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ABSTRACT

THREE ESSAYS ON REPEATED GAMES
WITHOUT PERFECT INFORMATION

ILLTAE AHN

George Mailath

In repeated games in which some players do not observe other players’ ac-
tions, effective information transmission among players is an essential element in
supporting a nontrivial equilibrium. The purpose of this dissertation is to study the
information transmission and understand how incentive problem that might arise
due to the imperfect observability may restrict some equilibrium outcomes. Chapter
1 studies a repeated buyer-seller relationship in a random matching setting, where
buyers privately “network” for information and sellers have a short term incentive to
supply low quality. High-quality production equilibrium is provided even when each
buyer periodically interacts with only a small number of other buyers: the number
can grow only at a rate of square root of total population. When networking is
costly, low quality has to be supplied with positive probability in any equilibrium.
For this case, we characterize conditions for an equilibrium in which both high and
low quality are supplied. However, the analysis here does not fully elucidate the
incentive problem caused by imperfect observability. In general, a player’s punish-

ing behavior might not be distinguished from his own deviation by other players

vi



and so the punisher might be punished as well. This potential confusion raises
the incentive issue of why an observer of a deviation initiate punishments rather
than conceal the information. Chapter 2 directly addresses this issue by studying
repeated games in which at least one player observes all the other players’ actions
while the other players only observe actions of the perfect observer and possibly
some other players. The restrictions on the stage game payoff are obtained for the
Nash-threat Folk theorem. Chapter 3 considers a repeated game in which a single
long-run player plays a fixed stage game against an infinite sequence of a different
set of N short-run players. The stage game played by the N + 1 players is a finite
game of perfect information. If short-run players only observe the plays of the last
K stage games rather than all previous ones, for almost all discount factors the only
pure strategy equilibrium of the repeated game is simply the repetition of the stage

game equilibrium.
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Chapter 1

Word-of-Mouth Communication

and Community Enforcement

1.1 Introduction

It has long been recognized that community enforcement can make sellers behave
cooperatively even when they meet particular buyers only infrequently and have
a short term incentive to cheat, e.g., to supply low quality or to shirk in a labor
contract. For instance, Klein and Lefller (1981) study the problem of credibly com-
mitting to offer high quality in a model where a continuum of buyers are randomly
matched with several sellers and each seller has a short term incentive to supply
low quality at a lower cost. In their model community enforcement by the buyers,
through a coordinated boycott after observing low quality, provides incentives for
the seller to produce high quality. The results of Klein and Leffler (1981), along
with most of the existing literature on community enforcement, depend upon the

assumption that past quality choices of the seller are public information.



When the number of sellers and buyers is large and particular sellers and
buyers meet only infrequently or only once, the assumption of public information
seems rather demanding. Recently this observation has led to a number of articles
looking at community enforcement with less stringent informational assumptions.
These papers include Milgrom et. al., (1990), Okuno-Fujiwara and Postlewaite
(1995), Kandori (1992) and Ellison (1994). However, partially due to the difficulties
of dealing with private information, all of the above mentioned papers have made
extreme informational assumptions: either complete anonymity of players together
with the assumption that players observe only the actions chosen in their own games,
or alternatively, locally complete information, which allows a player to perfectly
observe the status of his current opponent, based on the opponents past behavior.
See also Greif (1993), Harrington (1995), Greif (1994) and Greif et. al., (1994).

Kandori (1992) and Ellison (1994) study a repeated prisoners’ dilemma in a
large but finite-population random-matching setting, where players are unable to
recognize their opponents. They show that even then there exist sequential equilib-
ria where all players play cooperatively in every period. Cooperation is supported by
community enforcement based on contagious strategies: all players who are cheated
immediately start cheating their opponents, understanding that the whole society
is in a process of switching into non-cooperative actions. In the equilibrium, players
behave cooperatively to avoid initiating a general switch to non-cooperative actions.
An important factor underlying Kandori’s and Ellison’s results is that defection is
a dominant strategy of the stage game. Whether contagious strategies would work
in a repeated random matching game that does not share this property, such as
the buyer seller game we are about to study, is still unknown. In addition, at least

under their informational assumptions, the cooperative equilibria based on conta-



gious strategies are unstable in the sense that a single “insane” player who does not
cooperate can destroy the good equilibrium for all agents (Ellison, 1994).

Okuno-Fujiwara and Postlewaite (1995) and Kandori (1992) consider games
with local information processing: 1) Each player carries a label observable to her
opponent, 2) when two players are matched they observe each other’s label before
choosing their actions, 3) a player and his partner’s actions and labels today deter-
mine their labels tomorrow. The information processing is “local” in the sense that
the actions chosen by a pair of players are based only on their labels, not on the
entire distribution of labels across the population, and the updating of each player’s
label depends only on the previous labels and the outcome of the stage game. When
the population is large and players are randomly matched, the observability of the
current trading partner’s label and the updating of the labels require the existence
of some efficient information transmission and processing mechanism. This could
be a medieval law judge (Milgrom et. al., 1990) or institutions like credit bureaus
which track the transactions of every agent.

In many real life situations, however, social norms and informal information
transmission mechanisms can replace formal institutions and still facilitate cooper-
ation. In this paper, we present a model of community enforcement that is based
on word-of-mouth communication. The information transmission is highly imper-
fect in the sense that information about each defection spreads only to part of the
player population and defectors can not always be immediately punished. Despite
this, since players can be identified, private reputations evolve. This allows equi-
libria where only defectors are punished; making our equilibria more stable with
respect to “insane” players, who do not cooperate, than those based on contagious

strategies. In fact, when information is privately costly, only some of the sellers can



cooperate in any equilibrium. Nonetheless, word-of-mouth communication is shown
to be surprisingly efficient in facilitating cooperation.

We assume there are M sellers and M buyers, where M is large but finite
number, and that in each time period t = 0,1,2,..., the sellers and buyers are
randomly matched to play a stage game that contains an opportunity for a mutually
beneficial trade. The sellers have a short-term incentive to supply low quality
and will supply high quality only if the gains from maintaining good reputation
outweigh the short-term loss. For simplicity, it is assumed that buyers would not
knowingly purchase low quality at any price. We assume that buyers have networks
of communication that, roughly speaking, work in the following manner: In each
period each buyer observes N trades in addition to his own and N buyers, called
spectators, observe his trade and send him signals regarding his current trading
partner. We can think of these N spectators as friends of the buyer or just people
who happen to pass by. We assume that the identities of the spectators can change
from period to period.

Throughout the paper we consider two kinds of strategy profiles, which differ
in the informativeness of the signals. The strategy profile with the less informative
(actually totally uninformative) signals is equivalent to a model where signalling is
not allowed. For these two strategy profiles we provide sufficient conditions on N
and the discount factor for a sequential equilibrium where good quality is supplied
by all sellers in every period. Assuming the existence of a public randomization
device and high enough discount factor, these conditions can be stated as N > N*
where N* is a constant determined by the population size, discount factor and the
payoff matrix. As one of our main results, we show that with informative signalling

N* is a diminishing fraction of the population size.



We then study a model where “networking” (i.e., setting up N connections)
is costly. In this case, when M is large, we show that there must be a positive
probability of sellers producing low quality goods in any equilibrium in order to
give buyers an incentive to network. When the costs of networking are below a
threshold value, we find a sequential equilibrium in which sellers initially randomize
between high and low quality and continue to produce high quality if and only if
they produced high quality in the first period. In this equilibrium the probability of
buying low quality goods increases in M and the cost of networking. When the cost
of networking reaches the threshold value, trade collapses because the probability
of low quality goods that would provide agents with sufficient incentive to network
is so large that each buyer no longer wishes to experiment with an unknown seller.

In the existing literature on quality provision, it is assumed that agents in-
stantaneously learn about a seller’s defection, see e.g. Klein and Leffler (1981) and
Allen (1984). In this paper we show that word-of-mouth communication can spread
information rather quickly and make such assumptions reasonable approximations
in some settings. When the population is large and information privately costly,
our results suggest, however, that both high and low quality would be produced in
equilibrium. To further understand the role of institutions in transmitting informa-
tion, as in Milgrom et. al. (1990), we feel it is useful to understand the workings of
informal channels of information transmission. We hope that our formalization of
word-of-mouth communication has interest on its own.

The rest of the paper is organized as follows: Section 2 gives the formal de-
scription of the model. Section 3 discusses players’ strategies and presents sufficient
conditions for sequential equilibria with informative and uninformative signalling,

where high quality is produced by every seller in every period. Section 4 shows



that with informative signalling as M goes to infinity, trade can be sustained with
buyers networking with a diminishing proportion of other buyers. Section 5 studies

costly networking and section 6 concludes the paper.

1.2 The Model

There are two finite sets of players M, = {1,2,..., M}, k = S, B. Denote by Mg
the set of sellers and by Mp the set of buyers. We envisage the sellers as being
positioned at fixed locations around a circle, where the locations are numbered
clockwise from 1 to M. We refer to seller ¢ as the seller at location 7. It is assumed
the buyers can identify the sellers by the number of their location, but the sellers
can not recognize the identities of the buyers.!

Let © be the set of all permutations of M. In each period £ = 0,1,2,...,
a permutation §; € © is chosen with uniform probability, independent of previous
realizations. Buyer 6.(i) € Mp is placed at location 7 to play with seller i € Ms the

following simultaneous move “trade” game:

Buyer 6,(3)
B NB
Selleri H 1,1 0,0
L 1+4g,-¢ 0,0

where both g and £ are taken to be strictly positive numbers. The first (second)

number in each entry indicates the seller’s (buyer’s) payoff. Seller’s actions H and

1The more general assumption that sellers can also recognize the identities of buyers does not
change our results. The two strategy profiles that we consider would be equilibria of such a game
under conditions slightly different from ours.



L refer to providing “high-quality” and “low-quality” while buyer’s action B refers
to “buy” and NB to “not buy”. With g and ¢ strictly positive, L is the dominant
strategy for the seller and (L, N B) is the only Nash equilibrium of the trade game.
The sellers and buyers have a common discount factor § € (0,1) and their overall
payoffs are the discounted sum of payoffs from the trade games.

In each period t = 0,1,2,..., there is preplay communication among neigh-
boring buyers before the trade games. To be precise, the stage game proceeds as

follows:

1. After 6, is realized, buyer j observes 6;, recognizes the identity of his oppo-
nent, 6;'(§), as well as the identities of his “neighboring” sellers, 6; '(j) +
L6:7'() + 2,....0:'(j) + N, where N < M/2 — 1.23* Let us denote by
S;(8:) = {6:'(j) + k}ick<n the subset of neighboring sellers, whom buyer
j observes at period t, and by N;(6:) = {6.(67'(j) + k)}, ..y their period
t matches. We call N;(6;) buyer j’s neighboring buyers at period ¢. Also,
let us denote by N3(6;) = {0.(6;"(j) — k)}1<ck<n the subset of buyers, who
observe the interaction between j and 6; '(j) at period t. We call N(6;) the
spectators to buyer j's game at period t. Notice that the identities of the

spectators, neighboring sellers and buyers depend on 6,.

2. Buyer j sends a payoff-irrelevant signal to each of his neighboring buyers

n € N;(6;) and receives a message from each spectator in Nj(f;). Let us

2The assumption that buyers observe 8, is made to ease the notation. An alternative assumption
that does not change our results would be that buyer j is able to recognize only the identities of
his opponent 8; !(j) as well as his neighboring sellers in period ¢.

We also make the assumption that N < M/2 — 1. The extension of our analysis to M/2 <
N < M —1is trivial. The case N = M — 1 would then correspond to the game with perfect
observability, while the case N = 0 to the game where each buyer observes only the outcome of
his trade game and the identity of his opponent.

3Sellers are female and buyers are male.

4These locations are of Mod M.



introduce the following notation.

e C = {v,8} : the set of possible signals. We can interpret a signal v or §

as meaning respectively “Good” or “Bad”.

o m](£) € {7, B} : the signal from buyer j to buyer £ € N;(6,).

o mi € {,B}" : the N-tuple of the signals from j to each of his neighbor-
ing buyers in N;(6,).

o m(5) € {7,B}" : the N-tuple of the signals from j’s spectators, N3(6,),

to buyer j.

3. Seller 6;'(j) and buyer j play the 2 x 2 simultaneous move trade game de-
scribed above. Denote the outcome (or the realized action profile) of that
game by (af (67(7)), aP(j)), where a$(67(j)) € As = {H, L}, aB(j) € Ag =
{B,NB}.

4. In addition to his own outcome, buyer j observes the realized action profiles of
the period t trade games played by the sellers ¢ € S;(6,) and buyers n € N;(6,).
Denote this observation by o,(j) = ((af (3),af (Ht(z)))) (As x

Ap)N+L.

€
i€5;5(8.)U{0; 1 ()}

The information that buyer j receives in period ¢ can now be written as
(6:m:(5),0.(5)). We denote with H®(j) the set of all possible histories for buyer
4 up to but not including period t. By convention, let H%(j) = 0. An element
he(5) € H'(j) includes all past realizations of 6,, all past messages to player j,
ms(j), all past messages from player j, m, and all past observations of player j,

05(7), where 0 < s < t. Hence I(j) is:
he(5) = (8¢, m(5), . 00(3)) 20 -

8



A pure strategy for buyer j is then a sequence {777.{, E};’;o, where

% : © x H'(j) — {7, B}"

b : ©x H'(j) x {7,8}" — {B,NB}.

23 (0, h*(5)) specifies the N-tuple of signals that buyer j with private history hA%(j)
sends to his neighboring buyers n € N;(6:) in period t. bi(6,, ht(5), (7)) specifies
the choice of action for buyer j in the period t trade game against seller 8;'(j),
when j has private history h*(j) and he receives signals m.(j) in the period ¢ com-
munication stage. Correspondingly, let {ﬁ,{ B }22 denote a behavioral strategy for

buyer j, where

B :© x HY(j) = A{y, B}
B :ex HY(j) x {y,8}N — A{B,NB}.

For seller ¢ we define pure and behavioral strategies as sequences of maps
{8i}2 and {57}, where
§:({H,L} x {B,NB})* - {H, L}.
a;: ({H,L} x {B,NB})* - A{H, L}.

Note that the assumption that a seller does not recognize the identity of a buyer is
implicit in this notation.

Because of the private histories that players have, the equilibrium concept
that we apply is sequential equilibrium. Sequential equilibrium requires that after
any history player’s equilibrium strategy maximize his (her) expected payoff, taking
as given all other player’s strategies and his beliefs about the signals and actions
taken by all other players in all previous periods. Furthermore, his beliefs should be

“consistent” with the equilibrium strategy profile and private history, in the sense of

9



Kreps and Wilson (1982).% A trivial sequential equilibrium is one where sellers play
L and buyers N B after any history: the repetition of the only Nash equilibrium of
the trade game. We are interested, however, in sequential equilibria that support
the efficient outcome where (H, B) is played by all players in every period.

For the most part we confine our analysis on a particular class of strategy
profiles, which we call “unforgiving”. These strategy profiles require sellers to sell
high quality in period zero (in section 5 with some probability), and sell high quality
thereafter if and only if 1) they have always done so, and 2) buyers have always
purchased their goods. Under the unforgiving strategy profile buyers play B, except
to punish a seller by playing NB when they are informed of her defection. The
strategy profiles are unforgiving in the sense that informed buyers punish a defector
whenever they meet her.

There are two reasons for focusing on these strategy profiles. First, they are
simple: In fact, because of the private information that players have, it is difficult
to imagine other strategies that could support the efficient outcome as a sequential
equilibrium in this game. For instance, it is not obvious whether contagious strategy
profiles, where a seller’s defection affects how buyers treat other sellers, would be
equilibria in this game. Checking the incentives of a buyer to follow such a strategy
on off-the-equilibrium paths is very complicated, because his incentives depend on
his belief about the previous plays, which in turn depend on his private history.®
Strategies with less severe, finite punishments are also difficult to implement because

buyers typically do not know the time of the first defection and therefore cannot

5In Kreps and Wilson (1982), the definition of sequential equilibrium requires the specification
of beliefs system as well as a strategy profile. Because the beliefs system which is consistent with
our strategy profiles is simple, we refer only to the strategy profile when describing a sequential
equilibrium.

6See Kandori (1992) for a discussion on the difficulties of private information.

10



synchronize the last period of a punishment phase. Unforgiving strategies avoid
these problems and the buyers incentives are easily shown to be satisfied. The
second reason for focusing on these strategy profiles is that, in the class of non-
contagious strategy profiles (i.e., where one sellers action does not affect how the
other sellers are treated), these strategy profiles provide the maximum punishment
for the seller. This is important because the conditions for the efficient outcome
that we derive then characterize the minimum N that is necessary for the efficient

outcome in any sequential equilibrium based on non-contagious strategy profiles.

1.3 Exogenous Connections and Trade

In this section we provide sufficient conditions in terms of N for a sequential equilib-
rium where (H, B) is played by all players in every period. In our model information
about sellers’ behavior may spread through two possible sources, the effectiveness
of which depends on the number of spectators, V. First, by observing the outcomes
of N + 1 trade games in each period, a buyer receives information about N + 1
sellers: he observes their current actions and may infer knowledge of their past
defections from the actions of their opponents. Second, the information can be
transmitted through direct communication among neighboring buyers. The effec-
tiveness of direct communication depends, however, on the information content of
the signals.

We now introduce two unforgiving strategy profiles that differ with respect
to the informativeness of the buyer’s signals. For obvious reasons we refer to the
first as the Uninformative Strategy Profile and to the second as the Informative

Strategy Profile. In all periods t = 0,1, 2...., after 6, is realized:
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The strategy for seller 7 is same under both strategy profiles and is:

(I) In the first period play H. After that, if the outcome in seller i’s past

games was always (H, B), play H.

(IT) Play L otherwise.

The Uninformative Strategy for buyer j is:

(III) Signal randomly 7 or B with equal probabilities to all n € N;(6:),

irrespective of the private history h.(j).

(IV) ¥ j has ever observed 6;'(j) play L or someone (including himself)

play N B against her, play N B regardless of the messages m.(Jj).

(V) Play B otherwise.
The Informative Strategy for buyer j is:

(III)’ If § has ever observed 8; '(n), where n € N;(6,), play L or someone

(including himself) play N B against her, signal 8. Signal v otherwise.

(IV)' If j previously observed ;'(j) play L or someone play N B against
her, or if he received a message [ from any of his current spectators,

h € N;(6.), play NB.

(V)’ Play B otherwise.

Under both strategies, in the beginning of each period ¢ each buyer j catego-

rizes sellers into two different status groups based on his private history H*(j). If he

has observed a seller play L or someone (including himself) play /N B against her by

period t — 1, he gives her the “Bad” status . Otherwise, he gives her the “Good”

12



status 7. During the communication stage in period ¢t (phase 2 of the stage game),
buyer j is given the opportunity to signal to his neighboring buyers n € N;(6;) the
statuses that he has assigned to their opponents 6; !(n), and to revise the status
that he assigns to his current opponent by taking into account the signals that he
receives fromvthe period t spectators to his game h € N3(6,).

As can be seen from the conditions (III), (IV) and (V), under the Uninfor-
mative Strategy Profile buyers merely "babble”, disregard their neighbors’ signals
and base their choices of action against their period ¢t opponents on the statuses
that they assigned to them after the period t — 1. So the communication stage is
totally uninformative. Under the Informative Strategy Profile, on the other hand,
signalling reveals all the relevant information (about receiver’s opponent) of the
senders, given the seller’s strategy. Under this profile each buyer j sends a signal
v or B to each of his neighboring buyers n € N;(6,), depending on the statuses
that he assigned to their opponents 8; '(n) after period ¢t — 1. He also fully respects
the messages that his spectators i € N$(6,) send to him before the period ¢ trade
game, and revises the status that he has assigned to his current opponent 6; 1(4)
accordingly, basing his period ¢ trade game choice of action on the revised status of
6;1(j). Both strategy profiles are unforgiving since once a buyer assigns a particular
seller a status G, he never upgrades her status to +.

Before proceeding it is convenient to introduce some additional notation.
Take any two time periods ¢’ and ¢, where t' < t. Under the Uninformative Strategy
Profile denote by b the probability that 6,(i) was among the N + 1 buyers who

observed seller 7 at period '. That is, let b denote the probability
Pr {’ € So,(0r) U{();‘(Ot(i))}} -
Correspondingly, under the Informative Strategy Profile denote by b the probability

13



that either 6,(z) or some of the N 6,(?)’s time ¢ spectators, h € Nj,;)(6:), were among

the N 4 1 buyers who observed ¢ at period t'. In this case, b is the probability

Pr{ie U [s,-wv)u{o;‘(j)}]}-

FEBIING, ;) (@)
It is straightforward to check that

f N+1
M

b= 4 M-N-1
L\ N+1

W)

For both strategies, note that since 6, is i.i.d., b is time independent and does not

with the Uninformative Strategy Profile, and

with the Informative Strategy Profile

depend on t and t'. Note also that for both strategies b increases in the number
of spectators, N. In the proofs of Propositions 1 and 2 we need the unconditional
probability of 8;(?) assigning the seller 7 a status -y after the period { communication
stage, given that seller i has defected in every period t' € { tp,... t — 1}. With our
notation, this probability can be written as (1 — b)*~ ‘2.

We are now ready to state our first two propositions. These propositions
provide the conditions under which the Uninformative and the Informative Strategy
Profiles are sequential equilibria of the random matching game. Notice that under
both strategy profiles (H, B) is played in every period at each location along the

equilibrium path.

Proposition 1: Define two constants 6* and b* as follows:

M+g,, -1
(M)

41+ 9)g(*o)

=11+
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. _g9(1-96)
b=
;

i) If Tf-; < 6 < 6*, the Uninformative Strategy Profile is a sequential equilibrium

of the above random matching game if b > b*.

i) If 6 > max[ﬁ-;,tS‘], there exists constants b; and by, where b* < by < by <1,
such that the Uninformative Strategy Profile is a sequential equilibrium of the
above random matching game if either b* < b < by or b > by. The constants

by and by are given by

M+g \/(M+g)2_4(1+g)g(1—6)(M—1)

by = M M 8 M
2(1+g)
and
M4y \/7M+gz g1 —6) M —1
R T )

2(1+g)

The condition § > g/(1 + g) is necessary because with § less than this, the
efficient outcome could not be sustained by any equilibrium even with M = 1.7

Buyers’ incentives to follow the unforgiving strategy profiles are easily satis-
fied: A buyer should expect his current opponent with status 3 to play L, regardless
of his beliefs about the outcomes of her previous games, in which case NB is his

best choice of action. If, on the other hand, he assigns her a status <y, playing B

7When M = 1, our random matching game is equivalent to a two-player standard repeated
game with observable actions. In this case, the Uninformative Strategy Profile, which is identical
with the Informative Strategy Profile, provides the maximum punishment for defection. This
profile supports the efficient outcome as a Nash and a subgame perfect equilibrium if and only if

§>9/(1+9)-
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is optimal both on and off the equilibrium path given the consistent belief that she
has never defected and will play H. Also the incentives for signalling are trivially
satisfied.

Sellers’ incentives to follow the uninformative strategy profile are character-
ized by two conditions: one preventing her from playing L on the equilibrium path
and one that guarantees that sellers who have defected keep defecting irrespective
of their private history. To give a seller an incentive to play H along the equilibrium
path, the short-term gain from cheating, g, must be outweighed by the long-term
loss resulting from the gradual loss of reputation among buyers. Given the buyers’
strategies, this occurs if b (N) is sufficiently large that information about a seller’s
defection spreads quickly enough among the buyers. This results in the condition
that b > b*. On off-the-equilibrium paths, the strategy profile requires sellers to
keep defecting rather than play H in an attempt to slow down the deterioration of
her reputation. This off-the-equilibrium path constraint is satisfied when 4 is small,
§ < 6*, since the short term gain g from selling low quality will then outweigh
the future reward from trying to maintain a good reputation. When § > 6%, the
condition is satisfied if either b is very large or b is small enough. If b is very large,
b > by, it does not pay to slow down the deterioration of one’s reputation, since
with several informed buyers already playing N B against the seller, all buyers are
soon likely to learn about seller’s bad status anyway. On the contrary, if b is small
enough, b < by, playing L is better than playing H simply because the informa-
tion about her defections is not spreading very quickly. It can be shown that the
off-the-equilibrium path constraint is always satisfied when b = b*, implying that
by > b*.

This strategy profile is not a sequential equilibrium when b € (b.,by). In

16



proposition 3, however, by using a public randomization device we construct a
sequential equilibrium which supports the efficient outcome for any b greater than

b*.

Proof. When (II) holds a seller has incentive to follow (I} if and only if the following
inequality holds:

1 1+g

1-61-(1-b)§ (1.1)

The left-hand side is the payoff from playing H in every period whereas the right-
hand side is the payoff from playing L in every period. Since b must be less than
one, the inequality can hold only when § > g/(1 + g). In that case equation (3.1)

can be written as:

b> b, (1.2)

By the principle of dynamic programming to verify that (II) is optimal, it
is enough to check that a one time switch to H is not profitable after any history
in which the seller has obtained a bad status, i.e., she has played L or some buyer
has played N B against her. We can show that the seller’s incentives to follow (II)
increase in the number of buyers who are aware of her bad status. Since consistency
requires this number to be at least N + 1 (in states that (II) is concerned with),
it will be sufficient for us to show that a seller has incentive to follow (II) when
exactly N + 1 players assign her a bad status.

Define P,(K) as the probability that K +s buyers know about #’s bad status

after period t if i plays H in period t and K players knew about i’s bad status after

17



the period t — 1. Let a = K/M. It is straightforward to show that:

o K-1
N

&

P(K)=(1-a)+

and for a < 1,

(K - 1) <M - K)
NN -s s
P,(K) = ,V1< s<min[N,M - K].
M-1
N

Denote with u,(K) = 1 — (K + s)/M the associated conditional probability that
seller i’s period t + 1 match 6,,;(i) does not know about i’s bad status (after the
period ¢t + 1 communication stage), given that K + s buyers know about ¢’s bad
status after the period ¢.

Then, assuming that K buyers are aware of a seller’s bad reputation before

the current period, a seller has incentive to follow (II) if and only if:

(1 + g)(l - a) (5(1 + g) min[N,M - K]
1—(1-b)s 2 (1—a)+m sgo P,(K)us(K). (1.3)

The left hand side is the payoff from playing L in each of the remaining periods,
whereas the right hand side is the payoff for playing H in one period and then L
thereafter. Realizing that s follows a hypergeometric distribution for s = 1,2, ...V,

it can be shown that

min[N,M-K]
S AKW(K) = (- all=e)(1 =) (M”ﬁ ).

It is now easy to see that equation (3.3) is relaxed as « is increased. The intuition
for this result is quite simple: A seller who is matched with a buyer that is not

aware of his bad status may by playing H keep his reputation among at most N +1
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players and benefit from this reputation later. When « is large many of her current
spectators are likely to know about his defection already, which reduces the benefit
to playing H. Since @ > b by consistency, it is sufficient to check that equation (3.3)

holds when a = b. Setting a = b and rearranging, equation (3.3) can be written:

b2—( M+g) (1—6)gM—1>0.

1+g)M (1+g9)6 M ~
This quadratic inequality holds if either § < 6* or if § > 6* and either 0 < b < b,
or by < b < 1. Combined with equation (3.2) this result implies the equilibrium
conditions stated in proposition 1.

(ITI) is trivially satisfied given (IV) and (V). It is also easy to see that (IV)
and (V) are satisfied given (I),(II) and (III). If buyer j observed his current match,
6;1(4), play L in the past or some buyer play N B against her, he should believe
she will play L by (II); so playing N B is his best response. If he has never observed
68;1(5) play L, nor some buyer play N B against her, then given (I), (II) and (III),
he should believe she will play according to (I) regardless of the messages he has
received. This being the case, B is his optimal choice of action. This establishes

(IV) and (V) and completes the proof. B

As one would expect, the equilibrium conditions are very similar for the
Informative Strategy Profile. In this case, however, it is not possible to state the
off-the-equilibrium path conditions in terms of b as was true for the Uninformative

Strategy Profile.

Proposition 2: For § > g/(1 + g), the Informative Strategy Profile is a

sequential equilibrium of the above random matching game if
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o e R »

o)

and

N+1 N+1

M — Lia(v41)< My i )
N+1 N+1

where [, is a function that takes value 1 if A is true and 0 otherwise.

(1.5)

M-N-1 M—-2N -2
g > 14 2¢
6(l+g) " \1+g

Equation (3.4) concerns on-the-equilibrium path behavior and can be written
as b > b*. Equation (3.5) is the constraint for off-the-equilibrium path behavior.
As before, it is always satisfied when 6 is small enough and when § is large it is
satisfied when b is either very large or b is small enough. Although the intuition
for both conditions is exactly the same as under the Uninformative Strategy Profile,
the second condition is not exactly the same in terms of b under the two strategy
profiles. This constraint concerns a seller’s possible deviation to H when playing on
off-the-equilibrium paths, and is different for the two strategy profiles because the
dissemination of a seller’s bad reputation when playing H is different in terms of b

under the two strategy profiles.

Proof. As was shown in the proof of proposition 1, assuming that (II) holds, a

seller has incentive to follow (I) if and only if b > b*. This is stated in equation

(3.4).
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Showing that she has incentive to follow (II) when equation (3.5) holds pro-
ceeds much as the proof of proposition 1. Denote with a the probability that seller
i’s period t opponent 6,(7) is aware of i’s bad status after the period ¢ communi-
cation stage, if K buyers are aware of sellers i’s bad status after the period ¢t — 1.
Correspondingly, denote with £ the probability that 6,(Z) is aware of i’s bad status
after the period t communication stage, if K + N + 1 buyers are aware of sellers #’s

bad status after period t — 1. Then

=1—QWHKM4GYTRF§‘

and

M—K—N—v

N+1
£ =1-Ipnin<m-ky} ( i )

N+1

Let P, and u, represent the same probabilities as in the proof of proposition 1.

Seller ¢ has an incentive to follow (II) if and only if:

min[N,M~ K]
(-8 -(1-aP+ 3 Pu)
(1+g9)|(1—0a)+ T =08 = >
min{N,M-K]
P,
(1-a)+(1+g) Lja—bﬁ (1.6)

The left hand side is the payoff from playing L in each of the remaining periods,
whereas the right hand side is the payoff from playing H in one period and then L
thereafter. Seller #’s action makes a difference only when neither i’s opponent (%)

nor any of the spectators to i’s game have assigned the bad status to Z. This happens
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with probability (1 — a). In that case, playing L results in a larger payoff by g, but
N +1 new buyers learn about 7’s bad status, reducing the probability that ¢ receives
(1+g) in the next period from (1 — a) to (1 —&). If 6,(%) or some of the spectators
to i’s game know about i’s bad status, which happens with probability «, ¢ receives
nothing in that period and her reputation deteriorates similarly irrespective of the
action that he takes.

This inequality can be written as:

g(1 - (1-1b)6)
6(1+9g)

It is now straightforward to check that equation (3.6) is relaxed as K increases.

>€—-a (1.7)

Since K > N by consistency, it is sufficient to check that equation (3.6) holds when
K = N or a = b. Setting & = b and rearranging gives equation (3.5).

If a buyer j has ever observed a seller ¢ € S;(6;) play L or her opponent
play N B against her, j is indifferent between signalling v or G to 6:(%), since given
(II) he expects 7 to play L in all his future games, including those with j himself,
irrespective of the signal that he sends. So we may assume that he sends a truthful
signal 8 in this case. If j has never observed i’s game or if j has observed 7 but
the outcome in %’s games were always ( H, B) he strictly prefers to send the message
7 instead of B. Sending the message § would result in 8,(:) playing N B against
seller 7, giving her a bad status and making her play L in the future. This would
reduce buyer j’s future payoffs from games where he is matched with seller z. This
establishes condition (III)’. Given (I), (II) and (III)’ conditions (IV)’ and (V)’ are

trivial. W
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In order to create sequential equilibria that support trade for all b > b*,
let us now extend our basic model to include a public randomization device. The
idea of using a public randomization device to adjust the severity of punishments is
borrowed from Ellison (1994). In particular, we assume that before players choose
their actions in period t, they observe a public random variable f; which is drawn
independently from a uniform distribution on [0,1]. Let f € [0,1] and consider
adjusting the Uninformative and Informative Strategy Profiles as follows: In period
t, sellers play according to the original strategies as long as f; < f, but return
immediately to the equilibrium path of the original strategies if f; > f; buyers play
according to the original strategies, except whenever f; > f, at which point they
forget all past actions of sellers and assign each seller status . Assuming that such

a public randomization device is available, we can state the following proposition.

Proposition 3: For § > g/(1 + g) there exists a function f(6) such that
the adjusted Informative and Uninformative Strategy Profiles with f = f(4) are a

sequential equilibrium of the random matching game if b > b*, where b* = g(1-6) /6.

The idea in the proof is that whenever b > b*, we can by an appropriate choice
of f adjust the severity of punishment for a seller so that she becomes indifferent
between playing H (following (I)) and deviating on the equilibrium path. Because
at off-the-equilibrium paths a seller has less incentive to protect her reputation than
on-the-equilibrium path, as her reputation is deteriorating anyway, this indifference

can be shown to imply that the off-the-equilibrium path condition always holds.
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Proof. For any f;, a seller has incentive to follow (I) if and only if

1 > 14g

) . &t
1—6“1—(1—b)f6+§f =Nz

or

1 14+g
1-6f~1-(1-0b)f6

The left-hand side of the first inequality is the seller’s payoff from following (I),

(1.8)

while the right-hand side is her payoff from deviating and following (II), as long as
fr < f, and following (I) thereafter. For all § > g/(1 + g) and b > b*, there exists
f(6) € [0,1] such that equation (3.8) holds as an equality when f = f(6). From
now on, let us assume that f = f(6).

A seller who is playing on the equilibrium path is now indifferent between
playing H in every period and deviating. She is also indifferent between playing
H in the current period and then deviating and deviating right away. By playing
H in the current period she can keep her good reputation among N + 1 buyers,
until they, in some way, learn about her defections in the future. Now consider a
seller who is following (II). If her opponent and all the N spectators to her game
happen to assign her a good status, she also can keep her good reputation among
N + 1 buyers by playing H. This reputation, however, is worth less to her than if
she were on the equilibrium path because, with some buyers already assigning her a
bad status, these N + 1 buyers are more likely to learn about her bad status before
playing against her in the future. Since the short term gain from deviating is same
in both cases, we conclude that playing L is optimal off the equilibrium path.

More formally, consider the sellers incentives to follow (II) in period ¢ when

f: < f(6). By the principle of dynamic programming, it is sufficient to show that
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a single-period deviation to H is unprofitable. Let , P;(K'), and us(K') denote the

same probabilities as in the proof of proposition 1. A seller has an incentive to

follow (II) if and only if:

— = t-1 &
e S e - e 2

min|N,M~- K]
5f(6)(1 + g)( 3§0 Psus) ) 1 5t
O+ % P
(1+9)(1 -0 I\ Pl
> (1-a)+ R 3T (1.10)

1—(1-0)f(8)6

We can show that this inequality holds as follows:

(1+gl-a) _ (1-a) _
1-(1=-b)f(6)s 1-6f(6)

(14+g)6f(6)(1 - c)
=)+ 50068 =

min{N\M-K

(+06f@( %, Pavs

(1-a)+ = (1 =06

The first two equalities come from the fact that (3.8) holds as an equality with

f = f(6). The inequality follows since

min[N,M - K| min[N,M—K]
Z Pou, < Z Paug=ug=1-c.
s=0 s=0
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When f; < f(8) a buyer’s problem is similar to that in propositions 1 and 2
so he is better off following the original strategies. On the other hand, given that
a past defector plays H after f, > f(6) it is optimal for the buyer to assign her a

status 7 and treat her like the seller who never defected. B

1.4 Large Population Results

In this section we study how fast N must grow in relation to M in order to sustain
(H, B) as the outcome of the trade game for our strategies. If we denote N*(M) as
the smallest integer N that satisfies the constraint b > g(1 —6)/6 (i.e., b > b*), then
given propositions 1,2 and 3, the question can be reformulated as how fast N*(M)
grows in relation to M.

If seller i has defected in the previous period, the NV + 1 buyers who observed
the defection are the only ones who are informed of the defection before the current
period’s trade game starts. Then b, the probability that seller i meets a buyer who
is informed of her previous defection, is simply (N +1)/M under the Uninformative
Strategy Profile. With this strategy profile it is clear that N* and M must grow at
the same raté in the limit.

This is not true, however, with the Informative Strategy Profile. In this
strategy profile i's current opponent 0;(z) assigns her a bad status if he observed
this defection or he received an informative signal based on this defection during
the current period’s communication stage. With N spectators to 8,(¢)'s game each
of whom observes N +1 games, 8,(i) obtains information from N?+2N +1 possibly
overlapping games and assigns 7 a bad status if any of these games was played at

location i. This suggests that N* may grow more slowly than M. Below we show

26



that in order to sustain trade, N* must grow only at a rate VM. To prove this

result formally we need the following lemma.

t

N o

Lemma 1: Under the Informative Strategy Profile A}im i

Proof. By the definition of N*(M) we have the following inequalities
(M — N*(M) - 1) (M — N*(M)
N+*(M) +1 . N+(M)
< (1 -
7 <(Q-b)< v
N+«(M)+1 N+(M)

First note limsup,,_,., N*(M)/M < 1/2. For the subsequences of N*(M)/M whose

(1.11)

limits are 1/2, the numerator of the right-hand side of the strict inequality in (4.1)
approaches 1 and the denominator goes to the infinity, leading to a contradiction
since b* is assumed to be strictly less than one.

Using Stirling’s formula
V2mmnte " < nl <V omnne et

the second inequality in (4.1) implies that

(1-0") <

(A/[ _ Ns)2(M—N‘)+l

RS S
MMM — 2N (112)

Given that limsupy,_ ., N*/M < 1/2, it is easy to see that the exponential

term that appears at the right-hand side of (4.2) goes to 1 as M approaches infinity.
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The nonexponential term then has to be bounded away from zero for large M. In
what follows we show this implies limp;_.o, N*/M = 0.

Let ¢ = N*/M. The nonexponential terms in the right hand side of (4.2) can

now be written as:

( (1—gq)2 ™ )” (1-q)
(1-29)%) (1-2q)"/%

Since 0 < ¢ < 1/2 and limsup,,_,, ¢ < 1/2 the second term of the above expression
is bounded. Furthermore, we can show the first term is strictly decreasing with
respect to q for 0 < ¢ < 1/2 and for that range of q it is one if and only if ¢ = 0.
Thus if limps_.e0 ¢ # 0, the first term is very close to zero for large M, which is a

contradiction. Hence it must be that limp;_,oo N*/M =0. B

N*(M)?
Proposition 4: Under the Informative Strategy Profile 0 < A}im —(—)— <

Proof. If we rewrite the inequalities (4.1) using Stirling’s formula we get

(M = N* — 1)AM-N?) (M —2N* —2)3
MM(M —2N* — 2)M-2N" \ M(M — N* —1)2

1
U SR
e 12(M-2N*-2) 12M

<(1-0b7)<
(A’[ _ N‘)2(M_N.) (M - N‘)2 : TN 1.13
MMM — 2N \M(M —2N°)) © o
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Since the last two terms of both sides of the inequalities (4.3) approach one as
M — 0o by lemma 1 and both of the first terms exhibit the same behavior in the

limit, we must have

(M — N.)z(M—N')
MM(M — 2Nc)M—2N'

Next we show that 0 < lim N *2/M < oo in order for (4.4) to hold.

—(1-b)Yas M — co. (1.14)

First of all, note that we can write

(M _ N.)2(M-—N‘)
MM(M — 2N+)M-2N"

[ ——— |
/N
—

!

[
<|3
SN’

g
I

N2 -2n*2
(e + ap)™-7 (e+ Bu)™ ™

where

o= (1' (MIX.N‘) )‘(”&—f’l) —e
ﬁM=(1—2$‘)$—e.

Since limps o N*/M = 0, both sequences {aa}, {Bm} converge to zero from above.
Now define new sequences {ays}, {bar} such that e® = e + cpr, € = e + Bp. We
can then write

(M — N*)2M-N*)
MM(M — 2N*)M-2N*

= eaMM-.l:' —buz%‘z-. (1.15)
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Given (4.4) and (4.5), all that remains to show is that {N*2/M} must con-
verge to some positive number in order for {ayN*2/(M — N*)— bp2N*2/M} to
converge to In(1 —b*). If limps oo N*2/M = 00, apy N*2 /(M — N*)— bpr2N*2 /M ap-
proaches minus infinity as M goes to infinity. This can be easily shown using the fact
that {ap} and {bp} converge to one from above. If limp_,oo N 2/M = 0, we obtain
another contradiction since ay N*2/(M — N*)— by2N*2/M — 0 as M — oo. Since

{N*2/M} is bounded, it is straightforward to show limpf—oc N*3/M = —In(1-5*). B

1.5 Endogenous Connections

In this section we extend our model by assuming that networking is costly. Let
us say that strategies are non-contagious when only the sellers who have produced
low-quality are punished. When either inviting spectators, N; () , observing neigh-

boring buyers, N; (6;) , or both are costly to buyer j, the following result holds:

Proposition 5: In any Nash equilibrium of the random matching game with
costly networking that uses non-contagious strategies, low quality is produced with

positive probability when M > §/[g(1 — §)].3

Proof. The proposition is proved by contradiction. Assume that there is a Nash
equilibrium with non-contagious strategies in which every seller produces high qual-
ity with probability one in every period. Buyers then do not have any incentive to
network and the optimal N; must be zero for all buyers j. If, however, N; is zero

for all buyers and M > §/[g(1 — 6)] all sellers have incentive to unilaterally deviate

8A similar proposition could be stated allowing for contagious strategies for M > M(8,g, £),
where M < oo.
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and produce low-quality. Contradiction. B

There clearly exists the equilibrium where N; = 0 for all buyers and every
seller produces low quality. More interestingly, we show that if the costs of net-
working are small enough, there exist sequential equilibria with strictly positive
probability of trade.

Let us concentrate on the case where observing neighboring buyers n €
N; (8,) is costly to buyer j and where buyers are unable to affect the number of
spectators to their game. This assumption corresponds to the idea that buyers net-
work to gather information about their trading environment. An alternative - that
leads to similar results - would be that buyers invited other buyers to their games
in an attempt to obtain information regarding their current opponents. Clearly the
second alternative would make sense only under the Informative Strategy Profile.
More specifically, let us extend our basic model by assuming that in period zero,
before fp is realized, all buyers j can invest in IV; connections that allow them to
observe the games in N; consecutive locations to their own in every future period.
To obtain N; connections j must pay N;c, where ¢ > 0, in period zero.

With these assumptions, whenever the costs of networking are less than some
threshold value (M), we can find sequential equilibria with slightly modified Infor-
mative and Uninformative Strategy Profiles such that the sellers initially randomize
between high and low quality and produce that level of quality in the future. A
positive probability of low quality goods is necessary to provide buyers with an
incentive to network. This probability tends to increase with M. When the costs of
networking exceed the threshold value (M), trade collapses because the probability

of low quality goods that would provide buyers sufficient incentives to network is
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so high that buyers are unwilling to buy from unknown sellers. For simplicity, let
us confine our analysis to the Uninformative Strategy Profile.

Consider the following modified Uninformative Stralegies:

For the seller i, in all periods t = 0,1, 2...., after 8, is realized:

(I) In the first period play H with probability 1 — p and L with probability
p. After that, if the outcome in all the trade games where seller ¢ played
was (H, B), play H.

(I1) Play L otherwise.
For the buyer j:

(III) In period 0, before g is realized, invest in N* — 1 connections with

probability » and in N* connections with probability 1 — 7,
and in all periods t = 0, 1, 2...., after 0, is realized:

(IV) Signal randomly v or B with equal probabilities to all n € N;(6,),
irrespective of the private history h.(j).
(V) If j has ever observed 6; ' (5) play L or someone (including himself) play

N B against her, play N B regardless of the messages m.(j).

(VI) Play B otherwise.

Before proceeding, we need some additional notation. If buyer j invested in
N; connections, the probability that he observed 6; 1(5) at period t', where t' < t, is
(Nj + 1)/M. Let us denote this probability by b°(V;).? Then the probability that

buyer j has never observed 6; '(j) until period ¢ is simply (1 — b%(N;))"

9More precisely, b(N;) = Pr[f; '(5) € S;(8,) U {6 ()}]
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Proposition 6: The modified Uninformative Strategy Profile is a sequential

equilibrium of the above random matching game with

- (1 -6 —b(N* —1))) (1 — 6(1 — b%(N™)))
p=cM ( 75 ) :

where

c<ctc

i( 25 (M(1 — 8) +6)
M\ ({T=6(1 - (V" = 1)) (1= 8(1 = b=(N*)) (€ + DM(1 = 8) + 5)) ‘

Proof. To have a sequential equilibrium in this extended game for our strategies,

the following three equations must hold:

1 r(l+g) (1=r)(1+g)
16 T= (= D)6 1- (1= b(N)) (1.16)
. . 1 — P pé
N*,N —1€argrr’1vz:;(1_6—1_6(1_be(Nj))—Njc, (1.17)
(1-p)+ A-p) pl. (1.18)

MQ1-6)~
A seller is willing to randomize in the initial period between providing high
quality goods forever and providing low quality goods forever if and only if equation
(5.1) holds. The left-hand side of (5.1) is the payoff from providing high quality
goods forever and the right-hand side is the expected payoff from providing low
quality goods forever. To see this, note that the probability that 6,(i) has never
observed i is just (1 — b%(Np,(;)))*. Given this indifference in the initial period, the

seller who once provided low quality good can be shown to keep on providing low
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quality goods; the proof is exactly the same as that of proposition 3. So (I) and
(II) are established.

Equation (5.2) requires that buyers are willing to randomize between N* and
N* — 1 connections. We can show that the right hand side of equation (5.2) has a
single peak if N; is treated as a positive real number. Hence if the expected payoff
to buyer j is the same with N* and N* — 1, then N* and N* — 1 both solve j’s

maximization problem. Equation (5.2) is therefore satisfied if

pe _ pl
(1-6(1 —b5(N*)))  (1-6(1—0be(N*~1)))

+c,

or

(1.19)

_ (1=68(1 —0b5(N*—1))) (1 =61 ~b5(N)))
p=cM ( 7] )

Given that other buyer’s actions do not depend on the messages, (IV) is
obvious. If a buyer has observed his current opponent play L or someone play NB
against her, he should play N B against her given (II). And if a buyer has observed
his current opponent and the outcomes have always been (H, B), he should believe
she will play H and he should play B. If the buyer has never observed his current
opponent, he should believe that she will play H with probability (1 — p). For a
buyer to play B against her rather than give her a bad status by playing NB,

equation (5.3) has to be satisfied. This equation can be rewritten as

M(1-68)+6
PSUTDMA-0)+06

Therefore the modified Uninformative Strategy Profile with p defined by equa-

(1.20)

tion (5.4) is a sequential equilibrium if p satisfies equation (5.5). This happens when

c<c.n
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Several interesting results now follow: First, for ¢ > 0 equation (5.4) requires
that p is strictly positive as was shown in proposition 5. L has to be played with
positive probability to provide buyers with the incentive to network. Secondly, this
probability is increasing in M. Under the Uninformative Strategy Profile approxi-
mately proportionally and with Informative Strategy Profile (it can be shown) less
than proportionally. More striking result is the knife edge property of our equi-
libria: If even one more buyer invested in one more connection there would be no
low quality at all (increasing the utility of all buyers and sellers discontinuously).
But networking to reduce production of low quality is a public good and, as usual,
everyone wants to free ride in its production. Because of this, the economy is stuck
in an inefficient equilibrium.

Another interesting observation is that when equation (5.5) fails, trade col-
lapses even when it might be beneficial for buyers to keep trading. This occurs
because a buyer, who considers whether to trade with an unknown seller or to give
her a bad status by playing N B, does not take into account the future trading
opportunities of other buyers with her. With the Informnative Strategy Profile there
would still be another externality because of the informative signalling to neighbors.
When choosing the number of locations to observe the buyers would not take into
account the learning by their neighbors, but would only be interested in their own

learning.

35



1.6 Conclusion

In many real life situations particular sellers and buyers trade with each other infre-
quently, or only once. In such instances, when one or both parties have short-term
incentives to cheat, community enforcement may be needed to facilitate cooperation
and trade. This paper studied community enforcement in the absence of institutions
to transmit information.

We studied a large population, random matching game between buyers and
sellers, where the sellers have a short-term incentive to cheat and supply low qual-
ity. We studied informal networks of communication as the mechanism that spreads
information about sellers’ behavior and facilitates trade. We looked at both infor-
mative and uninformative signalling and for the latter we showed that high quality
can be sold in a sequential equilibrium with population M where each buyer net-
works with only N*(M) players with limps_., N*/M = 0.

We studied the case of costly networking and showed that in this case, when
M is large, low-quality goods must be supplied with positive probability in any
equilibrium to provide buyers with an incentive to network. When the costs of
networking were below a threshold value, we found a sequential equilibrium in which
sellers initially randomize between high and low quality with probabilities (1 — p)
and p respectively and then continue to produce high quality if and only if they
did so in the first period. In this equilibrium p is strictly positive and increasing in

both M and the costs of networking.
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Chapter 2

Imperfect Information Repeated
Games with a Single Perfect

Observer

2.1 Introduction

A central result in the theory of repeated games is that non-Nash equilibrium out-
comes of the stage game are consistent with equilibrium play of the repeated game.
The key in proving this result is the construction of punishments that are to be
imposed upon deviators to offset short run gains. The crucial assumption in the
construction is that each player observes the other players’ actions, so that a devi-
ation is identified by all the players.

The assumption of perfect observability seems rather demanding in many
economic situations, especially involving a large number of players. For example,

consider a joint-project with a large number of participants. To achieve the goal
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of the project, each member has to exert a certain level of individual effort. If the
project, because of its character, requires members to work in different locations
or in specific fields with which other members are not familiar, the informational
assumption that each member does not monitor all the other members’ effort levels
is quite natural. Each member may observe only the effort levels of the members
with whom he works closely. Also, in models of social norms in which in each period
each player is involved in a trade with an opponent who is randomly selected among
a large population of players, it is reasonable to assume that players observe only
the outcomes of their own matches and possibly their neighbors’ matches.
Imperfect observability causes a nontrivial problem if we are to support an
equilibrium that specifies players to play a non-Nash equilibrium of the stage game.
If some player’s deviation is not observed by all the players, such an equilibrium
requires at least one observer, if any, of the deviation to choose an action different
from the action to be played on the equilibrium path. While it depends on the
structure of the stage game payoffs whether the required behavior of observers is
by itself an effective punishment against the deviation, the behavior acts as a signal
to other players who will in turn punish the deviator. However, because of the
informational constraint, the punishing or signalling behavior may be regarded as
a deviation itself by other players who are not aware of the initial deviation. As a
result, the punisher or signaller might be punished as well. Then an observer of a
deviation might be better off by continuing to play the action to specified on the
equilibrium path rather than initiate punishments (or to delay punishments). The
difficulty is that incentives for a player must simultaneously ensure that she initiate
punishments when she observes some other player’s deviation, while not doing so

when there are no deviations. This is a major concern of Kandori (1992) and Ellison
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(1994) when they construct the “contagious” strategy profile to support cooperation
in a random matching model of the prisoners’ dilemma.! Ahn and Suominen (1996)
also face a similar problem when they study a random matching version of buyer-
seller game.

To investigate the problem more closely, we consider particular types of im-
perfect observability. We assume that only one player, denoted by player 0, observes
the actions of all the other players. The other players only observe the perfect ob-
server’s action and possibly some other players’ actions.? For instance, in the joint-
project example, the existence of the perfect observer would mean that there is a
project leader among the members who monitors the other members’ effort levels
and whose effort level is also monitored by the other members. Since the leader’s
effort level is perfectly monitored by the other members, her deviation from the
required effort level can be easily prevented (if she is sufficiently patient). On the
other hand, to prevent a deviation of the other members, if one occurs, the leader
must choose a different effort from the required effort either to punish the deviator
or signal the deviation to the other members, who can then punish the deviator.
The question is : what makes the leader signal a deviation to trigger punishments
despite the potential losses from the ensuing punishments after the signal?

Given the information structure specified above, our objective is to find a
sequential equilibrium of the repeated game in which any action profile that strictly
Pareto-dominates a stage game Nash equilibrium is played in every period. As a first

step, we consider a simple case where each player only observes player 0’s action at

1The success of the “contagious” strategy profile depends on the specific payoff structure of
the prisoners’ dilemma in which defection is a dominant strategy.

2 After the first draft of this paper is written, the author is informed of the work by Verboben
(1994), which studies a similar problem in the context of a triopoly model. In terms of the payoff
structures and the information structure, the setting of this paper includes the triopoly model as
a special case.

39



the end of each period and provide an equilibrium by imposing a restriction on the
stage game payoffs. The restriction is that each player 7 has an action m; such that
player 0’s stage game payoff from the action profile in which player 7 plays m; and
the other players (including player 0) play the actions specified on the equilibrium
path is lower than her stage game payoff along the equilibrium path. Essentially,
player 7 can independently punish player 0. Without the restriction, player 0 can
guarantee herself at least the equilibrium payoff even if she does not signal at all (by
playing the action to be played on the equilibrium path) after observing a deviation.
The equilibrium we construct requires player i to play m; after his deviation until
player O signals. By doing so, player i can effectively punish player 0 if she does not
signal after his deviation. We examine more general information structures under
which each player can possibly observe some players other than player 0 and show
the same result with stronger restrictions on the stage game payoffs. The equilibria
constructed in these cases generate the same outcome paths as the equilibrium in
the simple case except when simultaneous deviations occur.

We also study finitely repeated games without discounting. We assume the
stage game has at least two Pareto-ranked Nash equilibrium. We then show that
under a certain restriction on the stage game payoffs, there is a sequential equilib-
rium in which any action profile that strictly Pareto-dominates the Pareto-inferior
Nash equilib;'ium is played in every period except for the last few periods of Nash
equilibrium phase. In the Nash equilibrium phase along the equilibrium path, the
Pareto-superior Nash equilibrium is played as rewards. The restriction on the stage
game payoffs is as follows.: For each player i, consider all the Nash equilibria of
the game played by player %, player 0 and other possible player i’s observers, fixing

the other players’ plays as the ones specified by the Pareto-superior Nash equilib-
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rium. The restriction is that among all the Nash equilibria of the modified game,
there exists a Nash equilibrium such that (i) player i’s stage game payoff when
player %, player 0 and the player i’s observers play the Nash equilibrium and the
other players play the Pareto-superior equilibrium is lower than his payoff from the
Pareto-superior equilibrium and (ii) player 0’s stage game payoffs between the for-
mer profile and the latter are not the same. Given (i), a deviation at the period
just before the Nash equilibrium phase is prevented. If player i deviates, the players
who observed his deviation will credibly punish him during the Nash equilibrium
phase. The second restriction makes it possible either to punish player 0 or not to
reward her in case she does not properly signal a deviation that occurred during
the late periods near the Nash equilibrium phase. For a deviation in the early pe-
riods, the equilibrium induces player 0 to signal by making her indifferent between
signalling the deviation and delaying it. Here we use no discounting assumption,
which replaces the restrictions for the infinite repeated games.

In recent years, repeated games without perfect observability have been the
focus of a number of papers. Most successful works among thses are on repeated
games with imperfect public information. They analyze games where each player
does not observe other players’ actions, but at the end of each period observes a
public outcome which depends the action profile played in that period. Fudenberg,
Levine and Maskin (1994) consider public equilibria in which the players base their
actions only on the public outcomes and give sufficient conditions on the informa-
tiveness of the public outcomes to obtain the folk theorem with the equilibria. In
our framework, since each player observes player 0’s action at the end of each period,
some type of public information is also available. The difference is that a priori,

the public information is not informative at all. Our task is how to endogenize the
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public information to be informative.

For the literatures on games without public information, we would like to
mention Fudenberg and Levine (1991) and Ben-Porath and Kahneman (1996). In
the setting where players only observe private signals at the end of each period,
Fudenberg and Levine provides a partial folk theorem using an epsilon-sequential
equilibrium. However, the solution concept allows nonoptimal behaviors at the
off-equilibrium paths. For instance, after a deviation occurs, the observers of the
deviation initiate punishments even though it is not optimal as long as the punish-
ments last finite periods. Ben-Porath and Kahneman set up a model where a player
only observes some other players in each period but there is a public announcement
stage after the period. In the announcement stage, each player announces who devi-
ated among his neighbors and he also observes all the other players’ announcements.
In this case, if a mechanism where the players do not lie during the stage is avail-
able, the players can identify a deviator and coordinate the punishments against
him. They provide such a mechanism for the case where each player is observed
by at least two other players and show the folk theorem. In our model, there is no
announcement stage. Players communicate only by their actions.

The rest of the paper is organized as follows. The model is introduced in
section 2. In section 3, we study examples which illustrate the main difficulties that
arise due to the imperfect observability. In section 4 and 5, a Nash folk theorem is
introduced for the infinitely repeated games and for finitely repeated games without
discounting, respectively. In section 6 we discuss a “robust” equilibrium which is a
sequential equilibrium under any information structure among the ones we look at.

We conclude the paper in section 7.
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2.2 The Model

In the stage game, each player %, ¢ = 0,1, ..., n, simultaneously chooses an action
a; from a finite set A;. We denote the set of players by N U {0} where N =
{1,2,...,n}. Let u(ag,a,...,a,) be player i’s stage game payoff from the action
profile (aq, a4, ..., ay,).

Consider a finite or an infinite repetition of the stage game. As for the
information structures of the repeated game, we assume that each player observes
the actions of only a subset (not necessarily proper) of the players at the end of
each period. Specifically, at the end of each period, while player 0 observes the
actions of all the players, player i, ¢ € N, observes player 0’s and possibly some
other players’ actions besides his own. We are therefore interested in certain types
of imperfect observability that we call the case of player 0 being a perfect observer.
We do not, however, exclude the possibility that there are other perfect observers
who are observed by all the other players and also observe all the other players. For
i € N, denote by N; the set of players in N who are observed by player . These are
player #’s neighbors. Similarly, denote by S; the set of players in N who observes
player i. We call them player i's spectators. We assume the information structures
are fixed across the periods.

It is convenient to describe the information structures in terms of graphs.
Envisage the players as n + 1 nodes and the observability from player 7 to player
j as an arrow directed from node 7 to node j on a graph. Then the information
structures we are looking at are depicted as the graphs with at least one node (node

0) connected by n undirected arrows to the other n nodes in N 34 We call them

3An arrow between two nodes is undirected if it is directed from each node to the other.
4For i € N, N; is then the set of nodes in N to which the arrows from node i are directed and
S; is the set of nodes in N from which the arrows are directed to node z.
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P — 0 graphs. Two extreme kinds of P — Q0 graphs are the complete graph where
each node is connected to the other n nodes and the star graph where each node is
connected to only node 0 by an undirected arrow. The complete graph represents
the perfect observability case (where for all i € N, N; = S; = N — {i}), while the
star graph describes the other extreme case where N; = S; = @ for all i € N. We
also denote by the symmetric graphs the information structures where for allz € N,
N; = S;.

We denote by H(t) the set of histories available at period ¢ to player ¢,

i € NuU{0}, .by letting:®
fort=2,3,...,T <oo.

Ho(t) = (XieNU{o}Ai)t—l and Vi€ N, Hi(t) = (xjeNiu{O,i}Aj)t—l-

Hi(1) =0, Vi e NU{0}.

We denote a typical element in H;(t) by h;(t). Note h;(t) is one of the player 7’s
information sets which can be reached at period ¢.

A pure strategy for player Z, a;, is a sequence of maps oi(t) where
a;(t) : Hi(t) — A:

A behavior strategy for player i is a sequence of maps from H;(t) to the set of the
probability distribution over A;.

As the repeated game payoff, we use the average undiscounted sum of the
stage game payoffs for the finitely repeated game and the average discounted sum

of the stage game payoffs for the infinitely repeated game. In other words, if (a(t))

5We assume players do not observe the realized stage game payoffs after each stage game.



is the action profile played by all the players at period t, player i’s repeated game

payoff is given by
T
(1/T) Y _wi(a(t)) for T < oo,
=1

(1-6)> & 'ui(a(t)) for some 6 with 0 <6 < 1.
t=1

We apply Kreps and Wilson (1982)’s sequential equilibrium as a solution
concept for the finitely repeated game. A strategy profile ¢ = (0i)ienu(o} is a
sequential equilibrium if (i) for each ¢ € N U {0} and each of his information sets
hi(t), player i has a belief u;(hi(t)) about which node he is at such that o; is
optimal given the other players’ strategies and the belief and (ii) the beliefs system
1 = (pt:)ieNufoy is consistent with 0. Remember a beliefs system p is consistent with
a strategy profile ¢ if there is a sequence {(a”, u*)}32, which converges to (o, 1) in
Euclidean space where each ¢V is totally mixed and each p” is derived from o by
Bayes’ rule.®

While Kreps and Wilson (1982) explicitly defines sequential equilibrium only
for finite games, the definition can be extended for the infinitely repeated games
in a straightforward way, as suggested by Fudenberg and Levine (1994). The only
change from Kreps and Wilson in the definition of sequential equilibrium is for the
consistency of a beliefs system: A beliefs system p is consistent with a strategy
profile o if there is a sequence {(a¥,u")}$2, which converges to (o, 1) at every
information set with each a¥ being totally mixed and each p being derived from
o’ by Bayes’ rule.

Since the stage game has at least one Nash equilibrium, the repeated game

always has a sequential equilibrium where the Nash equilibrium is played in every

€A (behavior) strategy profile is totally mixed if it puts a positive probability on every action
at every information set.
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period. Our interests are however beyond the trivial equilibrium. In particular, we
try to provide more efficient equilibria supporting an outcome that strictly Pareto-

dominates the stage game Nash equilibrium.

2.3 Examples and Discussion

2.3.1 Finitely repeated games

Consider the following three-person stage game, where player 0 chooses a row, player

1 chooses a column, and player 2 chooses a matrix:

1 1
I N I N
0 7303020 00,5 0 [ |14,14,21| 0,00
N | 00,5 |10,10,10 N| 000 |+3,V315
H L
2

The information structure of the repeated game is the star graph: At the end
of each period, player 0 observes the actions that player 1 and player 2 chose and
player 1 and player 2 also observe player 0’s action. However, player 1 and player
2 cannot observe each other.

Suppose now the stage game is played for two periods. In the perfect observ-
ability case, {(/, I, H),({,1, L)} is an outcome path supported by a subgame perfect
equilibrium. The reversion to the less favorable Nash equilibrium profile, (V, N, L),

prevents player 2 from deviating to the myopic best response, L, in the first period.

46



However, the outcome path is not attainable by a sequential equilibrium under the
star graph. There is no credible threat to player 2 if he deviates in the first period.
After player 2’s deviation, the only sequentially rational outcome is for player 0 and
player 2 still to play I and L given that player 1, who does not know the deviation,
will play I. The point is that fixing player 3’s action to I, there is no other Nash
equilibrium of the modified stage game between player 0 and player 2 than (/, L).

Further, for the three-periods repeated game, we can make the following claim.

Claim 1. Under the star graph, if the stage game is played for three periods, there

is no pure strategy sequential equilibrium in which player 2 ever plays H.

Proof. Consider a sequential equilibrium ¢*. In the 3rd period, player 2 plays L
regardless of his private history /3(3), since L is the dominant action of the stage
game and this is the last period. Furthermore, in each period, player 0 knows player
1's private history h,(t) and so his action prescribed by &*, i(hi(t)) . So, in the
last period, ziven her history ho(3) (which includes player 1’s history h1(3)), she
will play the best response to d(h;(3)) and L. This implies that there is no player
2’s history for which player 2 plays H in the second period under o*. It is because
neither player 1, who does not know player 2’s second period’s action, nor player 0,
who will play the best response in the last period, change their actions in the last
period after player 2 deviated to L in the second period.

Suppose player 2 plays H in the first period under a*. Let (a§(t), a} (t), a3(t))3,
be the equilibrium path of a*. Notice that aj(1) = H, a3(2) = a3(3) = L and
(25(3),a}(3),a3(3)) is a Nash equilibrium of the stage game. Furthermore, espe-
cially, in the second period after (ag(1),a}(1),a3(1)) is played, player 0 should not

have an incentive to deviate to an action @o(2), different from ag(2). In other words,
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if we let (@9(3),a1(3), L) is the action profile to be prescribed by ¢* after player 0

plays @9(2) in the second period, the following inequality has to be satisfied:

gua(aa(t), a3(t), L) = uo(@0(2), 21(2), L) + u0(@0(3),a1(3), L)- (1)

Notice that (@9(3),@;(3), L) is a Nash equilibrium of the stage game.

On the other hand, to deter player 2’s deviation to L in the first period,
player 0 has to play an action different from a§(2), @o(2), in the second period if
he does. If player 0 plays a$(2), the second period and the third period outcome is
(ag(t),a}(t), L)3_,, making player 2 better off by playing L in the first period. This

contradicts the fact that ¢* is an equilibrium, so we require:

;ua(aa(t), ai(t), L) < uo(do(2),a1(2), L) + v0(0(3),a1(3), L). (2)

Hence, in order for ¢* to be a sequential equilibrium, both inequalities (1) and
(2) must hold and so are satisfied with equality. A careful inspection shows this is
impossible: If (@o(3),a1(3), L) is identical to (a§(3),a}(3), L), the inequality (in (1)
and (2)) cannot be satisfied by equality since up(a§(2), a3(2), L) # uo(@0(2),0a3(2), L)
given ad(2) # @o(2). Suppose now (ag(3),ai(3), L) and (@o(3),a:1(3), L) are the two
distinct Nash equilibria. To obtain the equality in (1) and (2), the absolute value of
the difference between ug(ag(2), a}(2), L) and ug(@o(2),a}(2), L) has to be exactly

14 — /3, which is impossible given the payoffs. B

The problem demonstrated in the three-periods repeated game does not dis-
appear in longer, but still finite, repeated game. By extending the previous argu-

ment along the lines of the proof of Proposition 6.2, we can show that given any
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T, there is no pure strategy sequential equilibrium of T-period repeated game in
which player 2 ever plays H.

If we allow mixed strategies, the result is no longer true. For example, when
T = 2, (I,1,H) can be played in the first period, after which the mixed strategy
Nash equilibrium is played unless player 2 played L in the first period.” In that case
she plays [ instead of randomizing, making player 2 strictly worse off. This threat is
credible since player 0 is indifferent between playing I and playing other strategies
given that player 1, without knowing player 2’s deviation, plays the mixed strategy
Nash equilibrium.

The negative result of the previous example also heavily depends on the
payoff of the stage game, especially in that L is the strictly dominant strategy of
the stage game for player 2. If we let uy(N, N, H) =15, up(N, N, L) =10 instead of
10 and 15, respectively, without changing any other payoffs, there is a sequential
equilibrium for sufficiently long periods of repetition where player 2 does not always
play L. If T = 4, for example, {({,{,H),(I,N,L),({,1,L),({,1, L)} is an outcome
path of the following sequential equilibrium; If player 2 played L in the first period,
player 0 plays N and player 2 H in the second period. If player 0 played N in the
first or the second period, player 2 plays H and player 0 and 1 play N everafter. If
player 0 played I in the first two periods, player 2 plays L in the last two periods.
If player 0 played I in the first two periods and player 1 played [ in the second
period, player 0 and 1 play N in the last two periods. Other than those cases,

each player plays the action prescribed in the outcome path. For this modified

7It is interesting to note that this sequential equilibrium path is not supported by a subgame
perfect equilibrium in perfect observability case. Under perfect observability, one of the stage
game Nash equilibria has to be played in the second period. However, in the example, the mixed
strategy gives player 2 the lowest payoff among the stage game Nash equilibria, and then he is
better off by deviating to L in the first period.
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payoff, furthermore, we can show there is a T such that for all T > T, the T period
repetition of the stage game has a sequential equilibrium where (/, I, H) is played
for the first T — T periods. In section 5, we will discuss sufficient conditions for
a Nash-threat folk theorem in more general payoff structures of the stage games

under P — 0 graphs.

2.3.2 Infinitely repeated games

If the stage game in the previous subsection is infinitely repeated, there is a sequen-
tial equilibrium in which ([, I, H) is played in every period. However, the infinite
repetition itself cannot get rid of the problem arises due to the imperfect observ-
ability. To see this, let us consider the following stage game. This stage game has a
unique Nash equilibrium (N, N, L) and a unique individually rational and efficient

outcome (I, I, H).

1 1
1 N I N
o [ |30,30,30| 0,0,0 0 [ {40,—10,40| 0,0,0
N | 0,00 |10,10,10 N 0,0,0 15,15,15
H L
2

In the infinite repetition of the stage game with perfect observability, (/,{,
H) can be played in every period by using the grim trigger strategy; player 0 and
player 1 play I and player 2 plays H unless player 2 played L before, in which

case the players play (N, N, L) everafter. Under the star graph, however, there is no
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sequential equilibrium in which (/, I, H) is played in every period.® In order to deter
player 2’s deviation to L, his average continuation payoff after the deviation should
be strictly less than 30. This requires player 0 to play N with positive probability
at some period after player 2's deviation. If she does not, player 2’s continuation
payoff would be at least 30 since player 1 keeps on playing /. On the other hand,
to induce player 0 to do so, her continuation payoff of playing N after player 2’s
deviation has to be at least 30 since she can guarantee 30 by keeping on playing I.
Apparently, it is impossible to make her continuation payoff more than or equal to

30 with holding player 2’s continuation payoff less than 30.

Claim 2. Under the star graph, there is no sequential equilibrium in which (/,/,

H) is played in every period.

Proof. Suppose n* is a sequential equilibrium where (/,/, H) is played in every
period. Now suppose that player 2 for the first time deviated to L at period 7. Let
(i, j, k), 1 < i,j,k < 2 be the probability, specified by *, that player 0 plays the
i’th action, player 1 the j’th action and player 2 the k’th action at period £ > 7+1
. . . .. oo e ..

if player 3 deviated to L at period 7. Let (%, j,k) = (1 —6) Zbﬁ_l 8 (1, 7,k)

be the average discounted probability of a.(z, j, k).

Since player 2’s continuation payoff after his deviation should be less than

30, we can write

30c(1,1,1) + 100(2, 2,1) + 40c(1, 1, 2) + 15a(2, 2, 2) < 30,
where (2,1,1) + «(2,1,2) > 0.

On the other hand, to induce player 0 to play N with positive probability, her

8We note this negative result depends on the fact that uo(/,,L) < uz(I,I,L). For example,
if we let uo(Z, I, L) = 100 and keep the other payoffs unchanged, there is a sequential equilibrium
in which (7,7, H) is played in every period
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continuation payoff of playing N after player 2's deviation has to be at least 30. In

other words,

30a(1,1,1) + 10a(2, 2,1) + 40c(1, 1, 2) + 15¢(2,2,2) > 30,
where (2,1,1) + (2,1,2) > 0.

So, we have a contradiction. B

If uo(l,I,L) < 30, we can find a sequential equilibrium where (/,1, H) is
played in every period for a discount factor sufficiently close to 1. The equilibrium

strategy for more general stage game payoffs will be introduced in next section.

2.3.3 Discussion

If an equilibrium path specifies a non-Nash equilibrium outcome of the stage game
in some pericds, then at least one of the players has a myopic incentive to deviate
from the path. To prevent his deviation, the equilibrium has to provide a punish-
ment severe enough that his short run gains from the deviation are washed out.
Also, the punishment should be credible in the sense that the players are better off
by participating in the punishment. If all the players observe the other players’s
actions, it is easy to specify such punishment.? However, if some players do not
observe all the other players’ actions and so a deviation may not be observed by
all the players, we encounter a nontrivial problem. Punishing a deviation might
be regarded as a deviation itself by the players who do not know about the initial
deviation. As a result, the punisher may be punished. Then she might be bet-
ter off by keeping on playing the action to be played on the equilibrium path not

to initiate punishments (or to delay punishments). To study this problem more

9See Fudenberg and Maskin (1986) or Benoit and Krisna (1985).
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closely, we consider particular types of imperfect observability that we called P —0
graphs. Under these information structures, because her action is observed by all
the players, player 0’s deviation from the equilibrium path can be easily prevented
once the punishments against her deviation are severe enough. The key is then to
induce player 0 to initiate punishments after some other player’s deviation despite
the potential loss from the ensuing punishments. However, as the previous examples
illustrate, there are stage games for which it is not possible. In those examples, it
is not possible to punish player 0 in case she did not signal properly nor to reward
her for signalling to compensate her loss during the punishments phase. In section
4 and 5, we provide sufficient conditions in terms of the stage game payoffs for a
Nash-threat folk theorem.

Imperfect observability, including P — Q graphs, causes other complications.
Consider a strategy profile & that is sequentially rational on the equilibrium path
and after any sequence of unilateral deviations from the equilibrium path. Under
perfect observability, we can easily construct a subgame perfect equilibrium that
supports the outcome path of @ by ignoring simultaneous deviations.!® However,
under imperfect observability, we cannot simply let the play return to the ongoing
path after simultaneous deviations. The players, who knew only a single, possibly
different, part of the deviations, would play the actions that a strategy profile
prescribes after the single deviation. Then other players who knew more than a

single part of the deviations might want take advantage of the situations.!’ So

10The sequential rationality of the subgame perfect equilibrium on the equilibrium path and after
any sequence of unilateral deviations from the equilibrium path is immediate by the construction.
Ignoring simultaneous deviations is also sequentially rational given the noncooperative solution
concept.

1The question is : given a strategy profile that is sequentially rational on the equilibrium path
and after any sequence of unilateral deviations from the equilibrium path, does there exist another
strategy profile which exhibits the same behaviors after those histories and is also sequentially
rational after the other histories? If existence is guaranteed, we can ignore simultaneous deviations
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finding a sequential equilibrium here is potentially more complicated than under
perfect observability.

For finitely repeated games, we construct an equilibrium which does not
face the complication caused by simultaneous deviations. However, since the con-
struction is based on the assumption that players do not discount the future, the
equilibrium cvannot be applied to the infinitely repeated games with discounting.
For the infinitely repeated game, we first consider the star graph, a special case of
P — 0 graphs where N; = @ for all 7 € N. In the equilibrium we construct in this
case, the difficulty after simultaneous deviations is easily resolved as player 0’s deci-
sion making problem. Here player 0 takes advantage of the beliefs system that each
player does not suspect any deviation he does not observe. For more general P —0
graphs, however, the strategy profile that generates the same outcome paths as the
equilibrium under the star graph for all the histories may fail to be an equilibrium.
Actions that the strategy profile specifies after some simultaneous deviations may
not be optimal under P — 0 graphs although they are so after the other histories.
We take two approaches to deal with this problem. The first one is to restrict the
stage game payoffs so that the strategy profile is an equilibrium under P —0 graphs.
Secondly, we consider symmetric stage games under the symmetric graphs, P — 0
graphs where all ¢ € N, N; = S;. Using the symmetry, we can construct a strategy
profile that exhibits sequentially rational behaviors after simultaneous deviations,
while generating the same behaviors as the equilibrium under the star graph except

after simultaneous deviations.

without loss of generality and have only to find a strategy profile which is sequentially rational on
the equilibrium path and after any sequence of unilateral deviations from the equilibrium path as
we could under perfect observability. Unfortunately, we are not able to provide the answer to this
existence problem.
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2.4 Infinitely Repeated Games

2.4.1 A Nash-threat folk theorem under the star graph

Our objective, throughout this section, is to find a sequential equilibrium in which
any action profile a* = (af)ienufo} that strictly Pareto dominates a stage game
Nash equilibrium is played in each period. As an important benchmark, we first
consider the star graph. Before stating the proposition in this case, we impose the

following restriction on the action profile a®.
(IP) For each player i € N, there exists an action m; € A; s.t.
U()( a‘) > uO(a’(.)) mg, (a;)jEN—{i})'

We call the restriction “Independent Punishments” or (IP) because under
the restriction, player ¢ can independently punish player 0. In the equilibria we
construct in this section, player 0 is punished by player i through m; if she does
not signal after player i’s deviation from af. Without (IP), there is no way he
can punish player 0 for not signalling since she can guarantee herself at least the

equilibrium payoff, ug( a*), by keeping on to play a.'?

Proposition 4.1. Consider an action profile a* = (a})ienu{o} that strictly Pareto
dominates a stage game Nash equilibrium f.'® Suppose also that a* satisfies
(IP). Then under the star graph, there erists & < 1 such that a* is played in

every period as a sequential equilibriumn oulcomne for 6 € (6,1).

The equilibrium which we call the modified finite periods Nash reversion

strategy profile- hereafter M.F.N.R.- is the star graph version of the finite periods

12(IP) is not a necessary condition as footnote 6 in section 3.2 suggests.
13We do not exclude possibility that the stage game Nash equilibrium is a mixed strategy.
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Nash reversion strategy profile under the complete graph. In the finite periods
Nash reversion strategy profile, a deviation from a* is immediately followed by
punishment phase where the stage game Nash equilibrium f is played for finite
periods, after which the play returns to a*®. The punishment is not player-specific
in the sense that the punishment following a deviation is the same regardless of
the identity of the deviator. M.F.N.R. has a similar structure. However, it has one
more step between the play on the equilibrium path and the punishment phase if
a player other than player 0 deviates from a*. In this case, player 0 signals by
playing a predetermined action different from ag, say so, to trigger the punishment
phase.

More precisely, M.F.N.R. is as follows. It has four phases, normal phase, sig-
nalling phase, finite punishment phase and the infinite punishment phase. The play
starts from normal phase where a* is played. If player O plays sg, an action different
from ag, finite punishment phase follows where the stage game Nash equilibrium f

is played for K periods. K is an integer satisfying 2z < Ky where

2= max max u;(a) — u;(b) and

= Jnin min ui(a) — u;(b) s.t. u;(a) —u;(b) > 0.

If she played an action different from ag or sp, the punishment will continue forever.
On the other hand, if some player(s) other than player 0 deviated from normal
phase, his (or their) signalling phase starts from the next period of the deviation(s).
In player i’s, i € N, signalling phase, player 7 is required to play m;. Player i’s
signalling phase ends if either player 0 plays an action different from ag or player
0 and he simultaneously play a} and a!. After the former case the finite or the

infinite punishment phase follows while normal phase resumes in the latter case.
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After the final period of finite punishment phase, the play returns to normal phase
unless some player(s) deviated at the end of the last signalling phase.’* In this
case his (or their) signalling phase starts. Now let us prescribe player 0’s action in
signalling phase. In a single player’s signalling phase, player 0 signals by playing
so. To see player 0’s action in multiplayers’ signalling phase, let Q@ be the set of
players in N who are in their signalling phase. If ug( a*) is strictly larger than
uo(ag, (Ms)icq, (@})jen~q), player O plays sp to trigger finite punishment phase. If
up(ag, (Ms)icq, (a})jen—q) is strictly larger than or equal to ug( a*), on the other
hand, she plays ay.

The beliefs system underlying M.F.N.R. is that player ¢ never believes the
other players in N (i.e., who he does not observe) ever deviated before. So if he
observes playger 0 play an action other than aj in normal phase, he believes it is
her own deviétion, not signalling other player’s deviation. Another implication of
this beliefs system is that player 7 never suspects other deviation(s) if he has been
playing m;, but player 0 has unexpectedly continued to play aj. He believes that
player 0’s not signalling is solely due to her own mistake. Checking the consistency
of this beliefs system is straightforward.!®

No player i, 7 € N, has the incentive to deviate from normal phase or his
signalling phase since K periods of punishment phase will be triggered and wash

out the short run gains from the deviation. Nor does he have in punishment phase

4Thoughout the section, by saying player i deviated at the end of the last signalling phase, we
mean two possibilities: The first is when he, in nomal phase, did not play a; at the period when
the last punishment phase is triggered (i.e., the last period when player O started to play so.) The
second case is when he did not play 1; at the period the last punishment phase is triggered even
if he was in his signalling phase.

15For example, consider the following sequence of totally mixed strategy profiles (¢)$2,: For
player O, for each ¢t and each of her information sets ho(t), assign a probability (1/v)¥ t* to each
action other than the one that player O chooses in M.F.N.R.. As for player i € N, assign the
probability (1/v)" at every information set.
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where the stage game Nash equilibrium is played. It is also obvious player 0 is
also worse off by deviating from normal phase or punishment phase. Now consider
player 0’s incentive to signal in a single player’s, say player i's, signalling phase.
Since player Z plays m; in his signalling phase and the signalling phase continues
as long as player 0 delays signalling, player 0’s delaying the signal will result in
(ag, mi, (a5)jen—(5}) during the delayed periods, followed by the same outcome path
that signalling without delay would generate. So, the effect from the delay for
one period is to get ug(ag, My, (a})jen-(:}) during the delayed period and to resume
normal phasé one period later. (IP) guarantees she is better off by signalling without
delay if the discount factor is close to one.

Suppose now several players played actions other than a* simultaneously in
normal phase. As we discussed before, we cannot simply ignore the simultaneous
deviations and let the play to return to normal phase unlike in the perfect observ-
ability case. If player 0 continues to play aj instead of signalling, the deviators, each
of whom believes player 0’s not signalling is solely due to her mistake without know-
ing the simultaneous deviations, would keep on playing m. Player 0 then chooses
her action by solving a decision making problem: Let the current period be the
signalling phase for the players in the set Q. If ug(ag, (m:)icq, (a})jen-g) is strictly
larger than or equal to ug( a*), player 0 finds it better to maintain @’s signalling
phase by playing a§ and get ug(a§, (:)icq, (2})jen-q) in every future period rather
than to signal the deviations and to get ug( a*) after the punishment phase initi-
ated by her signalling. If uo( a*) is strictly larger than uo(a§, (n:)icq, (a})jen-@)s
however, it is optimal for player O to signal The same argument that shows the

optimality of signalling in a single player’s signalling phase applies.
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2.4.2 A Nash-threat folk theorem under P — 0 graphs

Let us now extend M.F.N.R. to P — 0 graphs such that given any previous plays,
the extension generates the same outcome paths that M.F.N.R. does. The extended
M.F.N.R. can be then described as follows.

The extended M.F.N.R. has normal phase, signalling phase, finite punishment
phase and infinite punishment phase as M.F.N.R..1® Consider a player i in N.
Suppose period t was in normal phase or the signalling phase for some players in
N; U {i}. Suppose player 0 played a§ at period t. Let D;(t) be the set of players in
N; U {i} who did not play a* at period ¢. If D;(t) is empty, normal phase continues
at period £ 4+ 1. If D;(t) is not empty, the signalling phase for the players in D;(t)
starts at period ¢ + 1. Player i plays m; at period t + 1 if he belongs to D;(t). If he
does not, he plays a!. If player 0 plays aj at period t + 1 and the set of players in
N;U {i} who did not play a* at period t+1 is D;(t+ 1), the signalling phase for the
players in D;(t + 1) starts at period ¢ + 2 unless D;(t + 1) is empty, in which case
period ¢ + 2 is in normal phase. On the other hand, if player 0 plays so at period
t + 1, K periods of punishment phase will start from period t + 2. To describe the

play after the punishment phase, we define R;(t+1), a subset of N;U{i}, as follows.
Ri(t+1) = {j € N; U {i}] (i) a;(t + 1) # aj for j & Di(t) and
(ii) aj(t + 1) # m; for j € Di(t)}.
Notice that R;(t + 1) is the set of the players in N; U {i} who did not follow the

specified actions at period t + 1. If R;(t + 1) is empty, normal phase resumes after

the final period of the punishment phase. If it is not empty, the signalling phase for

16Here, because of the same behaviors the extended M.F.N.R. and M.F.N.R. exhibits, we use
the same names to the histories which we called nomal, signalling finite punishment and inifinite
punishment phase in M.F.N.R..
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the players in R;(t + 1) starts after the punishment. The infinite punishment phase
is triggered after player 0 played an action other than ag and s¢ at period t + 1.
The specification of player 0’s strategy is precisely the same as under M.F.N.R..

The beliefs system under the eztended M.F.N.R. is also the extension of the
beliefs system underlying M.F.N.R... That is, player ¢ believes player [ who is not one
of his neighbors has always played the equilibrium action a; except for punishment
phases where the stage game Nash equilibrium is played.

The eztended M.F.N.R. prescribes the optimal behavior to player ¢ in normal
phase, his own signalling phase and punishment phase since his deviation in those
phases will result in the same outcome paths that it does under M.F.N.R... Player
i is also better off by playing af when D;(t) = {j}, player j’s signalling phase. In
this case he is expecting that player 0 plays sq at period t + 1 to punish player j
. So, if he deviates at period ¢t + 1, Ri(t + 1) will be {i} and a new punishment
phase against him will start from ¢+ K + 3. Given the other players’ strategies, the
optimality of player Q’s actions is immediate.

However, some players who observed simultaneous deviations by several play-
ers might not find it optimal to follow the actions specified above. Suppose player
0 played a§ at period t and D;(t) = {,j}. Suppose also the stage game payoffs are
such that uo(da, mi, m;, (6} )keN-{i,j}) is greater than ug( a*) and u;(ag, m:, my, (af)keN-(ij})
is the worst stage game payoff to player i. Then player i is better off by deviating
from the prescribed action m; since he expects player 0 will continue to play ag as
long as he plays m;, which gives him the lowest continuation payoff. How about
the incentive of player k who observed the player 7 and j's simultaneous deviations?
The difficulty in this case is that the problem after simultaneous deviations can

no longer be solved as player 0’s decision making problem since players other than
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player 0 may notice (parts of) the simultaneous deviations.
These complications disappear if we give a stronger restriction on the stage
game payoffs as follows. We refer to this restriction as “General Punishments” or

simply “GP”".

(GP) Given the action profile (m;)jcn as defined in (IP), suppose that for all
subset Q C N,

uo( a*) > uo(ayg, (af)ien-a, (Mj)jeq) -

With (GP), player 0 signals in any signaling phases. If this is case, player i’s
deviation in any signalling phases will result in another punishment phase after the
punishment phase to be triggered at the next period. So, the eztended M.F.N.R. is

an equilibrium and we have Proposition 4.2.

Proposition 4.2. Consider an action profile a* = (a])ienu{oy that strictly Pareto
dominates a stage game Nash equilibrium f. Suppose (GP) holds. Then there
is &' < 1 such that a* is played in every period as a sequential equilibrium

outcome for § € (6',1).

Remark 1. In proposition 4.2., the ertended M.F.N.R. is sequentially rational
given any beliefs system. In other words, in each of his information set, it
is optimal for player i to follow the extended M.F.N.R. regardless of his belief

about which node he is at.

Remark 2. If there are at least two perfect observers, the same result holds without
(IP) or (GP). It is obvious to see the following strategy profile is a sequential
equilibrium for a high discount factor.: It has also four phases, normal phase,

signalling phase, K periods of punishment phase, the infinite punishment
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phase. Take two perfect observers, say player 0 and player 1. For each of
them, fix an action, sp # a3 and s; # af, respectively. As in (the eztended)
M.F.N.R., the play starts at normal phase. If any player(s) other than the
two plays an action other than a* in normal or the last signalling phase,
his (their) signalling phase begins where the two play s¢ and s,and all the
other players play a*. If the two play so and s; in this phase, K periods of
punishment phase starts after which the play return to normal phase unless
some player(s) other than the two deviated in the last signalling phase. In that
case, the deviator(s)’ signalling phase starts. If the actions of the two perfect
observers are different from (a§,a}) or (so, 1), punishment phase continues
forever. Here, a perfect observer’s incentive to signal in signalling phase is

given by the threat of the infinite punishment that would follow if she did not

signal.

2.4.3 A Nash-threat folk theorem for symmetric stage games

under the symmetric graphs

Even though (GP) fits many interesting economic situations, we introduce another

way to deal with the difficulties after simultaneous deviations without (GP). We

assume the stage game with symmetric payoffs and confine the information structure

to the symmetric graphs.'”

Proposition 4.3. Consider a stage game with symmetric payoffs. Let an action

profile a* = (a})ienuo} that strictly Pareto dominates a stage game Nash

equilibriumn f. Suppose that (IP) holds and also that for each player i € N,

17We say the stage game has symmetric payoffs if Vi,j € N U {0}, Va; € A;,Va; € A;

!

— ra . .. I — . al =
ui(a, a5, a—i-j) = uj(af,a},azi-j) Va_i_j € Xxxi jAr where a; = a5, aj = a;.
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wi( a*) # wi(ag, af, (8})jen-mi- (i} (M )ker.) for any subset E; C Ni.'®* Then
under the symmelric graphs, there is 6" < 1 such that a* is played in every

period as a sequential equilibrium outcome for 6 € (8",1).

The equilibrium we construct here prescribes the same actions to the players
as the extended M.F.N.R. with some exceptions. The differences are the behav-
ior of a deviator who observes another deviation(s) and player 0's signalling be-
havior after some simultaneous deviations. In particular, after several players in
N simultaneously deviated and each deviator observes the other deviator(s), the
equilibrium prescribes player 0 to play a§ rather than to signal Deviator i who
observes another deviator(s) is required to play a} in stead of playing m;, expecting
the other deviator(s) to play a* as well. Player i’s expectation makes sense since
the other deviator(s) also observed player ¢’s own deviation due to the symmetry of
the observability. So, if there occurred simultaneous deviations where each deviator
observes the other deviators, the play returns to normal phase.

Proof. See appendices. B

2.5 Finitely Repeated Games without Discount-
ing

In this section, we consider a finite repetition of a stage game which has at least

two Pareto-ranked Nash equilibria. The information structure of the repeated game

is P-0 graphs. Our question is whether there is a sequential equilibrium of the

repeated game in which any action profile strictly Pareto-dominating the Pareto-

inferior Nash equilibrium is played in every period, except for the last few periods.

13(A3) can be dispensed with.
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As the example in subsection 3.1 illustrates, the answer may not be true for some
stage games. However, under a certain restriction of the stage game payoffs, we can
construct such an equilibrium.

The restrictions we impose on the stage game payoffs are as follows.

(M) There exist two Pareto-ranked stage game Nash equilibria e and f with u;(e) >
ui(f) Vi € {0} UN.

(SP) Given the Pareto-superior stage game Nash equilibrium e, for each ¢ € N,
there exists (i) = (c;(?))je{ojugijus; » & Nash equilibrium of the modified
stage game among 0, 7, and S;, fixing the other players’ actions to the ones

specified by e, such that

® u;(q) > ui((3), (er)ien—({ijus,)) and
(if) wo(e) # uo(cx(s), (er)ien—ciepuse))-

(M) is simply the requirement that the stage game has “multiple” Pareto-ranked
Nash equilibria. (SP) refers to as “Spectators’ Punishments”. While (M) guarantees
collective punishments by all the players against each player, (SP-i) says that player
0 and player i’s spectators can punish player ¢ independent of the other players.
Although it has structures similar to the eztended M.F.N.R. for the infinitely
repeated games, the equilibrium we construct differs from the ezfended M.F.N.R.
in terms of the incentive for player 0 to signal after observing a deviation. In the
estended M.F.N.R., we needed (IP) or (GP) to induce player 0 to signal a single
deviation or simultaneous deviations. In the equilibrium here, we use no discounting

assumption and (SP-ii) to induce player 0 to do so instead of (IP) or (GP).

Proposition 5.1. Suppose the slage game satisfies (M) and (SP)." Let a* =

19 As we discussed through an example in section 3.1., (SP) is not a necessary condition.
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(@f)ienu{o} be an action profile that is strictly Pareto-dominating the Pareto-
inferior stage game Nash equilibrium f. Then there is a T such that for all
T > T, the T period repetition of the stage game has a sequential equilibrium

where a* is played for the first T — T periods.

Along the equilibrium path, a* is played for the first T — T periods and e
is played for the last T periods. If player O plays an action other than ag at the
next to the last T periods, f is played for the next K periods. Given (M), she does
not have the incentive to deviate at that period. (SP-i) makes it possible to punish
player 7 in N at some points during the last T periods if he deviates at the next to
the last T periods.

For the first T — T +1 periods, the equilibrium has similar structures to the
eztended M.F.N.R.. It has normal phase, signalling phase and punishment phase.
The difference of the equilibrium from the eztended M.F.N.R. is the behavior of a
player in N after his deviation (i.e., in his signalling phase or in the signalling phase
for multiple players including himself). If player i deviates, whether he is the only
deviator or one of the simultaneous deviators, he is required to play a; until player
0 stgnals while he is to play m; under the eztended M.F.N.R.. Player 0’s signalling
behavior is the same as the ertended M.F.N.R.. Player 0 signals in any signalling
phase whether it is for a single player or multiple players. In the equilibrium here,
in a signalling phase of the early period when there are more than 2+ K+ T periods
left, player 0s signalling after one period of delay will result in the same path as the
one that would be generated if she signalled without delay. The effect of the delay
is then to get a* played during the delayed period and to resume normal phase
where a* is played one period later. Given no discounting assumption, player 0 is

indifferent between the two paths. This is why (IP) or (GP) can be dispensed with
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in proposition 5.1. On the other hand, if she does not signal in a signalling phase
when there are at most 1 + K+ T periods left, player 0 will be strictly worse off.
(SP-ii) guarantees that it is possible to punish player 0 or not to reward her, for

not properly signalling, at some points during the last T periods.

Proof. See appendices. B

2.6 Robust Equilibrium

Until now, we discussed equilibria which support efficient behaviors under the gen-
eral information structure given that player 0 is a perfect observer - P — 0 graphs.
Another important assumption was that the information structure does not change
from period to period and each player knows the structure. If a player observes
possibly different players across periods and he does not know who is observing his
action, then some of the equilibria we constructed may not be ones in this case
even when player 0 is a perfect observer. In this section, we maintain our basic
assumption that player 0 is a perfect observer and discuss a “robust” equilibrium
which is an e:quilibrium under any of P —0 graphs, including the star graph and the
complete graph.2°

Consider an arbitrary graph g among P —0 graphs. For an arbitrary outcome
path h(t) = (ao(s), (a;(s))jen)iZ], let h(t) be the previous actions that player 0,
player  and his neighbors chose. In other words, h{(t) = (ao(s), (a;(s)) jensugy)ozil
h(t) where N{ is player i’s neighbors defined by the graph g. Now we define a

“robust equilibrium” as follows.

2The extended M.F.N.R., without (GP), is not a “robust” strategy profile since it may not be
an equilibrium under an arbitrary P — 0 graph as we discussed in section 4.2.. And, for example,
the grim trigger strategy which is an equilibrium in the complete graph is not “robust” because it
cannot be implemented in star graph for the obvious reason.
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Definition 6.1. Consider two arbitrary P — 0 graphs, g and ¢'. Let 09 and 09
be two strategy profiles for the graphs g and ¢ such that for an arbitrary
outcome path h(t), (i) o8 (h(t)) = ¥ (h(t)) and (ii) for each i € N, o?(hZ(t)) =
09 (kY (). 09 is a robust equilibrium if 09" is a sequential equilibrium for the

graph ¢ whenever g7 is a sequential equilibrium for the graph g.

In order for a strategy profile to be “robust”, it has to be implementable in
the star graph and so the action that it prescribes to each player other than player
0 should be based on only player 0’s and his previous actions. We call a strategy

profile with this property a restricted strategy profile.

Definition 6.2. & is a restricted strategy profile if Vi € N, Vt, a:(hi(t)) = o:(h(t))

whenever (ao(s), a:(s))zt |:(t) = (ao(s), ai(s)) 52 Ia(t).

Also, a “robust” strategy profile has to be a subgame perfect equilibrium

because it has to be an equilibrium under the complete graph.

Definition 6.3. A resiricted subgame perfect equilibrium is a restricted stralegy

profile that is a subgame perfect equilibrium under the complete graph.

While a “robust” strategy profile has to be a restricted subgame perfect

equilibrium, the next proposition shows the opposite is also true.

Proposition 6.1. A restricted subgame perfect equilibrium is a sequential equilib-

ritum under any of P — 0 graphs.

Proof. Consider a restricted subgame perfect equilibrium (of the complete graph)
o¢. Take an arbitrary graph g among P — 0 graphs. For an arbitrary outcome path

h(t) = (ao(s),(a;(s))jen):Z}, which is nothing but an information set under the
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complete graph, and for each i € N, let hi(t) = (ao(s), (a;(s))jemuiiy)izi] A(t). In
other words, hJ(t) is the outcome path that player 0, player ¢ and his neighbors
chose, or player i’s private information. Now let g9 be a strategy profile under the
graph g such that for an outcome path h(t), (i) for each i € N, o (h{(t)) = of(h(t))
and (i) og(hd(t)) = a§(h(t)) (note h§(t) = h(t)). We want to show o7 is a sequential
equilibrium.

First of all, it is obvious to see that oj , by the construction, specifies to
player 0 the optimal behavior at each of her information set Ag(t).

Now, fix a typical player in N, say player 1 and his information set h{(t). Let
z(hi(t)) be a node in the information set h{(t) and h(t)(z) be the outcome path that
the node = (= z(hi(t)) represents. To conclude the proof, it suffices to show that
for all z € hi(t), playing aj(hj(t)) is optimal for player 1. However, the optimality
is immediate from the observations that a deviation from a{(hi(t)) will lead to
the same outcome path that the deviation from a§(h(t)(z)) at the information set
h(t)(z) under the complete graph and that a§(h(t)(x)) is optimal for player 1 at the

information set h(t)(x) under the complete graph. So, we are done. B

In other words, we can completely characterize “robust” equilibrium by re-
stricted subgame perfect equilibrium. A trivial restricted subgame perfect equilib-
rium is to play a stage game Nash equilibrium in each period, regardless of the
previous plays. Now we examine a “robust” equilibrium which supports a stage
game outcome that strictly Pareto-dominates the stage game Nash equilibrium.

The extended M.F.N.R. we constructed in Proposition 4.2 is a restricted sub-
game perfect equilibrium of the infinitely repeated game under the same conditions

given in 4.2. So, the following proposition is true.
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Corollary 6.2. Consider an action profile a* = (a})ienufoy which strictly Pareto
dominates a stage game Nash equilibrium f. Suppose that (GP) holds. Then,
for the infinitely repeated game, there is § < 1 such that a* is played in every

period as a restricted subgame perfect equilibrium outcome for § € (8,1).

For the finitely repeated games, we can get a result corresponding to Propo-
sition 5.1 if we strengthen (SP) to (DPN). (DPN) refers to “Deviator’s Punishments

by Nash equilibrium”.

(DPN) Given the Pareto-superior stage game Nash equilibrium e, for each i € N,

there exists another Nash equilibrium (8o, 5;, (€;) jen-{i}) such that

(i) wi(e) > wi(Bo,Bi, (€5)jen-(3}) and

(i) uo(e) # uo(Bo, Bi, (€5)jen-(3})-

Corollary 6.3. Suppose the stage game satisfies (M) and (DPN). Let a* = (aj,)ne Nufo}
be an action profile that is strictly Pareto-dominating the Parelo-inferior stage
game Nash equilibrium f. Then there is a T such that for all T > T, the T
period repetition of the stage game has a restricted subgame perfect equilibrium

where a* is played for the first T — T periods.

Proof. Given (DPN), the strategy profile, constructed in Proposition 5.1, is a

restricted subgame perfect equilibrium. &

(DPN) is quite a strong restriction. For some other stage games which do

not satisfy (DPN), we present a negative result.
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Consider a stage game satisfying the following restriction, which we call

“player 0’s action is payoff-irrelevant” and denote by (P-0 PI).
(P-0 PI) For each h € NU {0} and for all (a:)icn € Xien A,

un(co, (@i)ien) = un(do, (ai)ien)  for all co,do € Ay.

For a stage game that satisfies (P-0 PI), player 0’s action is payoff-irrelevant in the
sense that it ’does not affect the other players’ payoffs as well as her own payoff.
It is of course possible that player 0 has a strict preference over the actions played
by the other players. For example, consider a joint-project consisting of n workers
and 1 manager. Suppose total output of the project depends on the effort levels of
the n workers. The manager is unproductive in the sense that her action does not
affect the total output. However, the total output is equally distributed among the
n+ 1 members including the manager. In this joint-project example, the manager’s
action is payoff-irrelevant.

Suppose the stage game is played for T periods and the information structure
of the repeated game is the star graph. If an equilibrium path specifies a non-Nash
equilibrium outcome of the stage game in some periods, then at least one of the
players has a myopic incentive to deviate from the path. To prevent the deviation,
the equilibrium should provide punishments against the deviator. However, since
other players did not observe the deviation, player 0 must initiate punishments if
there is a deviation. So, the equilibrium must ensure that player 0 be better off by
initiating punishments when she observes a deviation. On the other hand, player
0 should not do so when there are no deviations. Proposition 6.4 shows that for
a large class of stage games that satisfy (P-0 PI), it is impossible to satisfy both

constraints for player 0 simultaneously.
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A payoff matrix for a game satisfying (P-0 PI) can be viewed as an element

of ROVITL, 14l

Proposition 6.4. For any T, there exists a full measure open subset of RO+DILL 144
Gr, such that if the stage game payoff satisfying (P-0 PI) is in Gz, there is no
pure strategy restricled subgame perfect equilibrium of the T period repelition
of the stage game in which an aclion profile other than a Nash equilibrium is

ever played.?!

In a stage game that satisfies (P-0 PI), player 0’s action can be regarded as
a cheap-talk since her action is payoff-irrelevant. Player 0’s only role is sending a
public signal about the behaviors of the other players. The result of the proposition
can be then interpreted as nonexistence of a pure strategy equilibrium in which
player 0 tells the truth, unless the equilibrium path is playing a Nash equilibrium
of the stage game. As a matter of fact, the result does not change if we explicitly
allow player 0’s cheap-talk after each period. Consider the following setup. Sup-
pose players other than player 0 play a n—person game in each period. Suppose the
actions they choose determine player 0’s payoff as well as theirs although player 0 is
not directly involved in the stage game. After the stage game, player 0 announces
who deviated in the stage game. In this setup, we can show following. Given T, for
generic payoffs of the stage game played by the n players, there is no pure strategy
restricted subgame perfect equilibrium of the T" period repetition of the stage game
in which an action profile other than a Nash equilibrium is ever played. This neg-

ative result presents a striking contrast to Ben-Porath and Kahneman (1996) who

21(p.Q PI) itself is not necessary for the negative result. The crucial property we need is that
if an action profile (co, i, (b;j)jen-(i}) is a pure strategy Nash equilibrium of the stage game, for
each i € N and for any action dg € Ag, there is no a! # b; such that (do,al,(b;)jen-(i}) is a Nash
equilibrium. As a matter of fact, we can show a similar negative result for a stage game which
satisfies this property instead of (P-0 P1).
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provide the folk-theorem in a slightly different setting. In their papers, each player
is observed by two other players and all the players make public announcements
about the actions they observed. In the equilibrium they build, players do not lie
during the announcement stage since both of two monitors are punished in case
their announcement are incompatible. In our case, we cannot deter player 0 from

lying to her advantage.

Proof. Consider a restricted subgame perfect equilibrium o* of the repeated game.
Notice first that for any history, a Nash equilibrium has to be played in the last
period. Suppose we have now established that for each period ¢, for an arbitrary
history available at period ¢, i(t), o* prescribes a Nash equilibrium for h(t) and for
any history following (t). We want to show that for an arbitrary history available
at period t — 1, h(t — 1), *(h(t — 1)) is a Nash equilibrium. Suppose not. That is,
there is a history h(f — 1) and player i € N such that o7 (h(t — 1)) is not the best

response for (a5(h(t — 1)), (a; (Mt = 1)))jen-(i})-

Let (ag(7),a$(7), (a}(7))jen-(i})i-1 be the outcome path that o* generates
given the history A(t — 1). Notice that af(t — 1) # Bri(ag(t — 1), (aj(t — 1))jen-£i})
by the assumption and that for each 7, t < 7 < T, (a§(7),ai(7), (a3(7))jen-i}) is

a Nash equilibrium by the inductive hypothesis.

Now, let us explore a restriction that ¢* impose to deter player i’s deviation
to b; = Bri(ag(t — 1), (aj(t — 1))jen-(s}) at period ¢ — 1.

First of all, notice that if player ¢ deviates to b; at period ¢ — 1, there has to
be a period t', t < ' < T, where player 0 plays an action different from ag(t'), say

do(t'). To see this, suppose there is no such period under a*. Then the actions that
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o* prescribes to player j # i must be (a}(7))7_, since o* is a restricted strategy.
Moreover, player i should play af(7) at period 7, t < 7 < T'. It is because the action
profile that o* prescribes from period t is a Nash equilibrium by the inductive
hypothesis and (P-0 PI) and the genericity imply that given a Nash equilibrium
(ag(7), af(7), (a3(7))jen-(s}), there is no action @;(7) # ai(7) for player i such that
(ag(7),@:i(7), (a5(7))jen—{s}) is another Nash equilibrium. So, the outcome path
that o* generates after player i's deviation will be (ag(7),a{(7), (a3(7))jen-{i})T=ts
the same path to be followed after player 7 did not deviated from a}(t — 1). Then,
player i is strictly better off by deviating to b; at period ¢ — 1, which contradicts
the fact that o* is a subgame perfect equilibrium.

So we assume, without loss of generality, that o* prescribes player 0 to play
an action @o(t) # aj(t) at period t if player ¢ deviates to b; at period £— 1. Therefore,

the following inequality has to be satisfied.

uo(Ba(t), af (t), (a}(t))jen-) + D wo(@o(7),&(7), (@;(7))jen—1i})

T=t+1

T
> > uo(ap(r), ai(7), (a5(T))sen-ip) (1)

T=t
Here, (@o(7),@:(7), (8;(7)) jen-{i}) Tusy is the outcome path to be generated by o*

after the history h(t + 1)
where h(t+1) = [h(t—1), (ag(t—1),b:, (a}(t—1))jen-i}), (@o(t), af (t), (@}(t))sen—ap)]-

While the left-hand side of the inequality is player 0's payoff from the outcome path
that o* generates after player 7 deviates at period t — 1, the right hand side is player
0’s payoff when she keeps on playing aj(7) at each period 7. Notice that player 7’s

action at period t after his deviation at period t—1 should be a}(t). It is because the
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action profile that o* prescribes at period t is a Nash equilibrium by the inductive
hypothesis and (P-0 PI) and the genericity imply that given a Nash equilibrium
(ag(t),as(t), (a}(t))jen-(i}), there is no action ai # af(t) for player 7 such that
(3o(t), ai, (a}(t))jen-{i}) is another Nash equilibrium. For the same reason, player 2
plays a?(7) at each period 7, 7 > t + 1, as long as player 0 plays ag(7 — 1) at period

T—1.

On the other hand, in order for o* to be a subgame perfect equilibrium, given
the history h(t) where A(t) = [h(t—1), (a§(t—1), a; (t—1), (aj(t—1))jen—(:})], Player
0 should not have an incentive to deviate to an action other than ag(t) at period ¢.
In particular, she should be worse off by playing @o(7) in any period 7, t <7 < T.

In other words,

T
>_uo(ag(r),a{(7), (@5(7))jen-g:})

2 uo(@o(t), a;(t), (aj(t))jen-s}) + _Et;Huo(&o(r),ai(r),(a;-(r)),-eN_{;}). (2)

Here, foreach 7, t+1<7<T,

(ai(7), (@5(7))jen-gi) = (0 (W (7)), (5 (W (7)))jen-(s}) where

(t+1) = [b(t), (@o(t),af (t), (a5(t))jen- ()] and

W(r+1) = [W(t +1), (@o(s), ai(s), (a5(s))ien-))s=enn)-
Notice that for each 7, t+1 < 7 < T, (05 (W' (7)) jen-(5y = (@;(T))jen-{3) since o* is
a restricted strategy and so the actions that it prescribes to player j € N — {i} only

depends on player 0’s and player j's own previous actions. Given (aj(7))jen-{i} =

(@;(7))jen-{sp, @5(T) has also to be same as @;(7) by the inductive hypothesis that
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(o(T),a3(7), (@(7)) jen—(s}) is @ Nash equilibrium and by (P-0 PI) and the gener-
icity. That is, the right-hand side of the inequality (2) is identical to the left-hand

side of the inequality (1).

This implies that the inequality (1) and (2) must be satisfied with equal-
ity. However, we notice that (a3(r),ai(7), (a}(7))jen—(i})T=, is not just the re-
arrangement of (@o(t), a}(¢), (a3(8))sen—), (Bo(r), (7). (35(7))jen—ga))- IE those
two paths are different only in terms of the order, then player 0 is strictly better
off by deviating to b; at period ¢ — 1. With this observation, it is straightforward to
see that given T, the set of payoffs of the stage game which satisfies the inequality

(1) and (2) is closed and of measure zero. W

2.7 Concluding Remarks

In this paper, we consider repeated games with a particular type of imperfect ob-
servability w}ilere while there is at least one player who observes the actions of all the
players, other players only observe the perfect observer’s action and possibly some
other players’ actions. Given the information structure, we provide Nash-threat
folk theorems under certain restrictions of the stage game payoffs. In each of the
equilibria we constructed, after a deviation occurs along the equilibrium path, the
perfect observer plays an action other than the equilibrium-path action. This acts
as a signal to the players after which they play the stage game Nash equilibrium for
finite, say K, periods. A major concern is given to ensure that the perfect observer
initiate the punishment when she observed some other player’s deviation, while not
doing so when there are no deviations.

Given our setup, we doubt the possibility of the general folk theorem that
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any individually rational payoff vector is supportable as a sequential equilibrium
outcome. Since the perfect observer can signal the identity of a deviator by playing
some specific action or a sequence of actions, it might not be impossible to im-
plement a player-specific punishment which is essential for the folk theorem-type
results. The difficulty is to prevent the perfect observer’s incentive to lie that some
player has deviated if she is better off by minmaxing the player. However, we be-
lieve that the folk theorem can be obtained if there are two perfect observers. The
argument in Ben-Porath and Kahneman (1996) can be applied.

The existence of the perfect observer is crucial for our results. The perfect
observer’s signalling action serves as a coordination device according to which the
players synchronize the timing of the punishment. Without a perfect observer,
however, the players do not know when to start to execute the punishment (for
example, to play the stage game Nash equilibrium) since they may not be able to
get the “feedback” that all the signalling process is properly done.

Regarding to the informational requirement for the players in repeated games,
our results suggest an important observation. The star graph provides sufficient
informations to the players to sustain an outcome that Pareto-dominate a stage
game Nash equilibrium if the stage game satisfy a certain restriction on the payoffs.
Compared with n(n — 1) observability for the n players under the complete graph,

the star graph requires only 2n observability.
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2.8 Appendices

The proof of proposition 4.3.

To fix the ideas, let us first give a sketch of the strategy profile.

Suppose player 0 neither deviated from ag at period ¢ nor before. Consider a
typical player in N, say player 1. Let D, (t) be the set of the players among N;U {1}
who did not play a* at period &.

If D;(t) is empty or a singleton, the actions player 1 should follow after period
t are exactly same as in the ertended M.F.N.R.. That is, he plays m; if D,(t) = {1}
and a} if D,(t) is empty or a singleton other than {1}. If D,(t) consists of at least
two players, player 1 is required to play a} at period t+ 1 whether he is one of them
or not. If player 0 plays ag at period t+1 and the set of the players in Ny U {1} who
did not play a* at period t + 1 is D;(t + 1), player 1 does the same at period ¢ + 2
as he would do at period ¢+ 1 if D;(t + 1) were Dy(t). On the other hand, if player
0 plays sg at period ¢ + 1, K periods of punishment phase where f is played starts
from the next period. At period t + K + 2, after the final period of the punishment
phase, the action player 1 plays depends on R;(t + 1), the set of the players whose
period t 4+ 1’s actions are different from the ones as specified above. More formally,

Ry (t 4 1) is defined as follows:
Foralli € N, let CNy; = [N] U {1}] U [Nt U {’L}]

Ri(t+1) = {i e Myu {1} | (i) ai(t + 1) # m; for {i} = Dy(t) N CNy; and

(ii) a:(t + 1) #a} for {i} # Di(t)NCNi: }

Player 1 plays a} at period t + K + 2 unless Ri(t + 1) = {1}, in which case he

plays m;. That is, he plays exactly as he would do if player 0 played ag at period
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t+ K+1 and Di(t + K + 1) were Ry(t + 1). If player 0 plays an action other than
a§ and $g, the infinite punishment phase is triggered.

Player 0, after observing all the players who did not play a* at period ¢, first
calculates the set of the players each of whom observed only his own deviation (from
a*). If we let the set Do(t) (i.e., Do(t) = {i € N | D;(t) = {i}}), only those in the
set will play m among N in the next period since the other deviators, who observed
another deviation(s) besides their own, will play a* as well as nondeviators. Given
the other players’ strategies, player 0 will signal at period t+1 if and only if ug( a*)
is strictly greater than ug(ag, (™) ;¢ 5,0y (3k)en—Boyy)- I €ither Do(t) is empty or
the inequality is in the opposite direction, she plays ag.

The beliefs system underlying the strategy profile is that player 1 believes
player [ who is not one of his neighbors has always played the equilibrium action a;
except for punishment phases where the stage game Nash equilibrium is played. It
is quite straightforward to show this beliefs system is consistent with the strategy
profile introduced in the above.

An important implication of this beliefs system is that if period ¢ was in
nonpunishment phase and player 0 played aj at the period, Di(t) is the set of all
the players who player 1 believes did not play a* at period ¢. Also he believes
that for each player i € N, D;(t) N CNy; is the set of all the players in N who
player i believes did not play a* at period t. Then D;(t) along with the strategy
profile reflects player 1's prediction for the future plays®?: Let D, (t) be the subset

of Dy(t) such that a deviator in D;(t) does not observe other deviators in Di(t).

2Note also that if Di(t) = {i} but player 0 and player i played aj and a; at period ¢ + 1
instead of mg and m;, player 1 believes the unexpected actions are due to their simultaneous
mistakes rather than due to another deviation by one of player i’s neighbors at period t. Another
important implication of this beliefs system is that player 1, if he has been the only deviator
among his nighbors and himself, never suspects another deviation which he does not observe even
though player 0 unexpectedly continues to play ag just as in M.F.N.R. under the star graph.
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The deviators in D; (t) are only those who are expected to play m since the other
deviators in D;(t) — D (t) observe another deviation(s) besides their own and will
play a*. So he expects the play to return to the equilibrium path if D, (t) is empty.
For the case where D;(t) is not empty, he predicts player Qs signalling if uo( a*)
is strictly greater than ug(ag, (m;);.5, o (@) en-B, (n))' If the inequality is in the
opposite direction, he expects player 0 to continue to play ag.

Checking the optimality of player 1’s actions in this case is quite apparent
because he can predict the future plays, whether he followed or did not followed the
prescribed actions, only by D ().

However, if period ¢ was the final period of K periods of the punishment phase
triggered by player 0’s signalling at period ¢t — K, checking player 1’s incentive at
period ¢ + 1 is more subtle than in the former case. In this case, R(t — K), the set
of the players in N, U {1} who do not follow the prescribed actions at period t — K,
may not be sufficient as player 1's predictor for the play of period £ + 1. To see
this, assume N = {1,2,3}, N, = {2,3}, N, = {1} and N3 = {1}. Suppose period
t — K — 1 was in nonpunishment phase and all the players played a* at the period.
If the action profile played at period t — K is (so, a},ma,a3), Ri(t — K) = {2} and
player 1 believes R,(t — K) = {2}. So, player 1’s prediction for the play of period
t + 1 will be (so, a},m2,a}). Now consider another situation where player 1 and
player 3 played m; and mg at period t — K — 1. (so, D1t — K —1) = {1,3}.) If
the action profile played at period t — K is (s, a},ms,a3) as before, R (t — K) will
be also {2}. In this situation, however, player 1 expects the play to return to the
equilibrium path from period t+1. It is because he believes that Ry(t— K) = {1,2}
since player 2, who deviated at period t — K|, also regards player 1’s unexpected

action a} as his mistake rather than as the “right” action and that player 2 and
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player 0 will play a and aj) at period t + 1. The point is that for each player i € N,
Ry(t — K)Nn CNy; may not be player 1’s beliefs about the set of all the players in

N who player i believes deviated at period t — K.

This problem motivates us to introduce the following machines to describe
the strategy profile.

First of all, consider a typical player in IV, say player 1. Player 1’s machine is
defined as follows. The set of states for player 1 is [Z1 x (2V)"] where Z* is the set of
nonnegative integers. A typical state is (k, (Q%)ien) where k =0,1,..., K, K+1 and
Q@ C N and the initial state is (0, (8)). The output function for player 1 prescribes

an action to player 1 as a function of a state for player 1 and is as follows:
my if k=0, Q] = {1}
o1(k, (@i)ien) = alif k=0, Q! # {1}
hHifk#0
Notice that player 1’s action depends on only k£ and Q}. The transition function
for player 1 specifies the state for player 1 at the next period as a function of
the state for player 1 of the current period and the actions player 1 observes at the
current period. Before specifying the transition function, we introduce the following

notations.

Notation
L] Dl( al) = {‘L € N] U {1} | ag 75 a,‘} where a = (a,-),-eMu{l}.
e We define “common neighbors” between player 1 and player i as follows:
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Vi€ N,
CNy; = [Ny U {1}]n[V; U {i}].
e Foreachi € N, Qi = {j € Qi | Qi NCNy; = {5}}.
e For eachi € N, (a;(Q}))jen € XjenAj where
m; if j € QL
o} if j ¢ Q

o For eachi € N, Ri(Q%, a;) = {j € CNy;| a; #a;(Q})}

a;(Q}) =

The transition function is as follows.
e [(0,(QY)icn), (a5, a1)] = [0, (Di( a1) N CNy)ien]

— If the state at period t is (0, (Q%)icn) and player 0 played a§ at period t,
player 1's state at period ¢ + 1 would be (0, (D1( a;1) N CNii)ien) where
Dy( a;)NCNy; is the set of players in CNy; who did not play a* at period

t.
o [(0, (Q1)ien). (s0, ar)] = [1, (Ri(Q}, a1))sen]

o [(k,(@ien), ()] = [k +1,(Q%)ien] for k=1,2,.., K =1
o [(K,(@1ien). ()] = [0,(Q1)ien]

— If the state at period t is (0,(Q})ien) and player O played so at pe-
riod t, K periods of punishment phase starts from the next period. Af-
ter the final period of the punishment phase, player 1’s state will be
(0, (R1(Q%, a1))ien) where Ri(Q}, a)) is the set of players in N whose

actions at period t are different from the ones given by (a;(Q}))jen-
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° [(0’ (Qi)iGN)v (ao, al)] - [K + 11 0] where &0 # 06,80
e (K+1,0),(,.)] = [K+1,0]

— If the state at period ¢ is (0, (Q%)icn) and player 0 plays an action other
than a or sg at period t, the next state will be (K41, 0) that indicates the

infinite punishment phase. The infinite punishment phase is absorbing.

For player 0, define

Qo(((@5)ien)jen) = {i € N | Qi = {i}}.

Then states and transition function for player 0 are also well-defined. Her output

function is given by

’

sg if ‘uo( a‘) > uo(aﬁ, ("li)iEQm (a;)jer)

L 00(01Q0) =
ag if uo( a*) < uo(ag, (Mi)icqo, (a5)jeqo) OF

Qo =10

\

e go(k,Qo) = fo for k #0.

In each period t, the states for player 1, (k, (Q3):ien), reflects player 1's pre-
diction for period t’s play. Unless k = 0, player 1 expects f to be played. The k
indicates that the current state is the kth period of K periods of punishment phase
if 1 <k < K and that for k = K + 1, it is in the infinite punishment phase. If
k = 0, given that each player i in N bases his action on Q! and player 0 bases her

action on (Q});ecn, player 1’s prediction for period t’s plays requires his beliefs about
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(@})ien. However, lemma 1 shows that the beliefs system described above implies

that for all ¢ € N, player 1’s belief about @} is nothing but Q3.
Lemma 1. Forallie N, Qi = Qi if Vle N — (N U{1}),Y¥T > 2,

(i) ai(r) = f if there is a period 5,1 < s < K|, such that ao(7 — s) # ag.

(ii) ai(t) = a] ifae(r —s)=aqagforals, 1 <s< K.

To see the meaning of Q}, suppose player 1’s state at period t is (0, (@})ien)-
Given the interpretation of (Q%)icn, player 1 expects player ¢ in N to play a;(Qj).

That is, player 1 calculates a set defined as

L((@)en)) ={i e N | Qi = {i}}.

I, is the set of players in N who are expected to m at period f. Also, player 1
expects player 0 to play s if ug( a*) > ug(ag, (7:)ier,, (a5)jen-1,)- If 11 is empty or
the inequality is the opposite direction, she is expected to play ag.

If player 0 played a} at period t, player 1's state at period ¢ 4+ 1 would be
(0, (Q%)ien) where Qf = Di( a;) N CNy; and Di( a1) N CNy; is the set of players
in CNy; who did not play a* at period t. Given his belief that those in D;( a;) are
all the players in N who did not play a* at period ¢, player 1 believes that for each
player i € N, D;( a;) N CNy; is the set of all the players in N who player 7 believes
did not play a* at period t.

Now suppose player 0 played sg at period t. Then player 1’s state at the next
k period, 1 < k < K, is (k, (R3(Q%, a1))icn), which indicates the kth period of K
periods of punishment phase. Here, R;(Q}, ai) is the set of players in N whose

actions at period t are different from the ones given by (a;(Q}))jen-
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Before checking the optimality of the output functions, we introduce useful

lemmas.

Lemma 2. (i) Forall I ¢ Ny U {1}, @\ # {1}
For all ¢ € N, U {1},
(ii) if Qf = {1}, Q # {5} for all j € CNy; —{i} and
(iii) if Q% = {j} for some j € CNy; — {i}, then Q] # {i}.

Lemma 3. For alli € N,

(i) if Qi = {i}, Q] # {j} for all j € N; and

() ifj e 5: for some j € V;, then i ¢ 5‘]’

Lemma 2 shows some restrictions between player 1's states. According to (i)
and (ii) of lemma 2., player 1 expects the other players in N — {1} to play a* if his
state is (0, (Q%)ien) with @ = {1}. Also, if the state is (0, (@} )icn) Where there is
some i € N; such that Q} = {i}, all the player i’s neighbors are expected to play
a* and player 7 to play m;. Lemma 3, on the other hand, shows some restrictions
on the states between the players in N. Lemma 3.(i) implies that there are no two
neighbors who are to play m if the current state is not in punishment phase. In
other words, ifie Qo and j € Qo, they are not neighbors. The proofs of the lemmas

will be provided at the end.

The optimality of player 1’s output function

(1) (0,(Q1) with Qi = {1}.
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Since there is noi € N — {1} such that Q% = {i} by (i) and (ii) of lemma 2.,
he expects player 0 to play so and the other players in N — {1} to play a*. So if he

plays m; as the output function specifies, he gets

(1 = 8)ur(so,m1, (0] Jien—(13) + 6(1 = 6% )ur (f) + 6 +us(a%). (8.1)

On the other hand, if he does not play m;, he expects that the state after the final
period of the punishment phase will be (0, (Q})) where Q! = {1}, which leads to

another punishment phase. So he will get

(1-9) Inax w150, @1, (a])ien-(13) + 6(1 — 6%)us (f)
+65+(1 — 8)uy(s0, 1, (af)ien-01})
+65+4(1 = §5)u(f) + 8% Pui(a”). (8.2)

Given the construction of K, it is easy to see (8.1) is strictly larger than (8.2) for §

sufficiently close to 1.
(2) (0,(Q%)) where there is some ¢ € Ny such that @} = {i}.

Let I be the set of players in N; such that Q% = {i}. Then, notice that there
are no %z and j in / who observe each other by (ii) of lemma 2. Player 1 expects those
in I will keep on playing m if player 0 plays ag , given the other players playing ag

as specified by the output functions.
(2.1) Suppose first that ug( a*) > ug(ag, (Mi)icr, (a5)jen-1)-

In this case, player 1 expects player 0 to play so, players in [ to play m and

the others to play a*. So if he plays a} following the output function, he gets
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(1 — &)ur(s0, a1, (Ma)ier, (a5)jen—1-11y) + 6(1 — 6 )Yur(f) + 6+ 1wy (a%).

As in (1), if 6 is sufficiently close to 1, it is strictly larger than the payoff player 1

will get if he does not play a}, which is

(1-96) max u1(S0, a1, (M )ier, (a3)jen~1-(13) + (1 = 6%)uy (f)
1

+6K+ (1 = 6)us(s0, ™, (a; )ien-113) + 6521 — 6FYuy (f) + 6252y (a”).
(2.2) Suppose now that ug( a*) < ug(ag, (Mi)icr, (a})jen-1)-

If this is case, player 1 expects player 0 to keep on playing ag. If he plays aj
as required, his continuation payoff will be u;(ag, (m:)ier, (a})jen-1)- On the other
hand, if he does not play aj, all those in [ will observe his deviation as well as
their own and the state will be (0, (Q%)) where @} = {1,7} for all 7 € I, the play

returning to the equilibrium path. So the payoff will be

(1 - 5) .{f‘;;*,if ul(SOa a,, (me)ieu (a;)jeN—I—{l}) + by (a‘).

Since u;( a*) < ui(ag, (i)icr, (})jen~1) by the symmetry of the payoffs and u; ( a*)
# w1 (ag, (Mi)ier, (5)jen—1) by (A3), player 1 will be better off in the former case

for 6 close to 1.
(3) (0,(@%)) where there is no 2 € Ny U {1} such that @} = {i}.

In this case, player 1 expects the equilibrium path’s play a*. Since his
deviation will lead to K periods of punishment phase, he will be better off by
playing aj.

(4) (k, (@) wherek=1,..., K +1
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Since a Nash equilibrium f is played when k& # 0 and the action he chooses
in this state does not influence the future, player 1 will play f;, the myopic best

response.

The optimality of player 0’s output function

(5) (0,Q0) with Qo =0

Since her action other than a§ will trigger the finite punishment phase or the
infinite punishment, player 0 is better oft by playing ag and getting uo( a*) in each

period.

(6) (0,Q0) with Qo # 0

Those in Qg are to play m in the current period. And lemma 3.(i) implies

that they will continue to play m unless player 0 plays an action other than ag.
(6.1) Suppose first that ue( a*) < ug(ag, (11:)icgo, (@) jeqo)-

Then, player 0 is better off by keeping on playing ag rather than playing so

for high discount factor since

UO(at'n (""i)iEQo 3 (a;)jer)

> (1 — 8)uo(so, (:)icgo, (85)jeqo) +6(1 — 6% )uo(f) + 65 up(a’).
The inequality is guaranteed by the construction of K and the restriction that
uo( a*) < uo(ag, (Mi)icqor (a5)jeqo)-
(6.2) Suppose now that ug( a*) > ug(ag, (m:)icqo, (a})icqo)-
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The following inequality shows the optimality of playing mg in this case.

(1 — 8)uo(so, (Mi)icqo (a5)jeqo) + 6(1 — §F)ur () + 65wy (a®)
> (1 - 6)'“0(01.)’ ('m‘f)iEQov (a';)jGQo) + 5(1 - 6)u0(307 (mi)iGQm (a;)jéQo)

+6%(1 = §%)uo(f) + 6" uo(a’).

The left-hand side is player 0’s continuation payoff from playing so while the right
hand side is her continuation payoff from playing aj in the current period and
playing so in the next period. Notice that in both cases, the play returns to
the equilibrium path after K periods of punishment phase. The restriction that
uo( a*) > uo(ag, (Mi)ieqor (})jeqo) Buarantees the strict inequality if § is sufficiently

close to 1.

Proofs of lemma 1, 2, and 3

Lemma 1. Forallie N, Qi =Qiif vle N — (N U {1}),VT > 2,

(i) ai(r) =fiifag(tr—s) #Fagfor 1I<s< K

(ii) ai(r — 1) =a;} , otherwise.

Proof. If CNy; = 0, Q% = @ since Q) C CNy;. Q% is also empty given the assump-
tions (i) and (ii). From now on, we prove the lemma for i € IV such that CVy; is not
empty. We prove by induction. In the initial period, notice Q} = Qi = 0. Let the
states of player 1 and player 7 at period t be (k, (@ jen), (k, (Q%)jen), respectively,
and suppose @ = Q. If k = 1,2,..., K, the states at period t + 1 will be simply
(+1,(Q))jen), (k+1,(Q))jen) for k =1,2,..., K—1 and (0, (@})sen), (0, (Q))jen)
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for k = K. So the claim is obviously true. Suppose now the states at period ¢ be

(0, (@1(®))sen), (0,(QL())sen)-

First, consider the case where player Q’s action at period t was aj. Then,
Q‘I(t + 1) = D](al) n CNI,' = {] € CNul aj(t) 7& a;}
On the otherlha.nd,
Qi(t+1) = Di(a:) N [N; U {i}] = {j € N; U {i}] a;(t) # a}
= {] € CNlil Qa; 75 a.;}

The last equality comes from the assumption that a;(t) = af for alll € N — (N; U
{1}). So, Qi(t +1) = Qi(t +1).

Now, consider the case where player 0’s action at period ¢ was sg. Suppose
j € Qi(t+1). For the case that j ¢ Q% (t) (or j € Q% (), it has to be that a;(t) # a
(or a;j(t) # m;). Since j ¢ C?:(t) (or j € a:(t)) by the inductive hypothesis and
j € N;U {i}, j € Qi(t + 1).2 The same argument will show that if j € Qi(t + 1),
j € @i(t +1). So we are done. W
Lemma 2. (i) Foralll ¢ N, U {1}, @, # {{} .

For all i € Ny U {1},

(if) if @ = {i}, Qf # {5} for all j € CNy; —{i} and

(iii) if j € C}ZI for some j € CNy; — {i}, then i & 5’,

Proof. Since Qi C CNy; for all i € N, (i) is obvious.

For (i) and (iii), we prove by induction. In the initial period, (ii) and (iii) are

trivially true since Qi = @ for all i € N. Now, let the state of player 1 at period ¢

B4, is obvious to see that that Q} = Q! implies that Q} = Q}.
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be (k, (Q%)ien) and suppose (ii) and (iii) are satisfied. Notice for k = 1,2,..., K, (ii)
and (iii) are also satisfied at period t+1 since the state will be simply (k+1, (@})ien)

and (0, (Q%)ien), respectively. We now suppose the state of player 1 at period ¢ is
(0, (Q%(t))ien) where (Qi(t))ien satisfies (ii) and (jii).

First, consider the case where player 0’s action at period ¢ was a5. Fix a
player i € Ny U {1}. Since Q%(t + 1) = D1( ai(t)) N CNjs for all A € N in this
case, Qi (t + 1) = {4} holds only if a;(t) # a} and a;(t) = a; for all j € CNy; — {i}.
So it must be the case that i € Q}(t + 1). On the other hand, if j € C‘é:,(t + 1) for
some j € CNy; — {i}, it must be true that a;(t) # a} and a;(t) = a;, which implies

i¢ 5{(1‘, + 1). Hence (ii) and (iii) are obviously satisfied.

Suppose player 0 played sq at period ¢ and so the state of player 1 at period

t+1is (1, (Qi(t +1))ien)-

We show first (Q%(t + 1))ien satisfies (ii). Fix a player i € Ny U {1}.

(ii-1) Suppose Q% (t) = {i}. In this case, Qi(t + 1) = {i} only if ai(t) # mu
and a;(t) = a} for all j € CNy; — {i}. Then Qi(t + 1) # {4} since @%(t) # {5} by
the inductive hypothesis (ii) and a;(t) = a}.

Suppose now Qi(t) # {i} and Qi(t + 1) = {i}. Let J be the set of j €
CNy; — {i} such that .j € Q}(t). (J may be empty.) Notice then that in order for
Qi(t+1) = {i} to be true, it has to be that a;(t) # a}, a;(t) =m; for all j € J and
ar(t) = a}, for all k € CNy; — J — {i}.

(ii-2) First of all, it is easy to see that for all j € J, i € Qj(t + 1) ( so,

Qi(t +1) # {j}) since i ¢ éj{(t) by the inductive hypothesis (iii) and a;(t) # a}.
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(ii-3) Furthermore, for all kK € CNy; — J — {i}, Q%(t + 1) # {k}. If there is
k € CNy — J — {3} such that Q%(t + 1) = {k}, it must be that k € Q¥(t) given
ax(t) = a. Notice that k& € Q¥(t) implies Q%(t) = {k}. It is because if k € Q4(t) and
there is ¢ € CNy such that g € Q%(t), k ¢ Q%(t). But if Q5(t) = {k}, i€ Q¥ +1)

since a;(t) # af. That is a contradiction to the fact that Q%(t + 1) = {k}.

Now we show (Q%(t + 1))ien also satisfies (iii). Fix a player i € N U {1}.

(iii-1) Suppose Qi(t) = {i} and there is some j € CNy; — {i} such that
Jj € a‘i(t+ 1). Given Qi(t) = {i} (and so, 6‘1(f) = {1}), it must be the case
that a;(t) # e} in order for j € é-i(t + 1) to be true. Notice a;(t) # aj implies
j € Qi(t +1) since Qi(t) # {j} by the inductive hypothesis (ii). However, if
je@it+1), é(t + 1) is either {j} or empty by the definition of a{(t + 1). So,
i¢ Qi(t+1).

Suppose Qi(t) # {i} and there is some ¢ € CNy;—{i} such that g € C‘j”i(t+1).
In this case, notice first that a;(t) = a} has to be true since i ¢ Q}(t+1). Let J be
the set of j € CNy; — {i} such that j € é—‘l(t) (J may be empty.)

(iii-2) First, if ¢ € J, it is obvious that 7 ¢ Q}(t + 1) since i ¢ @?{ (t) by the
inductive hypothesis (iii) and a;(t) = a;.

(iii-3) Now suppose g ¢ é—‘,(t) (i.e.,q ¢ J.) andi € C_ji'(t+ 1). Sinceq ¢ C‘é:i(t),
first of all, it must be that a,(t) # a} in order for ¢ € Qj(t + 1) to be true. On the
other hand, in order for i € Q}(t + 1) to be true, it has to be that i € é?{(t) given
a;(t) = a}. However, if i € C?{(f.) (and so, ¢ ¢ Q(t)) and a,(t) # a, ¢ € Q{(t +1).
It is a contradiction to the fact that ¢ € Qj(t + 1) since 6‘271’ (t + 1) is either {g} or

empty if g€ Qi(t +1). W

Lemma 3. Foralli € N,
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(i) if Qi = {i}, @} # {4} for all j € N; and

(ii) ifj € 5: for some j € NV;, then i ¢ 5';

Proof. The proof is similar to the one in lemma 2.. We prove by induction. In the
initial period, (i) and (ii) are trivially true since Q% = @ for all i € N. If player %’s
state is (k, (@)jen) where k # 0, the induction argument also trivially holds since
player i's next state will simply be (k+1, (Q?) jen)- We now suppose the states of the

playersin N at period t are [(0, (QI(t));en))ien Where (QX(t)):cn satisfies (i) and (ii).

First, consider the case where player 0’s action at period t was a5. Fix a
player i € N. Since Qi(t + 1) = D;( a;) = {j € N; U {i} | a;(t) # a}} in this case,
Qi(t +1) = {i} implies that a;(t) = aj for all j € N;. So, j ¢ Q';(t + 1). Also, if
Jj€E 5:(t + 1) for some j € N;, it must be the case that a;(t) = a}, which implies
i ¢ Q(t+1). Hence, (i) and (ii) are satisfied.

Suppose player 0 played sg at period ¢ and so the state of player i at period

t+1is (1,(QI(t +1))jen)-

We show first (Qi(t + 1))ien satisfies (i). Fix a player i € N.

(i-1) Suppose Qi(t) = {i}. In this case, Qi(t+1) = {i} only if a;(t) # m; and
a;(t) = a; for all j € N;. Then QJ(t +1) # {j} since Q}(t) # {4} by the inductive
hypothesis (i) and a;(t) = a}.

Suppose now Qi(t) # {i} and Qi(t + 1) = {i}. Let J (C N;) be the set of
JjE a:(t)(J may be empty.) Notice that in order for Qi(t + 1) = {} to be true, it
has to be that a;(t) # af, a;(t) = m; for all j € J and a;(t) = af forallk € N; - J.
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(i-2) First of all, it is easy to see that for all j € J, i € Qi(t + 1) ( so,
Qi(t +1) # {4}) since i ¢ QI(t) by the inductive hypothesis (ii) and a;(t) # a.

(i-3) Furthermore, for all k € N; — J, Qf(t + 1) # {k}. If there is k € N; — J
such that QF(t + 1) = {k}, it must be that k& € @(t) given ai(t) = a}. Notice that
ke af(t) implies Q(t) = {k}. It is because if £ € Qf(t) and there is ¢ € Ny such
that q € QX(t), k ¢ Q(t). But if Qi(t) = {k}, i € QE(t + 1) since a;(t) # ai. That

is a contradiction to the fact that Qf(t + 1) = {k}.

Now we show (Q(t + 1))sen also satisfies (ii). Fix a player i € Ny U {1}.

(ii-1) Suppose Qi(t) = {i} and there is some j € IV; such that j € at(t +1).
Given Qi(t) = {i} (and so, (‘:?':(t) = {t}), it must be the case that a;(t) # a} in
order for j € @E(f + 1) to be true. Notice a;(t) # a} implies j € Q;:(t + 1) since
Q%(t) # {4} by the inductive hypothesis (i). However, if j € Qi(t+1), a;(t +1)is
either {j} or empty by the definition of (’QE(t +1). So,7 ¢ C};(f +1).

Suppose Q:(t) # {i} and there is some ¢ € IV; such that g € a:(t +1). In
this case, notice first that a;(t) = a} has to be true since i ¢ Qi(t + 1). Let J be
the set of j in N; such that j € 5:(!) (J may be empty.)

(ii-2) First, if g € J, it is obvious that ¢ ¢ QI(t + 1) since i ¢ @(t) by the
inductive hypothesis (ii) and a;(t) = a;.

(ii-3) Now suppose q ¢ C‘é':(t) (ie.,qg¢ J.) andi € Q3(t+1). Since q ¢& aﬁ(t),
first of all, it must be that a,(t) # a} in order for ¢ € Qi(¢ + 1) to be true. On the
other hand, in order for i € Q¥(t + 1) to be true, it has to be that i € @?(t) given
ai(t) = a}. However, if i € @(t) (and so, ¢ ¢ QI(t)) and a,(t) # a}, g € Q(t + 1).
It is a contradiction to the fact that i € Q¥(t + 1) since Qi(t + 1) is either {g} or

empty if g € QI(t+1). W

93



The proof of Proposition 5.1

For convenience, we denote by period ¢ the point of time when there are ¢
periods left to end the game so that the game starts at period T" and ends at period
1.

First of all, let K be an integer satisfying 2z < Ky where

z = max max u;(a) — u;(b) and
i€{0O}JUN ab

y= min min u;(a) — u;(b) s.t. u;(a) — ui(b) > 0.

We also let T = K + n(K + 2K?).

Along the equilibrium path, a* is played for the first T — T periods and e
is played for the last T periods. If player 0 plays an action other than ag at 1+
T period, f is played for the next K periods. For the first T~ T +1 periods,
the equilibrium has three phases, normal phase, signalling phase and punishment
phase. The play starts from normal phase where a* is played unless some player(s)
deviates. If player ¢, 7 # 0, is the only player who deviates from normal phase or
deviated at the end of the last signalling phase, signalling phase for player i starts. If
he is one of the deviators, signalling phase for the deviators starts. In the signalling
phase, whether it is for player ¢ or for multiplayers including player ¢, player ¢ is
required to play a! while player 0 is required to play an action different from ag- 2
The signalling phase continues unless player 0 signals, which triggers punishment
phase where f is played for K periods. After the final period of punishment phase,

the play returns to normal phase unless there are deviations at the end of the last

signalling phase, in which case a new signalling phase follows.

2414 this equilibrium, saying that player i deviated at the end of the last signalling phase has a
slightly different meaning from saying in M.F.N.R.. Here, we mean the case where he did not play
a; at the period where the last punishment phase is triggered(i.e., at the last period when player
0 started to play an action other than aj) whether he is in normal phase or his or other player(s)’
signalling phase.
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The last T periods is divided into n+ 1 blocks. We call K periods of the first
block “adjustment phase”. In this phase, punishment phase will be completed if
not finished at period 1+ T , and then e is played for the remaining periods of this
phase. Each block i of the next n blocks consists of K periods of the “evaluation
phase for player i” and the next 2K? periods of the “player #’s rewarding phase for
player 0”, denoted by E(i) and R(Z), respectively. If period T + 1 was not during
punishment phase, e is played during E(Z) unless player i deviated at period T + 1,
in which case player h, h € S; U {%,0}, plays (i) instead. For the case where
period T + 1 was during punishment phase, e is played unless player i deviated at
the period when the punishment is triggered. In this case, player h, h € S; U {z, 0},
plays o4 (7) during this phase. Finally, in R(Z), player 0 would be either punished if
she did not signal properly in the signalling phase for player i or players including
player % or would be rewarded if she properly signals. More specifically, the play in
R(t) goes as follows:

Suppose first ug(e) > uo((%), (€1)ien-({ijus:))-

(i) Play e for the whole R(Z) phase if 7(7), the period at which ends the last sig-
nalling phase of player 7 (or players including him), is greater than or equal
to 14+ X + T or if he was never unpunished since period 1 + K + T .% Also

play e if he never deviated since the initial period.

(ii) If 7(z), the period at which ends the last signalling phase of player % (or players
including him) who was unpunished at period 7(z)+1, is smaller than 1+ K+T,

ay(i) is played for [K + 1+ T — 7(¢)] - K periods. Play e for the remaining

ZWe say that player i stayed unpunished at period ¢ if it was in the signalling phase of player
i{or players including him) in period ¢ but player 0 did not signal at that period. We also say
that player ¢ was never unpunished if player 0 signalled as soon as signalling phase of player i(or
players including him) starts.

95



periods.

(iii) If player ¢ stayed unpunished at period 1 + T , ax(2) is played for the whole
R(i) phase(i.e., for 2K?).

Now consider the case ug(e) < ug(c(z), (er)ien—({ijusy))-

(i)’ Play an(%) for the whole R(i) phase if 7(z), the period at which ends the last
signalling phase of player i (or players including him), is greater than or equal

to 14+ K + T or if he was never unpunished since period 1+ K + T .

(ii)’ If 7(i), the period at which ends the last signalling phase of player 7 (or players
including him) who was unpunished at period 7(i)+1, is smaller than 1+ K+T,
e is played for [K + 1 + T — 7(i)] - K periods. Play a4(i) for the remaining

periods.

(iii)’ If player i either stayed unpunished at period 14T or he never deviated since

the initial period, e is played for the whole R(z) phase.

The beliefs system underlying the equilibrium is that player k believes player
i who he does not observe has always played the equilibrium action a] except for
punishments phases where he played f;. The implication of this belief is that the
unexpected actions of player j, who is not only his neighbor but also a player i’s
spectator, during E(i) or R(i) are due to his own mistakes during those phases,
not due to player i's deviation or player 0’s not signalling at some periods before

adjustment phase. It is straightforward to show this beliefs system is consistent.
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Let us start with noticing the sequential rationality of the (claimed) equilib-
rium for the last T periods(i.e., 1 <t < T) given the beliefs system of the players:
Each player plays Nash equilibrium of the stage game in adjustment phase. In E(7)
and R(%), player j, j € S; U {0,1}, plays either e;, Nash equilibrium of the stage
game, or c;(i), the Nash equilibrium of the modified stage game. On the other
hand, player [ plays e; if he does not observe player i. This is optimal for player [
given his belief that player ¢ never deviated and so the other players would play e.

By the construction of K, it is also apparent that player 0 is better off playing

aj in normal phase rather than playing other action, which triggers K periods of f

The incentive of player 7, i € N, who is in normal phase or in the signalling
phase of Q; where Q; C N; U {i}, at period £ > 1+ T is easily seen to be satisfied.
While player i’s gain from the deviation on early normal phase t > 2+ T or signalling
phase t > 24 K+ T, would be washed out by the ensuing K periods of punishment
phase?6(which can be extended to adjustment phase), the incentive to deviate from
the last normal phase t = 1 4+ T or the signalling phase in peried t <1+ K+ T
will be deterred by the threat through E(3).

We show now signalling is optimal for player 0 in any player(s) signalling
phase. Let Q@ , @ C N, be the nonempty set of the players who are in their
signalling phase at the beginning of period t > 1 + T. Let Q" and Q" be the
two subset of Q where Q" is the set of the players who are in their new signalling

phase at the beginning of period ¢t > 1+ T ?* and Q" is the set of players who

are unpunished at period ¢ 4 1. Partition Q%, a = n,up, into two subsets @ * and

26 Also by 2K 2 periods of o, (i) in R(3) if uo(e) < uo(c(3), (er)ien-((i}us:)) and he never deviated
before. :
2730, player i, i € Q", deviated either at period ¢t + 1 which is in his normal phase or at period

t + K + 1 when player O triggered the last punishmentand.
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[
Q@ °where

Q" = {i € Q%] uo(e) > uo(a(?), (e)ien—(fsusy)}-

Q" = {i € Q% uo(e) < uo(ali), (er)en—(itusa) }-

We also partition IV — @, the set of the players who are not in their signalling phase
at the beginning of period ¢ > 1 + T, into three subsets, ND, P’ and P": ND is
the set of the players who never deviated. P’ U P" is the set of the players who

deviated before but are already punished at period ¢ where

P'={ie N-(NDUQ) | uo(e) > uo(a(i), (e)ien-(gspus) }-

P'={ie N—(NDUQ) | uo(e) < uo(ali), (e)ien-(iyusn)}-

Suppose, first, t > 24+ K +T. Then player 0 is indifferent between signalling
at period ¢t and playing aj at period ¢ and then signalling at period t — 1. To see
this, note that the payoffs for the last T periods do not change by this one-shot
deviation and that the payoffs for the first t — T periods from signalling are the
left-hand side of the following equation and the left-hand side is the payoffs from

the one-shot deviation for these periods.

arg max uo(ao,(af)ien) + K - uo(f) + [t — (1 + K +T)] - ug(a®)

= ug(a®) + uo(mo, (af)ien) + K- u(f) + [t —~1- (1 + K+ T)] - uo(a*)

Consider now period t, where 2+ T <t < 14+ K+ T.

arg max uo(ao,(a)ien) + K - uo(f) + [t = (L + I)] - ua(€) + nK - uo(e)

+(#ND + #P') - 2K* - uo(e) + 2K+ ) uo(ee(d), (er)ien-(syusn)

icp"
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+2K% - #Q™ - uole) + 2K* - " wo(e(i), (e)ien—((spusy)

i€Q'n

+(K+1+T—t)- K- Y uo(ald), (e)en-(gyuss)

iceQ'wp

FIK? + (= (1+T)) - K] #Q - ugfe)
+HK+14+T—t)- K-#Q"™P - ug(e)

+[K2 + (t - (1 + I)) ) K] . Z ‘lLo(a(i), (el)leN-({i}US,-))

iGQ""P
> ug(a®) +arg max ug(ao,(a)ien) + K - ua(f)
. ao

+t—-1-(14+T)] - uo(e) + nK - ug(e)

+(#ND +#P') - 2K? - ug(e) + 2K%- 3" ug(ee(i), (e)ien-(giyuse))

iep"”
+[K + 1+ I, - (t - 1)] K. Z UO(Q(Z), (e,)leN_({,-}Usi))

i€eQ"vruQ'

+HEK2+((t-1) - (14+D)- K- (#Q™ +#Q™) - uo(e)
HEK+1+T - (t—1))- K- (#Q"™ + #Q™) - uo(e)

HEK+((t-1)-1+D)- K] Y uolald), (e)en—(usy)

iEQ”uPUQ""

The left-hand side of the inequality is the payoff from signalling at period t which
is in @’s signalling phase while the right-hand side is the payoff from the one-shot
deviation(i.e., playing aj and period t and signalling at period t+1). The inequality
is established by the construction of K.

The optimality of signalling at period t = 14+ T can be shown by the following

inequality.

arg max ug(ag,(a})ien) + K - uo(f) + nK - ug(e)
L)

+(#HND +#P') - 2K? - ug(e) + 2K2 - S uo(a(i), (er)ien-((ijusy))

iep”

+2K? - #Q™ - uo(e) + 2K% - 3 uo(a(i), (en)ien—(gipussy)

i€Q''n
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+K*- Z up((?), (e)ien-(iyusy) + K? - #Q"™ . ug(e)
i€Q'vp
+K2 . #Q"up . Uo(e) + Kz . Z uo(a(z), (e,),eN_({,-}Usi))
i€Q'"vp

> wup(a*) + K - ug(e) + nK - ug(e)

+(#ND + #P') - 2K? . ug(e) + 2K - Z uo(a(?), (er)ien—({iyusy))

iepP”
+2K%. Y uo(e(i), (e)ien-(ausy) + 2K - (#Q"P + #Q™) - uo(e)-

i€eQ'vwruQ'™
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Chapter 3

Repeated Games with A Single
Long-lived Player and Short-lived

Players with Bounded Memory

3.1 Introduction

Classic repeated games refer to a situation where the same set of players play a fixed
stage game in every period. A central result in the theory of these repeated games
is that non-equilibrium outcomes of the stage game are consistent with equilibrium
play of the repeated game. However, there are many interesting economic situations
where not all of the players are involved in everlasting relationship. Some players
play the stage game infinitely often, but others play only once and stay out of the
game. For example, while a firm is expected to remain in business for substantially
long periods, buyers usually leave the market after the trade with the firm. Even

though the situations where some players are only short-lived do not exactly fit
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to the classic repeated games, similar results have been expected. Consider, for
instance, the example that appears Fudenberg, Kreps and Maskin (1990). One
long-run player plays a fixed stage game against an infinite sequence of short-run
players, each of whom plays the stage game only once. In the stage game, the short-
run player moves first, and then the long-run player chooses an action available to
her. If both the long-run and the short-run player observe all previous plays before
the stage game starts, the repeated game has an equilibrium in which an outcome
other than stage game equilibrium can be played in every period. The short-run
player will not deviate from the desired play if the long-run player punishes him
immediately after his deviation, while the long-run player also can abstrain from
the myopic best response because her deviation will bring punishments from the
subsequent short-run players. This is the basic intuition underlying many papers
that explain why a firm can be trustworthy in the employment relationship or it
produces high-quality goods despite short-run costs. (See, for example, Kreps (1986)
and Klein and Leffler (1981).)

In this paper, we show that the intuition given in the above example is
not true in general unless the short-run players observe all the previous plays. In
particular, we consider a single long-run player who plays a fixed stage game against
an infinite sequence of a different set of NV short-run players. The stage game played
by the N + 1 players is a standard game of perfect information. The main result
of this note is that if each short-run player only observes the plays of a given finite
number of previous stage games rather than all previous ones, for almost all discount
factors the only pure strategy equilibrium outcome of the repeated game is simply
the repetition of the stage game equilibrium.

This is a striking result considering the seemingly innocuous informational
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constraint for the short-run players. While the long-run player is informed of all
previous plays by its nature, it is rather demanding to expect the same for the short-
run players. Due to their one-shot or short-run interaction with the long-run player,
the short-run players are more likely to obtain the relevant information from only
some of their predecessors than from all of them. In the above example, suppose
the short-run players are an infinite sequence of buyers, each of whom has to decide
whether to purchase a good or not, and the long-run player is a single firm who
has to make a quality choice against a buyer who has decided to purchase. It is
then reasonable to assume that while the firm usually has the records of its own
quality choice and the buyer’s purchasing behavior for all previous trades, buyers
observe the outcomes of only a finite number of previous trades. Unfortunately,
the implication of the note is that if this is the case, low-quality production and
no-purchase is the only pure strategy equilibrium outcome of the repeated game for
almost all discount factors.

The idea that bounded memory of a player may restrict the set of equilibria
is not new. In a closely related paper, Tiffany (1988) study a model of intertemporal
economic transfer in a setting of overlapping generations. In his model, each period
a single agent is born and lives two periods. Young agents have the option of trans-
ferring a portion of their endowment to the old agents, who have no endowment.
The main result of the model is that if agents cannot observe all transfers made
before, the only sequential equilibrium is for each agent to transfer nothing. The
literature on reactive equilibria in standard repeated games also concerns the role of
bounded memory. In infinitely repeated duopoly games, Stanford (1986) consider a
particular type of equilibria in which the quantity choice for each firm in the current

period only depends on the other firm’s quantity choice in the last period and show
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that among those equilibria the only subgame perfect equilibrium is the repetition
of Cournot-Nash equilibrium. Kalai, Samet and Stanford (1988) extends this result
in the context of the prisoners’ dilemma game by allowing both players to use more
distant past, not only the previous period. They show that if at least one player
bases the current action only on all previous actions of his opponent, ignoring his
own actions, the non-cooperative outcome is the only reasonable subgame perfect
equilibriurm outcome of the repeated game. Even though the analysis on reactive
strategy profiles may be interesting for its own sake, it is not very convincing that
a player disregards the history of his own actions.

In next section, we provide an example which captures the main idea of this
note. Section 3 introduces the notations for the model we consider. Section 4
presents the main result. As the conclusion, section 5 discusses certain issues to be

addressed.

3.2 A Leading Example

Consider the sequential-move version of the buyer-seller game. The buyer begins
by choosing whether or not to purchase a good from the seller. If he chooses not
to buy, both players receive zero. If he buys, the seller can produce high quality
or low quality. High quality gives both players a payoff of 1; low quality gives the
seller 2 and the buyer -1. While trade, purchase and high-quality production, is the
efficient outcome, the seller produces low quality and so the buyer refuses to buy in
the unique subgame perfect equilibrium of this game.

To examine the plausibility of the efficient trade outcome, consider the same

repeated game as in Fudenberg and Tirole (1991). Suppose the seller faces an
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infinite sequence of buyers, each of whom plays the stage game only once. If the
buyers and the seller observe all previous plays, this repeated game has a subgame
perfect equilibrium in which the trade outcome is sustained in every period for high
discount factors: The seller produces high quality in the first period and continues
to do so if all previous buyers have purchased and she has always produced high
quality. She produces low quality if she ever did so or there is at least one period
when a buyer did not purchase. The first buyer starts out buying the good from
the seller, and the other buyers continue to do so as long as all previous buyers
have purchased and the seller has always produced high quality. If the seller ever
produced low quality or there is at least one period when a buyer did not purchase,
buyers refuse to buy.

If she.is patient, the seller will obviously produce high quality along the
equilibrium path for fear of the subsequent buyers’ boycotts. The seller who ever
produced low quality will provide low quality in case the current buyer unexpect-
edly purchases, because the subsequent buyers would not purchase regardless of her
current quality choice. The buyer’s strategy is also optimal given the seller’s strat-
egy. In particular, the buyer’s punishment against the seller who ever produced
low quality is indeed credible because she would produce low quality in case he
purchases despite her cheating in the past.

This result, however, crucially depends on the perfect observability assump-
tion that buyers observe all previous outcomes. If each buyer observes the outcomes
of only a finite number of previous stage games, for almost all discount factors the
only pure strategy equilibrium outcome is the repetition of the subgame perfect
equilibrium of the stage game, the non-trade outcome. In particular, if each buyer

observes only the outcome of the previous stage game, the only pure strategy equi-
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librium outcome for a discount factor other than § = 1/2 is the repetition of the
non-trade outcome.

To motivate the intuition, let us consider the case when each buyer can ob-
serve the outcome of only the previous stage game. Notice first that to induce the
seller to produce high quality along the equilibrium path, the buyer should not pur-
chase unless the seller produced high quality in the last period in a pure strategy
equilibrium. If the seller is sufficiently patient, say 6 > 1/2, the seller will strictly
prefer high-quality production to low-quality along the equilibrium path, given the
buyers’ subsequent punishments. However, the seller who produced low quality in
the last period has no reason to produce low quality in case the current buyer un-
expectedly purchases. In this case, she can be strictly better off by producing high
quality because the next buyer will not observe the original low-quality production
and thus will purchase as long as she produces high quality in the current period.
Then the buyer, expecting the seller to always produce high quality, will not boy-
cott her despite the low-quality production in the last period. This forgiveness of
the buyers leads the seller to produce low quality, repudiating any pure strategy
equilibrium supporting the trade outcome for § > 1/2.

To see this more formally, let a pure strategy profile for the seller and the

buyers, (s, 0s), be an equilibrium of the repeated game where

as : {(B,H),(B, L),N}'x {B} - {H,L}
and

o : {(B,H),(B,L),N}—{B,N}.
Denote by o, € {(B,H),(B,L),N} a typical outcome of the last period’ stage

107



game. Denote a typical outcome path until period ¢t by he € {(B, H),(B, L), N}*.
Let V(hs—1,ag) be the seller’s value function induced by the equilibrium when the
outcome of all the previous stage games was h,_; and the current buyer’s action was
ag € {B,N}. Notice first that V(h;2,01,a8) = V(hi_,,01,ap) for he_p # hi_,,
for all 0; € {(B,H),(B,L),N} and ag € {B,N}. Furthermore, V(l;_2,01,a5) =
V(hi_,,0},ap) for 0; # d;. So the seller’s value function only depends on the current
buyer’s action and we denote it by V(ap).

In order to support an outcome other than non-trade, the equilibrium has to

satisfy

us(B,H) +6V(og(B,H)) > us(B,L)+6V(ss(B,L)),

where V(N) = wug(N)+ 6V (ag(N)).

Otherwise, the seller produces low quality at every opportunity and buyers therefore
do not buy. On the other hand, if the above inequality holds with the strict one, the
seller will produce high quality whenever the current buyer purchases. Given the
seller’s quality choice, buyers will buy regardless of the previous period’s outcome.
That leads to a contradiction since the seller will be then strictly better off by
producing low quality. So the only possible case for (¢s,0g) to support an outcome
other than non-trade is when the above inequality holds with equality. It is quite
straightforward to check the above inequality holds with equality if and only if
§=1/2,05(B,H) =B and 0g(B,L) = ag(N) = N.

In fact, if § = 1/2, there is an equilibrium in which the trade outcome
is sustained in every period: The seller produces high quality in the first period

and continues to do so if the last period’s outcome was purchase and high-quality
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production. She produces low quality if the last period’s outcome was non-purchase
or low-quality production. The first buyer starts out buying the good from the seller,
and the other buyers continue to do so as long as the last period’s outcome was
purchase and high-quality production. If the seller produced low quality in the last
period or the buyer in the last period did not purchase, buyers refuse to buy. In
this equilibrium, the seller is indifferent between high-quality production and low-
quality production. So it is trivially optimal to produce high quality if she did so in
the last period and to produce low quality if she produced low quality or the buyer
did not purchase in the last period. Given the seller’s strategy, the buyer’s strategy
is also optimal because each buyer cares only about the current period’s payoff and
thus should buy if and only if the seller is expected to produce high quality.

For the case when each buyer observes the outcomes of a finite number of

the previous stage games rather than only one, we obtain a similar result:

Claim If each buyer observes the oulcomes of the last K stage games, there are only
finite numbers of discount factors for which the repeated game has a pure
strategy equilibriumn oulcome other than the repetition of the subgame perfect

equilibrium of the stage game, the non-trade oulcome.

The proof of the claim basically follows the same argument as for K =1 and
consists of three steps.

As a first step, we realize that the seller’s value function only depends on the
outcomes of the last K — 1 stage games and the current buyer’s action.

In the second step, we consider an equilibrium with the property that for
each of the last K — 1 stage games’ outcomes, the seller is not indifferent between

high-quality production and low-quality production. Using backward-induction,
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we develop the argument that in the end, the seller’s value function induced by
this equilibrium only depends on the last period’s outcome and the current buyer’s
action, returning to the case of K = 1. This establishes that in the equilibrium
satisfying the specified property, the seller always produces low quality and thus
buyers never buy.

In the last step, we examine existence of a pure strategy equilibrium in which
the seller is indifferent between high-quality and low-quality production for one of
the last K —1 stage games’ outcomes. We show that such an equilibrium may exist

only for finitely many discount factors.

Proof. Let a pure strategy profile of the seller and the buyers, (0s,05), be an

equilibrium where

os : {(B,H),(B, L),N}!'x {B} — {H,L}
and
o {(B,H),(B,L),N}K — {B,N}.

Let V : {(B,H),(B,L),N}}"!' x {B,N} — R denote the seller’s value function
induced by (0s,05). Let or € {(B,H),(B,L),N} denote the realized outcome
of the stage game of k period ago.! Of course, for all ¢ and for all (00-7)i2N,

0s((0e-r)7=1, B) solves

V((Ot—r)s-—:ll , B) (2.0)

= max us(B,as)+6V((0o-r)i2h, (B, as),a8((0k-+)75' (B, as))),
ase{H,L}

1n period ¢, we understand 0;—x to be empty if £ < k.
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where V((0e-r)t24, N)
= uS(N) + 5V((O¢_T .,._1, (N) (TB((OK-T)T-I ) (N)))
Notice that for all ¢,

V((0e—+):X1, 0k, 0K -1, .-, 01,88) = V((0- )52y "1 0k, Ok -1, -, 01,08)

for (0-r):Z ™ # (0 )22K ™" ok # .

So, the seller’s value function only depends on the outcomes of the last K —1 stage
games and the current buyer’s action. We denote it by V((ox—r)5X5!,ap), where

for all t,

V((OK-T)‘II";—llr aB) = V((ot— )1'_-1 ) (OK—T):'(—llwaB) (21)

for all (0,-.):_% € {(B,H),(B,L), N} K.

Then (2.0) can be written as the following. For all t and (0,-+):_}, 05((0¢-+)5=}, B)

solves:
V((ok-r)rei's B) =
B, }US(B ,as) + 6V ((ok-+)55, (B,as), as((0x-r)7= + (B, as))), (2:2)

where V((ox-+) 551, N)

= us(N) +6V((ox-r)"5', N os((ox—r K5, (V).
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Case 1. Suppose first that for all (ox--)X3' € {(B,H),(B,L),N}¥~1, (2.2) has a

unique solution, i.e.,

us(B, H) + W((OK—T)'{'(:—;) (B’ H)! UB((OK—T)’)':I ’ (B H))) (23)

# us(B,L)+6V((ox-r)55', (B, L),08((0xk-+)r' s (B, L)))-

This means that the equilibrium does not allow two different outcome paths
to generate the same payoff to the seller. In this case, we show that the repetition
of non-trade is the only equilibrium outcome.

Notice first the seller’s quality after the current buyer’s purchase is only
dependent upbn the last K — 1 periods’ outcomes. Given a particular path of the
last K — 1 periods’ outcomes, (ox--)%5!, the seller will choose the quality which

gives higher payoffs. We denote it by os((ox-+)X5, B), where

as((0r-)i5y's B) = as((0e-r )72, (0k-+)751', B)

for all ¢t and (0.—-)52%.

Then the current buyer also bases his decision only on the outcomes of the last K—1
stage games, (0g - )X, regardless of the outcome of the stage game of K period
ago, ox. Given (ox_-)X5!, the buyer will buy if as((ok-r)25;', B) = H and will not

buy if os((ox-r)X5', B) = L. Denote the buyer’s decision by os((ok—-)X5'),where

ap((ox-r)53") = as(ok, (0xk-r)i5") (2.4)

for all ox € {(B, H),(B,L),N}.
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The seller’s value function then only depends on the last K — 2 periods’
outcomes and the current buyer’s action and will be denoted by V((ox_.)X2,ag),

where

V((ok-r)i= a8) = V(ok-1, (0x-r)7= » 5) (2.5)

fOl‘ all OK-1 S {(B, H), (31 L):N}

Notice that (2.3), along with (2.4) and (2.5), implies that all (og )i,

Us(B, H) + 6V((OK—T)1{(=—31’(31 H)’ 03((0K—T)1I-(=-211 (B, H)))

7é A uS(Bw L) + 6V((OK—T)1{(=-31) (B’ L)a GB((OK—‘I’):(:—]’ (Br L)))

Then the seller’s quality choice after the current buyer’s purchase turns out to
depend only on the last K — 2 periods’ outcomes, and so does the current buyer’s

action, regardless of the outcomes of the first two stage games, ok or ox_;.

Continuing the inductive argument leads to the conclusion that the seller’s
quality choice after the purchase does not depend on any of the previous periods’
outcomes and thus nor does the buyer’s purchase decision. Then the seller will
produce low quality, making it optimal for buyers not to purchase. So in order for
(0s,08) to support an outcome other than the repetition of non-trade outcome, it
must be the case that there is at least one (ox_,)X5! for which (2.2) does not have

a unique solution.
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Case 2. Suppose that under (os,0p) there is at least one (ox_-)5X5! for which (2.2)

does not have a unique solution.

In this case, we will show that the number of é’s for which such (os,05)
exists is at most finite.

First of all, to each ((ox_-)%X5',ap) € {(B,H),(B,L),N}¥~! x {B,N}, let
us assign a number 7 € I = {1,2,...,2 x 3X~1}. Consider now a correspondence,
7 :1 = {us(B,H),us(B, L),us(N)} x I, that generates a simultaneous equation
system, with 2 x 3¥~! unknown variables {V/(Z) }:c:, of the following form by spec-

ifying combinations of © and j for each 7 : Foralli € [,

V(E) = u+6V(j)
for some v € {us(B,H),us(B,L),us(N)},

for some j € I.

While an arbitrary correspondence does not necessarily correspond to a pure
strategy profile, any pure strategy equilibrium generates a particular correspon-
dence, or a simultaneous equation system, because for each ¢, it determines par-
ticular combinations (or a combination) of (u,j) by solving (2.2). Furthermore,
the simultaneous equation system generated by a pure strategy equilibrium has a
solution, (V(i));, the same one as defined in (2.1).2

Notice that the simultaneous equation system, say o*, generated by any pure
strategy equilibrium satisfying Case 2, has more equations than variables since

such an equilibrium allows at least one i € [ that has more than one specification of

20f course, the converse is not true because the simultaneous equation system does not take
the incentive compatibility conditions into account.
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(u,7).3 Notice also g* has the property that if o*(¢) = {(us(B, H), 7), (us(B, L), 5')},
then j # j'. If j = j/, this means that for the outcome path i, the next period’s
buyer’s purchasing decision does not depend on the seller’s current quality choice
and then the seller will be strictly better off by producing low quality in the current
period. Then it cannot be the case that o*(i) = {(us(B, H),j), (us(B, L),5')}-

Let us call a simultaneous equation system with more equations than vari-
ables that satisfies the above property simply a candidate system. Obviously, a
candidate system generated by any pure strategy equilibrium must have a solution.
However, it can be shown that for an arbitrary candidate system, the number of
8’s for which that candidate system has a solution is at most finite.* This means
that the number of é's for which that candidate system can be generated by a pure
strategy equilibrium is at most finite. Since for each ¢ there are only finitely many
possible ways of specifying combinations of u and j, the number of all the candidate
systems is finite and thus so is the number of §’s for which there exists a candidate
system that has a solution. This implies that the number of §’s for which there

exists a pure strategy equilibrium that allows Case 2 is at most finite. ®

In the next section, we extend this result to a more general class of stage

games, finite games of perfect information.

3The number of equations are (35! x 2) +(the number of i’s, (05 —+)* !, for which (2.1) does
not have a unique solution).

41f, for all 7, (2.1) has a unique solution, so that the simultaneous equation system has the same
number of equations and variables, we can show the simutaneous equation system indeed has a
solution for all § € [0, 1).

115



3.3 The Model

Suppose that a single long-run player, player {, plays a fixed stage game against
an infinite sequence of a different set of N short-run players. The stage game is a
game of perfect information. The stage game has a finite number of nodes and for
each node, there is a finite number of actions available. The description of the stage

game is as follows:

1. Denote by X the finite set of non-terminal nodes and the finite set of terminal

nodes by Z.

e For all x € X, let S(x), C X U Z, denote the successors of x, the set of

nodes that can be reached from node .

e For all y € X UZ, let P(y),C X, denote the predecessors of y, the set

of nodes that precedes node y.

e For convenience, we partition the set of non-terminal nodes, X, into N+1
subsets of X; and {X;}i=12,..~. Xi represents the set of nodes where the

long-run player moves and X; the set of nodes for short-run player :.
2. For each = € X, let A(z) denote the finite set of actions available at .

e For each z € X, foreach a € A(z), let @ denote the immediate successor

of £ connected by a.

3. For all y € XU Z, let o(y) € Xzep)A(z) denote the preceding outcome path

(a string of actions) reaching y.

o If y is the initial node, we understand o(y) to be empty.
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e Let O(Z) = U,cz{0(z)} be the set of all possible outcome paths (strings
of actions) reaching terminal nodes in Z. We denote O(Z) and o(z)

simply by O and o, respectively.

4. The stage game payoff for player 7 is a function u; : O — R with u;(0) being

player i’s stage game payoff if o is the realized outcome.

As for the information structure of the repeated game, the long-run player
observes the outcome of all the previous stage games as well as the current period’s
outcome path while a short-run player observes the outcome of only the last K
stage games and the current period’s outcome path. Let o € O denote the realized
outcome of the stage game of k period ago. In period ¢, we understand o, to be
empty if ¢ < k. A pure strategy for the long-run player is a map 0;, where for all
period ¢,

ag Ot“l X Xl — XxexlA(:B) .

A pure strategy for short-run player 7 € {1,2,...,N} is a map a;, where

o; OK X Xi - X:I:EX,-A(:B) ift>K ,

a; O 1 x X,' - X:ceX.;A(z) if t < K.

While the long run player’s repeated game payoff is the discounted sum of the stage
game payoffs for a discount factor § € [0,1), a short-run player’s payoff is simply
given by the stage game payoff.

We apply Perfect Bayesian as an equilibrium concept for the repeated game.
A strategy profile (01, (0:)i=1,..n) is a Perfect Bayesian equilibrium if in each period

t, for each (0;_-)%Z}and for each node x € X, 0 is optimal given (o1, (0:)i=1,..,~) and
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for each (0x_-)X3' and a node € X;, 0; is optimal given a belief about (0,_,):25 ~*

and (01, (05)i=1,...N)-

3.4 Pure strategy equilibria

Since a finite game of perfect information has always a pure strategy subgame
perfect equilibrium, the repeated game has also a pure strategy equilibrium, the
repetition of the stage game equilibrium. Our interest is of course beyond the
trivial equilibrium and finding another pure strategy equilibria. The main result of
this paper, however, suggests that it is almost (i.e., except for a finite number of

discount factors) impossible.

Proposition 1 For generic payoffs of the stage game, there are at most finitely
many 6’s for which the repeated game has a pure strategy equilibrium other than the

repetition of the subgame perfect equilibrium of the stage game.

The only difference in the proof of this general case from the example in
section 2 is due to the fact that the long-run player in the stage game may have
more than one decision node. So we define the long-run player’s value function on
the outcomes of the previous K — 1 stage games and all her decision nodes of the
current stage game. In the first step, we consider an equilibrium with the property
that for each of the last K — 1 stage games’ outcomes and for each of her decision
nodes, the long-run player sirictly prefers one action to the other available actions.
Using backward-induction, we then develop the argument that in this equilibrium,
the long-run player’s decision depends on none of the previous periods’ outcomes,
thus nor do the short-run players’ decisions. This history-independence immedi-

ately establishes that the equilibrium satisfying the property is the repetition of
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the subgame perfect equilibrium of the stage game. Secondly, we examine existence
of a pure strategy equilibrium that has an outcome path after which the long-run
player is indifferent between choosing at least two distinct actions. We find out that
the number of discount factors for which such an equilibrium may exist is at most

finite.

Proof. Here we assume that K = 1, so that each short-run player observes only
the last period’s outcome and the current period’s outcome path. This proof can
be easily extended to more general K by using the argument given in the Claim.
Since short-run players only care about the payoff of the current stage game
and the stage game is of perfect information, we can treat short-run players as one
player and denote them by player s, as opposed to player [ for the long-run player,

instead of player 7 € {1,2,..., N}.

Consider a pure strategy equilibrium (oy,ds) of the repeated game. Then
for all ¢, for all (0,_,):Z} € O*!, and for all x € X, we can define the outcome
path of the stage game after node x that (o;,0,) generates. We will denote it
by ¢%((0s-r)i21;z). On the other hand, let g*(z) denote the outcome path of the
stage game after node  that is determined by the subgame perfect equilibrium of
the stage garﬁe. Notice that genericity of payoffs, i.e., distinct payoffs for different
terminal nodes, guarantees uniqueness of ¢* () for each .

To appropriately introduce the long-run player’s value function induced by
a pure strategy equilibrium, let X, = {z € X)|P(x) N X, = 0} and Z={ze
Z|P(z) N X; = 0}. Obviously, if the initial node belongs to the long-run player, X

is the singleton set consisting of the initial node and Z=0.
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Now let V : O*~! x (XU Z) — R denote the long-run player’s value function
determined by (0,0,). Of course, for all ¢, for all (0;—,)iZ} € O, and for all

z € Xy, 01((0e—+)t24, ) solves

V((0e-7)2}s 2) = max us(o(z), a1, ¢°((0r-+)i2); @)
aeA(x)

+6V ((0e-)32h, (0(2), a1, ¢*((0e-+)721; 1)) ¥™),
(i) where @ is the immediate successor of z connected by a; € A(z), and

(ii) (o(z),ar, ¢°((0e-r)iZ}; @7)) is the outcome path of period t’s stage game
that (0;,05) generates when the long-run player chooses q; at z.

(iii) y°= € X,UZ is the node to be uniquely determined by o, given (o(z), a;,

g°((oe-r :;lﬁ EI’))-S

Notice that 47+ only depends on (o(x), a;,q%((0,—+)52}; @) since y”* will reached
only by the short-run player’s move at period ¢t 4+ 1 and the short-player’s move at
period t + 1 only depends on period t's outcome path and period ¢ + 1’s ongoing
path.

Another interpretation of the seller’s equilibrium strategy of the repeated
game is that for all ¢, for all (0,--)iZ} € 0!, and for all z € X, she chooses an
outcome path of the stage game after £ among the ones that are available given the
short-run player’s strategy. To formalize this idea, for all 0o € O and ¢ € X|, let
Q°*(01; ) denote the set of all the outcome paths (of the stage game after z) that
are available given o,. Notice that Q7*(0,; z) does not depend on (0r—+)t2% since the

short-run player’s move at period ¢ only depends on period t —1’s outcome path and

5If the initial node belongs to the long-run player, y(os) is the initial node for all o, and

(0(.’1:), at, qc((ot—f):-;ll; E{))
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period t’s ongoing path. Then an equivalent way of writing the problem in the last
paragraph is : for all ¢, for all (o,_,)!Z} € O*!, and for all z € X, ¢°((0¢—+)3=5; T)

solves

V((0e-r)izhi z) (4.0)

=  max _u.(o(z),q(x)) + 6V((0-r)ih, (0o(z), g()); ¥7*).

q(z)eQ7*(01;7)

Since @°#(0; : z) only depends on o, and y°* only depends on (o(z), ¢°*(z)),

notice that

V((ot—f)r-—l’ o) = V((Ot— )—r_l , 015 T)

for (0r-r)t2 # (d,_,)'2,forallo; €0 and z € XU Z.

We redefine V : O x (XU Z) by letting V(o1;z) = V((0e-r)i3,01;) for all
(01-+)t2% € O*~2. Then (4.0) can be rewritten as : for each 0; € O and for each

T € Xy, qe((Oa—r)f.;zl,ol;:v) solves

V(o1;:x) 4.1)

= max  u,(o(z),q(z)) + 6V((o(z),q(x));y*)-

q(z)€Q7=(01;x)

Case 1. Suppose for all 0; € O and for all z € Xj, (4.1) has a unique solution.
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In this case, we show that the repetition of the subgame perfect equilib-

rium is the only equilibrium outcome. That is, for all ¢t and (o._,):Z} € O,

@®((0r—r)tk;z) = ¢°(z) for all z € X.

Before preceding, let us partition Xj, the set of nodes for the long-run player,

into {X7},04,...s for some integer J in the following way®:

X,o = {zeX|Sz)nX, = 0},

X! = {zeX —X)|S(x)nX, cX]},

ij = {re X, - (Ui=0,l,...,j—lei)|S(z) NnNX, cC (Ui=0,l,...,j-1Xli)}y
forj = 2,3,...,J.

This partitioning gives a partial order on X by specifying the order of the long-run
player’s move. If z € X,j and ' € XF with J > k > j, either =’ or other node
2" € X[ precedes x. X? is the set of nodes for the long-run player whose successors
are either terminal nodes or nodes for the short-run players. So, the long-run player
at z € X?, whatever her decision is, will not move again in the stage game. Ifz € X;
, j # 0, there are succeeding nodes belong to the long-run players depending on her
move at z and the following short-run player’s move, but there is always at least a
succeeding node in le'l. If the initial node belongs to the long-run player, X/ is

the singleton set consisting of the initial node. If z € X/, P(z) N X; = 0.

61t is easy to check that {X,j},-=o_1'2,_,,_1 is indeed a partition. In particular, for all j =
0,1,2,...,J, X} #0. Also, if Xj =0, then X;*' = 0. Hence J is well-defined.
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Given {X,’ }i=0,1,..,.7, We can also partition X, the set of nodes for the short-

run player, into partition, {X7},-0,1,..s+1, as follows’:

X? = {zeX,|S(x)nX =0},

X! = {zeX,-X%S(z)n X, C X7},

S
I

{z € X, — (Uizg,...j-1 X3S () N X; C (Vio,,...i-1. XD}

forj = 2,3,...,J+1

The short-run player’s move at z € X?, whatever it is, will not reach a node for
the long-run player. If z € X7 , j # 0, there is always at least one succeeding node
for the long-run player in X/™'. For x € X/*', there are no preceding nodes for
the long-run players. Especially, if the initial node belongs to the long-run player,

X;’“ ={.

(At X9) For all 0; € O and for all £ € X?, we can use the typical back-
ward induction argument to establish that the short-run player chooses an action
that maximizes his stage game payoff given his decision at the succeeding nodes,

t—1

regardless of the outcome of the last stage game. So, for all (0;—-):Z; € O* 'and for

all £ € X9, ¢®((0,--)%_}; £) only depends on x and will be denoted by ¢°(z). Note

¢*(z) = ¢*(z).

(At X?) Now consider a node z € XP. Notice that V(oy;x) = V(d);z) for
all 0, # o}, since

7For some j, XJ = 0.

123



V(o;z) =V(oy;z) =

e U (o(2), a1, (7)) + 6V ((o(z), a1, ¢°(a1)); y())- (4.2)

Define V(z) = V(o;;x) for all 0, € O. Then (4.2) can be rewritten as® :

V(z) = max w(o(z),a ¢°(a7)) + 6V (y(as)). (4.3)

Since (4.1) has a unique solution, (4.3) also has a unique solution, a;. Notice this
solution only depends on the outcome of the current period’s stage game, o(r),
because g°(@;) does not depend on o; and y(d,) only depends on (o(z),a:, ¢°(@r)).
If we denote it by a;(z), for all (0,):2} € O*'and for all z € X}, ¢°((0¢—r)ii}; ) =

(01(2), ¢*(@u(x)) € XP X (XyexoAy)). We write ¢°((0r-r)2h: 2) by ¢*(z)-

(At X!) Consider a node z € X. that does not have a succeeding node
X!. The short-run player at node z € X! chooses an action a, € A(zx) that
maximizes u,(o(z),a,,q°(as)).> By the genericity of the stage game payoff, the
action is unique and only depends on the outcome of the current period’s stage game.
Denote it by o(z). Let ¢%(x) = (crs(:v),q"(c-:(;))) denote the uniquely determined
equilibrium path after z. For x € X! that has a succeeding node X}, we can again
continue the argument to establish that for all z € X!, a,(01, ) is the same action
for all 0;. Let o,(x) denote the action. Then, for all £ € X, ,we can define by

¢¢(z) = (0s(z),¢%(0s(x)) the uniquely determined equilibrium path after .

8By the definition of X?, for all z € X? and for all ¢, € A(z), either @ € Z or @] € X?. Hence
{ 3 s
¢%(a?) is well-defined.
9Note either @; € X? or @, € X?. Thus ¢°(@7) is well-defined
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(At X}') Consider a node z € X}. Given ¢*(@a;) for each a; € A(z), defined in
(At X!) and possibly in (At X?) and (At X}?), we can give the exact same argument
as in (At X?) to establish that uniqueness of the solution for (4.1) guarantees the
unique solution for (4.3). Denote the solution by o;(z) and conclude that for all
(0r-r)ih € O Tand for all = € X7, ¢*((0e-r)tchiz) = (ou(=), ¢*(au(@))) € X x

(XyexoA(y)). We write ¢°((0r-r)i—}; z) by ¢°().

(At X/ ) By continuing the previous argument in the previous steps, conclude
that for all (0,_-):Z} € O* 'and for all z € X?, ¢°((0¢-r)s—}; z) only depends on z

and denote it by ¢°(z).

Suppose first X; is the singleton set consisting of the initial node, i.e. the
initial node belongs to the long-run player. Then (4.3) immediately implies that
for all z € X?, ai(z) = maxgeae) w(o(z),ar,q%(ar)) since y(o,) in (4.3) is the
initial node for all (o(x),a;, ¢°(ar)). Since ¢°(a;) = ¢*(a7), oi(z) is the same as
in the subgame perfect equilibrium of the stage game. Hence, for all z € X}
¢°(z) = q"(z). Given the equilibrium paths, ¢°(z), defined in (At X})foral z €
X,-" ,i=1,8,7=0,1,...,J, continuing the backward induction argument establishes
that for all z € X7, ¢°(z) = ¢*(z).

If the initial node does not belongs to the long-run player, so that X+ #
0, follow the argument in (At X!) to argue that for all z € XJ*!, a4(z) =

max _us(0(z),as,q°(@)). Then for all z € X?,0y(x) = max wu(o(x),ar,q¢%(ar))

az€A(x) a e A(z)
since we have now established that for all x € X, oy does not depend on the out-
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come of the previous period’s stage game and thus y(os) in (4.3) does not depend
on a;. We apply the same argument as in the last paragraph to conclude that the
only equilibrium outcome of the repeated game is just the repetition of the subgame

perfect equilibrium of the stage game.

Case 2. Suppose now there exists at least one (01; ) € O X X for which (4.1) has a

multiple solution.

Forallz € X,UZ, let U(x) = {w(o(z), 9(2)) }qweque@) and U =U, ¢ zU(z).

Consider a correspondence @, where
F:0%x (X, UZ)=UxO0,

that generates a simultaneous equation system of the following form by specifying

combinations of u and j for each 7 : For all 0 € O and for all x € X, U 7,

V(ojz) = u+6V(d,2')
for someu € U(x),

for some (o', z') € O x (X,UZ2).

By using the same argument on this correspondence as in Case 2 of Claim, we
can show there are at most finitely many §’s for which there exists a pure strategy

equilibrium that allows Case 2. W
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3.5 Discussion

3.5.1 Generic Result

The proof of the proposition basically consists of two steps. We first consider an
arbitrary equilibrium with the property that for each outcome path the long-run
player strictly prefers one action to the other available actions. We could then
develop the argument that in this equilibrium, the long-run player’s decision de-
pends on none of the previous periods’ outcomes, thus nor do the short-run players’
decisions. This history-independence immediately establishes that the equilibrium
satisfying the property is the repetition of the subgame perfect equilibrium of the
stage game. As a second step, we examine existence of a pure strategy equilibrium
that has an outcome path after which the long-run player is indifferent between
choosing at least two distinct actions. We find out that the number of discount
factors for which such an equilibrium may exist is at most finite.

The proposition is only a generic result because we cannot establish the
history-independence for the finite number of discount factors. If the long-run player
is indifferent between two distinct actions after each of two different outcome paths,
we can freely specify any of those two actions after the two different paths, so that
the long-run player’s action choice can be different after the two different paths.
This dependence of the long-run player’s action choice on the previous outcome
paths generates the short-run players’ dependence as well, and thus may allow us to
construct a non-trivial equilibrium by resolving the indifference in an appropriate
way.

For instance, in the buyer-seller game introduced in Section 2, suppose the

buyers only observe the last period’s outcome. Notice that in any non-trivial equi-
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librium, the buyer has to purchase if and only if the seller produced high quality in
the last period. Given the buyer’s strategy, the seller is indifferent between high-
quality production and low-quality production if and only if 6§ = 1/2. Using this
indifference, we could construct an equilibrium in which the seller produces high-
quality in every period, by specifying high-quality production after she produced
high quality in the last period, but low-quality production in case she produced low

quality in the last period or the last period’s buyer did not purchase.

3.5.2 Mixed strategy equilibria

The generic result of the proposition does not apply to mixed strategy equilibria.
By allowing the short-run players to use mixed strategies that depend on the dis-
count factor, we can construct an equilibrium that allows certain outcome paths
after which the long-run player is indifferent between choosing two distinct ac-
tions for generic discount factors. Then the possibility of existence of a non-trivial
equilibrium is left open for those generic discount factors, again by breaking the
indifference in an appropriate way.

In the example of the buyer-seller game, a mixed strategy equilibrium sup-
porting the trade outcome exists for all § > 1/2: The seller starts to produce high
quality in the first period and continues to do so if she did so in the last period.
She randomizes between high-quality and low-quality production with probability
1/2 if the buyer in the last period did not purchase and the current buyer pur-
chased. She produces low quality if she produced low quality in the last period but
the current buyer purchased. On the other hand, the buyers purchase if the seller
produced high quality in the last period, and do not purchase if the seller produced

low quality in the last period. They randomize the purchasing decision after the
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last buyer did not purchase. They purchase with probability (26 — 1)/é and refuse
to buy with the other probability. Given the buyers’ randomization, the seller is
indifferent between high-quality and low-quality production after all the outcome
paths, making the seller’s strategy trivially optimal. The buyers’ strategy is also
optimal given the seller’s strategy. In particular, their randomization is optimal
given the seller’s randomization because they get the payoff of 0, regardless of their

purchasing decision, after the last buyer refused to buy.

3.5.3 General extensive-form games

The argument in the proposition crucially depends on the structure of the stage
game, games of perfect information. In the example of the buyer-seller game, for
instance, suppose the stage game is the following simultaneous-move version instead
of the sequential one. So the seller is not informed of the current buyer’s purchasing
behavior when she makes her quality choice.

buyer

B N

seller H| 1,1 | 0,0

L12-1]0,0

Then we can easily find an equilibrium supporting the trade outcome by
imposing a typical punishment scheme against the seller who produced low quality
in the last period: The buyer purchases and the seller produces high quality, in the
first period and only after the last period’s outcome is that the buyer purchased
and the seller produced high quality. After the other last period’s outcomes, the

seller produces low quality and the buyers refuse to buy.
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In this equilibrium, it is optimal for the seller to produce low quality after she
has done so, in which case she expects the current buyer not to purchase and thus
her high-quality production cannot stop the subsequent buyers’ boycotts. Hence
the buyers’ punishment is also optimal given the expectation that the seller who
produced low quality in the last period will do so again. In the sequential-move
version, this kind of punishment is not credible. The seller will of course produce
high quality along the equilibrium path if she expects severe punishments after her
deviation. However, the seller who produced low quality in the last period has no
reason to produce low-quality if the current buyer purchases, because the succeeding
buyer will no.t observe the original low-quality production and thus will purchase if
she produces high quality in the current period. Then the buyer, despite the seller’s
low-quality production in the last period, will not boycott her since she is expected
to produce high quality. This forgiveness of the buyers eventually leads the seller
to produce low quality, repudiating any non-trivial equilibrium.

Another interesting counterexample of a general extensive-form stage game
is the two-buyer version of the original sequential-move buyer-seller game. Suppose
first two buyers independently and simultaneously have to decide whether purchase
a good from the seller or not. If at least one buyer purchases, the seller can provide
high quality or low quality. The same quality applies to both buyers. If none of
them purchases, the game ends and all three players receive zero. Each buyer’s
payoffs do not depend on the other buyer’s purchasing decision and are the same as
in the original sequential-move game while the seller stage game payoffs are the sum
of the payoffs from the original sequential-move game. So the seller gets a payoff
of 4 if both buyers purchase and she produces low quality, 2 if both purchase and

she produces high quality, 2 if only one purchases and she produces low quality, 1
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if only one piirchases and she produces high quality, and 0 if none purchases.

As in the previous example, suppose each buyer observes the outcome of
the last period’s stage game while the seller observes all previous outcomes. Then
we can also construct an equilibrium in which each buyer purchases and the seller
produces high quality. The seller produces high quality in the first period and
continues to do so only after both purchased and she produced high quality in the
last period. If she produced low quality or at least one buyer did not purchase in
the last period, she produce low quality. The buyers purchase in the first period
and only after both buyers in the last period purchased and the seller produced low
quality. If the seller produced low quality or at least one buyer did not purchase in
the last period.

In this equilibrium, the buyer will punish the seller who observed the seller
produce low quality in the last period by refusing to purchase from her because the
other buyer Will not purchase and so she is expected to produce low quality in case
only he purchases. On the other hand, the seller who produced low quality in the
last period will do again if only one buyer unexpectedly purchases, in which case
both buyers in the next period refuse to purchase regardless of her quality choice and
so in the subsequent future periods. Hence the buyers’ punishments against low-
quality production is indeed credible, contrary to the single buyer case. However,
the buyers’ purchasing decisions are made sequentially, the result of the proposition

is still effective since the stage game is then a game of perfect information.
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