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Abstract

This thesis is a theoretical study of the design of optimal mechanisms and relevant

robustness considerations in game theory. Chapter 1 examines contracting with moral

hazard where an agent has available a known, or baseline, production technology but

the principal thinks that the agent may also have access to other technologies, and

maximizes her worst-case expected utilities under those possible technologies. That

is, the principal aims to design a robust contract, where the level of robustness is the

unknown technologies the principal thinks are possible. I show that all Pareto-efficient

contracts take the form of participating preferred equity, a mixture of debt and equity.

As the principal becomes more concerned with robustness the equity component of

efficient contracts increases: the contracts move from debt, via participating preferred

equity, to equity.

Chapter 2 (with Matias Iaryczower) studies a common feature in the design of

agency relationships: that principals can decide both the direction and the scope or

scale of implementation of a policy. There is a natural complementarity between these

dimensions: the value of expanding the scale of implementation increases when the

policy is close to a player’s preferred policy. In the absence of transfers the optimal

separating contract involves delegation with strings attached: an agent with an up-

ward policy bias can only choose higher policies by reducing the scale. The solution

differs qualitatively from standard quasilinear models and is ex-post inefficient, as the

highest policies are too low for both parties and are under-implemented.

Chapter 3 (with Marco Battaglini) considers the robustness of inefficiency results

in the literature on dynamic contribution games: a class of stochastic games where a

player’s action (contribution) is assumed to be monotonic. The literature finds that

contributions are gradual and efficient outcomes are not achievable. In this chapter,

we show that these results are not robust when some depreciation of contributions

is allowed. In particular, we prove that the folk theorem holds in this setting and
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thus are able to support efficient levels of the public good. This has important

implications for modelling public good games, as small modelling choices deliver very

different outcomes.
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Chapter 1

Contracting with Unknown

Technologies

1.1 Introduction

The theory of moral hazard is a staple of information economics. The idea that

agents must be given appropriate incentives when their actions cannot be perfectly

observed occurs in a wide array of applications, e.g., insurance, franchising, employ-

ment contracts, unemployment benefits, CEO compensation, financial contracting,

etc. However, it is fair to say that the theory has not been very successful in explain-

ing the types of incentive schemes we observe. This criticism is aptly summarized by

Holmström and Milgrom (1987):

”Real world incentive schemes appear to take less extreme forms than

the finely tuned rules predicted by the basic theory... Agents in the real

world typically face a wider range of alternatives and principals a more

diffuse picture of circumstances than is assumed in the usual models.”
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In this paper, I show that the naturally appealing idea of moral hazard can indeed

be used to explain the sorts of contracts we observe if we assume principals have less

information about the agents available actions and require contracts robust to this.

To take a concrete example, consider the problem of security design with moral

hazard. While the textbook model of this type of financial contracting attempts to

argue for the efficiency of debt contracts, this result only holds if an ad-hoc restriction,

that contracts are monotonic in cash flows, is added (Innes, 1990). In particular, the

efficient contract without this restriction is strikingly unrealistic1. This leaves open

the question of what are good microfoundations for a complete theory of financial

contracting.

Relative to the classical literature, the present paper relaxes the assumption that

at the time of contracting the principal (or investor) knows exactly the set of technolo-

gies available to the agent (or entrepreneur) to convert effort into profits. Instead,

I assume that the principal knows two things: (i) a specific ‘baseline’ technology

which will be available to the agent, and (ii) a ‘lower-bound’ technology that yields

less surplus (total profits) than any other technology. She evaluates other possible

technologies with a maxmin criterion. I show that in this ‘robust contracting’ setting

monotonic contracts emerge because the principal is concerned that the agent might

have access to a technology that exploits any non-monotonicity. I show that debt is

an efficient robust contract when the lower-bound technology is close to the baseline

technology. In this case, debt provides the best incentives for the agent to work hard

by leaving all profits to him after a certain threshold.

However, I show that equity contracts are efficient when the principal fears that

arbitrarily bad technologies could be realized. Intuitively, equity financing guarantees

that the agent will not chose a technology that excessively hurts the principal, since

the incentives of the two are perfectly aligned. In this case, maxmin considerations

1The Pareto optimal contract is a live-or-die contract, where the principal gets paid the entire
profit up to some cut-off level (lives) and gets zero above that level (dies).
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dominate the value of providing incentives, consistent with the results of the recent

literature on robust contracting, e.g., Chassang (2013) and Carroll (2014). In fact,

the shape of efficient contracts changes as the lower-bound improves towards the base-

line technology: it is equity for arbitrarily bad lower-bounds, participating preferred

equity (a mixture of debt and equity) for intermediate cases, and is debt when the

lower-bound is close to the baseline. The provision of incentives to the agent plays an

increasingly important role as the Knightian uncertainty of the principal diminishes.

My framework therefore reconciles two key economic forces that determine contracts

in practice: incentives and robustness concerns.

The present paper makes four contributions to the literature. I first show that in

a general robust contracting framework debt contracts are efficient, in one extreme

case. As an intermediary step, I provide an ambiguity foundation for the monotonic-

ity assumption commonly made in the security design literature.2 Secondly, I show

that in another extreme case equity is efficient, in line with the robust contracting

literature. Third, I show that in a general environment efficient contracts take the

form of participating preferred equity: a mixture of debt and equity, including both

as special cases. The difference between the worst-case and baseline technology is the

key simple parameter that determines whether the optimal contract is debt, equity or

a mixture of the two. Finally, I prove a technical result: in sufficiently rich maxmin

contracting environments, it is without loss of generality to focus on contracts which

are lower semicontinuous. There is no need for strong ex-ante restrictions on the set of

allowable contracts;3 and this technical result justifies the use of simple constructive

techniques.

2This type of monotonicity assumption has been used by an array of authors, including DeMarzo
& Duffie (1999), Matthews (2001), Biais & Mariotti (2005), DeMarzo (2005), DeMarzo, Kremer &
Skrzypacz (2005), Inderst & Mueller (2006), Axelson (2007), Poblete & Spulber (2012) and Dang,
Gorton and Holmstrom (2012).

3For example, Carroll (2014) assumes contracts are continuous.
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The rest of the paper is organized as follows: Section 2 defines the model and makes

some remarks about the MLRP; Section 3 makes initial general observations which

are applied throughout the analysis which follows; Section 4 considers the ”smallest

ambiguity” extreme case and shows the Pareto optimality of debt; section 5 considers

the largest possible ambiguity case and shows the efficient contract is simple equity;

Section 6 provides general results that encompass the preceding observations and

shows that in general participating preferred equity is optimal; Section 7 concludes.

1.2 Model

I develop a moral hazard model where the agent may have technologies which are

unknown to the principal at the ex-ante contracting stage. A principal (she) contract

with an agent (he), who is to take a costly, private action which will randomly produce

a publicly observable profit outcome π ∈ [0, π] =: Π.

More formally, an action is a pair (e, F ) ∈ [0, e] × Δ(Π), where e ∈ [0, e] is

interpreted as a level of effort, F is a cumulative distribution function (CDF) over

profit outcomes and Δ (Π) is the set of Borel measures over Π, which we endow with

the topology of weak convergence. The function mapping effort levels to utility cost

for the agent, c : [0, e] → R+, is common knowledge, strictly increasing and convex.

We normalize c so that c (0) = 0. A technology for the agent is a method for converting

effort into random profit outcomes, i.e., a technology is a function F : [0, e] → Δ(Π).

Instead of writing (F (e)) (π) we write F (π | e). Since functions can be represented

by their graphs, we can think of technology F as the graph of F :

Γ (F ) = {(e, F (· | e)) ∈ [0, e]×Δ(Π) : e ∈ [0, e]} ,

that is, technology F is simply a set of actions (where effort levels are not repeated).

We assume that F is continuous in e and satisfies a stochastic concavity property
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(Jewitt, 1988; Athey, 2000). These technical assumptions are sufficient to guarantee

the existence of solutions to the agent’s problem and are common in the classic moral

hazard literature. Where it causes little confusion we will abuse notation and denote

Γ (F ) by F .

The textbook models of moral hazard, starting with the classic paper by Holm-

ström (1979), assume that there is a single profit technology, F0, which is common

knowledge. This literature requires further assumptions on the technology to deliver

general results; in particular, these papers assume that F0 satisfies the monotone

likelihood ratio property (MLRP). MLRP is a natural regularity condition on the

profit technology which formalizes the idea that more effort should lead to better

profit distributions: it assumes that higher effort results in better distributions over

profit outcomes. Consistent with this literature, we will impose that each technology

F satisfies the MLRP. Note however, that we will need a more general version of

the MLRP than is frequently used as we want to allow for minimization over a rich

set of measures and in particular measures which do not have densities. The general

definition of the MLRP, due to Athey (2002), and a discussion is given at the end of

this section.

Definition 1 (Technology) A technology is F : [0, e] → Δ(Π), a continuous

map from effort levels to distributions over profit, such that F satisfies the mono-

tone likelihood ratio order in e and F satisfies stochastic concavity, i.e., for all π,

− ∫ π

0
F (π′ | e) dπ′ is concave in e.

I consider a robust moral hazard problem in which the assumption that there

is a single common knowledge profit technology, F0, is relaxed. In particular, the

principal knows that some baseline technology F0 is available to the agent, but there

could be other, unknown, profit technologies also available. This robust contracting

assumption is a version of the assumption made by Carroll (2014).4

4We will discuss the precise relationship in section 5.
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On top of the baseline technology F0, we assume that the principal knows a

lower-bound CDF,5 G, such that any realized technology (first-order) stochastically

dominates G. Let the set of all possible technologies be:

DG :=
{
F ∈ Δ(Π)[0,e] : F satisfies MLRP, Γ (F ) compact, F (· | e) ≤ G for all e

}
.

Note that if G = δ0, then the constraint holds trivially for any CDF F . Note that

as G approaches F0, the Knightian uncertainty of the principal is diminishing. We

will consider the problem a generic lower-bond CDF, G.6

A contract, B : [0, π] → R+, specifies the payment made to the principal as a

function of the realized profit. We assume B is measurable with respect to the

Lebesgue σ-algebra (i.e., the completion of the Borel σ-algebra) and B (π) ∈ [0, π]

for all π (i.e., the investor’s liability is limited to the initial investment and the

entrepreneur’s liability is limited to his entire profit).

The agent is a risk-neutral expected utility maximizer: given the set of technologies

available to him, A = {F0, F1, ..., FN}⊂ DG, and a contract, B, he solves:

sup
(e,F )∈Γ(A)

∫ π

0

(π − B (π)) dF (π | e)− c (e) , (1.2.1)

where Γ (A) = Γ (F0) ∪ Γ (F1) ∪ ...Γ (FN) is a set of actions representing the union of

the possible actions under (or graphs of) the various available technologies. We let

5We could assume that the principal knows a lower-bound technology. As we will see, the relevant
bound for the principal’s worst-case analysis is profit distribution the agent can costlessly induce. As
such, we can replace this assumption by a lower-bound technology. If the technology is sufficiently
unproductive (a lower-bound on how effort gets converted into marginal benefit in terms of profit
distributions), the analysis is unchanged.

6In what follows we do not need to impose any assumptions on G, except for in the proof of
lemma 1.3.1. For that lemma, it is sufficient (but not necessary, in fact much weaker conditions
could be given, depending on the contract) that G has a bounded derivative on (0, π]; denote the
bound on G′ by K < ∞. Note that this still allows for non-differentiability at 0, so that G can be
δ0 for example.
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VA (B | A) denote the value function of the above. Note that we assume A is a finite

subset of DG, this is ensures that Γ (A) is compact, given our previous assumptions.

Even after the regularity assumptions we have made, note that the supremum in

the above problem may not be attained unless we further restrict the set of permissible

contracts B. Although this is standard in the literature, e.g., Carroll (2014) assumes

B is continuous, one of the technical results in this paper is that it is without loss

of generality to assume B is lower semicontinuous, which gives that the supremum

in equation 1.2.1 is attained. Thus, it will make sense to talk about the arguments

which maximize the agent’s utility, A∗ (B | A) ⊂ Γ (A).

Principals are extremely ambiguity averse about the potential technologies avail-

able to the agent, but are risk-neutral with respect to risks they understand. In

particular, the principal’s utility:

VP (B | F0) = inf
A�F0

inf
(e,F )∈A∗(B|A)

∫ π

0

B (π) dF (π | e) ,

subject to knowing A ⊂ DG. The assumption that the principal is getting the worst

possible outcome when the agent is indifferent is largely inconsequential, since the

worst-case A will usually have a single minimizing action.7 Furthermore, when we

show that restricting to lower semicontinuous contracts is without loss of generality,

we will have that the infimum above is attained and therefore we may think of it as

a minimum.

7Brooks (2014) makes the same assumption as above, while Carroll (2014) assumes the agent
maximizes the principal’s utility when indifferent. The only instance in which the above is conse-
quential is when we have a contract B and a baseline technology F0, such that at the lowest effort
level under F0 the agent is obtaining the maximum possible profit he can get given B. Carroll (2014)
rules these out by requiring contracts to be ”eligibile”. I make the assumption above predominantly
because it avoids special cases and streamlines proofs.
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We want to characterize Pareto efficient contracts in this environment. We say

that contract B is efficient for technology set A if �B′ such that:

VP (B′ | F0) ≥ VP (B | F0) , and

VA (B′ | A) ≥ VA (B | A) ,

with at least one of the above inequalities strict. By varying the outside options

of the parties, we hope to get a sense of outcomes under different possible market

structures, i.e., a monopolist agent and competitive principals, a monopolist principal

and competitive agents, etc. One motivation for looking for Pareto optimal contracts

is a central planner who wants to impose efficient outcomes in these markets.

It is not immediate how a Pareto problem should be posed in this case since

the agent perfectly knows the technology set A, while the principal faces Knightian

uncertainty and is not aware of the realization of A. The idea is to give the agent

any ”extra” utility that results from the realized A, while satisfying a robust utility

constraint for principal. As such, given a specific technology set, A, we want to solve

for the Pareto frontier,8 given by the following problem:

max
B

VA (B | A) (1.2.2)

s.t. VP (B | F0) ≥ R,

where R ∈ [0, Rmax] denotes the location on the frontier and Rmax is the maximum

payment the principal can be guaranteed (the point at which the agent’s participation

constraint binds). The reverse problem makes less sense as it assumes that excess

utility from the unrealized set A is going to the principal, who does not even express

a preference over this set.

8Note that the notion of a Pareto frontier in the textbook setting also makes reference to a specific
technology; in that case there is a single technology which is common knowledge.
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The key difference between a Pareto problem and a decentralized version of the

above is that we are assuming away the possibility of screening or signaling. We

focus on the centralized problem in the paper and I will discuss ways of decentralizing

the model in section 8. The decentralization involves the agent proposing a set of

contracts, from which, if the principal accepts, he can later choose any contract. This

has the flavor of reverse convertible bonds/equity, where the issuer has the right to

convert the contract given to the investor in some pre-agreed way.

Since our A is very general, and in particular does not inherit the MLRP from

individual technologies,9 we will typically need to assume some additional structure

to be able to solve the above Pareto problem. In problems of this type in the classical

literature, starting with Holmström (1979), without the MLRP assumption we cannot

hope to provide general results. The same thing is true in the robust contracting

problem, unless the robustness of the principal’s preferences is simplifying the problem

significantly. While this is indeed true in the largest ambiguity case, we want to

consider what happens when we place limits on the principal’s ambiguity. Therefore,

most of the results in the paper will assume that the agent is choosing from an

MLRP set of technologies, i.e., the case where A can be represented by some F

which satisfies the MLRP. One sufficient assumption that guarantees this is that

there order on technologies i, such that they respect the MLRP in this order, i.e.,

for A =F0 ∪ F1 ∪ F2 ∪ ... ∪ FN we could assume that there is a reordering of the set

{0, 1, ..., N}, denoted by r, such that for each i there exists an ei ≥ ei−1 such that:

Fr(i−1) (π | e) ≤ Fr(i) (π | e) for e < ei,

Fr(i−1) (π | ei)
MLRP≤ Fr(i) (π | ei) , and

Fr(i−1) (π | e) ≥ Fr(i) (π | e) for e > ei,

9We will describe this in detail in section 6.
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where e0 = 0.

In summary: the key features of the above assumptions is that (1) there is common

knowledge of a lower-bound CDF and a baseline technology that the agent can choose

and (2) we will characterize solutions to the Pareto problem, as stated in program

1.2.2, and mostly focus on the case where the agent is choosing from an MLRP set

of technologies A.

1.2.1 Aside on MLRP

In this section, I make some basic remarks regarding a key assumption underlying

most classical moral hazard models, including that of Holmström (1979) and Innes

(1990)—the monotone likelihood ratio property (MLRP). The simplest version con-

siders a family of CDFs, indexed by e, i.e., F (π | e), which is twice-differentiable with

respect to both π and e (as is the case in Innes (1990) and most existing models). In

this case, the monotone likelihood ratio property (MLRP) states that:

∂

∂π

(
fe (π | e)
f (π | e)

)
≥ 0,

where f is the density of F .

A slightly more general definition of the MLRP, but still requiring the existence

of densities, is that the likelihood ratio:

f (π | eH)
f (π | eL) ,

is non-decreasing for any eH ≥ eL. An equivalent way to state this is to assume that

f is log-supermodular, i.e., for all πH ≥ πL and eH ≥ eL:

f (πH | eH)
f (πH | eL) ≥ f (πL | eH)

f (πL | eL) .
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Recall that a non-negative function defined on a lattice, h : X → R is log-

supermodular if, for all x, y ∈ X, h (x ∧ y)h (x ∨ y) ≥ h (x)h (y). Note that in

this version of the definition, we can also treat f as the PMF if the measure is

discrete.

However, we want to allow for general distributions in the present model—e.g.,

distributions which involve mixtures of continuous and discrete parts. As such, we

work with general probability measures from the outset and require a general MLRP.

The idea is to provide a similar definition using Radon-Nikodym derivatives instead

of densities, however we need to be careful to ensure the absolute continuity condition

in the Radon-Nikodym theorem is satisfied.

This exact problem is addressed by Athey (2002), who gives the right generaliza-

tion of the MLRP (see definition A1). We now recount this definition, specialized to

our setting. For any eL < eH ∈ R+, define a carrying measure as follows:

C (π | eL, eH) = 1

2
F (π | eL) + 1

2
F (π | eH) .

Importantly, note that both F (· | eL) and F (· | eH) are absolutely continuous with

respect to C (· | eL, eH). We say that a family of CDFs, F , satisfies the monotone

likelihood ratio property (MLRP) if for any eL < eH , the Radon–Nikodym derivative

h (π, e) : (π, e) �→ dF (π|e)
dC(π|eL,eH)

is log-supermodular for C-a.e. (π, e), where e ∈ {eL, eH}.
To give a little intuition for this, consider the special case of differentiable CDFs.

We have that:

dF (π | e)
dC (π | eL, eH) =

dF (π | e) /dπ
dC (π | eL, eH) /dπ =

f (π | e)
1
2
f (π | eL) + 1

2
f (π | eH)

= 2
f (π | e)

f (π | eL) + f (π | eH) .
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The MLRP states that the Radon-Nykodym derivative above is log-supermodular,

or:

dF (πH | eH)
dC (πH | eL, eH)

dF (πL | eL)
dC (πL | eL, eH) ≥ dF (πH | eL)

dC (πH | eL, eH)
dF (πL | eH)

dC (πL | eL, eH) .

We write F (· | eH)
MLR≥ F (· | eL) if the above holds. Note that in the differentiable

CDF case reduces to:

f (πH | eH)
f (πH | eL) + f (πH | eH)

f (πL | eL)
f (πL | eL) + f (πL | eH)

≥ f (πH | eL)
f (πH | eL) + f (πH | eH)

f (πL | eH)
f (πL | eL) + f (πL | eH)

or:

f (πH | eH) f (πL | eL) ≥ f (πH | eL) f (πL | eH)
f (πH | eH)
f (πH | eL) ≥ f (πL | eH)

f (πL | eL) ,

which is one of the standard definitions given above.

1.3 Preliminary Analysis

This section makes some key observations, which will greatly simplify the proofs of

the major results. While some results in this section may be of independent interest,

the section may be skipped in its entirety on first reading. The key results of this

section are:

• Lemma 1.3.1 which allows us to consider lower semicontinuous contracts without

loss of generality, so that maximizers in the agent’s problem and minimizers in

the principal’s problem exist;

12



• Lemma 1.3.2 which allows for a simpler representation of the principal’s problem

given by equation 1.3.2; and

• Theorem 1.3.3 which shows that only monotonic contracts are robust.

The first observation is that in finding the principal’s worst-case scenario we can,

without loss of generality, assume this occurs with zero effort from the agent (at least

in the limit, if an argmin does not exist). Since the only guarantee the principal has

is that the agent is getting at least the utility guaranteed by F0, i.e., VA (B | F0), if

the infimum limiting effort level for minimizing technology F1 was not 0, but e∗ > 0,

we can construct a new technology as follows:

F ∗
1 (π | e) =

⎧⎪⎨⎪⎩ F1 (π | e+ e∗) if e ∈ [0, e− e∗]

F1 (π | e− e∗) if e ∈ (e− e∗, e]
.

Clearly, VA (B | F ∗
1 ) > VA (B | F1) ≥ VA (B | F0), thus the agent’s constraint is not

violated. Also note that F ∗
1 is an MLRP family, since the MLRP is a continuous

property which is preserved by limits.

Secondly, when solving for VP (B | F0) it suffices to consider A such that

|A∗ (B | A)| = 1. We could simply take an alternative A which removes the tech-

nology that leads to multiple optimal choices for the agent, and the principal would

be weakly worse-off. In the case where the argmax of the agent’s problem does not

exist, the same argument to sequences attaining the supremum for the agent. Thus,

it is without loss of generality to think of the principal’s preferences as:

VP (B | F0) = inf
A�F0

∫ π

0

B (π) dF (π | e) , subject to (e, F (· | e)) ∈ A∗ (B | A) .

Lastly, we observe that one can without loss of generality, restrict attention to

lower semicontinuous contracts. Since Innes (1990) finds that optimal contracts are

not continuous (his live-or-die contract is not continuous, given our definitions), we
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do not wish to restrict our analysis to purely continuous contracts in the moral hazard

problem presented above (for example, Carroll (2014) assumes continuous contracts).

However, continuity, as well as some weaker versions of it, ensures that the infimum

in the optimization problem of the principal is attained, which simplifies the analysis

significantly (and is very useful when constructing worst-case scenarios in subsequent

proofs). The next result shows that we can restrict attention to a class of contracts

in which representative elements are lower semicontinuous.

Let B̂ denote the lower semicontinuous hull of B, i.e., B̂ is the greatest lower

semicontinuous function majorized by B.

Lemma 1.3.1 We have that VP (B | F0) = VP

(
B̂ | F0

)
and:

VP

(
B̂ | F0

)
= min

A⊃A0

∫ π

0

B̂ (π) dF (π) , subject to F (· | e) = A∗ (B | A) ,

where we consider A ⊂ DG, for some worst-case CDF G, where G is differentiable

on (0, π] with G′ ≤ K < ∞.

We first prove that the minimum problem is well-defined for lower semicontinuous

contracts. This follows from a generalization of a classic theorem by Tonelli in the

calculus of variations, as stated, for example, in Zeidler (1985) theorem 38.B, also

known as the generalized Weierstrass theorem.

The intuition behind the assertion that VP (B | F0) = VP

(
B̂ | F0

)
is represented

in figure 1.1. The figure plots both CDFs and contracts on the same axis, assuming

π = 1. The curve in red is the lower bound, or worst-case, CDF G, and the 45◦ line

is in dashed yellow. A proposed contract, B, is in green and note that B is not lower

semicontinuous. The infimum sequence of CDFs, represented in blue, puts mass on π

ever closer to 0.4, as figure 1.1 shows. However, we cannot shift the mass all the way to

0.4, since this limiting CDF would result in a higher payoff to the principal. It should

be clear that when the limiting CDF is considered with the lower semicontinuous hull
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Figure 1.1: Proof idea for lemma 1.3.1.

of B (which in this case just involves moving the point at π = 0.4 down) we obtain

the same payoff as the infimum of CDFs. The significance of this lemma is then also

clear—we are able to look at a single minimizing CDF (the limiting CDF) instead of

a sequence.

Lemma 1.3.1 therefore shows that replacing a contract by it’s lower semicontinuous

hull results in the same solution to the principal’s problem. This is also always

weakly better for the agent, thus there is no loss of generality in focusing on lower

semicontinuous contracts. For any contract, B, let B̂ denote the lower semicontinuous

hull of B; that is, B̂ is the greatest lower semicontinuous function majorized by B.

We say that contracts B and B′ are equivalent if B̂ = B̂′, and write B ∼ B′. We

can then define an equivalence class, as follows [B] =
{
B′ ∈ R[0,π]

+ : B ∼ B′
}
. Thus

the lemma implies that it is without loss of generality consider B ∈ R[0,π]
+ / ∼ and in

particular we may take B to be lower semicontinuous.

15



Hence, we have that the principal’s problem can be written as follows:

max
F∈A,e∈[0,e]

∫ π

0

(π − B (π)) dF (π | e)− c (e) , (1.3.1)

and denote by VA (B | A) and A∗ (B | A) the value function and argmax of the above,

respectively. Note that these are well-defined since π−B (π) is upper semicontinuous.

The principal who faces unknown technologies can still bound her payoff. In

particular she has:

• The knowledge that the agent will not choose something worse than he was

getting under F0, the baseline technology, and

• The knowledge that all technologies must dominate the worst case G.

These lead to a representation of the principal’s preferences which makes plain the

Gilboa-Schmeidler maxmin preference of the principal, since she is minimizing over a

set of measures.

Lemma 1.3.2 We have that VP (B | F0) is the solution to:

min
F≤G

∫ π

0

B (π) dF (π) , subject to

∫ π

0

(π − B (π)) dF ≥ VA (B | F0) . (1.3.2)

Furthermore, if B (π) and π − B (π) are monotonic the constraint above holds as an

equality.

The lemma is a generalization of similar observations made in theorem 1 in Chas-

sang (2013) and lemma 2.2 in Carroll (2014). In a moral hazard setting both of these

papers find that the principal can essentially only bound her utility by the knowl-

edge that the agent will not choose a worse outcome than what he is guaranteed

under the known technology. Madarász and Prat (2014) exploit a similar argument

in a screening setting. The main differences between my proof and earlier literature
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arises from complications when there is a non-trivial lower-bound (when G �= δ0) and

the assumption that the principal fears getting the worst possible outcome when the

agent is indifferent.10

We can generally think of the constraint in program 1.3.2 as tight. Holmström

(1979) and Shavell (1979) point out that the monotonicity of π−B (π) follows directly

from the definition of the MLRP for optimal B, and we will show next that it is

without loss of generality to focus on monotone B.

1.3.1 Robustness of Monotone Contracts

Given the above preliminaries, the key assertion of this subsection is that robustness

considerations lead to monotonic contracts. The intuition for this is that a principal

facing a non-monotonic contract will assume that a productive technology which

exploits the non-monotonicity will be available to the agent and therefore disregard

any non-monotonic aspects of the contract.

Theorem 1.3.3 For any G and any non-monotonic contract B (π) there exists a

monotonic contract Bm (π) such that:

inf
A⊂DG

∫ π

0

Bm (π) dFA
m (π) = inf

A⊂DG

∫ π

0

B (π) dFA (π) ,

subject to FA
m ∈ A∗

A (Bm | A) and FA ∈ A∗
A (B | A), i.e., the principal is indifferent

between the two contracts, and B (π) ≥ Bm (π), i.e., the agent’s prefer the monotonic

contract.

The intuition for the above result is given in figure 1.2.

The idea is that if a principal is offered a non-monotonic contract, contract B in

figure 1.2, she would discount the non-monotonic part, since in the worst-case analysis

10The latter assumption allows us to state the lemma without reference to ”eligible” contracts.
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Figure 1.2: Proof idea for theorem 1.3.3.

she thinks that nature will endow the agent with a good technology which puts no

mass on the non-monotonic part.

Since F0 (π | e) = G (π) for all e, the two ways the principal can bound her payoff,

the lower-bound and the agent’s utility under the reference technology, are one and

the same. In particular, if any technology better than G was available, the principal

could only improve her payoff since contracts are monotonic. Thus the principal’s

worst-case in this extreme of the model is simply that only G is available. Note

however that ambiguity still has a role: it is critical in proving theorem 1.3.3, which

says that robust contracts are monotonic. Aside from this however, the key concern

is the provision of incentives to the agent, as in the textbook model.
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1.4 Smallest Ambiguity, F0 (· | e) = G

This section and the next consider the two extreme cases of the model and build

intuition for the results. This section considers the smallest ambiguity case, where

the lower-bound (G) and reference (F0) technologies are the same. I will show that

debt contracts are optimal in this extreme. We will subsequently analyze the largest

ambiguity case and with the intuition of these extremes proceed to the general results.

The main result of this section will be the optimality of debt contracts when the

agent is choosing from an MLRP set. The proof idea is the same as in Innes (1990).

We show that a non-debt contract induces a lower effort choice than a debt contract

which gives the principal the same payoff, and that this is below the first-best level

of effort. There are several complications in this version: we need to generalize the

argument to allow for non-differentiability of CDFs and we need to be careful since

ambiguity considerations are important when we are replacing contracts.11

1.4.1 Remarks about the Model

The model we have presented is sufficiently well-behaved. This section makes some

general remarks that could be skipped on first reading.

Remark 1 For any bounded, continuous function φ,
∫ π

0
φ (π) dF (π | e) is continu-

ous in e.

Since F (π | ·) is continuous in e, this observation follows directly from the port-

manteau theorem. The first-best effort level would be the amount of effort chosen

if the agent owned the firm. This is of course not feasible due to limited liability

assumption. Note that the first-best problem, if the agent is using technology F , is:

max
e≥0

{∫ π

0

π dF (π | e)−R− c (e)

}
.

11In particular, replacements need to be done with respect to the worst-case of the principal, as
opposed to the commonly known technology.
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Remark 2 The above has a unique solution with a positive effort level e∗ > 0.

This is true since c is strictly convex in e and
∫ π′

0
F (π | e) dπ is convex in e for

all π′. By Athey (2002), the latter condition implies that
∫ π

0
π dF (π | e) is concave

in e, which is sufficient for the existence and uniqueness of a solution. Under these

assumptions, the first-order condition12 for this problem is:

∂

∂e

(∫ π

0

π dF (π | e)
)
− ce (e) = 0.

This equation is strictly decreasing in e and is positive by assumption for e = 0, thus

by the mean value theorem there is a unique e∗ which solves the above first-order

condition.

Through a similar argument we see that contracts, like equity and debt lead to

unique solutions for the agent’s problem. In particular, the following has a unique

solution:

max
e≥0

∫ π

0

(π −min (π, z)) dF (π | e)− c (e) ,

for z ≥ 0. Denote the solution by e∗ (z) and note e∗ (z) is continuous in z, by Berge’s

maximum theorem.

1.4.2 Result

The main result of this section is that Pareto optimal contracts take the form of debt.

Theorem 1.4.1 For any A ⊂ DG where the agent is choosing from an MLRP set, a

solution to:

max
B

VA (B | A) ,

subject to VP (B | F0) ≥ R,

12The display expression is assuming differentiability with respect to e, which is a special case of
our model. In general the idea is exactly the same and the special case is shown in this case for
simplicity.
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is BD
z (π) := min (π, z) for some z ∈ [0, π].

The proof of the theorem goes by showing that when a monotonic contract is

replaced by an appropriately chosen debt contract the agent is induced to put in more

effort because of the MLRP. This is a key property of the MLRP and is summarized

in the following lemma.

Lemma 1.4.2 Let φ (π) be a function such that φ (π) ≥ 0 for π ≤ πB, φ (π) ≤ 0 for

π ≥ πB and either:

1.
∫ π

0
φ (π) dF (π | eL) = 0, or

2.
∫ π

0
φ (π) dF (π | eL) ≤ 0 and φ (π) decreasing for π ≥ πB.

Then, for any eH > eL and any MLRP family F , we have that
∫ π

0
φ (π) dF (π | eL) ≥∫ π

0
φ (π) dF (π | eH).

This is a generalization of lemma 1 from Innes (1990). The proof technique is

similar, but needs to take care of technical difficulties arising from the non-existence

of densities. The lemma is key in the proof of the main theorem, since it says that re-

placing generic monotone contracts by debt contracts implies higher marginal benefits

of effort.

Note that the inequality in the above theorem holds strictly if the MLRP is strict.

This observation will be useful for the uniqueness result that follows.

Corollary 1.4.3 The repayment level, z, in the optimal contract, BD
z (π) =

min (π, z), is increasing in R and decreasing in G.13

The above corollary follows since the level of debt is chosen so as to guarantee the

principal the required utility R under the worst-case scenario where G and only G is

available. This implies that the level of repayment z is increasing in R. Furthermore

if G ≤ G′, the level of repayment required under G′ would be greater than under G.

13If we think of potential G CDFs as being ordered by stochastic dominance.
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Corollary 1.4.4 Debt is the unique solution to the above problem if R ∈ (0, Rmax),

F satisfies strict MLRP and G has full support.

1.4.3 Numerical Example

To demonstrate why the efficiency question is interesting, let us consider a simple

example. Let Π = [0, 1], e = [0, 1], c (e) = 1
10
e2 and G = F0 = U [0, 1]. Fix a level

of principal utility R. As discussed, the worst-case scenario for the principal is that

only the (constant) technology F0 is available to the agent14. The principal is thus

indifferent between many contracts. In particular, the principal is indifferent between

an equity and debt contract defined as follows:

BE
α (π) = απ, with α = 2R

BD
z (π) = min (π, z) , with z = 1−√

1− 2R, and
,

since: ∫ 1

0

BD
z (π) dG (π) = 2R

∫ 1

0

π dπ = R,

and:

∫ 1

0

BD
z (π) dG (π) =

∫ 1−√
1−2R

0

π dπ +
(
1−√

1− 2R
)(

1−G
(
1−√

1− 2R
))

=

(
1−√

1− 2R
)2

2
+

(
1−√

1− 2R
)√

1− 2R

= 1−√
1− 2R−R + 2R +

√
1− 2R− 1 = R.

Consider now an agent with the following technology set A:

F (π | e) = πe+1, for e ∈ [0, 1] .

14This is because contracts have to be monotonic and the agent gets his ”promised” utility under
G.
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Note that this is an MLRP technology set and that F (π | e) ≤ G (π) for all e. Figure

1.3 plots the utilities of the agent under the two contracts above, given different

possible reservation utilities of the principal R.
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Figure 1.3: Numerical example illustrating Pareto Efficiency

We see in figure 1.3 that although the principal is indifferent between the contracts,

the agent clearly prefers the debt contract for all R ∈ (0, Rmax). Note that in this

case Rmax = 1/2. When R = 0 or R = Rmax the debt and equity contracts are the

same—they either award all profit to the agent or principal.

1.5 Largest Ambiguity, G = δ0

We now consider the case where the lower-bound CDF is trivial. In this extreme

version of the model the maxmin aspect of the principal’s preferences really restricts
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Figure 1.4: Proof idea for theorem 1.5.1.

what is achievable and we do not need to make further assumptions about A. As

such we can consider general sets A ⊂ D, and in particular we do not need to assume

that the agent is choosing from an MLRP set of technologies.

Theorem 1.5.1 For any A ⊂ D, a solution to:

max
B

VA (B | A) ,

subject to VP (B | F0) ≥ R,

is Bα (π) = απ for some α ∈ [0, 1], i.e., a linear/equity contract.

The intuition for this proof is that an extremely uncertain principal places a

huge premium on having preferences perfectly aligned with the agent, which is what

happens when the contract is linear. Even if there are efficiency gains from providing

stronger incentives for the agent at the upper end of profit outcomes, as is the case

when A is an MLRP set, this benefit is over-ridden by the principal’s pessimism.

The proof of theorem 1.5.1 is illustrated in figure 1.4. The left-hand panel gives

the intuition for why contracts have to be (weakly) convex. In particular, consider a
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concave contract B (in green). In performing her worst-case analysis, the principal

is wants to find the worst way (for her) that the agent can gain exactly the utility

guaranteed by F0, υ := VA (B | F0). Given that the set of CDFs she can minimize

over is unrestricted, she will put mass on just two points: there will be a lot of mass on

0, since this gives her no payoff, and just enough mass on the point which minimizes

B(π)
π

, i.e., the point which minimizes what the principal gets relative to what the agent

gets. In this case ”just enough” means to make the agent choose this constructed

CDF (at zero effort cost) over whatever was optimal in F0. This worst-case CDF

is illustrated by FB in the figure. Now, consider replacing B by the lower convex

hull, Bc. Note that at the worst-case the principal is indifferent between B and Bc.

Furthermore, since Bc is linear, it satisfies a ”no-weak-point” constraint, so that the

minimizing CDF for the principal is any CDF which delivers the required utility to

the agent—including FB. This replacement therefore makes the principal no worse

off, but makes the agent weakly (and generally strictly) better off.

The right-hand panel in figure 1.4 provides intuition for why contracts have to be

linear. In particular, consider the principal’s worst-case analysis when faced with a

convex contract B, where the agent is guaranteed some level of utility υ. Jensen’s

inequality implies that the worst-case scenario is a dirac distribution δπ∗ at the lowest

level of profit which gives the agent exactly utility υ. One can replace B by a linear

contract Bα that goes through (π∗, B (π∗)) and we again note that the principal is

no worse off. It is not immediate that the agent likes this replacement however, since

there is an interval, [0, π∗], on which Bα > B. The agent does like this replacement

however—since the agent’s average payoff under whatever technology he was choosing

from A is at least υ, it cannot be the case that the agent is putting much mass on

[0, π∗] relative to the mass this CDF puts on [π∗, π]. Another application of Jensen’s

inequality ensures that this replacement indeed gives the agent higher utility (and

strictly higher if the agent’s chosen distribution is not δπ∗).
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We say that A has full support, if for all Fi ∈ A and e ∈ [0, e], supp(Fi(· | e)) =
[0, π].

Corollary 1.5.2 Equity is the unique solution to the above problem if R ∈ (0, Rmax)

and A has full support.

The equity contract is the unique efficient contract if the agent’s technologies have

sufficiently large support.

1.5.1 Relationship with Carroll (2014)

The robust contracting framework of Carroll (2014) maps directly to the largest

ambiguity case analyzed above. One difference is that Carroll (2014) focuses on

unknown actions, as opposed to technologies, and does not require MLRP. Our choice

of focusing on technologies is inspired by the classical literature on contract theory

which imposes natural restrictions such as the MLRP. However, as we noted in the

model section, if we assume nothing about how these technologies are inter-related

there is no bite to the MLRP assumption.

In particular, an action in Carroll’s setup can be converted to a technology as

follows. Let (F, e) be an action available to the agent in Carroll’s model. We can

define an MLRP technology, from which (F, e) will be chosen if it dominates the zero

action, as follows:

Fi (· | e′) =

⎧⎪⎨⎪⎩ δ0 if e′ < e

F if e′ ≥ e
.

Note that Fi, as defined above, satisfies the generalized MLRP.15

The key difference is that Carroll (2014) solves the principal-optimal problem.

The main result is presented below.

15Note however that Fi is not continuous in e (although this could be easily modified through a
standard mollifier construction) and that Fi fails stochasic concavity. Both of these assumptions on
technologies could be dropped without affecting any results in this section.
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Theorem 1.5.3 (Carroll, 2014) A solution to:

max
B

VP (B | F0) ,

subject to VA (B | A) ≥ 0,

is Bα (π) = απ for some α ∈ (0, 1).

The above is a linear contract or, in our security-design-inspired language, the

solution to the principal problem is an equity contract. As we illustrated in the

discussion in section 5, this does not necessarily imply that the equity contract is

efficient. However, Carroll (2014) also shows a uniqueness result: under the same

conditions as in corollary 1.5.2, equity is the unique principal-optimal contract. This

implies that equity must also be the efficient contract in that case. Theorem 1.5.1

extends these results by observing that equity is an efficient contract even when the

uniqueness results fail.

1.6 General Results

The general model can now be analyzed by combining the insights from the study of

the extreme cases in the two preceding sections.

We say that a technology set A is strongly better than the lower-bound technology

G if any F ∈ A we have that G
MLR≤ F . This implies the first-order stochastic

dominance assumption we already had, but adds to it somewhat. The fact that we

can get general results only when this stronger dominance condition holds should not

be surprising—the MLR was identified by the classic literature as the correct notion

of unambiguously improving on a random profit technology.
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Theorem 1.6.1 For any A ⊂ DG strongly better than G, where the agent is choosing

from an MLRP set, a solution to:

max
B

VA (B | A) ,

subject to VP (B | F0) ≥ R,

is BP
α,z (π) = min (π, z + απ) for some z ∈ [0, π], α ∈ [0, 1] with z + απ < π.

The Pareto optimal contract BP
α,z is participating preferred equity. Participating

preferred equity contracts can be thought of as a mixture of debt and equity. An

investor issues a debt component and an equity component—the investor is entitled

to all profit up to the repayment level of z
1−α

and is then entitled to an additional α

share of any profit above this level. The class of preferred equity contracts includes

the simple debt and equity contracts we proved were efficient in previous sections.

In particular, α = 0 implies that BP
α,z = BD

z or simple debt, while z = 0 implies

BP
α,z = BE

α or simple equity.

The intuition for this result is rather simple. We have already seen that debt

contracts are good for incentive provision. However, when VA (B | F0) is sufficiently

bigger than VA (B | G) we can make an unambiguous improvement if we are starting

from the debt contract, as shown in figure 1.5.

Take any contract B, shown in green in figure 1.5, and consider the minimizing

CDF subject to some arbitrary G. The worst-case CDF, FB, for contract B is shown

in red in the figure. This CDF has the feature that it puts mass on an interval of

small profit realizations and on π, as π minimizes the ratio of what the principal gets

relative to the agent and thus this is the most costly way for the agent to get at least

utility VA (B | F0). The same logic was used in section 6 when we deduced the Pareto

optimality of equity contracts.
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Figure 1.5: Proof idea for theorem 1.6.1.

Given the minimizing CDF, FB, we see that B can be replaced by BP , a preferred

equity contract that is the lower convex hull of contract B on the region where FB

had no support. Note that a minimizing CDF for contract BP is still FB, thus the

principal is indifferent to this change. The agent clearly prefers contract BP since

BP ≤ B.

Corollary 1.6.2 The principal’s payoff from contract B (π) = min {π, z + απ} is:

R =

∫ z
1−α

0

π dG+
αVA (B | F0) + z

(
1−G

(
z

1−α

))
(1− α)

.

This corollary gives a relation between α and z, in terms of the known parameters

of the model—the lower-bound CDF G and the utility afforded to the agent under

technology F0, VA (B | F0).
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If G = δ0, then for any z ≥ 0 we have that:

R =

∫ z
1−α

0

π dG+
αVA (B | F0) + z

(
1−G

(
z

1−α

))
(1− α)

=
αVA (B | F0)

(1− α)
,

thus the agent is (at least weakly) better off by setting z = 0, since any z > 0 is

dominated. If G = F0, and since worst-case scenario for Principal is G:

R =

∫ z
1−α

0

π dG+
αVA (B | F0) + z

(
1−G

(
z

1−α

))
(1− α)

,

=

∫ z
1−α

0

π dG+

∫ π

z
1−α

(απ + z) dG,

which implies that we must have:

∫ π

z
1−α

(απ + z) dG =
αVA (B | F0) + z

(
1−G

(
z

1−α

))
(1− α)

.

The above holds when α = 0 and, as we argued earlier, such a debt contract provides

the best incentives when the agent is choosing from an MLRP set in the smallest

ambiguity case.

The characterization in corollary 1.6.2 implies that as G improves towards F0 the

set of z and a pairs which are undominated increases continuously (as the expression

is continuous in G). For G sufficiently close to F0 debt contracts become possible,

however they may not be chosen for every realization of the technology set since the

repayment level, z, may be too high. When G gets even closer to F0, the repayment

level decreases and debt contracts are certainly efficient when G = F0 for any MLRP

realization of A. For sufficiently good realized technology sets, debt becomes Pareto

optimal for G where F0 < G.
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1.7 Discussion

1.7.1 Decentralization

This paper has considered Pareto problem motivated by a central planner who cares

about efficiency. Is there a way to decentralize the problem? The key thing we need

to be careful about is avoiding any possibility of signaling.

Consider the following timing:

1. The agent, knowing his realized technology set A, as well as the informa-

tion available to the principal (the baseline technology F0, and lower-bound

G) prosposes a set of contracts B;

2. The principal accepts or rejects the set of contracts B, based on the under-

standing that the agent will be able to select any B ∈ B. The principal has an

ex-post utility constraint, so that he will accept the set of contracts if for any

B ∈ B, V (B | F0) ≥ R;

3. The agent chooses some B∗ ∈ B and some (e, F ) ∈ A;

4. Nature realizes profits and they are shared: the principal gets B∗ (π) and the

agent gets π − B∗ (π).

In this game it is a weakly dominant strategy for the agent to propose the largest

set of contracts that will get accepted, which is any contract B for which V (B | F0) ≥
R. This is related to Myerson’s (1983) principle of inscrutability in informed principal

models: the informed party (the principal in Myerson’s model, the agent here) should

not want to reveal their private information if they can help it.

The maxmin preference of the principal actually helps us here. If the principal

was Bayesian and had an ex-ante participation constraint, signaling could be helpful

as it could indicate to the principal that ”certain technologies are unlikely” and can
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therefore relax the participation constraint in favor of the agent. With a maxmin

principal this signaling benefit is not relevant, since for any contract and any tech-

nology realization the principal has to get the required return R; there is no incentive

compatible sense in which this could be relaxed.

In the financial contracting interpretation, this decentralization looks like a reverse

convertible bond. With such a contract the issuer has the right to convert between a

pre-agreed set of contracts, e.g., this maps to the choice that the agent gets from the

set B.

1.7.2 Concluding Remarks

This paper introduced a general model of robust contracting when the principal does

not know ex-ante all of the profit technologies available to the agent. The relaxation of

this assumption of the textbook financial contracting model gives us a lot of traction.

Firstly, it provides a complete theory of debt contracts which was the goal of this

classic literature. Secondly, it shows that other, readily observable, contracts such

as equity are Pareto efficient. More generally, these are examples of contracts in the

class of participating preferred equity which we find to be Pareto optimal in a general

environment. While debt and equity are clearly common contracts, empirical work

on venture capital also suggests participating preferred equity is not uncommon in

practice.16 The key empirical implication of the results is that we should see firms

in ‘new’ industries (such as social networking or biotech startups), where investors

have little prior experience and face a lot of ambiguity about how the firm is going

to generate profits, funded by equity contracts. Conversely, firms in ‘established’

industries (such as restaurants or accounting offices), where investors have a lot of

experience and face less Knightian uncertainty, should be financed by debt.

16Kaplan and Strömberg (2003) find that 40 percent of venture capital funding rounds in their
data set involve participating preferred equity.
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In a very different set of models, focusing on costly information acquisition instead

of moral hazard, a similar type of empirical prediction results. Dang, Gorton and

Holmstrom (2012) and Yang (2013) find that in cases where information acquisition

by the investor is not socially optimal (e.g., if the project is in a well-established

industry), debt contracts should be observed as they provide the worst incentives for

costly information acquisition. Yang and Zeng (2014) generalize this model and find

that if there are enough benefits from information acquisition by the investor (e.g.,

if the project is in a new industry), the class of participating (convertible) preferred

equity contracts might be optimal.

The analysis in this paper makes headway using two key simplifying assumptions.

Firstly, in obtaining general results, we are restricting the analysis to cases where the

agent is choosing from MLRP technology sets. This is to be expected, as the classic

contracting literature also requires MLRP technologies to provide general conclusions,

but it does leave open the question of what we can say without any restriction on the

technology sets. Secondly, in the principal’s minimization problem we are allowing

for a rich set of distributions for the principal to minimize over.17 While we reduce

the ambiguity of the principal by decreasing the size of the minizing set (by increasing

G), the techniques employed require this set to be rich (i.e., all CDFs that dominate

G). It is natural to consider what happens when the richness of the minimizing sets

is somehow restricted. These are two possible directions for future research.

17We also do not impose an upper-bound technology, but this is of far less improtance.
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1.A Omitted Proofs

1.A.1 Proof of Lemma 1.3.1

Lemma 1.A.1 We have that VP (B | F0) = VP

(
B̂ | F0

)
and:

VP

(
B̂ | F0

)
= min

A⊃A0

∫ π

0

B̂ (π) dF (π) , subject to F (· | e) = A∗ (B | A) ,

where we consider A ⊂DG, for some worst-case CDF G, where G = δ0 or G is

differentiable (has a density), with bound K < ∞.

Proof. We shall treat the set of relevant CDFs as a subset of L2 ([0, π]). Clearly

L2 is a reflexive Banach space, since it is a Hilbert space. Furthermore, the set

{F : F ≤ G} is bounded and closed in L2. Note that in analyzing the principal’s

worst-case scenario, we have that the worst case is achieved at 0 effort (observation

1) in the limit and since B̂ is lower semicontinuous, the MLRP restriction plays no

role in constraining the set of CDFs as:

lim
e→0

∫ π

0

B̂ (π) dF (π | e) ≥
∫ π

0

B̂ (π) dF (π | 0) .

We also note that the agent’s problem with B̂ attains the solution and that by the

generalized theorem of the maximum A∗
(
B̂ | A

)
is closed.

We are left to show that the functional above is weak sequentially lower semicon-

tinuous, i.e., for any sequence ‖F n − F‖2 → 0, we have that:

lim inf
n→∞

∫ π

0

B̂ (π) dF n (π) ≥
∫ π

0

B̂ (π) dF (π) .

To see this, note that by Hölder’s inequality ‖F n − F‖1 ≤
√

λ ([0, π]) ‖F n − F‖2 → 0,

and L1 convergence of CDFs on metric spaces of bounded diameter implies weak

convergence of measures. Therefore, the above inequality follows directly by the
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portmanteau theorem, since B̂ is lower semicontinuous and bounded from below by

018. This proves the second claim.

For the first claim, for any A, VA (B | A) ≤ VA

(
B̂ | A

)
, since B ≥ B̂, and

similarly:

inf
F≤G

∫ π

0

B (π) dF (π) ≥ min
F≤G

∫ π

0

B̂ (π) dF (π) .

To complete the proof, we will show that for any ε > 0:

inf
F≤G

∫ π

0

B (π) dF (π) ≤ min
F≤G

∫ π

0

B̂ (π) dF (π) + ε.

Let F̂ ∈
{
argminF≤G

∫ π

0
B̂ (π) dF (π)

}
�= ∅. Note that by definition19 of the

lower semicontinuous hull B̂ (π) = limε→0+ inf{π′ : |π−π′|<ε} B (π′). Therefore, for any

ε > 0, there exists a e > 0 such that for all ε′ < min (e, ε), 0 < inf{π′ : |π−π′|<ε′} B (π′)−
B̂ (π) < 1

2
ε. By the definition of the infimum for any ε > 0, there is a π∗ such that

0 < B (π∗)− inf{π′ : |π−π′|<ε′} B (π′) < 1
2
ε and |π − π∗| < ε′. Therefore:

B (π∗)− B̂ (π) ≤
(
B (π∗)− inf

{π′ : |π−π′|<ε′}
B (π′)

)
+

(
inf

{π′ : |π−π′|<ε′}
B (π′)− B̂ (π)

)
<

1

2
ε+

1

2
ε = ε.

Summarizing, for any π and any ε > 0, there exists a π∗ such that |π − π∗| < ε and

B (π∗)− B̂ (π) < ε.

Fix any ε > 0 and consider a partition of Π, PN = {[π0, π1]} ∪ {(πi−1, πi]}Ni=2 so

that N < ∞ and for all i, πi+1 − πi <
1
2K

ε and F̂ (πi) = F̂ (πi)−,
20 i.e., πi are not

mass points of F̂ . Let π′
i = argminπ∈[πi−1,πi] B̂ (π) and note that by the extreme value

theorem this is well defined as B̂ is lower semicontinuous. By the above summary,

find π∗
i such that |π′

i − π∗
i | < 1

2K
ε and B (π∗

i ) − B̂ (π′
i) < 1

2K
ε. Clearly for any

18It is easy to construct counter-examples for functions which are not lower semi-continuous.
19See Rockafeller (1970) or Penot (2013) proposition 1.21. Note that B̂ is well defined, since

inf{π′ : |π−π′|<ε} B (π′) is a decreasing in ε and bounded below by 0.
20This works as there can only be countably many mass points.
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π ∈ [πi−1, πi], we have that |π − π∗
i | < 1

2K
ε. Now, let fε (π

∗
i ) = F̂ (πi) − F̂ (πi−1).

Define Fε (π) =
∫ π

0
fε (π

′) dπ′ and:

FG
ε (π) =

⎧⎪⎨⎪⎩
∑

j≤i fε
(
π∗
j

)
if π ∈ [πi−1, πi] and

∑
j≤i fε

(
π∗
j

) ≤ G (π)

G (πi−1) if π ∈ [πi−1, πi] and
∑

j≤i fε
(
π∗
j

)
> G (π)

,

and note that by construction FG
ε ≤ G. Let Pi = 1∑

j≤i fε(π∗
j )≤G(πi−1)

and note that:

inf
F≤G

∫ π

0

B (π) dF (π)−min
F≤G

∫ π

0

B̂ (π) dF (π)

≤
∫ π

0

B (π) dFG
ε (π)−

∫ π

0

B̂ (π) dF̂ (π)

=
N∑
i=1

fε (π
∗
i )B (π∗

i )Pi +
N∑
i=1

fε (π
∗
i )B (π∗

i ) (1− Pi)−
∫ π

0

B̂ (π) dF̂ (π)

≤
N∑
i=1

(
F̂ (πi)− F̂ (πi−1)

)
B (π∗

i )−
∫ π

0

B̂ (π) dF̂ (π)

≤
N∑
i=1

(
F̂ (πi)− F̂ (πi−1)

)(
B (π∗

i )− B̂ (π′
i)
)
≤ 1

2
ε.

Note that there is still 1
2
ε to squeeze in the constraint Fε ≤ G. Clearly if G = δ0,

the inequality is satisfied. Otherwise, it works by a Taylor approximation given that

the derivative of G is bounded by K < ∞.

1.A.2 Proof of Lemma 1.3.2

Lemma 1.A.2 We have that VP (B | F0) is the solution to:

min
F≤G

∫ π

0

B (π) dF (π) , subject to

∫ π

0

(π − B (π)) dF ≥ VA (B | F0) . (1.A.1)

Furthermore, if B (π) and π − B (π) are monotonic the constraint above holds as an

equality.
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Proof. For any A, consider any (e, F1) ∈ A∗ (B | A). It must be the case that:

∫ π

0

(π − B (π)) dF1 (π | e) ≥
∫ π

0

(π − B (π)) dF1 (π | e)− c (e) ≥ VA (B | F0) ,

thus:

VP (B | F0) ≥ min
F≤G

∫ π

0

B (π) dF (π) , s.t.

∫ π

0

(π − B (π)) dF ≥ VA (B | F0) .

To show the reverse, let F attain the minimum on the RHS of the above inequality.

Consider A = F0 ∪Fc, where Fc (π | e) = F (π) for all e. Since c is strictly increasing

the agent chooses action (0, Fc) as this gives him (at least) the utility VA (B | F0) and

the principal is worse off in the case of indifference.

To see the second claim, assume that the minimizing F (π) < G (π) for some π

(since CDFs are monotonic and upper-semicontinuous the strict inequality holds on

some interval). Then if:

∫ π

0

(π − B (π)) dF > VA (B | F0) ,

we can find an F̃ , F ≤ F̃ ≤ G such that F (π) < F̃ (π) < G (π) when F < G and

∫ π

0

(π − B (π)) dF̃ ≥ VA (B | F0) .

The last part is possible by the monotonicity of π − B (π). Furthermore, by the

monotonicity of B (π):

∫ π

0

B (π) dF (π) <

∫ π

0

B (π) dF̃ (π) ,

but then F could not have been a solution to the minimization problem, which is

a contradiction. If the minimizing F = G, then F0 = G by the monotonicity of
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π − B (π). Thus:

∫ π

0

(π − B (π)) dF =

∫ π

0

(π − B (π)) dG = VA (B | F0) ,

and the constraint holds as an equality.

1.A.3 Proof of Theorem 1.3.3

Theorem 1.A.3 For any G and any non-monotonic contract B (π) there exists a

monotonic contract Bm (π) such that:

inf
A⊂DG

∫ π

0

Bm (π) dFA
m (π) = inf

A⊂DG

∫ π

0

B (π) dFA (π) ,

subject to FA
m ∈ A∗

A (Bm | A) and FA ∈ A∗
A (B | A), i.e., the principal is indifferent

between the two contracts, and B (π) ≥ Bm (π), i.e., the agent’s prefer the monotonic

contract.

Before giving a proof of the theorem, we present some lemmas. Note that in the

current version these proofs do not rely on the lower-semicontinuity theorem observed

in the preliminaries.

Lemma 1.A.4 Fix any B and assume there exists FB = argminF≤G

∫ π

0
B (π) dF (π).

For any interval (π1, π2) such that there exists π∗ > π2 for which B (π∗) < B (π′) for

all π′ ∈ (π1, π2), F
B is constant on [π1, π2).

Proof. Assume by way of contradiction limπ′↑π2 F
B (π′)−FB (π1) = γ > 0. Consider:

F ∗ (π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

FB (π) if π < π1

FB (π1) if π ∈ [π1, π2)

FB (π)− γ if π ∈ [π2, π
∗)

FB (π) if π ≥ π∗

,
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and note that F ∗ (π) ≤ FB (π) ≤ G (π) for all π and thus satisfies the constraint.

Furthermore, by construction we have that:

∫ π

0

B (π) dFB (π) >

∫ π

0

B (π) dF ∗ (π) ,

and thus FB could not have solved the minimization problem, which is a contradiction.

A final lemma which says that the lower-semicontinuous hulls of contracts preserve

order.

Lemma 1.A.5 Let B ≥ B′. If B̂ (π) > B̂′ (π), then for every ε > 0, there exists a

π′, |π − π′| < ε, such that B (π′) > B′ (π′).

Proof. We shall prove the contrapositive. Thus, assume that for some ε > 0, for all

π′, |π − π′| < ε we have that B (π′) = B′ (π′). Now, by definition we have that:

sup
{
b̂ (π) : b̂ lsc, b̂ ≤ B

}
= B̂ (π) > B̂′ (π) = sup

{
b̂′ (π) : b̂′ lsc, b̂′ ≤ B′

}
,

and if B and B′ are equal in a neighborhood of π, any lower semicontinuous

function which is below one, must be below the other.

We are now ready to prove the theorem.

Proof of Theorem 1.3.3. Consider the following contract:

Bm (π) = inf
π′∈[π,π]

B (π′) .

Clearly Bm (π) ≤ B (π) for all π and Bm (π) is monotone. We are left to show that:

inf
A⊃A0

∫ π

0

Bm (π) dFA
m (π) = inf

A⊃A0

∫ π

0

B (π) dFA (π) .
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We claim that it is enough to show that:

inf
F≤Gm

∫ π

0

Bm (π) dF (π) = inf
F≤G

∫ π

0

B (π) dF (π) ,

where (G, c′) ∈ argmax(F,c)∈A0

∫ π

0
π−B (π)− c dF (π), i.e., G is the distribution over

profit outcomes which would be chosen by the agent from A0 under contract B, and

similarly Gm is the action that would have been chosen under Bm.

By lemma 1.3.1, we are left to show that:

min
F≤G

∫ π

0

B̂ (π) dF (π) = min
F≤Gm

∫ π

0

B̂m (π) dF (π) .

Let FB = argminF≤G

∫ π

0
B̂ (π) dF (π), by lemma 1.3.1 this exists. We first claim

that: ∫ π

0

B̂ (π) dFB (π) =

∫ π

0

B̂m (π) dFB (π) .

If B̂ (π) > B̂m (π), by lemma 1.A.5 there is some π′ such that B (π′) > Bm (π′).

By definition, there exists some π∗ such that B (π′′) > Bm (π′′) for all π′′ ∈ (π′, π∗).

Next, we argue that for any other F ≤ Gm,
∫ π

0
B̂m (π) dF (π) ≥ ∫ π

0
B̂m (π) dFB (π).

To see this, assume by way of contradiction the opposite. It’s clear that by lemma

1.A.4, F must assign zero measure to the set where B and Bm do not agree, but

then FB could not be a minimizer for B̂.

That yields the final result.

1.A.4 Proof of Lemma 1.4.2

Lemma 1.A.6 Let φ (π) be a function such that φ (π) ≥ 0 for π ≤ πB, φ (π) ≤ 0 for

π ≥ πB and either:

1.
∫ π

0
φ (π) dF (π | eL) = 0, or

2.
∫ π

0
φ (π) dF (π | eL) ≤ 0 and φ (π) decreasing for π ≥ πB.
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Then, for any eH > eL and any MLRP family F , we have that
∫ π

0
φ (π) dF (π | eL) ≥∫ π

0
φ (π) dF (π | eH).

Proof. Note that under case 1 we have:

∫ πB

0

φ (π) dF (π | eL) = −
∫ π

πB

φ (π) dF (π | eL) > 0.

Take any eH > eL and consider:

(∫ π

0
φ (π) dF (π | eL)−

∫ π

0
φ (π) dF (π | eH)

)∫ πB

0
φ (πL) dF (πL | eL)

=

∫ πB

0
φ (πL) dF (πL | eL)

∫ π

0
φ (π)

(
dF (π | eL)
dC (π)

− dF (π | eH)

dC (π)

)
dC (π)

=

(
−

∫ π

πB

φ (πH)
dF (πH | eL)
dC (πH)

dC (πH)

)∫ πB

0
φ (πL)

(
dF (πL | eL)
dC (πL)

− dF (πL | eH)

dC (πL)

)
dC (πL)

+

(∫ πB

0
φ (πL)

dF (πL | eL)
dC (πL)

dC (πL)

)∫ π

πB

φ (πH)

(
dF (πH | eL)
dC (πH)

− dF (πH | eH)

dC (πH)

)
dC (πH) ,

where we write C (π) for C (π | eL, eH). By Fubini’s theorem (applies since the above

are integrable and C is a probability measure and therefore σ-finite) the above equals:

−
∫ πB

0

∫ π

πB

φ (πH)φ (πL)
dF (πH | eL)
dC (πH)

(
dF (πL | eL)
dC (πL)

− dF (πL | eH)

dC (πL)

)
dC (πH) dC (πL)

+

∫ πB

0

∫ π

πB

φ (πH)φ (πL)
dF (πL | eL)
dC (πL)

(
dF (πH | eL)
dC (πH)

− dF (πH | eH)

dC (πH)

)
dC (πH) dC (πL)

=

∫ πB

0

∫ π

πB

φ (πH)φ (πL)

[
dF (πH | eL)
dC (πH)

dF (πL | eH)

dC (πL)
− dF (πL | eL)

dC (πL)

dF (πH | eH)

dC (πH)

]
dC (πH) dC (πL)

≥ 0,

where the last inequality follows since φ (πL) ≥ 0, φ (πH) ≤ 0 and by the generalized

MLRP:

dF (πH | eL)
dC (πH)

dF (πL | eH)
dC (πL)

≤ dF (πL | eL)
dC (πL)

dF (πH | eH)
dC (πH)

.

41



Thus: ⎛⎜⎝ ∫ π

0
φ (π) dF (π | eL)

− ∫ π

0
φ (π) dF (π | eH)

⎞⎟⎠∫ πB

0

φ (πL) dF (πL | eL) ≥ 0,

and since
∫ πB

0
φ (πL) dF (πL | eL) > 0, we have that:

∫ π

0

φ (π) dF (π | eL) ≥
∫ π

0

φ (π) dF (π | eH) .

Case 2 follows similarly (using first-order stochastic dominance of F (· | eH) over
F (· | eL) and the fact that φ is decreasing for π ≥ πB). May need to ”split up” mass

at π∗.

In particular, under case 2, there exists some π∗ and α ∈ (0, 1] such that:

∫ πB

0

φ (π) dF (π | eL)

= − lim
π′→π∗

−

∫ π′

πB

φ (π) dF (π | eL)− α
[
F (π∗ | eL)− F

(
π∗
− | eL

)]
φ (π∗) .

We can then repeat the above, replacing π by π∗, with the alpha-mass adjustment.

We have then shown that:⎛⎜⎝ ∫ π∗

0
φ (π) dF (π | eL)−

∫ π∗

0
φ (π) dF (π | eH)

−αφ (π∗) [f (π∗ | eL)− f (π∗ | eH)]

⎞⎟⎠∫ πB

0

φ (πL) dF (πL | eL) ≥ 0,

(1.A.2)

where

f (π∗ | eL) = F (π∗ | eL)− F
(
π∗
− | eL

)
.

Because F (π | eH) dominates F (π | eL) with respect to the monotone likelihood ratio

order, it also conditionally first-order stochastically dominates it (conditioning on any
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set). Conditioning on (π∗,∞) and π∗ implies that:

∫ π

π∗
+

φ (π) dF (π | eL) + αf (π∗ | eL)φ (π∗) (1.A.3)

≥
∫ π

π∗
+

φ (π) dF (π | eH) + αf (π∗ | eH)φ (π∗) ,

since φ (π) decreasing for π ≥ πB. Combining 1.A.2 and 1.A.3 we have the desired

result.

1.A.5 Proof of Theorem 1.4.1

Theorem 1.A.7 For any A = G ∪ F (· | e) ⊂ DG, a solution to:

max
B

VA (B | A) ,

subject to VP (B | F0) ≥ R,

is BD (π, z) := min (π, z) for some z.

Proof. Let B (π) be a monotonic non-debt contract, i.e.,
{
π : BD (π, z) �= B (π)

}
is

not G-null for every z. The principal’s worst case in this instance is if only technology

F0 = G was available. Let z0 solve:

∫
BD (π, z0) dG (π) =

∫
B (π) dG (π) .

Note that such a z0 exists by Berge’s maximum theorem since BD is continuous in

z0, as remarked in the main text.

Define:

φ (π) = BD (π, z0)− B (π) .

Fix any F1 (· | e) ⊂ DG such that A = F0∪F1 is an MLRP set and can be represented

by some F satisfying MLRP. Note that F ≤ G by assumption and that F
MLRP≥ F0 =
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G, so that:

∫ π

0

(π − B (π)) dF (π | e) + c (e)−
∫ π

0

(
π − BD (π, z0)

)
dF (π | e)− c (e)

=

∫ π

0

φ (π) dF (π | e) .

Now, by definition: ∫ π

0

φ (π) dG (π) = 0,

and by lemma 1.4.2, for any e ≥ 0:

∫ π

0

φ (π) dF (π | e) ≤
∫ π

0

φ (π) dG (π) = 0,

so that:

∫ π

0

(π − B (π)) dF (π | e)− c (e) ≤
∫ π

0

(
π − BD (π, z0)

)
dF (π | e)− c (e) ,

but then the agent gets weakly higher utility under BD than under B. Note that

the above holds strictly when the MLRP is strict, as this implies a strict version of

lemma 1.4.2. Since by definition of BD we have that the principal’s robust constraint

is satisfied: ∫
BD (π, z0) dG (π) =

∫
B (π) dG (π) ≥ R,

we have that BD is optimal.

1.A.6 Proof of Theorem 1.5.1

The statement of the theorem is repeated below for convenience.
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Theorem 1.A.8 For any A ⊂ D, a solution to:

max
B

VA (B | A) , (1.A.4)

subject to VP (B | F0) ≥ R,

is Bα (π) = απ for some α, i.e., a linear/equity contract.

The proof proceeds by first showing that a solution to the above must be a (weakly)

convex contract B, since the principal will not put any value on concave portions of

a contract and thus the lower convex hull of B is evaluated in the same way as the

original contract by the principal. We then show that the appropriate linear contract

is optimal within the set of convex contracts, since it is no worse for the principal and

better for the agent.

Lemma 1.A.9 In problem 1.A.4 for any non-convex B, there exists a convex Bc

such that VP (B | F0) ≤ VP (Bc | F0) and B ≥ Bc.

Proof. Note that it is without loss of generality to consider B which are lower

semicontinuous by lemma 1.3.1. Let Bc be the lower convex hull of B, i.e., the largest

weakly convex function majorized than B. Clearly B ≥ Bc and thus VA (B | F0) ≤
VA (Bc | F0). It suffices to consider the case where VA (Bc | F0) = VA (B | F0) =: υ,

since by lemma ?? a larger VA (Bc | F0) decreases the constraint set and thus weakly

increases VP (Bc | F0).
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It suffices to show that:

{
min

F∈Δ(Π)

∫ π

0

B (π) dF s.t.

∫ π

0

π − B (π) dF ≥ υ

}

=

⎧⎨⎩ min
F∈Δ(Π)

supp(F )=D

∫ π

0

B (π) dF s.t.

∫ π

0

π − B (π) dF ≥ υ

⎫⎬⎭ , and

{
min

F∈Δ(Π)

∫ π

0

Bc (π) dF s.t.

∫ π

0

π − Bc (π) dF ≥ υ

}

=

⎧⎨⎩ min
F∈Δ(Π)

supp(F )=D

∫ π

0

Bc (π) dF s.t.

∫ π

0

π − Bc (π) dF ≥ υ

⎫⎬⎭ ,

where D = {x : B (π) = Bc (π)}. Let FB be the CDF which minimizes the LHS and

Fc be the CDF which minimizes the RHS. Clearly, it is without loss of generality to

assume that supp (Fc) ⊂ D.21 We will show that supp (FB) ⊂ D.

Assume by way of contradiction that there is some π ∈ supp (FB) and ε > 0

such that B (π′) > Bc (π
′) for all π′ ∈ Nε (π). Note that by construction there

exist πL < πH such that for all π′ ∈ Nε (π) there exists an β (π′) ∈ (0, 1) such that

π′ = β (π′) πL + (1− β (π′)) πH and:

B (π′) > Bc (π
′) = β (π′)Bc (πL) + (1− β (π′))Bc (πH)

= β (π′)B (πL) + (1− β (π′))B (πH) .

Let m = FB (π + ε)− − FB (π − ε) =
∫
Nε(π)

dFB (π′) and note that m > 0 since

π ∈ supp (FB). Let:

β∗ =
1

m

∫
Nε(π)

β (π′) dFB (π′) ,

21To see this, note that any π /∈ D is a convex combination of two elements in D and we can
therefore, instead of putting mass on π, put the appropriate mass on the elements which constitute
the convex combination.
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so that:

1− β∗ = 1− 1

m

∫
Nε(π)

β (π′) dFB (π′)

=
1

m

∫
Nε(π)

dFB (π′)− 1

m

∫
Nε(π)

β (π′) dFB (π′)

=
1

m

∫
Nε(π)

(1− β (π′)) dFB (π′) .

Thus:

β∗Bc (πL) + (1− β∗)Bc (πH)

= β∗B (πL) + (1− β∗)B (πH)

=
1

m

∫
Nε(π)

β (π′)B (πL) dFB (π′) +
1

m

∫
Nε(π)

(1− β (π′))B (πH) dFB (π′)

=
1

m

∫
Nε(π)

β (π′)B (πL) + (1− β (π′))B (πH) dFB (π′)

<
1

m

∫
Nε(π)

B (π′) dFB (π′) ,

hence shifting mass to points πL and πH leads to a lower expected payoff for the

principal and thus FB could not have been a minimizer. This concludes the proof of

equality ??.

We are now ready to prove the theorem. The proof goes by invoking Jensen’s

inequality and using a revealed preference argument to rule out technologies which

the suggested replacement of contract makes worse.

Proof of Theorem 1.5.1. Next we show that for the principal’s problem, a

minimizing F for convex B puts mass on a single point. Note that for any F , where

πF = EF [π], such that
∫ π

0
π − B (π) dF ≥ υ, Jensen’s inequality implies that:

υ ≤
∫ π

0

π − B (π) dF ≤ πF − B (πF ) =

∫ π

0

π − B (π) dδπF
,
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since π − B (π) is concave. Furthermore, since B is convex:

∫ π

0

B (π) dδπF
= B (πF ) ≤

∫ π

0

B (π) dF .

Note that in finding the minimizing CDF for the principal, the agent’s utility con-

straint will hold with equality. Now consider replacing B (π) by a linear contract

Bα (π) = απ, where α = B (π∗) /π∗ and:

π∗ = min π s.t. π − B (π) = υ.

Let (e∗, F0) = A∗
A (B | F0), write F̂ = F0 (π | e∗) and consider (Careful with e∗

here, still needs editing):

VA

(
Bα | F̂

)
=

∫ π

0

π − Bα (π) dF̂ =

∫ π

0

π∗ − B (π∗)
π∗ π dF̂

= υ

∫ π

0

π

π∗ dF̂ .

Assume by way of contradiction that π∗ >
∫ π

0
π dF̂ = πF̂ , but then by Jensen’s

inequality and since π − B (π) is increasing for π < π∗ (by definition of π∗), we have

that:

υ =

∫ π

0

π − B (π) dF̂

≤ πF̂ − B
(
πF̂

)
< π∗ − B (π∗)

= υ,
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which is a contradiction. Thus:

VA (Bα | F0) = υ

∫ π

0

π

π∗ dF̂ ≥ υ = VA (B | F0) .

Similarly for any F such that
∫ π

0
π − B (π) dF > υ, we have that VA (Bα | F ) ≥

VA (B | F ).

1.A.7 Proof of Theorem 1.6.1

We will need the following generalization of lemma 1.4.2.

Lemma 1.A.10 Let C ⊂ [0, π] be measurable22 and φ (π) be a function such that

φ (π) ≥ 0 for π ∈ [0, πB] ∩ C, φ (π) ≤ 0 for π ∈ [πB, π] ∩ C and either:

1.
∫ π

0
φ (π)1π∈C dF (π | eL) = 0, or

2.
∫ π

0
φ (π)1π∈C dF (π | eL) ≤ 0 and φ (π) decreasing for π ≥ πB.

Then, for any eH > eL and any MLRP family F , we have that
∫ π

0
φ (π)1π∈C dF (π | eL) ≥∫ π

0
φ (π)1π∈C dF (π | eH).

Proof. Note that under case 1 we have:

∫ πB

0

φ (π)1π∈C dF (π | eL) = −
∫ π

πB

φ (π)1π∈C dF (π | eL) > 0.

22That is, C belongs to the Borel σ-algebra of the usual topology on [0, π].
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Take any eH > eL and consider:

(∫ π

0

φ (π)1π∈C dF (π | eL)−
∫ π

0

φ (π)1π∈C dF (π | eH)

)∫ πB

0

φ (πL)1π∈C dF (πL | eL)

=

∫ πB

0

φ (πL)1π∈C dF (πL | eL)
∫ π

0

φ (π)1π∈C

(
dF (π | eL)
dC (π)

− dF (π | eH)

dC (π)

)
dC (π)

=

(
−
∫ π

πB

φ (πH)1π∈C
dF (πH | eL)
dC (πH)

dC (πH)

)∫ πB

0

φ (πL)1π∈C

(
dF (πL | eL)
dC (πL)

− dF (πL | eH)

dC (πL)

)
dC (πL)

+

(∫ πB

0

φ (πL)1π∈C
dF (πL | eL)
dC (πL)

dC (πL)

)∫ π

πB

φ (πH)1π∈C

(
dF (πH | eL)
dC (πH)

− dF (πH | eH)

dC (πH)

)
dC (πH) ,

where we write C (π) for C (π | eL, eH). By Fubini’s theorem (applies since the above

are integrable and C is a probability measure and therefore σ-finite) the above equals:

−
∫ πB

0

∫ π

πB

φ (πH)φ (πL)1π∈C
dF (πH | eL)
dC (πH)

(
dF (πL | eL)
dC (πL)

− dF (πL | eH)

dC (πL)

)
dC (πH) dC (πL)

+

∫ πB

0

∫ π

πB

φ (πH)φ (πL)1π∈C
dF (πL | eL)
dC (πL)

(
dF (πH | eL)
dC (πH)

− dF (πH | eH)

dC (πH)

)
dC (πH) dC (πL)

=

∫ πB

0

∫ π

πB

φ (πH)φ (πL)1π∈C

[
dF (πH | eL)
dC (πH)

dF (πL | eH)

dC (πL)
− dF (πL | eL)

dC (πL)

dF (πH | eH)

dC (πH)

]
dC (πH) dC (πL)

≥ 0,

where the last inequality follows since φ (πL) ≥ 0, φ (πH) ≤ 0 and by the generalized

MLRP (which also applies to π ∈ C only, since conditional FOSD is equivalent to

MLRP, thus we can condition on set C):

dF (πH | eL)
dC (πH)

dF (πL | eH)
dC (πL)

≤ dF (πL | eL)
dC (πL)

dF (πH | eH)
dC (πH)

.

Thus: ⎛⎜⎝ ∫ π

0
φ (π)1π∈C dF (π | eL)

− ∫ π

0
φ (π)1π∈C dF (π | eH)

⎞⎟⎠∫ πB

0

φ (πL)1π∈C dF (πL | eL) ≥ 0,
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and since
∫ πB

0
φ (πL)1π∈C dF (πL | eL) > 0, we have that:

∫ π

0

φ (π)1π∈C dF (π | eL) ≥
∫ π

0

φ (π)1π∈C dF (π | eH) .

Case 2 follows similarly (using first-order stochastic dominance of F (· | eH) over
F (· | eL) and the fact that φ is decreasing for π ≥ πB). May need to ”split up” mass

at π∗.

In particular, under case 2, there exists some π∗ and α ∈ (0, 1] such that:

∫ πB

0

φ (π)1π∈C dF (π | eL)

= − lim
π′→π∗

−

∫ π′

πB

φ (π)1π∈C dF (π | eL)− α
[
F (π∗ | eL)− F

(
π∗
− | eL

)]
φ (π∗) .

We can then repeat the above, replacing π by π∗, with the alpha-mass adjustment.

We have then shown that:⎛⎜⎜⎜⎜⎝
∫ π∗

0
φ (π)1π∈C dF (π | eL)

− ∫ π∗

0
φ (π)1π∈C dF (π | eH)

−αφ (π∗) [f (π∗ | eL)− f (π∗ | eH)]

⎞⎟⎟⎟⎟⎠
∫ πB

0

φ (πL)1π∈C dF (πL | eL) ≥ 0, (1.A.5)

where

f (π∗ | eL) = F (π∗ | eL)− F
(
π∗
− | eL

)
.

Because F (π | eH) dominates F (π | eL) with respect to the monotone likelihood ra-

tio order, it conditionally first-order stochastically dominates it. Conditioning on
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(π∗,∞) ∩ C and π∗ implies that:

∫ π

π∗
+

φ (π)1π∈C dF (π | eL) + αf (π∗ | eL)φ (π∗) (1.A.6)

≥
∫ π

π∗
+

φ (π)1π∈C dF (π | eH) + αf (π∗ | eH)φ (π∗) ,

since φ (π) decreasing for π ≥ πB. Combining 1.A.5 and 1.A.6 we have the desired

result.

1.A.8 Proof of Corollary 1.6.2

Corollary 1.A.11 The principal’s payoff from contract B (π) = min {π, z + απ} is:

R =

∫ z
1−α

0

π dG+
αVA (B | F0) + z

(
1−G

(
z

1−α

))
(1− α)

.

Proof. The principal’s payoff from contract B (π) = min (π, z + απ) is:

R =

∫ z
1−α

0

π dG+min
F

∫ π

z
1−α

(απ + z) dF

s.t.

∫ π

z
1−α

(π − απ − z) dF ≥ VA (B | F0) .

For any F :

∫ π

z
1−α

(απ + z) dF = α

∫ π

z
1−α

π dF + z

(
F (π)− F

(
z

1− α

))
= α

∫ π

z
1−α

π dF + z

(
1−G

(
z

1− α

))
,
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and hence:

∫ π

z
1−α

(π − απ − z) dF = (1− α)

∫ π

z
1−α

π dF − z

(
1−G

(
z

1− α

))
≥ VA (B | F0) .

Thus the constraint in the principal minimization problem holds as an equality.

Solving the last equation for the integral we have that:

∫ π

z
1−α

π dF =
VA (B | F0) + z

(
1−G

(
z

1−α

))
(1− α)

,

and hence for any F :

∫ π

z
1−α

(απ + z) dF =
αVA (B | F0) + z

(
1−G

(
z

1−α

))
(1− α)

,

which gives the characterization in the corollary.
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Chapter 2

Optimally Toothless Policies

This chapter is co-authored with Prof. Matias Iaryczower.1

2.1 Introduction

A central problem in economics is how to design institutions and organizations so that

agents have incentives to share relevant information with the actors that are in charge

of making decisions. The effort to cope with this informational asymmetry funda-

mentally defines the relationships between investors and asset managers, CEOs and

lower level managers, and politicians and bureaucrats. The problem is particularly

challenging when the principal cannot use transfers to alleviate incentive problems,

as it is often the case in politics, and in interactions among economic agents within

firms and non-profit organizations.

Some variants of this problem are well understood. This is the case, for example,

when the policy space over which the principal contracts with the agent is unidi-

mensional. In this situation, a principal who can choose among a large space of

contracts will simply delegate decision-making authority to the agent over a set of

1Department of Politics, Princeton University, Princeton, NJ 08544, email: mi-
aryc@princeton.edu
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possible actions (Holmström (1977), Melmud and Shibano (1991), Alonso and Ma-

touschek (2008)).2 The principal’s problem is then reduced to determining how much

discretion to delegate to the agent.3

The situation in which the principal is so seriously handicapped, however, is ex-

treme. In fact, a common feature in many agency relationships is that the principal

can decide not only the content of policy but also its scope of applicability, or scale

of implementation. In the investor/asset manager context, for example, the investor

can choose the level of risk for the portfolio, but also how much to invest with the

asset manager. In politics, elected politicians must not only determine how “harsh”

they will allow the CIA’s interrogation techniques to be, but also the scope of the so

called black site operations (should they house only confirmed terrorist elites, or any

suspect who might have relevant information).

A similar logic applies to resources dedicated to the monitoring and enforcement

of a given policy. As chaotic traffic in many Latin American countries shows, strict

traffic laws only matter if they are enforced. Similarly, environmental regulations

and carbon pollution standards that aim to reduce greenhouse gas emissions can only

be effective if the agency in charge of monitoring and enforcement (the EPA in the

United States) is endowed with the resources necessary to accomplish these goals in

the first place.

In this context, the principal can use the scale of the project in lieu of transfers,

providing incentives by distorting both the scale and content of policy outcomes.

This new distortion arises because the value of increasing the scale of the project

is inexorably linked to the content of the underlying policy. Thus, differently to a

2Baron (2000) and Krishna and Morgan (2008) analyzed the problem in which the principal
can contract over both policy and money transfers (where both principal and agent have quasilinear
preferences over money), as in the standard screening problem (Baron and Myerson, 1982). With full
commitment, the model here is a relatively standard screening model, except for a limited liability
constraint on nonnegative transfers to the agent.

3The delegation solution has been studied extensively in political science (see Epstein and
O’Halloran(1994), Huber and Shipan (2002), and Bendor and Meirowitz (2004)).
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transfer of “money”, the value of increasing the scale of the project will naturally be

a function of how much each actor values the associated policy in each state of the

world. If the asset manager uncovers an investment opportunity that can attain an

extraordinarily high expected return with a larger risk, the investor will be willing to

invest a larger fraction of its wealth in this high risk portfolio. If the CIA can in fact

obtain actionable intelligence from detainees with an intense interrogation treatment,

politicians will be more willing to allow the agency to apply these harsher techniques

broadly.

In this paper we characterize the optimal institutional arrangement for the prin-

cipal in this setting. While there has been an extensive literature on delegation,

the solution to this class of problems has not yet been explored. Baron (2000) and

Krishna and Morgan (2008) analyze the unidimensional policy space with transfers

assuming quasilinear preferences and quadratic policy payoffs. The multidimensional

case without transfers is less common in the literature; Koessler and Martimort (2012)

study a two-dimensional policy space with separable quadratic payoffs, while Frankel

(2014) considers an N -dimensional policy space with separable preferences and a non-

Bayesian (max-min) principal. In our case, instead, the content and scope of policy

are complements in the utility function of principal and agent. Thus, we have what

Koessler and Martimort (2012) call “externalities across decisions”.

Multidimensional mechanism design problems are generally difficult to solve be-

cause the order in which incentive constraints bind is often endogeneous to the prob-

lem (Rochet and Stole, 2003). We appeal to a generalized single crossing condition

which abstracts from this difficulty, yet still the standard techniques to deal with

screening problems do not readily apply. In particular, with non-separable prefer-

ences across policy dimensions, the common procedure of reparametrizing the prob-
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lem in terms of information rents is not helpful.4 In spite of this, we are able to make

considerable progress. First, we solve the optimal contract in the two type case, and

present a graphical analysis that makes the logic and results transparent. The graph-

ical analysis also allows us to relate our results with the standard quasilinear setting

easily. We then characterize the optimal separating contract in the continuum with

a parametric assumption on payoffs (exponential payoffs).

Our analysis leads to a number of new insights. First, we show that whenever

conflicts of interests are binding (always in the continuum; for sufficiently large bias

in the two type case), the principal will overfund “low types” and underfund “high

types”. In our environmental policy example, this says that when climate change

is indeed occurring at a fast pace, the resources dedicated to enforcing regulations

curbing carbon emissions are too low relative to the first-best: it is in this sense that

the principal optimally chooses a toothless policy.

The possibility of tinkering with the scale of implementation induces distortions

in the content of policy that can be different from what would result in a comparable

model with quasilinear payoffs (i.e., with transfers in lieu of project size). The qual-

itative nature of these distortions depends on the level of conflict between the agent

and the principal relative to the “smallest” possible deviations. When the agent’s

bias is sufficiently large relative to the smallest possible deviation (which is always

the case in the continuum) the distortions in policy direction in fact are different than

what appear in a comparable model with quasilinear payoffs.

Indeed, both in the continuum and in the two type model with a large bias,

the optimal separating contract partitions the state space in a “low” and “high” set

of states, such that the principal overfunds and distorts towards the agent in low

states, but underfunds and distorts against the agent in high states. In our EPA

4In general, we are dealing with a singular control problem of the type that does not admit the sort
of straightforward bang-bang solutions commonly used in other contexts (e.g., the continuous-time
literature often exploits bang-bang solutions).
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example, this implies that the optimal contract sets overly stringent regulations that

are heavily enforced when climate change is mild, and relatively weak regulations

which are under-enforced in the states in which climate change is accelerating more

heavily. Thus, the solution is ex-post inefficient, as both Congress and the EPA would

both prefer to set more stringent, heavily enforced environmental regulations in the

high states. This strong form of ex-post inefficiency in the optimal contract does not

appear in standard quasi-linear models where utility is perfectly transferable between

parties.

The solution for the continuum illustrates that in choosing the optimal policy

function the principal faces a tradeoff between inducing distortions in the content

and the scale of implementation of the policy. This is because in order to make the

content of policy responsive to the state of the world (reducing distortions in policy

direction), the scale of implementation needs to be responsive to the state as well,

increasing distortions in project size.

The particular resolution of this tradeoff depends crucially on the relative sensi-

tivity to policy loss of the agent vis a vis the principal. When this ratio is low enough

(when the agent does not care too much about policy losses relative to the principal)

it is relatively cheap for the principal to compensate the agent with changes in project

size to obtain a policy that is very close to her first best, and the optimal contract

is fully separating. When the agent is very sensitive to policy losses, on the other

hand, attaining a policy close to the first best is very costly for the principal, and

the principal would rather take a relatively unresponsive policy than introduce large

distortions in project size. In fact, for sufficiently high sensitivity of the agent to

policy loss, the principal will be better off with a pooling contract.

The rest of the paper is organized as follows. We review the related literature in

Section 2.2, and describe the model in Section 2.3. The main results are in Section

2.4. We begin in Section 2.4.1 with the two type case, and consider the model with a
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continuum of states in Section 2.4.2. In Section 2.5 we explore in detail a version of

our model with quasilinear payoffs for comparison. We conclude in Section 2.6. All

proofs are in the Appendix.

2.2 Related Literature

This paper contributes to the optimal delegation literature initiated by Holmström

(1977).5 Holmström (1977) considers a problem in which an uninformed principal

contracts with an informed agent over a unidimensional policy space, and the prin-

cipal cannot use transfers. In this setting, the optimal mechanism for the principal

makes policy either completely unresponsive to the agent’s type, or equal to his ideal

point. This outcome can be achieved by simply delegating decision-making power

to the agent over an appropriately chosen set of policies. Melumad and Shibano

(1991), and Alonso and Matouschek (2008) then fully characterize the solution to

the delegation problem in the absence of restrictions on feasible delegation sets.6

The optimal delegation set trades off the benefits of making the policy responsive to

the state of the world against the loss of decision-making power to a biased agent.

When the conflict of interest between principal and agent is sufficiently large the

optimal contract is a pooling contract, in which the principal commits to a policy

equal to her expected ideal point (delegation is not valuable). The optimal delega-

tion literature presupposes that the principal can commit to a mechanism (or set of

institutions) regulating her interaction with the agent. At the opposite extreme of

the spectrum, Crawford and Sobel (1982) assume that the principal cannot commit

to a policy choice. In this context, the principal will always choose her preferred

5At a more general level, our work builds on the classic mechanism design and screening literature
(see Laffont and Martimort (2009) for a review). Unlike almost all of the literature, we study a two-
dimensional screening problem with non-separable preferences. In particular, we deviate from the
standard setting with quasilinear preferences, in which one of the policy dimensions is a transfer of
money.

6See Ambrus and Egorov (2012) and Amador and Bagwell (2012, 2013) for a variant of this
problem with money burning.
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policy given the information provided by the agent, and as a result cannot reward the

agent with policy concessions after the agent reveals her information. The delegation

solution has been studied extensively in political science in the context of congres-

sional control of the bureaucracy and executive/legislative relations (see Epstein and

O’Halloran (1994), Huber and Shipan (2002)). Bendor and Meirowitz (2004)(Bendor

and Meirowitz 2004) and Gailmard and Patty (2012) provide an overview of the theo-

retical literature in political science and a general framework for this family of models.

In addition to these theoretical contributions, there is also a large empirical literature

on congressional control of the bureaucracies, which often relies at least informally on

the principal agent setup. See for example Weingast and Moran (1983), Wood and

Anderson (1993), Wood and Waterman (1991), Carpenter (1996), Shipan (2004).

Baron (2000) and Krishna and Morgan (2008) analyze the problem in which the

policy space is unidimensional, but the principal can use transfers to alleviate incen-

tive constraints, assuming quasilinear preferences and quadratic policy payoffs (see

also Walsh (1995)). Krishna and Morgan (2008) show that in the solution policy

outcomes are systematically distorted to favor the agent’s preferences. Thus, even if

the principal can use transfers to fully align incentives, in the solution she will choose

not to do this to the full extent. The unidimensional policy space with transfers is

a natural benchmark for comparison with our model. We relegate this comparison

to Section 2.5, where we develop two alternative versions of the model with transfers

in the two type case that are directly comparable to our model (one introducing an

individual rationality constraint as in the standard screening problems, the other with

nonnegative transfers, as in Krishna and Morgan (2008)).

Koessler and Martimort (2012) consider a two-dimensional policy space with sep-

arable quadratic payoffs where the agent has the same ideal point in each dimension.

They show that interval delegation sets are generally not optimal in this setting, as

the optimal decisions on each dimension are never equal to the agent’s ideal points.

61



Two results are particularly relevant for comparison with the results in our paper.

First, in this setting pooling is never optimal for the principal. This is true in the

two-type version of our model, but not in the continuum. Second, as in our model,

the optimal contract can be ex-post inefficient. While in the optimal contract the

distance between the policy outcomes in each dimension increases for lower types

to induce information revelation, the spread between outcomes at low types can be

ex-post too large for both principal and agent.

We are aware of only two papers in political science which consider a model of the

interaction of “budget” and policy choice in a principal-agent context.7 Both papers

have fundamental differences with this paper. In particular, both of these papers

posit a given sequence of play, and do not consider the optimal mechanism for the

principal. In Ting (2001), the agency can choose a more right winged policy at a cost,

which enters its quasilinear utility function as a transfer. Congress initially chooses a

budget for the agency and, after observing a signal of the agency’s choice of policy, an

auditing level. In McCarty (2004), the agency needs resources to move policy away

from the status quo. The President appoints the agent, while Congress chooses the

agency’s budget, and thus effectively a range of discretion for the agency around the

status quo.

2.3 The Model

A principal is to contract with an agent who has private information about a payoff-

relevant state variable. An outcome (y,m) ∈ R × R+ =: X, comprises a “policy” y,

and a scale of implementation or scope m. The policy y is the result of an action

x ∈ R and a random state variable ω ∈ Ω, for a compact set Ω ⊂ R. In particular,

we let y = x − ω. It is common knowledge that ω ∼ F , where we assume that

7Banks (1989) considers a model in which an agency has private information about the cost of
providing a service, while Congress decides the agency’s budget and whether to audit the agency or
not.
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supp (F ) = Ω. However, the realization of the random state variable ω is private

information of the agent.

Let zj denote j’s ideal policy, j ∈ {P,A}. Without loss of generality, we fix zP = 0

and zA = b > 0. We say that b is the bias of the agent relative to the principal. The

principal and agent have state-contingent preferences. For any action x, state ω, and

program size m, the principal’s payoff is Up (x,m|ω) := up(�P (x, ω),m)− γ(m), and

the agent’s payoff is Ua (x,m|ω) = ua(�A(x, ω),m), where �j(x, ω) := (x − ω − zj)
2.

We assume that γ(·) is increasing and convex, and that for j = P,A, (i) uj
� ≤ 0 and

uj
�� ≤ 0, (ii) uj

m ≥ 0 and uj
mm ≤ 0, and (iii) uj

m� ≤ 0. This last assumption says that

the value for player j of an extra dollar invested in the program is decreasing in �j.

Our assumptions imply that for each state ω ∈ Ω and player j ∈ {P,A}, the “better

than” sets Bj (u|ω) := {(x,m) : U j(x,m|ω) ≥ u} are convex. Moreover, they imply

that the agent’s preferences satisfy the generalized single crossing condition (SCC):

∂

∂ω

(
Ua
x (x,m|ω)

Ua
m(x,m|ω)

)
≥ 0.

We consider the problem of maximizing the principal’s payoff by choosing a state-

contingent contract with the agent. To allow a rich contract space, we take a mech-

anism design approach. Without loss of generality, we consider direct truthful mech-

anisms, in which the principal proposes a menu of contracts {(x(ω),m(ω))}ω∈Ω to

the agent, and is committed to implementing the policy (x(ω̂),m(ω̂)) if the agent an-

nounces that the realized state is ω̂ ∈ Ω. By the revelation principle, any equilibrium

outcome of a contract with arbitrary communication protocols between the principal

and the agent is implementable by a truthful direct mechanism. Thus, while we will

not recover the particular protocol that principal and agent might be using, the solu-

tion will capture the equilibrium relation between states and outcomes. Throughout,
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we will restrict to deterministic mechanisms. We discuss this issue in our concluding

remarks.

2.4 Optimal Delegation with Strings Attached

In this section we present our main results. We begin with the binary state space

Ω = {0, 1}, which presents our results in a highly tractable setting. In Section 2.4.2

we extend our analysis to allow for a continuum of states, i.e., Ω = [0, 1].

2.4.1 Two Types

Our first order of business is to characterize the first best policy for the principal in

state ω, (x̂ω, m̂ω). This is straightforward. Since the principal wants policy to match

the state of the world, x̂ω = ω. The optimal scale of the project with full information,

on the other hand, is such that the marginal benefit of project expansion at the ideal

policy for the principal equals the marginal cost; i.e., up
m(0, m̂ω) = γm(m̂ω). Thus

m̂0 = m̂1 =: m̂.

When the agent is privately informed about the realization of the state the prin-

cipal’s problem is to choose (x0,m0) and (x1,m1) to maximize

∑
ω∈{0,1}

f(ω)Up(xω,mω|ω)

subject to the incentive compatibility (IC) constraints:

Ua(xω,mω|ω) ≥ Ua(xω′ ,mω′ |ω) for ω, ω′ ∈ {0, 1}.

The nature of the solution depends on the level of conflict of interests between the

principal and the agent. First, as usual in these type of problems, if the conflict of

interests between the principal and the agent is sufficiently low (b ≤ 1/2 in our case),
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Ua(x,m|0) = u0 Ua(x,m|1) = u0

Up(x,m|0) = v0

Up(x,m|1) = v0
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Figure 2.1: First-best achieved with low bias.

the incentive constraints will not be binding in the solution and the principal will be

able to achieve her first-best policy in each state (see Lemma 2.A.1). Since the agent

has an upward policy bias (b > 0), the state 1 incentive constraint is trivially not

binding at the first best. And given b < 1/2, (x̂0, m̂) is preferred to (x̂1, m̂) for the

agent in state 0, since |x̂0 − b| < |x̂1 − b| (see Figure 1).

When b > 1/2, instead, the principal will not be able to implement the first-best.

In this case, the optimal solution for the principal implies trading-off losses in the

two states to achieve a policy function that is incentive compatible for the agent. We

begin by showing that generically, it is optimal for the principal to give the agent

some discretion over policy outcomes.8

8We consider the topological notion of genericity — where a property is generic if it is satisfied
in an open dense set; and not generic if it is satisfied only in a closed nowhere dense set. We show
that the utility functions which satisfy a necessary condition for pooling are nowhere dense in the
appropriate Sobolev space, W 1,p (X).
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Theorem 2.4.1 (No Pooling) A pooling contract (x∗
p,m

∗
p) is generically suboptimal

for the principal.

The intuition for the result is illustrated in Figure 2.4.1. The principal’s indiffer-

ence curves in state 0 and 1 are depicted in blue and red, respectively. The set of

points where the indifference curves in the two states are tangent to one another is

shown by the green line. Note that if an optimal pooling contract (x∗
p,m

∗
p) is pro-

posed, it will be somewhere on this line, for otherwise we can improve the principal’s

utility by proposing a pooling contract in this set. (In particular, the optimal pooling

contract for f(0) = 2/5 is shown by the black circle.) Note however that if (x∗
p,m

∗
p)

is an optimal contract, it must be that the agent’s indifference curve in state 0 is also

tangent to the principal’s indifference curves at this point. Otherwise utility can be

improved by moving “inside” the principal’s better-than sets in each state, as shown

by the black triangles in the figure. It follows that a pooling contract (x∗
p,m

∗
p) can

only be optimal if a triple tangency of indifference curves is satisfied, a property that

only holds in a closed nowhere dense set of utility functions.
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Figure 2.2: Agency Discretion: Pooling Contracts are Not Optimal

Given that the second-best solution involves granting the agent discretion, the

principal has to design the policy function to ensure that the agent has incentives
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to report truthfully. Achieving incentive compatibility in this setup will necessarily

imply policy distortions, which are themselves costly to the principal. The principal

will therefore shape the policy function to achieve its objective in the least costly

manner. Given that the binding incentive constraint is that of state 0, this entails

making policy in state 1 less attractive to the agent and/or policy in state 0 more

attractive to the agent in the least costly manner for the principal.

Formally, we define the state-contingent contract curves, a reward curve in state 0,

CC(0), and a discipline curve in state 1, CC(1). Let V := [Ua(x̂0, m̂0|0), Ua(x̂1, m̂1|0)].
Then

Definition 2 The reward curve is the set of points CC (0) := {(x̃0(u), m̃0(u)) : u ∈
V }, where

(x̃0(u), m̃0(u)) := argmax
(x,m)

Up(x,m|0) s.t. Ua(x,m|0) ≥ u.

The discipline curve is the set of points CC (1) := {(x̃1(u), m̃1(u)) : u ∈ V }, where

(x̃1(u), m̃1(u)) := argmax
(x,m)

Up(x,m|1) s.t. Ua(x,m|0) ≤ u.

Because policies on the contract curves reward the agent in state 1 and discipline

the agent in state 0 efficiently, a policy lying anywhere outside the contract curves

can be improved with an alternative policy that preserves incentives and increases

the principal’s utility. As a result,

Lemma 2.4.2 The optimal incentive compatible policy for the principal lies on the

contract curves; i.e., (x∗
ω,m

∗
ω) ∈ CC (ω), and thus

Up
x(x

∗
ω,m

∗
ω|ω)

Up
m(x∗

ω,m
∗
ω|ω)

=
Ua
x (x

∗
ω,m

∗
ω|0)

Ua
m(x

∗
ω,m

∗
ω|0)

for ω = 0, 1. (2.4.1)
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Lemma 2.4.2 allows us to characterize the nature of the distortions in the scope

and direction of policy through the shape of the contract curves. To do this it is

useful to distinguish two cases. We say that the agent is a moderate if his ideal policy

in state 0 is below the first best policy for the principal in state 1; i.e., if b < 1. We

say that the agent is a zealot if b > 1.
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Figure 2.3: Contract curves reflect the nature of distortions

The left panel of Figure 2.4.2 plots representative contract curves for a moderate

agent. As the figure illustrates, the reward curve is increasing, and the discipline

curve is decreasing. This means that policy will be distorted in the direction of the

agent’s bias in both states, and that the scale of implementation will be larger than

the first best for the principal in state ω = 0, but smaller than the first best for the

principal in state ω = 1.

The intuition for the result can be seen graphically in Figure 2.4.1. When b < 1,

the state 1 indifference curves for the principal and the state 0 indifference curves for

the agent (blue) are tangent below and to the right of the principal’s ideal point in

state 1. Because the ideal policy of the agent in state 0 is still lower than the ideal

policy of the principal in state 1, the least costly way to leave the agent at some

utility level u below than what he would obtain at (x̂1, m̂1) is to reduce the scale

of the program m and increase the policy direction x (achieving this payoff for the

68



agent with some point x < 1 would be more costly to the principal, as any point on

the blue indifference curve with x < 1 is in a lower state 1 indifference curve for the

principal).

0 b=1 b’’

CC1(1)

b’

CC1(b’)

CC1(b’’)

Figure 2.4: Recoil of the Optimal Policy

How much does policy need to adjust relative to project size depends on the

strength of the agent’s bias. Consider a point in the disciplining curve CC(1) for an

agent with bias b′ < 1, as illustrated in Figure 2.4.1. At any such point, the relative

value of changes in policy direction and scale in state 1 for a state-0 agent is given by

the agent’s state-0 MRS between policy and project size at this point. Now suppose

that we increase the agent’s bias to b̃ ∈ (b′, 1). This agent would have a flatter

indifference curve through the point. Because in state 0 the b̃ bias agent’s preferred

policy is closer to the ideal policy of the principal in state 1, this agent is willing to

give away a larger loss in policy direction to get a given amount of additional project

size. Thus, the contract curve for an agent b̃ ∈ (b′, 1) will be steeper than for b′. In

the extreme, for b = 1, the ideal policy of the agent in state 0 coincides with the ideal

policy of the principal in state 1. Thus, the most efficient way to punish the (state-0)

agent in state 1 is to reduce the implementation scale without changing policy.

When the agent is a zealot, instead, the nature of the optimal policy changes. In

this case, both the reward curve CC(0) and the discipline curve CC(1) are increasing
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(right panel of Figure 2.4.2). This means that while the implementation scale of the

policy in state ω = 1 will be smaller than in the first-best as in the previous case,

the direction of the policy outcome in state ω = 1 will now be distorted against the

direction of the agent’s bias. The reasoning is symmetric to the previous case. When

b > 1, as for b′′ in the figure, the ideal policy of a state 0 agent is larger than the ideal

policy of the principal in state 1. Thus, the least costly way to leave the agent at

some utility level u below what he would obtain at (x̂1, m̂1) is now to decrease policy

direction x and reduce the implementation scale m as before. Furthermore, as before

(in logic if not in direction), as we continue to increase the bias of the agent above

b = 1, increases in the value of the state 1 implementation scale become less valuable

for the state 0 agent relative to gains in policy, and the most efficient way to punish

this agent is through small reductions in project size and sharp distortions in policy

(a flatter discipline curve).

The next theorem summarizes the previous discussion.

Theorem 2.4.3 Suppose b > 1/2. Then the optimal incentive compatible solution

entails distortions in both states; i.e., (x∗
ω,m

∗
ω) �= (x̂ω, m̂ω) for ω = 0, 1. Moreover,

1. The principal overfunds the agent relative to first best in state 0 (m0 > m̂0) and

underfunds the agent in state 1 (m1 < m̂1).

2. The optimal contract for a moderate agent distorts policy towards the agent in

both states; i.e., xω > ω for all ω ∈ {0, 1}. The optimal contract for a zealot

distorts policy in favor of the agent in state 0 but against the agent in state 1;

i.e., 0 < x0 < x1 < 1. When b = 1, x1 = 1.

3. In the optimal contract for a moderate (a zealot) the distortion in state 1 project

size increases (decreases) continuously with the agent’s bias b and the distortion

in policy direction decreases (increases) continuously with b.
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In the context of our environmental policy example, for instance, Theorem 2.4.3

says that Congress underfunds the EPA relative to the first best level precisely when

climate change is occurring rapidly, and overfunds the agency relative to the first best

if climate change turns out not to be a grave concern. Overfunding in the “low” state

always comes together with an environmental policy that is overly aggressive for the

median legislator. The distortions in policy in the “high” state, however, depend on

the extent of conflict of interests between Congress and the agency: when the EPA is

only moderately biased relative to the median legislator, environmental policy does

more to curb emissions than what Congress would want, but when the conflict of

interests between the EPA and Congress is high, the optimal incentive compatible

plan sets a lax environmental policy when climate change is accelerating. This implies

that when climate change is indeed occurring at a fast pace, both regulations and

resources dedicated to curbing carbon emissions are too low relative to Congress’

first best policy. Thus, ex-post, in these cases both Congress and the agency would

favor more stringent regulations and an increase of resources to the EPA.

Theorem 2.4.3 characterizes the qualitative nature of the distortions and was

entirely independent of the principal’s prior, f . How much the principal distorts

policy in each state depends on the likelihood of each state. Note that since the

principal chooses between pairs of points on the contract curves, we can rewrite the

principal’s problem as:

max
u∈V

f(0)Up(x̃0(u), m̃0(u)|0) + f(1)Up(x̃1(u), m̃1(u)|1) (2.4.2)

In particular, the first order conditions at the optimal level u∗ (interior by Theorem

2.4.3) imply that:

f(0)

1− f(0)
= −∂Up(x̃1(u), m̃1(u)|1)/∂u

∂Up(x̃0(u), m̃0(u)|0)/∂u .
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Note that the optimal trade-off between distortions in state ω = 1 and state ω = 0

depends on the likelihood of each state. In fact, since ∂Up(x̃0(u), m̃0(u))/∂u < 0 and

∂Up(x̃1(u), m̃1(u))/∂u > 0, as f(0) increases we “move down the contract curves”

in Figure 2.4.2, reducing the size of the distortion in state ω = 0 in exchange for

an increased policy distortion in state ω = 1. Therefore, as state 0 becomes more

probable, the magnitude of the distortions in the direction and implementation scale

of policy in state 1 will be more severe.

2.4.2 Continuum of Types

We now extend our analysis to the case in which there is a continuum of states. In

this context, the principal offers the agent a menu of incentive compatible contracts

{x(ω),m (ω)}ω∈[0,1]. Letting Ua(ω̂, ω) := Ua(x(ω̂),m(ω̂)|ω), the principal’s problem

is:

max
{x(ω),m(ω)}

∫ 1

0

Up(x(ω),m(ω)|ω)f(ω)dω (PP)

subject to:

Ua(ω, ω) ≥ Ua(ω̂, ω) for all ω, ω̂ ∈ [0, 1] .

Our main goal is to establish whether the nature of the distortions in policy

we obtained in the two-type model extend naturally to the case in which there are

multiple states. With this goal in mind, we will focus on characterizing the optimal

fully separating contract, which we assume to be differentiable.
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For our richer results, we will assume that principal and agent have exponential

payoffs ;9 i.e., that:

Ua(x,m|ω) = m exp(−β|x− ω − b|),

and:

Up(x,m|ω) = m exp(−η/2(x− ω)2)− γ

2
m2.

With this assumption, we will be able to characterize the optimal menu of contracts

in sufficiently rich detail so as to compare the results with the two-type case. We

will also show that in this case the optimal contract is continuous and piecewise

differentiable. Thus, the original assumption of differentiability only rules out kinks

in the optimal contract. We will then also provide conditions under which the fully

separating contract dominates any pooling contract in this context.

Our first step is to reduce the continuum of incentive compatibility constraints in

(PP) in the usual way. We show that as in the standard quasilinear model, as long

as the policy function has the property that x(·) is increasing in ω, only local devia-

tions are relevant.10 This argument has two parts. The local incentive compatibility

constraint for type ω ensures that type ω can not gain by announcing to be a type

arbitrarily close to ω. A necessary condition for no profitable local deviations at ω is

that:

∂Ua(ω̂, ω)

∂ω̂

∣∣∣∣
ω̂=ω

= 0,

9Assuming a specific utility function simplifies the analysis considerably and is standard in the
literature. Baron (2000) and Krishna and Morgan (2008) assume quadratic policy payoffs in a uni-
dimensional policy space with separability of transfers (i.e., a quasilinear utility function). Melumad
and Shibano (1991) assume quadratic payoffs in a unidimensional policy space with no transfers. In
the same context, Alonso and Matouschek (2008) assume quadratic payoffs for the principal, and
a single-peaked symmetric utility function for the agent. Koessler and Martimort (2012)(Koessler
and Martimort 2012) assume that payoffs are quadratic in each dimension and separable across
dimensions. We deviate from the quadratic payoffs assumption that is prevalent in the literature
because of the non-separability of payoffs that is at the core of our problem.

10Part of the complexity of multidimensional mechanism design problems is that the order in
which incentive constraints bind is typically endogeneous to the mechanism (e.g., see the review by
Rochet and Stole (2003). The fact that the agent’s preferences in our model satisfy a generalized
single crossing condition allows us to abstract from these complexities. However we still have to deal
with technical issues arising from the lack of quasilinearity.
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or equivalently:

m′(ω) = − Ua
x (x(ω),m(ω)|ω)

Ua
m(x(ω),m(ω)|ω)︸ ︷︷ ︸

MRSa
xm(ω)

x′(ω). (2.4.3)

Thus, incentive compatibility implies that at any point ω, the rate of change in

the scope of policy in the optimal contract must be proportional to the rate of change

of policy direction by a factor given by the agent’s marginal rate of substitution in

that state. Condition (2.4.3) is also sufficient to assure no profitable local deviations

if x(·) is nondecreasing (see Lemma 2.A.2). In fact, because of the single crossing

condition, if x(·) is nondecreasing, (2.4.3) is necessary and sufficient to rule out both

local and global deviations (see Lemma 2.A.3).

We can then write the principal’s problem (PP) as:

max
{x(ω),m(ω)}

∫ 1

0

Up(x,m|ω)f(ω)dω

subject to the law of motion (2.4.3) and the constraints x′ (ω) ≥ 0, m (ω) ≥ 0.

The law of motion defines a functional equation for the project size m in terms

of x, the only control variable in the above problem is x. We can write the above

problem in Bolza form by introducing a new function y, which will be a ”stand-in”

for x′. This, of course, requires an additional constraint reflecting that relationship.

The optimal control problem11 is therefore:

max
y(ω)

∫ 1

0

Up(x,m|ω)f(ω)dω

subject to:

m′(ω) = −Ua
x (x(ω),m(ω)|ω)

Ua
m(x(ω),m(ω)|ω)y(ω),

x′ (ω) = y (ω) , m (ω) ≥ 0.

11Ignoring the x′ (ω) ≥ 0 constraint for now.

74



The Hamiltonian for this problem is then:

H = Up(x,m|ω)f(ω)− λ1
Ua
x (x,m|ω)

Ua
m(x,m|ω)y + λ2y + μm.

The associated Euler-Lagrange conditions for a fully separating solution are char-

acterized in Remark 3 in the Appendix.

We can now prove our second substantive result. We have already established

that the policy content x(·) is nondecreasing in type. (In fact, in a separating equi-

librium x(·) must be strictly increasing, for if x′ = 0 in an interval [a, b] ⊂ [0, 1], then

(2.4.3) implies that m′ = 0 in [a, b], which implies pooling.) We next show that the

implementation scale m(·) similarly must be nonincreasing in type. Thus, as in the

binary state environment, the scale of implementation of policy decreases with the

direction of policy x. To show this result, we must first establish an intermediate

step.

Lemma 2.4.4 In the solution to (PP), x(ω) ≤ ω + b for all ω ∈ [0, 1].

Thus, in the optimal separating contract, the direction of policy is never larger

than the ideal policy of the agent. Our result now follows immediately using Lemma

2.4.4. Note that given that x(·) is nondecreasing and Ua
m(·) > 0, the truth telling

condition (2.4.3) says thatm(·) will be weakly decreasing at ω if and only if Ua
x (·) ≥ 0.

But this happens if and only if x(ω) ≤ ω + b. We then have

Corollary 2.4.5 In the optimal incentive compatible plan (x,m)

dm

dx
(ω) = −Ua

x (x(ω),m(ω)|ω)
Ua
m(x(ω),m(ω)|ω) ≤ 0 for all ω ∈ [0, 1],

with strict inequality whenever x(ω) < ω + b.

A second implication of Lemma 2.4.4 is that the equilibrium payoff of the agent

is decreasing in type. Thus, the lowest type (type 0) makes the largest informational

75



w

x(w)
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m(w)

x(·) m(·)

Figure 2.5: In the optimal separating contract, policy x(·) is a strictly increasing
function of the state ω and project size is a weakly decreasing function of the state ω
(strictly decreasing whenever x(ω) < ω + b).

rent. To see this, note that by the envelope theorem (or substituting eq. 2.4.3),

Ua
x (x(ω),m(ω)|ω)x′ (ω) + Ua

m(x(ω),m(ω)|ω)m′(ω) = 0. Then

d

dω
Ua(x(ω),m(ω)|ω) = Ua

ω(x(ω),m(ω)|ω) < 0,

where the inequality follows from the fact that x(ω) ≤ ω + b.

Providing a more detailed characterization of the solution at this level of generality

is difficult. However, in order to evaluate whether the lessons we learned in the two-

type case extend to this environment, we need to characterize the nature of the

distortions relative to the first best. As a first step in this direction, we will assume

hereafter that principal and agent have exponential payoffs. A key property of this

payoff specification is that from the truth telling condition (2.4.3) we can obtain a

closed form for the project size function m(·) as a function of the policy x(·) and the

state ω itself. This, in turn, allows us to take a direct approach to solve PP without
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solving for the multipliers λ1(·) and λ2(·) in the constrained optimization formulation

of the Euler-Lagrange conditions (2.A.12-2.A.17).12

Note that since in the solution x(ω) ≤ ω + b for all ω by Lemma 2.4.4, we can

write Ua(x,m|ω) = m exp(β[x−ω− b]). Then (2.4.3) becomes m′(ω)
m(ω)

= −βx′(ω), and

thus

m(ω) = m0 exp (−β[x(ω)− x0]) (2.4.4)

It follows that the optimal project size m(·) is a strictly decreasing function of ω,

which decreases faster the steeper x(ω) is and the more responsive the agent is to

policy loss, as measured by β.

Given that expression (2.4.4) incorporates the IC constraints (2.4.3), we can now

directly substitute (2.4.4) into the objective function of the principal. Since m(ω) > 0

for all ω, the constraint m(ω) ≥ 0 is not binding. In addition, as it is common in the

literature, we will ignore the constraint that x′ (ω) ≥ 0 and check that the solution

satisfies the constraint ex-post. With these remarks, we can rewrite the principal’s

problem as

max
x0,m0,x(·)

J(x0,m0, x(·)) =
∫ 1

0

Up(x(ω),m0 exp(−β[x(ω)−x0])|ω)f(ω)dω s.t. x(0) = x0.

The necessary first order condition with respect to x(ω) then gives

MRSp
xm(ω) ≡

Up
x(x(ω),m(ω)|ω)

Up
m(x(ω),m(ω)|ω) = βm(ω) = MRSa

xm(ω) ∀ω ∈ [0, 1]. (2.4.5)

Note that since m(·) is strictly decreasing, this implies that the principal’s

marginal rate of substitution in the optimal contract is decreasing in ω, so that

increases in policy are relatively less valuable for the principal in higher states, while

12This simplification does come at a cost in generality. In particular, we want to point out that in

this case the single crossing condition is only satisfied weakly, as ∂
∂ω

(
Ua

x (x,m|ω)
Ua

m(x,m|ω)

)
= 0. As a result,

the optimal contract will remove the incentive for the agent to misrepresent his type leaving him
indifferent over sending alternative reports.
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increases in implementation scale are relatively more valuable for the principal in

higher states.

The optimality condition (2.4.5) leads to two immediate implications. First, note

that since Up
x(·) ≤ 0 if and only if x ≥ ω, the optimal contract will overfund any

project that distorts policy towards the agent and underfund projects that distort

policy against the agent.

Theorem 2.4.6 In the optimal separating solution, m(ω) ≥ m̂ = 1/γ ⇔ x(ω) ≥ ω.

Second, using this result we can show that the optimal separating solution is

continuous and piecewise differentiable. Thus, in particular, the optimal differentiable

contract that we characterize here dominates any solution with discontinuities, and

the original assumption only rules out kinks in the optimal contract.

Theorem 2.4.7 Suppose principal and agent have exponential payoffs. Then fully

separating solutions to the principal’s problem are continuous and piecewise differen-

tiable.

Theorem 2.4.7 builds on Lemma 2.A.4 in the Appendix, which shows that in gen-

eral (for any utility functions satisfying the assumptions of the model) the equilibrium

payoffs of principal Up (x (ω) ,m (ω) |ω) and agent Ua (x (ω) ,m (ω) |ω) are continuous
in ω. This rules out all but a specific kind of discontinuity, which we can then rule

out with (2.4.5).

It is important to note that the equality of the marginal rates of substitution

of the principal and the agent in (2.4.5) does not imply that the optimal incentive

compatible contract is efficient. Consider for example Figure 2.4.2, which plots a

possible solution (x(·),m(·)) in the (x,m) space. Note that at each point in the

curve, the marginal rates of substitution of the principal and the agent are equal.

However, the contract underfunds and distorts policy against the agent in “high”
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states (states ω > ω̂), as in the zealot solution of the two type model. In these high

states, the indifference curve of the agent is tangent to the indifference curve of the

principal from below, and both the principal and the agent would prefer to increase

funding and choose a higher policy.

w’ w^w’’ w* w**

w’+b w’’+b w^+b w*+b w**+b

x,w

m

Figure 2.6: Optimal Contract with Exponential Payoffs.

The result sketched in the figure is interesting because it represents the natural

generalization of the results for the two-type model. Since in the continuum local

deviations are “small” relative to the size of the bias, the agent is always a “zealot”,

and thus, based on the logic of the two-type model, we would expect that the optimal

contract will overfund and distort policy in favor of the agent for “low types” and

underfund and distort policy against the agent for “high types”, leading to the ex-post

inefficiency.13

13Consider first a finite state space with typical element ωt, t = 1, . . . , T , such that ωt+1−ωt = Δ
for some Δ > 0. A direct extrapolation of the two-type results to the finite state case would imply
that (i) x(ωt) = ωt for all t whenever b < Δ/2, as in the “low bias” case, (ii) that x(ωt) > ωt

whenever Δ/2 < b < Δ, as in the “moderate” case, and that (iii) when b > Δ there exists a t such
that x(ωt) > ωt for t ≤ t and x(ωt) < ωt for t > t, so that policy distorts in favor of the agent
for “low types” and against the agent for “high types”, as in the “zealot” case. Now as Δ → 0,
eventually b > Δ, and only the “zealot” case has bite in the continuum.
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Our main goal is to confirm whether in fact the solution has this strong inefficiency

ex-post, or if instead the optimal incentive compatible contract eliminates all gains

from trade (as is the case for “low” states in the contract depicted in the figure).

The result is stated in Theorem 2.4.8. For this it will be convenient to define r(ω) ≡
(η/2)[(x(ω)− ω)2 − x2

0]− β[x(ω)− x0].

Theorem 2.4.8 The optimal fully separating incentive compatible policy (x(·),m(·))
is such that there exists a ω̂ ∈ (0, 1) such that x(ω) > ω, and m(ω) > m̂ for ω ∈ [0, ω̂)

and x(ω) < ω, and m(ω) < m̂ for ω ∈ (ω̂, 1]. Moreover, for all ω ∈ [0, 1],

x′(ω) =
(x(ω)− ω) exp (r(ω))− 1

(β+ηx0)[
(x(ω)− ω)− β

η

]
exp (r(ω))− 1

(β+ηx0)

. (2.4.6)

The proof of Theorem 2.4.8 builds on two key facts. First, we show from the

transversality condition in the Euler-Lagrange equations that (i) the optimal policy

x(·) cannot be always above or always below ω. Second, a direct examination of

(2.4.6) shows that x′(ω) < 1 whenever x(ω) < ω. Thus, (ii) if x(ω) < ω at some

ω ∈ [0, 1], then x(ω′) < ω′ for all ω′ ≥ ω. This in turn implies that x0 > 0, for

otherwise x would always be below ω, which contradicts (i). So x(ω) starts above ω

and then must cross ω at least once. But by (ii), if x is ever below ω, it will not go

back up. Thus it must cross ω only once.

Fact (i) above captures the resolution of a tradeoff for the principal. Recall that

in the first best the policy matches the state, x(ω) = ω for all ω ∈ [0, 1], and the

project size m(·) is flat at m̂ = 1/γ. Now, in order to provide incentives without using

transfers, the principal needs to introduce distortions in policy and/or implementation

scale. In the exponential case, the tradeoff between these distortions is given by the

expression m′(ω) = −βm(ω)x′(ω). This reflects that in order to make x(·) responsive
to the state (reducing distortions in policy), m(·) needs to be responsive to the state
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as well (increasing distortions in implementation scale). Thus, in choosing how close

x(·) can trace ω, the principal faces a tradeoff between inducing distortions in policy

direction versus inducing distortions in implementation scale.14

The particular resolution of the tradeoff between distortions in policy and project

size depends crucially on the relative sensitivity to policy loss of the agent vis a vis

the principal, captured here by the ratio β/η. Note that the denominator of (2.4.6) is

equal to the numerator minus the term β
η
exp (r(ω)). It follows that x′(ω) → 1 for all

ω as β/η → 0. In this situation the agent does not care too much about policy losses

relative to the principal. Thus, it is relatively cheap for the principal to compensate

the agent with changes in project size to obtain a policy that is very close to her first

best. In particular, if β → 0, the agent does not care much about policy losses (not

only relative to the principal) and thus is cheap to compensate with small changes in

project size. As we can see from (2.4.4), in this case m(·) will be relatively flat. This

of course is excellent for the principal, who can achieve an outcome close to her first

best.

Now, recall that we solved the principal’s problem PP assuming that in the solu-

tion x(·) would be nondecreasing. The previous discussion makes clear that when the

agent is sufficiently insensitive to policy loss relative to the principal in fact x′(ω) > 0

for all ω ∈ [0, 1], and thus the optimal incentive compatible contract will be fully

separating.

Theorem 2.4.9 There exists δ > 0 such that if β/η < δ, the optimal incentive

compatible contract is a fully separating contract.

14This simple logic is due in part to the exponential/linear payoffs. In this case, the agent’s MRS
does not depend on the distance between policy x(ω) and the agent’s preferred policy, ω+ b. Thus,
if x(·) is always below or always above ω the principal can do better in all states by just shifting
x(·) above or below. Now, in general, the agent’s MRS can be decreasing as x gets closer to ω + b.
When this is the case, the principal has two competing ways of reducing distortions in project size:
by making x(·) flatter, and by making x(·) close to ω + b.
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When the agent is very sensitive to policy losses, on the other hand (β large),

attaining a policy x(·) close to the first best is very costly in terms of project size

distortions, and the principal would rather take a relatively unresponsive policy than

introduce large distortions in project size. In fact, for sufficiently high β, the principal

will be better off with a pooling contract. To see this, note that with β → ∞ the

numerator of (2.4.6) goes to x(ω)− ω and the denominator to −∞. Since x(ω) > ω

for some ω, this implies that x′ < 0, which violates the monotonicity constraint.

When the agent is much more sensitive to policy loss than the principal the agent

is too costly to compensate, and it is better for the principal to pool types. It is

worth noting here that while this result is in line with many papers in the literature,

it is in contrast with Koessler and Martimort (2012), who show that in a model with

separability across policy dimensions pooling is never optimal.15

2.5 Discussion: The Quasilinear Model

To put our results in the context of the previous literature with transferable utility,

we consider a version of the model in which “project size” enters into the utility of

principal and agent simply as transfers in a quasilinear utility function. For simplicity,

we do this here for the two type model. For any action x, state ω, and program size

m, the principal’s payoff is now Up (x,m|ω) := vp(�p(x, ω))−m, and the agent’s payoff

is Ua (x,m|ω) = va(�a(x, ω)) +m. As before, we assume that for j = P,A, (i) vj� < 0

and (ii) vj�� ≤ 0.

In order for this problem to be well defined, we need to ensure that it is bounded

in some way (otherwise the principal could ask for infinite transfers from the agent).

There are two possible ways to do this, and the choice makes a large difference to

the qualitative results. The first approach is to introduce the standard individual

15The result holds for any level of conflict of interest (bias) between principal and agent, provided
the conflict of interest between the principal and the agent are different on each dimension (Martimort
and Semenov, 2006).
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rationality constraint in principal-agent models, where the contract must assure the

agent a minimum utility level determined by an outside option. The second is to

impose the constraint that transfers are non-negative, which puts a hard lower-bound

on what can be achieved. This corresponds to the model of delegation with transfers

in Krishna and Morgan (2008), Section 3.

In both cases the Principal chooses (x0,m0) and (x1,m1) to maximize expected

utility E[vp(�p(xω, ω)) − mω] subject to the incentive compatibility constraints that

the plan (xω,mω) is optimal for the agent in state ω; i.e., that va(�a(xω, ω)) +mω ≥
va(�a(xω′ , ω)) +mω′ for ω, ω′ ∈ {0, 1}. In the agent individual rationality version, we

close the model by including the individual rationality (IR) constraints:

va(�a(xω, ω)) +mω ≥ 0. (2.5.1)

In this formulation, the problem boils down to a standard screening problem.

When bias is “low” (b ≤ b̂ for some b̂), the first-best is incentive compatible (left

panel of Figure 2.5). When b > b̂, the first-best is unattainable, and the solution has

many of the features of the textbook screening problem,. This is illustrated in the

right panel of Figure 2.5. The contract curves (in green) characterize the efficient

frontier of a tradeoff between extracting more surplus in state 0 or state 1 with

incentive compatible contracts. Points to the south and southeast of the contract

curves in state ω = 0 and ω = 1 lead to a higher payoff for the principal in state

0, and points to the north and northwest of the contract curves leading to a higher

payoff for the principal in state 1. Since utility is perfectly transferable between the

principal and agent, both x0 and x1 are increasing in the agent’s bias b, so unlike in

our model, there is no recoil effect. As in our model, though, in the quasilinear model

with an IR constraint pooling is generically suboptimal.
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Figure 2.7: Quasilinear Model with an IR constraint. Policy x on the horizontal
axis and transfers m on the vertical axis. The principal’s indifference curves are blue
in state 0 and red in state 1. The agent’s indifference curves in states 0 and 1 are
light blue and light red, respectively. Indifference curves satisfying the IR constraint
strictly are dashed.

Consider now the case of non-negative transfers, as in Krishna and Morgan (2008).

Now we replace the IR constraint (2.5.1) with

mω ≥ 0, for ω ∈ {0, 1} . (2.5.2)

If the agent’s bias is sufficiently low (b ≤ 1/2) we can implement the first best, so

assume b > 1/2. In a separating solution, the IC constraint in state ω = 1 will not

bind, and the IC constraint in state ω = 0 will hold with equality. From here we can

obtain m0 = m1+[va(�a(x1, 0))−va(�a(x0, 0))]. Substituting in the objective function
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and noting that in the solution m∗
1 = 0, we can write the principal’s problem as

max
x0,x1

f(0)[vp(�p(x0, 0))− va(�a(x1, 0)) + va(�a(x0, 0))] + f(1)vp(�p(x1, 1))

From the first order condition with respect to x0 we obtain Up
x(x

∗
0,m

∗
0|0) =

−Ua
x (x

∗
0,m

∗
0|0). Since Up

m(x,m|ω) = −1 and Ua
m(x,m|ω) = 1, this implies

that (x∗
0,m

∗
0) ∈ CC(0). From the state 1 FOC, however, f(1)Up(x∗

1,m
∗
1|1) =

f(0)Ua(x∗
1,m

∗
1|0), so (x∗

1,m
∗
1) /∈ CC(1): the contract curve in state 1 is constrained

so that it has to be on the m-axis, i.e., m = 0.

The solution is illustrated in Figure 2.5. The left panel depicts the case of moder-

ate bias, 1/2 < b < 1. The points A and B in the figure lie on the state 0 indifference

curve for the agent that goes through the principal’s ideal point in state 1. Point A

includes positive transfers to the agent, and is on the state 0 contract curve, at the

tangency of the agent’s indifference curve with a state 0 indifference curve for the

principal. Point B includes zero transfers, and is in the constrained contract curve.

The contract (A,B) maximizes the principal’s payoff in state 1 among incentive com-

patible contracts but implies large transfers to the agent in state 0. If the likelihood

of state 0 is high, the principal is better off moving to a point like (A′, B′), trading

transfers in state 0 for upward distortions in policy in state 1. For a sufficiently large

likelihood on state 0, the contract must be in the constrained contract curve in both

states, moving to a point like (A′′, B′′), with no transfers and distortions in the policy

in both states.

The right panel illustrates the case of b ∈ (1, 2).16 Note that distorting policy

in state 1 upwards is never optimal for the principal. Here the tradeoff is achieved

distorting policy downwards in state 1 (against the agent’s preferred policy) and

16If b ≥ 2 we get pooling at the prior as the solution to the problem.
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Figure 2.8: Quasilinear Model with Non-negative Transfers. The figure shows the
principal’s indifference curves in state 0 (in blue) and state 1 (in red), and the agent’s
indifference curves in state 0 (in light blue).

reducing transfers in state 0, as in a point like (A′, B′). Thus, differently than the

IR constraint version of the model, the quasilinear model with non-negative transfers

does have a recoil effect. Differently than in our model, though, this recoil effect is

discontinuous in the bias b.

For a sufficiently high likelihood of state 0, no separating contract exists, and the

principal is reduced to a pooling contract along the yellow constrained contract curve.

To see why pooling obtains in this context, consider point C on the yellow curve. Note

that the triple tangency condition argument against pooling in our model (Theorem

2.4.1) does not apply here, because given the nonnegative constraint on transfers, the

principal’s indifference curves will not be tangent at the optimal pooling point. Thus

pooling is optimal if the agent’s state 0 indifference curve runs through the non-trivial

gap between the principal’s indifference curves.
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2.6 Conclusion

A common feature in many agency relationships is that the principal can decide

both the direction and the scope or implementation scale of a policy. In such cases,

there is a natural complementarity between these dimensions of policy, as the value

of expanding the scale of implementation increases for both principal and agent the

closer the implemented policy is to their preferred policy. In this paper we characterize

the optimal contract for the principal in this environment when she cannot count on

transfers to alleviate incentive problems.

Because of the non-separability across policy dimensions that is at the core of our

problem, the common procedure of re-parametrizing the problem in terms of infor-

mation rents is not helpful. In general we are dealing with a singular control problem

of the type that does not admit the sort of straightforward bang-bang solutions com-

monly used in other contexts. However, we are able to make considerable progress.

First, we solve the optimal contract in the two type case, and present a graphical

analysis that makes the logic and results transparent. We then characterize the op-

timal separating contract in the continuum with a parametric assumption on payoffs

(exponential payoffs).

We show that the optimal separating contract is equivalent to delegation “with

strings attached”: an agent with an upward policy bias can only choose higher policies

by reducing the scale of the project. The possibility of tinkering with the scale of

implementation induces distortions in the content of policy that can be different

from what would result in a comparable model with quasilinear payoffs, and that

are in fact different when the agent’s bias is sufficiently large relative to the smallest

possible deviation (which is always the case in the continuum). Indeed, in this case

the optimal separating contract partitions the state space in a “low” and “high” set of

states, such that the principal overfunds and distorts towards the agent in low states,

but underfunds and distorts against the agent in high states.
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This strong form of ex-post inefficiency in the optimal contract does not appear

in the standard model with quasilinear payoffs where utility is perfectly transferable

between parties, and leads to new insights in applications. In the environmental reg-

ulation case, for example, this implies that the optimal contract sets overly stringent

regulations that are heavily enforced when climate change is mild, and relatively weak

regulations which are under-enforced in the states in which climate change is acceler-

ating more heavily. Thus, both Congress and the EPA would both prefer to set more

stringent, heavily enforced environmental regulations in the high states.

While we have made significant progress in analyzing this problem, much work

remains. As much of the literature before us, we have restricted the principal to

choose among deterministic mechanisms. A key direction for future work would be

to extend the analysis in this paper to stochastic mechanisms (e.g., Strausz (2006),

Kováč and Mylovanov (2009)). For example, if the principal is less risk averse than

the agent this kind of contract can be useful for the principal in this context, allowing

her to relax incentive constraints without utility loss. Alternatively, if the agent’s risk

attitudes change throughout the policy space these differences can be exploited (e.g.,

if the agent is risk loving near the principal’s state 0 optimal point, but risk averse

near the principal’s state 1 optimal point the principal may be able to reward and/or

punish through random mechanisms depending on the principal’s preferences).

To see this, consider the binary state model. For incentive compatibility, the

principal needs to make the policy in state ω = 0 more attractive, and the policy in

state ω = 1 less attractive to the state 0 agent. Now suppose, for simplicity, that the

principal is risk neutral, while the agent is risk averse. Then the principal can gain

substituting the state 1 policy in the optimal deterministic contract (x∗
1,m

∗
1) with a

lottery that plays a point (x′
1,m

′
1) with a probability μ′ ∈ (0, 1) and a point (x′′

1,m
′′
1)

with probability (1− μ) in state ω = 1.
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(x1,m1)^

(x*1,m*1)(x1,m1)’

(x1,m1)’’

Figure 2.9: A stochastic mechanism.

This is illustrated in Figure 2.9. Choose a point (x′
1,m

′
1) that is a convex combina-

tion between (x∗
1,m

∗
1) and the principal’s state 1 ideal point, (x̂1, m̂1), choose a point

(x′′
1,m

′′
1) and a probability μ ∈ (0, 1) such that (x∗

1,m
∗
1) = μ(x′

1,m
′
1)+(1−μ)(x′′

1,m
′′
1).

Note that the risk neutral principal is indifferent between (x∗
1,m

∗
1) and the lottery

μ[(x′
1,m

′
1)]+(1−μ)[(x′′

1,m
′′
1)], but the state 0 agent is strictly worse-off. Then letting

μ′ = μ + ε for ε > 0 small, the agent is still strictly worse-off but the principal is

better-off in μ′[(x′
1,m

′
1)] + (1− μ′)[(x′′

1,m
′′
1)] than in (x∗

1,m
∗
1).

This simple example illustrates that if the principal is less risk averse than the

agent, there is space to improve outcomes by considering stochastic mechanisms. This

also suggests that deterministic mechanisms can be optimal when the principal is at

least as risk averse as the agent. This, we believe, is at the heart of the comment in

Koessler and Martimort (2012) regarding the optimality of deterministic mechanisms

in that context. A full analysis of contracting with stochastic mechanisms in our

setup is beyond the scope of this paper, and is left for future work.
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2.A Omitted Proofs

2.A.1 Principal gets first-best when b < 1/2

Lemma 2.A.1 (x∗
ω,m

∗
ω) = (x̂ω, m̂ω) for ω ∈ {0, 1} if and only if b ≤ 1/2.

Proof of Lemma 2.A.1. The Lagrangian for the principal is:

∑
ω

Up(xω,mω|ω)f(ω)+λ0 [U
a(x0,m0|0)− Ua(x1,m1|0)]+λ1 [U

a(x1,m1|1)− Ua(x0,m0|1)]

The first order conditions are:

∂L
∂x0

= Up
x(x0,m0|0)f(0) + λ0U

a
x (x0,m0|0)− λ1U

a
x (x0,m0|1) = 0, (2.A.1)

∂L
∂x1

= Up
x(x1,m1|1)f(1)− λ0U

a
x (x1,m1|0) + λ1U

a
x (x1,m1|1) = 0, (2.A.2)

∂L
∂m0

= Up
m(x0,m0|0)f(0) + λ0U

a
m(x0,m0|0)− λ1U

a
m(x0,m0|1) = 0, (2.A.3)

∂L
∂m1

= Up
m(x1,m1|1)f(1)− λ0U

a
m(x1,m1|0) + λ1U

a
m(x1,m1|1) = 0, (2.A.4)

∂L
∂λ0

= Ua(x0,m0|0)− Ua(x1,m1|0) ≥ 0, λ0 ≥ 0, λ0
∂L
∂λ0

= 0, (2.A.5)

∂L
∂λ1

= Ua(x1,m1|1)− Ua(x0,m0|1) ≥ 0, λ1 ≥ 0, λ1
∂L
∂λ1

= 0, (2.A.6)

Suppose that neither constraint is binding. Then we have λ∗
0 = λ∗

1 = 0. Thus (2.A.1)

becomes Up
x(x0,m0|0) = 0 ⇔ x∗

0 = x̂0 = 0, and (2.A.2) becomes Up
x(x1,m1|1) =

0 ⇔ x∗
1 = x̂1 = 1. Then (2.A.3) becomes Up

m(x0,m0|0) = 0, and since x0 = 0, then

Up
m(0,m0|0) = 0. Therefore up

m(0,m0) = γm(m0), orm0 = m̂. Similarly, from (2.A.4),

m1 = m̂. Then (2.A.5) and (2.A.6) are reduced to:

ua
(
b2, m̂

) ≥ ua
(
(1− b)2, m̂

) ⇔ b ≤ 1

2
,
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and

ua
(
b2, m̂

) ≥ ua
(
(1 + b)2, m̂

) ⇔ b ≥ −1

2
.

This concludes the proof of the lemma.

2.A.2 Proof of Theorem 2.4.1

Proof of Theorem 2.4.1. We will show that the utility functions which satisfy a

necessary condition for pooling are nowhere dense in the appropriate Sobolev space,

W 1,p (X). In particular, we show that if a pooling contract x∗
o,m

∗
o is optimal for the

Principal, then the following triple tangency condition must be satisfied:

γ′
p,0

(
t∗p,0

)
= ±γ′

p,1

(
t∗p,1

)
= ±γ′

a,0

(
t∗a,0

)
,

where γj,ω : I → R2 is the parametrization by arclength of ICj (x∗
o,m

∗
o|ω), γj,ω

(
t∗j,ω

)
=

(x∗
o,m

∗
o) and I ⊂ R is a non-empty interval.

First, the Principal’s indifference curves have to be tangent, for otherwise (x∗
o,m

∗
o)

does not solve the optimal pooling problem,

max
(xo,mo)

∑
ω∈{0,1}

f(ω)Up(xo,mo|ω).

To see this, note that the first-order condition of the above problem implies:

∇Up(x∗
o,m

∗
o|0) =

−f1
f0

∇Up(x∗
o,m

∗
o|1).

It follows that for any (x,m):

∇Up(x∗
o,m

∗
o|0) · [(x,m)− (x∗

o,m
∗
o)] = 0

⇔ ∇Up(x∗
o,m

∗
o|1) · [(x,m)− (x∗

o,m
∗
o)] = 0.
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Now, by definition of γj,ω:

∇Up(x∗
o,m

∗
o|0) ·

[
γ′
p,0

(
t∗p,0

)− (x∗
o,m

∗
o)
]

= 0, and

∇Up(x∗
o,m

∗
o|1) ·

[
γ′
p,1

(
t∗p,1

)− (x∗
o,m

∗
o)
]

= 0,

and since
∥∥γ′

p,1

(
t∗p,1

)∥∥ =
∥∥γ′

p,0

(
t∗p,0

)∥∥ = 1 (because γj,ω is the natural parametriza-

tion), it follows that γ′
p,0

(
t∗p,0

)
= ±γ′

p,1

(
t∗p,1

)
.17 This proves the first equality.

We will show the second equality by contradiction. Assume that γ′
p,1

(
t∗p,1

) �=
±γ′

a,0

(
t∗a,0

)
. Note that for any ε, the menu

(
εγ′

a,0

(
t∗a,0

)
,−εγ′

a,0

(
t∗a,0

))
is incentive com-

patible18, since both contracts are on ICa (x∗
o,m

∗
o|0) [alternatively, could move along

IC curve by proposing menu
(
γa,0

(
t∗a,0 − ε

)
, γa,0

(
t∗a,0 + ε

))
]. Because γ′

p,1

(
t∗p,1

) �=
±γ′

a,0

(
t∗a,0

)
, either

εγ′
a,0

(
t∗a,0

) ∈ intBp (x∗
o,m

∗
o|0) ,−εγ′

a,0

(
t∗a,0

) ∈ intBp (x∗
o,m

∗
o|1)

or

εγ′
a,0

(
t∗a,0

) ∈ intBp (x∗
o,m

∗
o|1) ,−εγ′

a,0

(
t∗a,0

) ∈ intBp (x∗
o,m

∗
o|0) .

Without loss of generality, assume the first holds. This implies that Up(εγ′
a,0

(
t∗a,0

) |0) >
Up(x∗

o,m
∗
o|0) and Up(−εγ′

a,0

(
t∗a,0

) |1) > Up(x∗
o,m

∗
o|1), thus the separating menu dom-

inates the pooling menu state by state, which contradicts the optimality of pooling.

17Note that the sign depends on the direction of the parametrization; reversing the direction would
change the sign.

18Note that we are using the convention in differential geometry that γ′
j,ω(t) is a vector with base

point at γj,ω(t) and that εγ′
j,ω(t) is a tangent vector length ε, instead of the unit tangent vector

(this is a slight abuse of notation).
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2.A.3 Proof of Lemma 2.4.2

Proof of Lemma 2.4.2. Suppose in the solution of the Principal’s optimization

problem λ∗
0 > 0 and λ∗

1 = 0. Then equations (2.A.1) and (2.A.3) boil down to:

λ0 = −f(0)
Up
x(x0,m0|0)

Ua
x (x0,m0|0) = −f(0)

Up
m(x0,m0|0)

Ua
m(x0,m0|0) ⇒ Up

x(x0,m0|0)
Up
m(x0,m0|0) =

Ua
x (x0,m0|0)

Ua
m(x0,m0|0)

(2.A.7)

so that (x∗
0,m

∗
0) ∈ CC (0), and equations (2.A.2) and (2.A.4) boil down to:

λ0 = f(1)
Up
x(x1,m1|1)

Ua
x (x1,m1|0) = f(1)

Up
m(x1,m1|1)

Ua
m(x1,m1|0) ⇒ Up

x(x1,m1|1)
Up
m(x1,m1|1) =

Ua
x (x1,m1|0)

Ua
m(x1,m1|0)

(2.A.8)

and thus (x∗
1,m

∗
1) ∈ CC (1).

2.A.4 Proof of Theorem 2.4.3

Proof of Theorem 2.4.3. Consider equation (2.A.7). Note that since λ0 > 0

and Ua
m(x0,m0|0) > 0, then (2.A.7) implies that Up

m(x0,m0|0) < 0. Thus, there is

overfunding in state 0; i.e., m0 > m̂. Also, since Up
x(x0,m0|0) ≥ 0 iff x0 ≤ 0 and

Ua
x (x0,m0|0) ≥ 0 iff x0 ≤ b, (2.A.7) implies that x0 ∈ (0, b), so the optimal policy in

state 0 distorts in favor of the agent. Consider next expression (2.A.8). Note that

λ0 > 0 and Ua
m(x1,m1|0) > 0 in (2.A.8) imply that Up

m(x1,m1|1) > 0. Thus there

is underfunding in state 1; i.e., m1 < m̂. And from the first equality, we have that

Up
x(x1,m1|1) and Ua

x (x1,m1|0) have to have the same sign, so either x1 < min{1, b}
or x1 > max{1, b}. So suppose first that b < 1. Then either x1 < b or x1 > 1.

However, it cannot be that x1 < b. To see this, note that in this case the symmetric

point about the ideal point of the agent (2b− x1,m1) would give the agent the same

payoff but would increase the utility of the principal. Thus such (x1,m1) /∈ CC(1).

It follows that if b < 1, then x1 > 1. Suppose next that b > 1. Then either x1 < 1 or

x1 > b, but by a similar argument as before, it must be that x1 < 1.
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Finally, we show that if f(0) ∈ (0, 1), the optimal incentive compatible solution

entails distortions in both states: (x∗
ω,m

∗
ω) �= (x̂ω, m̂ω) for ω = 0, 1. Equivalently,

we need to show that if f(0) ∈ (0, 1), the solution to Problem 2.4.2 satisfies u∗ ∈
(Ua(x̂0, m̂0|0), Ua(x̂1, m̂1|0)). We will show that if f(0) �= 0 then u < Ua(x̂1, m̂1|0).
A similar argument proves the opposite direction. We have that:

∂

∂u
Up(x̃ω(u), m̃ω(u)|ω) = up

�(�
P (x̃ω(u), ω), m̃ω(u))2 (x̃ω(u)− ω) x̃ω

u(u)

+
[
up
m(�

P (x̃ω(u), ω), m̃ω(u))− γm(m̃
ω(u))

]
m̃ω

u(u),

and

∂

∂u
Up(x̃1(u), m̃1(u)|1)

∣∣∣∣
Ua(x̂1,m̂1|0)

= [up
m(0, m̂1)− γm(m̂1)] m̃

0
u(U

a(x̂1, m̂1|0)) = 0,

where the last part follows by the definition of m̂1, i.e., the FOC that this first-best

has to satisfy is up
m(0, m̂1)− γm(m̂1) = 0. Next, note that:

∂

∂u
Up(x̃0(u), m̃0(u)|0)

∣∣∣∣
Ua(x̂1,m̂1|0)

= 2up
�(1, m̂1)x̃

0
u(U

a(x̂1, m̂1|0))

+ [up
m(1, m̂1)− γm(m̂1)] m̃

ω
u(U

a(x̂1, m̂1|0)).

We have that 2up
�(1, m̂1) < 0, and since we are overfunding always in state 0,

up
m(1, m̂1) − γm(m̂1) < 0. Furthermore, since the indifference curve moves in the

north-east direction, we have that x̃0
u(U

a(x̂1, m̂1|0)) > 0 and m̃0
u(U

a(x̂1, m̂1|0)) > 0.

All of this implies that:

∂

∂u
Up(x̃0(u), m̃0(u)|0)

∣∣∣∣
Ua(x̂1,m̂1|0)

< 0,

which means utility can be improved by decreasing u if f(0) �= 0; thus u∗ <

Ua(x̂1, m̂1|0).
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2.A.5 Incentive Compatibility in Continuum Model

Lemma 2.A.2 If a policy function q(·) = (x(·),m(·)) is implementable, x(·) is non-
decreasing.

Proof of Lemma 2.A.2. The proof follows the standard line, and is included here

for completeness. The first-order condition for truth-telling is:

∂Ua(ω̂, ω)

∂ω̂

∣∣∣∣
ω̂=ω

= Ua
x (x(ω̂),m(ω̂)|ω)x′(ω̂) + Ua

m(x(ω̂),m(ω̂)|ω)m′(ω̂)

∣∣∣∣
ω̂=ω

=: 0,

(2.A.9)

or equivalently,

m′(ω) = −Ua
x (x(ω),m(ω)|ω)

Ua
m(x(ω),m(ω)|ω)x

′(ω). (2.A.10)

The second-order condition for no (local) profitable deviations is:

∂2U(ω̂, ω)
∂ω̂2

∣∣∣∣
ω̂=ω

≤ 0 (2.A.11)

Differentiating (2.A.9) gives

[
∂2U(ω, ω)

∂ω̂2
+

∂2U(ω, ω)
∂ω̂∂ω

]
dω = 0 ⇒ ∂2U(ω, ω)

∂ω̂∂ω
= −∂2U(ω, ω)

∂ω̂2

so that (2.A.11) is

∂2U(ω, ω)
∂ω̂∂ω

≥ 0

From (2.A.9), this is

Ua
xω(x(ω),m(ω)|ω)x′a

mω(x(ω),m(ω)|ω)m′(ω) ≥ 0

Substituting m′(ω) from (2.A.10), this is
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x′(ω)
[
Ua
xω(x(ω),m(ω)|ω)− Ua

mω(x(ω),m(ω)|ω)U
a
x (x(ω),m(ω)|ω)

Ua
m(x(ω),m(ω)|ω)

]
≥ 0

Since the bracket is nonnegative from the SCC ∂
∂ω

(
Ua
x (x,m|ω)

Ua
m(x,m|ω)

)
≥ 0, then x′(ω) ≥ 0.

Lemma 2.A.3 If x (·) is nondecreasing and (2.4.3) holds for all ω ∈ Ω,

Ua(ω, ω) ≥ Ua(ω̂, ω) for all ω, ω̂ ∈ [0, 1] .

Proof of Lemma 2.A.3. We want to show that:

0 ≥ ∂Ua(ω̂, ω)

∂ω̂
= Ua

x (x(ω̂),m(ω̂)|ω)x′(ω̂) + Ua
m(x(ω̂),m(ω̂)|ω)m′(ω̂) ∀ω, ω′ ∈ [0, 1]

Dividing and multiplying by Ua
m(x(ω̂),m(ω̂)|ω), we have

∂Ua(ω̂, ω)

∂ω̂
= Ua

m(x(ω̂),m(ω̂)|ω)
[
Ua
x (x(ω̂),m(ω̂)|ω)

Ua
m(x(ω̂),m(ω̂)|ω)x

′(ω̂) +m′(ω̂)
]

By the SCC, if ω̂ > ω,

∂Ua(ω̂, ω)

∂ω̂
≤ Ua

m(x(ω̂),m(ω̂)|ω)
[
Ua
x (x(ω̂),m(ω̂)|ω̂)

Ua
m(x(ω̂),m(ω̂)|ω̂)x

′(ω̂) +m′(ω̂)
]

︸ ︷︷ ︸
=0 by (2.4.3)

= 0

A similar argument holds for ω̂ < ω.

Remark 3 The Hamiltonian for problem (PP) is

H = Up(x,m|ω)f(ω)− λ1
Ua
x (x,m|ω)

Ua
m(x,m|ω)y + λ2y
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The necessary and sufficient conditions for a fully separating solution are that there

exist λ1 ≥ 0 and λ2 ≥ 0 such that:

m′ = Hλ1 = −Ua
x (x,m|ω)

Ua
m(x,m|ω)y (2.A.12)

x′ = Hλ2 = y (2.A.13)

0 = Hy = −λ1
Ua
x (x,m|ω)

Ua
m(x,m|ω) + λ2 (2.A.14)

λ′
1 = −Hm = −Up

m(x,m|ω)f(ω) + λ1y
∂

∂m

(
Ua
x (x,m|ω)

Ua
m(x,m|ω)

)
(2.A.15)

λ′
2 = −Hx = −Up

x(x,m|ω)f(ω) + λ1y
∂

∂x

(
Ua
x (x,m|ω)

Ua
m(x,m|ω)

)
, (2.A.16)

0 = μm, (2.A.17)

with initial conditions m(0) = m0 and x(0) = x0 and transversality conditions

λ1(1) = 0 and λ2(1) = 0, and λ1(0) = 0 and λ2(0) = 0. From the Pontryagin

Maximum Principle (for example, see Zeidler (1985) Theorem 48.C), any optimum

for the Principal satisfies the Euler-Lagrange equations above. Moreover, the optimal

control problem in equations (2.A.12-2.A.17) satisfies the weak Mangasarian sufficient

condition for a maximum (the problem is in general weakly concave), and thus a

solution to (2.A.12-2.A.17) is a global maximizer.

2.A.6 Proof of Lemma 2.4.4

Proof of Lemma 2.4.4. The proof follows a similar argument in Krishna and

Morgan (2008). Suppose, to the contrary, that there exists an ω such that x(ω) >

b+ω. Consider (2.A.14). Since x(ω) > b+ω, we have Ua
x (x,m|ω) < 0. Suppose first

that λ1 > 0. Since Ua
m(x,m|ω) > 0 and λ2 ≥ 0, we have

−λ1
Ua
x (x,m|ω)

Ua
m(x,m|ω) + λ2 > 0
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which is a contradiction (this expression has to equal zero by (2.A.14)). Suppose then

that λ1 = 0. Then from (2.A.16)

λ′
2 = −Up

x(x,m|ω)f(ω) > 0 ⇒ λ2(ω) > 0,

which again contradicts (2.A.14).

Lemma 2.A.4 The payoffs of principal and agent in the solution {x(·),m (·)} to the

principal’s problem, Up (x (ω) ,m (ω) |ω) and Ua (x (ω) ,m (ω) |ω), are continuous in

ω.

Proof of Lemma 2.A.4. To see that Ua (x (ω) ,m (ω) |ω) is continuous, assume

by way of contradiction that there exists some ε > 0, such that for all δ > 0 suf-

ficiently small, |Ua (x (ω) ,m (ω) |ω)− Ua (x (ω − δ) ,m (ω − δ) |ω − δ)| > ε. Then

since Ua (x,m|ω) is continuous in ω, we have that for δ > 0 sufficiently small:

0 ≤ Ua (x (ω) ,m (ω) |ω)− Ua (x (ω) ,m (ω) |ω − δ) < ε,

0 ≤ Ua (x (ω − δ) ,m (ω − δ) |ω − δ)− Ua (x (ω − δ) ,m (ω − δ) |ω) < ε,

where the absolute values are not needed by truth-telling. But then, if Ua (x (ω) ,m (ω) |ω)−
Ua (x (ω − δ) ,m (ω − δ) |ω − δ) > ε:

Ua (x (ω − δ) ,m (ω − δ) |ω − δ) < Ua (x (ω) ,m (ω) |ω) + ε

< Ua (x (ω) ,m (ω) |ω − δ) ,

which is a contradiction since truth-telling fails for ω − δ. Similarly, if

Ua (x (ω − δ) ,m (ω − δ) |ω − δ)− Ua (x (ω) ,m (ω) |ω) > ε

then truth-telling will fail for type ω.
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To see that Up (x (ω) ,m (ω) |ω) is continuous in ω, assume by way of contradiction

that there exists some ε > 0, such that for all δ > 0,

Up (x (ω) ,m (ω) |ω)− Up (x (ω − δ) ,m (ω − δ) |ω − δ) > ε

(the other case follows similarly). Clearly this implies that either x or m or both are

discontinuous at ω. Since Ua (x (ω′) ,m (ω′) |ω) is continuous in ω′ around ω′ = ω,

for all η > 0, there exists a δ > 0 such that for any ω′ ∈ (ω − δ, ω) there exists some

x̃ (ω′) , m̃ (ω′) such that:

Ua (x (ω′) ,m (ω′) |ω′) = Ua (x̃ (ω′) , m̃ (ω′) |ω′) , and

|x̃ (ω′)− x (ω)| < η,

|m̃ (ω′)−m (ω)| < η,

and which preserves local IC. Since local IC implies global IC by the single-crossing

property changing x,m to x̃, m̃ respects incentive constraints. Furthermore, by the

continuity of Up (x,m|ω) in x,m we have that for some δ′ > 0, and ω′ ∈ (ω, ω − δ′)

we have:

|Up (x (ω) ,m (ω) |ω)− Up (x̃ (ω′) , m̃ (ω′) |ω)| <
ε

2
, and

|Up (x̃ (ω′) , m̃ (ω′) |ω′)− Up (x̃ (ω′) , m̃ (ω′) |ω)| <
ε

2
,

so that by the triangle inequality:

|Up (x (ω) ,m (ω) |ω)− Up (x̃ (ω′) , m̃ (ω′) |ω′)| < ε.
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But then for all ω′ ∈ (ω, ω − δ′):

Up (x̃ (ω′) , m̃ (ω′) |ω′) > Up (x (ω) ,m (ω) |ω)− ε

> Up (x (ω′) ,m (ω′) |ω′) ,

thus since f has full support the proposed x,m cannot be optimal.

2.A.7 Proof of Lemma 2.4.7

Proof of Lemma 2.4.7. Let x,m be a solution to the principal’s problem. By

monotonicity, we know that x and m have to be differentiable and hence continuous

almost everywhere. At points of differentiability, we have that:

MRSp
xm(ω) =

Up
x(x (ω) ,m (ω) |ω)

Up
m(x (ω) ,m (ω) |ω) =

Ua
x (x (ω) ,m (ω) |ω)

Ua
m(x (ω) ,m (ω) |ω) = MRSa

xm(ω),

which is a tangency condition between the indifference curves of the principal and

agent. Note that for our specified utility functions generically there is at most one

point of tangency of indifference curves. This is also generically true for other utility

functions. To be precise, note that for the indifference curve υa = Ua(x (ω) ,m (ω) |ω)
we have:

m = υa exp (−β (x− ω − b)) ,

where we are restricting attention to the relevant range, i.e., x < ω+ b. Thus on this

indifference curve:

dm

dx
= −βυa exp (−β (x− ω − b)) .

Similarly, for the indifference curve of the principal υp = Up(x (ω) ,m (ω) |ω), we have:

dm

dx
=

η (x− ω) exp(−η
2
(x− ω)2)

(
±1−√

1− 2γυp exp(η(x− ω)2)
)

γ
√

1− 2γυp exp(η(x− ω)2)
.
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It is clear that equality of these expressions cannot hold for multiple x when υa and

υp are fixed, unless very special choices are made for utility function parameters, e.g.,

β = 0, η = 0. Thus generically, there is at most one point of tangency. We further

note that the tangency condition is differentiable and hence continuous.

Since the tangency condition is continuous, and x,m is differentiable in a neigh-

borhood above and below ω̂:

Up
x(x (ω̂−) ,m (ω̂−) |ω̂−)

Up
m(x (ω̂−) ,m (ω̂−) |ω̂−)

=
Ua
x (x (ω̂−) ,m (ω̂−) |ω̂−)

Ua
m(x (ω̂−) ,m (ω̂−) |ω̂−)

,

Up
x(x (ω̂+) ,m (ω̂+) |ω̂+)

Up
m(x (ω̂+) ,m (ω̂+) |ω̂+)

=
Ua
x (x (ω̂+) ,m (ω̂+) |ω̂+)

Ua
m(x (ω̂+) ,m (ω̂+) |ω̂+)

.

But Ua(x (ω) ,m (ω) |ω) and Up(x (ω) ,m (ω) |ω) are continuous in ω by lemma 2.A.4,

we have:

Ua (x (ω̂+) ,m (ω̂+) |ω̂+) = Ua (x (ω̂−) ,m (ω̂−) |ω̂−) , and

Up (x (ω̂+) ,m (ω̂+) |ω̂+) = Up (x (ω̂−) ,m (ω̂−) |ω̂−) ,

thus the tangency would have to occur on the same indifference curves in the limit.

But since there is a unique tangency point for type ω̂, we have that x (ω̂−) = x (ω̂+)

and m (ω̂−) = m (ω̂+).

2.A.8 Proof of Theorem 2.4.8

Proof of Theorem 2.4.8. Part 1. First we show that in the solution we cannot

have either x(ω) > ω for all ω ∈ [0, 1] or x(ω) < ω for all ω ∈ [0, 1]. In the exponential

case, the Euler-Lagrange equation (2.A.16) becomes

λ′
2 = η(x− ω)m exp

(
−η

2
(x− ω)2

)
f(ω) (2.A.18)
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Substituting (2.4.4) in (2.A.18) we get

λ′
2 = η(x− ω)m0 exp

(
−η

2
(x− ω)2 − β[x(ω)− x0]

)
f(ω),

so that

λ2(ω) = ηm0

∫ ω

0

(x− υ) exp
(
−η

2
(x− υ)2 − β[x− x0]

)
f(υ)dz (2.A.19)

Note then that the transversality condition λ2(1) = 0 gives

∫ 1

0

(x− υ) exp
(
−η

2
(x− υ)2 − β[x− x0]

)
f(υ)dυ = 0 (2.A.20)

and the result follows since exp (·) > 0.

Part 2. Next, we characterize properties of the optimal separating contract and derive

(2.4.6). Let r(ω) ≡ (η/2)[(x(ω)−ω)2−x2
0]−β[x(ω)−x0] and let r̃(ω) = r(ω)+(η/2)x2

0.

Note that we can write (2.4.5) as

exp (r̃(ω)) =
β + η(x(ω)− ω)

βγm0

∀ω ∈ [0, 1]. (2.A.21)

Imposing the constraint that x(0) = x0 in (2.A.21), we obtain

m0 = [1 + (η/β)x0]
1

γ
exp

(−(η/2)x2
0

)
(2.A.22)

Substituting back in (2.A.21), we have

exp (r(ω)) =
[β + η(x(ω)− ω)]

(β + ηx0)
∀ω ∈ [0, 1]. (2.A.23)
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Equation (2.A.23) completely characterizes the optimal policy x(·) as a function

of the initial value x0. Differentiating (2.A.23), we obtain (2.4.6). To obtain the

optimal x0, note that we can now rewrite the principal’s problem as

max
x0

J(x0) =

∫ 1

0

Up

(
x(ω),

(β + ηx0)

βγ
exp

(
−β[x(ω)− x0]−

(η
2

)
x2
0

)
|ω

)
f(ω)dω

subject to (2.A.23), so at the optimum

∂J

∂x0

(x0) = 0. (2.A.24)

Equations (2.4.4), (2.A.22), (2.A.23), and (2.A.24) completely characterize the

optimal fully separating incentive compatible contract for the principal, provided the

solution exists.

Part 3. Recall that by (2.4.6),

x′(ω) =
(x(ω)− ω) exp (r(ω))− 1

(β+ηx0)[
(x(ω)− ω)− β

η

]
exp (r(ω))− 1

(β+ηx0)

Note that if x(ω) < ω, then the numerator and denominator of (2.4.6) are negative.

Then x′(ω) < 1 if and only if β
η
exp (r(ω)) > 0, which is always the case. It follows

that if x(ω′) < ω′ for some ω′ ∈ [0, 1], then x(ω) < ω for all ω ∈ [ω′, 1]. Then it must

be that x0 > 0, for otherwise x(ω) < ω for all ω ∈ [0, 1], contradicting (2.A.20). So

x(ω) starts above ω and then must cross ω at least once. But note that if it crosses

once, it will not go back up. This concludes the proof.
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Chapter 3

Depreciation in Monotone Games:

A Folk Theorem

This chapter is co-authored with Prof. Marco Battaglini.1

3.1 Introduction

Starting with Gale (2001), an important literature has been dedicated to the study

of monotone contribution games. Monotone contribution games (henceforth MCGs)

are dynamic games in which players’ payoffs are nondecreasing in their own and other

players’ actions, and in which actions are assumed to be irreversible: in no period

can an agent choose an action that is lower then the action chosen in the previous

period. These games have been applied to study variety of environments: public

good contribution games in which the public good is the sum of private contributions

and is durable;2 models of investment and adoption of new technologies;3 models of

1Department of Economics, Cornell University, Ithaca, NY 14850, email: battaglini@cornell.edu
2Gale (2001), Lockwood and Thomas (2002), Yildirim (2006), Battaglini et al. (2015), among

others.
3Gale (1995).
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holdup;4 market games;5 models of bargaining in which players can make monotonic

concessions.6

The key result in this literature is an antifolk theorem. Studying MCG with no

discounting and in which players maximize long term payoffs, Gale (2001) has been

the first to observe that the set of subgame perfect equilibria (hence SPE) is a strict

subset of the set of feasible strictly individually rational payoffs. Extending the re-

sult to games with discounting, Lockwood and Thomas (2002) have shown that an

efficient allocation is not feasible in a SPE for any discount factor δ < 1 when payoffs

are differentiable; and that all equilibria are characterized by inefficiently slow con-

vergence to a steady state, a phenomenon they call gradualism. These insights have

recently been greatly generalized by Matthews (2013) who has provided necessary

conditions for SPE for a very general environment and who fully characterizes the set

of SPE in more specific environments.7

In some of the applications presented above, the assumption of strict irreversibility

is not ideal. Consider the case of public good contributions: while it is natural to

assume some form of irreversibility and durability of the public good, it is less natural

to assume that the rate of depreciation of the cumulative stock is exactly zero (as

implied by strict irreversibility). Similarly, in models of technological adoption it is

plausible to assume that the relative efficiency of an adoption would decrease over

time; and so on so forth in other applications.8

In this paper we generalize the standard model of contribution with irreversibility

to allow for depreciation on the players’ contributions. We show that when depreci-

4Pitchford and Snyder (2004)
5Gale (2001)
6Compte and Jehiel (2004)
7Important results are also provided, among others, by Admati and Perry (1991), Compte and

Jehiel (2004) who, studying environments with indivisibilities, characterize conditions in which there
is a unique SPE.

8We will develop this point in Section 3 were we return on application of bargaining with con-
cessions.
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ation is allowed, even an arbitrarily small level of depreciation, a standard version of

the folk theorem holds.

3.2 Model

Consider a dynamic contribution game with N players, i ∈ I = {1, 2, ..., N}. In the

stage game, Γ, players simultaneously choose an action ai ∈ Ai = R+ and player

i’s stage game payoff is given by ui (ai, a−i), when action profile a ∈ A is chosen.

Assume that ui is bounded, concave, continuously differentiable and satisfies positive

spillovers, so that ui (ai, ·) is strictly increasing in aj for j �= i. For technical reasons

we will also need the following transversality condition, that limai→∞ ui (ai, a−i) =

−∞ for all a−i.

The stage game will be played in periods t ∈ {0, 1, 2, ...}. Before providing a

formal description of the dynamic game we give a few preliminary definitions, which

are standard in the repeated games literature9 and will be applicable to our model.

LetHt = At be the set of t-period histories, where A0 = {∅} and note that a typical

element ht ∈ Ht is a list of t-period action profiles (ai, a−i) ∈ A = A1 × ...×AN . The

set of complete histories is H = ∪∞
t=0Ht. A pure strategy for player i is σi : H → Ai

and a continuation strategy after history ht, given σi, is σi|ht (hs) = σi (h
t, hs), where

(ht, hs) ∈ H is the concatenation of ht followed by hs.

An outcome (or outcome path) of an infinitely repeated game is a = (a0, a1, ...) ∈
A∞, where each at ∈ A. Denote by at ∈ Ht the partial history which matches

outcome a up to period t. Note that a pure strategy profile σ induces an outcome

9Our notation is consistent with Mailath and Samuelson (2006).
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a (σ) = (a0 (σ) , a1 (σ) , ...) which is defined recursively as follows:

a0 (σ) = (σi (∅))Ni=1 ,

a1 (σ) =
(
σi

(
a0 (σ)

))N
i=1

,

a2 (σ) =
(
σi

(
a0 (σ)

)
, σi

(
a1 (σ)

))N
i=1

, etc.

For the analysis in this paper, there is no loss of generality to focus on pure strategies;

so henceforth we will focus on pure strategies.

In the repeated game, denoted by Γδ, players maximize average discounted payoffs

in each period t, i.e., given any σ−i player i solves:

max
σi

U (σi, σ−i) = max
σi

(1− δ)
∞∑
t=0

δtu
(
at (σ)

)
.

Note that players have a common discount factor δ ∈ (0, 1). In period t, player i’s

continuation payoff, given outcome path a, is denoted by:

U t (a) = (1− δ)
∞∑
τ=t

δτu
(
ati, a

t
−i

)
.

A subgame perfect Nash equilibrium σ is symmetric if for any t, at (σ) = (at, ..., at)

for some at ∈ A, i.e., the outcome path is such that all players play the same action

in every period. Define:

S (Γδ) =
{
(at)

∞
t=1 : at = at (σ) for all t, for some symmetric SPNE σ

}
to be the set of outcome paths of symmetric SPNE of Γδ. Along with the literature on

dynamic contribution games, we will use subgame perfect equilibrium as the solution

concept.
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Up to this point, the game described above is a standard repeated game. A mono-

tone game differs from a repeated game because the players’ strategies are restricted

to be monotonic non decreasing.

Definition 3 (monotonicity) A pure strategy profile σ is monotonic if σ (ht) ≥
at−1 for any ht−1 ∈ Ht−1 and at−1 such that ht = (ht−1, at−1) ∈ Ht.

The first economic problem to which MCG have been applied is the entry game

studied by Gale (1995), in which ai’s can be interpreted as private investments in a

new technology with positive spillovers. In this case we may, for example, assume

u(at) = f(at)− c(ati), where f(at) is the production function and c(ati) is the oppor-

tunity cost of the idividual contribution. An application often cited to motivate the

irreversibility assumption is that of games of accumulation of durable public goods

(Gale, Matthews, Loockwod and Thomas, etc). In these games ai is interpreted as

the contribution to the public good by agent i. Assuming standard quasilinear pref-

erences, the agent’s i per period utility in period t is U(aΣt )− cti, where a
Σ
t =

∑
j a

t
j is

the level of public good and cti = ati − at−1
i ≥ 0 is the individual contribution at time

t. It can be easily shown that this game is strategically equivalent to a monotone

contribution game in which agent i’s utility function is u(at) = ũ(
∑

j a
t
j)− (1− ε)ati,

and so fits in the framework described above.

In many applications it is natural to assume imperfect irreversibility. In the

technological investment application, for example, it is natural to assume that as

time passes the level of effectiveness of the technology depreciate at some positive

rate ε: if a firms invests at−1
i at at time t− 1 and investments are irreversible, then at

time t the firm can choose any level ati ≥ (1 − ε)at−1
i . Similarly, in the public good

game described above, it may be natural to assume that contributions depreciate at

a rate ε > 0, so ati = cti + (1 − ε)
∑

j a
t−1
j where cti is the contribution at time t. In

this case, it is natural to require non negative contributions, so ati ≥ (1− ε)
∑

j a
t−1
j .

To deal with this case, we propose the following weaker definition of monotonicity.
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Definition 4 (ε-monotonicity) A pure strategy profile σ is ε-monotonic if σ (ht) ≥
(1− ε)at−1 for any ht−1 ∈ Ht−1 and at−1 such that ht = (ht−1, at−1) ∈ Ht.

Monotonicity can be considered a special case of ε-monotonicity in which ε = 0; by

allowing ε > 0, however, it allows to study the extensions of standard MCG described

above; since ε can be arbitrarily small, moreover, ε-monotonicity allows to condsider

cases that are just qualitatively different from cases in which monotonicity holds.

Let Γε
δ be the dynamic (or extensive form) game given by Γδ with the added

assumption that players’ strategies must satisfy ε-monotonicity. We extend the above

definitions to this environment in the natural way; for example, S (Γε
δ) denotes the

set of outcome paths of symmetric SPNE of Γε
δ. Note that Γ1

δ is a standard repeated

game.

3.2.1 Folk Theorem for Dynamic Contribution Games

Matthews (2013) studies Γ0
δ and characterizes the set of achievable outcomes as the

”undercore”, generally a strict subset of feasible, individually-rational payoff profiles.

In particular, theorem 2 in Matthews (2013) shows that for any δ < 1, if there are

strictly positive spillovers, then any achievable outcomes is inefficient. [This result

doesn’t rely on the additional prisoner’s dilemma assumption, but it holds with it as

well.]

We show that a ”folk theorem” holds in the game Γε
δ for any ε > 0. In particular,

for any individually rational, feasible payoff profile, v, and any ε > 0, there exists a

δ (ε) < 1 such that for any δ > δ (ε) we have a subgame perfect equilibrium of Γε
δ

which delivers an average payoff of v.

For each player i define the minmax payoff as vi = mina−i
maxai ui (ai, a−i) =

maxai ui (ai, 0). Let:

V =
{
(ui (ai, a−i))

N
i=1 : a ∈ RN

+ and ui (ai, a−i) ≥ vi for all i
}
,

109



be the set of feasible, individually rational payoffs.

In general we need to assume that V is convex and V◦ �= ∅. However we can use

the concavity of u and positive spillovers to prove the following lemma.

Denote the plane at the minmax utility level for player i byKi := {v ∈ V : vi = vi},
the corresponding half-space by Hi := {v ∈ V : vi ≥ vi}, the Pareto frontier by

PF (V) := {v ∈ V : �v′ ∈ V such that v′ � v} and let

PF− (V) := {
w ∈ RN : ∃v ∈ PF (V) such that v ≥ w

}
be the set majorized by the Pareto frontier.

Lemma 3.2.1 V is convex and V◦ �= ∅.

Proof. To prove that V is convex, we show that (1) PF− (V) is convex, (2)

for every i, j, (v−ij, vj, vi) ∈ Ki, there is some v∗j such that
(
v−ij, v

∗
j , vi

) ∈
PF (V) ∩ Ki, (3) V =

(
PF− (V) ∩ {∩N

i=1Hi

})
on a dense set. Thus, (1) and (2)

imply ∂V =∂
(
PF− (V) ∩ {∩N

i=1Hi

})
, while (3) shows that no open balls are missing

and then continuity of the utility functions shows V =
(
PF− (V) ∩ {∩N

i=1Hi

})
and

this is indeed convex since it is a finite intersection of conves sets.

(1) Take any w,w′ ∈ PF− (V) and λ ∈ (0, 1). Let v, v′ ∈ PF (V) be such that

v ≥ w, v′ ≥ w′, and a, a′ be action profiles for which v = u (a) and v′ = u (a′). Note

that for each i:

ui (λa+ (1− λ) a′) ≥ λvi + (1− λ) v′i ≥ λwi + (1− λ)w′
i,

thus λw + (1− λ)w′ ∈ PF− (V), since u (λa+ (1− λ) a′) ∈ V .
(2) Assume by way of contradiction that there is an i,j,(v−ij, vj, vi) ∈ Ki such

that (v−ij, vj, vi) /∈ PF (V) for all vj such that (v−ij, vj, vi) ∈ Ki. Let v∗j be the

largest vj such that
(
v−ij, v

∗
j , vi

) ∈ Ki. By contradiction there exists v′ ∈ V such
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that v′ = u (a′) >
(
v−ij, v

∗
j , vi

)
. But then consider asking i and −ij to make larger

contributions, a−j ≥ a′−j so that u−ij

(
a′j, a−j

)
= v−ij and ui

(
a′j, a−j

)
= vi (we

can always do this by concavity, transversality, which implies utility is eventually

decreasing in your own action, and positive spillovers). But then clearly v∗j ≤ uj (a
′) <

uj

(
a′j, a−j

)
, which contradicts that v∗j was the largest vj such that

(
v−ij, v

∗
j , vi

) ∈ Ki.

Together (1) and (2) imply that V cannot have convexity issues at the boundaries.

Thus it remains to show that the interior is convex.

(3) In this part of the proof we focus on N = 2, the more general case is analogous.

Assume that there is an open set U ⊂ (
PF− (V) ∩ {∩N

i=1Hi

})
such that U ∩ V = ∅.

Note that we can consider U such that ∂U ⊂ V , since by the closed map lemma10 u

is a closed map and thus V is closed.

Either there exists a v ∈ ∂U such that an open ball B ⊂ U has v on the north-

west, south-east or south-west boundaries (since an open set must have some width).

The case that v is on the north-west or south-east boundary is illustrated in the figure

below. If v = u (a), note that one of the players, i, can be asked to contribute a little

Figure 3.1: Proof idea when v is NW or SE

10This applies since by the transversality condition we can treat A = [0,K]
N
, for some very large

K.
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more. By concavity and the transversality condition, we can take a such that i’s utility

is decreasing in his contribution. We therefore have that ui (ai + ε, a−i) < ui (a) and

by positive spillovers u−i (ai + ε, a−i) > u−i (a) which would have to be in the shaded

triangle, by continuity of u, for small enough ε. This gives a contradiction.

Alternatively, we can be on the south-west quadrant, which is illustrated in the

figure below. In this case concavity and continuity of ui implies that for λ suffi-

Figure 3.2: Proof idea when v is SW

ciently close to 1, we would have u (λa+ (1− λ) a′) in the shaded triangle, which is

a contradiction.

Note that for any convergent sequence of at such that u (at) ∈ V , by continuity

of u we have that limt→∞ u (at) ∈ V . Since V is not missing any open sets, we

can approach any point in
(
PF− (V) ∩ {∩N

i=1Hi

})
by some sequence in V and thus

V =
(
PF− (V) ∩ {∩N

i=1Hi

})
.

To prove that V◦ �= ∅, note that from (2) above we have that (v−i, vi) ∈ PF (V) for
each i where v−i � v−i. Thus we have N linearly indepenedent vectors constructed

from (if we were to draw the origin at v) for each i, and hence V is N -dimensional.

The claim follows since a convex set of full dimension has a non-empty interior.
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A passive strategy for a player is not to contribute more than the minimum amount

given by the ε-monotonicity constraint, i.e., to let the player’s contribution depreciate

by ε in each period.

Theorem 3.2.2 For any ε > 0 and v ∈ {v̂ ∈ V : v̂ � v′ for some v′ ∈ V}, there

exists a δ (v, ε) < 1 such that for any δ ∈ (δ (v, ε) , 1) there exists a SPNE σ of the

game Γε
δ whose average payoff profile is v.

The proof is a variation of the classic pure-strategy folk theorems, with the caveat

being that we have to respect the non-monotonicity property. We assume that V
is convex in what follows and hope to be able to prove it (see lemma above for an

attempt which is not too far off).

Proof. Let the pure action profile which achieves v be denoted by a0. This is possible

since V is convex. Note that since V is convex and has non-empty interior, there exists

a v′ ∈ int(V) such that v � v′. Let η > 0 be such that BN1/2η (v
′) ⊂ int(V). Define

a ”punishment of player i phase” (played after minmaxing) as the pure action profile

ai, which achieves the following payoff:

(
v′1 + η, ..., v′i−1 + η, v′i, v

′
i+1 + η, ..., v′N + η

) ∈ int(V).

We propose that the following strategy constitutes a subgame perfect equilibrium

of the dynamic game which attains an average payoff close to v:

• If there has not been a deviation converge to profile a0 and play this indefinitely

• If player i deviates, minmax player i for L periods (L to be computed shortly)

and then converge to profile ai

– Deviations during the punishment phase of player i by another player j,

result in punishment of j according to the above
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• Simultaneous deviations by two or more players are ignored

By PS, minmaxing player i involves the other players pursuing a passive strategy,

i.e., letting their contributions depreciate to 0. Thus, an upper bound on the benefit

from deviating, t periods after the deviation took place is:

bti = max
ai

ui

(
ai, (1− ε)t a0−i

)
.

Here we are assuming that at the time of the initial deviation from the path converging

to v, or at any time afterwards, the deviating player does not have to respect any

monotonicity constraint, thus it is certainly an upper bound on the benefit from

deviation.

Note that, bti → vi < vi and thus bti is eventually in a γ-neighborhood of vi,

where γ = 1
2
(v′i − vi) > 0. That is, there exists a T (ε) such that for all t ≥ T (ε),

bti < vi + γ = 1
2
v′i +

1
2
vi <

1
2
vi +

1
2
vi.

We follow a standard construction for folk theorems, where the deviating player

is minmaxed for L periods and then the punishers are rewarded.

Note that with sufficiently high δ, player i has no incentive to deviate since:

(1− δ)

⎡⎣T (ε)−1∑
t=0

δtbti +
L−1∑

t=T (ε)

δtbti +
∞∑
t=L

δtv′i,t

⎤⎦
< (1− δ)

⎡⎣T (ε)−1∑
t=0

δtb0 +
L−1∑

t=T (ε)

δt (vi − γ) +
∞∑
t=L

δtv′i,t

⎤⎦
= vi + (1− δ)

⎡⎣T (ε)−1∑
t=0

δt (b0 − vi)−
L−1∑

t=T (ε)

δtγ +
∞∑
t=L

δt
(
v′i,t − vi

)⎤⎦
≤ vi +

(
1− δT (ε)

)
(b0 − vi)−

(
δT (ε) − δL

)
γ + δL (v′i − vi)

≤ vi +
(
1− δT (ε)

)
(b0 − vi)−

(
δT (ε) − δL

)
γ,
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where v′i,t is the efficient way to converge to v′i (this happens after a finite number of

periods) and v′i ≥ v′i,t by construction. The last inequality follows since v � v′. Let

L = T (ε) k (δ) with k (δ) = logδ
1
2
, then the above is less than vi (and thus playing

a0 is an equilibrium) if:

(
1− δT (ε)

)
(b0 − vi)−

(
δT (ε) − δT (ε)k

)
γ < 0(

1− δT (ε)
)
(b0 − vi) < δT (ε)

(
1− δk

)
γ = δT (ε)1

2
γ

or if:

δT (ε) >
b0 − vi

b0 − vi +
1
2
γ
.

Thus, let δ =
(

b0−vi
b0−vi+

1
2
γ

)1/T (ε)

∈ (0, 1) since (b0 − vi) < ∞ (by transversality and

concavity) and note that deviations off the equilibrium path are not profitable for

any δ ∈ (δ, 1).

We are left to ensure that the punishments are subgame perfect. This follows

by a similar modification of the standard argument to the one illustrated above and

results in another lowerbound for δ, say δ′. We can then choose δ (ε, v) = max {δ, δ′}.

Thus a significantly larger set than the undercore of Matthews (2013) is immedi-

atebly achievable in Γε
δ (note in Lockwood and Thomas and Matthews these are not

achievable even in the limit).

It is possible to extend this result in a number of ways. One possibility is to

consider the convex hull of V (in the case that it is not convex). To make that

proof simpler, we could assume the existence of a public correlating device. This

assumption would not be essential, but without it we would need a nonstationary

sequence of actions to achieve v (and possibly a higher minimum δ). This type of

argument is standard in the repeated games literature (see Mailath and Samuelson,

2006, p.69).
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3.3 Generalized Model

We shall now assume a slightly more general structure than the preceding literature

on MCGs. In particular, motivated by public good games, we assume that the flow

utility from the public good is a function of the aggregate contribution level at present,

but that the cost is simply your marginal (or current period) contribution. Thus, we

want to consider a MCG with ε-monotonicity where player i’s utility is given by:

ui(a
t | at−1) = ũi

(∑
j

atj

)
− ci

(
ati − (1− ε) at−1

i

)
.

Note that ati − (1− ε) at−1
i ≥ 0, by the ε-monotonicity assumption. We further

assume that ũi and ci are continuous, ũi is concave and ci is convex (maybe some

more assumptions on these to guarantee convexity of V).
This can therefore be modeled a dynamic game with action set for player i, Ai =

R+ and states of the world S = A, where A = A1 × ...× AN . Thus, we have that:

ui : A× S → R,

is continuous and furthermore, the state transition function, q : A× S ∪ {∅} → S, is

deterministic, with:

q : (a, s) �→ a.

We shall denote the stage game with state s by Γ (s). Note that there is no need

to change our notation for histories, since they already capture all the relevant in-

formation about the state of the world (since this is just the previous period action

profile). We will denote the dynamic game starting from state s with discount factor

δ by Γδ (s) and the the ε-monotonic game by Γε
δ (s).

Note that since both A and S are infinite, the folk theorem of Dutta (1995) does

not apply. We shall use the structure of our problem to prove a more general folk
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theorem. It is not clear that a theorem of the level of generality of Dutta’s would

hold in this setting. In particular, we note that in our setting it is natural to consider

a deterministic q, while Dutta (1995) allows for random state transitions.

To make proofs neater, we add an assumption on the utility function of the players,

which is sometimes used in the MCG literature. We assume that ui satisfies the

prisoner’s dilemma (PD) assumption, i.e., ũ′
i (0) < c′i (0) for all i. Given that ui

already satisfies positive spillover’s, this means that we can use simpler Nash-reversion

arguments in proving the folk theorem, as opposed to the more intricate constructions

above. The proof extends to the more general setting in the obvious way, as long as

we are careful to define minmax payoffs appropriately (see the definitions in Dutta

(1995) for example).

We also assume that it is efficient to provide some public good, i.e., the sum of

players’ utilities exceeds c′i (0) for all i, to ensure non-triviality of the problem (this

also guarantees that the set V is non-empty).

3.3.1 Impossibility Result

The impossibility results of Matthews (2013) applies to this setting. In particular,

Matthews shows that in the monotone game there are inefficient contributions even

in the limit. This implies that the discounted average payoffs are also inefficient and

thus a failure of the folk theorem for any discount factor δ when ε = 0.

3.3.2 Folk Theorem

We prove a ”folk theorem” for Γε
δ (s) for any ε > 0. In particular, for any individually

rational, feasible payoff profile, v, and any ε > 0, there exists a δ (ε, v) < 1 such that

for any δ > δ (ε, v) we have a subgame perfect equilibrium of Γε
δ which delivers an

average payoff of v.
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Let:

V =
{
(ui (a | (1− ε)a))Ni=1 : a ∈ RN

+ and ui

(
at | at−1

) ≥ vi for all i
}
,

be the set of feasible, individually rational payoffs. Assume this is convex and non-

empty (follows from non-triviality).

Note that with positive spillovers (PS) and the prisoner’s dillemma (PD) assump-

tions, the natural minmax payoff for each player is ui (0 | 0) = vi. This also has the

benefit of not being state-dependent.

Theorem 3.3.1 For any ε > 0 and v ∈ {v̂ ∈ V : v̂ � v′ for some v′ ∈ V}, there

exists a δ (v, ε) < 1 such that for any δ ∈ (δ (v, ε) , 1) there exists a SPNE σ of the

game Γε
δ (0) whose average payoff profile is arbitrarily close to v.

While this seems rather complicated, the structure imposed allows for a much

simpler proof than that in Dutta [1995]. We assume that V is convex in what follows

and hope to be able to prove it (see lemma above for an attempt which is not too far

off).

Proof. Let vt → v, be the efficient way to converge to v (note that it could be

prohibitively costly to jump to a0 immediately, but it can be achieved in K < ∞
periods). In the normal phase player i receives average payoff:

(1− δ)
K−1∑
t=0

δtvt,i + δKvi,

which can be made arbitrarily close to vi if K is sufficiently high.

Define a ”normal” phase where players play an action profile which achieves v, say

a0 (again we may need to converge to this, which is why we can only get arbitrarily

close to v).
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Following a deviation, all players revert to playing the passive strategy and letting

their contributions depreciate. This is equivalent to (constrained) repetition of the

stage-game Nash equilibrium and therefore subgame perfect.

By PD, an upper bound on the benefit player i can get from deviating in state s

is:

bti = ui

(
0, (1− ε)t+1 s | (1− ε)t s

)
.

Now, bti → vi < vi and thus bti is eventually in a γ-neighborhood of vi, where

γ = 1
2
(vi − vi) > 0. That is, there exists a T (ε) such that for all t ≥ T (ε), bt <

vi − γ = 1
2
vi +

1
2
vi. Now:

(1− δ)

⎡⎣T (ε)−1∑
t=0

δtbti +
∞∑

t=T (ε)

δtbti

⎤⎦ ≤ (1− δ)

T (ε)−1∑
t=0

δtb0 + (1− δ)
∞∑

t=T (ε)

δt (vi − γ)

= vi + (1− δ)

⎡⎣T (ε)−1∑
t=0

δt (b0 − vi)−
∞∑

t=T (ε)

δtγ

⎤⎦
≤ vi +

(
1− δT (ε)

)
(b0 − vi)− δT (ε)γ,

which is less than vi if δ
T (ε) > b0−vi

b0−vi+γ
. Thus, let δ (v, ε) =

(
b0−vi

b0−vi+γ

)1/T (ε)

and note

that δ (ε) ∈ (0, 1), since (b0 − vi) < ∞. Thus, for δ > δ (v, ε) we have that punish-

ment by passive strategies (constrained reversion to Nash) is sufficient to discourage

deviations.

3.4 Concluding Remarks

This paper has shown that the anti-folk theorem results in the literature on dynamic

contribution games are not robust when some depreciation is added. In particular,

we have shown that a positive rate of depreciation of contributions restores the folk

theorem. However, this does require the discount factor to get arbitrarily close to 1

while keeping the rate of depreciation fixed. Continuity between the present result
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and the preceding literature can be achieved if we vary the deprecation rate with the

discount rate. A related area for future work is to characterize the set of achievable

payoffs for a fixed discount factor and depreciation rate, in the style of Abreu et al.

(1990).
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