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Abstract

We study the impact of endogenous attention in a dynamic model of social

media sharing. Each period, a user observes a random story on the platform

and decides whether to share it. Users want to share stories that are true and

interesting, but distinguishing true stories from false ones requires attention.

Before deciding whether to share a story, users choose their level of attention

based on how interesting the story is and the platform’s current proportion of

true stories. We characterize the long-run platform composition using stochas-

tic approximation techniques. For some parameter specifications, the system

has a unique limit. For others, the limit is random—starting from the same

initial conditions, the platform may end up with different proportions of true

stories and different sharing behaviors. We present comparative statics for the

limit. For example, endogenous attention counterbalances shifts in the credi-

bility of false stories but can amplify the impact of changes in their production

rate.
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1 Introduction

This paper develops a dynamic model of the spread of misinformation on social media.

Vosoughi, Roy, and Aral (2018) shows that the spread of falsehoods on social media

is mostly due to humans rather than bots, and Pennycook et al. (2021) attributes

the sharing of false news to inattention. Motivated by these empirical findings, our

model assumes that users want to share true stories, but distinguishing false and true

content requires costly attention. Users’ attention depends on the prevalence and

credibility of false stories: They are not willing to spend much effort trying to spot

false stories if the share of false stories in their feed is negligible, but if the share

of false stories is significant and the false stories are superficially plausible, they are

willing to incur a significant cost to distinguish between true and false content. In

turn, users’ attention choices affect the prevalence of false stories as more attentive

users are better at filtering false content. Our goal is to understand the resulting joint

dynamics of users’ attention and platform composition.

In our model, every period, a distinct user randomly draws a story from the stories

on a social media platform and decides whether or not to share it. Users consider two

factors when evaluating a story: its veracity, or truthfulness, and its evocativeness,

or how interesting and stimulating it is. Users first observe the story’s evocativeness

level, and then choose their attention level and pay the corresponding cost. They

then receive a binary signal of the story’s veracity. False stories are characterized

by a credibility measure that captures how true they appear—when false stories are

highly credible, signals about their veracity are less precise. The precision of the signal

is increasing in the user’s chosen attention level. We assume that the signal’s precision

is supermodular in credibility and attention so that users’ attention is increasing in

credibility. If the user decides to share the story, a fixed number of identical copies

are added to the platform. Regardless of the sharing decision, fixed numbers of true

and false stories are exogenously added as well, which corresponds to original content

creation.

We assume that users do not share boring stories and consider two levels of evoca-

tiveness: mildly interesting (M) and very interesting (I). While a story’s veracity is

fixed throughout time, evocativeness is drawn i.i.d (conditional on veracity) for each

user. This captures the idea that different users will find different stories very inter-

esting. We also assume that false stories are more likely to be very interesting.
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Our main object of interest is the share of true stories in the system for each

period n P N, which we denote by yn. Users’ optimal behavior depends on the value

of yn. When yn is sufficiently high, the system is in the sharing region, where users

share all stories for which they receive the signal suggesting the story is true. When

yn is low, the system is in the no sharing region, where users do not share any stories

and do not pay attention. In between, there is an intermediate region, where users

share either only mildly interesting stories or only very interesting stories, depending

on the model parameters.

Using stochastic approximation techniques, we show that yn converges almost

surely and provide a complete characterization of its limit. (See the technical sum-

mary below for an overview of this analysis.) For some parameter values the limit

is unique. For others it is random, so that starting from the same initial conditions

the platform may end up with significantly different limit shares of true stories and

different user behavior in the limit. This effect is most pronounced when the platform

is new and the total number of stories is small, but it is still present in any finite-sized

platform.

The system converges either to a point where users strictly prefer a single sharing

rule or to one where they indifferent between two rules. Comparative statics are

qualitatively different in these two cases.1 For example, in the steady states where

users are indifferent between two sharing rules, the limit share of true stories may

be increasing in the cost of attention, because the cost of attention enters negatively

into users’ payoffs while the share of true stories enters positively. So when the cost

of attention increases, the share of true stories required for indifference increases as

well. In contrast, increasing the cost of attention lowers the share of true stories at

the other limit points.

For the steady states where agents strictly prefer a single sharing rule, the share

of true stories is decreasing in false story credibility for low credibility levels, but an

opposite effect may arise when credibility is high. The intuition is that while false

stories of high credibility are harder to identify, users also pay more attention to

them. When credibility is high, user responses to an increase in credibility may more

than compensate for the direct effect of this increase, thereby leading to an increase

in the limit share of true stories. The comparative statics imply that producers of

1This is analogous to the difference in comparative statics between pure-strategy and mixed-
strategy Nash equilibrium in games.
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false stories may choose low credibility levels even when credibility is free. They also

imply that platforms that aim to counter the spread of false news by fact-checking

false stories might be better off not fact-checking at all than fact-checking only a small

share of stories, because increasing the share of stories flagged as false leads users to

put more trust in stories that were not flagged.

We find that the limit share of true stories may be either increasing or decreasing in

a measure of the reach on the platform—the number of friends who will see a shared

story—and in the probability that false stories are very interesting. Specifically,

increasing the probability that false stories are very interesting leads to a decrease in

the share of true stories when users only share very interesting stories, an increase

in the share of true stories when users only share mildly interesting stories, and has

a non-monotone effect on the share of true stories when users share both types of

stories. We also find that when the production rate of false stories is sufficiently high,

the system has a unique limit in which users do not share any stories, while when this

production rate is sufficiently low the system has a unique limit in which users share

all stories for which they receive the signal suggesting the story is true. This implies

that when moving from high to low false story production rates, users’ reactions will

further increase the limit share of true stories. Thus, while user responses lead to a

counterbalancing force to changes in the credibility of false stories, they may intensify

the effect of changes in false stories’ production rate.

Our analysis emphasizes that the effect of user sharing behavior depends on how

many true stories they share as well as as how many false ones, and also on the

current mix of stories on the platform. More precisely, users’ sharing increases the

share of false content if and only if the ratio between the probabilities of sharing a

false or true story is greater than the ratio between the probabilities of drawing a

false or true story. We find that this can happen if users share only very interesting

stories, but not if users share all stories or only share the mildly interesting ones.

Intuitively, because users have a higher intrinsic benefit from sharing very interesting

stories, they may share them even if they are relatively likely to be false.

Technical Summary

In the Polya urn model, an urn consists of balls of various colors. In each period one

ball is drawn randomly from the urn, and the ball is returned to the urn along with
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one additional ball of the same color. A generalized Polya urn (GPU) allows for the

number of balls added in each period to be random, with probabilities that depend

on the state of the system; see, e.g., Schreiber (2001) and Mahmoud (2008).

In our model, if the users’ sharing rule was fixed, instead of depending on yn,

our system would be a GPU where stories are “balls” and colors are veracity levels.

Schreiber (2001) and Benaim, Schreiber, and Tarres (2004) use stochastic approxi-

mation arguments to show that under fairly general conditions the long-run behavior

of GPUs can be determined by studying the attractors of a deterministic differential

equation. Their results imply that the hypothetical systems where users pick one of

the four contingently-optimal sharing rules and use it for all values of yn have unique

limit shares of true stories.2 These limits, which we call quasi steady states, are the

unique steady states of the associated differential equations. However, because the

optimal sharing and attention rules are not continuous, our system is not a GPU but

a concatenation of them. For this reason, we extend the literature on the stochastic

approximation of urn models to cover concatenations of a finite number of GPUs.

This lets us relate the long-run behavior of the system to the stable steady states of

the associated limit differential inclusion (LDI), which concatenates the differential

equations associated with the GPUs.3

The first step in our analysis of the dynamics of the share of false stories is Theorem

1, which shows that a quasi steady state is a stable steady state for the LDI if and

only if it is within the region where its associated sharing rule is optimal. Depending

on the parameters, there may or may not be one additional stable steady state, the

threshold where the user is just indifferent between sharing and not sharing very

interesting stories.

Next, Theorem 3 in Appendix B uses results from Benaim, Hofbauer, and Sorin

(2005) (henceforth BHS), to show the system almost surely converges to a steady state

of the LDI. Lemma 6 then gives a direct proof that all of the stable steady states

of the limit differential inclusion have positive probability. Lemma 7 complements

this by using a result of Pemantle (2007) to show the system has probability 0 of

converging to an unstable steady state. Together these results imply Theorem 2,

2The contingently-optimal sharing rules are: not sharing at all, sharing only mildly interesting
stories, sharing only very interesting stories, and sharing both mildly and very interesting stories.
For the rules that involve sharing, users will only share if they receive a signal suggesting the story
is true.

3A differential inclusion is an equation of the form dx
dt P F pxq for a set-valued function F .
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which shows that the system almost surely converges to a stable steady state of the

limit differential inclusion, and determines which of these steady states has positive

probability of being the limit as a function of the parameters and the initial state.

2 Related Literature

Empirical Evidence

In our model, inattention plays a central role in the sharing of false content. Penny-

cook et al. (2021) claims that inattention to veracity is one of the key mechanisms

leading users to share false stories. The paper reports evidence that most people say

it is important to share only accurate news, but nevertheless sometimes share false

news, and finds in a combination of survey experiments and a field experiment on

Twitter (now X) that shifting users’ attention to accuracy increases the accuracy of

the content they share. Pennycook et al. (2020b) finds similar results in the context

of information about COVID-19.4 Of course, inattention is not the sole driver of

the spread of false news; the conclusion discusses how our model can be adapted to

incorporate additional factors such as politically motivated reasoning and ideological

alignment (e.g., Van Bavel and Pereira (2018), Allcott and Gentzkow (2017)) and

digital illiteracy Guess et al. (2020).

In our model, users care about two content dimensions—veracity and evocative-

ness. Chen, Pennycook, and Rand (2023) conducts a factor analysis of the content

dimensions affecting sharing decisions in a series of experiments and finds that the

main factors are perceived accuracy, evocativeness, and familiarity, and that the ac-

curacy factor has the most impact on sharing.5 Consistent with this, we assume that

users will not share stories that they know are false even if they are very interesting.

Chen, Pennycook, and Rand (2023) also finds that users ratings on the evocativeness

dimension are negatively correlated with stories’ objective veracity. This supports

our assumption that false stories are more likely to be very interesting.

4See Pennycook and Rand (2022) for further discussion and references on the inattention based
account and the effectiveness of accuracy nudges.

5The evocativeness factor captures characteristics such as the extent to which content is surpris-
ing, amusing, or provokes anxiety and other negative feelings. Earlier work by Berger and Milkman
(2012) also finds a positive correlation between these characteristics and sharing intentions.

5



Theory of Online Misinformation

Bloch, Demange, and Kranton (2018), Papanastasiou (2020), Acemoglu, Ozdaglar,

and Siderius (2023), Merlino, Pin, and Tabasso (2023), and Mostagir and Siderius

(2022) analyze the spread of messages about a fixed binary state across a network.

In most of these papers, users only care about veracity. In Acemoglu, Ozdaglar,

and Siderius (2023), users’ desire to share the story depends on whether they think

most subsequent users will like it, but beliefs and sharing decisions do not depend on

the actions of previous users, and attention is exogenous. In Mostagir and Siderius

(2022), each user initially gets an informative message about the state, and then

repeatedly transmits their posteriors to their neighbors using either Bayesian updating

or DeGroot learning. Merlino, Pin, and Tabasso (2023) analyzes the mean field of

an infinite-population SIS model with two messages corresponding to the two states.

Agents become “infected” when they encounter a message and choose how much effort

to spend to verify it, so this model has a form of endogenous attention, but unlike

in our model, its focus is on the proportion of users who think each state is true as

opposed to the shares of true and false stories. In Kranton and McAdams (2024), one

agent initially receives a story and decides whether to transmit it without inspection

or inspect it and only transmit it if it is true. Agents know how often a story has

been shared, and once it has been shared enough, all subsequent agents choose to

share it without inspection.

Dasaratha and He (2023), like our paper, uses stochastic approximation to deter-

mine the evolution of the shares of true and false stories rather than the spread of a

single story. Users only care about veracity and do not know the state of the plat-

form. The paper focuses on the weight the platform places on stories’ virality when

choosing what stories to display to users, and does not feature endogenous attention.6

In contrast, our paper focuses on the interaction between endogenous attention and

platform evolution and includes a taste for sharing more evocative stories.

6In their model sharing increases the “popularity score” of a story and this popularity score
affects the probability that a story appears in a user’s feed. A similar interpretation can be applied
to our model.
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3 Model

We consider an infinite horizon model of a social media platform. The platform

contains stories with two characteristics (v, e). A story’s veracity is v P tT, F u, with

the story being true if v “ T and false otherwise. A story’s evocativeness is e P tM, Iu,

with the story being mildly interesting if e “ M and very interesting if e “ I. While

a story’s veracity is fixed (the story is either always true or always false), a story

might be mildly interesting to one user and very interesting to another.7 When a

user draws a story, the probabilities of each evocativeness level are:

Ppe “ I|v “ T q “
1

2
; Ppe “ I|v “ F q “ δ.

We assume that δ ą 1
2
, so false stories are more likely to seem very interesting, and

that δ ă 1 as otherwise mildly interesting stories are always true.

The false stories are of credibility θ P p0, 1q. The credibility of a false story de-

termines how difficult it is to distinguish from a true story, in a manner that will be

described below. To keep the model simple we assume that all false stories have the

same credibility.

The platform begins operating at time t “ 0 with an exogenous stock of true

and false stories pT0, F0q. In each subsequent period n P N, 1 true story and κ false

stories are exogenously added to the platform, and Tn and Fn respectively denote

the numbers of true and false stories on the platform at the beginning of period n.8

The vector zn :“ pTn, Fnq summarizes the current state of the platform; we use the

notation |zn| :“ Tn `Fn for the total number of stories in period n, and let yn :“ Tn

|zn|

denote the share of true stories.

Each period, a distinct user randomly draws a story among those currently on the

platform and decides whether or not to share it. Before making the sharing decision,

the user sees the story’s evocativeness level and a noisy signal of its veracity. The

precision of this signal depends on the user’s attention as will be explained below.

The parameter ρ describes the reach of shared stories on the platform—if the user

decides to share the story, ρ copies of the story are added to the platform.

In summary, each period the current user:

7In reality there are also boring stories that are rarely or never shared, we omit these.
8The analysis would be the same in a continuous-time model where the time the next user arrives

is a random variable.

7



1. Draws a story, and observes its realized evocativeness.

2. Chooses an attention level a P r0, 1s.

3. Draws a signal whose distribution depends on a.

4. Decides whether to share the story.

5. Receives payoffs.

Finally, 1 new true story and κ new false stories are posted, and ρ copies of the

current story are added if it was shared.

After drawing a story and observing its evocativeness level e, the user chooses a

level of attention a, which will determine the precision of the signals they get regarding

the story’s veracity. The cost of attention level a is β ¨ a2,where β ą 0. The signal is

s P tT 1, F 1u, with probabilities given by

PpT 1
|T q “ 1; PpT 1

|F q “ θp1 ´ aq. (1)

The idea behind Equation 1 is that a false story of credibility θ is clearly false

with probability 1 ´ θ, where a clearly false story is one that users will recognize as

false even when they do not pay attention. With probability θ, users will notice the

story is false only if they pay attention. A user’s attention level a is the probability

with which they pay attention. Thus, when a user’s attention level is a and the

credibility of false stories is θ, they will identify a false story as false with probability

PpF 1|F q “ 1 ´ θ ` θa “ 1 ´ θp1 ´ aq. If the story is true, the user receives the signal

T 1 with certainty, regardless of their attention level. Thus, signal F 1 reveals the story

is false, while after signal T 1 the user is uncertain about the story’s veracity.

Users choose their attention level after seeing the story’s evocativeness, knowing

the current share of true stories yn.
9 They will never share stories for which they

received the signal F 1, so they either share stories with signal T 1 or do not share at

all. Whether not they share, users pay the cost βa2 of their chosen attention level. If

they do not share they get no additional payoff so their total payoff is ´βa2. If they

share a pv, eq story their additional payoff is

upv, eq “ 1 ´ µ1pv “ F q ` λ1pe “ Iq.

9This approximates a scenario where the veracity of stories shared a few periods back has been
revealed and the mix between true and false stories is not changing too quickly.
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Here we have normalized the payoff to sharing a true and mildly interesting story to

1. The parameter µ captures the loss from sharing a false story, and the parameter λ

captures the additional gain from sharing a story that is very interesting. We assume

both of these are strictly positive, so in line with the empirical evidence mentioned

above, users want to share stories that are true and interesting. For each evocativeness

level e, users either do not share at all and pay no attention, so their expected payoff

is 0, or they share stories if and only if they receive the signal T 1. In this case their

expected payoff to attention level a is

Upa, y, eq :“ Pa,ypT 1
|eqErupv, eq|T 1, es ´ βa2. (2)

Thus, if users share at all they will choose the attention level

apy, eq :“ argmax
aPr0,1s

Upa, y, eq,

and share only signal T 1 stories. We make two parametric assumptions:

Assumption 1. µ ą 1 ` λ.

Assumption 2. pµ ´ 1qθ ă 2β.

Assumption 1 implies users will not share very interesting stories they know are

false, and therefore will not share any story for which they received the signal F 1.10

It remains to analyze, for each evocativeness level, when they will share stories with

signal T 1, which we do in the beginning of the next section. Assumption 2 implies

that users attention levels conditional on sharing stories with signal T 1 are always

given by solutions to first order conditions.

In summary, the model parameters are pρ, κ, θ, µ, β, δ, λq. We assume throughout

that all parameters are strictly positive, satisfy Assumptions 1 and 2, and that θ ă 1

and δ P p1
2
, 1q.

4 Optimal Attention and the Sharing Decision

We are interested in characterizing the composition of stories on the platform over

time, i.e, analyzing the stochastic process tznu, and in particular the share of true

10This assumption is consistent with Chen, Pennycook, and Rand (2023), which finds that the
content factor with the strongest positive correlation with sharing intentions is perceived accuracy.
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stories tynu. To begin the analysis, we compute how user-optimal attention depends

on the state.

Lemma 1. The functions Upa, y,Mq and Upa, y, Iq are strictly concave, and the

optimal attention levels (conditional on sharing T 1 stories) are:

$

’

’

’

’

&

’

’

’

’

%

0 ď apy,Mq “
pµ ´ 1qp1 ´ yqp1 ´ δqθ

β py ` 2p1 ´ yqp1 ´ δqq
ď 1,

0 ď apy, Iq “
pµ ´ 1 ´ λqp1 ´ yqδθ

β py ` 2p1 ´ yqδq
ď 1.

The proof of this and all other results stated in the text are in Appendix A. It

is straightforward to verify that apy, eq ă 1 for all y and apy, eq ą 0 if y ă 1, and

that the system can never reach a state where y “ 1. Intuitively, when y “ 1 there is

no need to pay attention, so ap1, Iq “ ap1, Iq “ 0. As y decreases the marginal gain

from paying attention increases, and since the U ’s are strictly concave, da{dy ă 0.

However, when y is close enough to 0 the payoff from the apy, eq is so low that users

prefer not to pay attention at all. We allow users to randomize when indifferent

between a “ 0 and a “ apy, eq.

As shown in Online Appendix C.3, both optimal attention levels are decreasing in

β and increasing in θ and µ. Attention to very interesting stories apy, Iq is increasing

in δ, while apy,Mq is decreasing in δ, and apy, Iq is decreasing in λ while apy,Mq is

constant in λ. That is, users pay more attention when false stories are very credible

and when the cost to sharing false stories is high, and pay less attention when the

share of true stories is high and when the cost of attention is high. Users pay more

attention to the veracity of very interesting stories when false stories are more likely

to be very interesting, and pay less attention to the veracity of very interesting stories

as the payoff to sharing them increases. These observations underlie the comparative

statics in Section 6.

The next lemma shows that there are interior thresholds ŷM , ŷI for each evocative-

ness level such that if the share of true stories is below the corresponding threshold

then users choose a “ 0 and do not share the story, and if the share is above this

threshold users choose the attention level given in Lemma 1 and share if and only if

they received the signal T 1.

Lemma 2. Let V py, eq :“ Upapy, eq, y, eq. V py,Mq and V py, Iq are strictly increasing

in y, and there are (unique) ŷM , ŷI P p0, 1q s.t V pŷM ,Mq “ V pŷI , Iq “ 0.
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Table 1: Regions and Sharing Rules

N “ p0,mintŷM , ŷIuq Don’t share any story.
I “ pŷI , ŷMq Share only very interesting (with signal T 1).
M “ pŷM , ŷIq Share only mildly interesting (with signal T 1).
S “ pmaxtŷM , ŷIu, 1q Share both mildly and very interesting (with signal T 1).

Users’ sharing behavior depends on the share of true stories yn. When yn is below

both thresholds, the expected value from sharing is negative for both evocativeness

levels so users do not share at all. When yn is above both thresholds, users share

both types of stories, and otherwise they share only one type of story, as shown in

Table 1. Note that the system always has three regions: the extreme regions N to the

left and S to the right, and an intermediate region that is either I or M depending

on the ordering of ŷI and ŷM . Numerical computations show that both ŷM ă ŷI and

ŷM ą ŷI are possible so the intermediate region can be either of the two.

5 Dynamics

To begin the analysis of the dynamics of the system, we now describe how the share

of true stories evolves in each region. Let pTRpyq, pFRpyq be the probabilities that the

agent shares a true or false story, respectively, when the current share of true stories

is y under the sharing rule of region R P tN, I,M, Su. These are given by,

pTRpyq, pFRpyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

y, p1 ´ yqθ p1 ´ δapy, Iq ´ p1 ´ δqapy,Mqq , R “ S

y
2
, p1 ´ yqδθ p1 ´ apy, Iqq , R “ I

y
2
, p1 ´ yqp1 ´ δqθ p1 ´ apy,Mqq , R “ M

0, 0, R “ N.

(3)

For example, pFI pyq “ p1´yqδθ p1 ´ apy, Iqq because in region I users share a false

story if and only if all of the following occur: They drew a false story, the story is

very interesting, and they observed the signal T 1.

The following Markov processes describe how the system would evolve if users

followed the sharing rule of region R P tN, I,M, Su regardless of the current share of

true stories:
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zn`1;R “ zn;R `

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ˆ

1 ` ρ
κ

˙

, with probability pTRpynq

ˆ

1
κ ` ρ

˙

, with probability pFRpynq

ˆ

1
κ

˙

, w.p 1 ´ pTRpynq ´ pFRpynq.

(4)

Appendix B.3 shows these processes are generalized Polya urns (GPUs), which

lets us apply results from Schreiber (2001) and Benaim, Schreiber, and Tarres (2004).

The law of motion for yn in region R is11

yn`1 ´ yn “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

p1 ´ ynqp1 ` ρq ´ ynκ

|zn| ` 1 ` κ ` ρ
, with probability pTRpynq

p1 ´ ynq ´ ynpκ ` ρq

|zn| ` 1 ` κ ` ρ
, with probability pFRpynq

p1 ´ ynq ´ ynκ

|zn| ` 1 ` κ
, w.p 1 ´ pTRpynq ´ pFRpynq.

(5)

We will use stochastic approximation to approximate the behavior of the discrete

stochastic system tynuně0 by a continuous and deterministic system. If our system

was a single GPU, we could apply results in Schreiber (2001) and Benaim, Schreiber,

and Tarres (2004) to relate its limit behavior to that of an appropriately chosen limit

differential equation. Instead, since our system is a concatenation of the GPUs tzn;Ru,

we relate its limit behavior to that of a differential inclusion, an equation of the form
dx
dt

P F pxq for a set-valued function F . We construct this inclusion, which we will

refer to as the limit differential inclusion or LDI, by pasting together the limit ODEs

associated with the GPUs tzn;Ru. In our model these ODEs are12

dy

dt
“ 1 ` pTRpyqρ ´ yp1 ` κ ` ρppTRpyq ` pFRpyqq :“ gRpyq. (6)

For an intuition for the limit ODEs, note that in each region R the expected

number of incoming true stories is 1 ` pTRpyqρ and the total expected number of

11If zn`1 ´ zn “

ˆ

a
b

˙

then yn`1 ´ yn “
yn|zn|`a
|zn|`a`b ´ yn “

p1´ynqa´ynb
|zn|`a`b .

12See Appendix B.3 for the derivation of this equation.
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incoming stories is 1 ` κ ` ρ
`

pTRpyq ` pFRpyq
˘

. So,

gRpyq “ ERr#incoming true stories in period n+1|yn “ ys

´ yERr#total incoming stories in period n+1|yn “ ys.

Thus, according to the limit ODE dy
dt

“ gRpyq, the share of true stories increases

if and only if the ratio of expected incoming true stories to total expected incoming

stories is greater than the current share of true stories.

Our LDI is given by
dy

dt
P F pyq, (7)

where F pyq “ tgRpyqu within each region R, and at the thresholds, F takes on all

values in the interval between the limit ODEs: If ŷ is the threshold between regions

R and R1, then F pŷq “ rmintgRpŷq, gR1pŷqu,maxtgRpŷq, gR1pŷqus.

We say that a point y˚ P p0, 1q is a steady state for the LDI if 0 P F py˚q. We say

that y˚ is a stable steady state for the LDI if it is a steady state and there exists ϵ ą 0

such that for all y P py˚ ´ ϵ, y˚ ` ϵq we have signpxq “ signpy˚ ´ yq for all x P F pyq.

We say a steady is repelling if there exists ϵ ą 0 such that for all y P py˚ ´ ϵ, y˚ ` ϵq

we have signpxq “ ´ signpy˚ ´ yq for all x P F pyq.

We will relate the steady states of the LDI to the behavior of the ODEs in each

region. First we note that each of these ODEs has a globally stable steady state.

Lemma 3. For all R P tN, I,M, Su, the ODE dy
dt

“ gRpyq defined over r0, 1s has a

globally stable steady state y˚
R P p0, 1q.

We denote the steady states of dy
dt

“ gRpyq by y˚
R, and refer to them as quasi steady

states. We refer to ŷI , ŷM as thresholds. The geometry of the phase diagram for the

LDI is determined by the relative positions of the thresholds and quasi steady states:

The thresholds determine the system’s regions, and within each region the flow is

towards the corresponding quasi steady state. Thus, it is important to understand

the possible orderings of the four quasi steady states.

Lemma 4. minty˚
S, y

˚
Mu ą maxty˚

I , y
˚
Nu.

We summarize the arguments underlying this result here because they help explain

the effect of the sharing rule on the evolution of the platform. The proof starts from

the fact that since each limit ODE has a unique globally stable point, the quasi

13



steady state y˚
R for sharing rule R is greater than the quasi steady state y˚

R1 for

rule R1 if and only if gRpy˚
Rq ą gR1py˚

Rq. From (6), gRpyq ą gR1pyq if and only if

p1´ yq
`

pTRpyq ´ pTR1pyq
˘

ą y
`

pFRpyq ´ pFR1pyq
˘

. To understand this condition, consider

a comparison between g˚
R for some region R P tI,M, Su and g˚

N , the right hand side

of the limit ODE associated with the no-sharing rule. Here the inequality reduces

to pTRpyq{pFRpyq ą y{p1 ´ yq. This is the case if the ratio between the probabilities

of sharing a true or false story is greater than the ratio between the probabilities

of drawing a true or false story. In other words, users are successfully filtering false

content.

To see why minty˚
S, y

˚
Mu ą y˚

N , note that p
T
Rpyq{pFRpyq ą y{p1 ´ yq is equivalent to

pTRpyq{y ą pFRpyq{p1´ yq, i.e., when a true story is drawn the probability of sharing it

is greater than the sharing probability for false stories. This inequality is satisfied in

region S because users are sharing all true stories that they draw but only some false

stories. It is also satisfied in regionM because there users share 1{2 of the true stories

(the stories that are both true and mildly interesting) and less than 1 ´ δ ă 1{2 of

false stories. Thus, compared to not sharing, when users follow sharing rules M or

S the net increase in the share of true stories is larger than when they do not share.

And for the same reason, sharing bothM and I stories generates a larger net increase

in y than sharing I stories alone, which is why y˚
S ą y˚

I .

In contrast to the conclusion for rules S andM , the effect of only sharing I stories

is ambiguous, which is why the relationships between y˚
S and y˚

M and between y˚
I and

y˚
N cannot be signed. The ambiguity arises because with this rule users share 1{2 of

true stories and δθp1´apy, Iqq of false stories, and both 1{2 ą δθp1´apy, Iqq and the

opposite inequality can occur (for different parameters).13

Finally, that y˚
M ą y˚

I follows from the combination of two forces. First, under

sharing rule I, users consider sharing more false stories than under M because more

false stories are of type I. Second, they have less of an incentive to avoid sharing

false stories because the payoff to sharing I stories is greater. Together, these forces

imply that users are more successful at filtering M content than I content.14

Numerical calculations described in Online Appendix C.3 verify that both y˚
S ă y˚

M

13We revisit this issue when discussing comparative statics of y˚
I with respect to ρ in Section 6.

14Note that the arguments for Lemma 4 do not rely on our specific choices of payoffs and signal
function. We expect that this ordering is satisfied for all specifications in which signal precision is
increasing in attention and the payoff to sharing an I story is greater than the payoff to sharing an
M story.
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and y˚
S ą y˚

M are possible and similarly that y˚
N can be either greater or less than y˚

I .

Moreover, the relationship between any threshold and any quasi steady state is also

undetermined, i.e., both maxty˚
N , y

˚
I , y

˚
M , y

˚
Su ă mintŷI , ŷMu and minty˚

N , y
˚
I , y

˚
M , y

˚
Su ą

maxtŷI , ŷMu are possible. This means that Lemma 4 is the only restriction on the

ordering of the quasi steady states and thresholds (for simplicity, we rule out the knife

edge case of equality between any of these variables). Because regions M and I do

not occur at the same time, for given parameters only one of y˚
I and y˚

M matters. This

means there are 40 possible strict configurations for the five variables that pin down

the phase diagram: the two thresholds, and the quasi steady states for the system’s

three regions, i.e., y˚
S, y

˚
N and one of y˚

I , y
˚
M .

To see why there are 40 configurations, consider the case ŷI ă ŷM . In this case,

the five variables are tŷI , ŷM , y
˚
N , y

˚
I , y

˚
Su. We can now count the number of orderings

of these variables that satisfy our restrictions. First, we can choose the relative

positions of the two thresholds, giving
`

5
2

˘

“ 10 options. Lemma 4 shows that y˚
S ą

maxty˚
N , y

˚
I u, and ŷI ă ŷM by assumption, so the only degree of freedom is the order

between y˚
N , y

˚
I , for a total of 20 configurations in which ŷI ă ŷM . Similarly, there are

20 configurations with ŷI ą ŷM .

(a)
REGION N REGION I REGION S

y˚
Sy˚

Ny˚
I ŷMŷI 10

(b)
REGION N REGION I REGION S

y˚
Sy˚

Iy˚
N ŷMŷI 10

(c)
REGION N REGION M REGION S

y˚
My˚

Sy˚
N ŷIŷM 10

(d)
REGION N REGION M REGION S

y˚
Sy˚

My˚
N ŷIŷM 10

Figure 1: Examples of phase diagrams.

Figure 1 presents four examples of phase diagrams. The stable steady states of

the LDI are in green, repelling steady states are in red, quasi steady states that are

not steady states are in purple, and thresholds are marked by dashed lines. Phase

diagrams for all possible configurations are presented in Figures 2, 3, 4 and 5 in Online

Appendix C.4.

All quasi steady states that are within their regions are stable steady states for

the LDI. As demonstrated in Figure 1, there can be anywhere from 0 to 3 such steady
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states; we denote this set as Q “ ty˚
R|y˚

R P regionRu. Since every limit ODE has

a unique steady state, the only other candidate steady states for the LDI are the

thresholds.

For a threshold ŷ to be a stable steady state, the flow above it needs to point

down and the flow below it needs to point up. This requires a “flip” of quasi steady

states: Let W be the region to the left of ŷ, and Z the region to the right, a flip is

y˚
Z ă ŷ ă y˚

W . Flips around ŷI occur when ŷI ă ŷM and y˚
I ă ŷI ă y˚

N (as in phase

diagram (a) in Figure 1), or ŷI ą ŷM and y˚
S ă ŷI ă y˚

M . Online Appendix C.3 shows

that both cases are possible, and Lemma 4 implies that flips cannot occur around

ŷM . This implies the following characterization of the set S of stable steady states.

Theorem 1 (Stable Steady States). Either (a) S “ Q Y tŷIu, or (b) S “ Q. Case

(a) obtains if and only if ŷI ă ŷM and y˚
I ă ŷI ă y˚

N or ŷI ą ŷM and y˚
S ă ŷI ă y˚

M .

We use the term limit points for values to which yn converges with positive prob-

ability. Since behavior in the no sharing region (N) is deterministic—exactly 1 true

story and κ false stories are added every period—if the system starts in region N and

y˚
N P N then yn Ñ y˚

N “ 1
1`κ

deterministically. Otherwise, any stable steady state is

a limit point.

Theorem 2 (Limit Points). yn converges almost surely to a point in S. If y˚
N P N

and y0 P N then yn converges to y˚
N . Otherwise, for all y˚ P S there is positive

probability that yn converges to y˚.

The proof of Theorem 2 has three parts. First, Theorem 3 in Appendix B shows

that yn almost surely converges to a steady state of the LDI. Second, Lemma 6 in

Appendix A shows that every steady state has positive probability of being the limit

point. Finally, Lemma 7 in Appendix A shows that the system almost surely does

not converge to a repelling state. This completes the proof, because our simplifying

assumption that no two variables in tŷI , ŷM , y
˚
N , y

˚
I , y

˚
Su are equal means that any

steady state is either stable or repelling.15

15For a threshold ŷ to be a steady state that is neither stable or repelling, the flow must have the
same sign (positive or negative) on both sides of ŷ. This is only possible at a steady state threshold
in the knife-edge case where it is also a quasi steady state, which we have ruled out.
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Detailed Proof Summary

Theorem 3 in Appendix B relates the limit behavior of concatenations of GPUs to the

asymptotic behavior of the differential inclusions that concatenate the corresponding

ODEs. Applied to our system, the theorem implies that the limit set of yn, Lpynq “
Ş

mą0 tyn : n ą mu, is almost surely a steady state of the LDI.16

To prove Lemma 6, that there is positive probability of convergence to every stable

steady state, we first show that yn has positive probability of converging to any y˚
R

conditional on starting from states zm with |zm| sufficiently large and ym sufficiently

close to y˚
R. This claim is true for a counterfactual process that follows the sharing

rule of region R everywhere, because that process converges almost surely to y˚
R.

This implies that the claim is also true for yn, because: i) when yn is in region R

it follows the same law of motion as the counterfactual process, and ii) as we show,

starting from a state zm with |zm| sufficiently large and ym sufficiently close to y˚
R

the counterfactual process (and therefore also yn) has positive probability of never

leaving region R. We complete the proof for the quasi steady states by showing that

the system has positive probability of arriving at a state zm from which convergence

occurs with positive probability. The proof for the case where the stable steady state

is ŷI is similar but uses a different counterfactual process.

Finally, the proof of Lemma 7, that yn almost surely does not converge to a

repelling steady state, uses Theorem 4 in Appendix B, which shows that a sufficient

condition for nonconvergence to a repelling steady state is that there is a positive

uniform lower bound on the noise in the stochastic process. Intuitively, noise jiggles

yn away from the steady state, and because the steady state is repelling, the drift of

the process will tend to move it further away.

Discussion

Our simplified representation of platform dynamics allows for rich limit behavior.

Our finding that the limit share of true stories is random, though not mathematically

surprising within the context of generalized urns, has notable implications for the

evolution of platform composition. It implies that starting from the same initial

16Here overline denotes the closure. The proof of Theorem 3 extends a result in Schreiber (2001)
on continuous-time interpolations and perturbed solutions, and then applies a result in BHS that
characterizes limits of perturbed solutions. (See appendix B for definitions of these terms.)
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platform composition and parameters, the system can end up at very different limits

in terms of both the share of true stories and users’ limit actions. For instance, in some

cases the system has positive probability of converging to any of three limits: One in

which the share of true stories is low and users do not share at all (since the probability

of sharing a false story is high), one in which the share of true stories is intermediate

and users share only stories with one evocativeness level (very interesting/mildly

interesting), and one in which the share of true stories is high and users share both

very interesting and mildly interesting stories. This path-dependence suggests that

the long-run outcome can be influenced by shocks that add stories to the platform,

and that such shocks will be more likely to change limit behavior if they occur early,

when the overall number of stories is small.17

6 Comparative statics

The previous section characterized the set of limit points for every parameter spec-

ification; now we study how the the limit points change with the parameters. Since

all candidate limit points are roots of continuously differentiable functions, we can

apply the implicit function theorem to obtain comparative statics of these points with

respect to all parameters.18 It is straightforward to verify that y˚
N “ 1

1`κ
, so this can-

didate limit point is decreasing in κ and constant in all other parameters. Theorems

5-8 in Online Appendix C.2 present comparative statics for each of the others. We

now discuss the main takeaways from these theorems.

As one would expect, the other candidate limit points are increasing in the loss µ

from sharing false stories. Additionally, any limit point that is a quasi steady state

is decreasing in the exogenous inflow of false stories κ and all but y˚
N are decreasing

in the cost of attention β. More surprisingly, the limit point ŷI can be increasing in

β or constant in κ. Recall that ŷI is the point where users are exactly indifferent

between sharing and not sharing very interesting stories. It is increasing in β because

users’ payoffs are decreasing in the cost of attention and increasing in the share of

true stories. Hence, when β goes up, the share of true stories required for indifference

needs to go up as well to compensate for the utility loss. ŷI does not depend on

17The long-run outcome is not changed by these additions when there is a unique stable steady
state.

18Each quasi steady is the root of its respective limit ODE, and the thresholds are the roots of
their respective value functions.
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κ, since the exogenous inflow of false stories is is not an argument in users’ utility

functions. However, as we show below, when κ is sufficiently large ŷI will not be a

limit point.

Table 2: Comparative Statics for κ

y˚
M , y

˚
S, y

˚
I Decreasing.

ŷI Constant.

Table 3: Comparative Statics for β

y˚
M , y

˚
S, y

˚
I Decreasing.

ŷI Increasing.

The quasi steady states y˚
N and y˚

I are constant in the evocativeness parameter

λ; all other candidate limit points are decreasing in λ. As λ increases, users pay

less attention to the veracity of very interesting stories. This leads to a decrease in

the share of true stories in any limit point where users share very interesting stories,

which is the case when λ is sufficiently large. Comparative statics with respect to the

remaining parameters are more nuanced. We discuss each of them in turn, starting

with θ, which measures the “credibility” of false stories.

The role of θ

Table 4: Comparative Statics for θ

There are switchpoints θM , θI , θS P p0, 1s such that:

y˚
M Decreasing for θ ă θM and increasing for θ ą θM .
y˚
S Decreasing for θ ă θS and increasing for θ ą θS.
y˚
I Decreasing for θ ă θI and increasing for θ ą θI .
ŷI Increasing.

When θ increases it is harder to identify false stories, but users are aware of this

and pay more attention (both apy, Iq and apy,Mq are increasing in θ). This leads to

two opposing forces on the limit share of true stories, and our model predicts that

either one can prevail: The candidate limit points y˚
S, y

˚
M and y˚

I are decreasing in θ

up to a point and then increasing in θ, so for sufficiently large values of θ the increase

in attention more than compensates for the increase in credibility.19 The candidate

limit point ŷI behaves differently, as it is always increasing in θ: Users’ payoffs from

sharing are decreasing in θ so ŷI needs to increase to maintain indifference.

19The comparative statics in Table 4 allow for the case that a quasi steady state y˚
R is everywhere

decreasing in θ (this is the case if θR “ 1). However, Online Appendix C.3 shows that all quasi
steady states except y˚

N can be non-monotone in θ when they are limit points.
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Another interpretation of θ is that the social media platform implements a fact-

checking scheme that never mislabels true stories as false, with θ the probability that a

false story is not flagged as false. Under this interpretation, the comparative statics of

the quasi steady states with respect to θ imply that if flagging rates are low (θ is high),

marginally improving them may have unintended consequences. Again, the intuition

relates to a counterbalancing force driven by attention choices. When more stories

are flagged, users pay less attention. This means they are more likely to share stories

that have not been flagged, which can lead to an overall increase in the limit share

of false stories. The comparative statics for the quasi steady states ty˚
S, y

˚
I , y

˚
Mu are

a manifestation of the “implied truth effect” empirically demonstrated in Pennycook

et al. (2020a), where false content that is not flagged as false is considered validated

and seen as more accurate than in the case where no content is flagged. Our results

show that this effect can generate a non-monotonic relationship between flagging rates

and the share of true stories.20 Finally, the comparative statics with respect to ŷI

imply that the limit share of true stories may be everywhere decreasing in the flagging

rate, through the constraint that users are indifferent, a mechanism distinct from the

implied truth effect.

The role of δ

Table 5: Comparative Statics for δ

y˚
M Increasing.
y˚
S Decreasing for δ close to 1

2
, and increasing for δ close to 1.

y˚
I Decreasing.
ŷI Increasing.

Increasing δ means false stories are more likely to be very interesting, so the

comparative statics for y˚
I , y

˚
M are intuitive—the limit share of true stories decreases

(increases) in δ when users share only very interesting (mildly interesting) stories.

The quasi steady state y˚
S, where users share both types of stories, decreases in δ

when δ is close to 1
2
, and increases in δ when δ is close to 1. Appendix C presents

numerical examples where y˚
S is both decreasing and increasing in δ when it is a limit

point. Intuitively, the non-monotonicity arises because when δ is close to 1
2
users

20We find that no flagging can lead to more accurate beliefs than poor flagging. In Acemoglu,
Ozdaglar, and Siderius (2023), a regulator who cares about the accuracy of users’ beliefs may censor
less misinformation than is technologically feasible, but will always prefer some censorship to none.
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are sharing more very interesting stories than mildly interesting stories, since both

types of stories are almost equally likely to be false and very interesting stories have

additional value. In this case, the comparative statics with respect to δ are similar to

those comparative statics for y˚
I , where users are only sharing very interesting stories.

As δ moves closer to 1, the stories that users share are more likely to be mildly

interesting and comparative statics with respect to δ eventually become similar to

those for y˚
M . Finally, ŷI is increasing in δ because for a fixed yn, increasing δ leads

to a decrease in the value from sharing very interesting stories.21

The role of ρ

Table 6: Comparative Statics for ρ

y˚
M Increasing.
y˚
S Increasing.
y˚
I Increasing if 1

2
ą δθ p1 ´ apy, Iqq, decreasing if the inequality is reversed.

ŷI Constant.

The reach parameter has no effect on the location of ŷI because it is not an

argument in users’ payoffs. Quasi steady states are increasing in the reach parameter

when users are successfully filtering false content. As mentioned in our discussion

of Lemma 4 this is always the case in regions S and M but may not be the case in

region I, where users are sharing 1
2
of all true stories and δθp1 ´ apy, Iqq of all false

stories. We find that either term can be larger when y˚
I P I, so that y˚

I can be either

increasing or decreasing in ρ when it is a limit point.

A common view is that social media platforms are hotbeds for false news because

users can easily disseminate content to large audiences. However, an analysis of the

effect of reach on the share of false stories must also consider that greater reach in-

creases the exposure of true stories as well. Therefore, reach will only have a negative

impact if users are ineffective at filtering false content. Our analysis highlights that

higher reach does not inherently lead to a greater spread of false news. Instead, the

impact depends on how much users prioritize sharing highly evocative stories and the

prevalence of false stories within the system.

21This can lead to a counter-intuitive situation where asymptotically users only share very in-
teresting stories, but when very interesting stories become more likely to be false the limit share of
true stories increases. This happens when ŷI is a limit point and it is between regions N and I (as
in phase diagram (a) in Figure 1) so users are mixing between sharing very interesting stories and
not sharing.
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The composition of S
Making general statements about how the composition of S varies with parameters

is challenging given the large number of possible configurations. One clear example

is the effect of κ, the production rate of false stories. For sufficiently large values of

κ, all quasi steady states fall in the no sharing region, and the unique limit point

is y˚
N . For sufficiently small values of κ, all quasi steady states fall in the sharing

region and the unique limit point is y˚
S. Thus, increasing the production rate of false

stories from low to high changes limit behavior from sharing both very interesting

and mildly interesting stories to not sharing at all. Since we saw above that when

users are sharing stories of both evocativeness levels they are successfully filtering

false content, the exogenous decrease in the share of incoming stories that are true is

amplified by user behavior.22

7 Conclusion

This paper analyzes a model of the sharing of stories on a social media platform

when users’ attention levels are endogenous and depend on the mix of true and false

stories. The share of true stories converges almost surely, but the realized limit point

is stochastic, and different possible limits have very different user sharing behavior.

This randomness of the limit implies that the type of stories users happened to be

exposed to in the early days of the platform and their subsequent sharing decisions

can have long-term implications.

The limit share of true stories may be either increasing or decreasing in each of

the following parameters: the cost of attention, the credibility of false stories, the

probability that false stories are very interesting, and the reach of shared stories.

Although endogenous attention creates a counterbalancing force to changes in the

credibility/flagging of false stories, it can intensify the effect of producing more false

stories. This suggests that interventions that target producers of false news might be

more efficient than attempts to stop the spread of false news already on the platform.

Our model captures many important features in a tractable framework, and parts

with most of the literature by tracking the evolution of the entire platform rather than

22Relatedly, some changes in κ will lead to discontinuous jumps in the distribution of limnÑ8 yn.
This happens when a quasi steady state crosses a threshold so that it (or the threshold) is no longer
a limit point.
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the spread of a single story. Its key simplifying feature is that it has a one-dimensional

state space. We maintain this feature while considering two-dimensional story char-

acteristics by assuming that only a story’s veracity is fixed while its evocativeness is

drawn every period. It would be straightforward to analyze variations that preserve

this structure. For instance, Allcott and Gentzkow (2017) shows that education, age,

and total media consumption are strongly associated with discernment between true

and false content. This user heterogeneity can be incorporated into our model by

having the user’s type drawn randomly every period. Allcott and Gentzkow (2017)

also finds that in the run-up to the 2016 election, both Democrats and Republicans

were more likely to believe ideologically aligned articles than nonaligned ones. Such

partisan considerations can be incorporated by having both the user’s and story’s

partisanship drawn every period.

Other important features of social media behavior could in principle be handled

with similar techniques but a larger state space. Models where some stories are

always more interesting or where users care about additional (fixed) story character-

istics could be analyzed as a concatenation of urn models with more colors of balls.

Extending our stochastic approximation arguments to these settings is straightfor-

ward, but analyzing the associated deterministic continuous-time dynamics is more

complex as they would be described by differential inclusions in two or more dimen-

sions. Yet other features do not fall within the urn-based formulation described here.

For example, our model does not track the number of times an individual story has

been shared, so it does not capture the “illusory truth” effect described in Pennycook,

Cannon, and Rand (2018), where users perceive stories they have seen many times

as more likely to be true.
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Appendix A: Proofs

Proof of Lemma 1.

When v “ T , then s “ T 1 with probability 1 and e “ I with probability 1
2
. When

v “ F , then e “ I with probability δ. Thus,

Pa,ypT 1, T |Iq “
Pa,ypT 1, T, Iq

Pa,ypIq
“

y
2

y
2

` p1 ´ yqδ
“

y

y ` 2p1 ´ yqδ
.

Similarly, Pa,ypT 1, T |Mq “
y

y ` 2p1 ´ yqp1 ´ δq
, Pa,ypT 1, F |Iq “

2p1 ´ yqδθp1 ´ aq

y ` 2p1 ´ yqδ
,

and Pa,ypT 1, F |Mq “
2p1 ´ yqp1 ´ δqθp1 ´ aq

y ` 2p1 ´ yqp1 ´ δq
. By (2), the expected payoff when at-

tention is a, evocativeness is M and the user will share the story if and only if they

receive the signal T 1 is,

Upa, y,Mq “ Pa,ypT 1, T |MqupT,Mq ` Pa,ypT 1, F |MqupF,Mq ´ βa2.

Since upT,Mq “ 1, and upF,Mq “ 1 ´ µ, we have

Upa, y,Mq “
y ´ 2pµ ´ 1qp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq
`

2pµ ´ 1qp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq
a ´ βa2.

Similarly, upT, Iq “ 1 ` λ and upF, Iq “ 1 ` λ ´ µ implies that

Upa, y, Iq “
p1 ` λqy ´ 2pµ ´ 1 ´ λqp1 ´ yqδθ

y ` 2p1 ´ yqδ
`

2pµ ´ 1 ´ λqp1 ´ yqδθ

y ` 2p1 ´ yqδ
a ´ βa2.

The functions Upa, y, Iq, Upa, y,Mq are strictly concave in a. Taking first order

conditions we find that they are maximized at apy, Iq, apy,Mq respectively as defined

in Lemma 1. Finally, using Assumptions 1 and 2 it straightforward to verify that

apy, Iq, apy,Mq P r0, 1s.

The proof of Lemma 2 is standard and relegated to the Online Appendix C.1.

Proof of Lemma 3. First, note that by the definition of gRpyq in (6), for all

R P tN, I,M, Su we have gRp0q “ 1 and gRp1q “ ´κ. This follows from gRp0q “
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1`pTRp0qρ and pTRp0q “ 0 for all R, and gRp1q “ ´κ´pFRp1qρ and pFRp1q “ 0 for all R.

For R “ N , the ODE takes the simple form gNpyq “ 1 ´ p1 ` κqy and the conclusion

follows immediately with y˚
N “ 1

1`k
. For the other regions, it suffices to prove that

g3
Rpyq ą 0 for all y P r0, 1s. Indeed, for gRpyq to have more than one root in r0, 1s

it must have a local minimum that is greater than the first root, followed by a local

maximum (between the second root and y “ 1). So, there need to be 0 ă w ă z ă 1

such that g2
Rpwq ě 0 while g2

Rpzq ď 0 which cannot be the case if g3
Rpyq ą 0 for all

y P r0, 1s. The derivatives are

g3
S pyq “

12θ2ρ

β

ˆ

δ3pµ ´ 1 ´ λq

py ` 2p1 ´ yqδq4
`

p1 ´ δq3pµ ´ 1q

py ` 2p1 ´ yqp1 ´ δqq4

˙

,

g3
I pyq “

12ρδ3θ2pµ ´ 1 ´ λq

βpy ` 2p1 ´ yqδq4
,

g3
Mpyq “

12ρp1 ´ δq3θ2pµ ´ 1q

βpy ` 2p1 ´ yqp1 ´ δqq4
.

By Assumption 1, all are strictly positive for y P r0, 1s. Stability follows from the

existence of a unique root together with gRp0q “ 1 ą 0, gRp1q “ ´κ ă 0 for all R.

Proof of Lemma 4. By (6), we have for any R,W P tN, I,M, Su:

gRpyq ´ gW pyq “ ρ
“

p1 ´ yq
`

pTRpyq ´ pTW pyq
˘

´ y
`

pFRpyq ´ pFW pyq
˘‰

.

So gRpyq ą gW pyq if and only if p1´ yq
`

pTRpyq ´ pTW pyq
˘

ą y
`

pFRpyq ´ pFW pyq
˘

. Hence,

gSpyq ą gIpyq for all y P p0, 1q because, by (3),

p1 ´ yq
`

pTS pyq ´ pTI pyq
˘

“ p1 ´ yq
y

2
,

y
`

pFS pyq ´ pFI pyq
˘

“ yp1 ´ yqθp1 ´ δq p1 ´ apy,Mqq ,

and, for y P p0, 1q,

p1 ´ yq
y

2
ą yp1 ´ yqθp1 ´ δq p1 ´ apy,Mqq ðñ

1

2
ą θp1 ´ δqp1 ´ apy,Mqq,

which always holds since p1 ´ δq ă 1
2
, θ ă 1 and apy,Mq ď 1.

To see that gMpyq ą gIpyq for all y P p0, 1q note that
`

pTMpyq ´ pTI pyq
˘

“ 0 and
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y
`

pFMpyq ´ pFI pyq
˘

“ yp1 ´ yqθ pp1 ´ δq p1 ´ apy,Mqq ´ δ p1 ´ apy, Iqqq , so gMpyq ą

gIpyq if and only if p1 ´ δq p1 ´ apy,Mqq ă δ p1 ´ apy, Iqq. Fix y P p0, 1q and let

ℓpδq “ p1 ´ δq p1 ´ apy,Mqq ; rpδq “ δ p1 ´ apy, Iqq. We will prove ℓpδq ă rpδq for

all δ P r1
2
, 1q by showing that ℓp1

2
q ă rp1

2
q and ℓpδq is decreasing in δ while rpδq is

increasing in δ. First,

rp1{2q “
1

4

ˆ

2 ´
θp1 ´ yqpµ ´ 1 ´ λq

β

˙

ą
1

4

ˆ

2 ´
θp1 ´ yqpµ ´ 1q

β

˙

“ ℓp1{2q.

Now,
Bℓpδq

Bδ
“

2p1 ´ δqθpµ ´ 1qp1 ´ yqp1 ´ δp1 ´ yqq

βpy ` 2p1 ´ yqp1 ´ δqq2
´ 1.

Assumption 2 and λ ă 1 imply that θpµ ´ 1q ă 2β. Therefore, it suffices to prove

4p1 ´ δqp1 ´ yqp1 ´ δp1 ´ yqq ă py ` 2p1 ´ yqp1 ´ δqq
2, which simplifies to y2 ą 0.

Hence, Bℓpδq

Bδ
ă 0. Finally, by Assumption 1,

Brpδq

Bδ
“

2δθp1 ´ yqpµ ´ 1 ´ λqpδ ` yp1 ´ δqq

βpy ` 2p1 ´ yqδq2
ą 0,

which completes the proof that minty˚
S, y

˚
Mu ą y˚

I .

To see that minty˚
S, y

˚
Mu ą y˚

N , note that gSpyq ą gNpyq if and only if

p1 ´ yqy ą yp1 ´ yqθ p1 ´ δapy, Iq ´ p1 ´ δqapy,Mqq ,

which always holds.

Finally, gMpyq ą gNpyq if and only if

p1 ´ yq
y

2
ą yp1 ´ yqp1 ´ δqθ p1 ´ apy,Mqq ,

which follows from δ ą 1
2
, θ ă 1.

Proof of Theorem 1. That Q Ă S follows immediately from the definitions of

these sets and of F . Since each limit ODE has a unique steady state, the only other

possible members of S are the thresholds between the regions, so S Ă Q
Ť

tŷI , ŷMu.

A threshold ŷ is a stable steady state if for all y P pŷ ´ ϵ, ŷ ` ϵq we have signpxq “

signpŷ ´ yq for all x P F pyq. This holds only if there is a “flip” of quasi steady
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states: Let W be the region to the left of ŷ, and Z the region to the right, a flip is:

y˚
Z ă ŷ ă y˚

W . Flips around ŷI occur if and only if one the following holds: ŷI ă ŷM

and y˚
I ă ŷI ă y˚

N ; or ŷI ą ŷM and y˚
S ă ŷI ă y˚

M . In Appendix C we show that both

are possible. We now show that flips cannot occur around ŷM so ŷM R S. There are

two possible cases:

1. ŷI ă ŷM , so the region to the right of ŷM is S and the region to the left is I.

2. ŷI ą ŷM , so the region to the right of ŷM is M and the region to the left is N .

In Case 1 a flip cannot occur because by Lemma 4, y˚
S ą y˚

I . In Case 2 a flip cannot

occur because by Lemma 4, y˚
M ą y˚

N .

Proof of Theorem 2. When y˚
N P N and y0 P N , the system follows the law of

motion zn`1 “ zn `

˜

1

k

¸

, so it never leaves the region N and converges deterministi-

cally to y˚
N “ 1

1`κ
. We henceforth assume that y˚

N R N and/or y0 R N . By Theorem

3 in Appendix B, the limit set of yn is almost surely internally chain transitive for

the LDI (7). Since the LDI is a one-dimensional autonomous inclusion, its internally

chain transitive sets are simply its steady states, so yn converges almost surely to a

steady state of the LDI. By Lemma 6 below, when y˚
N R N and/or y0 R N there is

positive probability of convergence to any stable steady state, and by Lemma 7 there

is zero probability of convergence to any repelling steady state, which completes the

proof.

Lemma 6 and Lemma 7 below are used to prove Theorem 2, and Lemma 5 is used

to prove Lemma 6.

Lemma 5. Let ϵ ą 0 and y R N such that y P p 1
1`κ`ρ

, 1`ρ
1`κ`ρ

q. Starting from any state

zn with yn R N , the system has positive probability of arriving at some ym P Bϵpyq.

Proof. Since the number of stories added each period is bounded, there exists some

nϵ P N such that |yn`1 ´ yn| ă ϵ whenever |zn| ą nϵ. Since |zn| Ñ 8 we can assume

w.l.o.g. that the initial state zn satisfies |zn| ą nϵ. For such zn, we consider two

possible cases: yn ă y and yn ą y.
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Suppose first that yn ă y ă
1`ρ

1`κ`ρ
. If the user shares a true story in period n

then 1 ` ρ true and κ false stories are added to the platform, so yn ă yn`1 ă
1`ρ

1`κ`ρ
,

and if all subsequent users share true stories then yn Ñ
1`ρ

1`κ`ρ
. Thus, there exists a

finite T “ T pynq ą 0 such that if users share a true story every period for T periods

then yn`T P Bϵpyq. By a similar argument, if yn ą y ą 1
1`κ`ρ

then there is a finite

T 1 “ T 1pynq ą 0 such that if users share false stories for T 1 periods then yn`T 1 P Bϵpyq.

At any ym R N there is positive probability of drawing and sharing a true story and

positive probability of drawing and sharing a false story. Also, since region N is

always the leftmost region and y R N then starting from yn ą y and drawing T 1 false

stories or starting from yn ă y and drawing T true stories will not lead the system

to enter region N . Thus, if yn ă y (yn ą yq there is positive probability of sharing

T (T 1) true (false) stories consecutively so there is positive probability of ym P Bϵpyq

for some m ą n.

Lemma 6. Assume that y˚
N R N and/or y0 R N . If ψ is a stable steady state, there

is positive probability that yn Ñ ψ.

Proof. Let ψ be a stable steady state, and pick any ϵ ą 0.

Step 1: Defining five auxiliary processes.

The first four auxiliary processes are tzn;Ru for R P tN, I,M, Su as defined in

(4). Let yn;R be the share of true stories in period n for the process tzn;Ru. The

differential inclusion associated with tzn;Ru is dy
dt

P tgRpyqu. By Lemma 3, this

inclusion has a unique steady state y˚
R, so by Theorem 3, yn;R converges almost

surely to y˚
R. In particular, for any ϵ ą 0 there exists mR P N such that start-

ing from any y in the open ball Bϵpy
˚
Rq, if the total number of stories is greater

than mR, then yn;R has positive probability of remaining in Bϵpy
˚
Rq forever, i.e.,

P pym;R P Bϵpy
˚
Rq @m ą n | yn;R P Bϵpy

˚
Rq, |zn;R| ą mRq ą 0.

The fifth auxiliary process is used to prove convergence to ŷI when it is a stable

steady state so we define it only for that case. Let L be the region to the left of ŷI

and R the region to the right of ŷI . Since ŷI is a stable steady state, y˚
R ă ŷI ă y˚

L.

Let O be the third region of the system (O is located either to the right of R or

to the left of L). Define an alternative stochastic process tzn;Hu with share of true

stories yn;H , where the law of motion in regions R,L is unchanged but in region

O is that yn;H moves deterministically towards the nearest other region. (So if O
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is to the right of R then yn;H is decreasing in region O, and if O is to the left

of L then it is increasing in region O). Let dy
dt

P FHpyq be the limit differential

inclusion for this alternative process, as defined in Definition 5 in Appendix B. By

construction, ŷI is the unique steady state for this inclusion, so Theorem 3 implies

that yn;H converges to ŷI almost surely. In particular, there exists mH P N such that

P pym;H P BϵpŷIq @m ą n | yn;H P BϵpŷIq, |zn;H | ą mHq ą 0.

Step 2: Positive probability of converging to ψ conditional on arriving at an open ball

around it when |zn| is sufficiently large.

Assume w.l.o.g. that ϵ is small enough that Bϵpy
˚
Rq Ă R if ψ “ y˚

R for some region

R and that BϵpŷIq Ă r0, 1szO if ψ “ ŷI (the previous step defines O as the only

region not adjacent to ŷI). When ψ “ y˚
R, P

`

ym P Bϵpy
˚
Rq@m ą n | yn P Bϵpy

˚
Rq, |zn| ą

mR

˘

ą 0, since conditional on yn remaining in Bϵpy
˚
Rq we have yn “ yn;R. The fact

that yn “ yn;R conditional on yn remaining in region R implies that if the system

arrives at a state zn such that yn P Bϵpy
˚
Rq and |zn| ą mR, then yn converges to y˚

R

with positive probability. If ψ “ ŷI , an analogous argument (replacing yn;R with yn;H),

implies that if the system arrives at state zn such that yn P BϵpŷIq and |zn| ą mH

then yn converges to ŷI with positive probability.

Step 3: Positive probability of arriving at such a ball.

We now prove that there is positive probability of arriving at zn such that yn P

Bϵpψq and |zn| ą m where m is as defined above. By (6), for any region R,

y˚
R “

1 ` pTRpy˚
Rqρ

1 ` κ ` ρ ppTRpy˚
Rq ` pFRpy˚

Rqq
.

This implies that 1
1`κ`ρ

ă y˚
R ă

1`ρ
1`κ`ρ

: the first inequality is immediate and the

second is equivalent to ρ
`

κp1 ´ pTRpy˚
Rqq ` pFRpy˚

Rqp1 ` ρq
˘

ą 0, which always holds.

Since any stable steady state is either is a quasi steady state or a threshold bounded

above and below by quasi steady states, the above implies that

1

1 ` κ ` ρ
ă ψ ă

1 ` ρ

1 ` κ ` ρ
@ψ P S. (8)

By hypothesis either y˚
N R N or y0 R N (or both). First, assume y0 R N . If

ψ R N then the claim follows immediately from (8) and Lemma 5 above, together

with |zn| Ñ 8 surely. If ψ P N (which means ψ “ y˚
Nq, then a similar argument

as in the proof of Lemma 5 implies there is positive probability of arriving at some
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ym P N , from which point the system will converge deterministically to ψ “ y˚
N and

in particular enter Bϵpy
˚
Nq.

Now, assume y0 P N . Then, by hypothesis, y˚
N R N . Since in region N the system

converges deterministically towards y˚
N , it surely arrives at yn R N with |zn| ą m

after finite time. Lemma 5 implies there is positive probability of arriving from this

yn to Bϵpψq.

Lemma 7. The system almost surely does not converge to a repelling steady state.

Proof. Since by Lemma 3 all quasi steady states are stable for their associated ODEs,

the only possible repelling steady states for the LDI are the thresholds ŷI , ŷM . Let

ŷ be a repelling steady state. Let A denote the event “yn P N infinitely often” and

let AC denote its complement. We will prove that Ppyn Ñ ŷq “ 0 by proving that if

PpAq ą 0 then Ppyn Ñ ŷ|Aq “ 0, and if PpACq ą 0 then Ppyn Ñ ŷ|ACq “ 0.

Assume PpAq ą 0 and consider a sequence tynu where yn P N infinitely often. If

ŷ is not adjacent to region N then yn P N i.o. rules out convergence to ŷ. If ŷ is

adjacent to region N , then by the instability of ŷ it must be the case that y˚
N P N .

But then, if yn P N for some n then yn converges (deterministically) to y˚
N ‰ ŷ. Thus,

if PpAq “ Ppyn P N i.oq ą 0, then Ppyn Ñ ŷ|Aq “ 0.

We now apply Theorem 4 in Appendix B to prove that if PpACq ą 0 then Ppyn Ñ

ŷ “ 0|ACq “ 0. Assume PpACq ą 0 and consider a realization where yn P N at

most finitely often, so there exists m P N such that yn R N for all n ą m. To apply

Theorem 4 we need to verify that Erξ`
n |Fns are uniformly bounded below by a positive

number, where ξn`1 :“ pyn`1 ´ yn ´ Eryn`1 ´ yn|znsq|zn|, ξ`
n :“ maxt0, ξnu and Fn is

the σ-algebra generated by pz1, ..., znq.

Consider the law of motion for yn in Equation 5. Denoting ∆T “
p1´ynqp1`ρq´ynκ

|zn|`1`κ`ρ
,∆F “

p1´ynq´ynpκ`ρq

|zn|`1`κ`ρ
,∆O “

p1´ynq´ynκ
|zn|`1`κ

, we have ∆T ą ∆O ą ∆F , so that when yn is in region

R,

Erξ`
n`1|Fns ě pTRpynq

¨

˝∆T ´
ÿ

iPtT,F,Ou

piRpynq∆i

˛

‚|zn| ě pTRpynqp1´pTRpynqqp∆T´∆Oq|zn|.

Now, for sufficiently large |zn|,

p∆T ´ ∆Oq “
pκ ` |zn|p1 ´ ynqqρ

p|zn| ` 1 ` κqp|zn| ` 1 ` k ` ρq
ě

|zn|p1 ´ ynqρ

4|zn|2
,
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so p∆T ´ ∆Oq|zn| ě
p1 ´ ynqρ

4
. Since yn R N from some point onward, by (3),

pTRpynq P tyn,
yn
2

u for both of the adjacent regions R. Thus, for small ϵ ą 0, there

exists c ą 0 such that for any yn P pŷ ´ ϵ, ŷ ` ϵq: pTRpynqp1 ´ pTRpynqq ě c. So, for

sufficiently large n, Erξ`
n`1|Fns ě

cp1 ´ ynqρ

4
ą 0 for any yn P pŷ ´ ϵ, ŷ ` eq.

Appendix B: Urn Models

This appendix extends results from Schreiber (2001) and Benaim, Schreiber, and Tar-

res (2004) about Generalized Polya urns (GPUs). A key feature of these urn models

is that the number of balls added each period is bounded, so that as the overall

number of balls grows the change in the system’s composition between any two con-

secutive periods becomes arbitrarily small. Within each of the regions tN, I,M, Su,

our system behaves like a GPU. To analyze the entire system, we define Piecewise

Generalized Polya Urns (PGPUs), and then combine results on GPUs with results

from BHS that extend the theory of stochastic approximation to cases where the

continuous system is given by a solution to a differential inclusion rather than a dif-

ferential equation. Theorem 3 relates the limit behavior of a PGPU to the limit

behavior of the associated differential inclusion; we use it in the proof of Theorem 2.

Section B.3 explains why the processes tzn;Ru defined in (4) are GPUs and derives the

corresponding limit ODEs. Section B.4 then proves a result about repelling steady

states for limit inclusions that is used in the proof of Theorem 2.

B.1 Definitions and Notation

Given a vector w P R2 define |w| “ |w1|`|w2|. Let tznu “ tpz1n, z
2
nqu be a homogeneous

Markov chain with state space Z2
` (Z` are all the non-negative integers). Let Π :

Z2
` ˆ Z2

` Ñ r0, 1s denote its transition kernel, Πpz, z1q “ Ppzn`1 “ z1|zn “ zq. We

interpret the process as an urn model, with zin the number of balls of color i at time

step n. We now define two types of stochastic processes.

Definition 1. A Markov process tznu as above is a generalized Polya urn (GPU) if:

i. Balls cannot be removed and there is a maximal number of balls that can be

added. Formally, for all zn P Z2
` and all zn`1 such that Πpzn`1, znq ą 0: z1n`1 ě
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z1n, z
2
n`1 ě z2n and there is a positive integer m such that |zn`1 ´ zn| ď m.

ii. For each w P Z2
` with |w| ď m there exist Lipschitz-continuous maps pw : r0, 1s Ñ

r0, 1s and a real number a ą 0 such that:
ˇ

ˇ

ˇ
pw

´

z1

|z|

¯

´ Πpz, z ` wq

ˇ

ˇ

ˇ
ď a

|z|
for all

nonzero z P Z2
`.

Let yn “
z1n

|zn|
be the share of balls of color 1 (i.e., of true stories.)

Definition 2. Let txnu be a stochastic process in r0, 1s adapted to a filtration tFnu.

We say that txnu is a (one dimensional) stochastic approximation if for all n P N:

xn`1 ´ xn “ γn pgpxnq ` ξn`1 ` Rnq , (9)

where γn are non-negative with γn Ñ 0,
ř

n γn “ 8, g is a Lipschitz function on R,
Erξn`1|Fns “ 0 and the remainder terms Rn P Fn go to zero and satisfy

ř8

n“1
|Rn|

n
ă 8

almost surely.

The function g in (9) is the right hand side of the limit ODE, dx
dt

“ gpxq. Schreiber

(2001) and Benaim, Schreiber, and Tarres (2004) derive the limit ODE of a GPU and

prove that with this limit ODE the sequence tynu of the share of balls of color 1 is a

stochastic approximation process. Since we will later consider a system that includes

several GPUs we introduce the notation tzn;ku to refer to a general GPU.

Definition 3. For a GPU tzn;ku with corresponding maps pwk , the corresponding limit

ODE is dy
dt

“ gkpyq where gk : r0, 1s Ñ r0, 1s is given by23

gkpyq “
ÿ

wPZ2

pwk pyq
`

w1
´ y|w|

˘

. (10)

B.2 Stochastic Approximation of PGPUs

This section extends the literature on GPUs to concatenations of GPUs.

Definition 4. A Markov process tznu with transition kernel Π is a piecewise gener-

alized Polya urn (PGPU) if there exists a finite integer K, a finite number of GPUs

23Note that condition i. in Definition 1 implies that only a finite number of the summands are
non-zero.
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ttzn;kuuKk“1 (each with kernel Πk), and an interval partition tIkuKk“1 of r0, 1s, such that

for all z1, if z1

|z|
P I̊k then Πpz, z1q “ Πkpz, z1q, where I̊ denotes the interior of I.24

The next definition defines the analog of a limit ODE for a PGPU.

Definition 5. For a PGPU tznu the limit differential inclusion is dy
dt

P F pyq, where

F pyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

tgkpyqu, y P I̊k

tg1p0qu, y “ 0

tgKp1qu y “ 1

rmintgkpyq, gk`1pyqu,maxtgkpyq, gk`1pyqus, y “ maxpIkq, 1 ď k ă K

Henceforth, we fix a PGPU tznu comprised of GPUs ttzn;kuuKk“1, with share of

balls of color 1 denoted yn “
z1n

|zn|
and let

dy

dt
P F pyq (11)

be the associated differential inclusion. In order to apply results from BHS, we need

to verify that the paper’s standing assumptions on the inclusion hold. These are:

BHS Standing Assumptions. 1. F has a closed graph.

2. F pyq is non empty, compact, and convex for all y P r0, 1s.

3. There exists c ą 0 such that for all y P r0, 1s, supxPF pyq |x| ď cp1 ` |y|q.

Lemma 8. The inclusion (11) satisfies the standing assumptions in BHS.

Proof. Assumptions 1 and 2 follow immediately from Definition 5. Assumption 3

follows from the fact that the gkpyq are continuous functions defined over compact

sets.

We relate the limiting behavior of yn to the solutions to the differential inclusion

(11) using the ideas of a perturbed solution and a piecewise affine interpolation.

24Note that we allow for an arbitrary law of motion Πpz, z1q for z such that z1

|z|
“ maxpIkq “

minpIk`1q, i.e, when the share of balls of color 1 is the boundary of an interval. The systems we
consider will arrive at such states with probability zero.
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Definition 6. A continuous function Y : r0,8q Ñ R is a perturbed solution to (11)

(or a “perturbed solution to F”) if it is absolutely continuous, and there is a locally

integrable function t ÞÑ Uptq such that

• limtÑ8 sup0ďhďT |
şt`h

t
Upsqds| “ 0 for all T ą 0

• dYptq
dt

´ Uptq P F pYptqq for almost every t ą 0.

Definition 7. The piecewise affine interpolation of yn is

Yptq “ yn `
t ´ τn
γn`1

pyn`1 ´ ynq, t P rτn, τn`1s.

where τ0 “ 0, τn`1 “ τn ` 1
|zn|

, and γn`1 “ 1
|zn|

.

Theorem 2.2 (Schreiber (2001)). Let tzn;ku be a GPU. Let Yk
ptq be the piecewise

affine interpolation of yn;k “
z1n;k

|zn;k|
, and let ϕk be the flow of the limit ODE.25 Then

on the event tlim infnÑ8
|zn;k|

n
ą 0u, for any T ą 0 , limtÑ8 sup0ďhďT |Yk

pt ` hq ´

ϕkpYk
ptq, hq| “ 0.

The next lemma extends this result from GPUs to PGPUs.

Lemma 9. Let tznu be a PGPU and (11) its limit differential inclusion, and let Y

be its piecewise affine interpolation. Then Y is a bounded perturbed solution to (11).

Proof. Since Y is piecewise affine, it is continuous and differentiable almost every-

where and hence absolutely continuous. Define t ÞÑ Uptq by

Uptq “
yn`1 ´ yn
γn`1

´ F̃ pYptqq t P rτn, τn`1s,

where the function F̃ : r0, 1s Ñ R is such that for every y P r0, 1s: F̃ pyq P F pyq. Note

that dY(t)
dt

“
yn`1´yn
γn`1

for t P rτn, τn`1s , so dY(t)
dt

´ Uptq “ F̃ pYptqq P F pYptqq. It

remains to show limtÑ8 sup0ďhďT |
şt`h

t
Upsqds| “ 0 for all T ą 0.

25The flow ϕk : r0, 1s ˆR` Ñ r0, 1s such that ϕkpx, tq is the time-t value of a solution to the ODE
at with initial condition x. Schreiber (2001) states this theorem for piecewise constant interpolations,
but it also applies to piecewise affine interpolations.
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Fix T ą 0 and 0 ď h ď T . Let ϕk be the flow of the limit ODE dy
dt

“ gkpyq. On

the event “Ypsq P Ik for all s P rt, t ` hs,” we have

ż t`h

t

Upsqds “

ż t`h

t

ˆ

dYpsq

ds
´ F̃ pY psqq

˙

ds “

ż t`h

t

ˆ

dYk
psq

ds
´
dϕkpYptq, s ´ tq

ds

˙

ds

“ Yk
pt ` hq ´ Yk

ptq ´
`

ϕk
pYptq, hq ´ ϕk

pYptq, 0q
˘

“ Yk
pt ` hq ´ ϕk

pYptq, hq.

Since by Definition 4 a PGPU has a finite number of partition intervals Ik, in

the interval rt, t ` hs the interpolation Y(t) transitions between intervals Ik a finite

a number of times. Thus
şt`h

t
Upsqds “

řM
j“1

“

Ykjptjq ´ ϕkjpYptj´1q, hjq
‰

, where

M ą 0 is some integer; t “ t0 ă t1 ă ... ă tM “ t`h; hj “ tj ´ tj´1, and kj P 1, ..., K

for all 1 ď j ď M .26 So from Schreiber (2001)’s Theorem 2.2, for all T ą 0

lim
tÑ8

sup
0ďhďT

|
ż t`h

t

Upsqds| ď

M
ÿ

j“1

ˆ

lim
tÑ8

sup
0ďhďT

|Ykjptjq ´ ϕkjpYptj´1q, hq|
˙

“ 0.

We are now ready to state and prove Theorem 3. The proof combines the previous

results with a direct application of the following theorem:

Theorem 3.6 (BHS). If x is a bounded perturbed solution to F , the limit set of x,

Lpxq “
Ş

tě0 txpsq : s ą tu is internally chain transitive.27

Theorem 3. Let tznu be a PGPU, tynu the share of balls of color 1 and F the associ-

ated limit differential inclusion. Then the limit set of tynu, Lpynq “
Ş

mą0 tyn : n ą mu,

is almost surely internally chain transitive for F .

Proof. By Lemma 9, the interpolation Y is a perturbed solution to F . Note that

it is also bounded since Yptq P r0, 1s for all t ě 0. Thus, Theorem 3.6 in BHS

implies that the limit set of Y is internally chain transitive for F . Note that the

asymptotic behaviors of Yptq and yn are the same by the definition of interpolation,

i.e., Lpynq “ LpYq, which completes the proof.

26Note that pM, ptjqMj“0, phjqMj“1, pkjqMj“1q is a random vector.
27BHS extend the definition of internal chain transitivity to differential inclusions.
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B.3 The GPUs tzn;Ru

This section shows that the processes tzn;Ru as defined in (4) are GPUs and derive

the formula for their limit ODEs.

Lemma 10. For each R P tN, I,M, Su, tzn;Ru is a GPU with limit ODE given by

(6).

Proof. Let R be one of the four possible regions. To show that tzn;Ru is a GPU we

need to verify the conditions of Definition 1. Condition i) follows directly from (4),

with the upper bound m “ 1 ` κ ` ρ. For condition ii), let w1 “

˜

1 ` ρ

κ

¸

, w2 “

˜

1

κ ` ρ

¸

, w3 “

˜

1

κ

¸

, and let pTRpyq, pFRpyq, 1´pTRpyq´pFRpyq respectively be the maps

pw corresponding to these vectors. By (3) all three maps are Lipschitz-continuous.

Let ΠR denote the transition kernel for tzn;Ru. By the law of motion (4), for any

w P tw1, w2, w3u and for any z P Z2
`: ΠRpz, z`wq “ pw

´

z1

|z|

¯

. Since ΠRpz, z`wq “ 0

for any w R tw1, w2, w3u, condition ii) is satisfied.

Next, (3), (4), and (10) imply that the ODE associated with tzn;Ru is

gRpyq “ pTRpyqp1 ` ρ ´ yp1 ` ρ ` κqq ` pFRpyqp1 ´ yp1 ` ρ ` κqq

` p1 ´ pTRpyq ´ pFRpyqqp1 ´ yp1 ` κqq.

Rearranging gives gRpyq “ 1 ` pTRpyqρ ´ y
`

1 ` κ ` ρ
`

pTRpyq ` pFRpyq
˘˘

, as in (6).

B.4 Repelling Steady States

This subsection shows that if ψ is a repelling steady state for the LDI, then under a

condition on the noise in the stochastic system, Ppyn Ñ ψq “ 0. Consider a PGPU

tznu, comprised of GPUs tzn;kuKk“1 with associated intervals Ik, where gk is the RHS

of the limit ODE for GPU tzn;ku. Let yn;k “
z1n;k

|zn;k|
. Recall that yn “

z1n
|zn|

and that the

LDI for this PGPU is given by (11). We now add the following assumption, which is

satisfied by the PGPUs in our model:

Assumption 3. Each limit ODE dy
dt

“ gkpyq has a globally stable steady state y˚
k .
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Assumption 3 implies that the only possible repelling steady states for the LDI

are the thresholds between the intervals Ik. Define these these as ŷk “ maxtIku for

k “ 1, . . . , K. Finally, let Fn be the σ-algebra generated by pz1, ..., znq, let ξn`1 “

pyn`1 ´ yn ´ Eryn`1 ´ yn|znsq|zn| and denote ξ`
n “ maxt0, ξnu, ξ´

n “ ´mint0, ξnu.

Theorem 4. Let ŷk be the threshold between intervals Ik, Ik`1 and assume that ŷk is

a repelling steady state for the LDI. If there exist ϵ, r ą 0 such that for all n P N:
Erξ`

n |Fns ą r if yn P pŷk ´ ϵ, ŷk ` ϵq, then Ppyn Ñ ŷkq “ 0.

The proof applies the following result:

Theorem 2.9 (Pemantle (2007)). Suppose txnu is a stochastic approximation pro-

cess as defined in Definition 2 except that g need not be continuous. Assume that for

some p P p0, 1q and ϵ ą 0: signpgpxqq “ ´ signpp ´ xq for all x P pp ´ ϵ, p ` ϵq. Sup-

pose further that the martingale terms ξn in the stochastic approximation equation

(9) are such that Erξ`
n`1|Fns and Erξ´

n`1|Fns are bounded above and below by positive

numbers when xn P pp ´ ϵ, p ` ϵq. Then Ppxn Ñ pq “ 0.

Proof. Define the function g : r0, 1s Ñ R. By

gpyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

gkpyq, y P I̊k

g1p0q, y “ 0

gKp1q y “ 1

gkpyq y “ maxpIkq, 1 ď k ă K

Recall that ξn`1 “ pyn`1 ´ yn ´ Eryn`1 ´ yn|znsq|zn|, and let

Rn “ |zn|Eryn`1 ´ yn|zns ´ gpynq.

Then ξn, Rn are adapted to Fn, Erξn`1|Fns “ 0 and

yn`1 ´ yn “
1

|zn|
pfpynq ` ξn`1 ` Rnq (12)

By Lemma 1 in Benaim, Schreiber, and Tarres (2004), and the fact that yn follows

the same law of motion as yn;k when yn P intpIkq, there exists a real number K ą 0

such that |Rn| ď K
|zn|

. Thus,
ř8

n“1
|Rn|

n
ă 8, so tynu is a stochastic approximation. By
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the same Lemma, |ξn| ď 4m where m is the maximal number of balls added in each

period. This implies that Erξ`
n |Fns,Erξ´

n |Fns are bounded from above by 4m. To

apply Theorem 2.9, it remains to prove that Erξ`
n |Fns,Erξ´

n |Fns are bounded from

below by a positive number when yn P pŷ ´ ϵ, ŷ ` ϵq. Because ξn “ ξ`
n ´ ξ´

n and

Erξn|Fns “ 0, and Erξ`
n |Fns “ Erξ´

n |Fns, it suffices to find a positive lower bound for

Erξ`
n |Fns when yn P pŷ ´ ϵ, ŷ ` ϵq. By assumption, r ą 0 is such a lower bound.
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