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Testing Rank Dependence  (Bernheim and Sprenger [2016]). 

CPT and all preferences based on rank-dependent probability weights imply a 
discontinuity in choice as a given reward moves from below to above another. 

 
• Start from ( , ,1 )p q p q= − −  on ( , , )x y z , x y z> >  . 

 
) ( ) ( ) [ ( ) ( )] ( ) [ (1( ) ( )] ( ).p u x p q p u y q zU p uπ π π π π= + + − + − +  

 
• For 0m >   s.t. x y m> + , define the “lower” equalizing reduction k   so that    

 
( ) ( ) [ ( ) ( )] ( ) [ (1) ( )] ( )

( ) ( ) [ ( ) ( )] ( ) [ (1) ( )] ( ( )) :

p u x p q p u y p q u z

p u x p q p u y m p q u z k m

π π π π π

π π π π π

+ + − + − + =

+ + − + + − + −
 

k  is the decrease in z that just offsets the increase in y. 

 
• Note that  the term ( ) ( )p u xπ   cancels, so k  does not depend on x. 
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• Solving 1 ( ) ( )( ) ( ) [ ( ) ( )]
1 ( )
p q pk m z u u z u y m u y

p q
π π

π
−  + −

= − − + − − + 
 

 
• Now hold fixed the probability p  of x  and q  of y,  but suppose  x y< , and 

again imagine increasing y  and decreasing z.  This defines the “upper” 
equalizing reduction ( )k m : 
 

( ) ( ) [ ( ) ( )] ( ) [ (1) ( )] ( )
( ) ( ) [ ( ) ( )] ( ) [ (1) ( )] ( ( ))
q u y p q q u x p q u z
q u y m p q p u x p q u z k m

π π π π π

π π π π π

+ + − + − + =

+ + + − + − + −
↔

 

 

1 ( )( ) ( ) [ ( ) ( )]
1 ( )

qk m z u u z u y m u y
p q

π
π

−  
= − − + − − + 

. 

 
• This compensating reduction is also independent of x, but its value is different; 

for the parameters of Tversky Kahneman [1992] it doubles.  
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• CPT predicts that the compensating reduction in z  doesn’t depend on x except 
when x  switches from less than y to greater than y.    When a switch occurs it 
could change  lot or a little depending on parameters. 

 
• In the Bernheim-Sprenger data, the compensating change doesn’t much 

change as x crosses y at either aggregate or individual level. 
 

• Sounds bad for CPT.  But maybe the CPT parameters of their subjects somehow 
make the predicted jump small- e.g. if most people are close to EU? 
 

• To test this they estimate CPT parameters (of the KT functional form) both for 
the whole populations and  for each subject, using certain equivalents for 
binary lotteries. 

 
• Aggregate CPT fits aggregate data well, parameter estimates same as in Wu 

and Gonzales [1996]. Also estimate individual-level CPT parameters. 
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• For most subjects, the estimates imply a large difference between the two k’s,  
but the observed differences are concentrated near 0, and “the correlation 
between predicted and actual behavior is indistinguishable from zero.” 
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• One referee suggested that people simply canceled the common 
probability of x across the two lotteries.  
 

• So they added a new experiment on ( , , )x y z  vs. ( , , )x m y k z k+ − −  so 
no common outcome probability pairs to cancel.   

 
• CPT predicts that with probabilities (0.4, 0.3, 0.3) and (0.6, 0.2, 0.2) the 

equalizing reduction should be non-monotonic in x as it passes from 
x y>   to x y<  . Doesn’t happen. 

 
• What about giving up stochastic dominance and going back to PT?  

They elicit  certain equivalents for three outcome lotteries that pay x + ε 
with probability p/2, x − ε with probability p/2, and y with probability 1 – p, 
with lotteries chosen so that standard formulations of PT predict a sizable 
and discontinuous drop in the certainty equivalent at ε = 0. In contrast, CPT 
implies continuity.  
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• Contrary to both predictions, we find a discontinuous increase in the 
certainty equivalent at ε = 0. This behavior implies violations of dominance, 
but not the type PT predicts. 

 
• Their conclusion:  a good theory of choice under uncertainty should account 

for (1) the inverse S-shaped certainty equivalent profile, (2) the absence of 
rank-dependence in equalizing reductions, and (3) the sharp drop in certainty 
equivalents that results from split-ting an event. EU is inconsistent with (1) 
and (3), while CPT is inconsistent with (2) and (3), and PT is inconsistent with 
(3).  

 
• “We hypothesize that the observed behavior results from a combination of 

standard PT and a form of complexity aversion: people may prefer lotteries 
with fewer outcomes because they are easier to understand. One can think of 
the well-known certainty effect as a special case of this more general 
phenomenon.” 
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• My take-aways for now:  
 

- Substantial evidence for some failures of expected utility theory 
 

- CPT with an S-shaped probability weighting fits many experiments and is 
the second-most- used (after EU) theory of risk preferences, including 
forthcoming paper in the AER  and RFS. 
 

- But it is far from perfect and should not be adopted uncritically. 
 

- Can anyone come up with a better model than “PT+complexity aversion”? 
or formalize complexity aversion so it can be tested? 
 

- Empirical applications of PT/CPT that don’t rely on rank dependence are 
safer from this critique (but still susceptible to worries about dynamic 
decision making and firms exploiting non-linear probability weighting, as in 
the Ebert-Strack and Azevdedo-Gottlieb papers mentioned last time. 
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Subjective Probability and Subjective Expected Utility  

 

• Choice under risk: random consequences, known probabilities 
 

• Choice under uncertainty: some or all of the probabilities unknown. 
 

• Subjective Expected Utility:   EU but where the probabilities p  represent 
subjective belief. 
 

• Two main formalisms of this, Savage and Anscombe-Aumannn. 
 

• In Savage, all probabilities are subjective, there are infinitely many 
subjective states; choice of σ -algebra on the states matters. 
 

• Strzalecki goes over Savage’s representation, we’ll skip it. 
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Anscombe-Aumann Ann. Math Stat [1963] 

 

• Some probabilities objectively known, only finitely many subjective states. 
 
• This lets us calibrate the subjective probabilities to the objective ones, and 

simplifies the math. 
 

• Z:  finite set of outcomes that agent cares about. 
 
• S:  finite state space: contingencies that determine outcomes. 
 
• ( ): ( ) SZ= ∆  
 
• An act  f ∈   gives the objective lottery ( )f s  for each s.  E.g. “If the 

Patriots win next year’s Super Bowl, roll a die and get $100 if it comes up 1, 
2, or 3.” 
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• The idea is that the decision maker has a subjective probability distribution 

on the states in S.  An act says what probability distribution on outcomes 
she gets for each state, so an act combined with a probability distribution 
on states gives a distribution on outcomes. 
 

• Writing ( ): ( ) SZ= ∆  implicitly assumes that every z  is possible in every 
state.  If there are distinct sets sZ   for each s,  then we can’t separately 
identify the agent’s utility function and their beliefs.  

 
• We assume the analyst (and the agent!) know Z   and S. 
 
• For [0,1]α ∈   and ,f g∈  the mixture (1 )f gα α+ −  is the act that for 

each s gives the lottery ( ) (1 ) ( ) ( )f s g s Zα α+ − ∈∆ . 
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• We will identify lotteries over    with their mixture (thus identifying 
compound lotteries), so we will implicitly also get a representation of 
preference on probability distributions on SZ  . 

 
• Note that when #S=2  we are saying that  ½(a,a)+ ½ (b,b) is the same as ½ 

(a,b)+ ½ (b,a): both reduce to the same point in   .   
 

• And remember that  ( ) ( ) ( ) ( )#dim # # 1 # 1 dim ( )S SS Z Z Z= − ≤ − = ∆  .  

 
For example with 3 states and 3 outcomes, ( ) ( )dim 6 8 dim ( )SZ= < = ∆  

So we are “compressing” 2 dimensions that some people might 
conceivably care about. 
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• Our goals: 
 
- characterize when  a complete transitive preference on   has a subjective 

expected utility representation of the form  
 

( ) ( ( )) ( )
s

V f u f s p s=∑   
 

- understand the extent to which u  and p  are pinned down. 

 

• Note: If we want to pin down the agent’s subjective probability distribution 
p,  then it’s important that the utility function doesn’t depend on the state: 
if    ( ) ( ( )) ( )ss

V f u f s p s=∑  and q  has full support, then  

( )( ) ( ( )) ( )
( )ss

p sV f u f s q s
q s

 
=  

 
∑   represents the same preferences- for 

example can take q  to be uniform. 



13 
 

• Axiom (Mixture Continuity)    For all , ,f g h∈  the sets  
 

{ }[0,1] : (1 )f g hα α α∈ + −    
 and  
 

{ }[0,1] : (1 )f g hα α α∈ + −   
 
are closed in [0,1]. 

 

Notation: For  z Z∈  or ( )p Z∈∆  let z  and p   denote the “constant acts” that 
give z  or p  in every state. 
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• Any preference on the space of state-contingent acts ( ): ( ) SZ= ∆   
induces a preference on constant acts:   

for , ( )p q Z∈∆  say that p q  iff p q
 

 . 

 

• Axiom (Monotonicity) If (( )) gf s s s∀
    

  then f g  . 

Implicit assumption here that preference is state-independent. Suppose 
{ }', "S s s= , and  'z   is  good in state 's  and bad in in state "s  . Then  it 

could be that '" zz






   but ( ( ', )", )z y z y  . 

 
• Axiom (Non-triviality)  There are ,f g∈  s.t. f g  . 

 
• Axiom (Independence) For all , ,f g h∈  and (0,1)α ∈ ,  

 
f g  iff (1 )(1 ) gf h hα α αα +− −+   . 
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Theorem (Anscombe-Aumann style):   A complete transitive preference   on 
  satisfies mixture continuity, monotonicity, non-triviality, and independence 
iff there is a linear : ( )u Z∆ →  and a ( )p S∈∆  s.t.  ( ) ( ( )) ( )

s
V f u f s p s=∑  

represents .    Moreover, p  is unique and u  is unique up to affine 
transformations. 

 

Intuition: Calibrate subjective probabilities to objective ones. 

Suppose ,x y Z∈  , x y  . 

Then for each 2SE ⊆   find the α  s.t. (1 ) ~ Ex xy yα α+ −
 



 , where Ex y


 means 
the act that pays x  for s E∈  and y   for s S E∈ −  . 

This is our candidate for ( )p E . 

Need to show ( )p E  doesn’t depend on the choice of ,x y Z∈ , and that p is a 
probability distribution. 
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Idea of proof:  

 
1.  The induced preference on ( )Z∆  satisfies the vN-M axioms so it is 

represented by a non-trivial utility function u  that is linear in the objective 
probabilities.  
 
Normalize the range of u to be [ 1,1]U = −  . 
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2.   A utility act  is a map : S Uτ →  .   Define *   on SU  by * 'τ τ  iff f g   
for some ,f g∈  s.t. u fτ =   and ' u gτ =   .   

 

Claim: From monotonicity,  * doesn’t depend on the choice of f,g  so it’s a 
complete transitive preference. 

 

Proof of claim:   

Suppose there are , ', , 'f f g g ∈   s.t. 'u f u fτ = =    and 
' 'u g u gτ = =   

Then for each s  '( )) ~ (ff ss .  So ~( )) '(ff s s


 for all  s  so from 
monotonicity   ~ 'f f . 

Similarly ~ 'g g  . 

So f g  iff  ''f g  iff * 'τ τ  . 
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3.  Let ( ) [ 1,1]I τ ∈ −  (for “indifference”) be the number s.t. the constant utility 
act ( )I τ



 is indifferent to τ .  ( )I τ   will end up being the expected utility of τ  
in our representation, but first we have to show it is well defined. 

 
Claim:  ( )I τ    exists and is unique. 
 
Proof sketch:   

 
• Define the upper and lower contour sets  

 { }( ) [ 1,1] :U η ττ η= ∈ −


   and { }( ) [ 1,1] :L η ττ η= ∈ −


  . 

 
• These sets are non-empty, closed (from mixture continuity) and their union 

is [-1,1], so they have a non-empty intersection.  
 
• From the definition of utility acts this intersection is unique (otherwise 

we’d have 'u u>    and ( , ,.... ) ~ ( ', ',..., ')u uu uu u ). 
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• Define the intersection to be  ( )I τ . 
 

•  Note that by construction  *τ σ   iff ( ) ( )I Iτ σ≥ ,  so I represents *  . 
 

Now show that the indifference function has the specified linear form. 

 
4.  Use independence to show that  ( ) ( )I Iλτ λ τ= .  

a. First do this for (0,1)λ∈ : 

Fix any SUτ ∈ , and any f ∈  s.t.  u fτ =  .   

Pick , ( )p q Z∈∆  s.t. ( ) ( )u p I τ=   and ( ) 0u q =  . 

Then ~f p


  so by Independence ~ (1 )(1 ) pq qf λλ λ λ+ −+ −
 

 . 

So *~ ( )Iλλ ττ  ,  so ( ) ( ( )) ( )I I I Iλτ λ τ λ τ= =   

(because ( , ,.., )I u u u u=  .) 
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b.  For 1λ >   and SUλτ ∈    start with λτ  and multiply by 1/ λ  .  
 
c. Then extend  I  to all of S

   by setting ( )1 1
( ) /I Iτ τ τ τ= . 

 
We took [ 1,1]U = −  instead of [0,1]U =  so we could do this. 

 
5. Now show I  is additive, that is that  ( (1 ) ) ( ) (1 ) ( )I I Iλτ λ σ λ τ λ σ+ − = + −  .   
 
6.  Since I  is a linear operator on S

  there is a unique vector p  s.t. 
( ) ( ) ( )

s
I p s sτ τ=∑  . 

 
(To see this let 1 2 #(1,0,0,...,0), (0,1,0,...,0),... (0,....,0,1)Se e e= = = , 

Then  ( ) ss
s eτ τ=∑  so ( )( ) ( ) ( ) ( )s ss s

I I s e s I eτ τ τ= =∑ ∑ , so 

( ) ( )sp s I e=  .) 
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7. It remains to show that this p  is a probability distribution, i.e. each entry 
non-negative and sums to 1:  HW. 

 
8. Now set ( )( ) ( ) ( )

s
V f u f s p s=∑  and we’re done. 
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Eliciting Subjective Beliefs (for agents who fit the subjective EU model) 
 

• Calibrate to objective lotteries given a list: ask the decision maker if she 
would rather win $10 if (Event E) or with probability p= [0,.1, .2, …,1]? 
Then pick a probability q  at random (say uniform on [0,1]) and give her 
the choice she selected. 
 

• Becker-DeGroot Marshak (BDM) (also used to assess certain equivalents in 
risk tasks) : ask the subject for the p  that makes her indifferent, then pick 
true p  at random. 
 
In both cases it’s obvious to economists that truthful reporting is optimal; 
some debate among experimenters about how obvious it is to subjects. 
(see e.g. Harrison and Rustrom [2008]). 
 

• This requires asking about # 1S −  pairwise comparison of states. 
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• Or use a “proper scoring rule”: ask the agent to report the vector p  and 
pay him (in cash) ( , )z p s  .    
 
z   is a proper scoring rule  if for any belief p,  
 

( )arg max ( ) ( , )q S s
p p s z q s∈∆∈ ∑  . 

 
• Standard examples are the logarithmic rule ( , ) ln( ( ))z p s p s= −  (which is 

nice because it only depends on the report’s value at the realized state but 
very sensitive to low probabilities) and the quadratic scoring rule 

2

'
( , ) 1 2 ( ) ( ')

s S
z p s p s p s

∈
= + −∑   . 

 
• If subjects are risk neutral these are both proper scoring rules. 

 
• If not- can pay in lottery tickets instead of money, e.g. one ticket= .01 

chance of winning $20 so has utility .1*u(20).  
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Note that the subjective probability is purely subjective, and needn’t 
correspond to any objective randomness, because you can have subjective 
beliefs about knowable facts that you don’t happen to know. 

 

Define a subjective 90% confidence interval for a number to be any interval s.t. 
you’re indifferent between winning a prize if the number is in the interval or 
winning with objective probability .9. 

Note this means you’re also indifferent between winning if the number is 
outside the interval or winning with objective probability .1. 
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 w/o looking anything up or talking to classmates, write down 90% subjective 
confidence intervals for the following: 

• Minimum distance (in kilometers) from Earth to Mars. 
• GDP of Croatia in 2010. 
• Number of goals scored in English premier league last season. 
• Population of Hawaii at 2010 census 
• Number of Ph.D.s granted in the U.S. in 2013 (all fields) 
• Current exchange rate US$ to Indonesian rupiah: 1 US$=? 
• Age of Drew’s cat (in years) 
• The year that Queen Elizabeth 1st was born 
• The number of Bank of America ATM’s in Cambridge MA 
• NBC’s estimate of number of people at the Boston Common Women’s 

March on Jan. 21 2017. 
 
Reading for next time: Strzalecki 7.5, 10.3, 10.4, 10.5 optional, Halevy Ema 
[2007] 
 


