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Abstract: A group of agents with private information must decide whether to stay with the
status quo or move to some alternative. We consider the incomplete information acceptrance
game, where each agent must accept or reject, depending on the signal he has observed, and
unanimous acceptance is required to implement change. Such an acceptance game underlies
Holmstrom and Myerson’s (1983) notion of durability. Agents have conflicting ordinal
interpretation of signals if, whenever a signal represents good news about the alternative for the
agent who observes it, it is bad news for all other agents. This occurs in a two agent trading
problem with affiliated values. Under this assumption, there is a Pareto-dominant pure strategy
Nash equilibrium of the acceptance game where each agent’s strategy is to accept or reject
depending on the signal he has observed. This equilibrium coincides with the set of signals
where agents accept under a public acceptance protocol [following Sebenius and Geanakoplos
(1983)] when agents publicly discuss their willingness to accept the trade, and converge to
common knowledge of acceptance. I show this using two extensions of results about games with
strategic complementarities [Milgrom and Roberts (1990)]. First, it is sufficient for existing
results that complementary properties hold locally, i.e. on some subset of strategies containing
all iteratively undominated strategies. Second, in games with incomplete information, a single
crossing property [Milgrom and Shannon (1991)] on agents’ actions and types implies that all
undominated strategies are monotone strategies, and therefore complementarity need only hold
on monotone strategies.

* This is an extensively revised version of a June 1990 draft titled "Unique Trading Decisions
and Common Ordinal Interpretation of Signals." I am grateful for comments from Roger
Lagunoff and Aki Matsui.



Section 1: Introduction

Two agents are considering whether to trade an object. Both agents must agree in order for the
trade to take place. Each agent has some information, and each agent’s valuation depends on both agents’
information signals. Suppose that there is some prevailing price for the object, and the agents have to
decide whether to accept or reject at that price (there is no negotiation about price).

More generally, I will be concerned with situations where some set of agents must decide whether
to stay with the status quo or move to some fixed alternative. All agents must agree in order for the
change to take place. All that will matter is the difference between their expected utilities under the status
quo and the alternative, conditional on the signals observed. It is assumed that agents have conflicting
interpretation of signals: whenever a signal represents good news about the alternative for the agent who
observes it, it is bad news for all the other agents. This occurs in a two agent trading problem with
affiliated values.

In section 5, I consider an acceptance game. This is a game with incomplete information. Each
agent must choose to accept or reject the alternative. If any agent rejects, the status quo remains. Such
an acceptance game underlies Holmstrom and Myerson’s (1983) concept of durability. In a refined
version of that game, it is shown (theorem 3) that, for each agent, there is a largest and smallest
iteratively undominated strategy in this game, and the profile of such largest and smallest strategies are
pure Nash equilibria. A theorem of this form was proved by Milgrom and Roberts (1990) for games with
strategic complementarities', although we will see below that this game only has local ordinal strategic
complementarities.

An alternative approach is to consider the mechanism design problem, where a mechanism
specifies a probability of moving to the alternative, as a function of signals that agents report. By the
revelation principle, we can restrict attention to truth-telling mechanisms, which are equivalent to
correlated equilibria of the acceptance game. But since only undominated strategies are played with
positive probability in correlated equilibria, the largest and smallest Nash profiles are also largest and
smallest correlated equilibria.

But both Nash and correlated equilibria rely on agents making choices simultaneously and in
ignorance of other agents’ choices. In many contexts, this is not a natural assumption to make. We
imagine most situations of the type described being resolved by some discussion, during which
information is implicitly or explicitly conveyed, at the end of which it is common knowledge that agents
wish to accept the change. Notice that typically information must be conveyed: ex ante, common

1. Topkis (1979), Bulow, Geanakoplos and Kiemperer (1985), Vives (1990), Milgrom and Roberts (1990),
Milgrom and Shannon (1991).



knowledge that agents wanted to accept would require that both agents gained, conditional on every
realization of the signals.

Sebenius and Geanakoplos (1983) proposed one stylized model of the process by which agreement
to change is reached. Suppose a change is proposed, and "agent 1 is tentatively willing to take it.
Knowing this, agent 2 may tentatively accept or decline. Agent 1 then has the same option if agent 2 has
accepted, and the dialogue continues until both are finally satisfied or a rejection is encountered. These
assumptions correspond to a situation where both agents discuss the change before making it and not the
situation where a firm offer is made and simply accepted or refused”.

A generalized version of such a protocol is proposed in section 6. It is shown (theorem 5) that
under the conflicting ordinal interpretation of signals assumption, the alternative is never refused (and
acceptance thus occurs) only on those profiles of signals where acceptance occurs in the largest Nash
equilibrium of the acceptance game.

This result is related to learning results in (complete information) games with strategic
complementarities [Milgrom and Roberts (1990, 1991), Krishna (1992)]. But how is the conflicting
ordinal interpretation of signals property related to strategic complementarities? In the acceptance game,
1 will accept the alternative when it is most valuable to him. With conflicting interpretation of signals,
this means that agent 1 will accept on a set of signals where the alternative is least valuable to agent 2,
and vica versa. But now, the more that agent 1 is prepared to accept (the more signals he accepts on),
the less bad the expected outcome is for agent 2, and the more agent 2 is prepared to accept. There
appears to be a monotonic best response property holding.

Unfortunately, we cannot simply apply results about strategic complementarities in order to get
our results. One problem is that if 1 rejects the alternative always, then any acceptance strategy by 2 is
a best response (it doesn’t make any difference). This implies that all actions are iteratively (strictly)
undominated and rationalizable in any acceptance game - in contrast to the Milgrom and Roberts (1990)
result. As noted above, it is necessary to first refine the acceptance game to ensure a comparable result.

But there is a much more serious problem. The natural ordering on agents’ strategies in the
acceptance game is set inclusion. But it is typically not the case in acceptance games that the best
response function is monotonic. The argument above relied on the best response function being
monotonic Jocally, i.e. at all the points that matter. If we restrict attention to those strategies where each
agent only accepts on the signals which are best for him, the best response functions are indeed
monotonic, ,

In section 3, I review results from Milgrom and Shannon (1991) about games with cardinal and
ordinal complementarities, and show that they continue to hold even if the complementarity properties



hold only on some subset of strategies, as long as that subset contains all iteratively undominated
strategies.

In section 4, I apply that result to games with incomplete information. A single crossing property
in agents’ actions and types (lemma 3) guarantees that all strategies are monotonic (actions increasing in
types). Thus it is sufficient that agents’ payoffs satisfy ordinal complementarity conditions on monotonic
strategies (and not neceséarily on other strategies) to ensure that the best response function is locally
monotonic (theorem 2). I also show in section 4 that while cardinal complementarities in a class of
complete information games translate into cardinal complementarities in the corresponding incomplete
information game [Vives (1990)], the same is not true of ordinal complementarities.

These results of section 3 and 4 are ail necessary for the acceptance game with conflicting ordinal
interpretation of signals studied in section 5. These games do not satisfy cardinal complementarity
conditions, and satisfy ordinal complementarity conditions only on monotonic strategies. But all
undominated strategies are monotonic.

The results of section 5 and section 6 on acceptance protocols were described above. Section 7
considers the special case where the alternative is a feasible trade, so there are no gains from trade. It
is shown that not only can there be no acceptance of trade in the static acceptance game or the dynamic
acceptance protocol [Sebenius and Geanakoplos (1983)], but with conflicting ordinal interpretation of
signals, rejection of the trade is the unique iteratively undominated (and thus the unique rationalizable)
action for all agents in the refined acceptance game. Not only is there no common knowledge trade,

there is also no rationalizable trade.
Section 2: Example

The example in this section illustrates each of the key ideas in the paper. Two agents must agree
whether to trade an object. Agent 1 has observed a signal with realizations U, M or D; agent 2 has
observed a signal with realizations L, C, or R. Their different valuations of the object, conditional on
the signals which both of them have observed, are given in figure 1(a). Notice that, while agents have
different values for the object, they agree ordinally on which signal makes the object most valuable.
Agent 1 always values the object more, so he is the potential buyer, 2 the potential seller. Suppose that
the prevailing price for the object is 4, and the agents have to decide whether to accept or reject at that
price (there is no negotiation about price). Then the value of the trade to the agents is as shown in table

1(b).



Now we can order the signals of each agent { U > M » D and L. » C » R ] so that each agent
strictly prefers a higher realization of his signal and a lower realization of the other agent’s signal. This
is the conflicting ordinal interpretation of signals property.

Now consider the static acceptance game, where each agent decides whether to accept or reject
the alternative, depending on the signal he has observed. His actions can therefore be thought of as
subsets of the set of signals. The alternative is chosen only on those combinations of signals where both
agents accept. Each agent’s ex ante payoff is equal to the probability of acceptance times the expected
value of the alternative. Suppose that there is a 1/9 probability of each pair of signals. Then 1’s
expected payoff if 1 chooses action {U,M} and 2 chooses action {L,C} is {1+3-1+2}/9 = 5/9. Figure
1(c) gives the pure strategy best response function for both agents. Note that anything is a best response
if the other agent always rejects the trade.

There are three pure strategy Nash equilibria: (&, &), ({U}, {L}) and ({U,M}, {L,C}). There
is also a class of mixed strategy Nash equilibria with 1 playing & with probability 1-2a,{U} with
probability & and {U,M} with probability c, and 2 playing & with probability 1-28, {L} with probability
B and {L,C} with probability 8, for any 0 < «,8 < 0.5. The pure strategy Nash equilibria are ranked
by set inclusion, which in turn implies that they are Pareto-ranked: ({U,M}, {L,C}) is the largest and
Pareto-dominant Nash equilibrium.

What would happen in this example with the protocol described in the introduction? Suppose 1
observes signal D and 2 observes L. First, 1 is asked if he is prepared to accept the alternative (on the
assumption that 2 will accept). 1 is prepared to accept the alternative. This doesn’t reveal anything to
2 however, since 1 would always be willing to accept the alternative, whatever signal he had observed.
Now 2 is asked if he is prepared to accept. He is, given his signal L. However, this does reveal
something to agent 1: if 2 had observed R, he would not be prepared to accept. Now 1 knows that 2
observed L or C. Now when 1 is asked again if he is prepared to accept, he says no, since he has
observed D, and knowing that 2 observed L or C, it is not worthwhile accepting. It can be verified that
the alternative will eventually be rejected if 1 observes D or if 2 observes R, and never rejected
otherwise.

The set of signals where rejection does not occur ( {U,M} x {L,C} ) exactly corresponds to the
largest pure Nash equilibria, as predicted by theorem 3. Let us look at the best response function [figure
1(c)] to see in detail how this behavior is related to games with strategic complementarities and monotonic
" best response functions.

Notice first that since any strategy is a best response to never accepting, this acceptance game
must be refined before we can even hope for monotonic best responses.



But there is a much more serious problem. The natural ordering on agents’ strategies in the
acceptance game is set inclusion. Yet the best response correspondence (see figure 1(c)) is nor
monotonic, even ignoring the problem at &. The best response function is monotonic locally, i.e. at all
the points that matter. The argument in the introduction was that if conflicting ordinal interpretation of
signals holds, agents will always accept on their best signals. Thus 1’s best responses will be {U},
{U,M} or {U,M,D}, while 2’s best responses will be {L}, {L,C} and {L,C.R}. The best response
functions are indeed monotonic when restricted to those strategies. Sections 3 and 4 show why this is
sufficient for strategic complementarity results.

It is worth noting that there does exist another ordering on strategies (i.e. not set inclusion) under
which the best response is globally monotonic (except at &): consider the complete orderings {M,D} ~
M} ~ {D} » {UM,D} » {UM} ~ {UD} » {U} and {L,C,R} ~ {L,R} ~ {C,R} ~ {R} ~{L,C}
~ {C} » {L}. These orderings are constructed by taking all those strategies which are never best
responses (which were excluded from the local complementarity conditions discussed in the introduction),
and placing them within the set inclusion ordering on strategies which are best responses in such a way

that monotonicity is maintained.
Section 3: Local Strategic Complementarities

In the differentiable setting of Bulow, Geanakoplos and Klemperer (1985), actions of agents were
said to be strategic complements if the marginal profitability of an agent’s action increases in the actions
of other agents. Vives (1990) and Milgrom and Roberts (1991) built on the work of Topkis (1979) to
give a notion of strategic complementarity with no differentiability assumptions. Milgrom and Shannon
[MS] (1991) gave properties which depend only on ordinal properties of payoffs. The following section
summarizes notions of complementarities in that paper, which can be consulted for a more detailed
discussion.

Let X be a partially ordered set, with antisymmetric, transitive and reflexive order relation >.
X is a lattice if, for every pair {x, y} C X, there exists a least upper bound (x Vy) and a greatest lower
bound (x Ay) in X.

Suppose f : X x Y > R, X, C X is a lattice and Y, C Y is a partially ordered set. Then f is
supermodular in x on (X,, Yy) if f(x,y) - fxAX’,y) < f(xVvx’,y) - f(x’,y) for all x,x’€X,, yEY,.
Function f has increasing differences in (x,y) on (X,,Y,) if x=x’ and y2y’ imply f(x,y’) - fx’,y’) <
f(x,y) - f(x’,y), for all x,x’ €X, and y,y’ €Y,. Function f satisfies cardinal complementarity on (X,,Y,)
if these two properties hold.



In the many comparative static applications of supermodularity, it is only ordinal properties of
f that matter. Analogous ordinal versions of the two properties above are as follows. Function f is
quasisupermodular in x on (X,, Y,) if f(x,y) = f(x Ax’,y) implies f(x Vx’,y) = f(x’,y) and f(x,y) >
f(x AX’,y) implies f(x vx’,y) > f(x’,y) for all x,x’€X,, yEY,. Function f has the single crossing
property [SCP] in (x,y) on (X,,Y,) if f(x,y") = f(x’,y’) implies f(x,y) = f(x’,y) and f{x,y’) > f(x’,y")
implies f(x,y) > f(x’,y), for all x,x’€X, and y,y’E€Y,, withx > x’ and y > y’. Function f satisfies
ordinal complementarity on (X,,Y,) if these two properties hold.

A stronger version of SCP, also from MS, will be required later. Function f has the strong single
crossing property in (x,y) on (X, Yy) if x>x°, y>y’, and f(x,y’) = f(x’,y’) implies f(x,y) > f(x’,y),
for all x,x’ €X, and v,y €Y,.

We now describe a finite game, written in a form so that notation can be easily extended to games
of incomplete information in the next section. But the results which follow could easily be extended to
arbitrary lattices.

There are I players, {1,.. ,I}. Each agent i has a finite set of possible basic actions A;. His
strategy in a game will be multidimensional: his strategy will be a vector of actions s;: T; - A,, where
T, is some finite set. We will call T, agent i’s set of "types”. Later this representation of strategies can
be used for games of incomplete information. For now, however, we are considering payoffs as an
arbitrary function of strategies. Let S; be the set of strategies (functions from T; to A)) of agent i, and
S = §, x.. S;. Now agent i’s payoffs are given by a function g;: S = R.

There is an asymmetric, complete, transitive order > on each agent’s types and another
asymmetric, complete, transitive order = on each agent’s actions. These orderings will not be
subscripted (by agent) in order to simplify notation. There is a natural ordering on the S;: s, = s, if s,(t)
2 §°(t), for all ,E€T,. This relation is asymmetric, reflexive and transitive, but not complete unless T,
is a singleton.

We will be concerned with local restrictions on payoffs g: local in the sense that restrictions are
placed only on subsets of strategies. In particular, we will be interested in imposing restrictions on
subsets of strategies which contain all iteratively undominated strategies. Here and throughout the paper,
"domination" refers to strict domination in pure strategies. Formally, R is a product set of agent
strategies if R = (R,,.. ,Rp, each R; C S;. For any such product set, let UfR] = {s; € R; | g(s,,5.)
= gi(s’,s) Vs, ER, forsomes;ER; }. U[R] is the collection of U[R] for each i. Define the sequence
U¥ inductively by UX*' = UJ U* ] and U = S,. A strategy s; is iteratively undominated if it is
contained in U, for all k. A product set of agent strategies R is said to be iteratively undominated if
Uk C R, for all i,k. A product set of agent strategies R is said to be a lattice if each R, is a lattice.



Theorem 1 Suppose R is an iteratively undominated product set of agent strategies, and also a lattice.
Suppose g, satisfies the ordinal complementarity conditions in (s,5,) on R, for each i. Then, for eack i,
there exist largest and smallest iteratively undominated strategies s;” and s, in R, and the strategy profiles
s and s., are pure strategy Nash equilibria.

The theorem is proved in MS for the case where R = S. But since the set of iteratively
undominated strategies and Nash equilibria are not changed by deletion of dominated strategies, the local
version (where R = S) of the theorem must also be true. Of course, typically this extension will not help
a lot: but in the class of games of incomplete information in the next section, the ordinal complementarity
conditions hold after one round of deletion of dominated strategies, but not before.

This result could be extended to arbitrary complete lattices®, with continuity restrictions on f as
in MS.

Section 4: Games of Incomplete Information

Suppose there exist p: T - R, , and, for each i, uz A x T — R, such that:-

g(s) = Y p(Ou,(s@®),0)

teT

Then we have a game of incomplete information, where each agent chooses an action a as a
function of his type t,. Vives (1990) showed that if the underlying complete information games uy(.,t)
satisfy the cardinal complementarity conditions, then, for any p, the corresponding game with incomplete
information satisfies cardinal complementarity conditions under the natural ordering of strategies.
Milgrom and Roberts (1990) showed how this result underlies Hendricks and Kovenock’s (1989) model
of oil drilling.

Lemma 1 Suppose u/.,t) has increasing differences in (a,a;) on A, for each fixed t. Then g, has
increasing differences in (s,s,;) on §S.

2. A lattice X is complete if the least upper bound and greatest lower bound of any subset X, C X are contained
in X. All finite lattices are complete.



Proof u(.,t) has increasing differences in (a,a;) implies that for all t€T, s = s,

u,0(5,(),5 (¢ (52D - w, (051025, (2 (511 2
w15, (1), (E (8T - w157 ()55 (2 ). (1,2.)]

Summing across t gives:-

Y PO [ (5,(5) 5,00 (85201 - w1051 (8),8 (£ (5,2 )1) 2

teT
Y p{[Cs,(8)osL ) (4201 - [ (s1(8,55 (2 s (1)1}
teT

which can be re-written as:-

gi(si’s_i) - gi(s:,S_g) 2 g,'(si’sii) = gg(si/ssii)

Because a complete order was assumed on A,, the complete information games u(.,t), for fixed t, are
always supermodular (and thus quasisupermodular). The incomplete information game is always

supermodular.
Lemma 2 g, is supermodular

Proof

gi(5,5.) - &i(sAsiis) =
)’;Tp(t){ui[(si(t,e,s_i(t_i)),(ti,t_,.)l - L(mins, (8,51 (E)) S (E (1)1} =
)RS DR (CX AR M UM CRIN) By w105/ ()5, (£ (82 )] =

(tis,(2)25i(t)) T

Y p (O { [ (max(s,(£),5{(1))>5, () (1t )] - 1 [(51(8) 3, (ED (1,201} =

teT
gi(sivsi/’s-i) - gi(silss_i)

In the acceptance game to be studied in the next section (and in the example of section 2), the

complete information payoffs u,(.,t) and the incomplete information payoffs g do not satisfy the cardinal



complementarity conditions, globally or locally as discussed in the last section. The u(.,t) do have the
single crossing property. Unfortunately, it is not the case that if u,(.,t) has the single crossing property
in (a,,a,) for each t, then g; satisfies the single crossing property. Vives’ (1990) result extending cardinal
complementarity to games of incomplete information does not apply to ordinal complementarity.

We could directly impose the single crossing property globally on the incomplete information
game. But this t00 is too strong for the acceptance game we will consider. Instead, the single crossing
property will be required to hold only for monotone strategies, and conditions will be given for all
undominated actions to be monotone.

Define the set of monotone strategies of agent i by:-

M, = (s€S, ] 5,(8)25,(8), for all 1,21}

Now say that game g is additively separable if there exist, for each agent, interim utility functions
w;: A, x T, x S, = R, such that

g,'(s) = E wi(s,‘(t,'):t,-’S_i)

€T,

If g is a game of incomplete information, as described above, then g is additively separable with
agent i’s interim utility function w; given by:-

wi(a,t,s,) = Y, p(t,t)ul(a;,s (£)),(t,t)]

¢ T,

With this notation, note that the set of (once) undominated strategies of i can be given by:-

U = {s5,€51w,(5,(8)),t,,8.) 2 wia,t,s.), for all a,eA €T, for some s_€S_,}

Lemma 3 Suppose g is additively separable and each interim utility function w; has the strong single
crossing property [SSCP] in (a,t;), for fixed 5,8, Then all undominated strategies of player i are
monotone [U! C M, Yi].

10



Proof

Suppose (1) s,€U; and (2) s,¢M,.
Then by (1) 3s_; s.t. wi(s,.(ti”),t,.”,s_,.) > w,.(ai,ti”,s_,.), Jor all aA, t{’e’l}.
By (2) and asymmetry of >, 3 t,.>t§' 5.t si(t,-/) > 5,(%)
But now by SSCP, w,(s5,(t),%,5.) 2 w,(s,(t),t,5) =
wi(si(t{),t,.,s_‘.) > w(s,(1,),1,,5_,), contradicting [1].

Milgrom and Shannon (1991) showed that a single crossing property on actions and types implies
a monotone best response function in the auction model of Milgrom and Weber (1982).

Theorem 2 Suppose g is additively separable, each interim utility function w; has the strong single
crossing property in (a,t;), for each fixed s, €8, and g, has the single crossing property in (s,s;) for
monotone strategies (&€ M). Then, for each i, there exist largest and smallest iteratively undominated
strategies s;’ and s.. These strategies are monotone, as are all undominated strategies. The profiles s*

and s. are pure strategy Nash equilibria.
Proof By lemma 3, all undominated strategies are monotone. So theorem 1 implies theorem 2.

The conditions of theorem 2, taken together, are typically weaker than requiring that each g,
satisfies ordinal complementarity conditions (globally). The acceptance game of the next section is an

example where this is the case.
Section 5: The Acceptance Game

In this section, a problem of accepting a change from the status quo to some given alternative will
be modelled as an unanimous acceptance game, a particular kind of game with imperfect information.
The alternative occurs only if all agents agree to the change. Such games have appeared in numerous
guises in the literature. Holmstrdm and Myerson (1983) included such an acceptance game as part of the
definition of durability.

Agent i’s valuation of the change (to the alternative from the status quo) is a real valued function
of types: vii T = R. Given each of his possible types he must either say yes or no to the change. Thus

11



the action set has two elements, A; = {Y,N}. We endow this two element set with the order Y > N.

Now consider the following complete information game:-

v,@2), if a; = ¥, for all j.
0, otherwise,

ula,t) = {

This gives us the incomplete information game g with

g&(s) = Y p(u(s(),1) = 3. p(®)v,(1)

reT te(deTls (1))=Y, for all j}

This game will be referred to as the acceptance game for v.  Notice that the assumption is that
agents must decide to accept or reject the alternative once and for all. In general, the outcome may be
ex post inefficient and agents'may have incentives to renegotiate (as in Holmstrom and Myerson (1983);
see also Lagunoff (1992)). It is implicitly assumed that agents accept or reject, without taking into
account the possibility of re-negotiation.

In this game, any strategy is a best response to any strategy profile where some agent rejects
always [s;(t) = N, for all t€T;]. So it is useful to consider a natural refinement of the acceptance game.
Suppose that whenever some agent’s strategy is to always reject, other agents, instead of simply being
indifferent between all strategies, form a pessimistic conjecture about other agents’ strategies. In
particular, let t” be the maximal element of T;, for each j. Later assumptions will guarantee that this is

the most pessimistic conjecture. Now define the refined acceptance game as follows:-

8:(®), if 5;(t,) = Y, for some t;, for all j.
g (s) = Y P(t)v(8,t0), otherwise.

te{t]eT e (t)=Y)

This particular refinement allows us to see the connections with games with strategic
complementarities. Theorem 4 below shows that the set of relevant equilibria of the acceptance and
refined acceptance games are identical.

We will be concerned with a situation where a signal which is good news about the alternative

for agent i is bad news for all other agents. This would be the case if there were two agents trading a

12



good for which they have common values. Define agent i’s payoff to acceptance at t; if other agents
accept on T, where T;” = {T}};.;, each T, a subset of T}, as:-

vi(1,T0) = Y Pt )v(t,t).

1T,

It is useful to identify each pure strategy of agent i, s;, with the set of types where acceptance
takes place, i.e. TV = {t; € T; | s;(t) = Y }. In particular, I will sometimes write & for the strategy
s; with s(t) = N, for all f € T,. The ordering on strategies is thus equivalent to set inclusion in this
representation. T, is a monotone strategy of agent i if T, = Gor {t7 € T, | ¢ & t, for some t, €

T,}. Now agent i’s interim utility function is:-

wi(Y’tﬁ ng) = i(tia{{i)’ 7 ’I}* * o forall)
p( L £ Vi(ti ti)s otherwise.
Wi(N,ti,I{!.) = Q.

Lemma 4 In the refined acceptance game, interim utility function w; has the strict single crossing
property in (a;,t) for fixed s, if

t, >t and v (t/,T') = 0 = v/ (1, T) >0, forall T, 1;’ + o, for all j. [*]

Proof The strict single crossing property requires that a; > a/, t; >t and wi(a, t’, s)) 2 wa’, t°,
s.,) imply wi(a;, t;, 8;) > wi(@’, t;, s). With A; = {Y, N}, Y > N, we must consider two cases. If T;
# 3, for all j, then the above condition is implied by condition [*] above. If not, we require that (a)
t, >t and w(Y, t, s = w(N, t’, s imply w(Y, t, s > w(N, t;, s;). Thus we require [1] t; > t’,
vi'(t, T') = 0, T°; # & for all j, implies v,'(t, T,”) > O and [2] t, > t’ and v,(t’, t,*) = 0 implies
vi(G, t5) > 0. But [*] implies [1] and p(t;,t;)vi(t, t5) = V', T.), if each T; is the singleton set {t},
so [1] implies [2].

Now agent i’s payoff to acceptance on some interval of types, given that other agents use monotonic
strategies is

vty = ¥ ¥ plvigt)

/
Lrxyry t,

13



Lemma 5 In the refined acceptance game, g; has the single crossing property in (§;,s;) on monotonic

strategies if

t,xtland v (t,0,2)) 2[>10 = v (4,5,t) 2[>10 [*+]

Proof Single crossing property requires that s > s’ and g*(s,5°) = [>] g'(s") imply g'(s) = [>]
g'(s’,s). If s’ # &, for all j#1, this is equivalent to condition [**] above. Fors; = & for some j#i
(and thus s = &, for some j#1i), [**] is trivially satisfied. If s’ = O for some j>1i, buts; # & for
all i1, then we require

Y pE(,) 210 = 3 3 p(h (st 2[7] 0.

Ly LRy gt
But this is implied by [**].

We will say for short that conflicting ordinal interpretation of signals (COIS) holds if the above
two restrictions ([*] and [**]) on p and v hold. A simpler set of sufficient conditions for COIS can also
be given. Say that beliefs p are independent if p(t) = pi(t,).. p(t), for some p;,.. ,p.. It is

straightforward to verify the following lemma.-

Lemma 6 COIS holds if beliefs are independent and, for each i, v,(t;,t,) is strictly increasing in t; and

weakly decreasing in t.

Proof

v, T = ¥ pa,t )v(,t)

et

-2 3 (Tt

16T,

Now vi(t,,t,) strictly increasing in t; ensures that the interim payoff function satisfies the strict single
crossing property.
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v (48t 2[>1 0
- v(t.t) 2[>] 0
- v,.(f‘.,tf/i) 2[>1 0, for all ti, > tf’i

- v (1,1,27) 2[>1 0, for all £/, 2 1),

-i

Now lemmas 4 and 5 together with theorem 2 imply:-

Theorem 3 If conflicting interpretation of signals holds in a refined acceptance game, then for each
agent i, there exist largest and smallest iteratively undominated strategies T, and T.. These are

monotonic, as are all iteratively undominated strategies. The pure strategy profiles T" and T, are Nash

equilibria.

Milgrom and Roberts (1990) made the argument that since all rationalizable actions are iteratively
undominated, and since only iteratively undominated actions are played with positive probability in
correlated equilibria and mixed strategy Nash equilibria, this result characterizes those solution concepts
as well.

The remainder of this section investigates the relation between the acceptance and refined
acceptance games. The indeterminacy of the best response function of the acceptance game when some
agent never accepts has been treated in different ways in the literature. For example, in Holmstrém and
Myerson’s (1983) notion of durability, sequential equilibria of an extensive form version of the acceptance
game are studied, in order to rule out unsatisfactory equilibria. Theorem 4 shows that if we are only
interested in Nash equilibria where acceptance takes place, the acceptance and refined acceptance games
are equivalent.

Theorem 3 showed that there existed largest and smallest iteratively undominated strategies which
are pure Nash equilibria. Any mixed Nash equilibria must assign positive probability only to strategies
between the largest and smallest pure Nash equilibria. In the (unrefined) acceptance game, we can no
longer appeal to complementarity results, so we must introduce notation for mixed strategy Nash
equilibria. A mixed strategy w; for player i is a simple probability distribution over S,. We can extend
g to mixed strategy profiles in the usual way. Strategy profile 7 is an acceptance profile if, for all i,
7(J) # 1, where & is the pure strategy "always reject”. Strategy profile 7 is a rejection profile if
#(D) = 1, for at least two agents.
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Theorem 4 In any acceptance game,

[1] All strategies are rationalizable (and thus iteratively undominated).

[2] The set of Nash acceptance profiles equals the set of Nash acceptance profiles of the refined
acceptance gane.

[3] All rejection profiles are Nash equilibria.

Proof In the acceptance game, all strategies are best responses to profiles of other agents’ strategies
where some agent always rejects. This immediately implies [1] and [3]. Elsewhere, the best response
correspondence of the acceptance game is identical to the best response correspondence of the refined
acceptance game, implying [2].

Section 6: Acceptance Protocols

Sebenius and Geanakoplos (1983) proposed an alternative model of when a change from the status
quo is accepted or not. Their concern was with the learning process by which it becomes common
knowledge that all agents favor change. In the acceptance game, it does not typically become common
knowledge that agents wish to makes the change. Suppose then that the change has been proposed and
agents have the opportunity to withdraw. A protocol will specify at each date who has the opportunity
to withdraw. If some agent withdraws, the status quo remains. If no agent ever withdraws, then the
alternative is accepted®.

A protocol is a function y : N, , - {1,.. ,I}. The protocol is said to be fair if, for all agents i,
and integers K, there exists k = K such that y(k) = i. In other words, each agent is chosen infinitely
often under the protocol.

At each date k, agent y(k) makes an announcement, Y or N, as to whether he is prepared to
accept the change, a: T x N, = { Y, N }. This agent takes into account the previous history of
announcements in making his choice. Say that T(k) C T is the set of type profiles which have been

3. This is thus a public protocol where all information is publicly revealed. Similar results would go through for
private protocols, where not all agents learn each agent’s announcement when they are made. For the two person
case of Sebenius and Geanakoplos (1983), the distinction was irrelevant. Cave (1983) and McKelvey and Page
(1986) considered public protocols in related settings, Parikh and Krapuski (1990) private protocols.
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revealed to be possible by previous announcements, at time k. Announcements « and period k
information T(k) can be defined inductively by:-

T0) =T, «a(0,)=Y

P y(k+1) ~ a(kel,) =10 ifv;'[ti‘,T_l.(k)] 20, and a(k',t) = Y, for all K'<k
N, otherwise

T(k+1) = {teT(k){a(k+1,t) = Y]

Theorem § For every fair protocol vy, there exists K and product subset of types, T" C T, such that for
ailk =2 K, T(k) = T and atk,t) = Yifand only if t€T". If, in addition, conflicting interpretation of
signals holds, then T is the largest pure strategy Nash acceptance profile of the acceptance game (if one
exists) or T” is the empty set (if not).

Proof Convergence of T and « is guaranteed because T is finite and T(k) is (by definition) monotonicaily
decreasing under set inclusion. Recall that common ordinal interpretation of signals gives us two
properties:-

M{t €T | w7120} =B or {t €T, |t =t for some t}

[21{t € T; | v[t,{t;’ ]t 2t }] = 0} is weakly decreasing in t;

[1} and {2] imply, by inductiononk, [3] Tk) = { € T |t =t, for somet € T }, for all k.

Now for all i, there exists k = K such that y(k) = i,s0 [S5] {t € T | v/[t,T;*] =2 0} = T~.
Now [2], [3] and [5] imply T* is a pure strategy Nash equilibrium.

Suppose T~ is the largest pure strategy Nash equilibrium.

f2] and [3] imply T" C T(k) for each k, by inductiononk. SoT" = T~ B

This is closely related to learning results in games with strategic complementarities. Milgrom
and Roberts (1990, 1991) have shown that if there is a unique Nash equilibrium, then almost any learning
process will converge to that equilibrium. Krishna (1992) has shown, under additional conditions, global
convergence of fictitious play, even with multiple equilibria. Note that (refined and unrefined) acceptance
games may have many equilibria. The fair protocol here is equivalent to best response dynamics, which
will not typically converge globally. But the fair protocol only looks at one starting point: it is a local
convergence resuit.

Despite the similarity to learning results, note that the interpretation is rather different. Here
agents are learning not about strategies, but about the actions of a particular type: this is a mechanism
by which agents learn others agents’ information, or "types”.
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Two examples illustrate why conflicting ordinal interpretation of signals is required for the latter
half of the theorem. Suppose agents’ valuations are as given in figure 2. There are two agents, 1 and
2. 1 observes only one signal, 2 observes either L or R. Agent’s have common valuations of outcomes
and each of 2’s signals are equally likely. Notice that there is certainly a pure strategy Nash equilibrium
with acceptance where 1 accepts (always) and 2 accepts if he observes L. But consider the natural
protocol such that y(k) = 1 if k is odd, y(k) = 2 if k is even. 1 will reject immediately in the first
round, before 2 has a chance to reject on R.

On the other hand, suppose agents’ valuations are as given in figure 3. Now there are two signals
for each agent. Suppose all combinations are equally likely. There is no Nash equilibrium with
acceptance in this game, since 2 will never accept if he observes R, 1 will always accept if 2 accepts only
on L, and 2 will not accept on L if 1 always accepts.

But now consider the same odd/evens protocol. In the first round, 1 will accept only if he has
observed U. In the second round, 2 will accept only if he has observed L. In the third round, 1 is still
willing to accept on U, and the protocol has converged. But note that 1 would like to change his mind
and accept on D (but cannot under the rules of the protocol).

It was somewhat arbitrary to say that agents accepted in the protocol, when they were indifferent
between accepting and rejecting. Generically, there is no difference (as in the example of section 2).
But for feasible trades (discussed in the next section) it will be useful to have the analogous result for
strict acceptance protocols, where the alternative is accepted only if it is strictly advantageous. Recall
that a strict Nash equilibrium is a pure strategy Nash equilibrium where each agent’s action is strictly
preferred to any other. Define a strict protocol as follows:-

T"0)=7 «'0,)=Y

P = y(k+1) = o'(k+1,) = { B EWILTUR] >0, and " (K,0) = Y, for all K'<k
N, otherwise
T"(k+1) = {teT"(B)|a"(k+1,8) = T}.

Theorem 6 For every strict fair protocol v, there exists K and product subset of types, T** C T, such
thatforallk 2 K, T'(k) = T** and a*(kt) = Y ifand only if t€T*>. If, in addition, conflicting
interpretation of signals holds, then T** is the largest pure strategy strict Nash acceptance profile of the
acceptance game (if one exists) or T, > is the empty set (if not).*

4. 1t is easy to verify that if there exist strict Nash equilibria, there is a largest strict Nash equilibrium.
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Section 7: No Trade Results

A special case of an "alternative" is some feasible trade contingent on agents’ signals. We know
that in this case common knowledge of acceptance of trade implies no strict gains from the trade.
Sebenius and Geanakoplos (1983) showed that trade cannot be accepted in a strict acceptance protocol,
and that there can be no acceptance in a static acceptance game with strict gains from trade. In this
section, I give (theorem 7) a version of that result and also show (theorem 8) that with conflicting
interpretation of signals, rejection of the trade is also the only iteratively undominated action for all
agents.

The conflicting ordinal interpretation of signals assumptions that have driven results in the
previous two sections imply that there is some degree of conﬂicting interest among the agents. A more
extreme case of conflicting interest is when the move from the status quo to the alternative is a feasible
trade:-

r
v is feasible if Y v,(t) = 0, for all teT.

i=]

The folléwing result is a slight generalization of Sebenius and Geanakoplos (1983) concerning such
feasible trades:-

Theorem 7  If v is feasible, then
[1] Every (possibly mixed) Nash equilibrium = of the acceptance game has g(x) = 0, for all i.
[2] The alternative is always rejected for all types under all fair strict protocols.

Proof [1] Every agent has a strategy "never accept” guaranteeing him O, regardless of other agents’
actions. [2] By theorem 6, either rejection always occurs under the strict protocol, or there is
convergence to a strict Nash equilibrium. But by [1], there is no strict Nash equilibrium M

v is non-trivial if v(t") = 0, for some i. Recall that t;" is the maximal element of T, for each i. A game
is said to be dominance solvable [Moulin (1979)] if there is a unique iterative undominated action for each
agent. If the game is dominance solvable, that unique profile of iteratively undominated actions is the
unique Nash equilibrium of the game.
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Theorem 8  If v is feasible, non-trivial and satisfies conflicting ordinal interpretation of signals, then
the refined acceptance game is dominance solvable, with "always reject” the unique interatively
undominated (and thus rationalizable) action for each player.

Proof Suppose COIS is satisfied, and agent i accepts with positive probability on ¢; and t” with ¢ > t’,
then he must have a strict gain from acceptance on t. v feasible implies gi(w) = 0, for every Nash
equilibrium 7 (by theorem 7), so he must have strictly negative gain from accepting on t’, contradicting
the best response property. So each agent i can accept on at most one signal. By COIS, this would have
to be t°, but by non-triviality and feasibility vi(t,") < 0 for some i ¥

It is useful to consider the significance of this result if [ = 2, Then v, = -v, and conflicting
ordinal interpretation of signals is equivalent to the requirement that v,(t,,t,) strictly increasing in t, and
strictly decreasing in t,.

Let us give an example which makes clear that it is possible for all strategies to be iteratively
undominated, in a refined acceptance game, for a non-trivial, feasible v, when COIS fails. Consider the
valuations in figure 4, with each combination of signals equally likely. This looks very much like the
matching pennies game, although remember the strategies for each agent are &, {H}, {T} and {H,T}.

As in the matching pennies game, every action is iteratively undominated even in the refined acceptance
game’.

Theorems 7 and 8 can be extended if we are interested in the relation between efficiency and the
acceptance of trade [see Morris (1992)]. We can characterize conditions under which the status quo
satisfies different notions of efficiency under asymmetric information [Holmstr6m and Myerson (1983)]°.
Clearly v feasible implies that the status quo is ex ante efficient. Theorem 7 will go through under the
assumption that the status quo is interim incentive compatible efficient. Indeed, the status quo is interim
incentive compatible efficient if and only if there is no correlated equilibrium 7 of the acceptance game,
with g,(x) > O for some agent. Thus under the COIS assumption, a partial converse of theorem 7 holds:
if all Nash equilibria 7 of the acceptance game have g(=) = 0, for all i, then the status quo is interim

5. The refined acceptance game depends on profile of "largest" types t’, and thus on an ordering of types. But
ever action is iterateively undominated in the refined acceptance game, whatever the profile of largest types, t".
6. The status quo is ex ante ¢fficient if, for each i, there exists \; € R, s.t. LAv(t) < 0, foralit € T. Itis
interim efficient if, for each i, there exists A T, = R, , s.t. Iy At)vi(t,t) < 0, forall t € T. Linear algebraic
conditions on v to characterize interim incentive compatible efficiency of the status quo can be derived using methods
in Myerson (1991) chapter 10.
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incentive compatible efficient. This is true because under COIS, no Nash equilibrium with acceptance

implies no correlated equilibrium with acceptance’.
Section 8: Conclusion

In the presence of asymmetric information, when are agents able to unanimously agree to
(interim) welfare improving transactions? Any answer to this question will involve answering the
following narrower question. Given some proposed transaction, would agents be prepared to
unanimously accept it at some state of the world? Any voluntary transaction has the characteristic that
at some point agents must decide whether to accept it, or not, and acceptance requires unanimity.

A natural model for thinking about acceptance is as a static game with incomplete information.
Nash equilibria and other game theoretic solution concepts will typically have a complicated structure.
This paper identified a class of acceptance games, satisfying conflicting ordinal interpretation of signals,
where local strategic complementarities in agents’ evaluations of the transaction generate a simple
structure of equilibria.

But voluntary transactions do not typically take place by agents making simultaneous, unrevokable
conditional commitments to accept or reject. Yet this is the model implicit in the static acceptance game.
The problem with considering more realistic dynamic stories is that it is hard to specify, in general, the
exact extensive form mechanism by which agreement is reached. In this paper, one simple dynamic
mechanism for reaching agreement was studied. Under the conflicting ordinal interpretation of signals
assumption, acceptance took place exactly when acceptance would have taken place in the largest, Pareto-
dominant, Nash equilibrium of the static acceptance game.

The dynamic protocol by which agreement was reached had the characteristic that it eventually
becomes common knowledge that agents are accepting the trade. Note that it need not be the case that
common knowledge of acceptance occurs in the static acceptance game. Indeed, it is possible (in games
not satisfying COIS) for there to exist a Nash equilibrium of the static acceptance game, where acceptance
occurs, when it is impossible for there to be common knowledge acceptance (see Morris (1992) for an
example).

The protocol was specified in a non-strategic way. Agents announced whether they accepted the
trade or not, and they were assumed to tell the truth. But notice that, under the common ordinal
interpretation of signal assumption, agents do not have an incentive to lie. The protocol can easily be
re-interpreted as an (infinite) extensive form game. Each agent announces, as in the protocol, acceptance

7. Morris (1992) gives an example (where COIS does not hold) where there is no Nash equilibrium with acceptance
from an interim incentive compatible inefficient status quo.
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or rejection. If any agent rejects the trade, the payoff is zero. The payoff if all agents always accept is
the utility they get from the transaction. Then acceptance will occur at some profile of types in some
subgame perfect equilibrium if and only if acceptance occurs given that profile of types in some Nash
equilibrium of the static acceptance game. By imposing small costs for accepting when you wouid have
rejected under the protocol, the extensive form can be manipulated to mimic the dynamic protocol.
Indeed, it can be conjectured that the conflicting ordinal interpretation of signals assumption will imply
the same unique outcome in a wide class of extensive form representations of the dynamic acceptance

problem.
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Figure la: Agents' Valuations of the Object
(1's on left, 2's on right)
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Figure 1b: Agents' Valuations of the Trade (at price 4)
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Figure 1lc: Best Response Functions
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Figure 2: Agents' Valuations
(1's on the left, 2’'s on the right)
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Figure 3: Agents' Valuations
(1's on the left, 2's on the right)
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Figure 4: Agents' Valuations
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