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Non-EU Risk Preferences 

The Allais Paradox: 

• Choose A or B. 

A:    $1 million for sure := 1Mδ   

B:   5 1 0.1 .89 .01M Mδ δ δ+ +   

• Choose C or D 
C:   1 0.11 .89Mδ δ+   
D    5 0.1 .9Mδ δ+   

• Non-trivial % of people choose A and D. 

• This isn’t consistent with expected utility:  

 
( ) (1) .1 (5) .89 (1) .01 (0) ( )
.11 (1) .1 (5) .01 (0)

( ) .11 (1) .89 (0) .1 (5) .9 (0) ( )

U A u u u u U B
u u u

U C u u u u U D

= > + + =
↔ > +
↔ = + > + =
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Reason: the independence axiom says that if  

• 1 1 5 0 1.11 .89 .1 .01 .89δ δ δ δ δ+ + + , 

 then  

51 0(10 /11) (1/11)δ δδ +  , 

so 

( )5 0 0 5 01 0 .11 (10 /11) (1/11) .89 .1 .9.11 .89 δ δδ δ δ δ δ+ + = ++   

 

On next slide, horizontal axis is prob (0) and vertical is prob (5) so with EU 
slope of indifference curve  should be [ ] [ ](1) (0) / (5) (1)u u u u− −  
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• Horizontal axis measures Pr (0), vertical  Pr (5). 
• With the “Allais” choices, A preferred to B so the indifference curve through 

A is steep, and D preferred to C so the indifference curve there is flatter. 
• But independence axiom says the slope should be constant. 
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• This is a “common-consequence” Allais paradox: In both A and B there is 
probability .89 of 1M, in C and D this common probability is removed. 

• There are also  “common ratio” Allais paradoxes such as  
{ }

4000 0 3000

4000 0 3000 0

0,3000,4000 ,
.8 .2 , ,
.2 .8 , .25 .75

Z
A B
C D

δ δ δ
δ δ δ δ

=

= + =

= + = +
  

• Some people say B A  and C D   but 0.25 .75C A δ= +   and 

0.25 .75D B δ= + .  

 

• Original Allais and Kahmenan-Tversky experiments for large hypothetical 
stakes, but   Allais-type choice pairs are also observed with small stake real 
money lab experiments. 

• However, the choices have to be “carefully designed.”  
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• In particular, it matters if one of the alternatives has a sure payoff.   Conlisk 
AER [1989] reports far fewer Allais-type violations of independence when 
none of the four options has a certain payoff, and the Harless and Camerer 
Ema [1994] meta-analysis/survey concludes “in the triangle interior, 
however, EU manages a miraculous recovery.”  
 

• But Allais-type choices do definitely occur in the lab, and there are related 
anomalies in field data.  
 

• For example Kahneman and Tversky Ema [1979] say that while people 
typically underweight outcomes that are probable vs. ones that are 
certain, they overweight very low probabilities:  
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Here the lotteries are all p of stated prize, 1-p  of 0 so 

6000 0 3000 0

6000 0 3000 0

.45 .55 , .9 .1 ,

.001 .999 , .002 .998
A B
C D

δ δ δ δ
δ δ δ δ

= + = +

= + = +
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Prospect Theory 

• Reference-dependent preferences for changes to current wealth (to 
accommodate “loss aversion.”  
 

• Let r denote a fixed reference point. ( 0r =  is the most common choice.) 
(If we let r depend on the menu, the model gets much more flexible.) 
 

• Utility function ( | )u z r  typically neither concave nor convex but “S-shaped” 
about r so can be risk-loving for losses and risk-averse for gains. 
 

• Preference over lotteries non-linear in probabilities  via probability 
weighting function :[0,1] [0,1]π → . (pre-editing combines equal outcomes.) 
 

• Assume π  is weakly increasing, continuous, (0) 0, (1) 1π π= =   
 

• Evaluate lotteries by ( ) ( ) ( | )zz
U p p u z rπ=∑ . 
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Problem:  As KT realized, prospect theory allows violations of FOSD. 
 

• For example let 2( ) , ( )x x u z zπ = =  .  Let 1 2
1 1:
2 2

A δ δ= + , 1B δ=  . 

 
• Most people prefer  A  to B  but ( ) 1 .25*1 .25*2 ( )u B u A= > + =  . 

 
• In general ( )p pπ =  is the only weighting function guaranteed to respect 

FOSD . (HW) 
 

• This led to the development of Rank Dependent Expected Utility  (RDEU) 
and Cumulative Prospect Theory (CPT). 
 

•  Assume r=0, and to simplify consider lotteries    with only 3 outcomes, all 
positive: 1 2 30 z z z< < <  with probabilities 1 2 3( , , )p p p  
 

• Suppress r in the following. 
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•  CPT says to set  

1 2 3 2 1 3 3 2

2 3 1 2 3 3 2 3 3

) ( ) [ ( )]( ( ) ( )) ( )( ( ) ( ))

[1 ( )] ( ) [ ( ) ( )

(

] ( ) ( ) ( )

u z p p u z u z p u z u z

p p u z p p p u z p u

U

z

π π

π π π π

= + + − + −

= − + + + − +



 . 
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• Under EU, one way to compute expected utility is using “vertical stripes” as 
in Riemann integrals: 
 EU= ( ) ( )1 1 2 1 1 2 2 1 2 3 3( ) ( ) ( ) 1 ( )p u z p p p u z p p u z+ + − + − −  
 

• Another way is using “horizontal stripes” as in Lebesgue integration: 
( )( ) ( )( )1 1 2 1 1 2 3 2EU ( ) 1 ( ) ( ) 1 ( ) ( )u z p u z u z p p u z u z= + − − + − − − .  

 
• CPT is like integrating the horizontal stripes, replacing p with ( )pπ ; this 

gives preferences that respect FOSD.  (Remember that if fosdp q≥  ,  p and 
q are the marginals of  a pair of perfectly correlated  lotteries with p always 
at least as large as q.) 
 

• CPT has been used to explain a wide range of lab and field data, e.g. why 
some people both buy insurance and lottery tickets. 
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• Most calibrations show an “S-shaped” weighting function, as in this figure 
from Tversky and Kahneman J Risk Uncertainty [1992]. (real payoffs,  n=25) 
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• Let’s apply CPT to Allais’ common-consequence choices Choose A or B, then C 
or D. 

A:    $1 million for sure := 1Mδ  , B:   5 1 0.1 .89 .01M Mδ δ δ+ +   
C:   1 0.11 .89Mδ δ+  , D    5 0.1 .9Mδ δ+   

 
A B   implies    (1) (.1) (5) [ (.99) (.1)] (1) [1 (.99)] (0)u u u uπ π π π> + − + −  

    
1 (.99) (5) (1)

(.1) (1) (0)
u u
u u

π
π
− −

↔ >
−

.   

 
D C   implies (.1) (5) [1 (.1)] (0) (.11) (1) [1 (.11)] (0)u u u uπ π π π+ − > + −  

    (.11) (.1) (5) (1)
(.1) (1) (0)

u u
u u

π π
π
− −

↔ <
−

  

 

So these choices occur if 
(.11) (.1) (5) (1) 1 (.99)

(.1) (1) (0) (.1)
u u
u u

π π π
π π
− − −

< <
−

. 
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Now consider the KT lotteries  

6000 0 3000 0

6000 0 3000 0

.45 .55 , .9 .1 ,

.001 .999 , .002 .998

A B

C D

δ δ δ δ

δ δ δ δ

= + = +

= + = +
 

 

Here a number of subjects said B A   and C D . 
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This doesn’t fit EU. KT explained it with this figure
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“Typical”  CPT weighting functions also predict Allais-type violations in  
Conlisk’s off-boundary version:  

 

CPT predicts the “paradoxical” choices * *,AA B B    if π   is flatter around 
.28-.29 than around .98-.99, but this pair of choices isn’t common. 
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Calibrating Prospect Theory 

KT used (ad-hoc) functional forms  

( )1/( )
(1 )

pp
p p

γ

γγ γ
π =

+ −
,  0 1γ< ≤   

( )u z zα=   (for z>0), ( ) ( )u z z αλ= − −  0z <  . 
 

For 0 1α< <   the utility function is risk averse  over gains and risk seeking over 
losses;  1λ >   says the decision maker is more sensitive to losses than gains. 

The probability weighting function overweights extreme outcomes when their 
probabilities are low and underweights them when their probabilities are high- 
“S-shaped.”   Decreasing γ  causes the weighting function to become more 
curved and to cross the  diagonal farther to the right. 

 

Overweighting rare gains can make an “otherwise risk averse” ( 1α <  ) agent 
risk seeking. 
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Prelec (Ema [1998]) shows that if preferences have a CPT representation, and if 
preferences satisfy some other “natural for CPT” assumptions, the probability 
weighting function must instead be ( ) exp( ( ln ) )p p γπ = − −  .  

 
Similar shape as KT’s, but always satisfies (1/ ) 1/ .37e eπ = ≈  . And is 
“subproportional” so fits some (KT!) data the KT specification doesn’t. 
 
Various representation theorems for CPT and related forms of RDEU, e.g. Yaari 
Ema [1987], Wakker and Tversky J Risk Uncertainty [1993]. 
 
Many studies have been done to estimate CPT parameters, usually by eliciting 
certain equivalents for a range of 2-outcome lotteries,  and fitting a 
representative-agent model. 

 

Typically find “S-shaped” probability weighting. 
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Neilson and Stowe J Risk Uncertainty [2002] take a critical view of the empirical 
support for CPT, working both with KT  and Prelec probability weighting 
functions.   

A risk-neutral EU agent is always indifferent between 0(1 )zp pδ δ+ −   and its 
expected value  pzδ  . 
 
When ( )u z zα=   then under CPT, if the agent is indifferent between a 
lottery and its expected value,  
 
 ( ) (1 ( ))*0p z p p zα α απ π+ − =  so ( )p pαπ = . 
 

If  
( )1/( )

(1 )

pp
p p

γ

γγ γ
π =

+ −
 as in KT, the indifference curve is 

( )1/
(1 )

pp
p p

γ
α

γγ γ
=

+ −
. 
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When α  is higher than this the agent is less risk averse and prefers the 
gamble.  
 
 

 
The  next figure  (Neilson Stowe Figure 3) plots these indifference curves 
for various parameter values, and notes the  region where “Allais choices” 
occur for the original Allais problem, with hypothetical payoffs of $5million 
and $1 million, along with and various estimates of the parameters.   (Their 
Figure 5 reports a similar exercise for some small-stakes real-payoff 
experiments.) 
 
Points above the indifference curves are  parameters where the agent likes 
to bet (is risk seeking) on unlikely gains. 
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CH= Camerer and Ho J. R. Uncert. [1994], WG= Wu and Gonzales Man. Sci. 
[1996].  Allais paradox occurs in the region above ~D C  , below ~A B ; to also 
get risk-seeking on rare gains need p  small and α   not too low. 
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CPT allows someone to both bet on sufficiently unlikely gains and insure 
against sufficiently unlikely losses. 
 
Neilson and Stowe do a similar calibration exercise here and find  
 
 

 “there are no parameter combinations that allow for both the desired 
gambling/insurance behavior and a series of choices made by a strong majority 
of subjects and reasonable risk premia…parameterizations that work well for 
choices over likely gains (that is, in the subset of the gains space where 
preferences are risk averse) do not work well for choices over unlikely gains (… 
where preferences are risk-seeking), and vice-versa…Taken as a whole, the 
analysis suggests that the functional forms proposed in the literature are not 
suitable for generalization to applied settings.” 
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Almost all of these studies fit the same preferences to all subjects. 

 
• Bruhin, Fehr-Duda and Epper Ema [2010] allow for heterogeneity. 

 
• Elicited certain equivalents for 30-50 binary lotteries using a “random 

lottery pairs” procedure: at the end of the experiment 1 choice is 
implemented. (a case of the independence axiom) 
 

• Didn’t enforce a single cut off but in the Swiss lab  they “nudged” people 
who entered more than one. Excluded subjects with more than 2 decision 
sheets with multiple switches (about 10% of them) 
 

• Some lotteries framed as losses, but with show up fees subjects were 
guaranteed not to take a net loss (can’t impose real net losses in lab 
experiments even if they have high EV) 
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• Using the subject’s choices they identify the subject’s certain equivalent for 
each lottery. 
 
• They estimate a mixture model with a number of CPT types. 
 

• Functional forms 
( )1/( )

(1 )

pp
p p

γ

γγ γ

δπ
δ

=
+ −

 (1 more parameter than KT) . 

 

• And specify 
0

( )
( ) 0
z z

u z
z z

α

β

 ≥
= 

− − <
 

 
• Add  normally-distributed “mental errors” to get positive likelihood of all 
certain equivalents under all models,  with standard error  ( )ig i range gσ ξ=  
for individual i  on gamble g. These errors could be from people trying to do 
CPT and not paying attention/making a computation error, or because they are 
following a different behavior rule. 
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Then do MLE: first compute the likelihood a given rule produced the observed 
choices, then sum over subjects to get overall likelihood.   

 

In their notation,  c  is a behavior rule, g  is a “gamble” or lottery, and ce  is 
certain equivalent; hatted version is theoretical prediction. 
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 3 data sets, 2 Swiss and 1 Chinese, run in 2005-06.   
 

• Baseline treatments had expected payment of  about 31 Swiss Francs/20 
Chinese Yuan,  plus a show up fee of 10 Swiss Francs/ 20 Chinese Yuan. 
 

• They conclude that in all 3 cases the data can be well modelled using three  
groups, with 20% expected utility types and 30% +50% for two CPT groups, one 
with “moderately” S-shaped probability weighting and one with a more  
pronounced version. (almost every individual has a clear assignment to one of 
these groups) 
 

• Swiss data sets and Chinese data very different in the gains domain: one  of 
Chinese groups has a “very optimistic” probability weighting, with more 
overweighting of unlikely gains, and one of the Swiss is “pessimistic.” (They link 
this to claims that Chinese are more risk-taking in general.) 
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In Zurich data the EU types have  low “mental errors”: median ξ   about .06. 
Zurich CPT types had median error .12 and .13 in loss and gain domain 
respectively.   For a typical lottery range of 20 Euros this is a std. deviation of 
2.5.   
 
Estimates for the Beijing subjects show a bit more noise.     
 
In a high-stakes Chinese session (about a student’s monthly income) the 
estimated probability weighting functions become less “optimistic.” 
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Epper and Fehr-Duda  An. Review Econ. [2012]  
“Stake dependence potentially constitutes a serious challenge to rank-
dependent models if it were to emerge as a robust feature of behavior. Clearly, 
more data are needed here.  
 
They expect delayed payments to change things too (as has been shown in 
some lab experiments- fewer Allais-type choice when the lotteries have 
delayed payoffs):  
 
“Delay dependence is particularly important because the majority of real-world 
decisions are both risky and delayed.”  

Yet still confirm non-linear probability weighting:    

“probability dependence is not just a robust feature of laboratory data, but also 
provides a rationale for a host of puzzling real-world phenomena.” 

Discuss how to evaluate CPT,  and what it means to “explain” or “provide a 
rationale.” 
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Bruhin et al, like most past calibrations of CPT, elicit certain equivalents. 
 
Andreoni-Sprenger NBER [2011] elicit both certain equivalents and “uncertain 
equivalents”:  Suppose * (1 )x yp pδ δ= + − ,  y x> .  For what q  is 

0~ * (1 )yq qδ δ+ − ? 

 
They find (in a representative-agent calibration) that the parameters that fit 
the certain equivalents don’t fit the uncertain equivalents. 
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CPT and gambling:  for a wide range of CPT specifications at any wealth level 
there is always some unfavorable small binomial gamble that the agent likes.   
 
This implies that a “naïve” agent- one who misforecasts his future decisions-
who needs to decide when to stop a negative-drift diffusion (and claim the 
current states as payoff) will never stop, because a simple stopping rule with 
asymmetric upper and lower boundaries can generate such lotteries. (Ebert 
and Strack AER  [2015]).   Conversely a “sophisticated” CPT agent typically 
declines to start diffusions with high positive drift. (Ebert and Strack [2016]). 
 
And a firm who knows the agent’s CPT preferences can design lotteries the 
consumer will buy that have arbitrarily high expected losses. (Avezedo and 
Gottlieb  JET [2012].) 
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• Take-aways for now:  
 

- Substantial evidence for some failures of expected utility theory. 
 

- CPT with an S-shaped probability weighting fits many experiments and is 
the second-most- used (after EU) theory of risk preferences. 
 

- But it is far from perfect and should not be adopted uncritically. 
 

 

Readings for next time: Bernheim-Sprenger [2017] on testing rank dependence 
and Strzalecki 7.1, 7.6, MWG 6F on EU with subjective probability   
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• Appendix:  The choices in KT [1979] problems 7 and 8 can’t be fit with the one-
parameter KT probability weighting for any utility function: 

They would need (.9) (6000) (.002)
(.45) (3000) (.001)

u
u

π π
π π

> >  , not possible when in KT. 

To accommodate all such examples, we need the property Prelec called 
“subproportionality”: 

 

 
  

 

 


