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1 Introduction

Given the importance of agriculture to low-income economies, the successful adoption of

yield-enhancing technologies is critical for well-being in much of sub-Saharan Africa, where

agricultural productivity is increasingly lagging behind compared to the rest of the world (Suri

and Udry 2022; FAOSTAT 2022). Agricultural training is poised to play an important role in the

diffusion of these technologies (Cole and Fernando 2012) and governments, NGOs and firms

spend considerable resources on it.

A common way to organize agricultural training in developing countries is to train a few

farmers in each community, and then rely on the organic spread of the information within

social networks. This could be an efficient way to use limited training resources if farmers

learn from each other. However, a potential downside is that trained farmers could impose a

negative externality on untrained farmers, in particular by increasing the demand for scarce

inputs in settings where input markets are frequently far from perfect. In this case, direct

comparisons of trained and untrained farmers could also overstate the effect of agricultural

training by failing to account for those externalities. Another source of potential externalities

from an intervention that affects some people but not others is the endogenous re-wiring of

social networks (Banerjee et al. 2021): if treated farmers find it advantageous to only socialize

with other treated farmers, for example, this could affect the sharing of both information and risk

in the community, potentially penalizing the untreated farmers. Conversely, if control farmers

seek out treatment farmers, this could accelerate the transmission of any intervention (Comola

and Prina 2021).

While a growing literature studies the diffusion of agricultural innovation through social

networks, the results of existing experimental studies are mixed, suggesting that diffusion may

depend on a variety of factors, including the simplicity of the technology (Chandrasekhar et al.

2022), how novel it really is (Bridle et al. 2019), how profitable it is (Magnan et al. 2015), and the

identity of the early adopters.1 Meanwhile, the potential for negative externalities and network

externalities has not, to our knowledge, yet been investigated.

In this paper, we fill this gap, reporting results from an experiment among coffee farmers in

Rwanda. We designed a two-stage randomized controlled trial (RCT) and collected detailed

social network data to test both for the presence of any transmission of information provided

in a farmer training through the social network, and for spillovers (positive or negative) to

untrained farmers in the village. We find very little evidence of knowledge diffusion in the

social network, and clear evidence of negative spillovers, most likely through the crowding out

of inputs in limited supply, including chemical fertilizer, for which there was at the time a very

patchy nationwide market, and labor, for which the market is also imperfect. We conclude that

the naive comparison between treated and control farmers within a village would have led to a

serious overestimate of the benefits of the program.

1For recent reviews of this literature, see Suri and Udry (2022) and Caldwell et al. (2019).
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The program, designed and conducted by a leading international NGO, was an intensive

agronomy training offered to coffee farmers to help them improve their yields. To measure direct

and indirect impacts, the design is similar to Crépon et al. (2013). First, we collected interest

in the program from coffee farmers. Second, we randomly varied treatment concentration at

the village level across 27 villages: in approximately one third of villages, 25% of farmers who

signed up were to be treated, in another third, 50% and in the final third, 75%. Finally, the 1,594

farmers who signed up for the program were allocated to treatment and control following the

assigned proportions in each village.

Selected farmers received monthly instruction modules for the first year, followed by six

refresher modules over the second year. These modules covered nutrition, pest and disease

management, weed management, mulching, rejuvenation and pruning, shade, soil and water

conservation, and record keeping. Farmers were grouped for the training and picked a lead

farmer whose plot was used for demonstrations of the agricultural practices.

We collected ten rounds (including four post-treatment) of data on a wide range of indicators

(self-reports and plot audits) to measure the impacts of the training on farmers’ knowledge and

adoption of the practices as well as on their yields. To measure both diffusion effects and any

impact on social connections, we collected social network data before and after the training.

From the household surveys, we construct an index of knowledge and an index of (self-

reported) adoption of improved agricultural practices. We also measure use of fertilizer, labor

inputs, and yields. From the audit data, we construct an index of adoption of improved

agricultural practices, and a measure of leaf nutrition.

The program had significant effects on knowledge and self-reported adoption of the agro-

nomic practices: the training led to a 1.2 standard deviation increase in the knowledge index

and a 0.33 standard deviation increase in a self-reported adoption index, although treatment

effects on adoption according to the tree audits are insignificant. Treated farmers also use more

inputs (fertilizer and labor) than control farmers in their village (0.1 standard deviation higher

indexed). After the training, yields are about 6.7% higher in the treatment group compared to

control farmers in the same villages. Note, however, that this could be either an overestimate or

an underestimate of the actual treatment effect if the program had positive or negative spillovers

on the control group. Either of those would violate the SUTVA assumption.

To examine whether these new practices diffuse to those people who treated farmers discuss

coffee production with, we exploit the fact that, for a given farmer, conditional on the total

number of friends from the original sample that they list as their contacts, the random assignment

of the training opportunity generates exogenous variation in the number of contacts treated.

Using this variation, we find no evidence of spillovers to friends in the control group on

knowledge, adoption, or yields. Using a similar strategy for neighbors, our results suggest that

there is no diffusion of the program’s effects to geographic neighbors either.

Despite the absence of informational spillovers, there could be externalities on other farmers

stemming from other sources, such as the crowding out of limited inputs. To test this hypothesis,

we exploit the exogenous variation in village-level shares of treated farmers generated by our
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experimental design. Even though the number of villages per treatment intensity group is small,

there is a clear pattern, which is largely robust to randomization inference confidence intervals:

the higher the fraction of treated farmers in the village, the lower the yield. The effects are large:

the yields of control farmers are 25% lower in the villages with 75% farmers treated than in

the villages with 25% farmers treated. Control farmers in heavily treated villages also use less

inputs (chemical fertilizer and labor days per tree), and have poorer leaf health.

This result raises the possibility that the apparent impact of the training on yields that we

find when comparing treatment and control farmers is, in part or in full, due to a reduction in

the yield of the control group rather than an increase in the yield of the treatment group. To

check this, we examine heterogeneity in the difference between treatment and control groups

by village treatment concentration. We find that the differences between treatment and control

farmers in knowledge and self-reported adoption of the new practices are similar in villages

with 25%, 50% and 75% shares of treated farmers. However, the apparent “treatment effect”

on yields is actually negative (though insignificant) in villages with few (25%) treated farmers,

and becomes more positive in villages with more treated farmers: the yields of treated farmers

in villages where 75% are treated are 17% higher than those of control farmers. Overall, this

suggests that the apparent positive impact of the program on yields from our within-village

analysis is an artifact of the fact that yields went down for control farmers. The training program

led to a re-allocation of inputs from untreated farmers to treated farmers, which hurt the yields

of untreated farmers without leading to a significant increase in those of treated farmers. This

entirely reverses the conclusion that one would have reached by comparing treatment and

control farmers within a village.

The fact that the treatment does not increase the yields of treated farmers but decreased those

of control farmers suggests that training some farmers but not others may have inadvertently

lowered aggregate output by increasing input misallocation. To provide suggestive evidence of

this channel, we present estimates of a coffee production function, with labor and fertilizer as

the main inputs. A fully robust estimate of the production function is beyond the scope of this

paper, but simple descriptive regressions suggest that the production function is indeed concave

in how much chemical fertilizer, in particular NPK, and labor is used, and no different across

treatment and control farmers. Input re-allocation is thus unlikely to have increased efficiency

in aggregate coffee production in this sample.

We end the paper by examining another source of potential spillovers from the intervention

affecting some farmers but not others: the fact that the treatment may itself have modified the

structure of social networks. We find that treatment farmers indeed made new friends within

the treatment group, in particular farmers with whom they attended the training. But this does

not come at the cost of friendships in the control group: on net, they just seem to make more

friends than their peers in the control group, especially within the sample.

The results in this paper are in some ways specific to the context of this particular program

and of the coffee context in Rwanda over the period. Ultimately, although they learned and

retained the information, the farmers do not seem to have applied most of the agronomic
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practices, except for intensifying the use of scarce inputs. The impacts on their crops were not

large. This may thus not have been an ideal setting for diffusion. Furthermore, the program

took place in a context where NPK was not widely available in the district. The government

phased out the direct delivery of fertilizer during our study period, relying on private actors,

cooperatives and agro-dealers to take over, but this happened slowly and imperfectly. This

likely accentuated the negative externalities. But, as we describe below, the complexities of

market-based delivery of fertilizer have roots that make it a fairly general problem in the region.

The lesson that any strategy that involves helping some people and not others may backfire

when markets are imperfect and poorly integrated is much more general. Furthermore, the fact

that this may have been missed without a village-level randomization calls for caution in the

evaluation of agricultural extension programs.

2 Background and Program Description

2.1 Context: Rural Rwanda

Coffee is Rwanda’s most important export crop, contributing about US$62 million in export

earnings per year (NISR 2019). Production is dominated by 500,000 smallholder producers

(OCIR-Café 2008). Intensifying coffee production and increasing the sector’s productivity were

key targets of the government’s strategic plan for boosting agricultural development. Rwanda

has ideal growing conditions for coffee, but agronomic practices were poor. For example, the

national rate of chemical fertilizer consumption per cultivated hectare was 4KG in 2009, below

the sub-Saharan African average of 9 to 11 KG per hectare (ROR 2009).

2.2 The Intervention: Agronomy Training Program

The context for our study is a large agronomy training program for small-scale coffee farmers,

aimed at improving the health of coffee trees and ultimately yields. TechnoServe, an international

agri-business NGO, conducted agricultural training programs in several coffee growing regions

in East Africa between 2010 and 2015. This study focuses on the agronomy program in one

sub-district in Southern Rwanda, run between February 2010 and October 2011.

The training covered several best practices in coffee growing: tree rejuvenation and pruning;

fertilizer use; pest, disease and weed management; mulching; soil and water conservation;

optimal shade; and record keeping. Appendix C provides a more detailed description of the

practices that were covered and what the NGO’s agronomists expected the impacts of each

to be. The training sessions took place once a month for eleven months in the first year, and

TechnoServe delivered an additional six review sessions the following year. The trainings

were conducted with groups of approximately thirty farmers and took place on the plot of a

designated “focal farmer”. The focal farmers were chosen partly because of the accessibility of

their coffee plot but were also meant to be respected members of the local community and have

an enthusiasm for learning.
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The training itself was conducted by a Farmer Trainer (there were four in total), each of

whom supported approximately 10 of these focal farmer groups. These farmer trainers received

monthly training from an agronomist for each module, together with lesson plans and activities.

They delivered the training to each group on a plot of approximately forty trees (the focal

farmer’s demonstration plot), with all practical work done by the farmers in the training group.

The sub-district in which our study is located comprises 29 villages. Once TechnoServe

decided to train in this sub-district, they advertized the program. The farmer trainers were

then assigned to visit the villages over a week to register the interested farmers, visiting each

village at least twice. In total, 1594 farmers registered interest in the program. Although the

program was advertized in all 29 villages in the sub-district, only farmers from 27 of those

villages registered to join the program.

3 Experimental Design and Data

3.1 Experimental Design

The 1594 farmers who registered for the program were randomized into a treatment and a

control group in two steps. First, we randomly varied treatment concentration at the village

level: in approximately one third of villages, 25% of farmers who signed up were to be treated, in

another third, 50%, and in the final third, 75%. In the second step, the 1,594 farmers who signed

up for the program were allocated to treatment and control following the assigned proportions

in each village. 855 farmers were assigned to the treatment group to receive the agronomy

training and 739 farmers were assigned to the control.

Farmers were assigned to training groups in their village, or in the village nearest to their

location if the number of treatment farmers in their village was less than the minimum size for

a training group. In larger villages, treatment farmers were split into two or three groups for

training, based on geographical convenience. This split was not randomized. Once assigned to

a training group, farmers were expected to remain in the same group throughout the duration

of the program.

During the first year of training, farmers in the training villages attended an average of

8 out of the 11 meetings (an attendance rate of about 73%). Attendance tended to be higher

in the villages with higher proportions of farmers who were offered training: households in

high-density villages attended an average of 8.2 out of 11 meetings, whereas households in

lower density villages attended around 7.2. This suggests that farmers were more motivated

to attend the training when more members of their community were also invited to attend.

Attendance rates of each training session are reported in Appendix Table A2.

3.2 Data

We designed extensive data collection activities over the course of almost three years. In total,

we collected ten rounds of survey data, in addition to a census. As we describe in detail in
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Appendix D, different modules were asked in different survey waves, and in some rounds we

surveyed not just treatment and control households, but all the coffee farmers in the 29 villages

of the sub-district in which our sample is located.

In addition to survey data, our enumerators also audited the coffee plots. We were concerned

that asking farmers several times about their adoption patterns may result in them erroneously

reporting positive adoption simply because they were asked about it repeatedly. For the audits,

TechnoServe agronomists trained our field staff to recognize the relevant set of agronomy

practices. The field staff were then given an algorithm of which trees (they were to pick five) to

inspect on each plot.

To measure diffusion through social networks, we collected the names of farmers to whom

the head and spouse in each household talked to about growing coffee, before and after the

intervention. We use this data to construct complete social network maps of all the coffee-

growing households in the sector, covering over 5,000 households across the 29 villages. We

also collected GPS coordinates of plots and households to construct two measures of neighbors:

people farmers live close to and people who have coffee plots next to their own coffee plots.

4 Results

As can be seen from Appendix Table A1, we find balance between treatment and control groups

across a wide variety of baseline outcomes.2 We discuss our main results, in turn.

A. Agronomy Training Treatment Effects: Basic Within-village Specification

For our most basic results, we estimate the following specification:

yijt = α+ βTreatij + γj + δt + εijt (1)

where yijt is the outcome for household i in village j in survey round t, Treatij is a dummy

variable for whether the household was allocated to the agronomy training program, γj are

a set of village fixed effects and δt are survey round fixed effects.3 We cluster standard errors

at the household level. Appendix Table A3 shows that we had 3% of attrition in our sample

between baseline and the final endline, with no evidence of differential attrition by treatment

status. We do not include any controls, but our results are robust to controlling for baseline

outcomes selected by post-double selection LASSO (see Appendix Table A6).

This specification compares treated and control farmers within the same village. For β to be

interpreted as a treatment effect, we would need to assume SUTVA, or the lack of any impact

on control households. This would be invalidated if information did diffuse to the control

group (in which case the treatment effect on knowledge would be underestimated), or if there

2The p-value on the joint F-test for all these outcomes is 0.9998.
3We use all survey rounds collected after June 2011 as our endline, namely rounds 6-9 (see Appendix D for

details on the module coverage of each survey round).
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were negative externalities for some outcomes (in which case the treatment effect would be

overestimated). We examine this assumption below.

Table 1 reports β for measures of knowledge and adoption of the agronomic practices,

input use, and yields. The first two columns report significant differences between treatment

and control farmers on knowledge and self-reported adoption of the agronomic practices: the

treatment led to a 1.24 standard deviation (henceforth SD) increase in the knowledge index and

a 0.33 SD increase in the self-reported adoption index. This suggests that the treated farmers

gained new knowledge about coffee agronomy and report putting this new knowledge into

practice.

The tree audits data are an important complement to the self-reports, as they allow us to test

whether the treatment group’s higher reported adoption is actually visible in practice (column

3), and whether it translates into noticeably healthier-looking trees (column 4). Column 3 shows

that the program did not have any effect on the adoption index constructed from the tree audits

data. Appendix Table A4, which breaks down this result by component of the index, shows that

the treatment effects on observable practices are concentrated in weeding and mulch application.

Column 4 provides suggestive evidence that the trees of treatment farmers are better nourished:

the audits data reveal a decrease in the index of probabilities that yellow, curling or rusting

leaves are observed upon inspection by 0.04 SD. However, this estimate is not statistically

significant (the p-value is 0.156).

Column 5 reports treatment effects on input use. Overall, treatment farmers report using

significantly more inputs (labor and fertilizer) on their coffee plots, by 0.102 SD. Appendix Table

A5 shows that this is due to greater use of NPK (a 20% increase in quantity applied per tree) and

labor (in particular, paid labor days per tree are 15% higher). Finally, column 6 suggests that the

treatment had an impact on yields, which are about 6.7% higher in the treatment group than in

the control.

B. Information Diffusion

We now turn to the diffusion of information through treated farmers’ networks. Our analysis

focuses on two types of networks: baseline friends and neighbors. We focus on baseline friends

in this section, but the results on diffusion through neighbors are similar (Appendix Table A9).

The identification strategy exploits the exogenous variation in the number of treatment friends,

conditional on the total number of RCT-sample friends.

Table 2 therefore reports results from the following specification, which we run only on the

control group sample:

yijt = α+ βNumTreatFriendsij + δNumFriendsij + γj + δt + εijt (2)

where yijt is the outcome for household i in village j in survey round t, NumTreatFriendsij
is the number of treatment friends of household i at baseline, and NumFriendsij is their total

number of baseline RCT-sample friends (i.e. who entered the treatment lottery). As in Table 1, we
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cluster standard errors at the household level and we do not include any controls (see Appendix

Table A8 for the results where we control for baseline outcomes selected by post-double selection

LASSO).

The estimates in columns 1 and 2 report the diffusion effect of treatment friends on the

knowledge and self-reported adoption of control farmers. The coefficient estimate in the first

row of column 1 shows no diffusion of knowledge about the agronomic practices to the control

group. Consistent with this finding, column 2 (self-reported adoption) shows no diffusion of

actual practices through farmers’ networks, corroborated by the absence of spillovers on leaf

health in column 4. Additional results reported in Appendix Table A7 also support the absence

of knowledge dissemination from the treatment to the control group, using the control farmers’

assessments of whether they learned something new about each of the trained practices from a

treatment farmer.

The significantly negative coefficient in column 3 is surprising: it indicates that, for an

average farmer in the control group, having one more friend in the treatment group decreases

this index of tree audit outcomes by 0.05 SD. This suggests that control farmers end up applying

fewer best practices (or applying them less intensively) if they have more links to treatment

farmers at baseline. Appendix Table A9 shows very similar results on neighbors of treated

farmers, including a negative effect on this outcome.

C. Treatment-Control differences and Spillovers by Treatment Concentration

Next, we exploit the fact that our experimental design also generated exogenous variation

in the village share of farmers assigned to treatment. We use this to look at heterogeneity in

program impacts by village treatment concentration. The results reported in Table 3 regress the

same outcomes as in Tables 1 and 2 on treatment status, indicators for 50% and 75% treatment

concentration villages respectively and their interaction with treatment status, controlling for

survey round fixed effects. Here, we cluster standard errors at the village level, and since the

number of villages is small, we also report randomization inference p-values for the exact null

hypothesis. We do not include any controls (see Appendix Table A10 for the results where we

control for baseline outcomes selected by post-double selection LASSO).

Panel A shows the aggregate effects of treatment concentration. Panel B shows the interac-

tions of the village-level concentrations with treatment status. The results are strikingly different

across the different outcomes. The estimates in Panel B, columns 1 and 2 - the outcomes for

which we find the largest average treatment effects in Table 1 - suggest that the program led to

differences of similar magnitude between treated farmers and control farmers on agronomic

knowledge and self-reported adoption of practices across the three village categories. They also

suggest no difference between control farmers’ knowledge or self-reported adoption in different

types of villages. This confirms the absence of information diffusion within villages that we find

when looking at immediate neighbors.

In contrast, the estimates in columns 4-6 of Panel B paint a clear picture of negative spillover

effects on the control group in 50% and 75% villages. While the average treatment effects
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reported in columns 4-6 of Table 1 are all positive and significant, columns 4-6 of Table 3 show

no positive treatment effects in 25% concentration villages in the top row, lower control group

outcomes in both 50% and 75% villages (rows 2 and 3) and positive coefficients on the interaction

terms in rows 4 and 5.

The results in columns 4-6 suggest that our treatment effects on input use and yields in

Table 1 are driven by worse control group outcomes in higher treatment concentration villages.

The treatment effects on knowledge and self-reported adoption, on the other hand, are stable

across villages. This indicates that while treated farmers gained agronomic knowledge from

the training, they did not implement enough of what they learned to significantly increase

their coffee production. In contrast, control farmers in heavily treated villages were negatively

impacted.

In principle, a reallocation of labor and fertilizer inputs away from the control group towards

the trained farmers might be efficiency-enhancing if the training increased productivity, or

if coffee production functions are (locally) convex in inputs. Testing this hypothesis through

production function estimation is complicated by the multiple constraints on farmers’ input

choices (see below) that violate the assumptions of commonly used estimation techniques

(Shenoy 2021). To gain some insights, we estimate output as a flexible polynomial of inputs,

with heterogeneous parameters across trained and control farmers. Consistent with Table 3, we

find no evidence of a productivity increase from training, and returns to labor and fertilizer

appear to be concave over the range observed in the data for all types of farmers. (Appendix B

contains detailed results.) Thus there is little to suggest that the observed shift of inputs from

control to treatment farmers increased aggregate efficiency. Indeed, in Table 3, Panel A, the

aggregate impact of treating 50% of farmers or 75% of farmers on yields in column 6 is negative

and insignificant (despite the larger number of farmers benefiting from the training).

Taken together, the results in Tables 2 and 3 suggest that the method of training some farmers

and hoping the knowledge will spread through their networks does not work in our setting,

and that it can even backfire since the control group appears to have been negatively impacted

in villages with high treatment intensity.

Why might higher treatment densities lead to lower input use and worse yields for control

farmers? One possibility is that greater demand for inputs from treatment farmers raised prices

or reduced availability of fertilizer and hired labor. Appendix Table A11 shows that neither the

daily wage rates nor NPK prices are significantly higher in 50% and 75% villages, although the

point estimates are all positive. However, there is considerable evidence that neither market

functions very smoothly. First, agricultural labor markets often do not clear in rural areas in

developing countries, so an increase in demand for labor may not have led to an increase in

wages (Breza et al. 2021).

Second, the market for NPK fertilizer was undergoing some changes during the period

of our study. At the time of our baseline, NPK was supplied by the government (through

OCIR-CAFÉ, which became NAEB in May 2011) to coffee farmers. NPK was then ostensibly

free, but the costs of NPK were deducted from the price farmers were paid (the government
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fixed the price of both NPK and coffee). In 2010-2011, the government gradually phased this out

due to organizational capacity constraints (they were struggling to fix prices and supply NPK

in large enough quantities) and transitioned to the system still in place today, where the coffee

washing stations buy the cherries, but also help farmers with credit and provision of inputs.

NPK is thus not free any more, through it is typically provided on credit. This system remains

very far from perfect. The cooperatives still rely on government intermediaries to get fertilizer

to the villages, while it is their duty to organize credit for the farmers. This change led to a

huge drop in NPK use between 2011 and 2012 (from 298 reported users in 2011 across treatment

and control farmers, to 126 users in 2012). In addition, since 2007, private agro-dealers (who

were only supposed to sell fertilizer for other crops, not coffee) have also sold NPK to coffee

farmers, but they only started to trade in our study area in 2012, at the very end of our study.

This is because Nyarubaka was the poorest sector of the district until then, making it the least

appealing market for agro-dealers.

This narrative illustrates both the specificity of our context, and some general features:

fertilizer is heavy, it is imported in most of Africa, and the ports of entry are limited. This means

that transport costs are extremely high, and poor remote places would probably be largely cut

out of a purely private provision mechanism.4 More broadly, governments are often in charge of

part or all of the fertilizer distribution network, controlling both quantities and prices. In such a

context, any program that extolls the value of fertilizer use is likely going to create congestion.

Treatment farmers could have become somewhat more enthusiastic about fertilizer use, or they

could have been first in line to access the loans that give them access, or to access fertilizer itself.

In this third best environment, this ended up being inefficient.

D. Program Impacts on Social Networks

Another source of externalities could have been treatment effects on the social networks them-

selves. Treatment farmers could have made new friends during the training session, or found it

more beneficial to interact with other trained framers, and could have stopped interacting with

control farmers. This would have reduced their opportunity to learn, but also potentially risk

sharing. Conversely, control farmers could have sought out treatment farmers. In this section

we examine the impact of the training groups on farmers’ reported social network links to other

farmers with whom they discuss coffee. We analyze the total number of friends reported by

each farmer, both across different geographical areas and for friends with different treatment

statuses.

Table 4 displays the results. Panel A, reporting effects on total friends, shows that treated

households gain 0.336 friends who were also chosen for training (a 28% increase over baseline),

significantly more than their (insignificant) increase in control group friends. The control group

themselves gain neither trained nor control friends overall. Both treated and control households

4This is what (Suri 2011) finds: heterogeneity in the availability of seed and fertilizer explains the heterogeneity
in the returns to technology.
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report fewer friends outside the group of farmers who signed up for the training (“non-sample

friends”).

If social networks change due to the training groups, the largest impact will be on friends

from the same village - we examine this in panel B. Treated households indeed gain most

friends within village (0.360), and in panel D we see that virtually all (0.319) of this increase

in within-village trained friends can be attributed to additional friends from the same training

group. The control group also increases trained friends within village relative to baseline by

0.0988 friends. However, the control group gains a similar number (0.0893) of control friends

within village as well. Thus it appears that farmers who signed up for the training (both treated

and control), a group likely more focused on coffee farming, strengthened intra-village links

amongst themselves rather than specifically targeting trained individuals.

This strengthening of within-village links over time comes at the cost of decreasing friend-

ships outside the village. Panel C shows that both treatment and control households dropped

outside-village links, with the strongest effects being on contacts with non-sample households

outside the village. This effect is statistically the same between treatment and control households,

and independent of the fraction of households trained within a village (see appendix Table A12),

indicating that it is likely due to a time trend rather than a program effect. Thus the social effect

of the training seems to have been largely limited to the relationships formed during the actual

training meetings themselves. Conversely, there is no evidence that the control group selectively

formed new links with trained individuals to gain access to their increased coffee knowledge.

5 Conclusions

This paper studies whether knowledge about best agronomic practices acquired through training

programs can spread through social networks. Our results from an RCT in Rwanda do not

support this hypothesis. Although knowledge of best agronomic practices increased among

trained farmers, we find no evidence that treatment farmers shared their new knowledge with

control households they were socially connected to or lived close to. The fact that control

households experienced negative spillovers in high treatment concentration areas, along with

the null treatment effects we find on observed adoption, suggest that much of the 6.7% higher

yields of treatment farmers compared to the control group that we observe at endline may be

the result of these negative spillovers, rather than a net gain for the treated farmers.

One possible interpretation of these results is that the treatment group did not experience

sufficiently high returns to the taught practices to induce them to encourage control farmers

in their information networks to adopt these techniques (Magnan et al. 2015). Indeed, the null

effects we find from the tree audits on treatment farmers’ own adoption suggest they probably

did not undertake enough of these new practices to see a difference.

Another possibility is that information provision alone was not sufficient to unleash the

yield-boosting potential of these agronomic practices. There is now growing evidence that the

low productivity observed in much of African agriculture is not the result of any one single

12



constraint; rather, different combinations of constraints seem to bind for different farmers (Suri

and Udry 2022). The negative externality on NPK use, which is indicative of a shortage of either

fertilizer or credit at the village level, suggest that the most important input in the training was

not easily accessible by the farmers. Existing studies set in Kenya have shown that intervention

packages targeting multiple constraints (e.g. by combining training with financial support,

input supply, and marketing assistance) can be effective at increasing adoption of new crops

(Ashraf et al. 2009) or fertilizer and improved practices, ultimately increasing yield and profits

(Deutschmann et al. 2019). Promising avenues for future research include asking how these

multiple constraints interact with information frictions and the complexities of social learning.

What is clear is that in a context where inputs market are imperfect and not well integrated,

the strategy of training some farmers and not others creates distortions that may outweigh any

gain of the training. Furthermore, it is those distortions that may give the misleading impression

that the program is effective. This evidence casts some doubt on a widely practiced strategy.

13



Table 1: Treatment Effects from Basic Within-Village Specification.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +
NPK)

Yield
(kg/tree)

(1) (2) (3) (4) (5) (6)

Treatment 1.240 0.330 0.019 0.040 0.102 0.065
[0.075] [0.041] [0.030] [0.028] [0.034] [0.036]
(0.000) (0.000) (0.557) (0.179) (0.002) (0.060)

Control mean -0.000 -0.000 0.000 -0.000 0.000 0.534
R-squared 0.11 0.04 0.02 0.01 0.04 n/a
Observations 4622 4622 47503 47503 6157 6090

Notes: Standard errors clustered by household are in brackets, and randomization inference p-values are in parenthe-
ses below those. All specifications control for village and round fixed effects. All columns use data from endline
rounds, i.e. rounds 6 through 9 (see Appendix D). For columns (1)-(4), we use data from rounds 6, 8 and 9 only as we
did not collect best practices data in round 7. In column (1), we use self-reported knowledge data. In column (2), we
use self-reported adoption data. In column (3)-(4), we use tree level audit data. Column (5) is an input quantities
index, which is the average of three variables (each standardized by its Control group mean and SD): paid labor
days per tree, HH labor days per tree, and KGs of NPK applied per tree. We trim the top 1% of values of this index.
In columns (1)-(5), for ease of interpretation, we also normalize each index by its Control group mean and SD. In
column (6), we apply a Poisson regression to the outcome, trimming the top 1% of values.
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Table 2: Diffusion in the Control Group via Baseline Treatment Friends.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +
NPK)

Yield
(kg/tree)

(1) (2) (3) (4) (5) (6)

Number of treatment friends 0.009 0.003 -0.050 0.002 -0.015 -0.013
[0.027] [0.026] [0.021] [0.019] [0.026] [0.029]

Number of sample friends 0.009 0.043 0.040 -0.011 0.002 0.040
[0.015] [0.015] [0.014] [0.012] [0.017] [0.017]

Outcome mean -0.000 -0.000 0.000 -0.000 0.000 0.534
Mean T friends 1.596 1.596 1.596 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925 2.925 2.925 2.925
R-squared 0.02 0.04 0.03 0.01 0.04 n/a
Observations 2143 2143 21530 21530 2853 2819

Notes: Standard errors clustered by household in brackets. All specifications control for village and round fixed effects. All columns
use data from endline rounds, i.e. rounds 6 through 9 (see Appendix D). For columns (1)-(4), we use data from rounds 6, 8 and 9
only as we did not collect best practices data in round 7. In column (1), we use self-reported knowledge data. In column (2), we use
self-reported adoption data. In column (3)-(4), we use tree level audit data. Column (5) is an input quantities index, which is the
average of three variables (each standardized by its Control group mean and SD): paid labor days per tree, HH labor days per tree,
and KGs of NPK applied per tree. We trim the top 1% of values of this index. In columns (1)-(5), for ease of interpretation, we also
normalize each index by its Control group mean and SD. In column (6), we apply a Poisson regression to the outcome, trimming the
top 1% of values.
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Table 3: Treatment Effects interacted with Village Treatment Concentration.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +
NPK)

Yield
(kg/tree)

(1) (2) (3) (4) (5) (6)

Panel A

50% T in village 0.194 0.004 0.006 0.059 -0.016 -0.121
[0.098] [0.093] [0.051] [0.040] [0.094] [0.102]
(0.112) (0.971) (0.922) (0.202) (0.884) (0.375)

75% T in village 0.696 0.167 -0.045 -0.015 -0.109 -0.156
[0.144] [0.111] [0.063] [0.040] [0.102] [0.136]
(0.001) (0.236) (0.545) (0.776) (0.360) (0.421)

Control mean, 25% villages 0.056 0.038 0.038 0.006 0.064 0.607
p-value: 50% T= 75% T 0.004 0.055 0.421 0.019 0.312 0.807
R-squared 0.02 0.01 0.00 0.00 0.00 n/a
Observations 4622 4622 47503 47503 6157 6090

Panel B

Treatment 1.140 0.301 -0.081 -0.037 0.041 -0.084
[0.245] [0.089] [0.094] [0.026] [0.094] [0.052]
(0.004) (0.017) (0.496) (0.270) (0.692) (0.160)

50% T in village -0.081 -0.073 -0.014 0.030 -0.057 -0.186
[0.046] [0.100] [0.062] [0.046] [0.094] [0.113]
(0.156) (0.533) (0.826) (0.577) (0.604) (0.191)

75% T in village -0.109 -0.038 -0.135 -0.082 -0.202 -0.294
[0.065] [0.121] [0.093] [0.046] [0.090] [0.151]
(0.160) (0.791) (0.242) (0.149) (0.072) (0.110)

Treatment X 50% T in village -0.006 0.007 0.081 0.078 0.061 0.171
[0.280] [0.129] [0.104] [0.048] [0.101] [0.084]
(0.982) (0.957) (0.480) (0.181) (0.585) (0.082)

Treatment X 75% T in village 0.315 0.072 0.174 0.114 0.097 0.238
[0.286] [0.100] [0.102] [0.036] [0.118] [0.089]
(0.337) (0.490) (0.144) (0.018) (0.443) (0.033)

Control mean, 25% villages 0.056 0.038 0.038 0.006 0.064 0.607
p-value: 50% T= 75% T 0.702 0.733 0.153 0.007 0.081 0.513
p-value: Treat x 50% T = Treat x 75% T 0.121 0.538 0.137 0.462 0.655 0.493
p: Treatment + 50% T + Treatment x 50% T=0 0.000 0.037 0.848 0.157 0.637 0.327
p: Treatment + 75% T + Treatment x 75% T=0 0.000 0.005 0.553 0.917 0.558 0.298
R-squared 0.09 0.02 0.00 0.00 0.00 n/a
Observations 4622 4622 47503 47503 6157 6090

Notes: Standard errors clustered by household are in brackets, and randomization inference p-values are in parentheses below these.
All specifications control for round fixed effects. All columns use data from endline rounds, i.e. rounds 6 through 9 (see Appendix D).
For columns (1)-(4), we use data from rounds 6, 8 and 9 only as we did not collect best practices data in round 7. In column (1), we
use self-reported knowledge data. In column (2), we use self-reported adoption data. In column (3)-(4), we use tree level audit data.
Column (5) is an input quantities index, which is the average of three variables (each standardized by its Control group mean and SD):
paid labor days per tree, HH labor days per tree, and KGs of NPK applied per tree. We trim the top 1% of values of this index. In
columns (1)-(5), for ease of interpretation, we also normalize each index by its Control group mean and SD. In column (6), we apply a
Poisson regression to the outcome, trimming the top 1% of values.

16



Table 4: Effect on Social Networks.

(1) (2) (3) (4) (5)
Trained
Friends

Control
Friends

Non-sample
Friends

All
Friends

T-C Friend
Difference

Panel A: Friends in All Villages

Treat × Post 0.336 0.0298 -0.164 0.201 0.306
[0.0551] [0.0427] [0.0458] [0.0904] [0.0671]

Control × Post 0.0338 0.0217 -0.150 -0.0947 0.0122
[0.0499] [0.0488] [0.0524] [0.0937] [0.0676]

T-C diff. p-value 0.000 0.900 0.837 0.023 0.002
Baseline mean 1.196 1.004 1.567 3.766 0.192

Panel B: Friends in Own Village

Treat × Post 0.360 0.0870 -0.00119 0.446 0.273
[0.0513] [0.0388] [0.0407] [0.0832] [0.0621]

Control × Post 0.0988 0.0893 0.0392 0.227 0.00947
[0.0429] [0.0456] [0.0416] [0.0814] [0.0599]

T-C diff. p-value 0.000 0.969 0.488 0.061 0.002
Baseline mean 1.027 0.831 1.063 2.921 0.195

Panel C: Friends Outside Own Village

Treat × Post -0.0238 -0.0572 -0.163 -0.244 0.0334
[0.0167] [0.0165] [0.0260] [0.0361] [0.0224]

Control × Post -0.0650 -0.0677 -0.189 -0.322 0.00271
[0.0220] [0.0164] [0.0305] [0.0439] [0.0247]

T-C diff. p-value 0.137 0.653 0.514 0.171 0.358
Baseline mean 0.169 0.172 0.503 0.845 -0.003

Panel D: Friends in Same Training Group

Treat × Post 0.319
[0.0438]

Baseline mean 0.412

Notes: Standard errors clustered by household in brackets. All specifications control for village fixed effects and for whether the household was
selected for training (Treatment/Control status). All columns use household level data from the baseline and round 9 social network surveys. (see
Appendix D). Outcome variable in column (1) is the count of HH’s friends selected for training. Outcome variable in column (2) is the count of friends
who applied for training but were not selected. Outcome variable in column (3) is the count of friends who did not apply for training. Column (4)
outcome variable is the sum of (1)+(2)+(3). Column (5) outcome variable is (1)-(2).
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A Additional Tables and Figures

Table A1: Balance Checks.

Control Mean Treatment Coeff. Std Error P-value

Head, Years of Schooling 3.534 -.061 .146 .678
Female Headed Household .33 .025 .013 .075
Household Size 5.018 -.037 .141 .794
Average Schooling of Household 3.257 .103 .09 .264
Yield, total KGs per tree .769 .017 .04 .682
Total Trees 249.892 1.294 11.616 .912
Fraction Unproductive Trees .312 -.012 .014 .398
Cut Stems .101 -.009 .014 .546
Book Keeping Done .025 -.007 .007 .356
Removed Dead Branches .747 -.043 .018 .023
Removed Suckers .903 -.018 .011 .131
Removed Weeds .99 -.005 .004 .256
Applied Compost .725 .017 .024 .485
Applied NPK .185 0 .015 .997
Applied Lime .024 .01 .01 .336
Applied Pesticides .761 -.022 .019 .264
Applied Mulch .867 -.022 .016 .179

p-value of joint F-test 0.9998

Notes: All specifications control for village fixed effects. Robust standard errors.
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Table A2: Attendance Rates, by Training Session.

Integrated Pest Management 78.0% [0.109]
Nutrition 77.1% [0.109]
Harvesting 77.6% [0.112]
Weeding 72.5% [0.122]
Mulching 75.7% [0.093]
Pruning and rejuvenation 74.1% [0.115]
Pesticide use 74.2% [0.111]
Composting 71.3% [0.120]
Erosion Control 73.4% [0.107]
Shade 70.4% [0.127]
Nutrition Review 80.2% [0.110]
Harvesting Nutrition Review 74.6% [0.112]
Sustainability 78.5% [0.093]
Composting Review 79.7% [0.090]
Pruning and Rejuvenation Review 78.2% [0.096]

Notes: Session-specific average attendance rates and standard deviations
across the 38 training groups (spread across 27 villages) that comprise our
treatment. Sessions listed in chronological order.
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Table A3: Attrition Rates by Treatment Status.

Control Treatment Difference

Mean Mean Coeff.
[s.d.] [s.d.] [s.e.]

Survey round (1) (2) (3)

6 0.034 0.034 0.003
[0.181] [0.181] [0.009]

7 0.041 0.036 –0.005
[0.197] [0.187] [0.011]

8 0.035 0.034 0.000
[0.184] [0.181] [0.010]

9 0.034 0.034 0.003
[0.181] [0.181] [0.009]

Notes: Column 1 presents the attrition rate for Control households by endline
survey round, Column 2 for Treatment households. Column 3 reports the
coefficient from a regression of attrition on a treatment dummy, but also
includes village fixed effects. Standard errors clustered at the village level
in brackets.
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Table A4: Treatment Effects from Within-Village Specification:
Adoption Index and Leaf Health Index Components (Audits Data).

Dripline is
weeded

Tree canopy
has mulch

Removed
dead

branches

Removed
branches
touching

the ground

Opened
centers

Removed
unwanted

suckers

Removed
old and dry

berries

Tree bark is
smoothed

Few signs
of leaf rust

Few curled
leaves

Few yellow
leaves

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Treatment 0.032 0.028 0.001 -0.004 -0.005 -0.000 -0.019 0.004 0.020 0.006 0.008
[0.015] [0.014] [0.013] [0.007] [0.013] [0.013] [0.013] [0.006] [0.012] [0.010] [0.009]
(0.040) (0.055) (0.932) (0.552) (0.718) (0.992) (0.121) (0.543) (0.081) (0.607) (0.354)

Control mean 0.549 0.583 0.331 0.911 0.434 0.437 0.408 0.041 0.273 0.194 0.152
R-squared 0.060 0.050 0.040 0.040 0.040 0.050 0.010 0.020 0.090 0.040 0.040
Observations 47483 47338 47502 47501 47501 47502 47503 47498 47481 47488 47478

Notes: Standard errors clustered by household in brackets and randomization inference p-values are in parentheses below
those. All specifications control for village and round fixed effects. All columns use data from endline rounds 6, 8, 9 at the
household-plot-tree-round level. Columns 1-8 constitute the components of the All Audits index in column 3 of Tables 1-3.
Columns 9-11 are the components of the Leaf Health index in column 4 of Tables 1-3.
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Table A5: Treatment Effects from Within-Village Specification:
Inputs Index Components.

Household
labor days

per tree

Paid labor
days per

tree

Quantity of
NPK

applied per
tree (KGs)

(1) (2) (3)

Treatment 0.035 0.137 0.185
[0.042] [0.116] [0.170]
(0.439) (0.254) (0.329)

Control mean 0.132 0.007 0.004
R-squared 0.000 0.000 0.000
Observations 6157 6157 6157

Notes: Standard errors clustered by household in brackets and randomiza-
tion inference p-values are in parentheses below those. All specifications
are Poisson regressions and control for village and round fixed effects. All
columns use data from endline rounds 6, 8, 7, 9 at the household-round level.
Columns (1), (2) and (3) are the components of the Inputs Index outcome in
column (5) of Tables 1-3.
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Table A6: Treatment Effects from Within-Village Specification, with Post-Double LASSO Selected Controls.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +
NPK)

Yield
(kg/tree)

(1) (2) (3) (4) (5) (6)

Treatment 1.240 0.328 0.019 0.040 0.103 0.068
[0.100] [0.049] [0.034] [0.022] [0.038] [0.038]
(0.000) (0.000) (0.555) (0.084) (0.023) (0.095)

Control mean -0.000 -0.000 0.000 -0.000 0.000 1.000
Prob > chi2 0.000 0.000 0.941 0.264 0.083 0.000
Number of controls selected 0 4 0 0 1 4
Observations 4622 4622 47503 47503 6157 6090

Notes: Standard errors clustered by household in brackets and randomization inference p-values are in parentheses below
those. All specifications control for village and round fixed effects. Same specification as in Table 1 but using post-double
selection LASSO (Belloni et al. 2014) to select controls from the list of baseline outcomes in Appendix Table A1. All columns
use data from endline rounds, i.e. rounds 6 through 9 (see Appendix D). For columns (1)-(4), we use data from rounds 6, 8 and
9 only as we did not collect best practices data in round 7. In column (1), we use self-reported knowledge data. In column (2),
we use self-reported adoption data. In column (3)-(4), we use tree level audit data. Column (5) is an input quantities index,
which is the average of three variables (each standardized by its Control group mean and SD): paid labor days per tree, HH
labor days per tree, and KGs of NPK applied per tree. We trim the top 1% of values of this index. In columns (1)-(5), for ease of
interpretation, we also normalize each index by its Control group mean and SD. In column (6), we apply a Poisson regression
to the outcome, trimming the top 1% of values.
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Table A7: Learning Spillovers on Control Farmers.

Learned something new about [practice] from a Treatment farmer

Weeding
Fertilizing
(manure)

Fertilizing
(NPK)

Mulching
Integrated
Pest Man-
agement

Removal of
dead

branches

Removal of
unwanted

suckers

Removal of
branches
touching

the ground

Opening of
Centers

Removal of
old/dry
berries

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treatment friends 0.000 -0.021 -0.014 0.014 -0.003 -0.017 0.013 -0.020 0.002 0.003
[0.011] [0.016] [0.016] [0.011] [0.014] [0.016] [0.013] [0.016] [0.012] [0.011]

Sample friends 0.003 0.011 0.008 -0.008 0.004 0.007 -0.008 0.009 -0.005 -0.004
[0.006] [0.010] [0.010] [0.006] [0.009] [0.010] [0.008] [0.010] [0.007] [0.007]

Outcome mean 0.052 0.143 0.140 0.104 0.092 0.099 0.092 0.108 0.088 0.078
R-squared 0.040 0.030 0.060 0.050 0.040 0.040 0.050 0.050 0.040 0.030
Observations 694 694 694 694 694 694 694 694 694 693

Notes: Standard errors clustered by household in brackets and randomization inference p-values are in parentheses below
those. All specifications control for total number of friends in sample at baseline and village FE. Control group only. The
outcome is constructed from a module collected in the final endline survey (round 9) asking farmers to reflect on how much
they have learned about each practice since baseline.
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Table A8: Diffusion to Control Group via Baseline Treatment Friends, with Post-Double LASSO Selected Controls.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +
NPK)

Yield
(kg/tree)

(1) (2) (3) (4) (5) (6)

Number of -0.003 -0.012 -0.043 0.036 0.004 -0.019
treatment friends [0.042] [0.021] [0.023] [0.017] [0.012] [0.018]

Number of -0.000 0.024 0.023 -0.015 0.008 0.043
sample friends [0.031] [0.015] [0.014] [0.012] [0.012] [0.013]

Outcome mean 0.683 0.179 0.001 0.013 0.027 0.537
Mean T friends 1.596 1.596 1.915 1.915 1.597 1.601
Mean tot. friends 2.927 2.927 3.354 3.354 2.928 2.934
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000
Number of controls selected 7 8 6 6 7 9
Observations 4622 4622 47503 47503 6157 6090

Notes: Standard errors clustered by household in brackets. All specifications control for village and round fixed effects. Same
specification as in Table 2 but using post-double selection LASSO (Belloni et al. 2014) to select controls from the list of baseline
outcomes in Appendix Table A1. All columns use data from endline rounds, i.e. rounds 6 through 9 (see Appendix D). For
columns (1)-(4), we use data from rounds 6, 8 and 9 only as we did not collect best practices data in round 7. In column (1),
we use self-reported knowledge data. In column (2), we use self-reported adoption data. In column (3)-(4), we use tree level
audit data. Column (5) is an input quantities index, which is the average of three variables (each standardized by its Control
group mean and SD): paid labor days per tree, HH labor days per tree, and KGs of NPK applied per tree. We trim the top 1% of
values of this index. In columns (1)-(5), for ease of interpretation, we also normalize each index by its Control group mean and
SD. In column (6), we apply a Poisson regression to the outcome, trimming the top 1% of values.
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Table A9: Diffusion through Geographic Networks: Neighbors.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +
NPK)

Yield
(kg/tree)

(1) (2) (3) (4) (5) (6)

Panel A: Treatment household neighbors

Num. treatment HH neighbors 0.028 0.027 -0.047 -0.009 -0.022 -0.037
[0.025] [0.031] [0.023] [0.020] [0.027] [0.030]

Num. sample HH neighbors -0.022 -0.005 0.022 -0.002 0.014 0.016
[0.015] [0.017] [0.015] [0.013] [0.017] [0.019]

Outcome mean -0.004 -0.002 0.000 0.000 0.003 0.536
R-squared .02 .03 .02 .01 .04 n/a
Observations 2122 2122 21345 21345 2826 2792

Panel B: Treatment plot neighbors

Num. treatment plot neighbors 0.030 0.042 -0.011 0.006 -0.004 -0.017
[0.019] [0.018] [0.014] [0.012] [0.017] [0.020]

Num. sample plot neighbors -0.013 -0.016 0.004 -0.007 -0.001 0.005
[0.012] [0.012] [0.008] [0.008] [0.010] [0.013]

Outcome mean -0.001 0.001 -0.001 -0.001 0.002 0.535
R-squared .02 .04 .02 .01 .04 n/a
Observations 2131 2131 21405 21405 2838 2804

Notes: Standard errors clustered by household in brackets. All specifications control for village and round fixed effects. All
columns use data from endline rounds, i.e. rounds 6 through 9 (see Appendix D). For columns (1)-(4), we use data from rounds
6, 8 and 9 only as we did not collect best practices data in round 7. In column (1), we use self-reported knowledge data. In
column (2), we use self-reported adoption data. In column (3)-(4), we use tree level audit data. Column (5) is an input quantities
index, which is the average of three variables (each standardized by its Control group mean and SD): paid labor days per tree,
HH labor days per tree, and KGs of NPK applied per tree. We trim the top 1% of values of this index. In columns (1)-(5), for
ease of interpretation, we also normalize each index by its Control group mean and SD. In column (6), we apply a Poisson
regression to the outcome, trimming the top 1% of values.
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Table A10: Treatment Effects Interacted with Village Treatment Concentration,
with Post-Double LASSO Selected Controls.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +
NPK)

Yield
(kg/tree)

(1) (2) (3) (4) (5) (6)

Panel A

50% T in village 0.194 0.036 0.006 0.059 -0.015 -0.100
[0.098] [0.086] [0.051] [0.040] [0.084] [0.092]
(0.106) (0.760) (0.921) (0.193) (0.880) (0.405)

75% T in village 0.696 0.166 -0.045 -0.015 -0.077 -0.088
[0.144] [0.102] [0.063] [0.040] [0.085] [0.111]
(0.000) (0.205) (0.550) (0.775) (0.451) (0.553)

Control mean, 25% villages 0.056 0.038 0.038 0.006 0.064 0.607
Prob > chi2 0.000 0.029 0.947 0.037 0.395 0.000
Number of controls selected 0 4 0 0 1 4
Observations 4622 4622 47503 47503 6157 6090

Panel B

Treatment 1.140 0.287 -0.089 -0.065 0.065 -0.067
[0.245] [0.079] [0.097] [0.037] [0.091] [0.039]
(0.002) (0.021) (0.471) (0.159) (0.539) (0.160)

50% T in village -0.081 -0.040 -0.018 0.017 -0.048 -0.159
[0.046] [0.100] [0.062] [0.046] [0.084] [0.097]
(0.139) (0.736) (0.814) (0.705) (0.607) (0.204)

75% T in village -0.109 -0.054 -0.137 -0.088 -0.157 -0.220
[0.065] [0.115] [0.093] [0.044] [0.084] [0.119]
(0.142) (0.699) (0.254) (0.106) (0.104) (0.139)

Treatment X 50% T in village -0.006 0.013 0.093 0.119 0.035 0.150
[0.280] [0.122] [0.110] [0.060] [0.099] [0.074]
(0.985) (0.924) (0.473) (0.098) (0.752) (0.087)

Treatment X 75% T in village 0.315 0.102 0.182 0.141 0.063 0.218
[0.286] [0.093] [0.106] [0.034] [0.123] [0.076]
(0.317) (0.337) (0.142) (0.006) (0.622) (0.017)

Control mean, 25% villages 0.056 0.038 0.038 0.006 0.064 0.607
Prob > chi2 0.000 0.000 0.219 0.000 0.036 0.000
Number of controls selected 0 4 1 1 1 5
Observations 4622 4622 47503 47503 6157 6090

Notes: Standard errors clustered by household in brackets. All specifications control for round fixed effects. Same specification
as in Table 3 but using post-double selection LASSO (Belloni et al. 2014) to select controls from the list of baseline outcomes in
Appendix Table A1. All columns use data from endline rounds, i.e. rounds 6 through 9 (see Appendix D). For columns (1)-(4),
we use data from rounds 6, 8 and 9 only as we did not collect best practices data in round 7. In column (1), we use self-reported
knowledge data. In column (2), we use self-reported adoption data. In column (3)-(4), we use tree level audit data. Column (5)
is an input quantities index, which is the average of three variables (each standardized by its Control group mean and SD):
paid labor days per tree, HH labor days per tree, and KGs of NPK applied per tree. We trim the top 1% of values of this index.
In columns (1)-(5), for ease of interpretation, we also normalize each index by its Control group mean and SD. In column (6),
we apply a Poisson regression to the outcome, trimming the top 1% of values.
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Table A11: Coffee Labor Wages and Fertilizer Prices, by Village Treatment Concentration.

Log daily wage rate Log NPK price per kg

(1) (2) (3) (4)

50% Treatment 0.019 0.027 0.158 0.159
[0.017] [0.019] [0.101] [0.096]

75% Treatment 0.039 0.033 0.081 0.081
[0.026] [0.026] [0.100] [0.097]

Outcome mean, 25% villages 6.452 6.438 5.859 5.841
p-value: 50% share=75% share 0.409 0.811 0.237 0.325
R-squared .18 .16 .01 .01
Observations 2522 2522 277 277

Notes: Standard errors clustered by village in brackets. All RCT-sample farmers who report hiring labor (columns 1-2) or
purchasing NPK (columns 3-4) in endline rounds 6-9 are included. Prices are in local currency (RWF). Columns (2) and (4) are
weighted by the inverse of the number of observations available per household. Columns (1) and (2): observations are at the
household-round-task level. Columns (3) and (4): observations are at the household-round level.
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Table A12: Changes in Social Network Friends by Village Treatment Intensity.

(1) (2) (3)
Different

village friends
Same village

friends
Treated same

village friends
Treatment -0.0366 0.205 0.0644

[0.0685] [0.100] [0.0727]

Treatment × post -0.221 0.222 0.121
[0.108] [0.239] [0.117]

Control × post -0.352 0.246 0.0255
[0.0574] [0.144] [0.0579]

50% T × Treatment × post -0.0827 0.163 0.228
[0.118] [0.295] [0.146]

75% T × Treatment × post 0.0113 0.316 0.300
[0.111] [0.291] [0.142]

50% T × Control × post 0.0583 0.0797 0.142
[0.0670] [0.261] [0.105]

75% T × Control × post 0.0307 -0.249 0.0714
[0.0690] [0.266] [0.167]

25% T village mean 0.857 3.399 0.651
R-squared 0.0590 0.0652 0.214
Observations 3156 3156 3156

Notes: Standard errors clustered by village in brackets. All specifications control for village fixed effects. All columns use
household level data from the baseline and round 9 social network surveys (see Appendix D).
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Figure A1: Negative Spillover Effects on the Control Group.
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Notes: Outcome means by treatment status and village treatment concentration and 95% confidence intervals constructed from survey rounds
6-9 (pooled). To construct outcomes from tree audits data (weeding, mulching and leaf health index), households are weighted by the inverse
of the number of coffee plots they operate in each survey round so as to give each household-round the same weight in the average.
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B Agricultural Production Function Estimation

The effects of village-level treatment concentrations in Table 3 suggest a re-allocation of inputs from

control to treatment farmers. The impact of these transfers on aggregate output and efficiency is a-

priori ambiguous. If the treatment causes an increase in productivity among the trained, then such

a re-allocation would increase efficiency by assigning more inputs to the farmers who can use them

most productively. Similarly, if coffee production function has locally increasing returns to inputs, then

concentrating those inputs in a selected group would also increase aggregate output. Conversely, if

production functions are concave in inputs, and the training has no productivity effect, then concentrating

more inputs among the trained may increase misallocation. To understand which scenario is most likely,

we estimate the parameters of the coffee cherry production function. Since we have few priors about its

functional form, we approximate the production function using a flexible polynomial in labor, capital,

and number of trees. Since we are also agnostic about the ways in which training might have altered

farmers’ production functions, we allow its parameters to have two possible values: one for the control

and pre-training treatment farmers, and another for the post-training farmers (indexed by t in the

equation below):

yit = αt + β1tTreesit + β2tTrees
2
it + β3tLaborit + β4tLabor

2
it

+ β5tNPKit + β6tNPK
2
it + β7tTreesitLaborit + β8tTreesitNPKit

+ β9tLaboritNPKit + β10tLaborijNPKitTreesit + εit

(3)

The estimation of this production function is complicated because the assumptions underlying

many structural approaches to productivity estimation are unlikely to be satisfied. As Shenoy (2021)

shows, when producers are subject to binding constraints on input use, the single-index assumption

upon which control-function approaches to production function estimation rely is no longer satisfied.

For Rwandan coffee farmers, who are subject to both financing constraints and limited availability of

fertilizer, production functions assuming unlimited access to inputs are likely mis-specified. Furthermore,

there is insufficient correlation in input use across seasons to employ a dynamic panel approach in

which past input use would serve as an instrument for future input choices. We therefore estimate the

production function via OLS.

Results of the production function estimation are displayed in Figure A2 with sub-figure A2a showing

the association between NPK and output, and sub-figure A2b showing the association between labor

and output. In both cases the relationship is concave, consistent with prior findings about the returns

to fertilizer. The slope of the NPK production function appears somewhat steeper for low amounts

of fertilizer; however an F-test of the null hypothesis that the slopes are equal for treated/untreated

groups fails to reject (p=0.32). The magnitude of predicted output is very similar across treatment groups

suggesting that training had little effect on overall productivity, consistent with the lack of evidence of

significant adoption of new practices.

Taken together, the evidence from the coffee cherry production function does not support the

hypothesis that the reallocation of inputs across farmers increased aggregate productivity.
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Figure A2: Coffee Cherry Production Function

(a) Relationship between Coffee Cherry Output and NPK Use

(b) Relationship between Coffee Cherry Output and Labor Use

Figures show output of coffee cherries as a function of input quantity, using coefficients estimated from Equation 3. The
relationship between output and each input quantity is plotted from 0 to the 99th percentile of that input intensity in the data,
with other input quantities set to their mean values.

34



C TechnoServe’s Agronomy Best Practices

The agronomy training program covered the following eight basic modules:

• Rejuvenation and pruning to produce new and productive wood. A multi-stem un-capped system was

promoted.

• Nutrition: a balanced nutritional program based on organic and inorganic additives, with the exact require-

ments determined by soil analysis. It included homemade compost, and may include liming, inorganic

fertilizers and foliar feeds depending on the requirements of the area.

35



• Integrated pest management: multiple techniques to manage pests and diseases, such as correct nutrition,

tree management, biological control, traps etc. Selective pesticides used as a last resort, but safe use of

pesticides promoted.

• Weed control: management of weeds through mulching, hand weeding and/or cover crops.

• Mulching: techniques to conserve moisture, add organic matter, and control soil erosion.
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• Soil and water conservation: use of a number of techniques such as mulching, terracing and water traps

to control soil erosion and maintain soil fertility. Encourage the management of water resources through

conservation zones.

• Shade: use of the correct level (20-40%) of shade to reduce tree stress, conserve moisture, increase organic

matter and increase biodiversity.
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• Record keeping: maintenance of records of inputs, outputs, profit and loss in a record book.

The schedule of the modules covered in the training was as follows:

• February 2010: Record Keeping

• March 2010: Integrated Pest Management (IPM)

• April 2010: Coffee Nutrition

• May 2010: Coffee Harvesting

• June 2010: Weed control

• July 2010: Mulching

• August 2010: Pruning and Rejuvenation

• September 2010: Safe use of pesticides

• October 2010: Composting

• November 2010: Erosion control

• December 2010: Coffee Shade Management

• January 2011 to October 2011: Review
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D Data Details

D1. Survey Data

From December 2009 to October 2012, we conducted ten rounds of surveys. These surveys mostly

focused on the 1,594 farmers who were part of the experiment: the RCT-sample farmers. However,

given the social networks focus of the study, we wanted to map the full social networks of the RCT-

sample farmers. Therefore, alongside the baseline in December 2009, we also conducted a full census

of the 5,198 farming households in all 29 villages of the the sub-district, including many who had not

signed up for the study. Out of these, we focused on the 57% who had grown or harvested coffee in the

year prior to the census, given the training program was targeted to coffee alone and it takes five years

for coffee trees to grow once they have been planted. This meant that there were an additional 1,327

coffee farmers in the sub-district who did not register for the agronomy training program. Throughout,

we refer to these farmers as the non-RCT-sample farmers, implying they grow coffee and live in the

same sector as the RCT-sample farmers but are neither treatment nor control farmers for the agronomy

program.

The data collection was split into modules that covered different aspects of the household’s

behavior. The modules covered household demographics, detailed plot level data for coffee as well

as all other crops (including harvests, sales, labor and other inputs), coffee plot performance, coffee

farming activities and practices, a consumption module, household finance and social networks for

the household head and the spouse. In the social networks module, we asked both the household head

and spouse who their friends were (with no limit on the number that could be listed). In addition, we

asked which of these friends grew coffee and which they spoke to about coffee. Throughout the paper,

we define friends as being “coffee friends”, the friends that respondents in the sample report talking

to about coffee.

Not every round of data collection covered the same modules and not every module in a given

round covered all farmers. We collected fewer rounds of data for the farmers in the non-RCT-sample.

Appendix D5 and D6 show a schedule of which modules were collected in which rounds, separately

for the farmers in the RCT-sample and for those in the non-RCT-sample, as well as the timing of each

survey wave. The first nine rounds of surveys took place every 2-3 months over the course of the

program (recall that the training was run monthly between February 2010 and October 2011), and the

tenth and final round took place in September-October 2012.

D2. Audit Data

One of our adoption measures was constructed from plot and tree inspections data, collected using

plot and tree audits. Field staff visited each coffee plot of all the coffee farmers in the sub-district and

inspected five trees, looking for signs of adoption of the agronomic practices covered in the training.

The enumerators were given specific instructions on how to pick the five trees on each plot. They

were instructed to start at the corner of the coffee plot closest to the farmer’s house and walk in the

direction of the opposite corner. They were then to inspect the second tree into the field, walk to the

middle of the field and inspect the tree in the middle. Starting from the middle, the field staff was to

walk towards the other two corners of the field and inspect the second tree in each direction. The field
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staff was then to walk back to the middle of the field and continue on the original path and inspect the

second to last tree in the field. For each tree, the field staff would also note the GPS coordinates of

each tree. Different variables were collected at different levels (the household level, the plot level and

the tree level):

• Household level: We collected data on two practices that were also observed by the field staff, in

particular

1. whether the household kept record books

2. whether the household has a compost heap

• Plot level: we collected data on three practices at the plot level, in particular

1. whether the farmer had used any methods to control for soil erosion (such as using stabiliz-

ing grasses, water traps, etc.)

2. whether there were any shade tress on the plot

3. whether the farmer had grown other crops among the coffee

• Tree level: the audit data covered twelve different practices for each of the five trees per plot that

were inspected. The practices were:

1. whether the tree had any antestia (an insect)

2. how many leaves were yellowing

3. how many leaves were curling

4. use of mulch

5. evidence of weeding

6. evidence of rejuvenation

7. evidence of pruning

8. evidence of integrated pest management

9. whether the tree had any berry borers (an insect)

10. evidence of damage from white borers

11. evidence of scales or mealy bugs or mould

12. signs of leaf rust

D3. Weigh Scale Data

Starting in March 2011, we distributed weigh scales to all the farmers in the RCT-sample for them

to keep accurate counts of their coffee harvests. The bulk of the coffee harvest arrives in May and

June. Starting in March 2011 and through June 2012, every month we distributed a yield calendar

to the farmers in the RCT-sample for them to record daily harvests for that month. An example of

a yield calendar is shown in Appendix D7. The farmers were given instructions on how to use the

weigh scale and how to record their coffee harvests on the calendars. At the end of every month, we

collected up the calendars and distributed new ones for the following month.
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D4. Best Practices Indices

For outcomes related to best agronomic practices, we create the following indices (all standardized

with respect to the mean and variance of the outcome in the control group):

1. Knowledge: this index averages fifteen standardized measures of what a farmer knows. It

includes whether the farmer knows each of the ten methods used to control insects, pests and

other diseases and how they should be used and whether the farmer knows each of five different

fertilizers that should be used.

2. Adoption: this index is the mean of nine standardized measures of which practices the farmer

adopts. Importantly, these are collected using survey questions, and therefore measure self-
reported adoption, as opposed to observed adoption. It includes whether the farmer adopted each

of eight methods used to control insects, pests and other diseases, and whether the farmers kept

a compost heap. We do not include the indicator of whether farmers kept record books here

because the farmer trainers checked these at every session, so they were well kept throughout

the study period. Record-keeping is also not an agronomic practice as such, and thus does does

not have a counterpart in the tree audits data.

3. All audits: this index is the mean of nine standardized measures of what the farmer adopts

as per the observed tree audits. This index includes two measures of whether the farmer uses

integrated pest management (whether old and dry berries are removed, whether the bark is

smoothed or banded to control white borer), whether the farmer used mulch, whether the tree

was weeded, whether there are signs of rejuvenation, and four measures of pruning (removal of

dead branches, removal of branches touching the ground, removal of crossing branches, removal

of unwanted suckers).

4. Leaf health: this index is the mean of three standardized measures of leaf health from the tree

audits. It includes: whether there are signs of the leaves yellowing, whether the leaves are

curling and whether there are signs of the leaves rusting. We changed the sign of the variable so

that any increase in the index would indicate an improvement in tree nutrition (i.e. a decrease in

the prevalence of leaf defects).
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D5. RCT-Sample Modules

The timing of the ten survey rounds of surveys was as follows:

1. December 2009 to January 2010

2. April 2010 to May 2010

3. July 2010

4. September 2010 to October 2010

5. November 2010

6. January 2011 to February 2011

7. June 2011 to July 2011

8. October 2011

9. January 2012 to February 2012

10. September 2012 to October 2012
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SECTION 1 2 3 4 5 6 7 8 9 10

Cover Page X X X X X X X X X X

Consent X X X X X X X X X X

HH Roster X X X X X X X X X

Plot Roster X X X X X X X X

Household-Level Sections

HH Member Demographic Characteristics X

HH Characteristics X X X

HH Characteristics (Extended) X

Group Memberships X X

Crop Inventory X X X X X

Plot Questionnaire

Long Season X X X

Short Season X X X

Other X X X X

Labor Activities

Long Season X X X

Short Season X X X

Crop Harvests and Sales

Long Season X X X

Short Season X X X

Coffee Activites

Coffee Plot Details X X X

General Household Coffee

A. Coffee Plot Performance/Future X

B. Training X

C. Cooperative Membership X

D. Coffee Farming Activities/Practices X

Coffee Delivery X

Coffee Module

Labor Activities for Coffee X X X X X X X X X X

Coffee Harvests X X X X X X X X X

Coffee Sales X X X X X X X X X X

Coffee Inputs X X X X X X X X X

Best Practices Schedule/Training Attendance X X X

Consumption Module X X X

Household Finance

Decisionmaking - Use of Money X X X

Bank Holdings/Savings/Debts/Credits X X X

Remittances X

Bank Account Location X

Gifts X X

Non-Agricultural Income and Credit X X X X X X X

Social Networks X X X X X

Best Practices Module: Audits

Coffee Plot Measurements and ID X X X X

Best Practices Sheet X X X X

Tree and Plot Inspection X X X X

Feedback on Training/Improvement of Knowledge of BP X

Barriers to Adoption of Best Practices X
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D6. Non-RCT-Sample Modules

SECTION 2 3 6 7 9 10

Cover Page X X X X X X

Consent X X X X X X

HH Roster X X X

Plot Roster X X X

Household-Level Sections

HH Demographics (Basic) X

HH Characteristics (Extended) X

Group Memberships X

Coffee Activites

General Household Coffee

A. Coffee Plot Performance/Future X

B. Training X

C. Coffee Farming Activities/Practices X

Coffee Module

Labor Activities for Coffee X X X X

Coffee Harvests X X X X

Coffee Sales X X X X X

Coffee Inputs X X X X

Best Practices Schedule/Training Attendance X X

Consumption Module

Household Finance

Decisionmaking - Use of Money

Bank Holdings/Savings/Debts/Credits

Remittances

Bank Account Location X

Gifts

Non-Agricultural Income and Credit

Social Networks X X X X

Best Practices Module: Audits

Coffee Plot Measurements and ID X X X X

Best Practices Sheet X X X X

Tree and Plot Inspection X X X X

Feedback on Training/Improvement of Knowledge of BP X

Barriers to Adoption of Best Practices X
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D7. Yield Calendars

HHID:   VILLAGE:             NAME:   

LOCATION:   

HOW MANY KILOGRAMS DID YOU HARVEST TODAY? 
  

 

 

 
  

  
   

  
  

 

 

 
  

  
   

  

  
   

  

  
   

  

  
   

  
 

  MAY (05) DAY 

Write here the coffee 

harvest that you have just 
weighed 

Write here the coffee harvest that you are going to 

sell and indicate the type of coffee (cherries, wet or 
dry parch)  

1 1-MAY-2012 TUESDAY   Kg  Kg 

2 2-MAY-2012 WEDNESDAY   Kg  Kg 

3 3-MAY-2012 THURSDAY   Kg  Kg 

4 4-MAY-2012 FRIDAY   Kg  Kg 

5 5-MAY-2012 SATURDAY   Kg  Kg 

6 6-MAY-2012 SUNDAY   Kg  Kg 

7 7-MAY-2012 MONDAY    Kg  Kg 

8 8-MAY-2012 TUESDAY   Kg  Kg 

9 9-MAY-2012 WEDNESDAY   Kg  Kg 

10 10-MAY-2012 THURSDAY   Kg  Kg 

11 11-MAY-2012 FRIDAY   Kg  Kg 

12 12-MAY-2012 SATURDAY   Kg  Kg 

13 13-MAY-2012 SUNDAY   Kg  Kg 

14 14-MAY-2012 MONDAY    Kg  Kg 

15 15-MAY-2012 TUESDAY   Kg  Kg 

16 16-MAY-2012 WEDNESDAY   Kg  Kg 

17 17-MAY-2012 THURSDAY   Kg  Kg 

18 18-MAY-2012 FRIDAY   Kg  Kg 

19 19-MAY-2012 SATURDAY   Kg  Kg 

20 20-MAY-2012 SUNDAY   Kg  Kg 

21 21-MAY-2012 MONDAY    Kg  Kg 

22 22-MAY-2012 TUESDAY   Kg  Kg 

23 23-MAY-2012 WEDNESDAY   Kg  Kg 

24 24-MAY-2012 THURSDAY   Kg  Kg 

25 25-MAY-2012 FRIDAY   Kg  Kg 

26 26-MAY-2012 SATURDAY   Kg  Kg 

27 27-MAY-2012 SUNDAY   Kg  Kg 

28 28-MAY-2012 MONDAY    Kg  Kg 

29 29-MAY-2012 TUESDAY   Kg  Kg 

30 30-MAY-2012 WEDNESDAY   Kg  Kg 

31 31-MAY-2012 THURSDAY   Kg  Kg 

 

1. Hang the scale to a fix and stable place ; 

2. Hang the bag (with the cherries in it) to the scale ; 

3. Read the number on the scale. 
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