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Testing Revealed Preference Theory, I: Methodology 

 

 The revealed preference theory developed last time applied to a single 

agent. 

 

 This corresponds to a “within-subject” experiment: see same subject make 

choices from different menus. 

 

 How to implement both a choice from the menu  {apple, banana, orange} 

and from {banana, orange, pear}?  

 

 Different days?  Only one choice counts? Or don’t implement choices, ask 

hypothetical questions?  Each of these poses complications of various 

degrees of seriousness.  

 

 Many experiments use “between-subject” designs: compare choices of one 

set of people from menu A  to those of another set of people from menu B. 
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 Assign subjects randomly to the two conditions so the groups are 

statistically indistinguishable. 

 

 What are the implications of standard preferences then? 

 

 Let X  be  finite set of alternatives, and let ( )X   be the space of 

probability distributions on X. 

 

 Suppose each agent has strict (and complete transitive) preferences on X .  

 

 Enumerate the elements of X,  and represent each preference by a 1-1 

map    : 1,..., 1,...,u X X X   . (i.e. a permutation) 

 

 Let U be the finite set of all such maps. 
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 Represent the distribution of preferences in the population by some 

( )U   . 

 

 Our data is now a system of choice probabilities  ( , )P X :  For each choice 

set A that we observe we see ( )AP A  .  To simplify notation I’ll assume 

we see choice from every non-null subset of X. 

 

   We’ll say that the choice probabilities are rationalizable  if they can be 

generated by some ( )U  .   Formally: A system of choice probabilities 

( , )P X is rationalizable  if there is ( )U   s.t. for all nonempty A X  and 

all x A ,     ( ) | ( ) max ( )A y AP x u U u x u y     . 
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Observation:  If ( , )P X  is rationalizable then for any x X , if x A    and 

'A A   then '( ) ( )A AP x P x . 

 

This property is called “regularity” in the literature on stochastic choice. 

 

Desired conclusion:  If we give people a larger choice set then choice 

probability/market shares of the originally available items can’t increase. 

 

Aside:  Regularity is necessary but not sufficient for the choice probabilities to 

be rationalizable. Will say more about this later if/when we discuss stochastic 

choice. 

 

Qualifications: not sure how to extend this  if  a) if preferences aren’t strict- then 

maybe assume uniform randomization?  b)  if samples are finite, need to do a  

power calculation. 
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Testing Revealed Preference Theory, II:  Counterxexamples 

 

Decoy Effect: Huber et al J Cons Research [1982] 

 Six different product categories. Hypothetical choices. 

 

 Each product described by 2 attributes, e.g. quality score and price. 

 

 A “decoy” is a 3rd good that is dominated by one alternative but not the 

other. 

 

 Adding these decoys can lead to violations of regularity which as we saw 

implies violations of WARP. 

 

 Decoys can be “range increasing” or  “frequency increasing” as in the next 

figure. 
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 On average over all 6 product categories the “range-increasing” decoys 

increased the target’s market share by .13, “frequency-increasing” decoys 

increased target’s share by .08. 

 

 Cross-subject, weaker effect on individuals (53 vs. 56%) and p=.1. 

 

 Later work calls it an “attraction effect” 

 

 Subsequent work challenged just how often these decoys work. 
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Huber et al JMarketingResearch [2014]: 

 

“..Our 1982 article was designed as a demonstration study showing that 

one could, under certain circumstances, obtain violations of the important 

theoretical assumption of regularity. We did not set out to suggest a tool 

for marketing practice…. The most critical condition (for the attraction 

effects) is that people have either very weak or initially unformed 

preferences between the target and the competitor. They will be the people 

most affected by the attraction effect. The converse is also true: the greater 

the heterogeneity in basic trade-off values, the smaller the attraction 

effect… We suspect that the asymmetric dominance effect occurs rarely in 

the marketplace today… most market choices have multiple complex 

attributes rather than two numeric ones. The multiple attributes make it 

virtually impossible to find an alternative without some unique benefit. 

More importantly, people may have strong preferences for complex 

attributes (e.g., brand name, country of origin, product type), but there are 

situations in which those preferences are reversed….” 
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 There is also evidence of a “compromise effect (Simonson J Cons Research 

[1989]): choose the “middle option”. 
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 Also anecdotal evidence that the compromise effect makes premium loss-

leaders effective, as in the Simonson-Tversky story about Williams of 

Sonoma bread makers: adding a $429 version increased the sales of the 

original $275 model. 

 

 One way to model these sorts of regularity violations and context effects is 

to let utility depend on the menu.  

 

 But without some structure on this dependence the model becomes 

vacuous at the individual level (so a fortiori when aggregating): any   choice 

correspondence c  can be generated from utility maximization by  setting 

( , ) 1u x A    if ( )x c A   and ( , ) 0u x A   for ( )x c A . 

 

 There are now many models and representation theorems for various sorts 

of “menu effects,” and topic of ongoing research; I’ll just mention 2. 
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 Ok, Ortoleva, and Riella AER [2015]  provide an axiomatic characterization 

of a form of menu dependence where choice can depend on a “reference 

point.” 

 

 They assume that preference on pairs of item is transitive, and also assume 

that if { , } ( )x y c A   for some A, then  { , } { , }c x y x y . 

 

 Then develop a notion of “revealed reference points,” and use conditions 

on it to prove their characterization. 

 

 The representation says that when a given menu has a reference point, the 

agent restricts attention to choices that dominate it according to each 

element of a collection of functions. (these functions are a priori arbitrary 

but constrained by the choice data.) E.g. in the decoy examples, the 

revealed “consideration set” is the objects that dominate the decoy in both 

dimensions.  

 



12 
 

 WARP violations can also arise when the menu contains information-e.g. 

maybe only restaurants that offer item A are any good at making item B. 

 

 Plausible story but incomplete w/o a model of how firms choose menus. 

 

  Kamenica AER [2008]:  a monopolist and some consumers know a global 

preference parameter,  other consumers infer it from the menu and the 

monopolist’s strategy in an equilibrium of the incomplete-information 

game. 

 

 Given the firm’s optimal policy it makes sense for some consumers to use 

the rule “pick the middle item” (in terms of a characteristic like lumens.) 

 

 Pset 1 has a simplified version of this idea. 
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Static Decisions Under “Risk” (Objectively Known Probabilities) 

 

 Z: finite (for now) set of “prizes” or “consequences.” 

 

 ( )Z : probability distributions or “lotteries” on Z.  (implicit: the decision 

maker doesn’t care about how this distribution is determined, and in 

particular “reduces compound lotteries”: the lottery ¼ chance of an apple, 

¾  chance of a banana is the same as “flip two fair coins, get an apple if 

both heads and otherwise get a banana.) 

 

 ( )Z  is convex: for any , ( )p q Z  and [0,1]   , (1 ) ( )p q Z      is 

the lottery that assigns probability ( ) (1 ) ( )p z q z    to each z Z . 

 

 We assume the agent has continuous, complete, transitive preference  

on ( )Z - so they can be represented by an ordinal utility function. (we 

need continuity because ( )Z  is infinite, it’s a convex subset of #Z . 

as noted last time can’t reject continuity with finite data.) 
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 We’re after more structure than this- an expected utility function.  

 

 A Bernoulli utility  is any function :u Z   .   

 

 The corresponding expected utility of a lottery ( )p Z   is 

( ) ( ) ( )
z Z

U p p z u z


  . 

 

(once we prove the expected utility representation theorem I will be less 

careful and call both u and U the utility.) 

 

   has an expected utility representation  if there is a Bernoulli utility 

function u  s.t. ( ) ( ) ( )
z Z

U p p z u z


  represents  . 
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 The key condition for expected utility is the Independence Axiom 

 

Independence Axiom:  For all , , ( )p q r Z  and (0,1]   ,  

p q   implies  

(1 )(1 ) qp r r      . 
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Compare two situations: agent chooses between p  and q  either before or 

after Nature chooses between r  and the p/q  branch. 

The independence axiom follows from the combination of  

 

(1) Consequentialism on lotteries:  When deciding after Nature rules out r, the 

agent makes the same choice between p  and q  regardless of r, 

 

and 

 

(2) Dynamic Consistency:  The  agent makes the same decisions in the two

 choice problems. 

 

So (to some people- including me) it’s normatively appealing, though as we’ll 

see next time it isn’t always satisfied. 

 

Later we’ll see related definitions of consequentialism. 



18 
 

Lotteries z   that assign probability 1 to a single outcome z are called  Dirac 

measures. Since Z  is finite, these measures are a finite subset of ( )Z .  

So with complete transitive preferences there is a “best” Dirac measure, that is,  

a  B  s.t. zB   z Z   ,and a “worst”  Dirac measure W  . (neither need be 

unique) 

  



19 
 

Claim: If  on ( )Z   satisfies Independence then it is  monotonic in the 

following sense:  

For any , ( )p q X  with p q  and 0 1b a   ,  

 ) 1 )(1 (a bq bp qp a     .  

 

Proof:  

( ) (1

(1 ) ( ) (1 ) (algeb

) (independence axiom)

(1 ) .

ra)

(algebra)

bp a b

ap a q bp a b p

q a q

bp q

a q

b

   

      

  
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Claim:  If  on ( )Z  is complete, transitive, and satisfies Independence, it has 

best and worst elements  ,B W   , so that WB p   for all ( )p Z  .   

 

(prove by induction on the cardinality of the support of p: if it holds for all q 

with #support=j, and p has #support= j+1,  write (1 ) zp a q a     for some z   

and appeal to the Independence Axiom:  

 

(1 ) (

(1 )

.

1 )

(1 )

B B B

W

B

z

z

Wz

q p





     

 







    

 

    

 

Theorem (vN-M [1944])  Preference   on ( )Z  has an expected utility 

representation iff it is complete, transitive, continuous, and satisfies the 

Independence Axiom. 

 

Proof:   Obvious that the representation implies the stated conditions.  
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Proof that the conditions are sufficient for the representation. 

 

If ~ WB   then from transitivity ~ zB    for all z, and from Independence 

~B p  for all ( )p Z , so we can represent the preferences with ( ) 0u z z   . 

 

If  WB  define :[0,1] ( )f Z  by ( ) (1 )B Wf        . 

(f maps into ( )Z  because ( )Z is convex.) 

 

From monotonicity, (( )) 'ff    iff '   . So  

((1) 0)p ff   ( )p Z  . 

 

Because preferences are continuous and the set of lotteries is connected, 

( )p Z  ,  ( )p  s.t. ( ) (1 ( )) ( ~( ))B Wp p f pp        , and from 

monotonicity this     is unique. 
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Now verify that setting ( ) ( )zu z    yields an expected utility representation of 

 . 

 

(i) Suppose ( ) ( ) ( ) ( )z zz z
p z q z     . 

 

Then from the Independence axiom and monotonicity, 

 

   

   

~ ( ) ( ) 1 ( ) ( )

( ) ( ) 1 ( ) ( ) ~ .

( ) zz B Wz z

B Wz z

p z z p z z

q z z q

p z

z z q

p    

  





 

 

  

 
 

 

(ii) Can similarly show that if  

 

( ) ( ) ( ) ( )
z z
p z u z q z u z   ,   then   q p  . 
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Cardinal Uniqueness 

If  Bernoulli utility functions u  and u’  both give expected utility representations 

of , there is 0a   and b  s.t. for all z Z , ( ) '( )u z au z b  , and all such a,b  

give equivalent representations. (“unique up to affine transformations/ affine 

uniqueness.”) 

 

Proof:  It is clear that the two utility functions generate the same preferences if 

( ) '( )u z au z b  : adding a constant to the utility of all outcomes won’t change 

their ranking and neither does multiplying ever utility by a (provided 0a  ): it’s 

like the conversion from Celsius to Fahrenheit. 

 

 The converse- that we have to have ( ) '( )u z au z b   for u  and u’ to represent 

the same preferences, is  immediate if u  is constant.  
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Suppose u  is not constant. 

As above there is a unique function     s.t. ~( ) (1 ( ))B W pp p     . 

So 
( ) ( ) ( ) (1 ( )) ( )

'( ) ( ) '( ) (1 ( )) '( )

u z z u B z u W

u z z u B z u W

 

 

  

  
 

 

Rearranging terms:  

( ) ( ) '( ) '( )

( ) ( ) '( ) '( )

u z u W u z u W

u B u W u B u W

 


 
  

 

So   
( ) ( )

( ) ( ) '( ) '( )
'( ) '( )

u B u W
u z u W u z u W

u B u W


  


= '( )au z b  , 0a   .    

 

Note: if we only see preferences on a finite subset of lotteries we can’t pin down 

the utility functions this precisely. 
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Now suppose prizes are money that you might receive at the end of class 

today.   

 

The certain equivalent (or certainty equivalent)   of a gamble is the certain 

amount that leaves you just indifferent 

 

Write down your own  certain equivalents for: 

 

(a) ½ 0, ½ $10,000. Call it CE(a) 

(b) what is your CE of (1/2 0, ½ CE(a))? 

(c) What is your CE of (1/2 CE(a), ½ $10,000) 
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Lotteries with Money Payoffs 

 Suppose that the prizes are money, so Z  , and  possibly infinite. 

 

 Assume expected utility representation, with Bernoulli utility u that is 

continuous and strictly increasing- more money is preferred to less. 

(Strzalecki 5.3, optional, gives conditions for the EU theorem to hold 

with infinite Z) 

(continuous and strictly increasing functions are  differentiable almost 

everywhere, to simplify assume u is  twice differentiable.) 

 

 Consider only Lebesgue-measurable lotteries ( )p Z  and identify them 

with their cumulative distribution functions: ( ) Pr( )pF x z x   . 

 

 Let ( )Ep zdF z   be expected value of p.   (restrict attention to lotteries 

where this is finite) 
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Let 
Ep  be the deterministic lottery (Dirac delta measure) on the expected 

value of lottery p. 

 

Definition  Preference   is 

 risk averse if for all p 
Ep p   

 risk neutral if for all p  ~Ep p  

 risk loving if for all p  EPp    

 

Theorem (Jensen’s inequality): An expected utility preference is risk averse/risk 

neutral/risk loving if u is concave/affine/convex. 

 

Definition:  Preference 1  is more risk averse  than 2   if for all z Z  and 

( )p Z  , 2z p  implies 1z p  and 2z p  implies 1z p . 
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Definition: The coefficient of absolute risk aversion at z is ( ) : "( ) / '( )A z u z u z  . 

(a “scale-free” measure of local concavity. 

 

Theorem: Suppose 1 and 2  are EU preferences represented by strictly 

increasing, twice-differentiable and concave Bernoulli utility functions 1 2,u u  , 

with associated absolute risk aversions 1 2,A A .  Then the following three 

conditions are equivalent: 

 

1.  1  is more risk averse  than 2 . 

 

2.  There is a concave function 2: ( )g range u   s.t. 1 2u g u  . 

(because 1 2,u u  are both continuous and differentiable so is g.) 

 

3. 1 2( ) ( )A z A z z   . 

Idea of Proof:  Use Jensen’s inequality to show equivalence of 1 and 2, use 

calculus to show equivalence of 2 and 3; Details are homework. 
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Reading for next time:  MWG 6C,D,E  Rabin Ema [2000]. 


