
7 Online Appendix: Properties of Cost Functionals

In this section, we collect together proofs of properties of cost functionals mentioned in main

body of the paper.

7.1 Entropy Reduction Cost Functional

Lemma 18 The entropy reduction information cost satisfies CPD for all ψ ∈ (θmin, θmax).

Proof. For any SCR s, the associated entropy reduction is

c (s) = E [H (s (θ))]−H [E (s (θ))] ,

where H : [0, 1]→ R is given by

H (x) = x lnx+ (1− x) ln (1− x) .

Now let p1 (s) = E (s (θ)) denote the unconditional probability that action 1 is chosen

under SCR s. Note that this cost functional is convex and Fréchet differentiable at s with

derivative

H ′ (s (θ))−H ′ (p1 (s)) .

Now since ψ ∈ (θmin, θmax) and the prior density g is positive over [θmin, θmax], we have

E
(
1{θ≥ψ}

)
∈ (0, 1). Choose ξ > 0 such that E

(
1{θ≥ψ}

)
∈ (ξ, 1− ξ). Then choose ρ > 0

small enough such that for all s ∈ Bρ
(
1{θ≥ψ}

)
, p1 (s) ∈ (ξ, 1− ξ). Note that for small

ε > 0, s ∈ Bρ
(
1{θ≥ψ}

)
implies Lεψs ∈ Bρ

(
1{θ≥ψ}

)
. Let A (s) =

{
θ : Lεψs (θ) 6= s (θ)

}
.

Now Fréchet differentiability implies that we have

c
(
Lεψs

)
− c (s) ≤

∫
A(s)

[
H ′
(
Lεψs (θ)

)
−H ′

(
p1

(
Lεψs

))] (
Lεψs (θ)− s (θ)

)
dG (θ)

and

c
(
Lεψs

)
− c (s) ≥

∫
A(s)

[H ′ (s (θ))−H ′ (p1 (s))]
(
Lεψs (θ)− s (θ)

)
dG (θ) ,

Hence,

∣∣c (Lεψs)− c (s)
∣∣ ≤ max

 ∣∣∣∫A(s)
[H ′ (s (θ))−H ′ (p1 (s))]

(
Lεψs (θ)− s (θ)

)
dG (θ)

∣∣∣ ,∣∣∣∫A(s)

[
H ′
(
Lεψs (θ)

)
−H ′

(
p1

(
Lεψs

))](
Lεψs (θ)− s (θ)

)
dG (θ)

∣∣∣
 .
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SinceH ′ (x) is increasing in x, for all θ ∈ A (s), both |H ′ (s (θ))−H ′ (p1 (s))| and
∣∣∣H ′ (Lεψs (θ)

)
−H ′

(
p1

(
Lεψs

))∣∣∣
are bounded above by

K = max (|H ′ (1− ε)−H ′ (ξ)| , |H ′ (1− ξ)−H ′ (ε)|) .

Therefore,

∣∣c (Lεψs)− c (s)
∣∣ ≤ ∫

A(s)

K ·
∣∣Lεψs (θ)− s (θ)

∣∣ dG (θ)

= K ·
∥∥Lεψs, s∥∥ .

This concludes the proof.

7.2 The Pairwise-Separable Cost Functional

Lemma 19 The PS cost functional satisfies A9 (feasible almost perfect discrimination).

Proof. It suffi ces to show that cPS (ŝk,ψ) <∞, i.e., the integral∫
θ

∫
θ′

∣∣θ′ − θ∣∣−αD (ŝk,ψ (θ) , ŝk,ψ
(
θ′
))
h
(
θ, θ′

)
dθ′dθ

exists.

Let

A =
{(
θ, θ′

)
∈ R2 : −k−1 ≤ θ − θ′ ≤ k−1

}
and

A1 =
{(
θ, θ′

)
∈ R2 : θ ≥ ψ + k−1/2 and θ′ ≥ ψ + k−1/2, or θ ≤ ψ − k−1/2 and θ′ ≤ ψ − k−1/2

}
.

First note that
∣∣θ′ − θ∣∣−α is bounded on R2\A, thus the integral over R2\A exists. Second,

since D
(
ŝk,ψ (θ) , ŝk,ψ

(
θ′
))

= 0 on A1, we just need to show that the integral over A\A1

exists. Let

B1 =
{(
θ, θ′

)
∈ A\A1 : −k−1/2 ≤ θ′ ≤ k−1/2 and 0 ≤ θ − θ′ ≤ k−1

}
,

B2 =
{(
θ, θ′

)
∈ A\A1 : −k−1/2 ≤ θ′ ≤ k−1/2 and 0 ≤ θ′ − θ ≤ k−1

}
,

B3 =
{(
θ, θ′

)
∈ A\A1 : −k−1/2 ≤ θ ≤ k−1/2 and 0 ≤ θ′ − θ ≤ k−1

}
,

and

B4 =
{(
θ, θ′

)
∈ A\A1 : −k−1/2 ≤ θ ≤ k−1/2 and 0 ≤ θ − θ′ ≤ k−1

}
.
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Then A\A1 = B1 ∪B2 ∪B3 ∪B4. We next show that the integral over B1 exists. Similar

calculations can show the existence of the integral over B2, B3 and B4, and are thus omitted.

By definition of a PS cost functional,D (x1, x2) is bounded on [0, 1]×[0, 1] andD (x1, x2) =

O
(
|x1 − x2|β

)
as |x1 − x2| → 0. So there exists a K > 0, such that

D (x1, x2) ≤ K · |x1 − x2|β (23)

on [0, 1]× [0, 1]. Now∫
B1

∣∣θ − θ′∣∣−αD (ŝk,ψ (θ) , ŝk,ψ
(
θ′
))
h
(
θ, θ′

)
dθ′dθ

≤
∫
B1

∣∣θ − θ′∣∣−αK · ∣∣ŝk,ψ (θ)− ŝk,ψ
(
θ′
)∣∣β h (θ, θ′) dθ′dθ

=

∫
B1

(
θ − θ′

)−α
K ·

(
1

2
+ k (θ − ψ)− 1

2
− k

(
θ′ − ψ

))β
h
(
θ, θ′

)
dθ′dθ

≤ Kkβh

∫
B1

(
θ − θ′

)β−α
dθ′dθ ,

for some h > 0, where the first inequality is implied by (23), the equality is implied by

the definition of ŝk,ψ and the last inequality is true because θ ≥ θ′ on B1 and
h(θ,θ′)
g(θ)g(θ′) is

bounded above in the definition of PS cost functionals.

Now changing variables from
(
θ, θ′

)
to (t, t′) such that t = θ and t′ = θ − θ′, we have∫

B1

(
θ − θ′

)β−α
dθ′dθ

=

∫ k−1

0

(t′)
β−α

∫ k−1/2+t′

−k−1/2+t′
dt · dt′

= k−1

∫ k−1

0

(t′)
β−α

dt′ .

This integral exists since β − α+ 1 > 0. Therefore, cPS (ŝk,ψ) <∞.

Proposition 20 The PS cost functional satisfies IPD if and only if α ≥ 2.

Proof. Let s be a non-decreasing discontinuous SCR and s
(
θ̂−

)
< s

(
θ̂+

)
for some θ̂ ∈

[θmin, θmax].29 Let

sθ̂ (θ) =

{s(θ̂+

)
if θ > θ̂

s
(
θ̂−

)
if θ ≤ θ̂

(24)

29We can focus on θ̂ ∈ [θmin, θmax] because the possible θ̂s of equilibrium SCRs are always in [θmin, θmax]
due to Assumption A3.
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and

A = min
[
D
(
s
(
θ̂−

)
, s
(
θ̂+

))
, D
(
s
(
θ̂+

)
, s
(
θ̂−

))]
.

Note that A > 0 since s
(
θ̂−

)
6= s

(
θ̂+

)
. Then we have

cPS (s) =

∫
θ

∫
θ′

∣∣θ′ − θ∣∣−αD (s (θ) , s
(
θ′
))
h
(
θ, θ′

)
dθ′dθ

≥
∫
θ

∫
θ′

∣∣θ′ − θ∣∣−αD (sθ̂ (θ) , sθ̂
(
θ′
))
h
(
θ, θ′

)
dθ′dθ

= D
(
s
(
θ̂−

)
, s
(
θ̂+

))∫ θ̂

−∞

∫ ∞
θ̂

(
θ′ − θ

)−α
h
(
θ, θ′

)
dθ′dθ

+D
(
s
(
θ̂+

)
, s
(
θ̂−

))∫ ∞
θ̂

∫ θ̂

−∞

(
θ − θ′

)−α
h
(
θ, θ′

)
dθ′dθ

≥ 2A ·
∫ θ̂

−∞

∫ ∞
θ̂

(
θ′ − θ

)−α
h
(
θ, θ′

)
dθ′dθ , (25)

where the first inequality follows the monotonicity of s in θ, and the second inequality follows

the definition of A. Since g is continuous and strictly positive on [θmin, θmax], it has a strictly

positive lower bound on [θmin, θmax]. Since
g(θ)g(θ′)
h(θ,θ′) is bounded above, h

(
θ, θ′

)
has a strictly

positive lower bound on [θmin, θmax]×[θmin, θmax]. Hence,
∫ θ̂
−∞

∫∞
θ̂

(
θ′ − θ

)−α
h
(
θ, θ′

)
dθ′dθ

is integrable if and only if 2− α > 0. Therefore, α ≥ 2 implies cPS (s) =∞ and thus IPD.

For the converse, consider an SCR sθ̂ (·) defined by (24) such that D
(
s
(
θ̂−

)
, s
(
θ̂+

))
=

D
(
s
(
θ̂+

)
, s
(
θ̂−

))
≡ A > 0. Immediate from the previous derivation of (25) we obtain

that cPS
(
sθ̂
)

=∞ if α ≥ 2 and c
(
sθ̂
)
<∞ if α < 2. Then, IPD implies cPS

(
sθ̂
)

=∞ and

thus α ≥ 2.

The following lemmas show that CPD is satisfied if α = 0 and it is easier to be satisfied

at lower values of α. Since the PS cost functional is continuous in α, there exists some

α̂ ∈ [0,min (2, β + 1)] such that CPD is satisfied for α ∈ [0, α̂]. Due to the technicalities

associated with the PS cost functional and the generality of the definitions of CPD and

EPD, however, we do not obtain an analytical bound α̂ between CPD and EPD.

Lemma 21 The PS cost functional satisfies CPD at α = 0.

Proof. When α = 0, the cost functional becomes

cPS (s) =

∫
θ

∫
θ′
D
(
s (θ) , s

(
θ′
))
h
(
θ, θ′

)
dθ′dθ .
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Hence, by the triangle inequality,

∣∣cPS (Lεψs)− cPS (s)
∣∣ =

∣∣∣∣∫
θ

∫
θ′

[
D
((
Lεψs

)
(θ) ,

(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣
≤

∫
θ

∫
θ′

∣∣D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))∣∣h (θ, θ′) dθ′dθ

≤
∫
θ

∫
θ′

∣∣D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

((
Lεψs

)
(θ) , s

(
θ′
))∣∣h (θ, θ′) dθ′dθ

+

∫
θ

∫
θ′

∣∣D ((Lεψs) (θ) , s
(
θ′
))
−D

(
s (θ) , s

(
θ′
))∣∣h (θ, θ′) dθ′dθ . (26)

Since ∂D(x1,x2)
∂x1

and ∂D(x1,x2)
∂x2

exist on [0, 1] × [0, 1],30 there exists a K > 0 such that

|D (x′1, x2)−D (x1, x2)| ≤ K · |x′1 − x1| and |D (x1, x
′
2)−D (x1, x2)| ≤ K · |x′2 − x2| for

all x1, x2 ∈ [0, 1]. Hence,

∣∣D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

((
Lεψs

)
(θ) , s

(
θ′
))∣∣ ≤ K · ∣∣(Lεψs) (θ′)− s (θ′)∣∣

and ∣∣D ((Lεψs) (θ) , s
(
θ′
))
−D

(
s (θ) , s

(
θ′
))∣∣ ≤ K · ∣∣(Lεψs) (θ)− s (θ)

∣∣ .
Plugging the above two inequalities into (26), we obtain

∣∣cPS (Lεψs)− cPS (s)
∣∣

≤
∫
θ

∫
θ′
K ·

∣∣(Lεψs) (θ′)− s (θ′)∣∣h (θ, θ′) dθ′dθ +

∫
θ

∫
θ′
K ·

∣∣(Lεψs) (θ)− s (θ)
∣∣h (θ, θ′) dθ′dθ

≤
∫
θ

∫
θ′
K ·

∣∣(Lεψs) (θ′)− s (θ′)∣∣K ′g (θ′) g (θ) dθ′dθ +

∫
θ

∫
θ′
K ·

∣∣(Lεψs) (θ)− s (θ)
∣∣K ′g (θ′) g (θ) dθ′dθ

= KK ′ ·
∫
θ

∥∥Lεψs, s∥∥ g (θ) dθ +KK ′ ·
∫
θ′

∥∥Lεψs, s∥∥ g (θ′) dθ′
= 2KK ′ ·

∥∥Lεψs, s∥∥ ,
where the second inequality follows because

h(θ,θ′)
g(θ)g(θ′) is bounded above by some K

′ > 0.

Therefore, cPS satisfies CPD when α = 0.

Lemma 22 If the PS cost functional satisfies CPD at some α ≥ 0, then it satisfies CPD

at all α′ ∈ [0, α].

Proof. To avoid confusion, let cαPS (·) denote the PS cost functional with parameter α.
Since cαPS (·) satisfies CPD, for any ψ ∈ R and ε ∈ (0, 1/2), there exists a ρ > 0 and K > 0

such that ∣∣cαPS (Lεψs)− cαPS (s)
∣∣ ≤ K · ∥∥Lεψs, s∥∥

30The proof goes through under a weaker condition that ∂
∂xi

D (x1, x2) exists for all xi ∈ (0, 1) and
xj ∈ [0, 1], i, j ∈ {1, 2}, i 6= j.
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for all monotonic s ∈ Bρ
(
1{θ≥ψ}

)
. Without loss of generality, we can choose a suffi ciently

small ρ > 0. Then by the construction of operator Lεψ, there exists an interval [θ1, θ2] such

that for any monotonic s ∈ Bρ
(
1{θ≥ψ}

)
, Lεψs and s differ only in [θ1, θ2]. Fix a z > 0.

Then ∣∣∣cα′PS (Lεψs)− cα′PS (s)
∣∣∣

=

∣∣∣∣∫
θ

∫
θ′

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣
≤

∣∣∣∣∣
∫
R2\[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
+

∣∣∣∣∣
∫

[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
=

∣∣∣∣∣
∫

(−∞,θ1−z)∪(θ2+z,∞)

∫
[θ1,θ2]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
+

∣∣∣∣∣
∫

[θ1,θ2]

∫
(−∞,θ1−z)∪(θ2+z,∞)

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
+

∣∣∣∣∣
∫

[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣ ,(27)
where the second equality follows the fact Lεψs and s differ only in [θ1, θ2]. Since ∂D(x1,x2)

∂x1

and ∂D(x1,x2)
∂x2

exist on [0, 1]×[0, 1],31 there exists aK1 > 0 such that |D (x′1, x2)−D (x1, x2)| ≤
K1 · |x′1 − x1| and |D (x1, x

′
2)−D (x1, x2)| ≤ K1 · |x′2 − x2| for all x1, x2 ∈ [0, 1]. Then, the

first term in the right hand side of (27) is∣∣∣∣∣
∫

(−∞,θ1−z)∪(θ2+z,∞)

∫
[θ1,θ2]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
≤

∫
(−∞,θ1−z)∪(θ2+z,∞)

∫
[θ1,θ2]

∣∣θ′ − θ∣∣−α′ ∣∣D (s (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))∣∣h (θ, θ′) dθ′dθ

≤ K ′
∫

(−∞,θ1−z)∪(θ2+z,∞)

∫
[θ1,θ2]

z−α
′
K1 ·

∣∣(Lεψs) (θ′)− s (θ′)∣∣ g (θ′) dθ′g (θ) dθ

≤ z−α
′
K ′K1 ·

∫
(−∞,θ1−z)∪(θ2+z,∞)

∥∥Lεψs, s∥∥ g (θ) dθ

≤ z−α
′
K ′K1 ·

∥∥Lεψs, s∥∥ ,
where the first inequality holds because

(
Lεψs

)
(θ) = s (θ) for θ ∈ (−∞, θ1 − z)∪(θ2 + z,∞),

and the second inequality follows that
∣∣θ′ − θ∣∣−α′ ≤ z−α′ for θ ∈ (−∞, θ1 − z)∪ (θ2 + z,∞)

31The proof goes through under a weaker condition that ∂
∂xi

D (x1, x2) exists for all xi ∈ (0, 1) and
xj ∈ [0, 1], i, j ∈ {1, 2}, i 6= j.
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and θ′ ∈ [θ1, θ2], and that
h(θ,θ′)
g(θ)g(θ′) is bounded above by some K

′ > 0. By a symmetric argu-

ment, the second term in the right hand side of (27) is also bounded by z−α
′
K ′K1 ·

∥∥∥Lεψs, s∥∥∥.
Since α−α′ ≥ 0,

∣∣θ′ − θ∣∣α−α′ is bounded for (θ, θ′) ∈ [θ1 − z, θ2 + z]× [θ1 − z, θ2 + z], then

there is a K2 > 0 such that the third term in the right hand side of (27) is∣∣∣∣∣
∫

[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣α−α′ ∣∣θ′ − θ∣∣−α [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
≤ K ′K2 ·

∣∣∣∣∣
∫

[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣−α [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

g
(
θ′
)
g (θ) dθ′dθ

∣∣∣∣∣
≤ K ′K2 ·

∣∣cαPS (Lεψs)− cαPS (s)
∣∣

≤ K ′K2K ·
∥∥Lεψs, s∥∥ .

Hence, (27) becomes ∣∣∣cα′PS (Lεψs)− cα′PS (s)
∣∣∣

≤ 2z−α
′
K ′K1 ·

∥∥Lεψs, s∥∥+K ′K2K ·
∥∥Lεψs, s∥∥

=
(

2z−α
′
K1 +K2K

)
K ′ ·

∥∥Lεψs, s∥∥ .
Therefore, cα

′

PS satisfies CPD.
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7.3 The Fisher Cost Functional

Lemma 23 The Fisher cost functional satisfies sub-modularity.

Proof. Let s1 and s2 be two SCRs. It is straightforward to see that cFisher (s2 ∨ s1) +

cFisher (s2 ∧ s1) = cFisher (s1) + cFisher (s2). Let A = {θ ∈ R : s2 (θ) ≥ s1 (θ)} and B =

{θ ∈ R : s2 (θ) < s1 (θ)}. Then,

cFisher (s2 ∨ s1) + cFisher (s2 ∧ s1)

=

∫
A

(
[g (θ) s2 (θ)]

′)2
g (θ) s2 (θ)

+

(
[g (θ) (1− s2 (θ))]

′)2
g (θ) (1− s2 (θ))

dθ +

∫
B

(
[g (θ) s1 (θ)]

′)2
g (θ) s1 (θ)

+

(
[g (θ) (1− s1 (θ))]

′)2
g (θ) (1− s1 (θ))

dθ

+

∫
A

(
[g (θ) s1 (θ)]

′)2
g (θ) s1 (θ)

+

(
[g (θ) (1− s1 (θ))]

′)2
g (θ) (1− s1 (θ))

dθ +

∫
B

(
[g (θ) s2 (θ)]

′)2
g (θ) s2 (θ)

+

(
[g (θ) (1− s2 (θ))]

′)2
g (θ) (1− s2 (θ))

dθ

=

∫
A

(
[g (θ) s1 (θ)]

′)2
g (θ) s1 (θ)

+

(
[g (θ) (1− s1 (θ))]

′)2
g (θ) (1− s1 (θ))

dθ +

∫
B

(
[g (θ) s1 (θ)]

′)2
g (θ) s1 (θ)

+

(
[g (θ) (1− s1 (θ))]

′)2
g (θ) (1− s1 (θ))

+

∫
A

(
[g (θ) s2 (θ)]

′)2
g (θ) s2 (θ)

+

(
[g (θ) (1− s2 (θ))]

′)2
g (θ) (1− s2 (θ))

dθ +

∫
B

(
[g (θ) s2 (θ)]

′)2
g (θ) s2 (θ)

+

(
[g (θ) (1− s2 (θ))]

′)2
g (θ) (1− s2 (θ))

dθdθ

= cFisher (s1) + cFisher (s2) .

7.4 The Additive Noise Cost Functional

Here we show that the additive noise cost functional cAN is not submodular, by constructing

a counterexample. Suppose ε is uniform on
[
− 1

2 ,
1
2

]
. Let bψ = 1{x≥ψ} be the step function

behavioral strategy where a player invests if and only if his signal is above ψ. Then the

induced stochastic choice rule s̃k,bψ is equal to the slope k threshold approximation of 1{θ≥ψ},

i.e.,

s̃k,bψ (θ) =

∫ 1/2

−1/2

bψ

(
θ +

1

k
ε

)
dε =

∫ 1/2

−1/2

1ε≤k(θ−ψ) = ŝk,ψ (θ)

Since k is the maximum slope of ŝk,ψ, we have

ds̃k,b (θ)

dθ
≤ k , (28)

where the inequality is an equality if and only if the behavioral strategy is the switching

strategy bψ for some switching cutoffψ. Now consider s̃k1,bψ and s̃k2,bψ , where k2 > k1 > 0.

Note that s̃k1,bψ and s̃k2,bψ intersect at (ψ, 1/2), so that

(
s̃k1,bψ ∨ s̃k2,bψ

)
(θ) =

{
s̃k1,bψ (θ) if θ < ψ

s̃k2,bψ (θ) if θ ≥ ψ

8



and (
s̃k1,bψ ∧ s̃k2,bψ

)
(θ) =

{
s̃k2,bψ (θ) if θ < ψ

s̃k1,bψ (θ) if θ ≥ ψ .

So k2 is the maximal slope of both s̃k1,bψ ∨ s̃k2,bψ and s̃k1,bψ ∧ s̃k2,bψ . Inequality (28) thus

implies cAN
(
s̃k1,bψ ∨ s̃k2,bψ

)
= c (k2) and cAN

(
s̃k1,bψ ∧ s̃k2,bψ

)
= c (k2). Therefore,

cAN
(
s̃k1,bψ

)
+ cAN

(
s̃k2,bψ

)
= ĉ (k1) + ĉ (k2)

< 2ĉ (k2)

= cAN
(
s̃k1,bψ ∨ s̃k2,bψ

)
+ cAN

(
s̃k1,bψ ∧ s̃k2,bψ

)
,

a violation of submodularity.
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