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Introduction

Key aspect of growth: interplay between innovations and productivity
improvements from entry.

Large part of productivity growth comes from improvements by
continuing plants.

For example: Bartelsman and Doms (2000) and Foster, Haltiwanger
and Krizan (2000): entry and exit account for about 25% of average
TFP growth, with the remaining accounted for by continuing plants.

Thus models in which �rms continually invest in technology and
productivity are important for understanding di¤erences across �rms
and plants and also across countries.

Schumpeterian models thus far generate growth only by entry.
I Models of expanding input or product variety not useful for the study
of the set of questions either.

Discuss models that feature productivity growth by continuing plants
(�rms).
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Innovation by Incumbents and Entrants: Model I

Continuous time.

Representative household with the standard CRRA preferences.

Population constant at L and labor is supplied inelastically.

Resource constraint at time t as usual:

C (t) + X (t) + Z (t) � Y (t) , (1)

Production function of the unique �nal good:

Y (t) =
1

1� β

�Z 1

0
q(ν, t)βx(ν, t j q)1�βdν

�
Lβ, (2)

where:
I x(ν, t j q)=quantity of the machine of type ν of quality q (ν, t).
I measure of machines is again normalized to 1.
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Innovation by Incumbents and Entrants: Model II

Exponent β in q: no e¤ects on results on growth, but implies �rms
with di¤erent productivity levels will have di¤erent levels of sales
(predictions about size distribution of �rms).

Engine of growth: quality improvements, now driven by two types of
innovations:

1 Innovation by incumbents
2 Creative destruction by entrants.

�Quality ladder� for each machine type:

q (ν, t) = λn(ν,t)q (ν, s) for all ν and t,

where:
I λ > 1 and n (ν, t) is the number of incremental innovations on this
machine line between s � t and t.

I s is the date at which this particular type of technology was �rst
invented, with quality q (ν, s) at that point.
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Innovation by Incumbents and Entrants: Model III

Incumbent has fully enforced patent on machines that it has
developed.

This patent does not prevent entrants leapfrogging the incumbent�s
machine quality.

At time t = 0, each machine line starts with some quality
q (ν, 0) > 0 owned by an incumbent.

Incremental innovations only by the incumbent producer, i.e.
�tinkering� innovations (consistent with case study evidence, e.g.,
Freemen, 1982, or Scherer, 1984):

I If spend z (ν, t) q (ν, t) of the �nal good for innovation on quality
q (ν, t), then �ow rate of innovation φz (ν, t) for φ > 0

I More formally: for any interval ∆t > 0, the probability of one
incremental innovation is φz (ν, t)∆t and the probability of more than
one is o (∆t) (with o (∆t) /∆t ! 0 as ∆t ! 0).

I Such innovation results in new machine of quality λq (ν, t).
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Innovation by Incumbents and Entrants: Model IV

Alternatively, new �rm (entrant) can innovate over existing machines
in machine line ν at time t:

I If current quality is q (ν, t), spending one unit of the �nal good gives
�ow rate of innovation η (ẑ (ν, t)) /q (ν, t).

I η (�) is a strictly decreasing, continuously di¤erentiable function.
I ẑ (ν, t) is total of R&D by new entrants towards machine line ν at time
t.

I Innovation leads to new machine of quality κq (ν, t), where κ > λ.

Note:
I Innovation by entrants more �radical� than by incumbents, supported
from studies of innovation.

I Incumbents also have access to the technology for radical innovation,
but Arrow replacement e¤ect implies they would never use it (entrants
will make zero pro�ts from it, so pro�ts of incumbents would be
negative).

I Strictly decreasing function η, captures �external�diminishing returns
(new entrants ��shing out of the same pond�).
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Innovation by Incumbents and Entrants: Model V

Each entrant attempting R&D is potentially small, take η (ẑ (ν, t)) as
given.

Assume that zη (z) is strictly increasing in z : greater aggregate R&D
towards a machine line increases the overall probability of discovering
a superior machine.

η (z) satis�es Inada-type assumptions:

lim
z!∞

η (z) = 0 and lim
z!0

η (z) = ∞. (3)

Once a machine of quality q (ν, t) has been invented, any quantity
can be produced at the marginal cost ψ, ψ � 1� β.
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Innovation by Incumbents and Entrants: Model VI

Thus total amount of expenditure on the production of intermediate
goods at time t:

X (t) =
Z 1

0
ψx (ν, t) dν, (4)

where x (ν, t) is the quantity of this machine used in �nal good
production.

Total expenditure on R&D is sum of R&D by incumbents and
entrants (z (ν, t) and ẑ (ν, t)):

Z (t) =
Z 1

0
[z (ν, t) + ẑ (ν, t)] q (ν, t) dν, (5)

where q (ν, t) refers to the highest quality of the machine of type ν at
time t (recall: higher-quality machines is proportionately more
di¢ cult).

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 8 / 100



Innovation by Incumbents and Entrants: Model VII

Allocation. Time paths of [C (t) ,X (t) ,Z (t)]∞t=0,
[z (ν, t) , ẑ (ν, t)]∞ν2[0,1],t=0,

[px (ν, t j q) , x (ν, t) ,V (ν, t j q)]∞ν2[0,1],t=0, [r (t) ,w (t)]
∞
t=0.

Equilibrium. Allocation in which R&D decisions by entrants maximize
their net present discounted value, pricing, quantity and R&D
decisions by incumbents maximize their net present discounted value,
consumers choose the path of consumption and allocation of spending
across machines and R&D optimally, and the labor market clears.
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Innovation by Incumbents and Entrants: Model VIII

Pro�t-maximization by the �nal good sector implies the demand for
machines of highest-quality:

x(ν, t j q) = px (ν, t j q)�1/β q (ν, t) L for all ν 2 [0, 1] and all t,
(6)

Unconstrained monopoly price is usual formula as a constant markup
over marginal cost.

No limit price assumption:

κ >

�
1

1� β

� 1�β
β

, (7)

By implication, incumbents that make further innovations can also
charged the unconstrained monopoly price.
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Equilibrium I

Since demand for machines in (6) is iso-elastic and ψ = 1� β,
pro�t-maximizing monopoly price:

px (ν, t j q) = 1. (8)

Combining with (6):
x (ν, t j q) = qL. (9)

Flow pro�ts of a �rm with monopoly rights on the machine quality q:

π (ν, t j q) = βqL. (10)

Substituting (9) into (2), total output is:

Y (t) =
1

1� β
Q (t) L, (11)

with average quality Q (t) �
R 1
0 q(ν, t)dν

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 11 / 100



Equilibrium II

Aggregate spending on machines:

X (t) = (1� β)Q (t) L. (12)

Labor market is competitive, wage rate:

w (t) =
β

1� β
Q (t) . (13)

Need to determine R&D e¤ort levels by incumbents and entrants.

Net present value of a monopolist with the highest quality of machine
q at time t in machine line ν satis�es HJB (V (ν, t j q) = V (q),
etc.):

r (t)V (q)� V̇ (q) = max
z (ν,t jq)�o

fπ(q)� z (q) q (14)

+φz (q) (V (λq)� V (q))� η (ẑ(q)) ẑ(q)V (q)g,
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Equilibrium III
Free entry:

η (ẑ(ν, t j q))V (ν, t j κq) � q(ν, t), and (15)

η (ẑ(ν, t j q))V (ν, t j κq) = q(ν, t) if ẑ (ν, t j q) > 0,

Incumbent�s choice of R&D e¤ort implies similar complementary
slackness condition:

φ (V (ν, t j λq)� V (ν, t j κq)) � q(ν, t) and (16)

φ (V (ν, t j λq)� V (ν, t j κq)) = q(ν, t) if z (ν, t j q) > 0.

Consumer maximization:

Ċ (t)
C (t)

=
1
θ
(r (t)� ρ), (17)

lim
t!∞

�
exp

�
�
Z t

0
r (s) ds

� Z 1

0
V (ν, t j q) dν

�
= 0 (18)
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Equilibrium and Balanced Growth Path

Equilibrium is thus time paths of
I [C (t) ,X (t) ,Z (t)]∞t=0 that satisfy (1), (5), (12) and (18)
I [z (ν, t) , ẑ (ν, t)]∞ν2[0,1],t=0 that satisfy (15) and (16);
I [px (ν, t j q) , x (ν, t) ,V (ν, t j q)]∞ν2[0,1],t=0 given by (8), (9) and
(14);

I [w (t) , r (t)]∞t=0 that satisfy (13) and (17).

BGP (balanced growth path): equilibrium path in which innovation,
output and consumption growth a constant rate.

Note in BGP aggregates grow at the constant rate but there will be
�rm deaths and births, and the �rm size distribution may also change.
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Balanced Growth Path I

From Euler equation, the requirement that consumption grows at a
constant rate in the BGP implies

r (t) = r �

In BGP, must also have z (ν, t j q) = z (q) and ẑ (ν, t j q) = ẑ (q).
These imply in BGP V̇ (ν, t j q) = 0 and V (ν, t j q) = V (q).
Since pro�ts and costs are both proportional to quality q, z (q) = z ,
ẑ (q) = ẑ and V (q) = vq.

Look for an �interior�BGP equilibrium (will verify below that exists
and is unique).
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Balanced Growth Path II

Incumbents undertake research, thus

φ (V (ν, t j λq)� V (ν, t j q)) = q(ν, t), (19)

Therefore
V (q) =

q
φ (λ� 1) . (20)

The free entry condition then implies η (ẑ)V (κq) = q and thus

V (q) =
βLq

r � + ẑη (ẑ)
. (21)

Combining this expression with (19) and (20), we obtain

φ (λ� 1)
κη (ẑ)

= 1.
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Balanced Growth Path III

Hence the BGP R&D level by entrants ẑ� is de�ned implicitly by:

ẑ (q) = ẑ� � η�1
�

φ (λ� 1)
κ

�
for all q > 0. (22)

Combining with (21):

r � = κη (ẑ�) βL� ẑ�η (ẑ�) (23)

= φ (λ� 1) βL� ẑ�η (ẑ�) .

From Euler equation, growth rate of consumption and output:

g � =
1
θ
(φ (λ� 1) βL� ẑ�η (ẑ�)� ρ) . (24)
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Balanced Growth Path IV

(24) determines relationship between ẑ� and g �. In contrast to
standard Shcumpeterian models:

Remark There is a negative relationship between ẑ� and g �.

From (24), g � is decreasing in ẑ�η (ẑ�) (which is always strictly
increasing in ẑ�).

(24) and (22), determine BGP growth rate of the economy, but not
how much of productivity growth is driven by creative destruction
(entrants) and how much by incumbents.
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Balanced Growth Path V

To determine this, repeat analysis as in standard model:

Q (t + ∆t) = (λφz (t)∆t)Q (t) + (κẑ (t) η (ẑ (t))∆t)Q (t)
+ ((1� φz (t)∆t � ẑ (t) η (ẑ (t))∆t))Q (t) + o (∆t) .

Subtracting Q (t) from both sides, dividing by ∆t and taking the
limit as ∆t ! 0:

g (t) =
Q̇ (t)
Q (t)

= (λ� 1) z (t) + (κ � 1) ẑ (t) η (ẑ (t)) ,

which which decomposes growth into the component from incumbent
�rms (�rst term) and from new entrants (second term).

In BGP:
g � = (λ� 1) φz� + (κ � 1) ẑ�η (ẑ�) . (25)
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Balanced Growth Path VI

Can also verify that this economy does not have any transitional
dynamics; if an equilibrium with growth exists, it will involve growth
at g �.

To ensure equilibrium exists, verify R&D is pro�table both for
entrants and incumbents.

The condition that r � should be greater than ρ is su¢ cient for there
to be positive aggregate growth.

In addition, r � should not be so high that transversality condition of
the consumers is violated.

Finally, need to ensure that there is also innovation by incumbents.

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 20 / 100



Balanced Growth Path VII

The following condition ensures all three of these requirements:

κη (ẑ�) βL� (θ (κ � 1) + 1) ẑ�η (ẑ�) (26)

> ρ > (1� θ) (κη (ẑ�) βL� ẑ�η (ẑ�)) ,

with ẑ� given by (22).

To obtain how much of productivity growth and innovation are driven
by incumbents and how much by new entrants, from:

(λ� 1) φz� =
1
θ
(g � � ρ)� (κ � 1) ẑ�η (ẑ�) , (27)

with g � given in (24) and ẑ� in (22).
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Firm-size Dynamics I

Firm-size dynamics: size of a �rm can be measured by its sales:

x (ν, t j q) = qL for all ν and t.

Suppose that all incumbents do R&D at the rate z� given by (27)
[Why is this is a supposition? What would be the justi�cation?]

Then, quality of an incumbent �rm increases that the �ow rate φz�,
and it is replaced at the �ow rate ẑ�η (ẑ�).

Thus, for ∆t su¢ ciently small:

x (ν, t + ∆t j q) =

8>><>>:
λx (ν, t j q) w. p. φz�∆t + o (∆t)

0 w. p. ẑ�η (ẑ�)∆t + o (∆t)

x (ν, t j q) w. p. (1� φz� � ẑ�η (ẑ�))∆t
+o (∆t)

(28)
for all ν and t.
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Firm-size Dynamics II

Thus �rms have random growth, and surviving �rms expand on
average.

Firms also face a probability of bankruptcy (extinction)

Let P (t j s, ν) =probability that a particular incumbent �rm that
started production in machine line ν at time s will be bankrupt by
time t � s:

lim
t!∞

P (t j s, ν) = 1

so that each �rm will necessarily die eventually.
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Summary of Equilibrium

Proposition Consider the above-described economy starting with an
initial condition Q (0) > 0. Suppose that (3) and (26) are
satis�ed. Then there exists a unique equilibrium. In this
equilibrium growth is always balanced, and technology,
Q (t), aggregate output, Y (t), and aggregate consumption,
C (t), grow at the rate g � as in (24) with ẑ� given by (22).
Equilibrium growth is driven both by innovation by
incumbents and by creative destruction by entrants. Any
given �rm expands on average as long as it survives, but is
eventually replaced by a new entrant with probability one.
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Proof of Proposition: Equilibrium I

Characterization of BGP is given by argument preceding proposition.

ẑ� is uniquely determined by (22) and given ẑ�, (24) gives the unique
BGP growth rate.

To ensure that this is indeed an equilibrium we need to check:

1 Positive ẑ�: follows from (3).
2 Positive growth: requires g� = (κη (ẑ�) βL� ẑ�η (ẑ�)� ρ) /θ. Since
(θ (κ � 1) + 1) > 1, the �rst inequality in (26), is su¢ cient for this.

3 Positive z�: from the �rst inequality (26):

z� =
g� � (κ � 1) ẑ�η (ẑ�)

(λ� 1) φ

=
(φ (λ� 1) βL� ẑ�η (ẑ�)� ρ) /θ � (κ � 1) ẑ�η (ẑ�)

(λ� 1) φ
> 0,

4 The transversality condition: The second inequality in (26) =)
r� > g�, which is necessary and su¢ cient to ensure this.
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Proof of Proposition: Equilibrium II
Therefore, the BGP is interior and uniquely de�ned.

Next show that no transitional dynamics.

two observations.

[A ]Because of the Inada conditions, (3), the free entry condition (15)
must hold as equality for all ν, t and q, so that

η (ẑ(ν, t j q))V (ν, t j κq) = q for all ν, q and t. (29)

Since this equation holds for all t and the right-hand side is
di¤erentiable in q and t, so must be the left-hand side.
Di¤erentiating with respect to t, we obtain

∂ẑ(ν, t j q)/∂t
ẑ(ν, t j q) =

1
εη (ẑ(ν, t j q))

V̇ (ν, t j κq)
V (ν, t j κq)

for all q and t, (30)

where

εη (ẑ) � �
η0 (ẑ) ẑ
η (ẑ)

> 0.
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Proof of Proposition: Equilibrium III

[B ]The value of a �rm with a machine of quality q at time t can be
written as

V (ν, t) =
Z ∞

t
exp

�
�
Z s

t

�
r
�
s 0
�
+ ẑ(ν, s 0)η

�
ẑ(ν, s 0)

��
ds 0
�
(31)

π (ν, s) ds.

This value is always �nite since, from observation [A],
(r (t) + ẑ(ν, t j q)η (ẑ(ν, t j q))) > 0 for all ν, q and t, and because
π (ν, s j q) = βqL 2 (0,∞) and also V (ν, t j q) uniformly bounded
away from 0 (unless, r (t)! ∞, which is impossible, since it would
violate the transversality condition (18)).

Consider two cases.
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Proof of Proposition: Equilibrium IV
Case 1: Suppose that (19), that is, φ (V (ν, t j λq)� V (ν, t j q)) = q,
holds for all ν, q and t. Then V (ν, t j q) is linear in q. Thus

V (ν, t j q) = v (t) q

and (19) can be written as

φ (λ� 1) v (t) = 1 for all t.

Therefore, v̇ (t) = 0 and v (t) = v for all t. Moreover, from [A]:

η
�
ẑ(ν, t j κ�1q)

�
v (t) = 1 for all t,

so that ẑ (ν, t j q) = ẑ (t) for all q and t. Therefore, the value function
becomes:

r (t) v = βL� η (ẑ) v

for all t, which implies that r (t) must be constant, and thus r (t) = r �,
ẑ (t) = ẑ� and z (t) = z� for all t.

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 28 / 100



Proof of Proposition: Equilibrium V
Case 2: Suppose that (19) does not hold for some ν 2 N � [0, 1], q and
t. Since either φ (V (ν, t j λq)� V (ν, t j q)) = q or
φ (V (ν, t j λq)� V (ν, t j q)) < q and z (ν, t j q) = 0, and because from
observation [A] above, η

�
ẑ(ν, t j κ�1q)

�
V (ν, t j q) = κ�1q, the value

function (14) in this case can be written as

V̇ (ν, t j q)
V (ν, t j q) = r (t) + ẑ (ν, t j q) η (ẑ (ν, t j q))� κβLη

�
ẑ(ν, t j κ�1q)

�
.

Combining this with (30), we obtain a set of di¤erential equations of the
form:

∂ẑ(ν, t j κ�1q)/∂t
ẑ(ν, t j κ�1q)

=
1

εη (ẑ(ν, t j κ�1q))
[r (t) + ẑ (ν, t j q) η (ẑ (ν, t j q))

� κβLη
�
ẑ(ν, t j κ�1q)

�
],

which are all unstable=) ∂ẑ(ν, t j q)/∂t = 0 for all ν 2 [0, 1] and all t.
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Proof of Proposition: Equilibrium VI

Otherwise, in the limit the free entry condition (15) implies
either V (ν, t j κq)! ∞ or V (ν, t j κq)! 0, which are both
impossible in view of observation [B]).

Therefore, ∂ẑ(ν, t j q)/∂t = 0 for all ν, q and t, which implies

r (t) + ẑ (ν, t j κq) η (ẑ (ν, t j κq))� βLη (ẑ(ν, t j q)) = 0,

for all ν, q and t

This is only possible if r (t) is constant and thus equal to r � and
ẑ (ν, t j q) = ẑ�.
Finally, the result that surviving �rms expand on average and that all
�rms die with probability 1 follows from equation (28).
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Some Numbers I

Choose the following standard numbers:

g � = 0.02, ρ = 0.01, r � = 0.05, and θ = 2,

where the last number, the intertemporal elasticity of substitution, is
pinned down by the choice of the other three.

The �rst three numbers refer to annual rates (implicitly de�ning
∆t = 1 as one year).
Normalize L = 1.
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Some Numbers II

Much greater uncertainty concerning the remaining parameters. As a
benchmark:

I β = 2/3 (one third of national income to pro�ts, two thirds to labor).
I The no limit price requirement implies that κ > 1.7.
I Set κ = 3, so that entry by new �rms is su¢ ciently radical.
I Innovation by incumbents is relatively minor, choose λ = 1.2. (implies
productivity gains from radical innovation is about ten times that of
�tinkering� innovation(i.e., (κ � 1) / (λ� 1) = 10)).

I Assume functional form for the function η (z): η (z) = Bz�α, α = 0.5.
I Choose φ and B to satisfy necessary conditions and ensure g�.
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Some Numbers III

With these numbers, (22) implies

η (ẑ�) = 0.015 and ẑ�η (ẑ�) = 0.003337.

This implies that the contribution of entry to productivity growth is

(κ � 1) ẑ�η (ẑ�) = 0.0067.

Using (25), the contribution of productivity growth by continuing
�rms is

(λ� 1) φz� = g � � (κ � 1) ẑ�η (ẑ�)
= 0.02� 0.0067
= 0.0133.

Thus in this parameterization, over two thirds of innovation is driven
by incumbents.
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Some Numbers IV

In addition, the value for ẑ�η (ẑ�) implies that there is entry of a new
product (creative destruction) in each machine line on average once
every 7.5 years (recall that r � = 0.05 as the annual interest rate so
that r �/ẑ�η (ẑ�) � 7.46).
Moreover, φz� = 0.0667, so that there are on average 1.2 incremental
innovations.

These numbers are quite typical as we vary the parameter values.

But, quite di¤erent numbers are also possible and quite a bit of
uncertainty about what the right parameters should be.
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The E¤ects of Policy on Growth I

Since Schumpeterian structure, it may be conjectured that entry
barriers (or taxes on potential entrance) will have negative e¤ects on
economic growth.

Tax τe on R&D expenditure by entrants and a tax τi on R&D
expenditure by incumbents (can be negative and interpreted as
subsidies).

τe can also be interpreted as a more strict patent policy than in the
baseline model, where the entrant did not have to pay the incumbent
for partially bene�ting from its accumulated knowledge.

Focus on the case in which tax revenues are collected by the
government rather than rebated back to the incumbent as patent fees.
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The E¤ects of Policy on Growth II
Repeating the analysis above, equilibrium conditions:

η (ẑ�))V (κq) = (1+ τe ) q or V (q) =
q (1+ τe )

κη (ẑ�)
. (32)

The equation that determines the optimal R&D decisions of
incumbents, (19), is also modi�ed:

φ (V (λq)� V (q)) = (1+ τi ) q. (33)

Combining (32) with (33):

φ

�
(λ� 1) (1+ τe )

κη (ẑ�) (1+ τi )

�
= 1.

Consequently, the BGP R&D level by entrants ẑ�, when their R&D is
taxed at the rate τe , is given by

ẑ� � η�1
�

φ (λ� 1) (1+ τe )

κ (1+ τi )

�
. (34)
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The E¤ects of Policy on Growth III
Equation (21) still applies, so that the the BGP interest rate is

r � = (1+ τi )
�1 φ (λ� 1) βL� ẑ�η (ẑ�) , (35)

BGP growth rate is

g � =
1
θ

�
(1+ τi )

�1 φ (λ� 1)� ẑ�η (ẑ�)� ρ
�
. (36)

From (36), g � does not directly depend on τe , thus

dg �

dτe
=

∂g �

∂ẑ�
∂ẑ�

∂τe
> 0.

Opposite of standard Schumpeterian results. Intuition?
Moreover, as expected

dg �

dτi
< 0.

Proposition The growth rate of the economy is decreasing in the tax rate
on incumbents and increasing in the tax rate (entry barriers)
on entrants.
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The E¤ects of Policy on Growth VII

Surprising result: in Schumpeterian models, making entry more
di¢ cult, either with entry barriers or by taxing R&D by entrants, has
negative e¤ects on economic growth.

Despite the Schumpeterian nature of the current model, blocking
entry and protecting the incumbents increases equilibrium growth
(and welfare)

Intuition:
I Engine of growth is still quality improvements, but these improvements
are undertaken both by incumbents and entrants.

I Entry barriers, by protecting incumbents, increase their value and
greater value by incumbents encourages more R&D investments and
faster productivity growth.

I Taxing entrants makes incumbents more pro�table and this encourages
further innovation by the incumbents.
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Equilibrium Firm Size Distribution I

In equilibrium, there is entry, exit and stochastic growth of �rms.
=) endogenous of �rm size distribution.

Firm growth consistent with Gibrat�s Law
I Gibrat�s Law states that �rm growth is independent of �rm size.
I Good description of actual �rm size dynamics in the data (e.g., Sutton,
1997).

I Though not always for new �rms.

What about �rm size distributions?

Axtell (2001) US �rm size distribution very well approximated by the
Pareto distribution with an exponent of one.

Recall that the Pareto distribution is Pr [x̃ � y ] = 1� Γy�χ for
Γ > 0 and y � Γ.
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Equilibrium Firm Size Distribution II

In the current economy, the size of average �rm measured by sales,
x (t), grows.

To look at the �rm size distribution, we need to normalize �rm sizes
by the average size of �rm, given by X (t).

Let the normalized �rm size be

x̃ (t) � x (t)
X (t)

.
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Equilibrium Firm Size: Pareto Distribution I

Since in equilibrium Ẋ (t) /X (t) = g � > 0, law of motion for
normalized size of leading �rm in each industry:

x̃ (t + ∆t) =

8><>:
λ

1+g �∆t x̃ (t) w. p. φz�∆t
κ

1+g �∆t x̃ (t) w. p. ẑ�η (ẑ�)∆t + o (∆t)
1

1+g �∆t x̃ (t) otherwise

(still under the assumption that all incumbents undertake R&D z�).

Notice that this expression does not refer to the growth rate of a
single �rm, but to the leading �rm in a representative industry, and in
particular, when there is entry, this leads to an increase in size rather
than extinction.

Proposition If a stationary distribution of (normalized) �rm sizes exists,
then it is a Pareto distribution with exponent equal to 1, i.e.,
Pr [x̃ � y ] = 1� Γ/y with Γ > 0.
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Proof of Proposition: Pareto Distribution of Firm Sizes I

Suppose that a stationary distribution exists.

Consider an arbitrary time interval of ∆t > 0 and write

Pr [x̃ (t + ∆t) � y ] = E
h
1fx̃ (t+∆t)�yg

i
= E

h
1fx̃ (t)�y/(1+g x (t+∆t))g

i
= E

h
E
h
1fx̃ (t)�y/(1+g x (t+∆t))g j g x (t + ∆t)

ii
,

where 1fPg is the indicator function, so the �rst equation holds by
de�nition. The second equation also holds by de�nition once
g x (t + ∆t) is designated as the the (stochastic) growth rate of x
between t and t + ∆t. Finally, the third equation follows from the
Law of Iterated Expectations.
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Proof of Proposition: Pareto Distribution of Firm Sizes II
Next, denoting Gt (y) � 1� Pr [x̃ (t) � y ]:

Pr [x̃ (t + ∆t) � y ] = 1�Gt+∆t (y)

= E

�
1�Gt

�
y

1+ g x (t + ∆t)

��
.

Therefore, we obtain the functional equation

Gt+∆t (y) = E

�
Gt

�
y

1+ g x (t + ∆t)

��
(37)

= φz�∆tGt

�
(1+ g �∆t) y

λ

�
+ẑ�η (ẑ�)∆tGt

�
(1+ g �∆t) y

κ

�
+ (1� φz�∆t � ẑ�η (ẑ�)∆t)Gt ((1+ g �∆t) y) + o (∆t) .

A stationary equilibrium will correspond to a function G (y) such that
Gt+∆t (y) = Gt (y) = G (y) for all t and ∆t and (37) holds.
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Proof of Proposition: Pareto Distribution of Firm Sizes III

Let us conjecture that G (y) = Γy�χ with Γ > 0. Then

Γy�χ = φz�∆tΓ
�
(1+ g �∆t) y

λ

��χ

+ẑ�η (ẑ�)∆tΓ
�
(1+ g �∆t) y

κ

��χ

+ (1� φz�∆t � ẑ�η (ẑ�)∆t) Γ ((1+ g �∆t) y)�χ + o (∆t) .

or

φz�∆t
�
(1+ g �∆t)

λ

��χ

+ ẑ�η (ẑ�)∆t
�
(1+ g �∆t)

κ

��χ

(38)

+ (1� φz�∆t � ẑ�η (ẑ�)∆t) (1+ g �∆t)�χ + o (∆t) Γ�1y�χ = 1.
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Proof of Proposition: Pareto Distribution of Firm Sizes IV

Now subtracting 1 from both sides, dividing by ∆t, and taking the
limit as ∆t ! 0, we obtain

lim
∆t!0

(
φz�

�
(1+ g �∆t)

λ

��χ

+ ẑ�η (ẑ�)
�
(1+ g �∆t)

κ

��χ

+
(1� φz�∆t � ẑ�η (ẑ�)∆t) (1+ g �∆t)�χ � 1

∆t
+
o (∆t)

∆t

)
= 0.

Therefore the exponent χ must satisfy

φ (λχ � 1) z� + (κχ � 1) ẑ�η (ẑ�)� χg � = 0. (39)

It can be easily veri�ed that (39) has two solutions χ = 0 and
χ� = 1, since, by de�nition, g � = φ (λ� 1) z� + (κ � 1) ẑ�η (ẑ�).
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Proof of Proposition: Pareto Distribution of Firm Sizes V
To see that there are no other solutions, consider the derivative of
this function, which is given by

g 0 (χ) = φz�λχ lnλ+ η (ẑ�) ẑ�κχ ln κ � g �.

Since ln a < a� 1 for any a > 1, g 0 (0) < 0. Moreover, g 00 (χ) > 0,
so that the right-hand side of (39) is convex and as χ ! ∞, it limits
to in�nity. Thus there is a unique nonzero solution, which as we saw
above, is χ� = 1.

Finally, note that χ = 0 cannot be a solution, since it would imply
G (y) = Γ and thus G (y) = 0, which would imply that all �rms have
normalized size equal to zero, and violate the hypothesis that a
stationary �rm-size distribution exists.

It can also be veri�ed that no other function than G (y) = Γy�χ with
Γ > 0 can satisfy this functional equation, completing the proof of
the proposition.
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Equilibrium Firm Size: Pareto Distribution II

Unfortunately, previous proposition stated under the hypothesis that
the station redistribution exists. But:

Proposition In the economy studied here, a stationary �rm-size
distribution does not exist.

Proof:
I A stationary distribution must take the form Pr [x̃ � y ] = 1� Γ/y
with Γ > 0 and Γ should be the minimum normalized �rm size.

I However, the law of motion of �rm sizes shows that x̃ (t) can tend to
zero. Therefore, Γ must be equal to 0, which implies that there does
not exist a stationary �rm-size distribution.

Intuitively, given the random growth process (Gibrat�s Law), the
distribution of �rm sizes will continuously expand.

The �limiting distribution�will involve all �rms being arbitrarily small
relative to the average X (t) and a vanishingly small fraction of �rms
becomes arbitrarily large.
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Equilibrium Firm Size: Pareto Distribution III

Can we have a stationary �rm size distribution?

Let us now relax the �supposition� that all incumbents do R&D at
the rate z�. Instead, z� (q̃), where

q̃ (ν, t) � q (ν, t)
Q (t)

.

We need Z 1

0
z� (q̃ (ν, t)) dν = z� for all t.

In particular, suppose that there exists ε such that

z� (q̃) =
�
z̄� for all q̃ > ε
∞ if q̃ = ε.

This implies that q̃ will never fall below ε. Slight deviation from
Gibrat�s Law.

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 48 / 100



Equilibrium Firm Size: Pareto Distribution IV

If the measure of �rms at ε is �nite, then z̄� = z�.

This R&D behavior for incumbents implies that q (t) � εQ (t) and
x (t) � εX (t), thus

x̃ (t) � ε.

Now we can establish the existence of a stationary Pareto distribution
with an exponent equal to one.

Proposition Consider the modi�cation described above with ε > 0. Then
there exists a unique stationary �rm size-distribution given
by the Pareto distribution Pr [x̃ (t) � y ] = 1� ε/y .
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Proof of Proposition: Existence of Pareto Distribution of
Firm Sizes I

For ε > 0,
Pr [x̃ (t) � y ] = 1� ε/y ,

Moreover, Pr [x̃ (t) = ε] = 0, so z̄� = z�.

Same argument as above: Pr [x̃ (t) � y ] = 1� ε/y solves the
functional equation (37) above.

Proper probability distribution for any ε > 0.
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Equilibrium Firm Size: Pareto Distribution V

Therefore, this simple model provides a good approximation to the
�rm size distribution in practice.

This is despite the fact that it was not designed to study �rm size
distributions in the �rst place.

A consequence of Gibrat�s Law except for �rms very much behind the
average (ε could be arbitrarily small).

In practice, richer �rm dynamics than in the current model.

Interaction between innovation dynamics and �rm size behavior, area
for future research.
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Step-by-Step Innovations I

Arrow�s replacement e¤ect in standard Schumpeterian models: new
entrants undertake innovation on any machine and do not need any
developed �know-how�.

But in practice quality improvements may have a major cumulative
aspect and incumbents may undertake R&D

More realistic: only a few �rms engaging in innovation and
competition in a particular product or machine line (Aghion, Harris,
Howitt and Vickers, 2001)

Cumulative research or �step-by-step innovation�.
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Step-by-Step Innovations II

Will also endogenize the equilibrium market structure and have a
richer analysis of the e¤ects of competition and intellectual property
rights policy.

Recall baseline Schumpeterian models and models of expanding
varieties: weaker patent protection and greater competition reduce
economic growth.

But evidence suggests positive (or at least non-monotonic
relationship) between competition and growth (e.g., Nickell, Aghion
et al.).

Schumpeterian models with endogenous market structure: e¤ects are
more complex, and greater competition (and weaker intellectual
property rights protection) sometimes increase growth.
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Preferences and Technology I

Continuous time economy with unique �nal good.

Continuum of measure 1 of individuals, each with 1 unit of labor
supplied inelastically.

Representative household preferences:Z ∞

0
exp (�ρt) logC (t) dt, (40)

Closed economy and �nal good used only for consumption (i.e., no
investment or spending on machines),

C (t) = Y (t) .

Euler equation from (40):

g (t) � Ċ (t)
C (t)

=
Ẏ (t)
Y (t)

= r (t)� ρ, (41)

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 54 / 100



Preferences and Technology II

Y produced using a continuum 1 of intermediate goods
(Cobb-Douglas production function):

lnY (t) =
Z 1

0
ln y (ν, t) dν, (42)

y (ν, t) is the output of νth intermediate at time t.

Take price of the �nal good (or the ideal price index of the
intermediates) as the numeraire.

py (ν, t)=price of intermediate ν at time t.

Free entry into the �nal good sector.

Thus, �nal good producers�demand for intermediates:

y (ν, t) =
Y (t)
py (ν, t)

, for all ν 2 [0, 1] . (43)
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Preferences and Technology III

Each intermediate ν 2 [0, 1] comes in two di¤erent varieties, each
produced by one of two in�nitely-lived �rms.

These two varieties are perfect substitutes and compete a la Bertrand.

No other �rm is able to produce in this industry.

Firm i = 1 or 2 in industry ν has technology:

y (ν, t) = qi (ν, t) li (ν, t) (44)

where li (ν, t) is employment level and qi (ν, t) level of technology at
time t.

The only di¤erence between �rms is their technology, determined
endogenously.

Each consumer holds balanced portfolio of the shares of all �rms.
Thus, the objective function of each �rm is to maximize expected
pro�ts.
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Preferences and Technology IV

(44) implies the marginal cost of producing intermediate ν for �rm i
at time t is

MCi (ν, t) =
w (t)
qi (ν, t)

(45)

where w (t) is the wage rate in the economy at time t.

Denote the technological leader by i and the follower by �i , so:

qi (ν, t) � q�i (ν, t) .

Bertrand competition implies all intermediates will be supplied by
leader at the limit price :

pyi (ν, t) =
w (t)

q�i (ν, t)
. (46)
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Preferences and Technology V

(43) implies demand for intermediates:

y (ν, t) =
q�i (ν, t)
w (t)

Y (t) . (47)

R&D by the leader or the follower stochastically leads to innovation.

When leader innovates, its technology improves by factor λ > 1.

The follower can undertake R&D to catch up with the frontier
technology.

This innovation is for follower�s variant and results from its own R&D.
Hence no infringement of patent of the leader and no payments to
the leader.

R&D for both have the same costs and the same probability of
success.
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Preferences and Technology VI

Each �rm (in every industry) has access to the R&D technology
(innovation possibilities frontier):

zi (ν, t) = Φ (hi (ν, t)) , (48)

where:
I zi (ν, t)=�ow rate of innovation at time t
I hi (ν, t)=workers hired by �rm i in industry ν to work in the R&D
process at t.

I Φ is twice continuously di¤erentiable and satis�es Φ0 (�) > 0,
Φ00 (�) < 0, Φ0 (0) < ∞

I there exists h̄ 2 (0,∞) such that Φ0 (h) = 0 for all h � h̄.

Note since Φ0 (0) < ∞ there is no Inada condition when hi (ν, t) = 0.

Last assumption ensures there is an upper bound on the �ow rate of
innovation (to simplify proofs).
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Preferences and Technology VII

Cost for R&D is w (t)G (zi (ν, t)) where

G (zi (j , t)) � Φ�1 (zi (j , t)) , (49)

Assumptions on Φ imply G is twice continuously di¤erentiable,
G 0 (�) > 0, G 00 (�) > 0, G 0 (0) > 0 and limz!z̄ G 0 (z) = ∞, where
z̄ � Φ (h̄) is the maximal �ow rate of innovation.
Suppose leader i in industry ν at time t has a technology level of

qi (ν, t) = λni (ν,t), (50)

Follower �i�s technology at time t is

q�i (ν, t) = λn�i (ν,t), (51)

where ni (ν, t) � n�i (ν, t).

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 60 / 100



Preferences and Technology VIII

Denote technology gap in industry ν at time t by

n (ν, t) � ni (ν, t)� n�i (ν, t)

If leader undertakes innovation within a time interval of ∆t,
technology gap rises to n (ν, t + ∆t) = n (ν, t) + 1 (probability of two
or more innovations is o (∆t)).
If follower undertakes innovation during the interval ∆t, then
n (ν, t + ∆t) = 0.
Intellectual property rights (IPR): patent held by the technological
leader expires at the exponential rate κ < ∞, in which case, the
follower can close the technology gap.
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Preferences and Technology IX

Thus, the law of motion of the technology gap in industry ν is:

n (ν, t + ∆t) =

8>>>><>>>>:
n (ν, t) + 1

0

n (ν, t)

w. prob.

w. prob.

zi (ν, t)∆t + o (∆t)

(z�i (ν, t) + κ)∆t + o (∆t)

otherwise

.

(52)
where:

I o (∆t) =second-order terms (e.g. the probabilities of more than one
innovations within ∆t).

I zi (ν, t) and z�i (ν, t)=�ow rates of innovation by the leader and the
follower,

I κ =�ow rate at which follower is allowed to copy the technology of the
leader.
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Preferences and Technology X

In the �rst line, the �ow rate of innovation is 2z (ν, t), since the two
�rms are neck-and-neck and undertake the same amount of research
e¤ort z (ν, t).

Instantaneous �operating�pro�ts (i.e.,pro�ts exclusive of R&D
expenditures and license fees) for leader i in industry ν at time t are:

Πi (ν, t) = [pyi (ν, t)�MCi (ν, t)] yi (ν, t)

=

�
w (t)

q�i (ν, t)
� w (t)
qi (ν, t)

�
Y (t)
pyi (ν, t)

=
�
1� λ�n(ν,t)

�
Y (t) (53)

(53) implies that there will be zero pro�ts in an industry that is
neck-and-neck, i.e., when n (j , t) = 0.

Followers make zero pro�ts, since they have no sales.
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Preferences and Technology XI

Cobb-Douglas in (42) leads to simple form of the pro�ts (53), that
depend only on technology gap of industry and aggregate output.

Hence technology gap in each industry the only industry-speci�c
payo¤-relevant state variable.

The objective function of each �rm is to maximize the net present
discounted value of net pro�ts (operating pro�ts minus R&D
expenditures and plus or minus patent fees).

Each �rm takes [r (t)]∞t=0, [Y (t)]
∞
t=0, [w (t)]

∞
t=0, the R&D decisions

of all other �rms, and policies as given.

Note even though technology and output in each sector are
stochastic, total output, Y (t), given by (42) is nonstochastic.
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Equilibrium I

µ (t)�fµn (t)g
∞
n=0 =distribution of industries over di¤erent

technology gaps, with ∑∞
n=0 µn (t) = 1.

I e.g., µ0 (t) =fraction of industries in which the �rms are
neck-and-neck at time t.

Focus on Markov Perfect Equilibria (MPE), where strategies are only
functions of the payo¤-relevant state variables.

Rules out implicit collusive agreements between the follower and the
leader and eliminates dependence on industry ν.

Thus refer to R&D decisions by zn for the technological leader that is
n steps ahead and by z�n for a follower that is n steps behind.

List of decisions by the leader and follower with technology gap n at
time t :

I ξn (t) �


zn (t) , p

y
i (ν, t) , yi (ν, t)

�
and

I ξ�n (t) � z�n (t).
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Equilibrium II

ξ=whole sequence of decisions at every state, ξ (t) � fξn (t)g
∞
n=�∞.

Allocation. Time paths of:
I decisions for a leader that is n = 0, 1, ...,∞ steps ahead, [ξn (t)]

∞
t=0,

I decisions for a follower that is n = 1, ...,∞ steps behind,
�
ξ�n (t)

�∞
t=0,

I wages and interest rates [w (t) , r (t)]∞t=0, and
I industry distributions over technology gaps [µ (t)]∞t=0.

Markov Perfect Equilibrium. Time paths
[ξ� (t) ,w � (t) , r � (t) ,Y � (t)]∞t=0 such that

1
�
py �i (ν, t)

�∞
t=0 and

�
y�i (ν, t)

�∞
t=0 implied by [ξ

� (t)]∞t=0 satisfy (46)
and (47);

2 [z� (t)]∞t=0 are best responses to themselves, i.e., [z
� (t)]∞t=0 maximizes

the expected pro�ts of �rms taking aggregate [Y � (t)]∞t=0,
[w� (t) , r� (t)]∞t=0, and [z

� (t)]∞t=0 as given;
3 [Y � (t)]∞t=0 is given by (42); and
4 labor and capital markets clear at all times given the factor prices
[w� (t) , r� (t)]∞t=0.
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Equilibrium III

Since only the technological leader produces, labor demand in
industry ν with technology gap n (ν, t) = n is:

ln (t) =
λ�nY (t)
w (t)

for n � 0. (54)

In addition, there is demand for labor from R&D of both followers
and leaders in all industries.

Using (48) and the de�nition of G , industry demands for R&D labor
are:

hn (t) =

8<:
G (zn (t)) + G (z�n (t)) if n � 1

2G (z0 (t)) if n = 0
, (55)

where z�n (t) refers to the R&D e¤ort of a follower that is n steps
behind.
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Equilibrium IV

Note in industry with neck-and-neck competition (n = 0), there is
twice the demand coming from the two �symmetric��rms.

Labor market clearing:

1 �
∞

∑
n=0

µn (t)
�

1
ω (t) λn

+ G (zn (t)) + G (z�n (t))
�
, (56)

and ω (t) � 0, with complementary slackness, where

ω (t) � w (t)
Y (t)

(57)

is the labor share at time t.

(56) uses the fact that total supply is equal to 1.

If demand falls short of 1, w (t) and thus ω (t) have to be equal to
zero (but this will never be the case in equilibrium).

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 68 / 100



Equilibrium V

Demand consists of demand for:
I production (terms with ω in denominator),
I R&D workers from the neck-and-neck industries (2G (z0 (t)) when
n = 0) and

I R&D workers from leaders and followers in other industries
(G (zn (t)) + G (z�n (t)) when n > 0).

Index of aggregate quality (not the average, but re�ects the
Cobb-Douglas aggregator):

lnQ (t) �
Z 1

0
ln q (ν, t) dν. (58)

Given this, equilibrium wage is:

w (t) = Q (t) λ�∑∞
n=0 nµn(t). (59)
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Steady-State Equilibrium I

Steady-state (Markov Perfect) equilibria: distribution of industries
µ (t) � fµn (t)g

∞
n=0 is stationary, ω (t) de�ned in (57) and g � is

constant over time.

If the economy is in steady state at t = 0, then

Y (t) = Y0eg
�t

w (t) = w0 exp (g �t)

And, thus
ω (t) = ω� for all t � 0

Assume parameters such that g � is positive but not large enough to
violate the transversality conditions.

Hence the net present values of each �rm at all t is �nite and the
maximization problem of a leader that is n > 0 steps ahead can be
written recursively.
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Steady-State Equilibrium II

The value function for a �rm that is n steps ahead (or �n steps
behind) is:

(60)

r (t)Vn (t)� V̇n (t) = max
zn(t)

f[Πn (t)� w � (t)G (zn (t))]

+zn (t) [Vn+1 (t)� Vn (t)]
+ (z��n (t) + κ) [V0 (t)� Vn (t)]g.

In steady state, Vn (t) will also grow at constant g � for all n 2 Z+.

De�ne normalized values as

vn (t) �
Vn (t)
Y (t)

(61)

for all n.

These will be independent of time in steady state, i.e., vn (t) = vn.
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Steady-State Equilibrium III
Using (61) and the fact that from (41), r (t) = g (t) + ρ, (60) can
be written as:

ρvn = max
zn
f
�
1� λ�n

�
�ω�G (zn) + zn [vn+1 � vn ] , (62)

+ [z��n + κ] [v0 � vn ]g for all n � 1,

where z��n is the equilibrium value of R&D by a follower n steps
behind, and ω� is the steady-state labor share (zn is now explicitly
chosen to maximize vn).

Value for neck-and-neck �rms:

ρv0 = max
z0
f�ω�G (z0) + z0 [v1 � v0] + z�0 [v�1 � v0]g , (63)

Values for followers:

ρv�n = max
z�n

f�ω�G (z�n) + [z�n + κ] [v0 � v�n ]g .
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Steady-State Equilibrium IV

Value functions and decision for followers should not depend on steps
behind (a single innovation is su¢ cient to catch-up). Thus,

ρv�1 = max
z�1

f�ω�G (z�1) + [z�1 + κ] [v0 � v�1]g , (64)

where v�1 is the value of any follower (irrespective of how many steps
behind it is).

The maximization problems yield the pro�t-maximizing R&D
decisions:

z�n = max
�
G 0�1

�
[vn+1 � vn ]

ω�

�
, 0
�

(65)

z��n = max
�
G 0�1

�
[v0 � v�n ]

ω�

�
, 0
�

(66)

z�0 = max
�
G 0�1

�
[v1 � v0]

ω�

�
, 0
�
, (67)
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Steady-State Equilibrium V

Since G is twice continuously di¤erentiable and strictly concave, G 0�1

is continuously di¤erentiable and strictly increasing.

Hence innovation rates, z�n�s, are increasing in the incremental value
vn+1 � vn of moving to the next step and decreasing in the cost of
R&D, as measured by ω�.

Note also that since G 0 (0) > 0, R&D levels can be equal to zero.

The response of z�n , to vn+1 � vn, is the key economic force. Relaxing
IPR has two e¤ects:

I Disincentive e¤ect: a policy that reduces the patent protection of
leaders n+ 1 steps ahead (increasing κ) makes being n+ 1 steps ahead
less pro�table, thus reduce vn+1 � vn and z�n .

I Composition e¤ect: typically, fvn+1 � vng∞
n=0 is a decreasing sequence,

so z�n�1 is higher than z
�
n for n � 1. Weaker patent protection (shorter

patent lengths) shift more industries into the neck-and-neck state and
potentially increase the equilibrium level of R&D .
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Steady-State Equilibrium VI

Given equilibrium R&D decisions, µ� has to satisfy accounting
relations:

(z�n+1 + z
�
�1 + κ) µ�n+1 = z

�
nµ�n for n � 1, (68)

(z�1 + z
�
�1 + κ) µ�1 = 2z

�
0 µ�0, (69)

2z�0 µ�0 = z
�
�1 + κ. (70)

In (68), exit from state n+ 1 (leader going one more step ahead or
follower catching-up the leader) is equated to entry into this state
(leader from the state n making one more innovation).

In (69), accounting for state 1 taking into account that entry comes
from innovation by either of the two �rms that are competing
neck-and-neck.

In (70) for state 0, entry comes from innovation by a follower in any
industry with n � 1.
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Steady-State Equilibrium VII

Labor market clearing condition in steady state:

1 �
∞

∑
n=0

µ�n

�
1

ω�λn
+ G (z�n ) + G (z

�
�n)

�
and ω� � 0, (71)

with complementary slackness.

Proposition The steady-state growth rate is given by

g � = lnλ

"
2µ�0z

�
0 +

∞

∑
n=1

µ�nz
�
n

#
. (72)
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Proof of Steady-State Equilibrium Growth I

(57) and (59) imply

Y (t) =
w (t)
ω (t)

=
Q (t) λ�∑∞

n=0 nµ�n(t)

ω (t)
.

Since ω (t) = ω� and fµ�ng
∞
n=0 are constant in steady state, Y (t)

grows at the same rate as Q (t). Thus,

g � = lim
∆t!0

lnQ (t + ∆t)� lnQ (t)
∆t

.

During an interval ∆t, in the fraction µ�n of the industries with
technology gap n � 1 the leaders innovate at a rate z�n∆t + o (∆t)
and in the fraction µ�0 of the industries with technology gap of n = 0,
both �rms innovate.

Thus total innovation rate is 2z�0∆t + o (∆t).
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Proof of Steady-State Equilibrium Growth II

Since each innovation increases productivity by a factor λ, we obtain
the preceding equation. Combining these observations:

lnQ (t + ∆t) = lnQ (t) + lnλ

"
2µ�0z

�
0∆t +

∞

∑
n=1

µ�nz
�
n∆t + o (∆t)

#
.

Subtracting lnQ (t), dividing by ∆t and taking the limit as ∆t ! 0
gives (72).
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Steady-State Equilibrium VIII

Steady-state growth comes from two sources:
1 R&D decisions of leaders or of �rms in neck-and-neck industries.
2 The distribution of industries across di¤erent technology gaps,

µ� � fµ�ng
∞
n=0.

Latter channel re�ects composition e¤ect: the relationship between
competition (or intellectual property rights protection) and growth is
more complex, because such policies will change the equilibrium
market structure.

De�nition A steady-state equilibrium is given by hµ�, v, z�, ω�, g �i
such that the distribution of industries µ� satisfy (68), (69)
and (70), the values v �fvng∞

n=�∞ satisfy (62), (63) and
(64), the R&D decisions z� are given by, (65), (66) and (67),
the steady-state labor share ω� satis�es (71) and the
steady-state growth rate g � is given by (72).
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Bounded and Increasing Value Sequence

Proposition In a steady state equilibrium, we have v�1 � v0 and fvng∞
n=0

forms a bounded and strictly increasing sequence converging
to some positive value v∞.
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Proof of Proposition: Bounded and Increasing Value
Sequence I

Let fzng∞
n=�1 be the R&D decisions of a �rm and fvng∞

n=�1 be the
sequence of values, taking fz�n g∞

n=�1, fµ�ng
∞
n=�1, ω� and g �, as given.

By choosing zn = 0 for all n � �1, the �rm guarantees vn � 0 for all
n � �1.
Moreover, since πn � 1 for all n � �1, we have vn � 1/ρ for all
n � �1, establishing that fvng∞

n=�1 is a bounded sequence, with
vn 2 [0, 1/ρ] for all n � �1.
Proof of v1 > v0 :

I Suppose v1 � v0.
I Then (67) implies z�0 = 0, and by symmetry in equilibrium, (63) implies
v0 = v1 = 0.

I As a result, from (66) we obtain z��1 = 0.

I (62) implies when z��1 = 0, v1 �
�
1� λ�1

�
/ (ρ+ κ) > 0, yielding a

contradiction.
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Proof of Proposition: Bounded and Increasing Value
Sequence II

Proof of v�1 � v0 :
I Suppose v�1 > v0.
I (66) implies z��1 = 0, which leads to v�1 = κv0/ (ρ+ κ).
I This contradicts v�1 > v0 since κ/ (ρ+ κ) < 1 (given that κ < ∞).

Proof of vn < vn+1 :
I Suppose vn � vn+1.
I (65) implies z�n = 0, and (62) becomes

ρvn =
�
1� λ�n

�
+ z��1 [v0 � vn ] + κ [v0 � vn ] . (73)

I Also from (62), the value for state n+ 1 satis�es

ρvn+1 �
�
1� λ�n�1

�
+ z��1 [v0 � vn+1 ] + κ [v0 � vn+1 ] . (74)
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Proof of Proposition: Bounded and Increasing Value
Sequence III

I Combining: �
1� λ�n

�
+ z��1 [v0 � vn ] + κ [v0 � vn ] �

1� λ�n�1 + z��1 [v0 � vn+1 ] + κ [v0 � vn+1 ] .

I Since λ�n�1 < λ�n , vn < vn+1, contradicting vn � vn+1, and
establishing vn < vn+1.

Thus fvng∞
n=�1 is nondecreasing and fvng

∞
n=0 is (strictly) increasing.

Since a nondecreasing sequence in a compact set must converge,
fvng∞

n=�1 converges to its limit point, v∞, which must be strictly
positive, since fvng∞

n=0 is strictly increasing and has a nonnegative
initial value.
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Steady-State Equilibrium IX

Potential di¢ culty: need to determine R&D levels and values for an
in�nite number of �rms, since the technology gap can take any value.

But we can restrict attention to a �nite sequence of values:

Proposition There exists n� � 1 such that z�n = 0 for all n � n�.

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 84 / 100



Steady-State Equilibrium X

Next show z� � fz�n g∞
n=0 is a decreasing sequence: technological

leaders that are further ahead undertake less R&D.

Intuitively, bene�ts of further R&D investments are decreasing in the
technology gap, since greater values of the gap translate into smaller
increases in the equilibrium markup (recall (53)).

Composition e¤ect matters because leaders that are su¢ ciently ahead
of their competitors undertake little R&D.

Thus, all else equal, closing the technology gap will increase R&D
spending and equilibrium growth.

But note this may not always increase welfare, especially if there is a
strong business stealing e¤ect.

Proposition In any steady-state equilibrium, we have z�n+1 � z�n for all
n � 1 and moreover, z�n+1 < z�n if z�n > 0. Furthermore,
z�0 > z

�
1 and z

�
0 � z��1.

Daron Acemoglu (MIT) Advanced Growth Lecture 7 October 1, 2007 85 / 100



Proof of Proposition: Decreasing R&D Investments
Sequence I

From equation (65),

δn+1 � vn+1 � vn < vn � vn�1 � δn (75)

is su¢ cient to establish that z�n+1 � z�n .
Let us write:

ρ̄vn = max
zn

��
1� λ�n

�
�ω�G (zn) + zn [vn+1 � vn ] + (z��1 + κ) v0

	
,

(76)
where ρ̄ � ρ+ z��1 + κ.
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Proof of Proposition: Decreasing R&D Investments
Sequence II

Since z�n+1, z
�
n and z

�
n�1 are maximizers of the value functions vn+1,

vn and vn�1, (76) implies:

ρ̄vn+1 = 1� λ�n�1 �ω�G (z�n+1) + z
�
n+1 [vn+2 � vn+1]

+ (z��1 + κ) v0, (77)

ρ̄vn � 1� λ�n �ω�G (z�n+1) + z
�
n+1 [vn+1 � vn ]

+ (z��1 + κ) v0, ,

ρ̄vn � 1� λ�n �ω�G (z�n�1) + z
�
n�1 [vn+1 � vn ]

+ (z��1 + κ) v0, ,

ρ̄vn�1 = 1� λ�n+1 �ω�G (z�n�1) + z
�
n�1 [vn � vn�1]

+ (z��1 + κ) v0.
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Proof of Proposition: Decreasing R&D Investments
Sequence III

Now taking di¤erences with ρ̄vn and using the de�nition of δn�s, we
obtain

ρ̄δn+1 � λ�n
�
1� λ�1

�
+ z�n+1 (δn+2 � δn+1)

ρ̄δn � λ�n+1
�
1� λ�1

�
+ z�n�1 (δn+1 � δn) .

Therefore,

(ρ̄+ z�n�1) (δn+1 � δn) � �kn + z�n+1 (δn+2 � δn+1) ,

where kn � (λ� 1)2 λ�n�1 > 0.

To obtain a contradiction, suppose δn+1 � δn � 0.
From the previous equation, this implies δn+2 � δn+1 > 0 since kn is
strictly positive.
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Proof of Proposition: Decreasing R&D Investments
Sequence IV

Repeating this argument successively, if δn0+1 � δn0 � 0, then
δn+1 � δn > 0 for all n � n0.
However, we know fvng∞

n=0 is strictly increasing and converges to a
constant v∞. This implies that δn # 0, which contradicts the
hypothesis that δn+1 � δn � 0 for all n � n0 � 0, and establishes that
z�n+1 � z�n .
To see that the inequality is strict when z�n > 0, note that we have
already established (75), i.e., δn+1 � δn < 0, thus if equation (65) has
a positive solution, then z�n+1 < z

�
n .

Proof of z�0 � z��1 :
I (63) can be written as

ρv0 = �ω�G (z�0 ) + z
�
0 [v�1 + v1 � 2v0 ] . (78)

I We have v0 � 0 from previous Proposition.
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Proof of Proposition: Decreasing R&D Investments
Sequence V

I Suppose v0 > 0. Then (78) implies z�0 > 0 and

v�1 + v1 � 2v0 > 0 (79)

v1 � v0 > v0 � v�1.

I This inequality combined with (67) and (66) yields z�0 > z
�
�1.

I Suppose next v0 = 0.
I Inequality (79) now holds as a weak inequality and implies that
z�0 � z��1.

I Moreover, since G (�) is strictly convex and z�0 is given by (67), (78)
then implies z�0 = 0 and thus z

�
�1 = 0.
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Steady-State Equilibrium XI

Thus the highest amount of R&D is undertaken in neck-and-neck
industries.

It is generally not possible to �nd a close form for growth because of
the endogenous market structure.

But a steady state equilibrium exists

Proposition A steady-state equilibrium


µ�, v, a��1, x

�, ω�, g �
�
exists.

Moreover, in any steady-state equilibrium ω� < 1, g � > 0.
For any steady-state R&D decisions, the steady-state
distribution of industries µ� is uniquely determined.
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Steady-State Equilibrium XII

In addition, one can consider various di¤erent types of patent policies.
I Licensing: followers can use information of leaders
I State dependent patenting: patent protection depends on technology
gap.

Proposition Consider the state-dependent IPR policy hη, ζi and suppose
that G 0�1

��
1� λ�1

�
/ (ρ+ η1)

�
> 0. Then a steady-state

equilibrium


µ�, v, a��1, x

�, ω�, g �
�
exists. Moreover, in

any steady-state equilibrium ω� < 1. In addition, if either
η1 > 0 or x

�
�1 > 0, then g

� > 0.

See Acemoglu and Akcigit (2006) for the proofs on both results.
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Steady-State Equilibrium XI

Important features:
I Equilibrium markups are endogenous and evolve over time as a function
of competition between �rms producing in same product line.

I When a �rm is su¢ ciently ahead of its rival it undertakes less R&D.

Hence contrary to the baseline Schumpeterian model and to all
expanding varieties models, greater competition may lead to higher
growth rates.

Greater competition generated by closing the gap between the
followers and leaders induces the leaders to undertake more R&D in
order to escape the competition from the followers.

In practice, the e¤ect of industrial organization more complex because
of dynamic interactions (see below)
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Numerical Computations

Analyze the structure of equilibrium and optimal (growth-maximizing
or welfare-maximizing) policies numerically.

Empirical work

Innovation (t) = B0 exp (κt) (R&D inputs)
γ , (80)

with γ between 0.1 and 0.6.

Let us take
x = Bhγ (81)

and γ = 0.35 to start with (and then check robustness).

Growth rate g � = 0.02 and baseline λ = 1.05 (major innovation on
average in three years)

Choose B to match the growth rate.
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Example of Value Functions

FullProtectionwoLicensing....FullProtectionwithLicensing1001020304050TechnologyGap10203040Values

Value Functions

Solid line no licensing, dotted line with licensing.
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Example of R&D Distributions

FullProtectionwoLicensing....FullProtectionwithLicensing10010203040TechnologyGap0.10.20.30.4R&DEfforts

R&D Distributions

Solid line no licensing, dotted line with licensing.
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Example of Value Functions

OptimalUniformIPR....OptimalStateDependentIPR1001020304050TechnologyGap10203040Values

Value Functions

Solid line no state-dependent IPR, dotted line with state-dependent IPR.
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Example of R&D Distributions

OptimalUniformIPR....OptimalStateDependentIPR10010203040TechnologyGap0.10.20.30.4R&DEfforts

R&D Distribution

Solid line no state-dependent IPR, dotted line with state-dependent IPR.
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What Is Happening?

Trickle-Down of Incentives: by providing IPR protection to �rms that
are signi�cantly ahead of others, you also provide incentives to �rms
that are less further ahead

I these �rms invest more in R&D to reach levels where they have greater
protection.

Given this e¤ect, it is also optimal to weaken patent protection for
�rms that are only a few steps ahead of their rivals

I strengthen the trickle-down e¤ect

Licensing also boosts growth, because it avoids duplicative R&D.
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Conclusions

Schumpeterian models enable to make greater contact with the
industrial organization of innovation: process of creative destruction
implies market structure evolves endogenously.

But in the baseline model, all R&D by entrants and markups are
constant.

These features can be relaxed to obtain more realistic and richer
models of innovation behavior.

Important issues:
I the contribution of incumbents and entrants to productivity growth.
I the e¤ects of competition and patent protection on innovation (which
are potentially quite di¤erent than in the baseline models).

These models might provide a useful framework for the analysis of
industrial policies.
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