J , where the action distribution among the players in

I\J is held fixed. Since
∣∣ui (a′j, a−j)− ui (a)

∣∣ ≤ d/N for all i 6= j, a′j, a, and the actions

of at most 2N/c players differ between α̃ and α, we have ḡi (α̃) ≤ ḡi (α) + 4d/c for each

i ∈ I\J . Since ḡi (α) ≤ cε/2 (as i ∈ I\J) and 4d/c ≤ cε/2 (as c ≥
√

8d/ε), we have

ḡi (α̃) ≤ cε. Since we assumed that ḡi (α̃) ≤ cε for all i ∈ J , we have ḡi (α̃) ≤ cε for all

i ∈ I, and hence u (α̃) ∈ CE (cε). Finally, since the actions of at most 2N/c players differ

between α̃ and α, we have |ui (α̃)− ui (α)| ≤ 2d/c ≤ 2ū/c for all i ∈ I\J , and by definition
of ū we have |ui (α̃)− ui (α)| ≤ ū for all i ∈ J . Since c > 2 and |J | ≤ 2N/c, we have
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∣∣∑
i∈I (ui (α̃)− ui (α))

∣∣ ≤ (N − 2N/c) 2ū/c+ (2N/c) ū ≤ 4Nū/c.
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Online Appendix

E Proof of Theorem 4

E.1 Preliminaries

Fix any ε > 0. If ε ≥ ū/2 then B (ε) = ∅ and the conclusion of the theorem is trivial, so
assume without loss that ε < ū/2. We begin with two preliminary lemmas. First, for each
i ∈ I and ri ∈ Ai, we define a function fi,ri : Yi → R that will later be used to specify player
i’s continuation payoff as a function of yi.

Lemma 4 Under η-individual identifiability, for each i ∈ I and ri ∈ Ai there exists a
function fi,ri : Yi → R such that

E [fi,ri (yi) |ri]− E [fi,ri (yi) |ai] ≥ ū for all ai 6= ri, (11)

E [fi,ri (yi) |ri] = 0, (12)

Var (fi,ri (yi) |ri) ≤ ū2/η2, and (13)

|fi,ri (yi)| ≤ 2ū/η2 for all yi. (14)

Proof. Fix i and ri. Let Y ∗i = {yi : pi (yi, ri) ≥ η2}, and let

pi (ri) =
(√

pi (yi|ri)
)
yi∈Y ∗i

and Pi (ri) =
⋃
ai 6=ri

(
pi (yi|ai)√
pi (yi|ri)

)
yi∈Y ∗i

.

Note that (7) is equivalent to d (pi (ri) , co (Pi (ri))) ≥ η for all i ∈ I, ri ∈ Ai, where d (·, ·)
denotes Euclidean distance in R|Y ∗i |. Hence, by the separating hyperplane theorem, there
exists x = (x (yi))yi∈Y ∗i ∈ R

|Y ∗i | such that ‖x‖ = 1 and (pi (ri)− p) · x ≥ η for all p ∈ Pi (ri).
By definition of pi and Pi, this implies that

∑
yi∈Y ∗i

(pi (yi|ri)− pi (yi|ai))x (yi) ≥ η
√
pi (yi|ri)

for all ai 6= ri. Now define

fi,ri (yi) =
ū

η

(
x (yi)√
pi (yi|ri)

−
∑
ỹi∈Yi

p (ỹi|ri)√
pi (ỹi|ri)

xi (ỹi)

)
for all yi ∈ Y ∗i , and

fi,ri (yi) = 0 for all yi /∈ Y ∗i .

Clearly, conditions (11) and (12) hold. Moreover, since E [fi,ri (yi) |ri] = 0 and the term∑
ỹi∈Yi

√
p (ỹi|ri)xi (ỹi) is independent of yi, we have

Var (fi,ri (yi) |ri) = E

[
ū2x (yi)

2

η2pi (yi|ri)

]
− E

[
ūxi (yi)

η
√
pi (yi|ri)

]2

≤ ū2

η2

∑
yi∈Y ∗i

x (yi)
2 ≤ ū2

η2
,
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and hence (13) holds. Finally, (14) holds since, for each yi ∈ Y ∗i ,

|fi,ri (yi)| ≤
ū

η

(
|x (yi)|+

∑
ỹi∈Y ∗i

p (ỹi|ri) |xi (ỹi)|√
pi (yi|ri)

)
≤ ū

η2

1 +
∑
ỹi∈Y ∗i

p (ỹi|ri)

 ≤ 2ū

η2
.

Now fix i ∈ I and ri ∈ Ai, and suppose that yi,t ∼ pi (·|ri) for each period t ∈ N,
independently across periods (which would be the case in the repeated game if ri were taken
in every period). By (13), for any T ∈ N, we have

Var

(
T∑
t=1

δt−1fi,ri (yi,t)

)
=

T∑
t=1

δ2(t−1)Var (fi,ri (yi,t)) ≤
1− δ2T

1− δ2

ū2

η2
.

Together with (12) and (14), Bernstein’s inequality (Boucheron, Lugosi, and Massart, 2013,
Theorem 2.10) now implies that, for any T ∈ N and f̄ ∈ R+, we have

Pr

(
T∑
t=1

δt−1fi,ri (yi,t) ≥ f̄

)
≤ exp

− f̄ 2η2

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄ ū
)
 . (15)

Our second lemma fixes T and f̄ so that the bound in (15) is suffi ciently small, and some
other conditions used in the proof also hold.

Lemma 5 There exists k > 0 such that, whenever (1− δ) log (N) /η2 < k, there exist T ∈ N
and f̄ ∈ R that satisfy the following three inequalities:

60ūN exp

−
(
f̄
3

)2

η2

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ ε, (16)

8
1− δ

1− δT
(
f̄ +

2ū

η2

)
≤ ε, (17)

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η2

)
≤ ε. (18)

Proof. Let T be the largest integer such that 8ū
(
1− δT

)
/δT ≤ ε, and let

f̄ =

√
36 log

(
60ū

ε

)
log (N)

1− δT

1− δ
ū2

η2
.
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Note that if (1− δ) log (N) /η2 → 0 then 1−δT → ε/ (ε+ 8ū), and hence (1− δ) log (N) /
(
η2
(
1− δT

))
→

0. Therefore, there exists k > 0 such that, whenever (1− δ) log (N) /η2 < k, we have

4

9

√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η2
≤ 1 and (19)

8ū

(√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η2
+

1− δ
1− δT

2

η2

)
≤ ε. (20)

It now follows from straightforward algebra (provided in Appendix E.4) that (16)—(18) hold
for every k ≥ k̄.

E.2 Equilibrium Construction

Fix any k, T , and f̄ that satisfy (16)—(18), as well any v ∈ B (ε). For each extreme point
v∗ of Bv (ε/2), we construct a PPE in a T -period, finitely repeated game augmented with
continuation values drawn from Bv (ε/2) that generates payoff vector v∗. By standard argu-
ments, this implies that Bv (ε/2) ⊆ E (Γ), and hence that v ∈ E (Γ).25 Since v ∈ B (ε) was
chosen arbitrarily, it follows that B (ε) ⊆ E (Γ).
Specifically, for each ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v, we construct a public

strategy profile σ in a T -period, finitely repeated game (which we call a block strategy profile)
together with a continuation value function w : HT+1 → RN such that, letting ψi

(
hT+1

)
=

δT

1−δ
(
wi
(
hT+1

)
− v∗i

)
, we have

Promise Keeping: v∗i =
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]
for all i, (21)

Incentive Compatibility: σi ∈ argmax
σ̃i

Eσ̃i,σ−i
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]
for all i, (22)

Self Generation: ζ iψi
(
hT+1

)
∈
[
− δT

1− δ ε, 0
]

for all i and hT+1. (23)

Fix ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v. We construct a block strategy profile σ
and continuation value function ψ which, in the next subsection, we show satisfy these three
conditions. This will complete the proof of the theorem.
First, fix a correlated action profile ᾱ ∈ ∆ (A) such that

ui (ᾱ) = v∗i + ζ iε/2 for all i, (24)

and fix a probability distribution over static Nash equilibria αNE ∈ ∆ (
∏

i ∆ (Ai)) such that
ui
(
αNE

)
≤ v∗i − ε/2 for all i. Such ᾱ and αNE exist because v∗ ∈ Bv (ε/2) and Bv (ε) ⊆ F ∗.

25Specifically, at each history hT+1 that marks the end of a block, public randomization can be used
to select an extreme point v∗ to be targeted in the following block, with probabilities chosen so that the
expected payoff E [v∗] equals the promised continuation value w

(
hT+1

)
.
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We now construct the block strategy profile σ. For each player i ∈ I and period t ∈
{1, . . . , T}, we define a state θi,t ∈ {0, 1} for player i in period t. The states are determined
by the public history, and so are common knowledge among the players. We first specify
players’prescribed actions as a function of the state, and then specify the state as a function
of the public history.
Prescribed Equilibrium Actions: For each period t, let rt ∈ A be a pure action

profile which is drawn by public randomization at the start of period t from the distribution
ᾱ ∈ ∆ (A) fixed in (24), and let %NEt ∈

∏
i ∆ (Ai) be a mixed action profile which is drawn

by public randomization at the start of period t from the distribution αNE. The prescribed
equilibrium actions are defined as follows.

1. If θi,t = 0 for all i ∈ I, the players take at = rt.

2. If there is a unique player i such that θi,t = 1, the players take at = (r′i, r−i,t) for
some r′i ∈ BRi (r−i,t) if ζ i = 1, and they take %NEt if ζ i = −1, where BRi (r−i) =
argmaxai∈Ai ui (ai, r−i) is the set of i’s best responses to r−i.

3. If there is more than one player i such that θi,t = 1, the players take %NEt .

Let α∗t ∈
∏

i ∆ (Ai) denote the distribution of prescribed equilibrium actions, prior to
public randomization zt.
(It may be helpful to informally summarize the prescribed actions. So long as θi,t = 0 for

all players, the players take actions drawn from the target action distribution ᾱ. If θi,t = 1
for multiple players, the ineffi cient Nash equilibrium distribution αNE is played. If θi,t = 1
for a unique player i, player i starts taking static best responses; moreover, if ζ i = −1 then
αNE is played.)
It will be useful to introduce the following additional state variable Si,t, which summarizes

player i’s prescribed action as a function of (θj,t)j∈I :

1. Si,t = 0 if θj,t = 0 for all j ∈ I, or if there exists a unique player j 6= i such that
θj,t = 1, and for this player we have ζj = 1. In this case, player i is prescribed to take
ai,t = ri,t.

2. Si,t = NE if θi,t = 0 and either (i) there exists a unique player j such that θj,t = 1,
and for this player we have ζj = −1, or (ii) there are two distinct players j, j′ such
that θj,t = θj′,t = 1. In this case, player i is prescribed to take %NEi,t .

3. Si,t = BR if θi,t = 1. In this case, player i is prescribed to best respond to her
opponents’actions (which equal either r−i,t or %NE−i,t, depending on ζ i and (θj,t)j 6=i.)

States: At the start of each period t, conditional on the public randomization draw of
rt ∈ A described above, an additional (“fictitious”) random variable ỹt ∈ Y is also drawn
by public randomization, with distribution p (ỹt|rt). That is, the distribution of the public
randomization draw ỹt conditional on the draw rt is the same as the distribution of the
realized public signal profile ỹt at action profile rt; however, the distribution of ỹt depends
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only on the public randomization draw rt and not on the players’actions. For each player i
and period t, let fi,ri,t : Yi → R be defined as in Lemma 4, and let

fi,t =


fi,ri,t (yi,t) if Si,t = 0,
fi,ri,t (ỹi,t) if Si,t = NE,
0 if Si,t = BR.

(25)

Thus, the value of fi,t depends on the state (θn,t)n∈I , the target action profile rt (which
is drawn from distribution ᾱ as described above), the public signal yt, and the additional
variable ỹt.26 Later in the proof, fi,t will be a component of the “reward”earned by player
i in period t, which will be reflected in player i’s end-of-block continuation payoff function
ψ : HT+1 → R.
We can finally define θi,t as

θi,t = 1

{
∃t′ ≤ t :

∣∣∣∣∣
t′−1∑
t′′=1

δt
′′−1fi,t′′

∣∣∣∣∣ ≥ f̄

}
. (26)

That is, θi,t is the indicator function for the event that the magnitude of the component of
player i’s reward captured by (fi,t′′)

t′−1
t′′=1 exceeds f̄ at any time t

′ ≤ t.
This completes the definition of the equilibrium block strategy profile σ. Before proceed-

ing further, we note that a unilateral deviation from σ by any player i does not affect the

distribution of the state vector
(

(θj,t)j 6=i

)T
t=1
. (However, such a deviation does affect the

distribution of (θi,t)
T
t=1.)

Lemma 6 For any player i and block strategy σ̃i, the distribution of the random vector(
(θj,t)j 6=i

)T
t=1

is the same under block strategy profile (σ̃i, σ−i) as under block strategy profile
σ.

Proof. Since θj,t = 1 implies θj,t+1 = 1, it suffi ces to show that, for each t, each J ⊆ I\ {i},
each ht such that J = {j ∈ I\ {i} : θj,t = 0}, and each zt, the probability Pr

(
(θj,t+1)j∈J |ht, zt, ai,t

)
is independent of ai,t. Since θj,t+1 is determined by ht and fj,t, it is enough to show that

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)
is independent of ai,t.

Recall that Sj,t is determined by ht, and that if j ∈ J (that is, θj,t = 0) then Sj,t ∈
{0, NE}. If Sj,t = 0 then player j takes rj,t, which is determined by zt, yj,t is distributed ac-
cording to pj (yj,t|rj,t), and fj,t is determined by yj,t, independently across players conditional
on zt. If Sj,t = NE then ỹj,t is distributed according to pj (ỹj,t|rj,t), where rj,t is determined
by zt, and fj,t is determined by ỹj,t, independently across players conditional on zt. Thus,

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)

=
∏

j 6=i Pr (fj,t|Sj,t, rj,t), which is independent of ai,t as desired.
Continuation Value Function: We now construct the continuation value function

ψ : HT+1 → RN . For each player i and end-of-block history hT+1, player i’s continuation

26Intuitively, introducing the variable ỹt, rather than simply using yi,t everywhere in (25), ensures that
the distribution of fi,t does not depend on player i’s opponents’strategies.
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value ψi
(
hT+1

)
will be defined as the sum of T “rewards”ψi,t, where t = 1, . . . , T , and a

constant term ci that does not depend on hT+1.
The rewards ψi,t are defined as follows:

1. If θj,t = 0 for all j ∈ I, then

ψi,t = δt−1fi,ri,t (yi,t) . (27)

2. If θi,t = 1 and θj,t = 0 for all j 6= i, then

ψi,t = δt−1 (ui (ᾱ)− ui (α∗t )) . (28)

3. Otherwise,
ψi,t = δt−1

(
−ζ iū− ui (α∗t ) + 1 {Si,t = 0} fi,ri,t (yi,t)

)
. (29)

The constant ci is defined as

ci = −E
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i . (30)

Note that, since ui (ᾱ) and v∗i are both feasible payoffs, we have

|ci| ≤ 2ū
1− δT

1− δ . (31)

Finally, for each i and hT+1, player i’s continuation value at end-of-block history hT+1 is
defined as

ψi
(
hT+1

)
= ci +

T∑
t=1

ψi,t. (32)

E.3 Verification of the Equilibrium Conditions

We now verify that σ and ψ satisfy promise keeping, incentive compatibility, and self gen-
eration. We first show that θi,t = 0 for all i and t with high probability, and then verify the
three desired conditions in turn.

Lemma 7 We have

Pr

(
max

i∈I,t∈{1,...,T}
θi,t = 0

)
≥ 1− ε

20ū
. (33)

Proof. By union bound, it suffi ces to show that, for each i, Pr
(
maxt∈{1,...,T} θi,t = 1

)
≤

ε/20ūN , or equivalently

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ ε

20ūN
. (34)
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To see this, let f̃i,t = fi,ri,t (ỹi,t). Note that the variables
(
f̃i,t

)T
t=1
are independent (unlike the

variables (fi,t)
T
t=1). Since

(
f̃i,t′
)t
t′=1

and (fi,t′)
t
t′=1 have the same distribution if Si,t 6= BR,

while fi,t = 0 if Si,t = BR, we have

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
. (35)

Since
(
f̃i,t

)T
t=1

are independent, Etemadi’s inequality (Billingsley, 1995; Theorem 22.5) im-

plies that

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
≤ 3 max

t∈{1,...,T}
Pr

(∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

3

)
. (36)

Letting xi,t = δt−1f̃i,t, note that |xi,t| ≤ 2ū/η2 with probability 1 by (14), E [xi,t] = 0 by (12),
and

Var

(
t∑

t′=1

xi,t′

)
=

t∑
t′=1

Var (xi,t′) ≤
T∑
t′=1

Var (xi,t′) =
1− δT

1− δ
ū2

η2
by (13).

Therefore, by Bernstein’s inequality ((15), which again applies because
(
f̃i,t

)T
t=1

are inde-

pendent) and (16), we have, for each t ≤ T ,

Pr

(∣∣∣∣∣
t∑

t′=1

δt
′−1f̃i,t′

∣∣∣∣∣ ≥ f̄

3

)
≤ ε

60ūN
. (37)

Finally, (35), (36), and (37) together imply (34).
Incentive Compatibility: We use the following lemma (proof in Appendix E.5).

Lemma 8 For each player i and block strategy profile σ, incentive compatibility holds (i.e.,
(22) is satisfied) if and only if

suppσi
(
ht
)
⊆ argmax

ai,t∈Ai
Eσ−i

[
δt−1ui,t + ψi,t|ht, ai,t

]
for all t and ht. (38)

In addition, for all t ≤ t′ and ht, we have

Eσ
[
δt
′−1ui,t + ψi,t′|ht

]
= Eσ

[
δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.

(39)

We now verify that (38) holds. Fix a player i, period t, and history ht. We consider
several cases, which parallel the definition of the reward ψi,t.

1. If θj,t = 0 for all j ∈ I, recall that the equilibrium action profile is the rt that is
prescribed by public randomization zt. For each action ai 6= ri,t, by (11) and (27), and
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recalling that ū ≥ maxa ui (a)−mina ui (a), we have

Eσ−i
[
δt−1ui,t + ψi,t|ht, zt, ai,t = ri,t

]
− Eσ−i

[
δt−1ui,t + ψi,t|ht, zt, ai,t = ai

]
= δt−1

(
E
[
ui (rt) + fi,ri,t (yi,t) |ai,t = ri,t

]
− E

[
ui (ai, r−i,t) + fi,ri,t (yi,t) |ai,t = ai

])
≤ 0, so (38) holds.

2. If θi,t = 1 and θj,t = 0 for all j 6= i, then the reward ψi,t specified by (28) does not
depend on yi,t. Hence, (38) reduces to the condition that every action in suppσi (h

t)
is a static best responses to σ−i (ht). This conditions holds for the prescribed action
profile, (r′i ∈ BRi (r−i,t) , r−i,t) or %NEi,t .

3. Otherwise: (a) If Si,t = 0, then (38) holds because it holds in Case 1 above and (27)
and (29) differ only by a constant independent of yi,t. (b) If Si,t 6= 0, then either
θj,t = θj′,t = 1 for distinct players j, j′, or there exists a unique player j 6= i with
θj,t = 1, and for this player we have ζj = −1. In both cases, %NEt is prescribed. Since
the reward ψi,t specified by (29) does not depend on yi,t, (38) reduces to the condition
that every action in suppσi (h

t) is a static best responses to σ−i (ht), which holds for
the prescribed action profile %NEt .

Promise Keeping: This essentially holds by construction: we have

1− δ
1− δT

Eσ
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]

=
1− δ

1− δT

(
Eσ
[

T∑
t=1

(
δt−1ui,t + ψi,t

)]
+ ci

)
(by (32))

=
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)
+ ci

]
(by (39))

= v∗i (by (30)), so (21) holds.

Self Generation: We use the following lemma (proof in Appendix E.6).

Lemma 9 For every end-of-block history hT+1, we have

ζ i

T∑
t=1

ψi,t ≤ f̄ +
2ū

η2
and (40)∣∣∣∣∣

T∑
t=1

ψi,t

∣∣∣∣∣ ≤ f̄ +
2ū

η2
+ 2ū

1− δT

1− δ . (41)

In addition,

ζ ici ≤ −
1− δT

1− δ
ε

8
. (42)
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To establish self generation ((23)), it suffi ces to show that, for each hT+1, ζ iψi
(
hT+1

)
≤ 0

and
∣∣ψi (hT+1

)∣∣ ≤ (δT/ (1− δ)
)
ε. This now follows because

ζ iψi
(
hT+1

)
= ζ i

(
ci +

T∑
t=1

ψi,t

)
≤ −1− δT

1− δ
ε

8
+ f̄ + 2ū/η2 (by (40) and (42))

≤ 1− δT

8 (1− δ)

(
−ε+ 8

(
1− δ

1− δT
)(

f̄ + 2ū/η2
))
≤ 0 (by (17)), and

∣∣ψi (hT+1
)∣∣ ≤ |ci|+

∣∣∣∣∣
T∑
t=1

ψi,t

∣∣∣∣∣
≤ 4ū

1− δT

1− δ + f̄ + 2ū/η2 (by (31) and (41))

=
1− δT

1− δ 4ū+ f̄ + 2ū/η2 ≤ δT

1− δ ε (by (18)),

which completes the proof.

E.4 Omitted Details for the Proof of Lemma 5

We show that, with the stated definitions of T and f̄ , (19) and (20) imply (16)—(18). First,
note that

1− δ2

1− δ2T
=

(1 + δ) (1− δ)(
1 + δT

) (
1− δT

) < 2
1− δ

1− δT
.

Hence,

2f̄
(
1− δ2

)
9ū
(
1− δ2T

) <
4

9ū

1− δ
1− δT

√
36 log

(
60ū

ε

)
log (N)

1− δT

1− δ
ū2

η2

=
4

9

√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η2
≤ 1 (by (19)).

Therefore,

60ūN exp

 −
(
f̄
3

)2

η2

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

 −
(
f̄
3

)2

η2

2
(

1−δ2T
1−δ2 ū

2 + 1−δ2T
1−δ2 ū

2
)
 = 60ūN exp

(
−f̄ 2η2

361−δ2T
1−δ2 ū

2

)
.

Moreover,

f̄ 2η2

361−δ2T
1−δ2 ū

2
=

36 log
(

60ū
ε

)
log (N) 1−δT

1−δ

361−δ2T
1−δ2

=
1 + δ

1 + δT
log

(
60ū

ε

)
log (N) ≥ log

(
60ū

ε

)
log (N) .
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Hence, we have

60ūN exp

 −
(
f̄
3

)2

η2

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

(
− log

(
60ū

ε

)
log (N)

)
= ε.

This establishes (16).
Next, we have

8
1− δ

1− δT
(
f̄ +

2ū

η2

)
= 8ū

(√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η2
+

1− δ
1− δT

2

η2

)
≤ ε (by (20)).

(43)
This establishes (17).
Finally, by (43) and 8ū

(
1− δT

)
/δT ≤ ε, we have

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η2

)
= 4ū

1− δT

δT
+

1− δT

δT
1− δ

1− δT
(
f̄ +

2ū

η2

)
≤ 4

ε

8
+
ε

8

ε

8
≤ ε.

This establishes (18).

E.5 Proof of Lemma 8

We show that player i has a profitable one-shot deviation from σi at some history ht if and
only if (38) is violated at ht. To see this, we first calculate player i’s continuation payoff
under σ from period t + 1 onward (net of the constant ci and the rewards already accrued∑t

t′=1 ψi,t′). For each t
′ ≥ t+ 1, there are several cases to consider.

1. If θj,t′ = 0 for all j, then by (12) and (27) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1ui (ᾱ).

2. If θi,t′ = 1 and θj,t′ = 0 for all j 6= i, then by (28) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1 (ui (α

∗
t′) + ui (ᾱ)− ui (α∗t′)) = δt

′−1ui (ᾱ).

3. Otherwise: (a) If Si,t′ = 0, then by (12) and (29) (and recalling that player i’s equilib-
rium action is ri,t′ when Si,t′ = 0) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′)− ζ iū− u (α∗t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1 (−ζ iū).

(b) If Si,t′ 6= 0, then by (29) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1 (ui (α

∗
t′)− ζ iū− u (α∗t′)) = δt

′−1 (−ζ iū).

In total, (39) holds, and player i’s net continuation payoff under σ from period t + 1
onward equals

Eσ
[

T∑
t′=t+1

δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.
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By Lemma 6, the distribution of
(

(θn,t′)n6=i

)T
t′=t+1

does not depend on player i’s period-t

action, and hence neither does player i’s net continuation payoff under σ from period t + 1
onward. Therefore, player i’s period-t action ai,t maximizes her continuation payoff from
period t onward if and only if it maximizes Eσ−i [δt−1ui,t + ψi,t|ht, ai,t].

E.6 Proof of Lemma 9

Define

ψvi,t =

{
δt−1 (ui (ᾱ)− ui (α∗t )) if θj,t = 0 for all j 6= i,
δt−1 (−ζ iū− ui (α∗t )) otherwise,

and

ψfi,t =

{
δt−1fi,ai,t (yi,t) if either θj,t = 0 for all j or Si,t = 0,
0 otherwise.

Note that, by (27)—(29), we can write ψi,t = ψvi,t + ψfi,t. (Note that, if θn,t = 0 for all n ∈ I,
we have α∗t = ᾱ and hence ψvi,t + ψfi,t = δt−1fi,ai,t (yi,t), as specified in (27).) We show that,
for every end-of-block history hT+1, we have

ζ i

T∑
t=1

ψvi,t ∈
[
−2ū

1− δT

1− δ , 0
]

and (44)∣∣∣∣∣ζ i
T∑
t=1

ψfi,t

∣∣∣∣∣ ≤ f̄ +
2ū

η2
. (45)

Since ψi,t = ψvi,t + ψfi,t, (44) and (45) imply (40) and (41), which proves the first part of the
lemma.
For (44), note that, by definition of the prescribed equilibrium actions, if θj,t = 0 for all

j 6= i, then (i) if ζ i = 1, we have ui (α∗t ) ≥
∑

a ᾱ (a) min
{
ui (a) ,maxa′i ui (a

′
i, a−i)

}
≥ ui (ᾱ);

and (ii) if ζ i = −1, we have ui (α∗t ) ≤ max
{
ui (ᾱ) , ui

(
αNE

)}
= ui (ᾱ). In total, we have

ζ i (ui (ᾱ)− ui (α∗t )) ≤ 0. Since obviously ζ i (ui (ᾱ)− ui (α∗t )) ≥ −2ū and −ū − ζ iui (α∗t ) ≥
−2ū, we have

ζ iψ
v
i,t =

{
δt−1ζ i (ui (ᾱ)− ui (α∗t )) if θj,t = 0 for all j 6= i,
δt−1 (−ū− ζ iui (α∗t )) otherwise

∈
[
−2ūδt−1, 0

]
.

For (45), note that Si,t = 0 implies θi,t = 0, and hence∣∣∣∣∣ζ i
T∑
t=1

ψfi,t

∣∣∣∣∣ ≤
∣∣∣∣∣ζ i

T∑
t=1

1 {θi,t = 0} δt−1fi,ai,t (yi,t)

∣∣∣∣∣ .
Since θi,t+1 = 1 whenever

∣∣∣∑t′=1,..,t δ
t−1fi,ai,t (yi,t)

∣∣∣ ≥ f̄ , and in addition
∣∣fi,ai,t (yi,t)

∣∣ ≤ 2ū/η2

by (14), this inequality implies (45).
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For the second part of the lemma, by (30), we have

ζ ici = ζ i

(
−E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i

)

= E

 T∑
t=1

δt−1

1{max
j 6=i

θj,t = 0

}
ζ i (v

∗
i − ui (ᾱ)) + 1

{
max
j 6=i

θj,t = 1

}
(ū+ ζ iv

∗
i )︸ ︷︷ ︸

∈[0,2ū]




≤ E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}(
−ε
2

)
+ 1

{
max
j 6=i

θj,t = 1

}
2ū

)]
by (24)

≤ −1− δT

1− δ

((
1− ε

20ū

) ε
2

+
( ε

20ū

)
2ū
)

(by (33))

≤ −1− δT

1− δ
ε

8
(as ε < ū/2).

F Proof of Theorem 3

Fix a linear PPE with coeffi cients b = (1, b2, . . . , bN), where |bi| ≤ 1 for all i. Let I+ =
{i : bi ≥ 0} and I− = {i : bi < 0}. Define

vi =

{
infhwi (h) if i ∈ I+,
suphwi (h) if i ∈ I−, and v̄i =

{
suphwi (h) if i ∈ I+,
infhwi (h) if i ∈ I−.

Since W (ε) is convex, it suffi ces to show that v, v̄ ∈ W (ε).
In the following lemma, given α ∈ ∆ (A) and a function ω : A × Y → R, Eα [ω (r, y)]

denotes expectation where r ∼ α and then y ∼ p (·|r), and Eα,a′i [ω (r, y)] denotes expectation
where r ∼ α and then y ∼ p (·|a′i, r−i).

Lemma 10 There exist α ∈ ∆ (A) and ω : A× Y→R such that

v̄ = Eα [u (r)− bω (r, y)] ,

Eα [ui (r)− biω (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i)− biω (r, y) |ri = ai] for all i, ai ∈ suppαi, a

′
i ∈ Ai,

ω (r, y) ∈
[
0,

δ

1− δ ū
]

for all r, y.

Moreover, if the constraint ω (r, y) ∈
[
0, δ

1−δ ū
]
is replaced with ω (r, y) ∈

[
− δ

1−δ ū, 0
]
, then

the same statement holds with v in place of v̄.

Proof. Let E = {(1− β) v + βv̄ : β ∈ [0, 1]}. By standard arguments, E is self-generating:
for any v ∈ E, there exist α ∈ ∆ (A) and w : A× Y → E such that

v = Eα [u (r) + δw (r, y)] and

Eα [ui (r) + δwi (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i) + δwi (r, y) |ri = ai] for all i, ai ∈ suppαi, a

′
i ∈ Ai.
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Since v ∈ E and w (r, y) ∈ E for all r, y, we have vi − wi (r, y) = bi (v1 − w1 (r, y)) for all
i, r, y. Since v̄1 ≥ v1 for all v ∈ E, if v = v̄ then w1 (r, y) ≤ v1 for all r, y. Hence, taking
v = v̄ = (1− δ)u (α)+δbE [w (r, y) |α] and defining ω (r, y) = δ

1−δ (v̄1 − w1 (r, y)) ∈
[
0, δ

1−δ ū
]

for all r, y, and letting E [·] denote expectation where y ∼ p (·|a), we have, for all a, r,

u (a)− bE [ω (r, y)] = u (a)− bE
[

δ

1− δ (v̄1 − w1 (r, y))

]
= u (a)− E

[
δ

1− δ (v̄ − w (r, y))

]
= (1− δ)u (a) + δE [w (r, y)] ,

and the result follows. Similarly, if v = v then w1 (r, y) ≥ v1 for all r, y, and the symmetric
conclusion holds.
Taking α and ω as in Lemma 10, we have, for any player i and manipulation si,

gi (si, α) ≤
∑
ai

αi (ai)
(
Eα,si(ai) [biω (r, y) |ri = ai]− Eα [biω (r, y) |ri = ai]

)
≤

∑
r

α (r) max
ai
|E [ω (r, y) |r, ai]− E [ω (r, y) |r]| ,

where the second inequality uses |bi| ≤ 1. Hence,

1

N

∑
i

ḡi (α) ≤ 1

N

∑
i

∑
r

α (r) max
ai
|E [ω (r, y) |r, ai]− E [ω (r, y) |r]|

≤ max
r,a

1

N

∑
i

|E [ω (y) |ai, r−i]− E [ω (y) |r]| .

We conclude that
∑

i ḡi (α) /N is bounded by the solution to the program

max
(Y,p),r,a,ω

1

N

∑
i

|E [ω (y) |ai, r−i]− E [ω (y) |r]| s.t.

ω (y) ∈
[
0,

δ

1− δ ū
]

for all y,

E [ω (y) |r] ≤ ū,

where the last line holds because E [ω (y) |r] = u1 (r)− v̄1 ≤ ū. The remainder of the proof
shows that the value of this program converges to 0 if (1− δ) exp (N1−ρ)→∞ for ρ > 0.
We first consider the sub-program where (Y, p) is fixed, so the objective is maximized

over (r, a, ω). Recall that p (y|a) =
∑

x πa,xq (y|x). By Blackwell’s theorem, the value of the
sub-program with signal distribution p is greater than that with signal distribution p̂, if p̂ is
a garbling of p. (That is, there exists a Markov matrixM such that p̂ = Mp.) Consequently,
it is without loss to let Y = X and q (y|x) = 1 {y = x} for all y, x, so that p (x|a) = πa,x for
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all a, x. Now fix r, a ∈ A, and for each i, define X̄ = A,

π̄iai,xi =


1− π if xi = ai,
π if xi = ri,
0 otherwise,

π̄iri,xi =


1− π if xi = ri,
π if xi = ai,
0 otherwise,

π̄iãi,xi = 1 {xi = ãi} for ãi /∈ {ai, ri} ,

and finally π̄ã,x =
∏

i π̄
i
ãi,xi

for all ã, x. The following lemma implies that the value of our
program is upper-bounded by that with X = X̄ and π = π̄.

Lemma 11 π is a garbling of π̄.

Proof. Since (xi) are independent conditional on (ai), it suffi ces to show that πi is a garbling
of π̄i for each i. Since π < 1/2, the matrix π̄i is invertible, with inverse matrix π̂i given by

π̂iai,âi =


1−π
1−2π

if âi = ai,

− π
1−2π

if âi = ri,

0 otherwise,
π̂iri,âi =


1−π
1−2π

if âi = ri,

− π
1−2π

if âi = ai,

0 otherwise,
π̂iãi,âi = 1 {âi = ãi} for ãi /∈ {ai, ri} .

The matrix M i := πiπ̂i is easily calculated as

M i
âi,xi

=

{
πiâi,xi

1−π
1−2π

−
(
1− πiâi,xi

)
π

1−2π
if âi ∈ {ai, ri} ,

πiâi,xi otherwise.

Note that, for âi ∈ {ai, ri},∑
xi

M i
âi,xi

=
|Ai| − 1− π
|Ai| − 1− |Ai|π

− (|Ai| − 1)
π

|Ai| − 1− |Ai| π
= 1,

and clearly
∑

xi
M i

âi,xi
= 1 for âi /∈ {ai, ri}. In addition, since πiâi,xi ≥ π for all âi, xi, we

have
πiâi,xi (1− π)−

(
1− πiâi,xi

)
π

1− 2π
≥ π (1− π)− (1− π) π

|Xi| − 1− |Xi| π
= 0,

and clearly M i
âi,xi
≤ 1 for all âi, xi. So M i is a Markov matrix and πi = M iπ̄i, completing

the proof.
Given Lemma 11, our program simplifies to

max
r,a,ω

1

N

∑
i

|E [ω (x) |ai, r−i]− E [ω (x) |r]| s.t. (46)

ω (x) ∈
[
0,

δ

1− δ ū
]

for all x ∈ A, (47)

E [ω (x) |r] ≤ ū, (48)

where x is distributed π̄ã,x. Note that, for ã = r or ã = (ai, r−i) for some i, π̄ã,x > 0 iff
x ∈ ×i {ai, ri}. Note also that it is without loss to take ai 6= ri for all i. For, if ai = ri then
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the program becomes

max
a−i,r−i,ω−i:A−i→R

1

N

∑
j 6=i

|E [ω−i (x−i) |aj, r−j]− E [ω−i (x−i) |r]| s.t. (47), (48).

Any feasible triple (a−i, r−i, ω−i) in this reduced program can be extended to a feasible
triple (a, r, ω) with ai 6= ri in the original program which gives the same value, by defining
ω (x) = ω−i (x−i) for all x. We thus assume that ai 6= ri for all i.
We now show that the value of program (46)—(48) converges to 0, which completes the

proof. Note that this value is less than the sum of the values of the two programs

max
r,a,ω

1

N

∑
i

(E [ω (x) |ai, r−i]− E [ω (x) |r])+ s.t. (47), (48), and

max
r,a,ω

1

N

∑
i

(E [ω (x) |r]− E [ω (x) |ai, r−i])+ s.t. (47), (48).

We show that the value of the former program converges to 0. A symmetric argument shows
that the value of the latter program also converges to 0, which implies that the value of
program (46)—(48) converges to 0 as well, as desired.
Letting λ ≥ 0 denote the multiplier on (48), the solution to the first program satisfies

ω (x) =

 δ
1−δ ū if

(
1
N

∑
i π̄(ai,r−i),x

)
−π̄r,x

π̄r,x
> λ,

0 if
π̄(ai,r−i),x

−π̄r,x
π̄r,x

< λ,
=

 δ
1−δ ū if 1

N

∑
i

π̄(ai,r−i),x
π̄r,x

> λ+ 1,

0 if 1
N

∑
i

π̄(ai,r−i),x
π̄r,x

< λ+ 1.

For all x ∈ ×i {ai, ri}, we have

π̄(ai,r−i),x

π̄r,x
=

{
1−π
π

if xi = ai,
π

1−π if xi = ri.

Since 1−π
π

> π
1−π (as π < 1/2), it follows that there exists n∗ ∈ {0, 1, . . . , N} and β ∈ [0, 1]

such that

ω (x) =


δ

1−δ ū if {i : xi = ai} > n∗,

β δ
1−δ ū if {i : xi = ai} = n∗,

0 if {i : xi = ai} < n∗.

Let n = |{i : xi = ai}| and let n−i = |{j 6= i : xj = aj}|. Note that, for any n∗,

Pr (n = n∗|ai, r−i) = (1− π) Pr (n−i = n∗ − 1|r−i) + π Pr (n−i = n∗|r−i) , and

Pr (n = n∗|r) = π Pr (n−i = n∗ − 1|r−i) + (1− π) Pr (n−i = n∗|r−i) ,

and hence Pr (n ≥ n∗|ai, r−i)− Pr (n ≥ n∗|r−i) = (1− 2π) Pr (n−i = n∗ − 1|r−i). Therefore,
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the program becomes

max
n∗∈{0,1,...,N},β∈[0,1]

δ

1− δ ū (1− 2π) (β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i)) (49)

s.t. β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r) ≤ 1− δ
δ

, (50)

where

Pr (n−i = n∗|r−i) =

(
N − 1

n∗

)
πn
∗

(1− π)N−1−n∗ and Pr (n = n∗|r) =

(
N

n∗

)
πn
∗

(1− π)N−n
∗
.

Fix ρ > 0 and a sequence, indexed by k, of games with (1− δ) exp (N1−ρ) > k and pairs
(n∗, β) that satisfy (50). Fix ε > 0, and suppose toward a contradiction that, for every
k̄, there is some k ≥ k̄ such that the value of (49) exceeds ε. Taking a subsequence and
relabeling k̄ if necessary, this implies that there exists k̄ such that, for every k ≥ k̄, the value
of (49) exceeds ε.
We consider two cases and derive a contradiction in each of them.
First, suppose that there exists c > 0 such that, for every k̃, there is some k ≥ k̃ satisfying

|π − (n∗ − 1) / (N − 1)| > c. By Hoeffding’s inequality (Boucheron, Lugosi, and Massart,
2013, Theorem 2.8),

Pr (n−i ≥ n∗ − 1|r−i) ≤ exp

(
−2

(
π − n∗ − 1

N − 1

)2

(N − 1)

)
.

Hence, for every k̃, there is some k ≥ k̃ such that the value of (49) is at most

δ

1− δ ū (1− 2π) exp

(
−2

(
π − n∗ − 1

N − 1

)2

(N − 1)

)
≤ δ

1− δ ū (1− 2π) exp
(
−2c2 (N − 1)

)
.

Since (1− δ) exp (N1−ρ) → ∞, we have exp (−2c2 (N − 1)) / (1− δ) → 0 for all c > 0, and
hence (49) is less than ε for suffi ciently large k, a contradiction.
Second, suppose that for any c > 0, there exists k̃ such that, for every k ≥ k̃, we have∣∣∣∣π − n∗ − 1

N − 1

∣∣∣∣ ≤ c. (51)

For this case, we establish a final lemma.

Lemma 12 For any m ∈ N and any γ > 0, there exists k̃ such that, for every k ≥ k̃, we
have

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r)
β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i)

≥ m (1− γ) . (52)
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Proof. Fix c > 0 and take k suffi ciently large that (51) holds. For any m ∈ N, we have

Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

=

N∑
n=n∗+1

N (1− π)

N − n∗
(N − n∗)!n∗!
(N − n)!n!

(
π

1− π

)n−n∗

≥
N∑

n=n∗+1

N (1− c)
N − 1

(
N − n∗
n

)n−n∗ (
n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)

)n−n∗

≥
n∗+m∑
n=n∗+1

(1− c)
(
N − n∗
n∗ +m

× n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)

)m
= m (1− c)

(
N − n∗
n∗ +m

× n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)

)m
.

By (51), for any γ′ > 0, for suffi ciently large k we have (n∗ − 1) / (n∗ +m) ≥ 1 − γ′, and
hence

N − n∗
n∗ +m

× n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)
≥ (1− γ′) N − n

∗

n∗ − 1
× n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)

= (1− γ′)
1− c N−1

n∗−1

1 + c N−1
N−n∗

≥ (1− γ′)
1− c

π−c

1 + c
1−π−c

=
(1− γ′) (π − 2c) (1− π − c)

(π − c) (1− π)
,

which converges to 1 − γ′ as c → 0. Hence, for any γ > 0, there exists k̃ suffi ciently large
such that, for every k ≥ k̃,

Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

≥ m (1− c)
(

(1− γ′) (π − 2c) (1− π − c)
(π − c) (1− π)

)m
≥ m (1− γ) .

We therefore have

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

≥ Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

≥ m (1− γ) .

Similarly, for any m and γ > 0, there exists k̃ such that, for every k ≥ k̃, we have

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗ − 1|r−i)

≥ m (1− γ) .

Together, these inequalities imply that, for any m and γ > 0, there exists k̃ such that, for
every k ≥ k̃, (52) holds.
Thus, for any m ∈ N and any γ > 0, there exists k̃ such that, for every k ≥ k̃, the value
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of (49) satisfies

δ

1− δ ū (1− 2π) (β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i))

≤ ū (1− 2π)
β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i)

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r) (by (50))

≤ ū (1− 2π)

m (1− γ)
(by (52)).

Taking m and γ such that ū (1− 2π) / (m (1− γ)) < ε gives the desired contradiction.
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