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Abstract

In many settings, the designer of an institution is less informed about the economy
than are the agents who will ultimately participate in that institution. This
dissertation explores how such an uninformed designer can learn features of the
economy that are common knowledge among the agents and use the extracted
information to design better institutions.

Chapters 1 and 2 study how an uninformed seller can induce potential buyers
to reveal the revenue maximizing reservation price for an auction. Chapter 1
explores mechanisms in which a seller runs a sealed-bid second-price auction and
simultaneously surveys the buyers’ beliefs about others’ valuations. The seller
offers bets that incentivize truthful reporting of beliefs, and for a general class
of environments, truth-telling is the unique equilibrium. Losing bidders’ reports
are used to set an interim optimal reserve price for the winner. As a result,
these mechanisms guarantee the seller an optimal worst-case revenue-share of the
efficient surplus.

Chapter 2 considers sealed-bid second-price auctions in which instead of re-
porting beliefs, each bidder recommends a reservation price to be used when they
lose the auction. If the recommendation is used, the bidder is rewarded with a
small share of revenue. Revenue sharing aligns the incentives of the seller and los-
ing buyers, but creates an incentive to “throw” the auction when a buyer expects
to win at a price close to his valuation. When the distribution of valuations sat-
isfies a monotone hazard rate assumption, the mechanism has a symmetric and
monotonic equilibrium. As the bidders’ revenue shares go to zero, bid shading

disappears and the equilibrium results in optimal reserve prices.
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Chapter 3 explores general mechanisms that a designer can use to extract
common knowledge for the purpose of building that information into a mechanism.
For private-good environments such as those considered in Chapters 1 and 2,
mechanisms are constructed that allow the designer to recover the agents’ common

knowledge at arbitrarily small cost to any ultimate mechanism design goals.
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Chapter 1

Introduction

Many important problems of institutional design involve complex informational
frictions. The value of one outcome over another can depend on many charac-
teristics, only some of which will be known to any single individual. Information
is both incomplete, in that strategic agents can only partially specify the states
of the world that affect preferences, and differential, in that agents generally do
not all have the same information. The mechanism design literature has stud-
ied design under such incomplete information almost since its inception, but the
classical literature has generally made an important simplifying assumption: that
both the mechanism designer and the agents in the economy share a common prior
distribution over the variables that determine preferences, and that it is from this
common prior that agents’ beliefs are derived.

That the designer and the agents share the same common prior can be a nat-
ural assumption in many settings. But what if the designer is less informed, in
that there is some feature of the economy that is common knowledge among the
agents but is unknown to the designer? The designer might be a government

agency deciding how to allocate spectrum licenses to telecom firms, though the



firms know much more than the government about the value of a given block of
frequencies. Or perhaps the designer is a general purpose auction house selling
some rare work of art, in which case art collectors may be much better at judging
an appropriate starting bid. In either case, the designer will want to learn more
about the market in which the mechanism will operate in order to improve the
design. If there are uninterested third-parties who do not care about the outcome
but are nonetheless well-informed, then the designer could hire them as consul-
tants and effectively restore common knowledge of the common prior. On the
other hand, if the informed parties all have a stake in the decisions made by the
institution, then it may not be so easy to incentivize them to share their common
knowledge, since by misreporting they may be able to manipulate the design and
induce a more preferred outcome.

This is the problem of belief extraction in mechanism design: to learn the
common knowledge of the agents, as represented by their beliefs, for the purpose
of incorporating that common knowledge into the design of a mechanism. Ideally,
the designer would like to incentivize the agents to reveal as much information as
possible, while maintaining the flexibility to use that information as the designer
sees fit. These goals may be at odds when there is conflict of interest between the
designer and the agents, since the more the designer uses extracted information
to customize the mechanism, the greater are the opportunities for manipulation
through misreporting. This dissertation investigates the extent to which the de-
signer can achieve these goals. The key finding is that in many settings, there are
techniques for recovering the agents’ common knowledge that do not require the
designer to compromise on how the information is used.

Without the classical assumption that the designer shares the same common

prior as the agents, important issues arise in the modeling of the mechanism design



problem. First, though the designer may have traditional preferences conditional
on a given specification of the prior, how should the designer’s preferences incor-
porate the ambiguity as to which prior is correct? One approach would be for
the designer to look for mechanisms that provide a good approximation of some
benchmark, regardless of which is the true prior. Alternatively, the designer may
look at more than just performance relative to a benchmark and prefer mecha-
nisms that never perform worse and sometimes perform better. These different
approaches to modeling the designer’s preferences may lead to very different opti-
mal mechanisms. Second, the extent to which the mechanism can be specialized
for the true prior implicitly depends on how much information the designer ex-
tracts from the agents. Greater information extraction may well necessitate more
complicated mechanisms with richer message spaces. At the same time, practi-
cally useful mechanisms need to be easy for the agents to understand, and any
justification for truthful reporting should be transparent. Third, though there is
ambiguity about the prior, the designer may be willing to make additional assump-
tions that limit the scale of the ambiguity to facilitate specialized mechanisms.
However, such specialization comes at the expense of wider applicability of the
mechanism.

In the following chapters, I provide three complementary approaches to be-
lief extraction in mechanism design that explore different compromises between
optimality, complexity, and generality of the mechanism. Throughout, I will fo-
cus on private-good allocation problems in which there is a set of objects to be
distributed, and each agent is only concerned with their own allocation and not
the allocations of others. The chapters consider various ways in which this broad
framework can be specialized: Chapters 1 and 2 look at single-unit allocation with

private values and quasilinear preferences, whereas Chapter 3 addresses multi-unit
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allocation with interdependent expected utility preferences. The preferences of the
designer range from the limited goal of optimal worst-case revenue guarantees in
Chapters 1 and 2, to demanding optimality conditional on each possible envi-
ronment in Chapter 3. For each specification of the designer’s assumptions and
preferences, I construct mechanisms that achieve the designer’s goals. Generally
speaking, less demanding preferences and more restrictive assumptions lead to
simpler optimal mechanisms. Taken as a whole, the results provide a broad view
of the possibilities for closing the gap in knowledge between the designer and
the agents, even when the agents rationally anticipate that the information they
reveal will be used to advance the designer’s interest.

To start, Chapter 1 considers a seller of a single unit of a good for which
the potential buyers have private valuations. The seller is ambiguity averse and
would like to design a mechanism that provides favorable revenue guarantees for
all possible true environments. Of course, it is possible that with probability one
every buyer has a valuation of zero, and in such an environment, all mechanisms
would generate a revenue of zero. Consequently, if the seller simply evaluated
mechanisms by their worst-case revenue, all designs would perform equally badly.
Instead, the seller considers the revenue generated by a mechanism relative to
the potential for generating revenue, as measured by the surplus that would be
generated if the good were allocated to the buyer who values it the most. I refer
to this ratio of expected revenue to the expected efficient surplus as the extraction
ratio, and the seller’s goal is to maximize the worst-case extraction ratio. The
extraction ratio has been previously studied by other authors, notably Neeman
(2003), who characterized the extraction ratio of a second-price auction with a
reserve price. The environment itself is described with the standard modeling

device of a type space, in which each buyer has a type that contains a private
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value and also a belief about others’ types. The seller further supposes that there
are limitations on how dispersed the buyers’ valuations can be, in the form of a
constraint on the size of buyers’ valuations relative to the average highest value.
The main result is to characterize the best extraction ratio that the seller can
guarantee himself as a function of the constraint on dispersion. This max min
extraction ratio turns out to be substantial: if values can be at most ten times
larger than the efficient surplus, then the seller is guaranteed at least 20% of the
efficient surplus as revenue; if values can be a hundred times larger, the seller is
guaranteed a 10% extraction ratio. The extraction ratio declines as the bound
is relaxed, though it does so at a relatively slow rate. Even if values can be ten
million times larger, the seller is still guaranteed an extraction ratio of 5%.

In the process of characterizing the max min extraction ratio, I construct a class
of mechanisms that guarantee extraction ratios arbitrarily close to the optimal
lower bound. These belief survey auctions have a relatively simple structure: the
seller runs a sealed-bid second-price auction and also asks the bidders to report
their beliefs about order statistics of others’ bids. The seller adds noise bids with
small probability, so that bidding one’s value is uniquely optimal. Furthermore,
bidders are incentivized to report their true beliefs using carefully structured bets
known as scoring rules. Such techniques have also been used by Azar, Chen,
and Micali (2012) for belief extraction in mechanism design. The bids and belief
reports of losing bidders are then used to set an interim optimal reserve price for
the high bidder. This calibrated reserve price overcomes dangers associated with
using a fixed reserve that is independent of the type space: if the reserve price is set
equal to zero, it might be that the high bid is positive whereas the second-highest
bid is zero; and if the reserve price is greater than zero, it might have been set

too high, so that no one purchases the good. Either way, the resulting extraction



ratio would be zero. By having the reserve price depend on the losing bidders’
reported beliefs, the seller is guaranteed that revenue should not fall too low as
long as there is some efficient surplus to be extracted. The critical environment
at which the worst-case extraction ratio is attained has special structure that
minimizes the amount of information conveyed by losing bidders’ reports, and
therefore constrains the effectiveness of the choice of reserve price. For these
worst-case environments, the belief survey auction reduces to the optimal posted
price mechanism, which is in fact an optimal mechanism for these environments.
As a result, the bound on the extraction ratio guaranteed by the belief survey
auction cannot be improved.

The belief survey auction is simple in two respects: (i) the mechanism is
strategically straightforward in that truth-telling is the unique equilibrium for a
very general class of environments, and this equilibrium can be arrived at using two
rounds of iterated deletion of strictly dominated strategies; and (ii) the mechanism
only elicits private values and first-order beliefs about statistics of others’ values,
as opposed to say higher-order beliefs of arbitrary degree. With regard to (ii),
the seller never actually learns the common prior and does not use the globally
optimal mechanism or even reserve price conditional on the true type space, but
nonetheless the mechanism guarantees an optimal lower bound on performance
as measured by the extraction ratio. In spite of these positive attributes, the
mechanism is still complicated in that a large amount of information must be
elicited from the buyers, and truthful revelation is incentivized through the subtle
logic of the scoring rule.

One might ask if there are mechanisms which achieve similar objectives, but
elicit less information and provide more intuitive incentives. Such an auction

might be desirable if, say, the bidders have proprietary information about their
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competitors which they would prefer not to reveal, or if there are practical limi-
tations on how complex the mechanism can be. Chapter 2 considers mechanisms
in which the seller runs a second-price sealed-bid auction and simply asks bidders
what they think is an appropriate reserve price. The seller then selects one of the
losing bidders at random and implements that bidder’s suggested reserve price.
The incentives of losing bidders are aligned with those of the seller by giving
each bidder a small amount of equity in the revenue generated when using that
bidder’s suggestion. Thus, bidders will report the reserve price that maximizes
revenue conditional on them losing the auction. While incentives for truthful
reporting of reserve prices are very clean, revenue sharing distorts incentives to
truthfully bid one’s value. The reason is that sharing in revenue might be more
attractive than winning the good at a price close to one’s valuation. As a result,
the buyers shade their bids in equilibrium.

Even though some shading must occur, I show that a small amount of revenue
sharing creates only a small amount of shading. Thus, by giving the bidders a
small amount of equity, the seller is able to recover optimal reserve prices at min-
imal cost. To be more specific, I consider environments in which bidders’ private
values are drawn from a symmetric and differentiable distribution with compact
support that also satisfies a monotone hazard rate condition. This condition re-
quires that values be positively correlated in a certain sense and plays a similar
role as the affiliation assumption of Milgrom and Weber (1982). For this class of
environments, I construct an intuitive equilibrium in which bid shading balances
the benefits of winning the good outright versus sharing in revenue. The equilib-
rium is characterized by a monotonic bidding function that is defined piecewise
as either being (i) equal to one’s value, when suggesting a reserve that is strictly

greater than the bid, or (ii) the solution of a differential equation, when the bid-
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der is suggesting a reserve price equal to their bid. In case (ii), the trade-off
between winning and revenue sharing gives rise to an interior optimum, and the
first-order condition defines the differential equation. In addition, I show that the
equilibrium bid is bounded below by the bidder’s valuation divided by one plus
the revenue share. Hence, as revenue sharing goes to zero, bids must converge
to values, and suggested reserves converge to the optimal quantities with respect
to the prior distribution. As a result, by making the bidders’ equity sufficiently
small, these mechanisms guarantee the seller revenue that is arbitrarily close to
that of a second-price auction with an optimally chosen reserve price.

Relative to the belief survey auction, the revenue sharing mechanism has a
simpler message space and more transparent incentives for truthful reporting.
However, these benefits must be balanced against the greater complexity of equi-
librium behavior, which involves bid shading according to a non-trivial formula,
as opposed to the truthful bidding supported in the belief survey auction. In
addition, solving for an explicit equilibrium requires additional structure on the
type space, such as that the buyers do not get additional information about one
another’s values in addition to their own values and differentiability of the joint
distribution. In contrast, the belief survey auction is characterized for much more
general type spaces in which buyers can learn much more about others’ values
than just the information contained in their own value. Thus, there are trade-offs
between these two mechanisms along the dimensions of complexity and generality.

A feature that these models have in common, however, is that they both posit
a designer with a relatively coarse notion of optimality. In Chapter 1, the seller
simply wishes to maximize the minimum possible extraction ratio, whereas in
Chapter 2, the seller wants to guarantee himself the revenue from a second-price

auction with an optimally chosen reserve price. For each objective, there is no

8



assertion that the mechanisms constructed are uniquely optimal. In fact, there
are many mechanisms that always generate as much revenue as the belief survey
and revenue sharing auctions and even generate strictly greater revenue in some
type spaces. All complexity concerns aside, we would expect the seller to prefer
such mechanisms that dominate uniformly. Indeed, the first best outcome for the
seller would be to recover the true type space and then implement the mechanism
that maximizes revenue conditional on the true environment. Under weak imple-
mentation concepts, such an outcome is easy to achieve using old folk arguments
from the complete information mechanism design literature. For example, each
bidder announces a type space, and if the report is unanimous, the seller imple-
ments the revenue maximizing mechanism. Otherwise, no one receives the good
and all bidders have to pay a large fine to the seller. This mechanism does sup-
port truthful reporting of the type space as an equilibrium, but it also supports
other non-truthful equilibria in which bidders coordinate on a false report. This
begs the question, are there mechanisms in which all equilibria involve truthful
revelation of the type space, at minimal cost to the seller’s goals?

This is precisely the subject of Chapter 3. The setting is generalized to private-
good allocation problems with interdependent preferences, of which the single-
unit, private-value, and quasilinear environments of Chapters 1 and 2 are special
cases. The designer identifies a collection of type spaces that are considered to be
possible, and for each type space in the collection specifies a mechanism that the
designer would like to implement conditional on the given type space being the
correct description of beliefs. Such a specification is referred to as a mechanism
mapping. This formulation implicitly allows the designer to have diverse objec-
tives that motivate the choice of mechanism for each type space. The goal is to

find a single uniform mechanism which will be “close” to the desired mechanism
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on each given type space. Closeness is formalized with a notion of strategic equiv-
alence of mechanisms, in which two mechanisms are equivalent for a given type
space and up to a certain distance if it is possible to identify rationalizable mes-
sages under one mechanism with rationalizable messages in the other mechanism
such that (i) lotteries induced by identified message profiles are within the given
distance, and (ii) the difference in the lottery between two rationalizable message
profiles in one mechanism is proportional to the difference in the lottery between
identified message profiles in the other mechanism. This definition of equivalence
allows the designer to augment the desired mechanism by adding messages and
slightly perturbing outcomes in order to elicit the type space. However, the addi-
tional messages must not be rationalizable, and the perturbation should not affect
preferences over rationalizable message profiles. Both the model and the solution
concept draw heavily on a recent paper by Bergemann, Morris, and Takahashi
(2011) which studies belief extraction, though not for the purpose of implementa-
tion. If it is possible to find a uniform mechanism which is strategically equivalent
to the desired mechanism on each type space at arbitrarily small distances, I will
say that the mechanism mapping is uniformly virtually implementable.

There are some intuitive and unavoidable constraints on which kinds of mech-
anism mappings can be implemented in this manner. For example, if two type
spaces are identical except for different names for the types, then no single mecha-
nism can guarantee that agents from the different type spaces will separate them-
selves and effectively play non-strategically equivalent mechanisms. The chapter
shows that in order for a mechanism mapping to be uniformly virtually imple-
mentable, it must satisfy a condition which I call local preference measurability.
As is shown by Bergemann et al., a type in a type space can be identified with

a hierarchy of preferences, which consists of that type’s unconditional preference
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over outcomes, the type’s preference conditional on others’” unconditional pref-
erences, etc. Local preference measurability of a mechanism mapping requires
that if two type spaces have subsets of types which have the same higher-order
preferences, then the desired mechanisms must be strategically equivalent on the
overlap. Local preference measurability roughly corresponds to a measurability
condition identified by Abreu and Matsushima (1992b), which says that two types
cannot be strictly incentivized to separate themselves if they have the same higher-
order preferences. In addition to being necessary, local preference measurability
is also a sufficient condition for uniform virtual implementability as long as it is
possible to punish players with some undesirable and state-independent outcome,
as in the quasilinear setting of Chapters 1 and 2. This result has implications for
the revenue maximization problems discussed previously. In particular, Chapter
3 shows that it is always possible for the seller to implement the revenue maxi-
mizing mechanism conditional on the smallest belief closed subspace of the true
type space at an arbitrarily small cost. However, the uniform equivalent mecha-
nism constructed in Chapter 3 is quite complicated and requires players to report
their entire hierarchy of higher-order preferences. As such, this result should be
interpreted as a benchmark of what the designer can accomplish with arbitrarily
complex mechanisms.

To sum up, these chapters provide complementary approaches to mechanism
design when the designer does not possess information that is common knowledge
among the agents. If the designer is willing to use arbitrarily complicated mech-
anisms, then subject to the necessary condition of local preference measurability,
it is possible to extract the common knowledge of the agents and use this to im-
plement any desired mechanism. On the other hand, if the designer uses a weaker

notion of optimality in the form of optimal approximation of simple benchmarks,
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then simpler mechanisms are also optimal. In the context of revenue maximiza-
tion in the single-good private-value allocation problem of Chapters 1 and 2, the
seller can achieve substantial performance guarantees with mechanisms that only
extract as much information as required to implement optimal reserve prices.
This dissertation enhances our understanding of belief extraction in mecha-
nism design, but there remain many important open questions. The chapters all
rely on the private-good structure, that an allocation can be taken away from
one agent while leaving others’ allocations and preferences unchanged. In many
economically important settings, there is a public aspect to the good in that
the allocation must be received by all of the agents or by none of them. Also,
the current results rely on the existence of some state-independent punishment
outcome, such as not receiving an allocation and paying a fine. It remains to
be seen what kind of implementation results are possible when the private-good
and state-independent punishment assumptions are relaxed. Additionally, I have
highlighted the variation in complexity of the mechanisms constructed in the dif-
ferent chapters. Complexity has been evaluated in a purely subjective manner,
and there are many different notions that one could use. For example, there is
the complexity of the message space, the complexity of describing equilibrium
behavior, or even the complexity of the logic behind equilibrium. Ideally, these
notions should be given a formal description and explicitly incorporated into the
designer’s preferences. Finally, the result of Chapter 3 gives sufficient conditions
under which a mechanism mapping can be virtually implemented, but it does not
provide a more general characterization of which social choice functions can be
virtually implemented as in Abreu and Matsushima (1992b). I hope to revisit

these topics in future work.
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Chapter 2

Surveying and selling:
Belief and surplus extraction in

auctions

2.1 Introduction

2.1.1 Why survey?

Consider a small municipality that is replacing a public school building. The
replacement of schools is generally a rare event, with the average age of public
schools in the U.S. being 42 years.! As such, it is reasonable to suppose that mu-
nicipal officials do not have great expertise in assessing construction costs. On the
other hand, the firms that bid for the contract are likely to have detailed knowl-
edge of one another’s costs and capabilities. Is it possible for the municipality to
get the contractors to truthfully reveal what they know about one another’s costs,

even though the information they reveal will influence the award?

! According to the National Center for Education Statistics, as of 1999.
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The elicitation of potential buyers’ opinions by a seller is more than just a
theoretical possibility. After the use of auctions for allocating radio spectrum was
authorized by the U.S. Congress, the Federal Communications Commission (FCC)
elicited feedback on its proposed rules from potential bidders and industry experts.
The FCC received “written comments from 222 parties and reply comments from
169 parties” (FCC, 1997, p. 9). Such feedback was no doubt crucial to gauging
the welfare effects of the new mechanism. The FCC does not specify when and
how it incorporated this feedback into the auction design, but surely the responses
of the interested parties were influenced by their strategic concerns vis-a-vis the
ultimate allocation and costs of licenses.

In this chapter, I will consider such situations, in which the seller of a good is
uninformed about demand, whereas the potential buyers are well-informed. By
well-informed, I mean that each agent knows their own private valuation for the
good. In addition, they have a belief about others’ values which is derived from
a common prior. The buyers’ private valuations and beliefs can be thought of as
being induced by informative signals, with the common prior corresponding to the
ex-ante distribution over the signals. The set of signals together with the prior
specify a type space, where a buyer’s “type” is precisely the realized signal.? The
seller could greatly benefit from knowing the type space: at the very least, such
knowledge could facilitate the selection of a revenue enhancing reserve price, and
in particular cases, the seller can even use variation in bidders’ beliefs to extract
all of the potential surplus as revenue. However, the seller in my model does not

know the type space, and therefore he cannot build such detail-dependent features

2 Aside from requiring the common prior and that the set of types is finite (for tractability), I
impose no additional restrictions on the type space. The set of possible environments is therefore
quite general, and in fact includes type spaces for which there is no known characterization of
the revenue maximizing Bayesian mechanism. See Farinha Luz (2013) for probably the most
general characterization to date.
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directly into the mechanism. Moreover the seller only interacts with the buyers
after their types have been realized, and thus cannot easily incentivize them to
reveal the prior. The remaining option, which the seller takes advantage of, is to
use a mechanism that determines the allocation and transfers while simultaneously
eliciting the buyers’ interim beliefs; i.e., their beliefs after they learn their types
but without knowing others’ types. In this way, the outcome of the mechanism can
be made to depend on the true type space. The buyers are of course aware of the
effects of their reports, and will take advantage of any opportunity to misreport
in order to favorably influence the outcome of the mechanism.

Given such large uncertainty about the type space, it is natural for the seller
to use a worst-case criterion: the seller seeks a mechanism that will perform well
irrespective of the true distribution of values and beliefs. Since it is possible for
the buyers’ valuations to be arbitrarily small, every mechanism has zero expected
revenue in the worst-case. As a result, worst-case expected revenue is not a
useful criterion to distinguish between mechanisms. Instead, I posit that the
seller evaluates the performance of a mechanism by its expected revenue relative
to the expected surplus that could be generated by allocating the good efficiently.
I term this metric the extraction ratio: the ratio of expected revenue to expected
efficient surplus. In addition, the seller makes no presumption that the buyers
will behave according to his preferred equilibrium, so he evaluates a mechanism
by its lowest extraction ratio over all type spaces and over all equilibria. Similar
criteria have been considered in the literature, most notably by Neeman (2003)
and by the computer science literature on mechanism design, surveyed in Hartline
(2012). I will revisit the connections with these and other papers below and in

some detail. By using a mechanism that maximizes the minimum extraction ratio,
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the seller will be guaranteed at least a minimum share of the expected efficient

surplus, regardless of the true distribution of buyers’ values and beliefs.

2.1.2 Overview of main results

My main result is that there is a simple class of mechanisms that the seller can use
to achieve the max min extraction ratio. Moreover, this max min extraction ratio
is economically substantial, as I will elaborate upon shortly. These mechanisms
are essentially modified second-price sealed-bid auctions, in which the buyers si-
multaneously submit bids as well as respond to a survey of their beliefs about the
values of others. The high bidder will be “offered” the good at a price determined
using others’ reports and ultimately receives the good if this price is less than
the high bid. Because each buyer’s bid does not affect the price of the good, but
only whether or not the good is received at an exogenously chosen price, truthful
bidding is a weakly dominant strategy. A slight perturbation makes bidding one’s
value strictly dominant. Also, given that others’ will bid truthfully, buyers can
be incentivized to report their true beliefs about others’ values using a scoring
rule. The use of scoring rules to elicit beliefs in mechanism design has also been
considered by Azar, Chen, and Micali (2012). To calculate the price offered to
the high bidder, the seller uses one of the losing bidders’ survey reports as a “con-
sultation” about the conditional distribution of the highest value. This consult,
together with the second-highest bid, is used to compute an optimal price to of-
fer the winner. I give these mechanisms the descriptive moniker of belief survey
auctions (BSA), since the seller uses a survey of losing bidders’ beliefs to set the

winner’s price.

16



I derive the minimum extraction ratio for the BSA, and I show that no other
mechanism could achieve a greater extraction ratio in the worst-case. The strict
incentives to bid one’s value and report beliefs truthfully can be provided at
arbitrarily small cost to the extraction ratio, so the BSA wirtually achieves the
max min. It turns out that if the support of valuations is unbounded, the max min
extraction ratio is zero. The reason is that there are distributions of values that
have arbitrarily large expected efficient surplus but also hold the seller to finite
expected revenue. However, these type spaces are extreme in that they have a lot
of mass in the tail of the distribution of the highest value. A natural assumption
is that the support of the highest value is bounded by a constant multiple of the
expected efficient surplus, effectively limiting the dispersion of the highest value
around its mean. I study how the maxmin extraction ratio changes with the
bound on the dispersion of values. For any bound, the max min extraction ratio
is strictly positive, and even for very generous bounds on values, the max min
is economically substantial. As an example, if buyers’ values cannot be more
than 10 times the expected efficient surplus, then the seller is guaranteed an
extraction ratio of at least 20%. If values can be 1,000 times larger, the seller is
still guaranteed a 10% extraction ratio.

It is particularly interesting that the seller is able to achieve these bounds
with such simple mechanisms. The seller never recovers the prior distribution
over values, but rather sets reserve prices using bidders’ interim beliefs. As I will
argue below, this is actually a virtue of the mechanism; bidders’ interim beliefs
are weakly more informative than the prior, and thus allow the seller to set better
reserve prices at the interim stage. Moreover, the seller does not even need to

elicit beliefs about the entire distribution of buyers’ values; it is sufficient for the
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seller to ask bidders the conditional distribution of the top two valuations of other
bidders and the number of bidders who tie for the highest value.

In addition to guaranteeing the seller a minimum extraction ratio, the BSA
has desirable revenue properties away from the worst case. Aside from the small
cost of providing strict incentives, the BSA guarantees the seller at least the
revenue of a second-price auction with an optimal anonymous reserve price, i.e.,
a uniform reserve price for all bidders that maximizes expected revenue. As such,
the BSA virtually maximizes expected revenue over all Bayesian mechanisms when
the distribution of values is independent, symmetric, and regular, as in Myerson
(1981).

A potential concern with the max min extraction ratio is that the seller seems
to be indifferent between outcomes with very different expected revenues, as long
as the expected efficient surplus varies proportionally. However, no such compar-
isons are necessary to justify the use of the BSA. An alternative way to model
the seller’s preference over mechanisms is the following conditional ordering: the
seller prefers greater worst-case expected revenue conditional on the level of the
expected efficient surplus, but he will not compare revenue outcomes between type
spaces in which the social value of the good varies. As a result, one mechanism
is preferred to another only if it has greater worst-case expected revenue condi-
tional on every possible level of the expected efficient surplus. Observe that this
ranking is only a partial order on the set of mechanisms, because the seller does
not compare mechanisms whose worst-case revenue ranking switches depending
on the surplus level. It turns out that the BSA is maximal with respect to this
partial ordering: if the seller wishes to maximize the minimum expected revenue
conditional on a particular level of the expected efficient surplus, then he can

select no better mechanism than the BSA.

18



2.1.3 The logic behind the BSA

Here I will give a brief summary of how my results are obtained. The BSA offers
the good to the high bidder, so on average, the winner’s valuation is drawn from
the distribution of the highest value among the n bidders. If the seller knew the
prior distribution over values, he could set the reserve price which maximizes rev-
enue without knowing the identity of the winner, which is the optimal anonymous
reserve price. By assumption, the seller does not know the prior distribution over
values, but the reports of the losing bidders allow the seller to set reserve prices
conditional on more detailed information. Specifically, the seller learns the distri-
bution of the winner’s value conditional on (1) the winner not being the bidder
who was consulted, (2) the realization of the second-highest bid, and (3) any ex-
tra information the consulted bidder has about the distribution, as encoded in
his type. Conditional on (1)-(3), the seller can always set a reserve price that
generates weakly more revenue than could be achieved with an optimally chosen
anonymous reserve price. Thus, the BSA performs better on average than any
second-price auction with an anonymous reserve, in spite of the fact that the seller
never recovers the prior nor does he know the optimal anonymous reserve price.
There is an analogy to be made with third-degree price discrimination, in
which a monopolist receives information that divides a market into segments. If
the monopolist can set different prices in different segments, then this information
must be weakly revenue increasing, since it is always feasible to set the optimal
uniform price. A similar property holds in the auction setting. More informative
reports by losing bidders allows the seller to set better reserve prices, and hence
the worst-case environments for the BSA are ones in which (1)-(3) are minimally

informative. These type spaces exhibit the property that bidders get no infor-
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mation beyond their private values, which minimizes the informativeness of (3).
Moreover, the worst-case type spaces are lopsided, in the sense that at any time
there is only one “serious” bidder who submits the high bid, and the other bidders
know that they will not win, which minimizes the learning from (1) and (2). In
a sense, this reduces the seller’s problem to designing a mechanism for selling to
a single serious buyer. Even so, multiple bidders will participate in the auction,
and their reports are used by the seller to set an optimal reserve price for that
single buyer. Finally, I derive the distribution for the serious bidder’s value that
minimizes revenue, subject to a given level of the efficient surplus.

With additional restrictions on the environment, the seller can achieve the
same goals with mechanisms that are even simpler. Throughout the analysis,
careful attention is paid to the possibility of multiple bidders having the same
valuation, so that the winner is determined by a tie break. The tie break induces
a selection effect: conditional on winning the auction, the winner is less likely to
have a valuation at which ties are likely to have occurred. For this reason, the seller
must survey bidders’ beliefs about the likelihood of ties. One might think of ties
as being a non-generic phenomenon, for example if values are drawn from a non-
atomic distribution. If attention is restricted to type spaces in which ties do not
occur with positive probability, the conditional distribution of the high bidder’s
value can be calculated much more simply. Also, as mentioned in the previous
section, the seller elicits the buyers’ beliefs about the top two valuations among
other buyers. By leveraging the information about the highest value contained
in the second-highest value, the BSA always perform better than a second-price
auction with an optimal reserve price. However, if the seller is only concerned
about worst-case extraction ratio, then the same bounds can be achieved with a

mechanism that only elicits beliefs about the highest value of others.
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2.1.4 Related literature

The results described above have a tight connection to the work of Neeman (2003),
who studies the worst-case extraction ratio of the second-price auction. Neeman
considers a seller who has three different levels of sophistication with regard to
reservation prices. At the most basic level, the seller cannot set any reserve price.
At the next level, the seller can use a fixed reserve price that is independent of
the true type space. At the highest level of sophistication, the seller knows the
distribution of values and is able to set the optimal anonymous reserve price for
the true type space, although the seller is not sufficiently sophisticated to design
and run the optimal auction. It is this last case that is the most relevant to the
present chapter. For this setting, Neeman derives bounds on the extraction ratio
that are equal to my own, albeit with a slightly different parametrization of the
set of type spaces. Indeed, since the BSA always generates as much revenue as a
second-price auction with an anonymous reserve, and since the revenue of these
two mechanisms coincides on the worst-case type spaces derived by Neeman, it is
necessarily the case that both have the same minimum extraction ratio. However,
I will give a direct proof of worst-case type spaces for the BSA, to better illuminate
the connection with third-degree price discrimination described above.

Another paper which is closely related is that of Azar, Chen, and Micali (2012).
They also consider a seller who is uninformed about the type space while the agents
are well-informed, and they look for general mechanisms that achieve a favorable
worst-case performance relative to the benchmark of maximum revenue in a dom-
inant strategy ex-post individually rational mechanism. Similar to the present
work, they extract buyers’ beliefs using scoring rules. They consider a restricted

class of environments, for which the gap between first-order beliefs and the prior
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distribution is relatively small.® By eliciting the buyers’ first-order beliefs, the
seller is able to recover a truncated view of the prior, and this is used as an input
into a dominant strategy mechanism. In comparison, the present work is in much
more general environments, in which buyers can have arbitrary conditional beliefs
about the distribution of values. As such, very different arguments are required
to arrive at my results. Also, I use a different benchmark which does not assume
a restriction to a particular implementation concept. Nonetheless, to achieve the
max min extraction ratio, it is sufficient for the seller to use simple mechanisms
that only extract first-order beliefs about statistics of others’ values.

More broadly, my work is part of the large literature on robust mechanism
design (Bergemann and Morris, 2012b, provide an overview). At least since the
critique of Wilson (1987), the mechanism design literature has held as a desider-
atum that mechanisms should be detail-free, in the sense that the rules of the
game should not vary with fine details of the environment. This is in contrast
to classical auction design, e.g., Myerson (1981) and Crémer and McLean (1988),
in which the mechanism can be tailored to specific and highly structured type
spaces. A more recent contribution of Farinha Luz (2013) considers very general
type spaces but still allows the mechanism to depend on the type space.

The robust mechanism design literature has explored various ways to opera-
tionalize the Wilson critique. Much of the literature focuses on more stringent
implementation concepts. For example, Bergemann and Morris (2009a, 2011)
require that a particular social choice function be implemented regardless of the

beliefs of the agents. I consider auction formats that are compatible with a slightly

3Specifically, they consider environments in which bidders’ beliefs are derived from a common
prior in the following manner: each bidder is associated with a partition of others’ values, and
bidders learn their own value and the cell of the partition containing other bidders’ values. The
first-order beliefs of different types of the same bidder have disjoint supports, and beliefs are
always proportional to the prior distribution on their support.
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different interpretation of the detail-free criterion: the mechanisms that the unin-
formed seller can use are detail-free in that the distribution of values and beliefs
of the agents cannot be hard-wired into the mechanism. However, the outcome
of the mechanism can depend on details of the environment through equilibrium
behavior, if these details are known to the agents.

Other authors have considered criteria akin to max min extraction ratio. As
discussed above, the closest such related work is that of Neeman (2003). Berge-
mann and Schlag (2011) consider a monopolist facing unknown demand from a
single buyer, and characterize the pricing rule that achieves min max regret, which
is the absolute difference between expected revenue and expected efficient surplus.
Chassang (2013) studies dynamic incentive contracts, and solves for contracts that
achieve a target that is analogous to max min extraction ratio. Carroll (2012) also
considers max min preferences over contracts in a static setting. Chung and Ely
(2007) give a foundation for dominant strategy mechanisms by positing a seller
with worst-case preferences and who knows the distribution of private values but
not the beliefs of the agents, which may be inconsistent with a common prior.

The criterion of max min extraction ratio is similar to the competitive ratios
studied by computer scientists (see Hartline (2012) for a comprehensive survey).
This literature looks at worst-case revenue ratios, with a variety of benchmarks in
the denominator. The benchmark is often tailored to a specific solution concept,
such as maximum revenue over all dominant strategy mechanisms. The efficient
surplus is in a sense a more demanding benchmark, as it does not presume a
restriction to a particular class of mechanisms. An assumption throughout some
of the literature is that mechanisms can only elicit one-dimensional bids, which
precludes the belief extraction approach of the present model. Chawla, Hartline,

and Kleinberg (2007) and Hartline and Roughgarden (2009) study worst-case
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competitive ratios for the second-price auction with optimal reserve prices, which
presumes that the seller knows the prior. Goldberg et al. (2004) and Goldberg
and Hartline (2003) look at mechanisms which do not depend on the prior, with
a benchmark which is the revenue the seller could generate selling £ > 2 units of
the good at the kth highest price. Such a benchmark could be zero in cases where
the efficient surplus is positive.

Others have considered how a seller can learn about demand. Baliga and
Vohra (2003) and Segal (2003) consider a seller who forecasts the distribution
of values using past realizations. In contrast, I will look at a situation where
the seller asks agents for their beliefs, rather than dynamic learning based on
reported values. Caillaud and Robert (2005) construct detail-free mechanisms
that use agents’ beliefs to partially implement the optimal auction of Myerson
(1981). Choi and Kim (1999) consider belief extraction in the context a public
goods problem, but assume the existence of an ex-ante stage at which the seller
can extract prior beliefs, before the realization of agents’ private information.

Finally, this work is part of my broader investigation into mechanisms that
harness the agents’ beliefs about the environment, to make up for a lack of knowl-
edge on the part of the designer. I see the present model as a midpoint in the
trade-off between the simplicity of the mechanism and the strength of the opti-
mality criterion. In Chapter 3, I will investigate the limits of how much the seller
could learn about the environment. This relates to a classic “folk argument” in
the mechanism design literature, that if a common prior were known to the agents
and not to the designer, then the designer could recover the prior for free (Berge-
mann and Morris, 2012a), in the sense that the need to recover the prior does not
restrict the social choice functions that the seller can implement once the prior is

known. I show that the designer can indeed extract the prior, without compro-
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mising on how the prior will be used, by using a mechanism which elicits bidders’
infinite hierarchy of beliefs. While complexity is not explicitly modeled, it is safe
to say that this mechanism would be much more challenging to implement than
the BSA. At the other end of the spectrum, Chapter 2 looks at mechanisms in
which the seller runs a second-price auction and simply asks each bidder to sug-
gest a reserve price for the other bidders. The seller incentivizes truth-telling by
sharing revenue generated through a bidder’s suggestion. In more structured type
spaces, this mechanism has a natural equilibrium in which bids are close to values,
and bidders suggest reserve prices that are approximately optimal. I revisit the
broader agenda in Section 5.

The rest of this chapter is organized as follows. In Section 2.2, I describe the
model and the seller’s mechanism design problem. In Section 2.3, I present a
simple example that illustrates some of the main ideas of the chapter. Section 2.4
presents the main results. Section 2.5 is a discussion, and Section 2.6 concludes.

Omitted proofs appear at the end of the chapter.

2.2 Model

There are n potential buyers for a single unit of a private good, indexed by i € N =
{1,...,n}. T adopt the usual convention that —i = {j € N|j # i}, and vectors
xs denotes the sub-vector of x containing indices in S, e.g., t = (¢;,t_;) € T is
a profile of types. For real vectors z, z(!) denotes the highest value in z, 2?
denotes the second-highest value, and z(1? is the ordered pair of the highest and
second-highest values. If z only has a single coordinate, then z(? = —oc0.

The values and beliefs of the bidders are modeled with the language of type

spaces. In particular, there is a finite set of types T' = X;cnT; and a joint distri-

25



bution 7 € A(T'). The notation A(X) denotes the set of probability measures on

X with finite support. Each type t; € T; is associated with a private value:
oi(t;) € R.

Together, a type space is a triple T = (T, 7, ¢). 1 will write 7(t_;|t;) for the
conditional distribution of types given t;, and m;(¢;) for the marginal distribution
on T;. For each type space T, the expected surplus generated if the good were

allocated efficiently is:

S(T) = oV (t)m(t). (2.1)

I write v and v for smallest and largest values in the support of the measure over
values induced by 7 under the mapping ¢.

A type space is symmetric if (T}, ¢;) is the same for all bidders, and 7 is
exchangeable in the types, ie., 7(ti,...,t,) = 7(tya),--.,tym)) where ¢ is a
permutation of N. A payoff type spaces has the property that ‘gzﬁi_ 1(%)} <1 for
all v; € R,. In other words, each valuation is associated with at most one type, so
all bidders with a given valuation have the same conditional beliefs about other
bidders’ types as well as other bidders’ valuations. I will say that a type space
is lopsided if with probability one, at most one bidder has a valuation above the
minimum of the support. These type spaces are lopsided in the sense that the
winner’s valuation tends to be much larger than the second-highest value.

The seller must design an auction for the sale of the good. A mechanism
consists of a measurable space of messages M; for each player, with M = X;cnM;,

and mappings ¢ : M — R™ and p : M — R". The quantity ¢;(m) is the probability
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that agent 7 is allocated the good, and p;(m) is agent i’s net transfer to the seller
when the message profile m is sent. Naturally, ¢;(m) is required to be non-negative
and ), .y ¢i(m) < 1. A mechanism is a triple M = (M, q,p).

A mechanism and a type space together define a Bayesian game, in which each
player’s strategy set is ¥;(M, T) = {o; : T; — A(M;)}. 1 write o;(dm;;t;) for the
probability measure over bidder 7’s messages m; given type t;. For a strategy

profile o € X(M,T) = X;en2;(M,T) and type t; € T;, bidder ¢’s payoff is:

wlot) = Y W(t—z’ﬁi)/eM [6i(t:)qi(m) — pi(m)] o (dm; 1),

t_;€T_;

where o(dm;t) = X;cn0;(dm;;t;) is the product measure on M. A profile o is a

Bayesian Nash equilibrium if:

0; € arg  max Z mi(ti)ui (o), 0-5),t;) .

ey (M, T
i ( )tiETi

I denote by BNE(M, T) the set of all Bayesian Nash equilibria. Note that this
set may be empty for particular choices of (M, T). The revenue of M under a

particular type space 7 and strategy profile o is:

RM,T.0) =) =t / > " pi(m)o(dm;t). (2.2)

teT €M jen

The corresponding extraction ratio is:

R(M’ T7 0-)

BM,T,0) = = g

with the convention that when S =R =0, F = 1.
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The seller’s goal is to find mechanisms that solve:

inf  inf E(WM,T,0). 2.4
W cembian ST 24

The interpretation of this problem is: the seller must select a mechanism M,
following which Nature* will select both the type space 7 and the equilibrium
o € BNE(M,T) to make F as small as possible. If BNE(M, T) is empty, then
our convention is that the infimum is zero. I will refer to the value (2.4) as the
max min extraction ratio.

The formulation of (2.4) is quite demanding: if the seller chooses a mechanism
for which there are multiple equilibria, Nature will select the one with the lowest
extraction ratio. The exposition is simplified by initially allowing the seller to
choose the equilibrium, which permits us to achieve a “partial” max min extraction
ratio. The results will later be strengthened to “full” max min by allowing Nature
to select the equilibrium with the lowest ratio. This terminology is modeled after
the partial and full implementation concepts in mechanism design, although to
be clear, full max min does not require equilibrium uniqueness, but just that the
extraction ratio be maximized in the worst type space and worst equilibrium.
When it is clear which equilibrium is used, I will simply write E(M,T) for the

extraction ratio.

2.3 Example

Let us start by considering a simple example that will illustrate some of the main

ideas. There are two potential buyers ¢ = 1,2, and each buyer could be of type

4Throughout, I use Nature as the personification of all minimization operations beyond the
control of the designer.
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L or type H. Type L thinks the good is worth v, and type H thinks the good is

worth 2v. The distribution of types is given by the following table:

L H
L|1-2p—% | p
H p (0

Relative to the general model, I have assumed that the type space is a sym-
metric and payoff type space and that the support of values is of the form {v, 2v}.
These features are common knowledge among the buyers and the seller. However,
the parameters p, 1, and v are known to the buyers and unknown to the seller.
These assumptions are made for the simplicity of the example, and will be relaxed
for the main results.

The maximum surplus that can be generated by allocating the good efficiently

is:

S=v2(+2p)+1—-2p—1)

=v(1+2p+7).

The seller has to select a mechanism to sell the good which is independent of v, p,
and 1, and therefore independent of S as well. As discussed in the introduction,
the seller is highly uncertain about S, and lacks beliefs about which parameters
are likely to obtain. As a result, the seller compares mechanisms by a worst-case
performance metric which is scale free in .S: the minimum extraction ratio. Our
seller will first pick a mechanism, and then Nature will choose the parameters to
minimize the extraction ratio.

For starters, let us consider what would happen if the seller were to use a

second-price auction. If there is a positive reserve price r > 0, then Nature could
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always select v such that 2v < r. S would be positive, but R = 0 (since the reserve
is greater than the highest value). This is an important observation: introducing
a positive reserve price that is totally unresponsive to the parameters of the model
leads to extremely unfavorable outcomes in the worst-case. With a reserve price

of zero, revenue is:

R=v(2¢y+1—1)

=ov(l+).

Hence, the extraction ratio would be:

149
1+2p+°

Clearly, to minimize the ratio, Nature should make ¢ as small as possible and p
as large as possible, so ¥ = 0 and p = % The resulting extraction ratio is £ = %
Note well that it does not actually matter what level v Nature chooses: The model

is “scale-free” in v.

L|H
Lio]|}
H| Lllo

The second-price auction with no reserve is of course just one mechanism. Let
us consider a simple modification. In addition to accepting bids b;, the seller
canvasses the bidders for what they believe about the distribution of others’ bids.
Each bidder’s response to the survey will be used to set the reserve price only if
that bidder does not win. Specifically, bidders submit a quantity w;, which is the

bidder’s report for the value of v, and a quantity p;, which is the bidder’s reported
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probability that b; = 2v. If bidder 7 has the high bid, or if bids are equal and
¢ wins a uniform tie break, then bidder ¢ will be “offered” the good at a reserve
price r; that only depends on (b;, w;, it;). Moreover, this price is always at least b,.
Thus, bidder ¢ is facing an exogenous price which depends on the other bidder’s
report, and he will receive the good and pay the price as long as b; > r;. As in
the second-price auction, truthful bidding is a weakly dominant strategy: b; = v;.
In the following, I impose that bidders follow this strategy.

Bidders will receive a small side reward for their survey response (w, ;). In

particular, bidder ¢ is paid according to the scoring rule:

(2.5)

9 2
)+ (1 —
€b; (:ui]lbj%i +(1- Mi)ﬂbﬂ:wi - o é = ) .

Given a report w; = v, there is a strict incentive to report p; = Pr(b; = 2v|v;),
and in fact the bidder receives a positive net payment from the seller. Moreover,
any report other than w; = v induces a smaller payoff: if w; # 2v as well, then
the bidder always makes a net transfer to the seller, and if w; = 2v, bidder ¢
only gets paid when b; = 2v, and not when b; = v. Thus, in any equilibrium
in which the buyers bid their values, they must also truthfully report w; = v
and their conditional belief that b; = 2v. Note that the payment is scaled by
b; = v; > 0, so that in expectation, the transfer to bidder i from (2.5) is no more
than e E[v;] < €S.

The seller offers the winner the good at the revenue maximizing price, condi-
tional on the winner being the high bidder and winning any tie breaks, and also
conditional on the loser’s reported beliefs. Suppose bidder ¢ has the high bid and

wins a tie break. Clearly, if the second-highest bid is b; = 2w; = 2v, then the
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seller should set 4’s price at 2v. If b; = v, then the probability of v; = 2v is:

and the conditional probability of v; = v is:

L—py 11-2p—79
3 31—p—2

These formulae exhibit the selection effect of the tie: the “raw” probability of
both players having valuation v is 1 — 1, and one having 2v is u;. But if both
have a low value, bidder ¢ only wins half the time, thus leading to the formulae
above. The optimal price in this case is 2v if p > % and v if p < %.

Thus, Nature has two options. If p < %, then revenue is R; = v(1+ ), and

the extraction ratio is:

which is minimized by making p as large and 1 as small as possible. Hence, Fj is
minimized at p = }l and 1 = 0. At these values, £ = %
If p > #, then the price is always 2v, and revenue is Ry = 2v(2p + 1) and

the extraction ratio (not counting transfers associated with (2.5) is:

The ratio is decreasing in p and . Substituting in p = %, the ratio is still

2

decreasing in 1, so again the optimal values are p = i and ¢ = 0. Hence, E» = 3.
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Taking into account at most €S in lost revenue for each bidder due to (2.5), the

extraction ratio for this mechanism is therefore at least % — 2e.

L|H
L34
H| Lo

Note that this type space is lopsided, in the sense introduction in Section 2.2:
with probability one, at most one bidder has a valuation greater than v, which is
the bottom of the support.

The bottom line is that a simple modification of the second-price auction yields
a substantial improvement in the worst-case extraction ratio from % to % This
mechanism accepts bids and also surveys bidders’ beliefs about the distribution
of others’ bids, with the truthful revelation of this information being incentivized
with a scoring rule. Each bidder’s survey response is used to set the reserve price
when the other bidder wins, which protects the seller from low revenue when there
is a large gap between the highest and second-highest values.

It is worth noting that this mechanism, while a significant improvement over
the second-price auction with no reserve, does not maximize the minimum possible
extraction ratio. It is easy to see that in the worst-case distribution, bidders’
beliefs determine their preferences in the sense of Neeman (2004), since H puts
zero probability on the other bidder being of type H. With a more complicated
mechanism in which the seller elicits second-order beliefs and introduces side-bets,
this property could be exploited to extract all of the efficient surplus. The only
type spaces which do not have this property are those in which types are drawn

independently, for which the extraction ratio is minimized when Pr(v; = 2v) =

V2 — 1, and the max min extraction ratio is approximately 0.7071.
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This wedge is entirely due to the assumption that the support of values is
restricted to being of the form {v,2v}. In the rest of the chapter, I will pursue
a similar analysis but in the more general setting of Section 2.2, without restric-
tions on the number of bidders, on the support of valuations, or on the kinds
of information that bidders might learn about the distribution. It will turn out
that the worst-case type spaces approach a continuous distribution of values, in
contrast to this discrete example. A straightforward generalization of the mecha-
nism described above achieves the max min extraction ratio for this more general

problem.

2.4 Characterizing the maxmin extraction ratio

2.4.1 Preamble

I now proceed to characterize the max min extraction ratio and present simple
mechanisms that achieve the max min. I begin by defining a particular mechanism
that I call the belief survey auction (BSA). This mechanism is a modified second-
price auction in which the seller accepts bids and also elicits reports of first-
order beliefs. A bidder’s reported belief is used to set the reserve price when one
of the other bidders wins the auction. I show that truthful reporting of values
and beliefs is incentive compatible, and in this truthful equilibrium, the seller is
guaranteed a tight lower bound on the extraction ratio. In particular, Lemma
2.1 shows that there is a small subset of type spaces, namely symmetric and
lopsided payoff type spaces, within which the extraction ratio for the BSA can
be minimized. The argument proceeds by taking a given type space as input,

and producing a new symmetric and lopsided payoff type space with the same
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efficient surplus and weakly lower revenue, and hence a lower extraction ratio.
The is a simple intuition for why these type spaces minimize the extraction ratio.
The reports of losing bidders allow the seller to set reserve prices, and the more
informative the losers’ reports are, the better reserves the seller is able to set. In
these worst-case type spaces, bidders’ reports are minimally informative: since
they are payoff type spaces, bidders beliefs contain no information beyond the
value, and symmetry implies that all bidders’ reports are equally informative.
Finally, lopsidedness implies that all losing bidders have the same value, equal the
bottom of the support, so there is just one belief that is used to set the reserve
price.

The extraction ratio of the BSA on such type spaces is completely determined
by the distribution of the highest value. I show that for a given level of revenue,
the efficient surplus is maximized by drawing the highest value from a particular
Pareto distribution. If the support of the distribution were unbounded, the highest
value would have infinite expected value, with the resulting extraction ratio being
zero. As a result, I consider type spaces in which the support of the highest
value is bounded as a constant multiple v of the efficient surplus. This constant
parametrizes the set of type spaces, and for each value of v I characterize the
max min extraction ratio.

In addition, the BSA turns out to be an optimal auction on symmetric and
lopsided payoff type spaces. As a result, no mechanism can have a higher extrac-
tion ratio in the worst case, and the bound on the extraction ratio is tight. This
establishes the partial max min extraction ratio result of Theorem 2.1. Finally, I
show that if the seller rewards bidders for their reported beliefs using a scoring

rule, truthful reporting can be made the unique strategy profile that survives it-
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erated deletion of dominated strategies. Hence, the partial result is strengthened
to full max min in Theorem 2.2.

I note that there are in fact many mechanisms which approach the solution to
(2.4). The mechanisms I consider are notable for their simplicity, but in Section

2.5 T will discuss some alternatives.

2.4.2 The belief survey auction

Our foundation for constructing the BSA is the second-price auction. This auction
has an important property: each bidder is facing a random price at which he could
purchase the good, where the distribution of the price is completely determined
by the strategies of other bidders. In the second-price auction, this price is the
highest bid made by other bidders, b(fl) The own bid b; is the cutoff such that
bidder ¢ would like to purchase the good if the realized price is less than b;. Since
it is optimal to buy the good at any price below the bidder’s value, b, = v; is a
weakly dominant strategy.

The BSA will retain this property. Each buyer submits a bid b;, which is the
cutoff at which they accept a price which is a function of other buyers’ reports.
The point of departure from the second-price auction is that this price is not b(_12 ,
but rather incorporates more information that is elicited from the other bidders.
Specifically, in addition to a bid, each bidder will submit a report of their beliefs
about the joint distribution of (1) the highest bid of others b(_li), (2) the second-
highest bid of others b(i) , and (3) the number & of high bidders amongst the other
players, i.e., the number of players j such that b; = b(_ll) . Naturally, if b(_IZ) > b(_Zi),
then under a truthful report, k¥ = 1 with probability 1. Assuming the report is

truthful, bidder j’s reported beliefs allow the seller to determine an optimal price
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to charge the winning bidder conditional on the winner not being bidder j, and
conditional on the second-highest bid of others. The report of the number of tied
bidders allows the seller to control for the selection effect induced by tie breaking.

This mechanism strikes a balance between the amount of information about
the environment that the seller elicits from bidders and the range of type spaces
in which the mechanism maximizes revenue. In particular, by canvassing beliefs

about b(_z-) in addition to b(l)

% —1)

the seller is able to set reserve prices that are better
on average than the optimal anonymous reserve price in the second-price auction
(Proposition 2.2). If the seller collected less information, namely beliefs about b(_ll)
and the number of high bidders, he could still achieve max min extraction ratio
(Theorems 2.1 and 2.2) but would no longer be guaranteed to do as well as the
second-price auction.

More formally, I define a mechanism MPZ%4 as follows. Each message m;
consists of a bid b; and a distribution p; in A (R?F X N), where R, = [0, 00) and

N is the set of positive integers. For a vector x, let:
W(z) = {i|z; = 1} (2.6)

denote the set of maximal indices in x. The interpretation is that pu; is bidder
i’s reported beliefs about the distribution of b(fi’z) and |W(b_;)|. Thus, M; =
R, x A(R% x N). A typical message will be written m; = (b;, p1;). The allocation
rule is specified as follows. Suppose bidder i submits the highest bid, b; = b™). If
there are ties, the mechanism selects ¢ uniformly from the set of high bidders W (b).

We will then pick a bidder j # ¢ uniformly to calibrate the price 7, <mj, b(z).> for

-J

bidder i, which will be greater than b = b0 If b, > r, <mj,b(23), bidder i

wins the good and pays r; (mj, b(_2])> Otherwise, the good remains unallocated.
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Hence:

BSA . 1 L
S O ;Hbizrj(mj,b@;y

1 1
BSA(, \ _ )
P (m) = W (b)|n—1 ;Hb@Zm (mj,b(f;-)r] (m]’ b—J) ’

where I~ is the indicator function, equal to one if condition C is met and zero
otherwise. The price r; (mj, b(_2j)) in fact does not depend on m; when i is allocated
the good, since b; > b . Thus, bidding one’s value is a weakly dominant strategy
and for now I impose that this occurs in equilibrium.

Also, note that bidder ¢’s report of u; has no effect on any price r; (mj, b(_2j)>
when bidder j # i is consulted, nor does it affect whether or not i is offered the
good at any price. Hence, any report of u; is incentive compatible. I consider the

“truth-telling” equilibrium in which bidders report:

1 (v(ff), k) = 3 w(t_ilt:).

{t—i (b(jf) (t*i)zv(jf) 7 }

[W(o—i(t—s))=k
In plain language, bidders report the conditional joint distribution of the first

two order statistics of others’ bids, and the number of high bidders among the
other players. We will subsequently see that this strategy can be made the unique
equilibrium, for any 7, at an arbitrarily small cost to the extraction ratio.

I still have to specify the prices that bidders are offered. What I would like to
implement is a “monopoly” price with respect to the conditional distribution of
the winner’s value when bidder j is consulted. Each bidder reports their beliefs
t; conditional on ¢;, but the seller only consults bidder j in particular situations,

namely when j is not a high bidder or when j is a high bidder but loses a tie
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break. Hence, p; is not the distribution of (v(_lj’-z), ]W(v,j)o conditional on j
being consulted. Rather, the mechanism takes into account the fact that v(j]) > b;
and that 7 must have lost any and all tie breaks. Finally, since the price can depend
on any information from losing bidders, the mechanism additionally uses the fact
that v(_lj) > b(_2]) As previously discussed, by conditioning on the second-highest
bid of —j, the seller makes sure that the auction generates weakly greater revenue
than a second-price auction with the optimal reserve price. These computations
result in an upper cumulative conditional distribution of the winner’s value when

J is consulted, which is:

k
2 1,2
G (r;mj,b(—g)-> = § ’ Tl (v(_j ),k> . @7
{u“z?) k fv(_lj?z max{nb(?)}’} bj=v_;
-3 vg;:b(f]}

This is the probability that the winner’s value is at least r, conditional on bidder j
being consulted and on b(_QJ) The price induced by bidder j’s report is a monopoly

price with respect to this distribution:

—J

T (mj,b(_QJ)») € arg maxr G, (r;mj,b(2)> ) (2.8)

Note that r; (mj, b(_2])> is always at least b(?), since G; <r; mj, b(_?) is constant for

r<b® = max{bj, bg)}

2.4.3 Worst-case extraction ratio for the BSA

In this section, I characterize the minimum extraction ratio and the minimizing
type spaces for the BSA under the truth-telling equilibrium. I will give an informal

argument, with a rigorous proof appearing at the end of the chapter.
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The reports of the losing bidders contain information that the seller uses to

optimally set the winner’s price. In particular, the seller conditions on:

(1) bidder j not being offered the good, i.e., v(!) > v; and j loses any tie breaks;

(2).

(2) the winner’s value being greater than b; = v; and b(_2j) = v

(3) the consulted bidder j's realized type being ¢;.

These three pieces of information are incorporated into G, and the optimized
reserve price ;.

Note that the distribution of v(_lj) conditioning on (1)-(3) will on average be
the distribution of v(_lj?, given that j is not being offered the good, which is just
(1). The fact that j is not offered the good means that v(f]) > v; and j loses

any tie breaks. This average distribution does not condition on the fact that v;

and v@ have particular realized values b; and b(f},

; respectively, and it does not

incorporate the additional information contained in ¢;.

The conditioning of the reserve price on (1)-(3) facilitates a kind of monopoly
price discrimination when selling to the high bidder. We could view the distribu-
tion of the highest value as being an aggregate demand curve. Instead of having
to a single price for the entire market, the seller sees demand broken up into pieces
conditional on (1)-(3). Such price discrimination is always beneficial to the seller,
since the seller could ignore the extra information and set uniform prices. Hence,
it is weakly worse for the seller to have less information, which is when b;, b(f;,
and ¢; are less informative about v(.

Given a particular type space 7 with S(7) = S, the seller generally learns
more from (1)-(3) than from just (1). However, it is possible to find another type
space 7' in which the distribution of v conditional on (1) is the same, but in

which the seller learns nothing from (2) and (3). This alternative type space T’
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has the same efficient surplus, but revenue must be weakly lower, since the seller
does not benefit by setting discriminatory reserve prices based on (2) and (3).
Hence, the extraction ratio is lower as well.

How is this type space obtained? First, if bidders have more than one type ¢;
associated with a particular realization v;, then 7" can be defined so that these
types are effectively merged. In other words, bidder j’s types t; € gbj_l(vj) are
replaced with a single type, so that bidder j only learns that he has one of the
types such that ¢,(t;) = v;. As a result, 7' is a payoff type space with the same
marginal distribution over values as 7. This transformation makes bidder j’s

report p; weakly less informative. Second, the realized values b; and b(_2])

are also
informative. We can modify the type space so that every bidder except the winner
has the minimum valuation in the support v, meaning the type space is lopsided.
Thus, the losing bidders’ values are completely uninformative as lower bounds on
the winner’s valuation. Finally, there may be asymmetries wherein one bidder’s
losing report is on average more informative than others’. We can “symmetrize”

the distribution so that all bidders’ losing reports are equally informative. This

is formalized in the following:

Lemma 2.1 (Worst-case type spaces). For any T, there exists a symmetric and

lopsided payoff type space T' such that:
E (MBSA, 7—/) S E (MBSA, 7-) )

Any type space within the class described in Lemma 2.1 is of the following
form: pick one bidder i € N uniformly, and set v; = v for j # 4. Bidder i’s
value is drawn from the distribution F € A(R,), which is the unconditional

distribution of v¥). Losing bidders j always report the conditional belief that
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’U(_lj) ~ FM  and b = b(_2j) = v. The reserve price r* is a solution to:

maxr G(l)(r),
r>0

where GV (r) = 1 — limy, F(v) is the probability of the offered price of r
being “accepted” by the high bidder, when the bidder buys whenever indifferent.
Revenue R(T) is simply this maximum.

The spirit of Lemma 2.1 is that holding fixed the expected efficient surplus,
there is a certain class of type spaces within which revenue can be minimized.
It is now instructive to reverse the question: suppose we wanted to maintain
R(T) < R. Which distributions F'") will maximize S(7) subject to this revenue
constraint? It must be that for every r > 0, rGM(r) < R, so F) > 1 — %. On
the other hand, pushing down the cumulative distribution of v(") always increases
E[v®M] = S(T). Thus, the supremum of E(MPZ%4 T) will be attained when F)

is precisely:

0 ifv<R
FOW)=3 1-8 ifR<v<7 , (2.9)
1 ifo>w

where v is the largest valuation in the support, which is a truncated Pareto dis-
tribution with scale R and shape of 1. An example of such a distribution is given

in Figure 2.1.
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Distribution of v when R=1 and y=2

0.81

Pr(v(1)<v)

0.4

Figure 2.1: An example of the lower bound on F") for R = 1 and © = 2. The
efficient surplus in this case is approximately 2.68, and the extraction ratio is
approximately 0.37.

If the distribution of vV is given by (2.9), then the efficient surplus is given

by the Riemann-Stieltjes integral:

S:/ vgdv +6§
v=R U v (2.10)

= R (1 + log(v) — log(R)).

Note that (2.9) implies a mass point on v of size %. It is evident that S'is increasing
without bound in ©. If the distribution of values can be unbounded, then a fixed
level of revenue is consistent with arbitrarily large efficient surplus. However, this
requires putting a lot of mass on extremely large valuations, far from the efficient

surplus. It is natural to ask how the extraction ratio behaves when there are limits
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to how dispersed values can be. A simple way to limit dispersion is to require

that values not be too much larger than S. This is formalized in Assumption 2.1:

Assumption 2.1 (Bounded support). The support of values is contained in

[0,vS(T)]"™ for some y > 1.

Let:

T(y) = {T|supp(¢.7) C [0,7S(T)]"},

where ¢, 7 is the pushforward measure on values, i.e., the distribution on values
induced by the distribution 7 and the mapping ¢. Under this assumption, vS and

E can be substituted for 7 and £, so that (2.10) becomes:

E(1 +log(7) — log(E)) = 1. (2.11)

This equation represents an accounting identity. When the highest value is drawn
from (2.9), the expected efficient surplus S must be equal to the Riemann-Stieltjes
integral with respect to (2.9), where 7.5 is the upper limit of the integral. As shown
in the proof of the following proposition, this equation has a unique solution,

denoted E*(7). We have the following:

Proposition 2.1 (min extraction ratio for BSA). For any v > 0, the worst-case
extraction ratio for the BSA under the truth-telling equilibrium when type spaces
are restricted to T(vy) is the unique E*(y) which solves (2.11). This extraction
ratio s attained by type spaces of the form described in Lemma 2.1, with the

distribution of the highest value approaching (2.9).

This concludes the characterization of the worst-case extraction ratio for the

BSA.
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2.4.4 maxmin extraction ratio

In fact, for the worst-case type spaces in which at most one bidder has a positive
value, MPB94 is an optimal auction. On these type spaces, the seller’s problem
is formally equivalent to the selling of a single unit to a single buyer. It is well
known that the optimal mechanism is a posted price, and the reports of the losers
allow the seller to set the optimal price (cf. Riley and Zeckhauser, 1983).

This implies that the lower bound of E*(7) is tight. In general:

sup inf E(M,T)< inf sup E(M,T),
MpTGT(“/) ( ) TeT(v) Mp ( )

since any mechanism that the seller chooses when forced to move first could also
be chosen when moving second, and therefore guarantees at least as large of a
payoff. For many problems, it turns out that the inequality is in fact an equality,
as in the minimax theorems of zero sum games. This is not automatically the
case here since the setup does not satisfy the regularity conditions of the minimax
theorems known to the author.’

However, a solution to the LHS is given by the seller using M”94 and Nature
choosing a type space satisfying the conditions of Lemma 2.1 with v = 0. More-
over, for the RHS, Nature could always use these same type spaces, and the seller
can do no better than with MP54. Hence, the two sides are in fact equal. This

observation, combined with Proposition 2.1 gives us the following:

5Specifically, von Neumann’s minimax theorem only applies to finite domains, and Sion’s
minimax theorem requires the domains to be linear topological spaces. This structure is lacking
on type spaces and mechanisms.
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Theorem 2.1 (Partial max min extraction ratio). The solution to (2.4) restricted
to T € T(v) is no greater than E*(vy). Hence, the BSA under the truth-telling

equilibrium partially solves (2.4).

2.4.5 Characterizing performance

The number E*() gives the max min extraction ratio that the seller is guaranteed
by using the BSA. But is this lower bound economically meaningful? It would be
useful to know that the lower bound guarantees the seller a substantial revenue-
share of the efficient surplus. On the right panel of Figure 2.2, E*() is plotted
for values of vy ranging from 1 to 50. The left hand panel gives E* for six values
of v. We see that E*(vy) is monotonically decreasing, quickly for small -, with
the rate of decrease falling rapidly. For example, going from v = 1.1 to v = 2
entails a decreasing from E* = 0.67 to E* = 0.37, whereas the difference between
v = 100 and v = 1,000 is only 3 percentage points. In the latter case, the
seller is guaranteed at least a 10% revenue-share of the efficient surplus. Even for
~ = 10,000, 000, the seller is guaranteed approximately a 5% revenue-share.

The slow rate of decay of E*(y) can be formalized as follows. Asymptotically:

By =0 (bgl('y)) '

This follows from (2.11), as:

1 *
1 - lim Ty T108(E£7 (7))
7o 1+log(7)
1 *
. Ty T108(E£7(7))
=00 log(7)

Y
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Maxmin extraction ratio as a function of y

0.9
0.8
Y E* (7) 0.7}
1.1 | 0.6656
2 103734 ~
10 | 0.2045 o
100 | 0.1309
1,000 | 0.0977
107 | 0.0497

Figure 2.2: E*(y) for a range of values.

since the expression inside the first limit is equal to 1 for all 7. It is easy to see
that lim.,_,o £*(y) = 0, since if it were bounded away from 0, the left hand side

of (2.11) would blow up. Hence, by L’Hopital’s rule:

1

= 1
lim 50 — lm —— =1,
oo E*l('y) +log(E*(v)) = 14 E*(v)

where the derivative exists because of the implicit function theorem. Since both

limits exist, the limit of the product is equal to the product of the limits, and:

o oy T+ log(E* (7)) =0
o0 log(7) E;(’Y) + log(E*(7))
1
. log(7)
=1
voe B ()’

which proves the result. In sum, E*() goes to zero exponentially slower than the
rate of growth of 7, so even for very generous bounds on the dispersion in values,

the seller will still be guaranteed a substantial share of the efficient surplus.
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Another potential concern is that the type spaces uses to achieve the lower
bound are highly stylized. Symmetry of the type space is not necessary, but what
is necessary is the consequence of the lopsided property, that there is a large gap
between the average highest and second-highest values. In some situations, this
property could be quite natural. In the school construction example from the
introduction, it is possible that there is one dominant contractor that tends to
have the lowest cost, and this asymmetry is common knowledge among the firms.
Nonetheless, in many situations one would not expect to find such a large gap. Is
the extraction ratio in the worst-case radically different from extraction ratios in
the kinds of environments that are more frequently modeled?

Figure 2.3 gives examples of four different distributions over values in which
the gap between highest and second-highest values is modest. Each type space

has a different efficient surplus and consequently different v = %. For example, in

5
the first panel values are independent and uniformly distributed on [0, 1]. With
two bidders, the efficient surplus is 0.67, so v = 1.5. For each of these type
spaces, the extraction ratio the seller obtains with a second-price auction and
the optimally chosen anonymous reserve price is compared to the lower bound
guaranteed by the BSA for the same . In the uniform example, the seller could
set the optimal reserve of 0.5 and obtain the optimal extraction ratio of 0.625.
In contrast, £*(1.5) = 0.4569. The point of these examples is that although the
worst-case type spaces are stylized, the lower bound is not orders of magnitude
different from the extraction ratio on “typical” examples with similar ~.

In fact, there are classes of environments, namely symmetric payoff type spaces
with regular and independent distributions, in which the BSA will implement the

optimal auction. The reason is simply that each bidder will report the indepen-

dent distribution from which other bidders’ values are drawn, and the seller will
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Independent uniform Independent with CDF v

r*=0.50, E=0.625, E*(y)=0.457 r=0.67, E=0.827, E*(y)=0.638
4
1
0 0
0 1 0 1
Independent distributed B(2,5) Truncated bivariate normal
r=0.24, E=0.590, E*(y)=0.321 r*=2.08, E=0.714, E*(y)=0.367
2.4576 0.095
0L
5
0

Figure 2.3: Examples of the extraction ratio on particular type spaces in T(y)
versus F*(vy). For the first three frames, values are i.i.d. and drawn from the
depicted PDF. In the fourth frame, values are correlated and drawn from the
depicted joint PDF. In each case, E* is on the same order of magnitude as the
actual extraction ratio that would obtain with the second-price auction with an
optimal anonymous reserve.

set the winner’s price equal to the maximum of the second-highest bid and the
optimal reserve price, which is where the virtual valuation is zero. More gener-
ally, in any type space the BSA has to generate at least as much revenue as a
second-price auction with an optimal uniform reserve price. The reason is that
the BSA essentially breaks up the seller’s reserve pricing problem into a bunch
of conditional pricing problems. For each of these problems, it is always feasible

for the seller to set the price equal to max {r*, b(Q)}, where r* is an anonymous

reserve price. Hence, the optimal pricing rule for each of these problems must
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generate weakly more revenue than the fixed reserve rule. We have proven the

following:

Proposition 2.2 (Comparison with second-price auction). Ezpected revenue in
the BSA when the seller does not know the prior is weakly greater than expected
revenue of the second-price auction when the seller knows the prior and sets the
optimal anonymous reserve price. If the distribution of values is independent,

symmetric, and reqular, then the BSA is an optimal auction.

The bottom line is that the BSA guarantees the seller a relevant lower bound
on the worst-case extraction ratio, and also does not greatly disadvantage the seller
away from the worst-case. Revenue is always weakly better than in the second-
price auction with anonymous reserve, which is probably the most widely used
auction format in the world and is known to be an optimal auction in benchmark

environments.

2.4.6 Equilibrium uniqueness

In this section, I extend the partial max min result of Theorem 2.1 to full max min.
This is facilitated by simple perturbations of M?%4 that make the truth-telling
equilibrium unique. Specifically, I will construct a mechanism M€ for every € > 0
with the message space M?Z54. This mechanism implements the same allocation
and transfers as MP54 with probability 1 — €, but is perturbed in such a way
that truth-telling is the unique strategy profile that survives iterated deletion of

strictly dominated strategies. In particular, the message space is M€ = MB54,
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and the allocation and payoff rules are:

¢ (m) = (1 = €)¢"*4(m) + e¢' (m),

p(m) = (1= e)p™4(m) + ep' (m) + ep(m),

where ¢*, p', and p? will be defined presently.

Recall that truthful bidding is a weakly dominant strategy of MPS4. The
functions ¢* and p' make it strictly dominant, by adding a small probability
event that each bidder is selected to be offered the good at a price drawn from a
distribution G(r) with positive density g(r) and support equal to R, . Specifically,
define:

q; (m) =

pi(m) =

Since p? will not depend on b; at all, b; = v; is uniquely optimal. This trick is
similar to one used in Bergemann and Morris (2012a).

The second new component of the transfer p? is a modified scoring rule that
rewards bidders for correctly guessing the distribution of (b(_lf), |W(b,1)]) I say
a modified scoring rule, as the transfer is weighted it so that the seller never has

to pay too much in expectation to incentivize bidders to report their beliefs. In

particular:

(L2) ?
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Since bidders report b_; = v_; in equilibrium, by reporting p;, bidder i’s expected

payoff is:

o2 W 2
E| ?(m)|ti]:% ST (ﬂ(—z \;4/( )!))

-1
U,iGRT_‘L_

= (082 W ()

te) s (282 I )) |

so the first-order condition implies (as long as oM > 0) that the type ¢; reports:

ti)
(1)

) and k. There is a unique v_; such that v ;

(09 8) =« (102

for all v = 0, and since bidders

(1,2
must report a distribution, they report the probability of this event accurately as
well. Thus, M€ has a truth-telling as the unique equilibrium for all 7.

Finally, observe that in equilibrium, it must be that:

(e

STy SETAND SR Vo)

t; v,iERZfl
> 5 6wl
>~ =3 oW @n(r)

1
= ——S(T).
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On average, the seller makes such a transfer for each of the n bidders, at a total

cost of at most S(7). Since E[p'(m)] > 0, it will be true that:
E(MS,T) > E(MP54 T — 2.

The results of Proposition 2.1 and Theorem 2.1, together with the fact that M¢
has a unique equilibrium that always has an extraction ratio within 2e of the

truth-telling equilibrium of M?Z%4 imply the following theorem:

Theorem 2.2 (Full maxmin extraction ratio). E*(vy) is the solution to (2.4),

and the mechanisms M€ guarantee the seller an extraction ratio that is at least

E*(y) — 2e.

2.4.7 Conditional preferences

The max min extraction ratio criterion implicitly assumes that the seller compares
expected revenues for different type spaces not one-for-one, but normalized by the
respective expected efficient surpluses. I regard this as reasonable if the seller uses
the expected efficient surplus as the target for revenue. However, the manner in
which the seller compares revenue on type spaces with different surpluses is not
essential to my results.

In this section, I consider a much weaker preference in which the seller does

not compare outcomes across different levels of the efficient surplus. Define:

T(5.7) = {T

5(T)=S } .

supp(¢«m)C[0,7S]™
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Consider the incomplete preference over mechanisms, where mechanism M is
weakly preferred to mechanism M’ (denoted M = M’) if for every (5, 7):

inf inf  R(M,T,0)> inf inf  R(M' T, o). (2.12)

TET(S,y) cEBNE(M,T) T TeT(S,y) cEBNE(M',T)

This preference is a partial ordering, since two mechanisms M and M’ are in-
comparable if (2.12) holds for one (5, 7), but not for (5’,4'). However, M = M’
indicates a strong notion of dominance in that for every efficient surplus, M per-
forms better in terms of worst-case revenue. A mechanism is maximal in the

ordering > if it solves:

sup _ inf inf  R(M,T,0) (2.13)
M TET(S,y) c€BNE(M,T)

for every (.S, ). Denote the solution to this problem by R*(S,v). My next result

is that the mechanisms M€ are virtually maximal according to >:

Proposition 2.3. The solution to (2.13) is R*(S,v) = E*(v)S. For every (S,v):

inf inf R(M*® > (E*(y) — 2¢)S.
TET(8,7) oeBNE(MET) M T,0) 2 (B7(7) = 2¢)

Proof. For the first part, clearly it cannot be that R*(S,~) < E*(v)S, since this

implies that:

<sup inf inf

sup inf inf —R(M’ T.0) < —R<M’ 7.0)

< E* ().
M T o€BNE(M,T) S M TET(Sy) cEBNE(M,T) S )

Moreover, if R*(S,v) > E*(v)S for some (S, 7), then it would have to be strictly
larger for every (S,7), since every type space T = (T, ¢,m) € T(vy) with strictly

positive S(T) can be mapped to some 7' = (T",¢',7") € T(S,v) by defining
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T'=T,7"=mn,and ¢'(t) = ng(t)% Hence, if R*(S,v) > (E*(y) + €)S for some

S, then w > E*(v) for all S, a contradiction.
The second part follows almost directly, since the extraction ratio is invariant
to scaling of valuations as in the previous paragraph. As M€ achieves E*(7y) — 2¢

for some value of S, it must achieve the same extraction ratio for all S, and

therefore revenue is at least (E*(y) — 2¢)S. O

In sum, it does not matter how the seller compares revenue across environments
in which the expected social value of the good is different. As long as the seller
has maxmin preferences over revenue for a fixed expected efficient surplus, the

BSA is an optimal auction.

2.5 Discussion

2.5.1 Belief extraction

This chapter has been focused on the selection of a mechanism by a seller who
evaluates mechanisms by their worst-case extraction ratio. Under such prefer-
ences, the seller is willing to tolerate suboptimal extraction ratios on particular
type spaces, as long as this ratio is greater than the worst-case. The BSA can
result in such suboptimal extraction ratios, since it collects rather limited informa-
tion about the environment and therefore will not maximize revenue on most type
spaces. In particular, the seller only asks each bidder to estimate the distribution
of the top two order statistics of other bidders’ values and the number of ties. In
principle, the seller could have collected information more ambitiously. Is there a

limit to how much the seller could learn by asking the bidders more complicated
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questions? Could the seller, for example, collect enough information and in such
a way that a revenue maximizing auction is always implemented?

This question is related to a folk argument that has long existed in the mech-
anism design literature: if a common prior is known to the agents, but not to the
designer, then the prior could be extracted by the designer for free (Bergemann
and Morris, 2012a). By “free”, I mean that having to incentivize truthful reve-
lation of the prior does not restrict the class of social choice functions that can
be implemented, according to any solution concept. There is an obvious partial
implementation solution to this problem: ask all of the agents to simultaneously
announce the prior, and if they disagree, punish all of the agents severely. Of
course, this is not entirely satisfactory because this mechanism would also enforce
coordinated misreporting of the prior, which is counter to the full implementation
philosophy of the present work.

However, Chapter 3 provides a stronger resolution of the folk argument. In
general, it is possible for the seller to extract agents’ beliefs in such a way that
the common prior is revealed to the seller in every equilibrium. A caveat is
that the general mechanism accomplishing this goal is quite complicated, and
requires the seller to elicit each agent’s infinite hierarchy of beliefs. Transfinite
iterated deletion of strictly dominated strategies forces the agents to report their
hierarchy truthfully in any equilibrium. Nonetheless, if such complex mechanisms
are permitted, then it is possible for the seller to implement a revenue-maximizing
mechanism for every realized type space, as long as the common prior is known
to the agents.

The folk argument is also related to the works of Neeman (2003) and Azar,
Chen, and Micali (2012). If the seller can extract the prior for free, then it is

possible to implement any mechanism, including the second-price auction with an
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optimally chosen anonymous reserve price or the optimal dominant strategy and
ex-post individually rational mechanism. The distinct contribution of this chapter
is to show that for a particular criterion, i.e., the max min extraction ratio, the
seller need not use such an elaborate mechanism. It is sufficient for the seller to
extract beliefs about simple statistics, and use these statistics to guard against the
downside risk associated with a large gap between the highest and second-highest

values, as in lopsided type spaces.

2.5.2 Simpler mechanisms

The previous section discussed more complicated mechanisms that the seller could
use to achieve optimal performance in a wider range of environments. But what
about the other direction: are there classes of environments in which the BSA can
be further simplified, without greatly compromising performance?

There are at least two dimensions along which the BSA can be easily simplified.
First, because of the selection effect induced by ties, the BSA needs to extract
bidders beliefs about the number of bidders who will make high bids. Ties would
not occur with positive probability if valuations were drawn from a non-atomic
distribution, or if the finite supports of values were non-overlapping. Further-
more, ties do not occur with positive probability in the worst-case type spaces for
extraction ratios. If attention is restricted to type spaces in which ties occur with
zero probability, then clearly the seller can get away with just extracting bidders
beliefs about b(jf) . Second, extracting beliefs about bg) is necessary to make sure
that the BSA does as well as the second-price auction. If the seller is purely con-
cerned with max min extraction ratio, then the seller could extract beliefs about

the just highest bid of others, and set an optimal reserve price conditional on
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b = b(_lj) > b;. The same analogy with third-degree price discrimination applies,
and the seller must obtain at least as much revenue as if the seller sold the good
to the high bidder at the optimal monopoly price with respect to F(1).

Perhaps the most natural method of aligning the incentives of the seller and
buyers would be to give buyers a direct stake in the revenue generated by their
reports. The seller could for example share a small portion of revenue with bidder
7 whenever a sale is made with a price based on bidder j’s report. However, this
creates complicated incentives to influence the allocation of the good: for example,
in the BSA, the marginal event affected by bidding b; = v; is when the bidder is
allocated the good at a price equal to v;. In this case, the marginal surplus from
being allocated the good is zero. The bidder may have an incentive to “throw” the
auction at such marginal events, so as to instead obtain a positive share of revenue
from selling to others at price v;. Chapter 2 studies auctions of this form, and
shows that in reasonably structured environments, an equilibrium exists in which
the bidding strategy equates the marginal surplus from the allocation and the
marginal surplus from sharing in revenue. Moreover, as revenue sharing becomes
small, these distortions disappear and the seller recovers optimal reserve prices.

Finally, the BSA sets a price using the interim beliefs of a single losing bidder,
combined with the relatively sparse information of the second-highest bid amongst
all other bidders. It is natural to ask if there is a straightforward way to aggre-
gate all of the losers’ information, so that the seller sets an optimal price for the
winning bidder ¢ conditional on ¢_;. This could easily be accomplished by having
bidders report their entire hierarchy of beliefs as described above. Unfortunately,
there is not an obvious simpler solution. One possibility would be to allow the

losing bidders to “converse” about the optimal price, by iteratively reporting their
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conditional beliefs about the winner’s value. Arguments in the vein of Geanakop-
los and Polemarchakis (1982) would show that if such communication was allowed
over multiple rounds, the bidders would eventually agree on a posterior. However,
this posterior need not coincide with the true posterior conditional on t_;. More-
over, if only losing bidders can have this conversation and receive the rewards that
incentivize truth-telling, then these rents could create an incentive for bidders to
throw the auction. Even so, such mechanisms are a promising direction for future

research.

2.5.3 Common values

The assumption of private values is more appropriate in some settings than oth-
ers. In the motivating example of a school construction project, it is reasonable to
suppose there are private value components to firms’ costs, such as prior commit-
ments, worker abilities, etc. However, the firms might also have a common value
in the idiosyncrasies of the project, such as the suitability of the land on which
the school is to be built. Auction design with interdependent values can be chal-
lenging due to the buyers updating their preferences upon winning the auction. I
briefly sketch the scope for generalizing my results to this broader setting. I have
concluded that given reasonable assumptions on the interdependence, the same
max min extraction ratio obtains even if Nature is allowed to choose type spaces
with interdependent preferences, although a much more complicated mechanism
is required than the BSA.

As in much of the literature, I distinguish between “information” types ¢; and
“payoft” types 0; € ©;. A buyer’s valuation is a function ¢;(#) of the profile of

payoff types but does not depend on t. Thus, the definition of a type space is
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expanded to 7 = (0,7, 7, ¢). With interdependent values, the seller needs to
elicit not just bidders’ beliefs about 6, but also the form of the interdependence,
ie., ¢(0).

Let us suppose for the moment that the seller knows © and ¢. Many of the
positive results in the literature require the assumption that ©; is one-dimensional,
and that ¢;(#) is monotonically increasing.® This assumption, combined with a
single-crossing property on ¢, is sufficient for the existence of an efficient equilib-
rium of the English auction (Dasgupta and Maskin, 2000; Maskin, 1992; Krishna,
2003; Birulin and Izmalkov, 2011). Starting from this efficient equilibrium, the
seller can partially implement a mechanism similar to the BSA, where bidders
report 6; and beliefs about 6_;. These reported beliefs can be used to find the

reserve price for when bidder ¢ wins that maximizes:

r Pr ({5 i (@,Q_Z) > r}) Q_i,t_z) .

The seller only sells the good to bidder ¢ at this price if the realized value condi-

tional on 0 is at least r. Since the seller optimally accepts this price on behalf of
the winning bidder, and the price does not depend on bidder 7’s report, truthful
reporting is still an equilibrium. I will call this the interdependent belief survey
auction (IBSA).

Under this mechanism, the efficient surplus and revenue with an interdepen-
dent value type space T = (©,T,v,7) are the same as under the BSA with a
particular private value type space 7' = (1", ¢', 7). Intuitively, I would like to

find a private value type space which has the same distribution of the winner’s

5For multidimensional ©;, existence of mechanisms with efficient equilibria becomes prob-
lematic. See Jehiel and Moldovanu (2001).
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value conditional on losers’ information. The bidders cannot simply be told their
ex-post values, since they will reveal this to the seller, who might then be able
to identify the winner’s value from losers’ reported values. However, a buyer can
be told his value ¢;(f) on events where he wins, while losing bidders observe 6;
but receive private values of zero. Under such a private value type space, losers’
beliefs about the winner’s value are the same as under 7, and the distribution
of the highest value is the same. This discussion implies that the IBSA achieves
the same extraction ratio with 7 as the BSA achieves on the private value type
space T'. Hence, when minimizing the extraction ratio for this richer mechanism,
it is sufficient to look at private value type spaces, and therefore the same lower
bound E*(7y) obtains.

Finally, I return to the issue of extracting the form of the interdependence.
The seller needs a general “detail-free” language in which to have the buyers
communicate what they know. The preference hierarchies of Bergemann, Morris,
and Takahashi (2011) are just such a language, in which bidders report a sequence
of state-dependent preferences over Anscombe-Aumann acts. At the first level,
the preference is over a state space with a single element corresponding to (;,;).
This preference is the player’s willingness to pay for the good unconditional on
other buyers’ information. The second-order preference is over acts that depend
on the first-order preferences of other buyers, and so on. At each level, types
are separated by their preferences conditional on what others have revealed about
their types, and these separated types can then be used to separate more types, in
a manner analogous to Abreu and Matsushima (1992b). It turns out that bidders
can be given strict incentives to truthfully reveal their interdependent preferences
in this language, using the techniques of Subsection 2.4.6, and these reports can be

used as an input to construct the IBSA. It is important to note that the seller can
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only provide strict incentives to recover a coarsened state space which corresponds
to the distinguishable types of Bergemann, Morris, and Takahashi (2011, 2012).

I revisit this connection in Chapter 3.

2.5.4 The role of the common prior

I have assumed throughout that the buyers’ beliefs are derived from a common
prior. A natural question to ask is whether or not my results can be extended
to environments in which beliefs do not satisfy this restriction. The meaning of
the common prior has been debated and critiqued in the literature (see Aumann,
1987; Morris, 1995; Gul, 1998). There are two possible interpretations: one is that
there is some ex-ante stage before private information is realized, at which point
there is common knowledge of the distribution over future private information.
With such a temporal structure, the consistency of interim beliefs with a common
prior is a consequence of ex-ante common knowledge. In the other interpretation,
there is no ex-ante stage, but rather the common prior is a restriction on agents’
higher-order beliefs (see Samet (1998) for a characterization of the common prior
in terms of interim beliefs).

In my model, even if there is an ex-ante stage, the seller only interacts with the
potential buyers after private information is realized. Hence, anything the seller
learns about the prior must be obtained through the buyers’ interim beliefs. The
most natural interpretation is that there is some physical process which generates
signals that the buyers see, and this process is know to the buyers but not the
seller. As such, all of the bidders’ interim beliefs about the profile of valuations

are distributed around the average belief generated by this signal structure.
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The prior distribution provides is a neutral perspective from which the seller
can calculate expected revenue and efficient surplus. Also, since the buyers’ re-
ported beliefs will average to the prior, their interim reports give the seller access
to a “segmentation” of the prior distribution of the highest valuation. Without a
common prior, it would still be possible to elicit interim beliefs from the agents,
but these reports would require a more complex interpretation to be useful to the
seller. Thus, there is no immediate generalization of my result to non-common
prior type spaces. However, as discussed by Azar, Chen, and Micali (2012), the
result does not require each agent’s entire hierarchy of beliefs to be consistent
with a common prior. A similar result would obtain as long as the agents’ first-
order beliefs average to the same prior over values, and the seller uses this prior

to calculate expected revenue and the expected efficient surplus.

2.6 Conclusion

This chapter has considered the mechanism design problem faced by an unin-
formed seller, who believes that agents are well-informed. The seller uses mecha-
nisms that survey bidders’ beliefs in addition to their private values. This infor-
mation is used to optimize the prices offered to winning bidders. Such mechanisms
achieve an optimal lower bound on the share of the efficient surplus that the seller
can extract as revenue, and they also perform well away from the worst-case.

In practice, auctions are much more complicated than the stylized models
studied by economists. For example, in the case of auctions for government con-
tracts or natural resources, the auction designers conduct extensive research into
demand, and surely engage in informal discussion with potential buyers about the

pros and cons of different formats. This chapter has characterized particular ways
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in which the seller can elicit useful information from the buyers without distorting
incentives to bid truthfully. But there is a more general message to be gleaned: if
the seller has sufficient commitment power with regard to how information will be
used, then it is indeed possible to have these informal discussions without allowing

for adverse manipulation of the auction format.

2.A Proofs

Proof of Lemma 2.1. Fix a type space 7. I will show that there exists a payoff
type space 7 such that S(T) = S(T) and R(T) > R(T). To that end, define
R;(t;) to be the revenue generated when bidder j is consulted. Since bidders

report truthfully, this is:

),

1 k (1,2)
Rj(tj) = n_lzmTaXT’ Z mﬂ' (’U_j ,k
U(_QJ) U(_lj) >rk 5 (tj)=v_;

where:

s (v(_lj’?), k

tj) = { > m (t-5t;) -

Consider the payoff type space in which T = ¢(T), </b\z(tl) = t;, and 7(t) =

Zt/€¢_1(t) 7(t"). The type space T = (f%, q/g) Since the marginal distribution
over values is the same between the two type spaces, clearly the same efficient

surplus obtains. Also, the revenue generated by consulting bidder j when ¢;(t;) =
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Thus, it is without loss of generality to consider payoff type spaces.

Symmetry follows. For a payoff type space 7 can always be made symmetric
by uniformly randomizing over the n! permutations £ : N — N of the players’
identities. Let the set of such permutations be denoted =. Players types are

A~

T, = 2 X Uien T;, ¢i(&,vi) = v;, and:

N 0 if & # &, for some 7 and j
W(é? U) = )

Lm(v®)  otherwise

where vg(i) = v;. Clearly, revenue and the efficient surplus are the same under the

type space 7A', but if the new types &; are integrated out, S stays the same and
R weakly decreases, and we are left with the symmetric and payoff type space T

which has the distribution over values:



types T = UsenT; and 51(1}1) = ;.

Finally, a similar argument shows that revenue can always be lowered by giving
every bidder except the winner have a value of v. Starting with a symmetric and
payoff type space T, define 7 that has the same support for values T;, but a

distribution equal to:

flx) itVi=uz,v,=0vVj#i

T(v) =4 w(v) ifv;,=v Vi

0 otherwise

where:

m(v)
W)l

vizﬁ(”:x}

flz) =
{v

which is independent of ¢ by symmetry.
I verify that 7 and T have the same efficient surplus by checking that the

probability that v(') = z is the same for both type spaces:

m(v)
m(v) = L,
{v|§:x} {v|£x} Z W (v)]
- m(v)
2 . Z>} W ()]

=2 2 RO

1 {v|vi=zvj=v Vj#i}

= ) A&
{vfp=c}
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Revenue is lower, as:

w v)| — ]Ii:x
> miw)Ri(vy) =Y T 2 2 | (IQ;/)V’(W ]
- veov o ezmar} Sl 500 (0) )
W) - L
> I?gé(r Z Z Z Z F/V(%jﬂ

vj ¥ xz>max{v;,r} {'17"17]':1)]','17(_1]’.2):(%?;)}

— max7r |W(5)’ - I['ﬁj:xﬂ_ o
w2 2w )

r>maxr {5’5(1):1‘ }

= maxr W)~ Ly x
L T @

r>0

T>r

= maxr Z 7(v) = Ej.

r>0
{17’5]-:9,11(1)27‘}

()

m(©)

]

Proof of Proposition 2.1. 1t is clear that symmetric payoff type spaces in which at

most one bidder has a positive value are defined by the distribution of the highest

value . Moreover, for a given R, it must be that (2.9) is a lower bound on the

distribution. Thus, it must be that:

¥S(T)
S(T) = / vdFW(v)

=0

> R(1 +log(v) +10g(S(T)) — log(R)),
and therefore:

1> B(MP54, T)(1 + log(v) — log(E(MP4,T)))
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for any 7. Now let us consider the quantity:

h(z) =1 —2(1 +log(y) —log(x)).
It is straightforward to derive:
W(xz) = —(1+log(y) — log(z)) + 1 = log(x) — log(7) <0,
since = € [0,1] and y > 1, and h is strictly decreasing. Also:

1+1 —1
lim h(z) = 1 — lim ~11080) — log(2)

z—0 x—0 ,]j‘*l
_ 1
=1—lim =1
0 — 2

via L’Hopital’s rule and h(1) = 1 —(1+4log(y)) = —log(y) < 0. Thus, there exists
a unique point z* at which h(z*) = 0, and h(z) > 0 iff 2 < 2*. This implies that
E(MB54 T) > E*(y) for every v > 1.

All that remains to be seen is that there is a sequence of type spaces T* such
that E(MB54 T*) — E*(y). We are careful to make sure each T* has support
in [0,vS(T*)]. Take S* any sequence converging to E*szy)’ and VF = {vg, ..., v, }
is the support of 7% with v; = mikfySk. We use the CDF of the highest value F,El)
defined by Fk(l)(v) = FW(y,,) for all v € [vy, v141) with F) as in (2.9). For each

k, as mj — oo:

yS*
/ vdF,El)(v) —my 00 R(1 +log(7y) + log(S*) —log(R)) > S*,

=0
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since h (S—}i) < 0. Thus, my can be taken large enough so that S(7%) > S*, and

therefore satisfies Assumption 2.1. Moreover, S(T*) < E*I?'y) by the argument of

the previous paragraph, so S(7T%) — E*Lm by the squeeze theorem. ]

Proof of Theorem 2.1. 1 show that for the sequence 7% constructed in the proof
of Proposition 2.1, the supremum of E(M, T*, &) over all M and o converges to
E*(7y). Since the supremum over o is weakly greater than the infimum over o,
this will prove the lemma. The rest of the proof is standard, and follows Myerson
(1981) or Borgers (2013).

Since the designer is allowed to pick o, it is sufficient to look at direct revelation
mechanisms where M = T. We can divide profiles of valuations into those in which
bidder i has a positive value, and all other bidders have a zero valuation. Let ¢;(v)
and p;(v) be bidder i’s allocation and transfer if i has a positive value v, and other
bidders have zero values. Let g;,(v) and B;‘ (v) be bidder j’s allocation and transfer
when j has a zero value, and bidder ¢ has a positive value v. If v > ¢/, then it

must be:

vgi(v) = pi(v) 2 vg(v') — pi(v')
v gi(v') = pi(v') 2 v'gi(v) = pi(v)

— v(6i(v) = a(v)) = pi(v) = pi(v') 2 V' (6i(v) — @ (v'),
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so q;(v) > ¢;(v'), and the allocation must be weakly increasing. Moreover, it must

be that:

u;(v) — u;(v') = v gi(v) = pi(v) — V' q; (V') + pi(v)
> vq(v') = pi(v') = 0" qi(v") 4+ pi(v”)

= (v =) (),

and thus, if the support of values is indexed by {v° = 0,...,v* =7}, then:

-1

wi(v') > ui(0) + ) (0 — 0™ gs(0™),

m=0

and thus:

mwwzd%@ﬁ—W@5

-1
< U QZ - uz Z mH (Um)
m=0

Finally, individual rationality tells us that u;(0) > 0.

Also, since the utility of the low type is always Ogj,( v) — pZ (v) = pz (v), which
must be non-negative to satisfy individual rationality, it follows that ]_93(1}) < 0.
It is never beneficial for the seller to allocate the good to a bidder with valuation
zero, since they will never pay a positive amount. The seller might as well leave
the good unallocated.

Hence, an upper bound on the seller’s revenue is:

S pnh)

€N 1=0
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which is a linear function of the ¢;(v'), as shown above. The set of weakly in-
creasing ¢;(v') is a convex set and its extreme points are those functions for which
q;(v') € {0,1}. These are precisely the allocations that are implemented by posted
price rules, where there are bidder specific reservation prices r;. But since each

bidder’s valuation has distribution proportional to F; ,fl)

when positive, an optimal
reserve price is by construction r; = R. At this price, revenue is exactly R, since

the bidder with the high value always buys. This proves the result. O]

Proof of Proposition 2.2. The seller would achieve the same revenue as in a second-

price auction with anonymous reserve r* if the price set for winning bidders is

max{r*, b®}. Observe:

R;(t;) = — Zmraxr Z mﬁ (v_j K

)

v oW %)
J J
1 2
> g max {T*,U],U(J)}
n—1

k (12)
B =k
Z ) + kﬂ- (U_] ’

tj)
1) s (2 H¢j(tj)=v
v_].Zmax{r ,v]-,v_].},k

_ 1 * 42 _lsep=0 1t

[ >max{r*,¢;(t;)}
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Hence, the total revenue from the auction satisfies:

SN it R,(t)

7 tjETj
(- Ly (4=
>y B ) (1 ) )
= n—1 (W(s())l
Pl {t | e }
| zmax{r (1)}

_ ! max {7 6 _ L=
i 2 (om0} (1- S ) =0

7 {ter|eM@)>r }

_ max {1 6@ () x _ Loen=e0
R (a0} =03 (1= it

{teT|p® )>r } J

= > max {r*,¢® (1)} 7(t),

{teT|pM (t)=r= }

since:

|W(¢(t))| - ]I¢j (t5)=0M) (t)
(W ((1))|

m(tlt;)
is zero if ¢;(t;) > gzﬁ(_lj)-(t_j) and also:

=n—1.

(WD) = Ly, 1;)=00 1)
2 W (a(t))|

J

Since Z{teT|¢(1)(t)2r*} max {r*, $?(t)} 7 (t) is revenue under a second-price auc-

tion with the anonymous reserve r*, this proves the result. O
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Chapter 3

Revenue sharing

in second-price auctions

3.1 Introduction

The second-price auction with optimal reserve prices has many desirable proper-
ties. There is a compelling equilibrium in which bidders follow the unique weakly
undominated strategy of bidding their values. In benchmark environments, the
second-price auction with a judiciously chosen reserve price is an optimal auction
(Myerson, 1981). Even for more general classes of environments, the second-price
auction is a fair approximation of the optimal auction. Hartline and Roughgar-
den (2009) show that the second-price auction with an optimal anonymous reserve
price attains at least 25% of the revenue of the optimal auction, as long as the
distribution of values is independent and regular. With bidder specific reserves,
this improves to 50% (Chawla, Hartline, and Kleinberg, 2007). Also, it is known
that if the seller sets an optimal reserve price for the winner conditional on the

losers’ values, the auction generates at least 50% of the maximum revenue possi-
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ble in a dominant strategy and ex-post individually rational mechanism (Ronen,
2001).

The list goes on. The gist is that the second-price auction is a reliable mecha-
nism for generating revenue, with the proviso that the seller must set the correct
reserve price. This is no trivial matter. A large literature in auction econometrics
has explored the two step process of estimating the distribution of values from
bid data, and using this as an input to calculate an optimal reserve price (Athey
and Haile (2007) survey this literature). An inescapable fact is that these meth-
ods require lots of data and/or non-trivial assumptions about the distribution of
values in order to calculate the optimal reserve from past bid data.

In this chapter, I explore an alternative route to the optimal reserve price: ask
the bidders. If the buyers are themselves well-informed about the distribution
of values, the seller could elicit this information and have the bidders set reserve
prices for one another. I consider a variation on the second-price auction in which
the seller asks losing bidders to suggest reservation prices for the high valuation
bidder. When a sale is made using a bidder’s suggestion, that bidder receives a
small share of the resulting revenue. This linear revenue-sharing contract perfectly
aligns the incentives of the buyer and seller, conditional on the buyer losing. As
such, this seems to be the simplest and most natural method for eliciting the
optimal reserve.

In order to obtain a share of revenue, however, a bidder has to lose. Since
a bidder will only lose the auction when bidding b when some other participant
bids more, the suggested reserve price conditional upon losing must be at least b.
I call this the pricing constraint. If the pricing constraint is binding, then at the
margin, shared revenue would increase if the bidder were to shade his bid. On

the other hand, the pivotal allocation that is affected by shading just below one’s
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value occurs when the price paid would also be close to one’s value. In this event,
the surplus from receiving the good will be zero. Thus, players cannot bid their
value if the pricing constraint binds. Of course, if the buyer were to shade a large
amount so as to set a very low reserve price, then price at which revenue would
be shared would be much lower than v. Clearly there would not be a benefit to
shading close to zero. This suggests that there could be an equilibrium level of
shading that is positive but not too large.

My main result is to show that for environments satisfying a particular positive
correlation condition, there is indeed a simple equilibrium in which bidders shade
to balance the marginal surplus they could obtain by being allocated the good and
the marginal shared revenue they obtain by losing and suggesting reserve prices
for others. The positive correlation condition takes the form of a requirement that
the conditional hazard rate for the distribution of the highest value of others is
monotonically decreasing in one’s own value. This condition is similar in spirit to
other positive correlation conditions used in the literature, such as the affiliated
values of Milgrom and Weber (1982) or monotone likelihood ratios of Athey (2001).
The equilibrium bidding function is characterized by regions on which the pricing
constraint binds, where the bidding function solves a differential equation equating
the sum of marginal surplus and marginal revenue with zero, and regions on which
the pricing constraint does not bind and bidding one’s value is a best response.

In equilibrium, a bidder with valuation v bids no less than -, where a is

+L7

n—1

the share of revenue when the suggested reserve price is used and n is the number
of participants. Thus, as « goes to zero, shading disappears, bids converge to
values, and the reserve prices converge to their optimal quantities. As a practical
matter, there may be a point at which « is so small that bidders are not sensitive

to the revenue sharing incentive. A nice feature of my results is that for strictly
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positive «, I have a tight characterization of an equilibrium that yields bounds

on the revenue lost from sharing and distortions. In particular, the seller is al-

* l-—«
1+L7

n—1

ways guaranteed a revenue of m where 7* is revenue from the second-price
auction with an optimally chosen anonymous reserve price.

In addition to the benchmark model described above, I also consider several
extensions. First, I discuss what happens with asymmetric distributions in the
context of an independent two bidder example. While a symmetric distribution
gives rise to strictly increasing bidding functions, with asymmetric bidders, there
may be regions where one player’s bidding function is constant and the other’s
is decreasing. Moreover, there may be regions of the bid space on which one
bidder’s pricing constraint is binding and the other bidder’s constraint is slack.
Second, in the benchmark mechanism described above, bidders are rewarded with
a share of the seller’s realized revenue, but only on the event that the bidder loses.
A variation on this mechanism rewards each bidder i regardless of whether they
win the auction, with a share of “simulated” revenue that would have obtained
if the seller had run the n — 1 bidder auction excluding bidder 7 and using his
suggested reserve price. Since bidders are rewarded regardless of the allocation,
there is no incentive to throw the auction, and truthful bidding is an equilibrium.
For regular, symmetric, and independent distributions, this mechanism does just
as well, but I discuss its limitations in more general environments. Finally, the
assumptions of positive correlation and a one-dimensional structure on types are
needed to demonstrate the existence of an equilibrium. If existence is assumed,
then I give an example of a mechanism with a slightly less intuitive structure that
nonetheless provides similar revenue bounds in general type spaces.

In related work, I have explored how an auction designer can extract details of

the environment from well-informed buyers. Chapter 3 will show that the designer
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can effectively extract “for free” all of the information that is common knowledge
among the agents. The seller can use this information to design the mechanism
as he sees fit, without affecting bidders’ incentives to tell the truth. The caveat is
that this mechanism requires the agents to report their entire hierarchy of beliefs,
a decidedly complicated object. In contrast, Chapter 1 looked at simpler mech-
anisms that maximize the minimum extraction ratio, which is the ratio between
expected revenue and the expected surplus that would be generated by allocating
the good efficiently. This problem is solved by a modified second-price auction,
in which bidders report bids as well as first-order beliefs about the distribution of
others’ values. The seller uses these first-order beliefs to calculate reserve prices.
Both of these chapters cover general finite type spaces. Chapter 1 requires that
the bidders have private values and higher-order beliefs that are consistent with
a common prior, but Chapter 3 allows for interdependent preferences and non-
common prior beliefs, though it does require that a “common support” assumption
be satisfied.

The present chapter, in contrast, looks at more structured environments in
which bidders have a single hierarchy of beliefs corresponding to each value and
the joint distribution of values admits a density. In such environments, second-
price auctions with revenue sharing allow the seller to elicit the optimal reserve
prices with the simplest possible message space, consisting of bids and suggested
prices. Granted, bidders are asked to compute an optimal reserve conditional on
losing at their value, which is a non-trivial task. However, by sharing revenue, the
losing bidders’ incentives are closely aligned with those of the seller. In contrast,
the mechanisms explored in Chapters 1 and 3 incentivize the bidders to report
their beliefs using scoring rules, and then the seller performs the computation.

It may well be that computing optimal or near optimal reserves is easier for the
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bidders than communicating a distribution. For example, the bidders may have
privacy concerns with regard to their private information about their competitors.
Reporting a price allows the bidders to communicate what the seller needs without
divulging any extra information that might be a liability.

There is a small but growing literature on how the seller can run an auction
and simultaneously calibrate auction parameters using ancillary reports made by
the buyers about the environment. Caillaud and Robert (2005) consider how a
seller can partially implement the optimal auction of Myerson (1981) through a
dynamic mechanism. Dasgupta and Maskin (2000) construct a mechanism that
partially implements the efficient outcome in interdependent value settings, in
which bidders submit a function that gives a bid for every possible valuation of the
other player. The seller computes the winner and price by looking for a fixed point
of the reported mappings, and as such, the seller needs no additional information
about the environment beyond what is reported. Azar, Chen, and Micali (2012)
also study the use of scoring rules to recover a truncated prior distribution over
values, and then use this prior to design the mechanism.

The rest of this chapter is organized as follows. Section 3.2 describes the en-
vironment and defines the second-price auction with revenue sharing. Section 3.2
also gives a definition of my equilibrium concept, which imposes regularity condi-
tions on the bidding function. Section 3.3 gives a simple example that illustrates
some of the main ideas of my construction. Section 3.4 provides this general
characterization for joint distributions of private values with positive correlation.

Section 3.5 discusses several extensions, and Section 3.6 concludes.
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3.2 Model

Some preliminary notation: for a vector z, let (! denote the highest value, () the
second-highest value, and z(1?) the ordered pair of the highest and second-highest
values. If z has a single coordinate, then £ = —oco. Let W (z) = {i|z; = 2}
denote the set of high value indices. I denote by xVy and z Ay the maximum and
minimum of x and y, respectively. T also use the usual convention that xg denotes
the sub-vector of x with indices in S, and x_g denotes the sub-vector with indices
not in S.

There are n bidders, indexed by ¢ € N = {1,...,n}. Bidders have private
valuations for a single unit of a good that are jointly distributed according to the
cumulative distribution F(vy,...,v,) with compact support [v,?]". This distribu-
tion is symmetric in v and admits a strictly positive and continuous density f(v).
In Section 3.5, I extend the analysis to a class of asymmetric distributions. I as-
sume that bidders do not receive any additional information beyond their private
value. This distribution, while unknown to the seller, is known to the bidders.

I will have need of several conditional densities and cumulative distributions,
including but not limited to fy ., (+]-), fvilj\ui('|')’ fU(_12j|Ui77~)j(.|.7 -) where ij is short-
hand for {7, j}. For reasons which will subsequently become clear, I assign compact

notation to the following quantity:

Fv(_li)jm’vj (y|l‘, U)f’l)j|vi (IE|’U)

g(:l:',y\v) = F o |vi(qj7ﬂ|7j) - F (1) vi (I,y|U) .

Vi V_ij Vi V_ij

This is the hazard rate of bidder j’s value when values of bidders k # i, j are less
than y, conditional on bidder i’s value being v. This quantity is closely related

to the choice of an optimal reserve price if some bidder ¢ with valuation v were

79



to sell the good to the remaining n — 1 bidders. With a reserve price r, revenue
would be:

/ |:TFU(1) ‘U“}‘(Tlv,x) +/ yfvilz)‘vz,v(ylv’x)dy fvj|vi<flf|’U)d$, (31)
=T y=r J J

—ij j

where bidder j is taken to be a “representative” bidder in —¢ with the highest

(1)

value. Such a bidder pays r if vz(jl ) < r, and pays v_;; otherwise. The derivative

with respect to r is:

v
L 8y (10 e (a0 = P E (ol 7) o (r10)

= (£, .0 @) = F, 0 (nrp)) (L=rglrrp).  (32)

ViU ViU

I make the following two assumptions:
A1 For every x and y, the function g(z,y|v) is weakly decreasing in v.
A2 There exists finitely many v at which g(r,7|v) = <.

A1 is a substantive restriction, analogous to the positive correlation conditions of
Milgrom and Weber (1982) and Athey (2001). It essentially requires that higher
values of v; make higher values of v; more likely, in the sense that for every interval
[z, 7], v; is less likely to be at the bottom of the interval x when v(_li)j <y. Al is

trivially satisfied in the case of independent values, and for two bidders it reduces

f(r[v)

to the familiar monotone hazard rate condition, that ;= Frio)

is decreasing in v.
This property will ensure that higher valuation bidders want to set higher reserve
prices in equilibrium. A2 is a technical restriction which facilitates a simple
equilibrium construction. Without A2, I would have to address the possibility

that there are regions where g(v,v|v) = %}, which in the independent private value
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setting correspond to cases where the virtual valuation is zero. Also, if there are
infinitely many points at which this equality holds, transfinite induction would
be required for the proofs of my main results, as opposed to the finite induction
currently used.

The seller of the good uses the following revenue sharing auction (RSA). Each
bidder i submits a bid 0; and a reserve price r;. If the profile of bids is b, then
the seller picks a bidder ¢ € W (b) uniformly, and then picks a losing bidder j # i
uniformly to consult for the price. If b; > r;, then bidder 7 is awarded the good
at price max {rj, b(_QJ)}, and bidder j receives avmax {rj,b(_QJ)-} as his “share” of
the revenue, with o € (0,1]. Otherwise, the good remains unallocated, and no
transfers are made. The interpretation is that bidder j sets the reserve price in
the n — 1 bidder auction excluding j, and receives an « share of revenue generated
by that auction.

I will define a class of symmetric equilibria consisting of a bidding function

B(v) and a pricing function p(v), which are required to satisfy the following two

properties:
E1 The function § is continuous and strictly increasing.
E2 For all v € [v,7), one of the two holds:
(i) A(v) = v, or
(ii) A bidder of type v strictly prefers bidding 5(v) to bidding v.

In other words, each player bids their value unless there is a strict incentive to do
otherwise. I exclude the type with v; = T from this requirement, for reasons which
will be seen shortly. Note that E1 implies that 5 has a well defined inverse 3!
on its range. If b > ((v), take 3~!(b) = v, and similarly if b < 5(v), 871(b) = v.
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In addition, the following incentive constraint must be satisfied:

S(v, B(v)) + R(v, B(v), p(v)) = S(v,b) + R(v,b,7) (3-3)

for all (v, b,r), where:

501 = (0t 3 (8)) Sy =] 60

B(o,0:1) = | p0) V5 (62) Ty | = ] 35

are respectively surplus from being allocated the good and revenue from selling to
others, when other participants use the bidding function g and pricing function
p. 1T will say that (f3,p) constitute a reqular equilibrium if they satisty E1, E2,
and (3.3).

My main result is that a regular equilibrium of the RSA exists. This equilib-
rium has an intuitive structure in which bidders sometimes shade in response to

the revenue-sharing incentives.

3.3 A simple example

It is instructive to start with a simple example of the kind of equilibrium that I will
construct. Let us suppose that there are two bidders whose values are distributed
independently and uniformly between 0 and 1. As described above, each bidder
submits a bid b; and a price r;. If b; > b;, then bidder ¢ “wins” the auction, but
only receives the good if b; > r;. In this case, bidder ¢ pays r; to the seller, and

bidder j receives ar;.
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In the undominated equilibrium of the second-price auction, bidders bid their
values, i.e., B(v) = v. Let us investigate whether or not bidders could use such
a strategy in the RSA with a strictly positive a. If so, the distribution of bids is
uniform on [0, 1], meaning that the optimal reserve price unconditional on losing
is 0.5. However, bidders only share revenue when they lose, and the distribution
of the other bidder’s bids conditional on losing with a bid of b is uniform on [b, 1].
Naturally, it cannot be optimal to set a reserve price r < b. This observation is
valid more generally: In any regular equilibrium, it must be that f(v) < p(v). As
such, it makes sense to impose the pricing constraint that » > b and simply write
R(v,r) instead of R(v,b, ).

Hence, in an equilibrium in which 8(v) = v, it must be that p(v) € arg max, >, r(1—
), so that p(v) = 0.5 for v < 0.5, and p(v) = v for v > 0.5. For this to be an

equilibrium, it must be that (3.3) is satisfied. Note that:

b
S(v,b) = (v—0.5)0.5Ly>05 + / (v —x)dz,
=0.5

R(v,r) =ar(l —r).
The bidder’s goal is to maximize:
U(v,b,r) = S(v,b) + R(v,7),

subject to r > b. For any deviation b > 0.5, it is optimal to set » = b. Hence, the
equilibrium bid must satisfy the following first-order condition:

95 (v, b) + IR(v,b) > 0. (3.6)

ab I
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Under the assumption that f(v) = v, this evaluates to:
v—v+a(l—2v) =0,

which is obviously violated for v > 0.5. The intuition is as follows: The marginal
allocation affected by shading when b = v is when the other player sets a price
r = v. In this case, the marginal surplus from the allocation is small, since
v —7r = 0. On the other hand, if » > 0.5, marginal revenue is strictly negative,
since a price of 0.5 would be optimal if the constraint » > b were not binding. At
the margin, a bidder could shade a bit, and replace events on which he wins the
good at a price close to v with events on which he sells at prices close to v, which
leads to a strict improvement.

Indeed, there is a bidding function which does satisfy (3.6) when r = f(v) is

optimal, which is:

v if v <o*
Bv) = : (3.7)

a+(14+a)v . *
(rza)ita) H020

where v* = This bidding function is depicted in Figure 3.1 for the case

1
2(1+a) "

where a0 = %. Note that the probability of a bid less than r is:

r if r < o*
F(r)= ) (3.8)

(1+204)7“—1J%a if r>o*
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Equilibrium bid distribution with i.i.d. standard uniform values and a=0.25
1

0.8} d

BV)

0.4

Figure 3.1: The equilibrium bidding function when values are distributed uni-
formly and independently on [0, 1], and o = 1. Note that v* = 0.4 and 3(1) = 0.8.

Thus, marginal revenue is:

1—2r ifr <o*
1—F(7')—7”f<7'): 5

(1+2a) (5 —2r) ifr>v

which is clearly positive if r < v*, and negative otherwise, as:

1 a
—2(14+2 < — .
1+« ( +a)r_ 1+«
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As such, if f(v) is an equilibrium bidding function, it must be that p(v) = v* if

v < v* and p(v) = B(v) otherwise. Consequently:

b
S(v,b) = (v = V") V" [psy + / (v —2)(1+ 2a)dx,

R(v,r) =ar(l —F(r)),

where F(r) is given by (3.8), and for v > v*, (3.6) evaluates to:

<U_ (a+(1+a)v

1 a+ (14 o)
1+ a)(14 2a) ’ )

)(1+20¢)+a(1+2a)<1+a— 0+ a)(+20)
« a+ (14 a) ):

o A 2

= (1+2a) <v+1

We conclude that (5, p) is indeed a regular equilibrium.

The form for 3 was not chosen arbitrarily. Note that 3(1) = 1. In a regular

equilibrium, the bidder with the highest valuation must win all the time with the
highest bid, #(1). The marginal surplus lost from shading is (1 — 5(1))f(1). On
the other hand, shading makes it possible to sell to the other bidder when he has
the highest value, the marginal revenue from which would be —a8(1)f(1). If the

bidder with valuation 1 is indifferent to shading in equilibrium, then it must be

that $(1) = 3. I will show in Lemma 3.2 that this condition generalizes to a

requirement that in a regular equilibrium, 8(v) = HLL
n—1
Also, suppose 3(v) = p(v) and is differentiable on a neighborhood of v in equi-
librium, and consider local deviations to a bid f(w) made by a nearby valuation

w. In that case, the first order condition:

05 (v, f(w))  OR(v, B(w))

ow ow =0

W=V
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reduces to:

One can guess that there is a linear solution in which 5'(v) = C, and indeed there
is, with C' = ﬁ, which is precisely (3.7). Our equilibrium bidding function
follows this differential equation until it hits v, at which point bidders are sim-
ply required to bid their values. I will show in Lemma 3.1 that this differential
equation has a natural generalization to the framework of Section 3.2, and that
this formula must be satisfied whenever § = p and f is differentiable on some
neighborhood.

It is worth pointing out some nice features of this equilibrium. Given the
explicit solution for 8 in (3.7), it is easy to see that as a — 0, 5(v) — v. In other
words, the distortion created by revenue sharing is continuous in the amount
shared, and as this amount becomes small, bids converge to values. Moreover, for
each «a, bidders report the correct reserve price conditional on them losing with
respect to the equilibrium bid distribution, which is m Hence, as a — 0, the
bid distribution converges to the value distribution, and the reserve price converges
to %, and hence the seller is able to get close to revenue in the second-price auction
with the optimally chosen reserve prices.

Finally, let us consider a slight variation of the linear example. Instead of

uniform on [0, 1], take the distribution of values to be uniform on [y — 1,7], with
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~ > 1. The analogous differential equation is:

Sy~ B0 @) v 1

o v =

which has the solution:

ya+v(l+ )

PO) = a1+ 20)

For v sufficiently large, B(y—1) < v —1, so that the bidding function never leaves

the regime with the binding pricing constraint. Moreover, as v — oo, the ratio:

v—1
By —1)

— 14 q,

so that in the limit, f(v) ~ Tro- This result is intuitive: as 7 becomes large, bids
become large as well, but because values are compressed into the relatively small
region [y — 1,7], the bidders have to shade a large amount in order to obtain a
large enough marginal surplus from winning to offset the loss in marginal revenue.

Nonetheless, the marginal surplus from winning in equilibrium is v — 5(v) and the

marginal revenue from selling is a(y — v — f(v)) > —a(v), so shading obeys the

proportional bound of 8(v) > 7.

3.4 A general symmetric equilibrium

In this section, I will construct an equilibrium analogous to that of Section 3.3
for the general model of Section 3.2. In Section 3.4.1, I will investigate two
necessary conditions of regular equilibrium, namely a boundary condition for the

bid made by the highest valuation buyer, and a differential equation that must be
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satisfied when bids are equal to suggested prices. With these necessary conditions
in hand, Section 3.4.2 describes an algorithmic construction of a bidding and
pricing function. Section 3.4.3 gives a rich example that showcases features of
the construction not appearing in the example of the previous section. Section
3.4.4 contains a summary of the proof that this strategy profile is indeed a regular
equilibrium. Section 3.4.5 explores the revenue properties of the RSA, relative to
the second-price auction with an optimal anonymous reserve price. All omitted

proofs appear at the end of the chapter.

3.4.1 Necessary conditions for regular equilibrium

To begin the analysis, I will prove that there are two necessary conditions for
a regular equilibrium. The first is a generalization of the first-order condition
(3.6), and the second is a boundary condition for the bid made by the buyer with
valuation v.

For starters, the choice of B(v) effectively pins down p(v), and more generally,
it pins down the optimal price when bidding b. Conditional on bidder 7 losing
with a bid of b when others are using the regular strategy (f, p), it must be that
I5; (v&?) > b. Each of the remaining bidders is equally likely to have the highest
value among —1, so bidder 5 can be taken to be a “representative” high valuation

player. Revenue is:

R(v,b,r) =

.
x=B"1(bVr)

T Fv(l)

—ij vi,v;

(874 ()] v, ) (3.9)

—ij

[ B g, (37 0] 0:0) | el
y=B"1(r)
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The interpretation is that bidder ¢ makes a sale if 5(v;) > r and if (v;) > b (since
i has to lose the auction), which is the outer integral. Conditional on a particular
realization for v;, bidder 7 makes a sale at price r if B(vg)j) < r, and makes a
sale at price (v(_lz)J) if (v(_lz)]) > r. Since the lower limit for the first integral is

B7L(bV r), it is never optimal to set a price less than b. Let us write:
r*(v,b) = argmax R(v, b, 7).
r>b

Then an equilibrium condition is that p(v) € r*(v,5(v)). Note that continuity
of f and f imply that r*(v,b) is non-empty and compact for all b, and upper-
hemicontinuous in b. In general, the price p(v) will fall into one of two cases:
either there is an interior maximum of R(v,S(v),r) for r > b, in which case
p(v) is locally constant in v, or the maximizer is » = f(v). When this second
case obtains, and if r*(v,b) = {b}, it will be the case that p(v) = f(v) for a
neighborhood around [b,b + €). In the following, I build in the fact that bidders
would only choose r > b, in equilibrium or otherwise, and simply write R(v, ).
Now consider the surplus that a bidder receives being allocated the good when

bidding b. Note that this does not depend on the price that the bidder suggests:

B(b)
i / (0 = B0 1y W10, 2)y | fo (el o

(3.10)
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Here, I am using j as the index of the representative consulted bidder amongst

—1i, when bidder ¢ wins the auction. A winning bidder i’s total surplus is:

U(v,b,r) = S(v,b) + R(v, 7).

Suppose there is a neighborhood (v —¢, v+¢) of v on which r*(w, B(w)) = {B(w)},
so that p(w) = B(w), and § and p are differentiable at v. Note that deviations
to b near B(v) can equivalently be thought of as deviations to S(w) for nearby w,
due to the continuity of 8. Thus, the bidding function § must satisfy a first-order

condition:

dU (v, f(w), B(w))| _ 9S(v, B(w)) OR(v, B(w))|
dw =0 | T aw | 0 G

w=v w=v w=v

This first-order condition can be translated into an equilibrium condition on f:

Lemma 3.1. Suppose that there is a neighborhood (v — €,v + €) of v on which
r*(w, f(w)) = {B(w)}, and B is differentiable at v. Then:
v)(1+a)—wv
gy = 2D =0 ) (FOC)

«

o

where o = —2-.
n—1

Proof of Lemma 3.1. Using the definition of S, and the fact that p(371(b)) = b

for b in (B(v — €), B(v + €)), marginal surplus can be rewritten as:

OSWS0D) _ ,— puy)Fyy,, ) fo al)

0= 80) [ 00 Wl o )
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By symmetry, it must be that:

/ fv(_li)jm’v]. (w|v, x)fvj\vi (x|v)da: = (n - Q)Fv(_li)jmm]. (wh}» w)fvj|vi(w|v)7

SO:

95w Bw)) _ ) 1)(0 - Bu))F e

ow Zislvivs ('lU|’U, w)ijI’Ui (w|U)

The interpretation is that since § = p around v, the marginal allocation event
affected by bid f(w) is when v(_li) = w, which is the probability that one of the
remaining bidders has a valuation of w and the other bidders have valuations less
than w. Additionally, there are n — 1 choices for the bidder with valuation exactly

w.

The second term in (3.11) is:

OR(v, ) |
W -« (ijﬁv(,li)j\w (U,’UJ|’U) - FUjm(,l-)-‘vi (?U,’U)|’U)) ﬁ (U})
N 5(w)Fv(,li)j\vi7vj (wlv, w)f”ﬂvi(w‘v)] )

with the other terms canceling or dropping out. Combining results, the marginal

payoft is:

OU (v, B(w), B(w))
S =(n-1) (U—B(w) (1—|—

—04<F. )

V0 v

(07

) ) F“(_lgj\ij (wlv, w) fop, (w]v)

n—1

@) = F, o, (0, w]0)) 5(w)
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Now, evaluating at w = v and rearranging yields equilibrium condition:

Bo) 1 +@) —v_ Fu i, W10 0oy (vlV)
a F o (E,U‘U) —F o

V05 lvi YiV—ij

|Ul.(U’U"U)7

where o = . H

There might be a concern that g(v,v|v) can blow up as v — v. However, one
can prove directly that a solution to (FOC) subject to the boundary condition

v

B(v) = 117 exists. If [i_, g(x,x|x)dz diverges as v — v, the solution is:

5(0) = £ exp (1 =y g(x,x|x>dx)

=v

o)

- (3.12)

1+a [*
/ exp (— = / g(y,yly)dy) xg(z,z|x)d.
T=v Yy=v

Observe, the quantity:

w 1+a x
[ e (<55 [ stvslidn ) agtealoa
=0 y=uv

can be integrated by parts to give:

Q 1+a/$ (0. yly)d Y
— —exp | ——— , T
& &P = _ygyyy y -~
v 1+a [*
+/ S P (— — / g(y,y!y)dy) de,
o=y LT O @ y=v

— ex A~ , dy | v
1 p yygyyy Yy

v a 1+a [
- dy ) d
+/xzv1+aexp< = /y:vg(%yly) y) w
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as w — v. Then taking v — v, this expression must converge to zero. We can

then apply L’Hopital’s rule to (3.12) to find that:

1 —exp (—% ;:vg(x, x|x)dx> vg(v,v|v) v
lim B(v) = lim —= — — — = lim —.
T AL o) exp (~ 52 [V g(e,afe)dz)  TIHE
If f g(x, z|x)dx converges, then a term C f g(x,z|x)dx can be added so that

the boundary condition obtains.

Now, consider the bidder with valuation v. In a regular equilibrium, this type
must make the largest bid 5(7). According to the rules described above, the bidder
always wins and hence sells to other bidders with probability 0. In order for this to
be incentive compatible, it must be that the type v does not have an incentive to
shade, and start selling to bidders of lower valuation. At the margin, the surplus
lost from not receiving the good when others bid 3(v) is (v — 5(v)) fvg)‘vi (v|v),
i.e. when one of the other bidders has a valuation of 7 conditional on v; = ©.
On the other hand, the revenue gained from selling to such a type is precisely
af(v) fvg_)m (|v). Hence, for shading not to be attractive for the highest type, it
must be that 5(7) is less than Hla In fact, if this were a strict inequality, then
there is some type with value v; € (T — €, 7] who would prefer to shade less. This

informal argument suggests the following Lemma, whose proof is at the end of the

chapter.

Lemma 3.2. In any reqular equilibrium, it must be that:

B) = v (3.13)

l+a

+

where o = -2~
n—1
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3.4.2 A constructive algorithm

I will now construct a regular equilibrium of the RSA. The equilibrium consists
of a partition of the interval of valuations [v, 7] into a sequence of intervals with

endpoints:

<
I
I=
=
(VAN
gl
=
(VAN
VAN
s
(VAN
ol
I
St

The partition, and the bidding and pricing functions S and p, will be defined

inductively on the regions:

W= (]
(3.14)
Wk = (@, w").

On regions W , I'set B(v) = p(v) where 3 solves (FOC) with the initial condition
B@°) = 17z and p(@*) =
B(v) =wv and p(v) = r*(v) = infr*(v,v) < w"

* for k > 1. On regions of the form (w*~!, w*], T set

In particular, let 8;(v) be the solution to (FOC) on [v,w*] with the boundary

condition:
. wh ifk>0
Br(w”) = B . (BC)
e ifk=0
Define:
w* = sup ({v} U{v <w0"|B(v) > v}). (3.15)
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Note that this definition implies that if 3,(v) < v for all v, then w* = v. I define
B(v) = Be(v) for all v € [w*, w"].

If w* > v, let:
@ = sup ({v} U {v < w" |R(v,v) > R(v,w) Yw € (v,w"]}). (3.16)

If wk € r*(v,v) for all v < w*, then set W*! = v. Otherwise, B(v) = v and
p(v) = r*(v) for v € W*,

The construction starts with w° = v, and continues inductively alternating
between defining new w”* and w**!. The algorithm terminates when the next of
these two suprema are v. This is formalized in Algorithm 3.1, and Proposition

3.1 provides a characterization of the algorithm.

Algorithm 3.1: Constructing a regular equilibrium

initialize k£ = 0, w° = .
initialize G(v) = p(v) =
while true
define w* according to (3.15).
redefine (3(v) = p(v) = Bi(v) for v € [0, w"],
where [ (v) solves (FOC) and (BC).
v,
break.
define w**! according to (3.15).
redefine (3(v) = v and p(v) = r*(v) for v € [0, w].
if w* = v,
break.
redefine k=k+1.
end while

Bo(v), which solves (FOC) and (BC)

if wk =
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Revenue curve

0.12

0.1p

0.08

0.06

V(1-F(v)

0.041

0.021

Figure 3.2: The revenue curve for the irregular example of Section 3.4.3. Note
that the profit function has two peaks.

Proposition 3.1. The inductive construction of Algorithm 3.1 terminates after
finitely many steps. It defines a continuous and strictly increasing bidding func-

tion.

Hence, the algorithm defines a bidding function. It is easy to see that this bid-
ding function is continuous, since it either solves the differential equation (FOC)
or is f(v) = v, and I have defined /5 at boundary points so that it is continuous.
At this point, it is not known that S is strictly increasing, but this will follow

from Lemma 3.3 below.

3.4.3 A more complicated example

Before showing that Algorithm 3.1 defines an equilibrium, let us look at an ex-
ample that showcases the richness of the construction. The uniform example was

relatively simple because Algorithm 3.1 converged after just two steps, which is
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Equilibrium bidding function for a=0.25

0.8} ,

0.66}

BV

0.18}

Figure 3.3: The equilibrium bid distribution for the example of Section 3.4.3.
Algorithm 3.1 takes four steps to converge, with w® ~ 0.66, w' ~ 0.52, w! ~ 0.18,

and w? = 0. The dotted line is Tl

a consequence of the fact that the value distribution has monotonic virtual val-
uation, i.e., is regular in the sense of Myerson (1981). It also turned out that
the bidding function on W’ had a simple linear form. Here I present a more
complicated example involving two bidders in which values are still independent,
but the independent distribution is highly irregular. The cumulative distribution
of values is a weighted sum of Beta distributions, and in particular each bidder’s
valuation is distributed Bla = 1.5, 5 = 5.5] with probability 0.9 and is distributed
Bla = 25, 5 = 2] with probability 0.1. The revenue sharing parameter is o = %.
This cumulative distribution results in the revenue curve v(1 — F'(v)) depicted in

Figure 3.2.

The equilibrium bidding function is depicted in Figure 3.3. Note that the solid

line, 5(v), is everywhere above the dotted line, which is Tra- Lhe algorithm takes
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four regime changes to converge. It starts with w® = 1 and B(w°) = HLO[ = 0.8.
Initially, 5 solves the differential equation (FOC) starting at v = 1 and going
downwards, until 3(v) hits v at w® ~ 0.66. At this point, the regime switches
to B(v) = v and 7*(v) = 0.66, until W' ~ 0.52. At this point, r* jumps down to
0.52, and the regime switches back to solving (FOC) with the boundary condition
B(w') = w'. The bidding function again hits v at w! =~ 0.18, and the regime
switches back to the f(v) = v with r*(v) = 0.18, until v hits zero.

In general, the algorithm could require many regime changes before reaching

zero, although the number of regime changes is bounded above by two times the

number of zeros of g(v,v|v) — 1, as shown in the proof of Proposition 3.1.

3.4.4 The algorithm defines an equilibrium

My main result is the following:

Theorem 3.1. The bidding and pricing functions (5, p) defined by Algorithm 3.1

constitute a reqular equilibrium of the revenue-sharing second-price auction.

I will provide a general overview of the proof. To start, observe that (FOC)

v
14+a”

is zero when [B(v) = Hence, it is impossible for g to fall below this level,
and indeed it is impossible for it to remain at this level for an open interval.
This means that the bidding function is always strictly increasing, so if it is an

equilibrium, it will be regular. This is formalized in Lemma 3.3.

Lemma 3.3. 17 < B(v) <w.

Q)

An observation which greatly simplifies the proof is that there is a relatively
small number of deviations which need to be checked. In particular, a deviation

to (r,r) with r < v dominates all deviations of the form (b,r) with b < r < v.
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The reason is that for b < v, S(v,b) is weakly increasing, so it is without loss of
generality to take b as large as possible subject to the pricing constraint. On the
other side, only deviations of the form (v, r) where r > v need to be considered.
The reason is the same: S(v,b) is weakly decreasing when b > v.

The next Lemma will help rule out some downward deviations. Recall that
(FOC) defines the bidding function on regions W". The first-order condition was
obtained by differentiating U (v, 5(w), B(w)) with respect to v and setting it equal
to zero for w = v. However, substituting the definition of 5’(w) into the derivative

of U yields the expression:

U (v, B(w), B(w))
ow

= C(v,w) - | (B(w)(1 + @) — w)g(w, w|w)

— (B(w)(1+3) = v)g(w, wh))

where C'(v,w) is some strictly positive number that depends on v and w. But
because of Lemma 3.3, the term multiplying g(w,w|w) is always non-negative,
and also f(w)(14a) —v is greater (less) than S(w)(1+a) —w if v is less (greater)
than w. Combined with the fact that g(w,w|v) is monotonically decreasing, these
observations imply that the bidder’s deviation payoff at a deviation of the form

(r,7) is increasing if b < 5(v) and decreasing if b > S(v).

Lemma 3.4. For all w on the interior of w" for some k:

dU (v, B(w), Bw)) | <0 ifw>v

dw >0 ifw<w
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This Lemma tells us that a bidder’s payoff is always decreasing as a deviation
of the form (r,r) moves away from (5(v), p(v)), when the deviation bid is in a
region on which the bidding function solves (FOC).

But to rule out large deviations, it must be that deviation payoffs are decreas-
ing when crossing regions of the form W*, and also when deviating to (v, ) with

r > v. This is facilitated by the following Lemma 3.5.

Lemma 3.5.

OR o o :
1. Forr € W*, B(Z’T) is increasing in v. As a result, if r > ' and v > v/,

then:

v < = R(v,r) < R(v, ")

v > = R(v,r) < R(v,r*(v) A wh).

2. Forwe W' andev,wgo.

The Lemma makes two assertions. The first concerns regions of the form W,
and asserts that if v < w**!, then w**! generates greater expected revenue than
any price 7 € W". Note that the result holds trivially when @w**' = v. On the
other hand, if v > @W"*!, then either (1) v € W*, and r*(v) is better than any
price in W*, or (2) v ¢ W* and w" is a better price than any r € w*. Note that

k — 2. More generally, the result is a consequence

this is trivially satisfied when w
of the positive correlation assumption A1, which is that higher types are more
optimistic about the distribution of others’ values. As a result, higher valuations

always want to set higher reserve prices for other bidders.

101



The second part of Lemma 3.5 concerns the sign of marginal revenue on regions

W" with v < w*. By substituting in the formula for 8’(w), the derivative of U is:

plw) -

U (v, (w)) _ C(v,w) - ng(w,w|w) + B(w)(g(w, wjw) — g(w, w|v))|

ow

where C'(v,w) is strictly positive. Since f(w) < w, and g(w,w|w) < g(w,w|v),
again it is the case that marginal revenue is non-positive on such regions.

The results of Lemmas 3.4 and 3.5 facilitate an inductive argument that the
equilibrium strategy is optimal. For simplicity, let us consider v € W for some
k. The case when v € WF is not substantially different. The quasiconcavity of
U(v, f(w), f(w)) means that there are no deviations of the form (r,r) that are
optimal with r € (Wk) In particular, this means that w” is not a profitable
deviation. But then Lemma 3.5 implies that there is no profitable deviation on

@+, w*] = W*, since R(v,w) is greater than R(v,r) for r € W* and S(v,b)
is weakly decreasing when b < v. Hence, a deviation to (w**!,w*™!) is not
profitable. But now the quasiconcavity kicks in again on Wkﬂ, and there are no
profitable deviations here either. This induction continues, and so that there are
no profitable downward deviations.

With regard to upward deviations, it has already been shown that (v, v) is not
a profitable deviation, since either (1) v > 3(7), in which case this is obvious, or
(2) since B(w*) > v, (v,v) is a downward deviation in Wk, which is not profitable
because of Lemma 3.4. But now part 2 of Lemma 3.5 can be used to show that
the payoff at (v,v) is weakly greater than the profit at (v,r) for all r > v. On
regions Wk, marginal revenue is non-positive because of Lemma 3.5, so (v, 3(w"))

is not profitable. If & > 0, the first part of Lemma 3.5 shows that (v, w") is better

than any deviation (v,r) with » € W*. The induction continues, showing that
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no upward deviation is profitable. This concludes the proof sketch that (5, p)

constitute a regular equilibrium of the RSA.

3.4.5 Equilibrium net revenue

Let us now turn our attention to revenue properties of the RSA, specifically with
an interest in comparative statics as @ — 0. My basis for comparison is revenue
from the second-price auction if the seller knew the distribution of values and was

able to set the optimal anonymous reserve price. Formally, define:

2
= I}ql;lg(E [7’ Hv(2>§r§v(1) + U( )Hrgv@)} ,

and define r* to be a revenue maximizing r, which is an optimal anonymous reserve

price. Gross revenue from the RSA is:

= / B {p(v)ﬂﬁ(v@)ép(v)éﬁ(v(_lf) + “(—Qi)ﬂp(ws&(v(f;)

(1= Fa (o3 oo

and net revenue from the RSA is 7 = (1 — a)7®

, since an « share of revenue is
awarded to the bidder who suggests the reserve price.

I will prove the following result:

Proposition 3.2. For any o > 0, net revenue w from the RSA under the equi-
librium defined by Algorithm 3.1 is at least ﬂ*;—g. Hence, as a« — 0, revenue

converges to a limit weakly greater than m*.
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Proof of Proposition 3.2. Because of Lemma 3.3, we know that 5(v) > —=. This

1+a”
implies that:

E i I + ——= U(Q) I

> * /\ *

jl |:1 =~ Ly <px<p(D) 1 T <v(2):|
*

Hence, if the seller were to use the anonymous reserve price ; +A with the equilib-

rium bid distribution induced by 3, gross

In fact, the seller does not set the reserve price {_=, but rather the reserve price
p(v) of a losing bidder with valuation v. However, each such bidder is setting an
optimal reserve price conditional on v > v, and therefore is setting a reserve
price which generates weakly greater expected revenue conditional on this event.

Formally, gross revenue when using a particular bidder’s recommendation is:

v(_li) > v} .

1y ) o) + 0T oy

Hence, gross revenue is:

v

maxE [T%@@z)w(v@) )|

1
— IPZayXE [r ]Iﬁ( @)<r<h(u) 1+ )]IT<B(U(2))’ Sz > v} (1 - Fv(lplvi(v\v)> fo;(v)dv

V=V

V=0

> max /v:vE [r ]Iﬁ<v(2>)9§6(v(1>> + ”(Q)Hrg,a(v@)) U(_li > v] (1 — Fvg‘w (v|v)> fo:(v)dv

= 1B [Ty crcptoo) + V7L cpgen]
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The second line comes from the fact that r > §(v), ’U(_22 > v, and v(_li) = v,
The third line comes from the integral of the maximum being greater than the
maximum of the integral. The final line is just the law of iterated expectations.

*

717> S0 gross revenue under the RSA is at least this

The last line is at least
quantity as well.
However, the seller is also making payments to the agents of o times realized

revenue. Hence, net revenue is 1 — « times gross revenue. L]

Thus, the loss from revenue sharing becomes small as a — 0. This result is
intuitive: for any «, bidders suggest optimal reserve prices conditional on them
losing the auction, with respect to the equilibrium bid distribution. Since these
prices are optimal conditional on more information than the prior, namely the
realization of the loser’s value v and the fact that v(_li) > v, revenue generated
with such prices is at least the revenue with an optimal ex-ante reserve prices.
Moreover, because of Lemma 3.3, as a — 0 the equilibrium bid distribution con-
verges weakly to the distribution of values, and since expected revenue is weakly
continuous in the distribution of values, gross revenue converges to a quantity
weakly greater than 7*. Lastly, for small o, the revenue lost from sharing is small
relative to gross revenue.

In light of Proposition 3.2, it is fair to say that the RSA accomplishes the goal
described in the introduction, which is to approximate revenue from the second-
price auction with an optimal anonymous reserve, even in situations where the

seller does not know the distribution of values but the buyers do.
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3.5 Discussion

3.5.1 Asymmetric distributions

Throughout the analysis, I have restricted attention to symmetric case. The exten-
sion to asymmetric distribution involves a somewhat more complicated construc-
tion than Algorithm 3.1, and some new conceptual challenges. In the symmetric
case, bidders all used the same bidding function and hence at any valuation v, all
bidders were either in the regime determined by the first-order condition (FOC)
or were bidding their values. With asymmetric bidders and asymmetric bidding
functions, the bidders’ regimes need not coincide, and indeed I must make al-
lowance for one bidder to be following the asymmetric version of (FOC) and the
other bidder to bid his value.

To illustrate, let us consider a two bidder example in which each bidder 7’s
value is drawn independently from the distribution with cumulative distribution
F;. T assume that both F; have the same support [v,7] and both admit strictly
positive and continuous densities f;. 1 will first derive the asymmetric analog of

(FOC). To that end, it is useful to define the functions:

which are the inverse bid functions. In the asymmetric case, I will solve directly

for the inverse functions, and then invert them to obtain bidding functions.
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In that case, surplus and revenue can be written:

b
S0 = [ @ pl) )

Ri(v,r) = ar(1—Fj(z(r))).

Hence, the condition that bidder i’s marginal surplus plus marginal revenue equal

zero reduces to:

(0= b)fi(2;(0))25(b) + a [1 = Fj(2;(b)) — b f(; (1)) 25(b)] =0,

which evaluated at v = z;(b) can be rewritten as:

. « 1 — Fj(2(b))
%(0) = b(1+a)—z(b)  fi(z(b))

(FOC")

This formula has an important feature missing from the symmetric case: The
first-order condition for bidder ¢ to price at his bid is actually a constraint on

bidder j’s bidding function. The boundary condition is unchanged:

2 (116) =7. (BC)

Our new algorithm again calls for initially solving (FOC’) subject to (BC’). The
construction starts with z;(b) > b, and the regime switches when some z;(b) — b
hits 0. With symmetric distributions, both z; would hit b at the same time (if
at all). However, we must confront the possibility that z;(b) — b hits 0 at b, but
z;j(b) —b >0 for all b >b.
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One idea would be to look for hybrid regimes in which one player’s z; is defined
using the first-order condition, and the other player has z;(b) = b. However, this
cannot be part of an equilibrium. For suppose that this is the case, say with z;
solving (FOC’) and z5(b) = b. This would imply that bidder 1 is pricing strictly
above his bid, and bidder 2 is pricing at his bid on some region. But this requires
that z1(b) > b, in which case bidder 1 is shading, even though his pricing constraint
is not binding and there is positive probability of bidder 1 setting a price of &
between b and z1(b). As such, bidder 1 would want to increase his bid, so as to
win on these events!

Therefore, a hybrid regime cannot exist when leaving a regime where both
pricing constraints bind. But, it still might be the case that the solution of
2(b) — b, say, hits 0 at b, while z (E) > b. What then? If z is to be monotonic,
the only option is to have z; jump down to z1(b) = b, so that z; has a discontinuity.
This corresponds to a range of valuations for player 1, between 2, (3) and z; (E),
limits from the right and left respectively, who all bid b and set a price of b.
Intuitively, these types all want to sell to a bidder 2 with value greater than B,
and bidder 2 bids his value and sets a price of 3, effectively selling to the mass
point.

To illustrate, let us solve a simple asymmetric example. The support of values

is [0,1], and Fy(z) = x and Fy(z) = 2?. Hence, bidder 2 is the “high demand”

2
3

1

whereas bidder 1’s expected value is =.

consumer, with expected valuation of 5

The differential equations are:

40) = 5y 05‘_ oL (3.17a)
_ o 1 — (22(0))?
40 = J e a0 20 (3.17b)



The construction starts with b° = HLQ and W’ = (B, B). Tt turns out that z5(b) —b
hits 0 first, at around b & 0.4430, and thereafter set 21(b) = 2z2(b) = b. This is an
equilibrium, since a price of b dominates all lower bids. This can be seen from the
fact that v(1 — Fi(v)) is concave with a maximum at v = 3, and v(1 — Fy(v)) is
concave with a maximum at v = = ~ 0.5774.

What if the z; are in the regime where z1(b) = 23(b) = b, and then at some b
bidder 1’s pricing constraint binds, so that he would want to start shading in equi-
librium? In order to satisfy bidder 1’s indifference while maintaining z;(b) = b,
bidder 2 would need to start shading. However, this shading cannot be incen-

tive compatible if bidder 1 is setting prices between b and z9(b) with positive

probability. The solution is to solve (FOC’) with 2(b) = 1, so that:
(b(1 + a) = z1(b)) f2(b) = (1 = Fy(b)),

until bidder 2’s pricing constraint binds, at which point the z; solve the full system
of first-order conditions.

Note that the difference between leaving the both-not-binding regime consid-
ered here and leaving the both-binding regime considered above is that the player
who continues to bid his value must have a weak incentive to price above his
own value. When leaving the both-binding regime, when z;(b) — b hits 0 at B,
this means that bidder j now has an incentive to price at 3, and hence he cannot
shade to a bid below b. On the other hand, when leaving the both-not-binding
regime, there is no problem having one bidder continue to bid his value as long as
he prices above his value, while the other bidder starts to shade.

Thus, the general lessons for the two bidder asymmetric case are
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1. When leaving a regime with both z; and 25 solving the first-order condition,
and when z;(b) — b hits 0 first at b, then 2;(b) jumps down, so that f; is

constant at b until v = b.

2. When leaving a regime with z1(b) = 23(b) = b, and bidder i’s pricing con-
straint binds first, then bidder j continues to have z;(b) = b while z; solves

(FOC') with 2} =1 and z;(b) = b.

Finally, I observe that while this proposed algorithm leads to continuous and
weakly increasing bidding functions, they are not strictly increasing because of the
discontinuities in z;. Hence, for asymmetric bidders, the definition of a regular

equilibrium would need to be relaxed to allow for weakly increasing bids.

3.5.2 Simpler auctions

In the symmetric independent and regular case, I could have used a very simple
auction to accomplish my stated goal: each bidder submits a bid b; and price r;,
but instead of being rewarded with revenue only when losing the auction, bidder
i receives a payment of r; V b(_22 if b(_lz) > r;. In effect, the seller “simulates”
the revenue that the bidder would receive from setting a reserve price of r;. In
the symmetric independent and regular case with distribution F'(v), the optimal

reserve price is independent of the number of bidders and simply solves:
1—F(v)—vf(v) =0.

so bidders will report a reserve price solving this first-order condition. The seller

can then implement this reserve price for the remaining bidders.
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Irregular revenue curves
0.4

Revenue curve with two bidders
Revenue curve with one bidder

0.29

0.18

0 0.21 0.88 1
price

Figure 3.4: Comparison of revenue with one bidder versus two, when values are
independently drawn from a B[o = 11, 8 = 30| distribution with probability 0.81
and from a Bla = 25, f = 1] distribution with probability 0.19. In the simulated
revenue auction, each bidder suggests a price of 0.21, even though 0.88 is the
optimal anonymous reserve price with two bidders.

This auction generates no incentives to shade to throw the auction, since the
simulated revenue is received regardless of whether the bidder wins the good.
However, with irregular, asymmetric or correlated distributions, there is no simple
formula for the optimal reserve price, nor an easy way to relate it to some ex-
ante reserve price that does not condition on whether or not a bidder is the loser.
Indeed, for a modified version of the example from Section 3.4.3 depicted in Figure

3.4, each bidder would suggest a price of 0.21 in the simulated revenue auction,

even though 0.88 is the optimal anonymous reserve with two bidders.
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3.5.3 Uniqueness

In Section 3.4.1, I characterized two necessary conditions for a symmetric regular
equilibrium, namely that when the bid function is differentiable, (FOC) must be
satisfied, and §(v) = Hia I strongly suspect that the equilibrium of Algorithm
3.1 is unique among the class of regular equilibria, though I have not proven
this result. Other authors have investigated uniqueness of auction equilibria in
similar settings, notably Lizzeri and Persico (2000) and Lebrun (2006). Lizzeri
and Persico (2000) in particular use a notion of regularity that is analogous to
my own, though my requirement that bidders bid their values when indifferent is
unnecessary for the auctions they consider. This assumption could be dispensed
with by modifying the auction format by adding a small probability event that
bidder 7 is sold the good at a randomly drawn price r if » < b, where r is drawn
from the cumulative distribution G(r) with support equal to Ry. This extra
incentive to bid close to one’s value interacts smoothly with (FOC), and does not

substantively change the structure of equilibrium. I hope to consider the question

of uniqueness in the future.

3.5.4 Extension to general type spaces

At the heart of my arguments is that bidders should not shade too much in
equilibrium, because of the requirement that the sum of marginal surplus and
marginal revenue must be zero if bidders shade a positive amount. I showed that
for the RSA, in order for the bidding function to solve (FOC), bids must be at
least 17=. However, in order to prove that the bound holds, I had to construct an

equilibrium, which required the monotonicity property.
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In more general type spaces, there is an easy way to achieve a similar bound
using a first-order condition. Consider an auction in which the bidder elicits bids
and prices, as in the RSA. With probability 1 — «, the seller picks a bidder to
consult at random and uses that bidder’s suggested reserve price, also as in the
RSA. With probability «, the seller simply uses the second-highest bid as the
price for the winner. Crucially, the share of revenue that goes to the consulted
bidder is o? times realized revenue.

Let us consider the marginal incentive to shade using this auction format. If
the pricing constraint is not binding, then there is no incentive to shade, and
bidding one’s value is a weakly undominated strategy. If the pricing constraint

binds, then the marginal surplus is:

95 (v, B(w))

o = [(1 = @) (v — p(w))Ig(w)>p(w) + (v — B(w))]

“F o

w. w’U7w>f'Uj"Ui(w|v)

|vi7vj(

> afv = B(w)Fye ., (w0lv,0)fy (wlo)

and marginal revenue is:

OR(v, B(v)) _

o =« <F (1_)_|vi(6,w]v) -F |vi(w,w\v)> B (w)

ViU ViU

—ij| iV

- ﬁ(w)Fv“) Vi (w|v7w)fvjvi(w|v)]

> _a2/8(w)Fvg,?j‘Ui,@j (w]v, w)fvjlvi (wlv)
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If it is true that:

9S(v, B(w)) = OR(v,B(v)) _
ow * ow

then:

a’B(w) > a(v = f(w))
1+a

= B(w) >

Thus, if an equilibrium exists for this more general mechanism, and if bidders

bid their values unless they have a strict incentive to shade (as they would be if

v
1+a”

the trick referred to in Section 3.5.3 were used), then G(w) must be at least
As a result, bounds similar to those of Proposition 3.2 would obtain. However,
existence is no small order, as has been pointed out in the literature (see Reny,

1999; Athey, 2001; Reny and Zamir, 2004).

3.6 Conclusion

This chapter has considered a setting in which the buyers know the distribution
of values, and therefore know the optimal reserve price, but the seller does not.
The seller wishes to have the bidders communicate enough of what they know
so that the seller can obtain the greater revenue associated with a well-chosen
reserve price, but the seller also desires that the bidders communicate as little
information in as concise a manner as possible. This leads us to a mechanism in

which each bidder simply recommends a reserve price for the seller to use in the
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event that the bidder loses the auction. Truthful reporting of the reserve price is
incentivized with revenue sharing.

This rule distorts bidders’ incentives to bid their values, and therefore pushes
down the equilibrium bid distribution relative to the value distribution. Nonethe-
less, the distortions are small when the seller only shares a small amount of rev-
enue, and the seller is able to extract virtually all of the revenue that he would
obtain if he knew the distribution and set the optimal anonymous reserve price.

In that sense, this mechanism accomplishes the seller’s goal.
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3.A Proofs

Proof of Lemma 3.2. A type v can win for sure at price 5(v) and obtain a payoff
of:

vi=0l.

E v —pe) v 3 (o)

On the other hand, by bidding 5(v), a bidder with valuation v can obtain:

w=1)

UZ‘:’U:|.

E [(v —p(v;) VB < _w)) I pw)VB Y )<pw) | Y
+aE[ (v)V 5( ) B> p(v)

The difference is:

Ui:U]

~ 2)
E [( plu) vV B ( w)) p(oy) VB >B(w) T ap(v) vV B (“ﬂ') Law®)>p(w)

>E | (v p(0) v 8 (00) = ap) v 8 (v2)) Lm0 | v = 0]

since p(v;) > B(v;) and p(v) > B(v). Clearly, p(v) < [(v), since otherwise no

revenue would be generated. Hence, this quantity is at least:

UZ':’U:|.

If B(v) < 2= ~%, then this quantity is positive for v sufficiently close to v, in which

E [('U - ﬁ(ﬂ)(l + a)) ]Iv<_1i)>v

case deviating to §(v) will be attractive for such a v.

On the other side, if 5(7) > then type ©’s payoff from bidding 3(7) is

Tra

’UZ‘:F],

E |7~ p(v;) V (1)
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whereas the payoff from bidding p(v) < 5(7) and setting the same price is:

I () =7
E [(v p(v;) V B (Ma)) Lotwpvee))<om | Vi = ”}

~ (2)
+aE [p(v) ] (”—z’) Tow®)2 )

Uizﬁ],

so that the difference is:

Vi :6:|

UZ:E:|

= ol 1)
E {(U P(UJ) VB (U—w)) Hp(vj)vﬂ(v(ffj)Zp(v)

A (2)
alkE [p(v) VB <’Ufi> La0)2pw)

Since p(v;) > B(v;), I conclude:

| o)
plog) v 3 (”*iﬂ') Lownvs (o) 200 Z PO 0500 ) 20007

—1ij —ij

and also I . Hence, the difference is at most:

Ui:E:|,

which must be negative for p(v) close to §(7), since p(v) is being squeezed to

o)A (o)) 200) = La(s2) 200

Ehv—p@ﬂ1+@h%@9>mo

B(T) > =. O

Proof of Proposition 3.1. Consider a point w*, which is the supremum of v < w*
such that S;,(v) > v. By continuity, it must be that 8 (w*) = w", so the derivative

[’ at such a point is:
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If B, (w*) > 1, then Bx(v) > v for v € [wF, w* +¢), which contradicts the definition
<

of w*. Hence, it must be that g(w*, w*|wk) ﬁ

k k

Next, I show that g(w"*,w"|w"*) > #, as long as v < w” < w”. Clearly

this is true at w® = v, since g(w",w*|w"*) blows up at that point. For k& > 0,

according to the constructed equilibrium, 3(w*) = w* and w* € r*(w",w"*). This

inclusion follows from upper-hemicontinuity of r*. Moreover, on (W* — €, w"] it

must be that $(v) = v. As a result, marginal revenue at the reserve price r is

exactly (3.2). Clearly, marginal revenue is positive if g(w®, w*|w") < #, which

contradicts w® € r*(w”, wk).

To summarize, it must be that g(w”*, w*[w*) > = and g(w", w*|w*) < ﬁ By

A2, there can be at most finitely many points at which g(v,v|v) changes sign.

Finally, w* cannot coincide with w**!, since if R(v,v) > R(v,w") for v near w*,

k

marginal revenue must be negative so that 1 — v g(v,v|v) < 0 for v near w* (since

this function has finitely many zeros), so:

since 8(v) < v, so By(v) < v for v in (w* — €, w"]. This contradicts the definition
of w*. Hence, any sequence of decreasing v* for which g(v¥, v*|v¥) alternates sign

(weakly) must terminate after finitely many steps. O

Proof of Lemma 3.5. This is obviously true on regions [w*, w*~!], when 8(v) = v.

v
1+a

Second, suppose that 5(v) < for some v € [w*, w*]. Since B(v) is continuous

and B(w") > %, the following quantity is well defined:

ﬁzinf{wZU

Blw) > - }

1+

Q)
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Then S(w) < %% for all w € (v,v). By the mean value theorem, there exists

w € (v,v) such that:

Al 1
1\ . 14
Flw) = ==— >0
But by (FOC), g/(w) > 0, a contradiction. O

Proof of Lemma 3.4. The derivative of this function is:

)t
r=p(w)
= (=1 = B@)E,a ., (W, w)f (w]0)

OR(v,r)
or

dU (v, B(w), B(w)) _ (asw,b)
dw ob

b=p(w)

+ o

Fw) (E, o, @) = F, o, ()

Vj 77’]—1] Vi V_j
- 6(w>FU(_11?J_|%U]. (w‘v’ w)f'Uj|vi (wlv)]

—(n—1) (ij,v% @ wlv) = F, o . (w,w|v)>

ij

(0 = B) (1 +@)g(w, wlv) + a8 (w)).
Substituting in (FOC) yields:

dU (v, B(w), B(w))
dw

—(n—1) (F W @wp) = F o lw(w,w‘v))

Uj v”-ij|”i Vi V_ij

[ (Bw) (1 + @) — wyglw, wlw) - (Bw)(1 + &) - v)g(w, wlv)|.

Note that S(w)(1 + @) > w by Lemma 3.3, so the first term is positive.
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Take w < v. Then g(w,w|w) > g(w,w|v). Hence, it must be that:

(B(w)(1 +a) —w)g(w, wlw) = (B(w)(1 + @) = v)g(w, w|v)
> (B(w)(1 + @) = w)g(w, wlv) = (B(w)(1 + @) = v)g(w, wv)

= (v —w)g(w, wlw) = 0.
If w > v, then g(w, w|w) < g(w,w|v), and:

B(w)(1+ @) —w)g(w, wlw) — (B(w)(1 + &) —v)g(w, w|v)
< (Bw)(1+a) —w)g(w, wlv) — (B(w)(1 + @) —v)g(w, w|v)

= (v —w)g(w,wlv) <0.

Proof of Lemma 3.5. To prove the first part of the Lemma, note that:

log <Fv_ e |v_(ﬂ, rlv) = F o |v_(r,r|fu)> = —/ g(x,rlv)dz,
JoV—iglvi I T =gl T=v

i

which is increasing in v. Hence:

F o

IR v

(67T|U) —F (1)

by 1) (r,rv)

|vi
R(v,r)

is also increasing in v, as is 1 — rg(r,r|v). Given the expression for =~ this

proves the claim.
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By definition, R(w*,@w*) > R(w",r) for all w € W¥*. Hence, if v < @W*, the

difference is:

w@R

/w aR )

=k

IN

R(@", w) — R(wk,@k) <0.

The other direction is significantly more complicated. Our goal is to show that

the integral:

W OR(w, x)

d
ox v

R(v,ut ™)~ Rev,w) = [

r=w

is non-negative for v > w1l First, [ will show that r*(v) = inf(r*(v,v)) is
monotonically increasing on W¥*. Take v > ¢’ and = € r*(v,v). Then R(v,z) >
R(v,y) for all y > v. This implies that R(v',z) > R(v,y) for all y > z, by the

fact that 83(” r)

is increasing in v. Hence, if ¢ r*(v/,v’), it means that there
must be a y € r*(v/,v’) such that R(v',y) > R(v',x) and hence y < z. Thus,
either (1) r*(v) € r*(v/,v’), in which case weakly increasing is obvious, or (2)
r*(v) ¢ r*(v',v’), in which case there must exist y < r*(v) in r*(v/, v').

With this monotonicity result in hand, for any point in the image of = = r*(v)
on (w*, w*1], z must be an optimal price for type v, and moreover must satisfy

an interior first-order condition. Otherwise, if the constraint x > v were binding,

it would be the case R(v,v) > R(v,w) for all w € (v, w*!], which contradicts the
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definition of w*. Hence:

OR(v, x)

In other words, for any x in the image of r*, marginal revenue is non-negative for
type w*~1. On the other hand, for any x € [w*, w*~1] \ 7*([w*, w*~1]), it must be
that x is passed over at a jump discontinuity of the monotonic function r*. Let K
be the countable collection of intervals that result from jump discontinuities, i.e.,
the set of [a,b] such that a = r*(v') and b = lim,n,, r*(v") with b > a. Clearly,
r([@*, w ) U{T € K} = [@*, w1,

For each [a,b] € K which is the jump at ¢/, it must be that {a,b} C r*(v/,’),
for if R(v',a) > R(v',b), then this will also be true for v > ¢ but nearby.
Moreover, it must be that R(v',a) > R(v',w) for any w € [a, b]. Hence:

b b k—1
0= / Ok, z) \ / ORw™ ", 2) ,
T=Ww 8'17 T=Ww 81‘

Finally, this shows that:

wk:
/ aR(’U,l’) dr — / aR(U,x) dx +/ aR(U,l’) dx > 0,
T=w Oz (Urerx I)Nw,wk=1] O 7 ([w,wk—1]) O

which proves the other direction. It is straightforward to repeat the argument

with 7*(v) instead of w*. For that case, I would show that:

which is established by analogous arguments.
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For the second part of the Lemma, marginal revenue has the same sign as:

Il
Q

dU (v, 5(w)) (

F o«
dw (1)

’”J"”—iﬂ”i(ﬂ’ww) B F”j’”(_li)j|vi(w,w|v)> [6'(w) = B(w)g(w, w|v)]
-« (Fvw(f-):lvi (@’ w|v) o ijw(,l-),-lvi (w’ w]v))
B(w) —w
' [—< g g(w, wlw) + B(w)(g(w, wlw) — g(w, w(v))| .
Clearly f(w) < w, so the first term in the brackets is non-positive. Also, for

w > v, A1 implies that g(w,w|v) > g(w, w|w), so the second term is non-positive

as well. Hence, marginal revenue is non-positive at w € W if w > v. O

Proof of Theorem 3.1. To start, fix a valuation v and consider deviations to some
(b,r). If r < v, then it is without loss of generality to consider the deviation (r,r),
since S(v,b) is weakly increasing as long as b < v. On the other hand, if r > v,
I can consider deviations of the form (v, ), since S(v,b) is weakly decreasing for
b > v. These are referred to as downward and upward deviations, respectively.

Downward deviations. I prove a base step and an inductive step. The base
step considers the cases where v € W or v e Wk

For v € W', consider deviations to some r < 8(w"), since either (1) w"

=T,
and it would never be profitable to set a price above the support of bids, or (2)
B(w") = w* > v. Since B is continuous, and deviations not in the support of bids
would never be attractive, the deviation 7 is equal to f(w) for some w. Lemma
3.4 shows that 3(v), 5(v) is weakly better than any downward deviation S(w) for
w e Wk.

Now suppose that v € W*. Lemma 3.5 shows that R(v,w"*) > R(v,r) for all

r € Wk. Also, any downward deviation would entail lower surplus as well, since
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S(v,b) is weakly increasing for b < v. As a result, there can be no profitable
downward deviations to r = 3(r) € W". This concludes the base step.

For the first half of the inductive step, suppose that deviating to (3(w*), 3(w*))
is not profitable, where w* < v. Again, Lemma 3.4 shows that U(v, B(w), B(w))
is weakly decreasing for w & Wk, so any deviation to [ (Wk) is weakly worse than
B(@").

For the second half, suppose that deviating to (w*,w") is not profitable.
Lemma 3.5 again shows that R(v,w*) > R(v,r) for all » € W* and S(v,b) is
weakly decreasing, so there are no profitable deviations in W,

Hence, for any Wk with WF < v or WF with wF < v, it cannot be that there
are any profitable downward deviations to f(w) with w € W' orwe wk.

Upward deviations. [ again show a base step and an inductive step, as
in the downward case. If v € Wk, the downward case has shown that (v,v) is
not a profitable deviation. By Lemma 3.5, marginal revenue is non-positive if
w > v, so there cannot be profitable deviations to some (v, f(w)) with w € W
and f(w) > v, since this implies w > v as well.

On the other hand, if v € W, Lemma 3.5 shows that R(v,w"*) > R(v,r) for
all » € W¥*. This concludes the base step for upward deviations.

I have already shown that marginal revenue is non-positive on W Hence, the
deviation (v, w") is weakly better than (v, 8(w)) for w € W

For the other half of the inductive step, Lemma 3.5 shows that R(v,w" ) >
R(v,r) for all r € W*. So if (v,w"*') is not profitable, then neither is such a

deviation (v, r). This concludes the inductive step. O
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Chapter 4

Extracting common knowledge:

Strengthening a folk argument

4.1 Introduction

An assumption underlying much of classical mechanism design is that the de-
signer knows features of the environment which are common knowledge among
the agents. Consider the simple problem of designing an auction for the sale of
a single unit of a good. An objective frequently attributed to the designer is to
maximize expected revenue, where the expectation is taken with respect to a prior
distribution of agents’ valuations or signals. Numerous results have demonstrated
that the optimal mechanism may depend on fine details of this prior distribution,
and even the ability to take such an expectation, let alone design the optimal
mechanism, presumes that the designer knows what the prior distribution is. In
practice, this may very well not be the case.

In this work, I consider what would happen if a designer did not know the
prior distribution of values, signals, states, etc. More generally, even if there is no

prior because of disagreement among the agents, we can ask what would happen
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if the designer did not know agents’ possible beliefs. The purpose of my inquiry
is to determine whether the designer is truly limited by this lack of knowledge,
or if he is able to recover the classical results by eliciting such information that
is common knowledge among the agents. For example, if bidders’ values in an
auction were drawn from a prior distribution which is known to the agents, could
the designer incentivize the agents to tell him what the prior was, and use this
information to design an auction as he pleases?

We have good reason to think that the designer might be able to do just
that. An old folk argument in mechanism design, going back to the early days of
complete information implementation, says that if a feature of the environment
is common knowledge among the agents, then the designer can recover this in-
formation at no cost. The designer constructs a mechanism in which the agents
simultaneously announce the common knowledge. If the report is unanimous,
then the designer goes on to implement his desired mechanism as a function of
the agents’ reports. If the announcement is divided, then some harsh punishment
is meted out, for example, slowly lowering the agents into a shark tank. Such
a mechanism has been formally described by Choi and Kim (1999) in a public
goods setting and is discussed in Bergemann and Morris (2012a). To the extent
that such a grim outcome is less desirable than the designer’s choice of mecha-
nism, truthful reporting will be a Nash equilibrium. Nonetheless, this mechanism
has many equilibria, most of which involve coordinated misreporting of what the
agents know.

I seek a stronger resolution of the designer’s problem, in which there are greater
assurances that the agents will truthfully reveal their common knowledge. Ideally,
the designer would like to use a mechanism in which all rationalizable messages

involve truthful reporting of their common knowledge, and such that any compro-

126



mise of the designer’s ultimate goals is minimal. This should be true even though
the agents rationally anticipate that the designer will use their reports to design
a secondary mechanism, the outcome of which is valued by the agents. For a
wide class of private-good environments, I show that it is possible for the designer
to accomplish these goals, although there are limitations on the kind of common
knowledge that the designer can elicit.

In particular, I consider environments in which outcomes consist of a vector of
agent specific components, where there are joint restrictions on which outcomes
can be implemented across agents. The environment is private-good-like in that
each agent only cares about their own component, and moreover it is always fea-
sible to exclude an agent by giving them a status quo outcome while not changing
others’ outcomes. An example of such an environment is the allocation problem
previously alluded to: the designer has finitely many goods, each of which cannot
be allocated to more than one agent at a time. Nevertheless, it is always possible
to exclude one agent from receiving any good without changing others’ allocations.
Such environments give the designer flexibility to punish or reward one agent at
a time.

Information and preferences of the agents are modeled using type spaces. Each
agent has one of finitely many types, and this type is associated with beliefs over
and preferences conditional on others’ types. The types are taken to be a sufficient
statistic for the distribution of any payoff relevant states of the world that influence
preferences. Agents’ beliefs are not required to be consistent with a common prior,
though there is a “common support” assumption that if a given profile of types
can be realized, each agent’s type must consider the others’ types to be possible,
i.e., others’ types lie in the support of beliefs. The designer can use type spaces

to describe various kinds of common knowledge that may exist among the agents
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and how that common knowledge should influence the mechanism design. In
particular, the designer specifies a collection of type spaces, and for each type
space in that collection a mechanism which he would like to implement. Such a
specification is referred to as a mechanism mapping, and represents the designer’s
ideal choice of mechanism if he knew the true type space. However, since the
designer does not know the true type space, he must choose a single uniform
mechanism to use in all events. The designer’s goal is to find such a uniform
mechanism in which agents in a given type space will behave similarly to how
they would behave in the desired mechanism.

My inquiry is closely related to the work of Abreu and Matsushima (1992a,b,
hereafter AM), who consider virtual implementation of social choice functions un-
der the assumptions of expected utility preferences and finite type spaces and out-
comes. AM discovered a “measurability” condition which a social choice function
must satisfy in order to be virtually implementable. This condition requires that
the social choice function prescribe the same outcome for types that have the same
preferences over lotteries unconditional on others’ types, the same preferences over
lotteries conditional on others’ unconditional preferences, etc. This measurabil-
ity condition is further studied and developed in a recent paper of Bergemann,
Morris, and Takahashi (2011, hereafter BMT), who construct a “universal pref-
erence space” of hierarchies of preferences to better understand when two types
can be strictly incentivized to behave differently. BMT explore a solution concept
which they term interim preference correlated rationalizability, according to which
a message is rationalizable if it is a best response to a correlated conjecture about
how others will play, when others’” actions can be informative about an agent’s own
preferences. A key result is that two types have identical preference hierarchies if

and only if they have the same rationalizable messages for every mechanism.
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I use this solution concept to formalize what it means for the uniform mecha-
nism to be strategically similar to the desired mechanism for the true type space.
Fixing a type space, I will say that two mechanisms are e-strategically equivalent if
it is possible to identify each type’s rationalizable messages in the two mechanisms
in such a way that the lotteries over outcomes induced by identified message pro-
files are the same up to an order e. Moreover, the order e difference in outcomes
is such that agents’ preferences over rationalizable message profiles are the same
between the two mechanisms. This definition captures the idea that the designer
is allowed to augment the desired mechanism with additional features to elicit
common knowledge, but the mechanism with extra features should still reduce to
the original strategic environment. For example, adding a message that cannot
be rationalized results in a strategically equivalent mechanism, as does merely
relabeling the messages or affine perturbations of lotteries. In other words, the
designer is also allowed to modify outcomes slightly, but not in a way that changes
the relative merits of rationalizable messages. Note that the notion of rationaliz-
ability employed here is quite permissive, in that there is a large set of possible
conjectures about others’ behavior and one’s own preferences that could justify
using a particular message. This permissiveness strengthens my result, since it
provides a stronger assurance that agents would never find misreporting common
knowledge to be optimal.

The designer would like to find a single mechanism which, for each given type
space, is e-strategically equivalent to the desired mechanism. When this is possi-
ble for e arbitrarily small, then the designer can recover the common knowledge
among the agents which is captured in the type space at arbitrarily small cost to
his original objectives. In Theorem 4.1, I show that a mechanism mapping can be

strategically approximated in this manner by a uniform mechanism only if it satis-
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fies a local preference measurability condition. In particular, if the designer spec-
ifies two type spaces that contain types with identical preference hierarchies, then
it must be that the desired mechanisms are strategically equivalent on a smaller
type space that contains these repeated types. Local preference measurability is
the analogue of AM’s measurability and BMT’s strategic indistinguishability in
the context of mechanism mappings. In Theorem 4.2, I demonstrate that local
preference measurability is a sufficient condition for a mechanism mapping to ad-
mit a strategically equivalent mechanism that is independent of the type space at
arbitrarily small cost, given sufficient flexibility to punish agents for misreporting.

Here I give a brief summary of the argument when there are at least three
agents. Under the private-good assumption, I construct a mechanism in which
agents have a strict incentive to reveal their higher-order preferences. This mech-
anism essentially rewards agents using scoring rules for accurately reporting the
subjective distribution of others’ types and subjective relative utilities of outcomes
given others’ types. Because of the common support assumption, agents must re-
port preference hierarchies that lie in the same smallest belief-closed subset of
a universal preference space. The revelation mechanism is used to construct a
general uniform equivalent mechanism. Note that if we implement any of the
mechanisms specified for a type space containing types with these hierarchies,
then by local preference measurability, we will have implemented a mechanism
which is strategically equivalent to all of the desired mechanisms. Thus, for each
preference hierarchy that appears on the domain of the mechanism mapping, we
will pick one such mechanism as the mechanism to be implemented for those
preference hierarchies.

In the uniform mechanism, agents report their preference hierarchy, a mech-

anism that they “suggest” should be implemented, and a message in the sug-
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gested mechanism. With small probability, we will implement the outcome that
incentivizes truthful reporting of preferences based on the reported preference hi-
erarchies. Importantly, this is the only part of outcome function through which
an agent’s reported preferences influence the marginal lottery over that agent’s
component of the outcome. This implies that agents must truthfully report their
preference hierarchies in any rationalizable message. Each agent’s hierarchy im-
plies a particular mechanism, selected from among the desired mechanisms for
type spaces containing the reported hierarchies. If all agents suggest the same
mechanism, which is the same as the mechanism implied by the preference reports
of all agents, then the designer implements the outcome for that mechanism under
the reported messages. It will turn out that any other message profile which does
not suggest the correct mechanism is not rationalizable. For example, an agent
is allowed to deviate in their reported preferences without changing their sugges-
tion, and although this adversely affects others’ outcomes, it will not affect the
marginal outcome for the “whistle-blower”. This allows an agent to deviate from
a unanimous misreport of preference hierarchies. On the other hand, if reports
are close to a unanimous report, except for inconsistent suggested mechanisms,
then a combination of nudges and more severe punishments induce the agents to
switch to suggestions that agree with others’ implied mechanisms.

Thus, in any rationalizable message profile, agents report their true preference
hierarchies and suggest the correct mechanism for the true hierarchies. But such
message profiles can be identified with message profiles in the desired mechanism,
and any remaining message is rationalizable if and only if its counterpart is ratio-
nalizable in the suggested mechanism. Moreover, in any rationalizable message
profile, the parts of the outcome which incentivize truthful revelation of prefer-

ences are constant given types. The only variation in outcome lotteries comes
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from the high probability event in which the desired mechanism’s outcome lot-
tery is used. Hence, the uniform mechanism will satisfy the definition of strategic
equivalence. This canonical uniform mechanism virtually implements the mecha-
nism mapping by making the probability of implementing the preference revealing
mechanism sufficiently small.

It is worth noting that the focus in the present work is quite different from
much of the mechanism design literature, which is primarily concerned with the
implementation of a social choice function or correspondence that maps states to
outcomes. In contrast, I am concerned with the recovery of common knowledge,
as captured in the type space, to facilitate the implementation of a mechanism.
In that sense, I am agnostic about the specific solution concept that the designer
would like to use for implementing social choice functions. For example, if the
designer specifies mechanisms with unique Nash equilibria that implement partic-
ular social choice functions, then this feature will be preserved under the uniform
equivalent mechanism that I construct. On the other hand, a designer may prefer
mechanisms that have multiple Nash equilibria but have other desirable proper-
ties like low complexity or an equilibrium in weakly dominant strategies, such as
a second-price auction with a reserve price. In that case, the designer may want
to learn about the type space in order to calibrate the reserve price while forgoing
a full-on optimization of revenue. More generally, my results characterize aspects
of the agents’ common knowledge with respect to which the implemented social

choice can vary in an arbitrary fashion.
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4.1.1 Related literature

The present work contributes to the literatures on mechanism design and on strate-
gic distinguishability of agents with different beliefs. Many notable results in
mechanism design and auction theory rely on the designer knowing a prior distri-
bution of types in order to calibrate a mechanism (e.g., Myerson, 1981; Crémer
and McLean, 1988; d’Aspremont and Gérard-Varet, 1979). The present chapter
relaxes this assumption, so that the designer must choose a mechanism that is
independent of the distribution of types, or more generally of the beliefs of the
agents. Similar goals are pursued in the literature on robust mechanism design
(Bergemann and Morris, 2005, 2012b). Much of this literature asks not only that
the mechanism be independent of the type space, but that the implemented social
choice function be independent as well.

In contrast, the current chapter allows the implemented outcome to depend
on the type space, but restricts the designers ability to “hard wire” the agents’
beliefs into the mechanism. This was also the premise in Chapters 1 and 2, as
well as papers by other authors such as Azar, Chen, and Micali (2012). These
works assume more structure on preferences, namely private values and quasilin-
earity, and more structure is placed on the designer’s objective. In Chapter 1, the
designer’s goal is to achieve an optimal worst-case revenue-share of the efficient
surplus, and in Chapter 2, the designer simply wishes to guarantee himself the
revenue from a second-price auction with an optimally chosen reserve price. Such
specific objectives lead to simpler optimal mechanisms, though an implication
of the results here is that there are many optimal mechanisms for these objec-
tives. For example, Theorem 4.2 below will imply that the designer can always

implement the revenue maximizing reserve price in a second-price auction as a
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function of “minimal” prior distributions, where minimality simply means that
the prior cannot be written as a randomization over priors on disjoint sets of valu-
ations. Indeed, the present model does not assume anything about the designer’s
motives conditional on the true type space, and the results provide conditions
under which optimization of the mechanism can be performed type space by type
space, with the results of these optimizations being approximated by a single type
space-independent mechanism.

As previously mentioned, the particular notion of approximation is very much
in the spirit of virtual implementation as in AM (see also Sen and Abreu, 1991;
Bergemann and Morris, 2009b). Broadly speaking, some objective is achieved
with arbitrarily high probability according to some solution concept. For AM, the
objective is to implement a social choice function according to iterated deletion of
strictly dominated strategies. Here, the objective is to implement a mechanism for
a given type space according to strategic equivalence. Either way, the small prob-
ability events on which the objective is not achieved are used to provide incentives
that pressure the agents to reveal information. AM and much of the subsequent
literature on virtual implementation are concerned with general environments in
which goods may be public, in contrast to the private-good environments stud-
ied here. AM’s constructions also make heavy use of finiteness and the fact that
there is a uniform lower bound on preference differences for different types. In
the present setting, the designer may wish to distinguish between infinitely many
type spaces, so that there may be no such uniform lower bound, and thus the
arguments end up being quite different.

Strategic equivalence of mechanisms for a given type space is closely related to
strategic equivalence of types. Many authors have considered when two types from

two different type spaces will exhibit the same behavior. Dekel, Fudenberg, and
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Morris (2007) explore a solution concept called interim correlated rationalizability
(ICR), which is stronger than the notion of rationalizability used here and in BMT,
and they show that two types have the same higher-order beliefs as in Mertens and
Zamir (1985) if and only if they have the same ICR actions in every game. BMT
show a similar result for interim preference correlated rationalizability and finite
mechanisms. Other authors have explored solution concepts, namely Bayesian
Nash equilibrium, under which redundant types that repeat the same higher-
order beliefs can contain information that changes equilibrium behavior (Liu, 2009;
Sadzik, 2011). The present chapter uses the insights of this literature to define a
notion of strategic equivalence of mechanisms that is invariant to such redundant
types. In other words, if two type spaces induce the same preference hierarchies,
then they also induce the same strategic equivalence classes of mechanisms.

My work makes use of rationalizability in mechanisms with infinitely many
messages, and the particular mechanisms involved require transfinitely many rounds
of deletion in order to arrive at a stable set of messages for each type, as in Lip-
man (1994). As such, care must be taken to make sure that the set of rationaliz-
able messages is well-defined and to avoid the pathological behavior illustrated in
Dufwenberg and Stegeman (2002). I adopt a definition of transfinite deletion of
never-best responses which is adapted from Chen, Long, and Luo (2007, hereafter
CLL) in a complete information setting, which ensures that the set of rational-
izable messages is uniquely defined and does not depend on the order in which
messages are eliminated. Strange behavior can still arise with this definition,
whereby a non-rationalizable message can be a better response to a rationalizable
strategy profile than any rationalizable message. This could in principle allow two
mechanisms to be strategically equivalent even though they do not have compara-

ble Nash equilibria. The constructions employed in the proof of my main result do
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not make use of such features, however, and it is without loss of generality to re-
strict to a class of regular mechanisms in which rationalizable messages dominate
non-rationalizable messages, as long as others’ strategies are rationalizable.

The rest of the chapter proceeds as follows. Section 4.2 presents a model of
state dependent preferences over outcomes, and formulates the designer’s prob-
lem. Section 4.3 defines notions of strategic equivalence of mechanisms and virtual
implementation of a mechanism mapping by a single uniform mechanism. Section
4.4 applies this solution concept to characterize when it is possible to extract com-
mon knowledge for the purpose of implementing the designer’s desired mechanism

mapping. Section 4.5 concludes.

4.2 Model

A designer must select an outcome from a finite set A, and there is a finite set of
agents N = {1,...,n} who have preferences over which outcome is implemented.!
The agents’ information and preferences are described by a Harsanyi type space:
each agent has one of finitely many types in T}, with the set of feasible tuples of
types being denoted by T' C X;enT;. 1 will assume that for every t; € T;, there
is some ' € T such that ¢, = t;. Each type has preferences over functions that
map types in T_; to lotteries on A. This preference can be represented by beliefs

about others’ types p; : T; — A(T-;), where:

T—i = {t—l -~ X]EN\{Z}j_HEItZ s.t. (t“t_z) € T},

IThe basic setup of the model is adapted from BMT.
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and type contingent utility functions u; : T'x A — (0, 00), so that for f, f' : T_; —

A(A), f is preferred to f’ by type t; if and only if:

Z pit—ilti)ui((ti t-i),a) falt—;) > Z pi(t—ilti)ui((ti, t-i), a) f'(alt ).
t_,eT_;, t_,€T_;,
acA acA

This representation of preferences is unique up to an affine transformation. I
apply the normalization that ), = p(t-[t;)ui(t,a) = 1, so that preferences can
be jointly represented by 7 : T; — A(T_; x A), where f is preferred to f’ by type

t; if and only if:

Z m(t-i,alt;) f(alt-;) > Z mi(t—i, alt:) f'(alt—;)
t_,e€T_;, t_,e€T_;,
acA acA

We can map a probability /utility representation into this joint representation by

setting:

(t s alts) = pl-ift)ul(ti t—i).a)
S ) ul(t, ). @)
The type space is collectively denoted by T = (T, {m; }ien).

Such a type space can be thought of as a reduced form representation for a
model in which there is a payoff relevant state § which lives in a set ©, and agents
have beliefs p; : T; — A(O x T_;) and state contingent utilities u; : T; X © x A; —
R, . The present formulation can be obtained by integrating out the states in O,
taking the types t_; to be a sufficient statistic for the underlying payoff-relevant
state.

The following assumptions will be key to the results that follow:
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Assumption 4.1 (Private good). A C X;enA; and m;(t_;, alt;) = mi(t_;, d|t;) if
a; = a,. Moreover, there exists 0; € A; such that if a € A, there exists a’ € A

where a; = 0; and a’ ; = a_;.

This assumption ensures that the outcome space is private-good-like, in that the
outcome consists of components for each agent, and each agent is only concerned
with their own component of the outcome. Even though A has components for
each agent, there may be joint feasibility restrictions on which allocations can be
implemented for each agent, which can be captured by A being a strict subset of
XienA;. In light of Assumption 4.1, T will simply write m;(t_;, a;|t;). The next

assumption is:

Assumption 4.2 (Worst outcome and non-triviality). For each i € N, there

exists a' € A such that m;(t_;, al|t;) = 0 for all ¢.

Assumption 4.2 is substantive and with some loss of generality, and directly cor-
respond to assumptions made in BMT and Morris and Takahashi (2012). It says
that for each agent, there is some outcome (not necessarily the same as the null
outcome) which is worse in every state than any other outcome. Combined with
the assumption that ), = mi(t_;, a;lt;) = 1, this implies that the agent is not
indifferent between all outcomes for any types that occur with positive subjective
probability. Moreover, this assumption implies that the set of preferences can be
represented by the compact set A(T_; x Af), where A} = A; \ {a'}. Note that
the worst-outcome assumption plays a more substantive role in the present work
than it does in BMT, since the worst outcome is sometimes used to punish agents
for not making unanimous reports.
The final assumption concerns agents’ beliefs. Let m;(t_i[t;) = >, o4 mi(t—, ailt:)

denote type t;’s conditional marginal beliefs over T_;.
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Assumption 4.3 (Common support). If ¢t € T, then m;(t_;|t;) > 0.

In words, Assumption 4.3 says that if agent j has a particular type ¢;, then agent
¢ must believe it is possible for agent j to have type t;.

A subset 7" C T is belief-closed if for all t € T", Etﬂ'eT’,i mi(t_ilt;) = 1. A
type space T' = (T", {7/ }:en) is a belief-closed subspace of T if 7" C T and T"
is belief closed, and if 7’ is the restriction of 7 to 1. T is smallest belief-closed
(SBC) if there does not exist a belief closed subspace of T that is not equal to 7.
Assumption 4.3 implies that for all ¢ € T, the SBC subspace of T containing ; is
the same as the SBC subspace containing ¢; for all 7,j € V.

A motivating example for the kind of environment captured by this formalism
is an auction for one or more goods in a finite set (). The designer can require the
agents to send transfers in {¢, ¢}, with lotteries generating all expected payments
in [t,#]. Outcomes for agent i can be represented by A; = {0,1}¢ x {t,} with
t <0 < t. Thus, an outcome is an (f;,t;) such that f; : Q@ — {0,1} and f;(q) =1
if agent 7 is allocated item ¢ and t; is a transfer in {¢,t}. The joint feasibility
restriction is that (f,¢) must satisfy >, .y fi(¢) < 1 for all ¢ € @, which simply
says that a given item cannot be allocated to more than one agent. The worst
outcome for agent i is that f;(¢) = 0 for all 7 and ¢; = ¢. This assumes a “free
disposal” property, that if an agent preferred not to receive a good ¢, then he could
always just throw it away to avoid incurring disutility. More than one outcome
could count as the “default” option in this setting, but a natural status quo is
fi(q) = 0 for all 7 and an average transfer of zero, which is achieved by a lottery
that puts weight {—_@ on t and weight EL—; on t (strictly speaking, this is not a pure
outcome, but we could add a 0 transfer to the set of outcomes in order to exactly

nest the model).

139



The agents’ types are unknown to the designer, but the designer can com-
mit to a mechanism by which agents reports will determine which outcome is
implemented. A mechanism consists of measurable sets of messages M; for each
agent and a measurable mapping g : M — A, where M = Xx,cyM;. Such a
mechanism is denoted by M = (M,g). When necessary, I will write M (M)
and g(M) for the message space and outcome functions associated with a given
mechanism M. A mechanism together with a type space comprise a game of
incomplete information, in which each agent’s strategies are mappings from types
to probability distributions over messages. Thus, the set of strategies for agent ¢
is ¥; = {0y : T, = A(M;)}. I identify strategy profiles 0 € ¥ = X;eyX; with the
product measure X;eno;(dm;|t;). Fixing such a profile, agent i’s payoff conditional

on his type is:

3 / ™ gilalmo(dmlts t)(to aits).
t_;eT_; Y meM a;e A
In words, this is the expected utility integrated over other agents’ types, over
messages sent conditional on others’ types, and over outcomes implemented for
a given profile of messages. A Bayesian Nash equilibrium o is a strategy profile
such that each agent’s o;(t;) maximizes the expected utility of type ¢;, holding o_;
fixed.

Rather than designing a mechanism for a single type space, the designer posits
that one of a number of possible type spaces may obtain from a collection T. The
designer is able to make conditional statements of the form, “If type space T € T
obtains, then I would like to implement the mechanism M(7).” Collectively, I will
refer to the objects (T, M) as a mechanism mapping. The purpose of the chapter

is to find conditions under which there is a single mechanism M, independent
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of the type space, which will implement the mechanism mapping (T, M) in the
sense that agents in type space 7 € T face a similar strategic situation and induce
similar outcomes in mechanism M as they would in M(7"). The precise notion of
strategic similarity will be developed in the next section.

Note that if the domain of the mechanism mapping T were finite, then the
setup would be very similar to that of AM. In that case, one could directly apply
their solution concept and construction to implement a social choice function,
subject to their conditions of measurability and self-selection. However, there
is no such restriction, and T is allowed to be an arbitrary set of type spaces.
This complicates matters, since the construction of AM relies on there being only
finitely many types so that there is a uniform lower bound on the differences in
preferences across types and outcomes. Nonetheless, we will see that the private-
good structure and other assumptions facilitate mechanisms for implementing

mechanism mappings that do not require discrete differences in preferences.

4.3 Strategic equivalence

I now turn to the issue of defining a reasonable notion of strategic equivalence of
mechanisms. I start with a formal description of rationalizability, adapted from
BMT’s interim preference correlated rationalizability to infinite mechanisms, and
I show that the set of rationalizable messages is always well defined. Rationaliz-
ability is then used to define strategic equivalence of mechanisms, in which two
mechanisms are e-strategically equivalent for a given type space if the mecha-
nisms restricted to rationalizable messages induce similar lotteries and similar
preferences over message profiles. The remainder of the section characterizes the

relationship between strategic equivalence and higher-order preferences. In par-
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ticular I show that strategic equivalence classes of mechanisms only depend on

higher-order preferences, and not on any other features of the type space.

4.3.1 Rationalizability

The main solution concept employed in this chapter will be the notion of interim
preference correlated rationalizability due to BMT, which I will simply refer to
as rationalizability. Let Z; : T; = M; be a correspondence mapping types into
measurable subsets of messages for each ¢, which is extended to = : T = M
by Z(t) = X;enZi(t;). A ZE-consistent conjecture for t; is a probability measure

p € A(graph=_; x A) such that:

/ p(ti, dm_;, a;) = m(t_s, a;|t;).
m_;EM_;

We say a message m; € M, is rationalizable for type t; given = if there exists a

=-consistent conjecture p such that:

Z / Zgi(a@-|mi,mﬂ~)u(t,i,dm,i,al-)

JEM_

ti €T LaieAf
> 3 / S giasdmlym_ )t i, dm_s, a;)
t_,eT_; m_;EM_; ZEATF

for all m; € M;. In other words, m; is a best reply to the conjecture p. Let
Ri(t;,=, T, M) denote the set of messages in Z;(¢;) which are rationalizable for
typet; given 2. R(Z, T, M) is the correspondence =’ such that =(¢;) = R;(t;, =, T, M).
Note that a sufficient condition for a message m; not to be in R;(t;,Z, 7T, M) is
that there exists some o; that generates strictly higher utility for all =-consistent

conjectures i, so that m; is strictly dominated.
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A deletion sequence is an indexed set {Z*},ca where A is well-ordered such
that (1) Z°(¢;) = M; for Ay = min A, (2) 2M' D R(EN, T, M) where A + 1 =
min{\ € AN > A}, (3) Z* = NpveapwanyZY if A £ N + 1 for some X, and (4)
E* = Myea=” satisfies =¥ = R(Z*, T, M). Such a Z* is called a mazimal reduction.
This definition roughly corresponds to that of CLL, who explored transfinitely

iterated deletion of strictly dominated strategies in a complete information setting.
Proposition 4.1 (Maximal reduction). A mazimal reduction exists and is unique.

Proof of Proposition 4.1. Fact: if Z;(¢;) C Zi(¢;) for all i and ¢; and message m; is
not rationalizable for type t; given Z' then it is not rationalizable for ¢; given =. If
m,; is rationalizable for ¢; given =, there exists a =-consistent conjecture for which
m; is a best reply. But a Z-consistent conjecture is Z'-consistent as well, so that m;
is rationalizable given =Z'. Hence, we conclude that R(Z, 7T, M) C R(Z', T, M).

The rest of CLL’s argument goes through, which is replicated for complete-
ness: we can define a deletion sequence by ZM! = R(Z}, T, M) and =} =
N{nvean < ,\}E)" for limit ordinals, and A is an ordinal with the same cardinality as
the power set of graph =. This sequence is decreasing by the previous paragraph.
If REMY, T, M) = R(Z*, T, M), then ¥ = Z* for all X' > X and Z* is a maxi-
mal reduction. If it is strictly decreasing, we can define an injective mapping from
A into graph Z by associating to each A a unique m; € Z(;) \ Z71(#;), so that
graph = has greater cardinality than A and hence its own power set, a contra-
diction. Hence, this sequence must be constant after some point and a maximal
reduction =* exists.

*

For uniqueness, suppose that =* is also a maximal reduction and the limit of

*

{=*},cx, maintaining =* as the maximal reduction constructed in the previous

paragraph. Note that it is without loss of generality to take A = A, since if
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A< A, we can extend the deletion sequence to {é)‘} aca by keeping it constant
for A > K, or vice versa if A < A. By definition, =Y O Z* U = Inductively,
if 2% D Z* U Z*, then again by monotonicity 2} D R(Z*, T, M) D R(Z* U
é*,T,M) D R(é*ﬂjM} = Z*. Thus, we conclude that =* C Z*, and the

converse argument shows that the two must be equal. O]

The proof is essentially that of CLL adapted to the incomplete information
setting and the different solution concept. The key property is the monotonic-
ity of R, which is ensured by allowing any message in M; to be a better re-
ply than a message in =Z}(¢;). I will use the notation Z*(7, M) for the max-
imal reduction of a mechanism M on a type space 7. This correspondence

can always be identified by the fast deletion sequence {Z*(T, M)}rea, in which
EMYT, M) = RENT, M), T, M) for all \.

4.3.2 Strategic equivalence
Fixing a type space 7 and € > 0, we say a mechanism M = (M, g) is (T, ¢)-

strategically equivalent to M' = (M’, ¢') if there exists bijections n;(t;) : =5 (t;, T, M) —
=*(t;, T, M) and «(t) > 0 such that:

lg(m) = g'(n(t,m))|| < e (4.1a)

g(m) — g(m’) = a(t) [¢'(n(t,m)) — g'(n(t,m))] (4.1b)

for all t € T and m,m’ € M such that m;,m, € Z(T, M)(t;) for all 7. T will
refer to the bijections n; as e-outcome preserving mappings. In words, we can
identify the rationalizable messages in M with the rationalizable messages in

M’ in such a way that outcomes only differ by e, and differences in outcomes
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are proportional according to positive scaling parameters «(t). This relation is
indicated by M~ M. If M~ M’ for all € > 0, I will simply write
M~ M.

This notion of equivalence is motivated by the following normative proper-
ties. First, mechanisms should be regarded as equivalent if they are the same
except for relabeling of messages. Second, mechanisms are equivalent if one can
be constructed from the other by adding a non-rationalizable message. And third,
mechanism equivalence should satisfy transitivity. With ¢ = 0, these properties
exactly characterize the relation defined above for finite mechanisms. With pos-
itive ¢, I allow for small perturbations of outcomes so that different types select
rationalizable messages differently from otherwise redundant messages. However,
these perturbations should not change the strategic calculus of the agents in the
sense of affecting the relative merits of one rationalizable message profile over an-
other. Note that proportional differences in lotteries is sufficient but not necessary
for the agents’ preferences over message profiles to be preserved (cf. Morris and

Ui, 2004).

Lemma 4.1 (Transitivity). If M4 ~ o ME, and MP ~1 oy M, then M ~ (1 1o
MC.

Proof of Lemma 4.1. By assumption, there are bijective mappings:

P () L 2T, MY () = EX(T, MP)(t:)
() L 2T, MP) () = Z(T, M) (k).
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Then clearly:

A—C __ , B—C A—B
n; =T o

are bijections from Z*(7, M%) to Z*(T, M?). From the definition of equivalence,

there are scaling factors a’(t),a®(t) > 0 such that:

g (m) — g (m') = o (t) [P (7B (t,m)) — gP (7B (t,m))]

g% (m) — g% (m') = a®(t) [g¢ ("7 (t,m)) — g“ ("7 (t, m'))]
so that:
gt (m) — g(m') = B ($)a® (1) [¢¢ ("7 (t,m)) — g (" ()] -
Also, the triangle inequality implies that for all m:

lg™ (m) — g ()l < g (m) — g" (") + 9" (m) — g ()]

<e+€.

4.3.3 Preference hierarchies

An important feature of strategic equivalence is that it only depends on higher-
order preferences that appear in a given type space and not on any other informa-

tion contained in the type space. Formally, the space of higher-order preferences
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is constructed as follows. Define:

X0 = {0}

XF =X x AXF < A

k=0
so that:

XE = XEPU T TAKXE x 45\ {a]}).
i
X7 is the set of hierarchies of preferences for agent i. A sequence {zF}%°, € X? is
coherent if the marginal distribution of #¥ on X*7* x A is equal to 2. Define
T? to be the set of coherent hierarchies in X;. The Kolmogorov extension theorem
implies that for any coherent hierarchy z; € T?, we can find a unique measure
X (z;) € A(X*, x Af) such that z¥ is the marginal of 73 (;) on X*, x Af). Now

inductively define:
TF = {z; € Tf Y m (T8 x A ) = 1},

and define T} = N, T, which is the set of hierarchies in which there is common
certainty of coherency. T is called the universal preference space. The mapping

¥ restricted to T} defines a homeomorphism 7} : T — A (T, x Af).
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For a given type space T, we can identify a type ¢; with the universal preference

¢i(ti, T) € T; where:

oL {0}, aiti, T) = > milti, ailt:)

t_,eT_;
O (657" ais i, T)(ai, ¢51) = S it ailts).
{t—i€T—|¢"7 1 (t-0, T)=0"7"}
I will write ¢(7) for the type space consisting of types {¢(t, 7)|t € T(T)}, and
with the preferences represented by w. Thus, ¢(7) is the image of T in the
universal preference space.
It is a result of BMT (Theorem 3) that two types have the same rationalizable
messages in every finite mechanism if and only if they have the same preference

hierarchies. This result is readily extended to the infinite mechanisms used here.

Proposition 4.2 (Strategic equivalence of types). Z:(¢;, T, M) = Z:(t;, T, M)

for every mechanism M if and only if ¢;(t;, T) = ¢i(t., T").

Proof of Proposition 4.2. The only if is proven by example with finite mechanisms
in BMT. Here I will show that the if part extends to infinite mechanisms.
Suppose that there are correspondences =; : T; = M, and =, : T] = M,
such that ¢;(¢;,T) = ¢;(t;, T') implies that Z;(¢;) = Zi(¢;). Then I claim that
Ri(t;, =, T, M) = R;(t,,Z', T, M). Let m; € R;(t;,=, T, M). Then there exists a
E-consistent conjecture pu € A(graphZ x M_; x A for t; such that m; is a best

reply for ¢; to pu. We will construct a ='-consistent conjecture p’ such that m; is
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a best reply for ¢/ to p/. Write:

mi(o—i, ailt;) = Z mi(dt_;, a;|t;),

{t—i€T—il¢p—i(t—i,T)=0—s}
= > m(ths, ailty).
{t/_iET/_i‘¢—i(tl_iaT,):¢—i}
Note that these two are equal precisely because ¢;(t;, T) = ¢;(t,, T'), and therefore

have the same marginal distribution over T*, x Af. Also, for ¢_; such that

¢~i(¢_s, T) intersects the support of m(t' ;, a;|t}), define:

1
U—i(dm—i|¢—ia ai) = =7 Z M(t—i,dm—i,ai)-
Wi(¢7i7 ai‘ti) {t—i€Tilp—i(t—i, T)=0¢—i)}

Then the distribution:
W dmi, ) = 7, daglt)o—i(dm (¢, T'), a;)

is a ='-consistent conjecture for ¢;. By construction, the support of messages sent
by types t’, is the same as those sent by t_; with the same universal preference
types ¢_;, and by the inductive hypothesis these messages must be available to ",
as well. Integrating out messages, we would also arrive at 7} being the marginal of
w over T, x AYf. Moreover, integrating out the types, the marginal distribution

over M_; x A is the same for p and p’ and equal to:

Z o_i(dm_;|¢_;, a;)Ti(D—s, as|t;),

¢—i€supp ¢i(ti,T)

so that both ¢; and ¢, have the same best reply, which must be m;.
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Now consider the fast deletion sequences {Z*(T, M) }rea and {ZX (T, M) }ren-
Clearly, Z°(t;, T, M) = M; = Z°(t;, T', M) for all t; € T; and t; € T]. Let P()\)
be the property that for all X' < X\, ZN(t;, T, M) = ZN(t,, T, M) for all t;, t,
such that ¢;(t;, T) = ¢;(t,, T'), then Z}t;, T, M) = Z(t,, T', M). We have just
shown that if A is a successor ordinal, then P(\ — 1) implies P(\). If A is a limit
ordinal, then Z}(¢;, T, M) = Npveapv<n =7 “(t;, T, M). If t; and t; have the same
universal preference, then by the inductive hypothesis the sets in the intersections
are the same for the two types, so obviously the intersections are the same as
well, so that P()) is true. Thus, P()A) holds for all A € A, and in particular
SH (T, M) = Z5(8, T M) if 6i(t, T) = 6i(t, T). =

The first part of the argument, an inductive step, is essentially that of BMT.
They show an even stronger result, that if ¢; and ¢, have the same kth order
preference, then ZF(¢;, T, M) is equal to =¥ (¢}, T', M).

This proposition implies the following important properties of equivalence:

Corollary 4.1 (Dependence on universal preferences). (a) M ~ o M’ if and
only if M~ M’ for every SBC subspace T' of T. (b) If ¢(T) = ¢(T"), then
M~ M"if and only if M~ o M.

Proof of Corollary 4.1. For (a), note that for every type profile ¢ in T, there
is a unique SBC subspace T’ of T containing ¢ such that ¢;(t;, T) = ¢:i(t;, T')
for all . Hence, Proposition 4.2 implies that =¥(¢;, 7, M) = Z*(t;, 7', M) and
=5 (t, T, M) = Z5(t;, T', M) for all i. Let n;(t}) be the bijection from =} (¢}, 7', M)

r—!*

to Z5(t;, 7', M’) and o/(t) scaling proportions that satisfy the definition of -
strategic equivalence for M ~(7 o M'. Letting n;(t;) = n;(t;) and «o(t) = o/(1),
we have bijections from Z¥(¢;, T, M) to Z:(t;, T, M’) and scaling proportions that

satisfies the definition of M ~ (7o M’
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For part (b), let 7;(¢;) and a(t) satisfy the definition of M ~ (1 M'’. For each
t € T;(T"), we can find x;(t;) = t; € T;(T) with the same universal preference as
t;. Thus, Z¥ (¢, T'. M) = =Zf(t;, T, M) and ZX (¢, T', M') = EX(t;, T, M’). Setting
ni(th) = n;(xi(t))) and o/ (') = a(x(t')), we have bijections between =¥ (t;, 7', M)
and Zf(t;, T, M’) and a scaling proportion o' that satisfies the definition of
M~ M. O

Corollary 4.1 demonstrates that strategic equivalence of mechanisms only de-
pends on higher-order preferences, and not on any other feature of the type space.
In particular, two type spaces induce the same equivalence classes of mechanisms
if they have the same higher-order preferences, and the equivalence classes for a
given type space are simply the intersections of equivalence classes for belief-closed

subspaces.

4.4 Extracting common knowledge

We now come to the heart of the chapter, in which the notion of strategic equiva-
lence developed in the previous section is used to formalize when the designer can
extract common knowledge via a mechanism that is similar to the desired mech-
anism. Formally, I will say that a mechanism M is e-uniformly equivalent to the
mechanism mapping (T, M) if for all T € T, M ~ o M(T). If for every e > 0,
a mechanism mapping (T, M) admits an e-uniformly equivalent mechanism, then
(T, M) is uniformly virtually implementable.

It will turn out that there are constraints on which mechanism mappings can
be uniformly virtually implemented. In particular, a mechanism mapping must

satisfy a local preference measurability condition (Theorem 4.1). In fact, local
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preference measurability is nearly sufficient for uniform virtual implementation,
which is the subject of Theorem 4.2. The section will conclude with a discus-
sion of the preservation of the set of Nash equilibria and other solution concepts
by the uniform mechanism, which requires a natural regularity condition on the

mechanism mapping.

4.4.1 Local preference measurability

The invariance of strategic equivalence to information other than higher-order
preferences immediately suggests that there are limitations to the kinds of mech-
anism mappings that the designer can virtually implement. In particular, if T
contains type spaces that map into the same subset of the universal preference
space, then clearly any given uniform mechanism lies in the same equivalence class
of mechanisms for both of these type spaces. Hence, if the uniform mechanism is
equivalent to the desired mechanisms on these two type spaces, then the desired
mechanisms must be equivalent as well.

Of course, restrictions on the mechanism mapping will be imposed even if the
type spaces merely overlap in the universal preference space rather than coincide. I
will say that a mechanism is locally preference measurable if the following property
holds: for all 7,7’ € T, if there are SBC subspaces 7 and 7' such that ¢('?) =
o(T"), then:

M(T) ~z M(T').

In other words, if the type spaces T and T’ contain types with the same preference
hierarchies, then M must specify mechanisms which are equivalent on the subspace

of overlapping types.
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The goal of this chapter is to show that a designer can implement a mechanism
which is virtually equivalent to a given mechanism mapping, without having to
know the type space T .

I argue that local preference measurability is a necessary condition for uniform

virtual implementation of a mechanism mapping:

Theorem 4.1 (Necessity). A mechanism mapping is uniformly virtually imple-

mentable only if it is locally preference measurable.

Proof of Theorem 4.1. Suppose that (T, M) is uniformly virtually implementable.
Then for every e > 0, there exists an e-uniformly equivalent mechanism M. Sup-
pose T and 7' are in T with SBC subspaces T and T , respectively, such that
O(T) = ¢(T"). By Corollary 4.1 (a), M~ M(T’) implies that M ~F o
M(7"), and (b) implies that M ~ 7, M(T"). We can similarly conclude that
M~z M(T). Thus, Lemma 4.1 implies that M(T) ~ z,. M(7"). But this is
true for every € > 0, so that M(7") ~= M(T"). Hence, (T, M) is locally preference

measurable. O

4.4.2 Sufficiency

I now turn to the question of sufficient conditions for a mechanism mapping to
be uniformly virtually implementable. It turns out that if there are at least three
agents, local preference measurability is both necessary and sufficient. The con-
structive proof proceeds in three steps: First, I construct an explicit mechanism
for eliciting preference hierarchies, in which the unique rationalizable message is
truthful reporting of the preference hierarchy. Second, I show that a locally pref-
erence measurable mechanism mappings can be “reduced” to a minimal mapping

for which type spaces in T do not overlap in the universal preference space. Such
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mechanism mappings are relatively easy to implement, and Lemma 4.2 shows
that uniformly virtually implementation of the reduced mapping implies uniform
virtual implementation of the original map as well. Finally, in Proposition 4.3, I
construct a mechanism that e-uniformly virtually implements a minimal mapping
for n > 3.

This mechanism uses the principle that if a message profile is one deviation
away from a unanimous report, there is a unique deviator who can be punished.
Clearly, if there are only two agents whose reports disagree, then neither is the sole
deviator. In Proposition 4.4, I introduce another assumption, joint worst-outcome
feasibility, that restores sufficiency of local preference measurability in the case of
two agents. The purpose is obvious: if agents’ reports disagree, then both will
be punished, pressuring them to agree in equilibrium. All sufficiency results are

summarized in Theorem 4.2.

A mechanism for eliciting preferences

Consider an agent who has a state dependent preference over acts that map a
finite observable state space X into lotteries, with the preference represented by
m; € A(X x A). Suppose we run the following one-player mechanism: the agent
reports a preference 7;, and based on this report and the realized state x, we will

implement the lottery:

R 1 mi(w,a;) 1 (2, al)?
i(ailz, T, X) = - = — |,

/ +
a,cA]

for a; € AF

I, with the complementary probability on a!. In words, if the agent

reports 7;(x,a;), then conditional on x being realized, outcome a; will be im-
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o~ . = (! q')2
plemented with probability Z’(&ﬁ)) With probability 3 — D () Tl 4’%) , we
will pick an outcome in A to implement at random. Otherwise, a! is imple-
mented. Note that the 7; must sum to one, and since they are numbers in [0, 1],

= (] 412
Zx/,a#gé M < %, so these probabilities sum to less than one and our lottery
is always well-defined.

If the agent’s preferences are represented by a true m;(x, a;), then recalling that

mi(x,at) = 0, the expected utility from a report of 7; is:

1 7i(x, a;)mi (2, a;) 1 7i(x, a;)? 1
A 2 Tla X T | L e

zeX, zeX, zeX,
aiGA;L CLZ'EA;F CLZ'EAj

Since the 7;(x, a;) sum to 1, this expression simplifies to:

1 1 1 —~ %i(m,ai)Q
m 5 + 5 Z (7‘@(1‘, ai)ﬂ'i(xa ai) - T)

rzeX,
aiEA,?_

Differentiating with respect to m;(x, a;), we can see that it is strictly optimal for
agent i to report the true preference m; = ;. Note that this result does not depend
on the particular representation for agent 7’s preferences.

The structure of this choice over lotteries has a marked similarity to the
quadratic scoring rule used in experimental economics (Brier, 1950). We can
interpret m;(x,a;) as the “probability” that the outcome (z,a;) will obtain. If
it does, the designer will reward the agent with a fraction 7;(x, a;) of a dollar.
This is traded off against a certain loss of a fraction M of a dollar. In a bet
so structured, it is optimal to wager precisely the the subjective probability of

the outcome (z, a;) occurring. Such scoring rules have been used in a mechanism
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design context by Azar, Chen, and Micali (2012) and also in Chapter 1 to elicit
beliefs in quasilinear environments, so that agents could in fact be rewarded with
money if a given probabilistic outcome obtained. The same technique works with
non-quasilinear and subjective expected utility preferences, where instead of using
money, the agent is rewarded with shares of the subjective utility of a; if x occurs,
traded off against the average expected utility across all outcomes.

Using such lotteries, we can construct a mechanism to elicit agents’ higher-
order preferences. Formally, agent i’s message space M in this mechanism will
be the set of (possibly incoherent) preference hierarchies in X that have finite

support. For a message profile m* € M*, the outcome lottery is:

)= 13 (36 @t ) 43 g6 (ot i art ) )

1EN

where mfk is agent i’s kth order preference report. The mechanism will be referred
to as M* = ({ M/ }ien, g%).

I claim that for any type space 7T, the unique rationalizable strategy profile
is to always report m! = ¢;(t;, 7). The argument is inductive. For the base
case, observe that agent i’s first-order report m; 1 only affects the first term in-

side the parentheses. Conditional on agent ¢’s report being used, the outcome is
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independent of other agents’ reports. Thus, for any Z%-consistent conjecture p:

SN Gladmt {0t ma)

t_ZGT_l CI@EA+
m* ,eM*,

- Z Si(ai|@,m:’1’{®}) Z p(t—,m”,, a;)

aiEA;r €T,

- Z Eiag|0,m>t {0}) Z 7i(t—s, ailt;)

a; €At €T
= Y &(ail0,mt {0} o) (ai ti, T).
a; €At

Thus, as derived above, the optimal strategy is to report m; 1= o1 (t;, T). For

the inductive step, suppose that for all message profiles in Ef‘l, agents —i are

reporting m*;"" = ¢*71(t_;, T). Again, conditional on the outcome depending

k—1

on 7F, the outcome is independent of m*; except for m™; But since this is

—1

reported truthfully, agent ¢’s preferences over acts on mff_l is represented by

precisely by ¢¥(t;, T). Formally, if p is a Z¥~!-consistent conjecture, then agent i

will choose m™ to maximize:

ST Gladm it Mt m? )

tfzeTf'm a1€A+
m* ,eM*,

o * k 1 *,k *,k—1 *
- E : E : (al‘m ) T 7M—i ) E :u(t*iamfiaai)
G €A m=i T eM ! {t €T s l)}
-1 - *,k—1
=m

2
_—i

=Y Gl et a7,

G €AT m*h etk

2 —1
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2 rounds of

which is maximized by reporting m" = ¢F(t;, 7). Thus, after w
deletion, we conclude that the only rationalizable message has mfk = ¢F(t;, T)
for all k, i.e., mf = ¢;(t;, T).

BMT also construct mechanisms for the purpose of separating types with dif-
ferent preference hierarchies, though there are some important differences. First,
BMT consider environments more general than the present private-good setting,
in which agent ¢ might care about the outcomes which are implemented to incen-
tivize agents —i to truthfully report their preferences. This contaminates agent
1’s incentives to report his kth order preference, because of concern over how that
report will affect the outcome to incentivize agents —i’s k + 1th order prefer-
ences. In contrast, M* fixes agent i’s allocation at 0; whenever agents —i are
being incentivized in order to avoid this contamination. In addition, BMT work
with only finite mechanisms, which precludes a single “catch-all” elicitation mech-
anism for possibly infinitely many different preference hierarchies. BMT finesse
both issues by coarsening the mechanism to separate preference hierarchies that
are sufficiently far apart in a metric compatible with the product topology on X*.
They also make use of a trick from AM, of rapidly scaling down the relative prob-
ability of lotteries to incentivize revelation of higher-order preferences, so that the
contamination effect is swamped by a discrete benefit from reporting kth order

preferences truthfully.

Minimal mechanism mappings

A mechanism mapping may have type spaces in its domain that repeat prefer-
ence hierarchies. For locally preference measurable mappings, such information

is redundant in that only one such type space would be necessary to define the

2w is the first infinite ordinal number, which is order isomorphic to the natural numbers.
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“equivalence class” of strategically equivalent mechanisms that the designer would
like to implement for those preference hierarchies. A minimal mechanism mapping
is non-redundant in that the domain contains only SBC type spaces. Note that
local preference measurability is automatically satisfied for such mappings.
Formally, a mechanism mapping (T, M) is minimal if T is an SBC subspace
of T* for every T € T. I will say that (’T, M) is a reduced mechanism mapping
for the locally preference measurable mapping (T, M) if T is the set of smallest

belief-closed subsets of T that are mapped to by types in type spaces in T
T = {¢(7")|T" is an SBC subspace of T € T},

and if M(7) is equal to some M(T") with 77 € T for which 7 C ¢(T").

To argue the sufficiency results of Propositions 4.3 and 4.4, I will construct
e-uniformly equivalent mechanisms for minimal mechanism mappings, which will
then imply sufficiency results for general mechanism mappings. The reason is
that any locally preference measurable mechanism mapping can be associated
with a minimal mapping, and as Lemma 4.2 shows below, uniformly virtual im-
plementability of the reduced mapping implies uniform virtual implementability

of the original mapping.

Lemma 4.2 (Reduced mechanism mappings). If (T, M) is a reduced mechanism
mapping for the locally preference measurable (T, M) and if M is e-uniformly
equivalent to (’f‘, M), then M is also e-uniformly equivalent to (T, M).

Proof of Lemma 4.2. Take any T € T and T’ any SBC subspace of 7. By as-
sumption, M ~477).¢) M(4(T7)), so by Corollary 4.1 (b), M ~ (T ) M((T")).
But the latter mechanism is equal to M(7") for some 7” € T such that 7' C

&(T"). By local preference measurability, it must be that M(7) ~7 M(T"), so
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by Lemma 4.1, we conclude that M ~(7 M(T). But this must be true for

every SBC subspace 7' of T, so by Corollary 4.1 (a), M ~ ¢ M(T). O

The convenient feature of the mechanism mapping (T,M) is that a given
preference hierarchy appears in a single type space in ’T, and therefore is asso-
ciated with a unique mechanism. This will simplify the exposition to follow, in
which mechanisms are constructed that uniformly virtually implement minimal

mechanism mappings.

A uniform equivalent mechanism for n > 3

I now show that as long as there are at least three agents, every minimal mech-
anism mapping (T, M) is uniformly virtually implementable. For a given € > 0,
I construct an e-uniformly equivalent mechanism as follows. Agent i’s message

space will be:

Mi(M) = M} X Uggengeny ({ M} x 2 (M)

In other words, agent i’s messages are triples consisting of a preference hierarchy,
a “suggested” mechanism in the image of M, and a message in the suggested
mechanism. A typical message will be written as m; = (m/, /T/l\i, m;).

Let ¢(m?) be the smallest belief-closed subset of T* containing m;, and let
M(m?) = M(p(m;)) if ¢(m;) = ¢(T) for some T € T, and let M(m?) = 0
otherwise. Note that M(m}) is well-defined since (T, M) is minimal. We can
think of this as being the mechanism which is “implied” by agent ¢’s reported

beliefs, in that those beliefs lie in a SBC type space T which maps to the given

mechanism.
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The outcome function will consist of three pieces:

where € € (0,1). Thus, g(m) is the lion’s share of the outcome, with the g*(m*)
component incentivizing truthful reporting of beliefs and the §* portion providing
a slight nudge towards consensus, as we shall see below.

To define g(m), I will use the following classification of message profiles. Let
M?® be the message profiles in which M; = M\j = M(m;) = M(mj) for all i and
j. These are the profiles in which all agents are unanimous in their report of the
mechanism and the mechanism “implied” by their higher-order preferences.

Let M®! be the message profiles for which M; = M; = M(mj}) # M(m;)
for all j # 4, which is disjoint from M°. For these message profiles, the report is
unanimous as in MY, except for the single deviator agent i who deviates in his
report of the implied mechanism M(m}). Note that a message profile can be in
M*! for at most one i.

Let M#2 be the message profiles in which M; # M; = M(m}) = M, =
M(mj) for all j # ¢ # k. These are profiles in which, again, agent i is dissenting
from an otherwise unanimous report, though here the dissent must include a
different suggested mechanism, as well as possibly a different implied mechanism.
Note that if n > 2, a given profile can be in M*? for at most one i since otherwise
it cannot be that both —i and —j are unanimous in their reports, but if n = 2, we
can have profiles in M2 N M?%?2. Throughout the rest of this subsection, I assume
that n > 2, with the n = 2 case being treated in the next subsection.

The lottery g(m) is equal to g <771, M\) if m € M° and M is the unanimously

reported mechanism. If m € M®!, then g(m) implements outcome (a;,0_;) with
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probability >, ., g (ai,a,ih?z,/\//\l); in other words, g implements the same
marginal lottery over A; as in g(m, M\), but the outcomes for agents in —i are set
equal to 0_;. If m € M*%? for some 7, then we implement the outcome (a,0_;)
with probability one. Finally, g(m) puts probability one on 0 for all other message
profiles.

To define §(m), let M3 be the set of profiles in which M; = M(m}) = M(mj)
for all j,k € —1. These are message profiles in which agents —i are unanimous in
their implied mechanisms, which agree with agent i’s suggested mechanism. For
m € M g'(m) puts equal probability ‘A—}' on (a;,0_;) for every a; € A, and
otherwise g°(m) puts probability one on (a!,0_;). Note that agent ¢ only cares

about the lottery g° and not g%, and that the lottery g'(m) with m € M®3 is

strictly preferred to the outcome with m ¢ M®%3. This completes the specification

of g(m).

Proposition 4.3 (Sufficiency for minimal mappings, n > 3). M = (M, g) is

e-uniformly equivalent to the minimal mechanism mapping (T, M).

Proof of Proposition 4.3. For a given T € T, I will construct a deletion sequence
for M, and show that M ~ o M(T).

To start, observe that the report of m! does not affect the marginal lottery of

*
—17

g on A; except through ¢g*(m*): §' only depends on /QZ and m* ;, and g; depends
on M , m, and m* ;. This is because the marginal lottery of g on A; is the same for
m € M° and m’ € M%!, as long as the profiles are the same except for m}. Thus,
for any type t; € T, any strategy which is rationalizable must have m! = ¢,.
In particular, we can construct the first w terms of a deletion sequence {Z*} e,

in which we rule out m} # t;. Thus, M(m}) = M(T) for every i and for every
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rationalizable message m;. Note that this relies on Assumption 4.3, which implies
that all agents types must lie in the same SBC subspace of T™.

Let m; be some message in which /T/l\Z # M(T). I claim that this message is
strictly dominated by any report in which M; = M(T), and therefore m; is not
rationalizable given Z¥. First, if M\j = M(T) for every j # i, then m € M*? and
m ¢ M"® and (a!,0_;) is implemented if either g or § is used, whereas deviating to
mj = (t;, M(T), m;) with m; € M;(M(T)) must induce a weakly better outcome
when g is used (since we are already implementing the worst outcome for agent
i) and yields a strictly better outcome when ¢' is used, since m’ € M*3. On the
other hand, if M ; # M(T) for some j # i, then g implements the outcome 0 with
probability 1 and g’ implements (a!,0_;) with probability 1. By switching to any
m}; as described above, the new message profile will still result in the outcome 0;
if g is used, since m’ ¢ M° U M*! but again results in a strictly better lottery
being implemented if §¢ is used. Hence, after w + 1 rounds of deletion, we rule
out any message in which ./(/l\Z # M(T), and any rationalizable message profile in
Z«*(t;) must be of the form (t;, M(T),m;) with m; € M;(M(T)).

As a result, we can define a bijective mapping n;(t;) : = () — M;(M(T))
with n;(¢;,m;) = m;, which is just projection onto the third coordinate. Letting
{2} \ei be any deletion sequence for (7, M(T)), we can define the next A elements

of the deletion sequence for (7, M) as:

I claim that {Z*},ca so defined, where A = w + 1 + /A\, is a deletion sequence
for M. Tt suffices to show that for A > w + 1, ZAM! D R(Z}, T, M) and =Z* =

R(Z*,T,M). This follows from the fact that any Z*-consistent conjecture p
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in A(graphZ*, x Af) can be identified with a =+ consistent conjecture p’

in A(graph =12 x AT which is the push-forward measure induced by the

mappings 7;(t;):

,u/(t—ia m_g, a’i) = ,u(t—iy m—i) a—i)-

Thus, a message m; in =¥+

‘ w+14+A if

(t;) is rationalizable for agent i given =
and only if m; is rationalizable for agent i given =Z*. Finally, the mappings 7;(t;)

restricted to Z*(7T, M) satisfy the definition of strategic equivalence, since in

equilibrium:

and:

g(m) — g(m, M(T)) =

N
N
DN | —
N
Py
3
N
Sl
<
2
|
=N
3
=
3
~_

for which the norm is less than e. O

Here is some intuition for why the mechanism works. Observe that an agent’s
own outcome does not depend on their own reported beliefs except through the
reward from ¢*, so agents have the same incentives to report their preferences
truthfully as they do in the mechanism M?*. But once we know that all agents
will report their higher-order preferences truthfully, agent ¢’s suggested mechanism
can be compared to other agents’ preference hierarchies to determine if agent ¢
is suggesting the correct mechanism. If more than one agent has an incorrect

suggestion by this comparison, g implements a fixed outcome, but there is a
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“slap on the wrist” through ¢ that encourages agents to switch to suggesting the
correct mechanism. If only one agent disagrees, then in addition a harsh outcome
is implemented for that agent by ¢ so that it is better to agree, and receive the

outcome that will be decided by mechanism M(T).

4.4.3 The case of n =2

The mechanism of the previous subsection relies on an important property: With
n > 3, if a profile m is one deviation away from unanimity, then there is a unique
agent to whom this deviation belongs and who is, in a sense, the sole “deviator”.
This is fortunate, because it may be that it is impossible to punish more than one
agent simultaneously if there is no a € A such that a; = @} and a; = Q;:. When
there are only two agents who make inconsistent reports, neither agent could be
considered the sole deviator.

This suggests a simple condition on A which, together with local prefer-
ence measurability, will be sufficient for uniform virtual implementation of a
minimal mechanism mapping (T, M). The worst-outcome is jointly feasible if

(ai,...,ap) € A.

Proposition 4.4 (Sufficiency with joint worst-outcome feasibility). Suppose that
worst outcomes are jointly feasible. Then every minimal mechanism mapping

(T, M) is uniformly virtually implementable.

Proof of Proposition 4.4. The mechanism is identical to that constructed for the
proof of Proposition 4.3, except that we now implement the outcome a in which
a; = at if m € M"? and a; = 0; otherwise. The rest of the proof proceeds as

is. O
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Joint feasibility of the worst-outcome is a natural assumption in many situ-
ations, as in the quasilinear auction example discussed previously. In that case,
it was always feasible to not allocate any of the goods to agent ¢ and impose the
largest possible transfer £. However, it may very well be the case that some of the
objects are undesirable for agent ¢ but cannot be freely disposed of. For example,
the worst outcome might be the assignment of an onerous task, which only one
agent can be required to perform at a time.

Summing up, the results of Lemma 4.2 and Propositions 4.3 and 4.4 imply the

following general sufficiency result:

Theorem 4.2 (Sufficiency). A mechanism mapping (T, M) is uniformly virtually
implementable if it is locally preference measurable and at least one of the following

holds: (a) n > 3, or (b) the worst outcomes are jointly feasible.

4.4.4 Preservation of Nash equilibria

To allow for mechanism mappings with infinite domains, I have used an infinite
mechanism that always exactly extracts agents’ higher-order preferences. This
mechanism is similar to the one specified by the designer in the sense of e-strategic
equivalence; rationalizable messages in the uniform mechanism can be identified
with rationalizable messages of the type space-specific mechanism so that change
in outcome for a change in message profile is proportional, and outcomes for
identified message profiles vary by no more than €. The proportional differences
property seems to preserve the strategic calculus in a strong sense: the induced
preferences over rationalizable message profiles are the same under strategically

equivalent mechanisms.
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Unfortunately, this is not a sufficient guarantee that agents will behave the
same way in the two mechanisms. Strange pathologies can arise with transfinite
iterated deletion of never best replies, as described by Dufwenberg and Stegeman
(2002) and CLL in complete information settings. For example, there may be an
infinite set of never best replies, each of which is dominated by a message which is
also a never best reply, but the eliminated messages are better replies than some
message that is rationalizable. Thus, the game in which messages are restricted
to the rationalizable correspondence may have more Nash equilibria than the full
mechanism.

The construction of the previous section is resistant to this phenomenon: given
that others will report their preference hierarchies and their suggested mechanisms
truthfully, reporting one’s true preferences and suggesting the correct mechanism
strictly dominates any other message. Thus, if a best reply exists, it must always
involve m} = ¢;(t;, T) and M; = M(¢(T)), where the latter is the mechanism
specified by the reduced mechanism mapping. And yet, if M(¢(7)) and M(T)
are infinite mechanisms, then the set of Nash equilibria may still be different for
the two mechanisms.

There is a natural restriction on mechanisms which will rule out this kind of
behavior and guarantee that the set of Nash equilibria will be preserved under
strategic equivalence. Let us say that a mechanism is regular if for every =*-
consistent conjecture p and every m; ¢ ZX(t;), there exists an m;, € Zf(¢;) that is
a better reply to p than m;. A mechanism mapping (T, M) is regular if M(T)
is regular for every 7 € T. Further, let us say that an e-uniformly equivalent
mechanism M is Nash preserving if for every equilibrium strategy profile o for
(T,M(T)), the strategy profile o’ of (T, M) in which o}(t;, m}) = o;(t;, n:(t;, m}))

is a Nash equilibrium of (7, M), where 7 is the outcome preserving bijection
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from M to M(7). A mechanism mapping is Nash preserving uniformly virtually
implementable if for every € > 0, there exists an e-uniformly equivalent Nash

preserving mechanism M.

Corollary 4.2. A regular mechanism mapping is Nash preserving uniformly vir-
tually implementable if the mechanism mapping is locally preference measurable

and if either (a) n > 3 or (b) the worst outcome is jointly feasible.

Proof of Corollary 4.2. First, I show that if M ~ M’ where M = (M,g)
and M’ = (M’ ¢’) are regular, then o is a Nash equilibrium of (7, M) only if ¢’
defined by o (t;, n;(t;,m;)) = o;(t;,m;) is a Nash equilibrium of (7, M'), where ;
is an e-outcome preserving bijection from M to M. Since o is a Nash equilibrium
of M, o;(t;) must have support in = (¢;, 7, M) for all i and ¢;. Moreover, it must

be that:

Z / Z (9i(aslm) — gi(as|mg, m_;))o(dmlt;, t_;)m(t_;, ait;) <0
ter_; I meM a; €A}
for all t; and m} € M;. In particular, this holds for all m; € Z;(¢;, 7, M). By the

proportionality of differences, there are a(t) > 0 so that:

gi(ai|m) - gi(ai|m;’ m—i) = Oé(t) [gz/‘(ai|77(t> m)) - gz,’(ai’ 77(15» mf/iv m—l))]

Thus, n;(t;,m;) = m; € Zf(t;, T, M) is never a better reply. But if there is an
m; € M!\ Zf(t;, T, M) which is a better reply than »;(t;, m;), by regularity we
can find an m! € =Z¥(t;, T, M’) that is better than m;, and therefore n;(t;, m;), a
contradiction. Hence, m} is a best reply for every m] in the support of o}(t;).

It only remains to show that if M(7) is regular for every 7, then the mech-

anisms constructed in Propositions 4.3 and 4.4 will be regular as well. But this
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follows almost directly from the observation that if agents —i report m*, = t_;
and M_; = M((b(T)), then any report which does not involve m! = t¢; and
M; = ﬁ(qb(’T)) is strictly dominated. Remaining actions are isomorphic to M(T)
in that there are proportional differences, so regularity of M(T) implies that any

message not in =¥(¢;, 7, M) is dominated by a message in that set. O

Similar results hold for other refinements of interim preference correlated ratio-
nalizability in addition to Bayesian Nash equilibrium, such as interim correlated
rationalizability (Dekel, Fudenberg, and Morris, 2007), or interim independent
rationalizability 4 la Bernheim (1984) and Pearce (1984). The bottom line is that
the uniform mechanism of Theorem 4.2 introduces extra messages which are never
optimal, or even near optimal, given that others use rationalizable messages.

I will conclude this section by reconsidering the private-good auction of the In-
troduction and of Chapters 1 and 2. Let us suppose further that beliefs are consis-
tent with a common prior, i.e., there exists a joint distribution 7 € A(X;enyA; xT),

so that 7; is the conditional distribution of (t_;, a;) given ¢;:

(t |t ) Za,Z'EA,i ﬂ'(th t*lﬁ a;, a‘*i)
R Zt,ieT,i,aeA m(ti, t_i, a)

Let T be a collection of such common prior SBC type spaces, and for each T €
T, let R(7) be the supremum expected revenue that can be achieved over all
regular mechanisms with a unique Nash equilibrium, where the expectation is
taken with respect to this common prior. Theorem 4.2 tells us that the seller
can achieve revenue arbitrarily close to R(7) even if he does not know anything
about the type space: for any SBC subspace 7 C T* with T = ¢(T') and T’ € T,
let M¢(7) be a mechanism that attains revenue of at least (1 — ¢)R(T), and

extend this to all of T by M¢(T) = M*(¢(7)). By construction, this mechanism
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mapping is locally preference measurable, and the quasilinear private-good setting
satisfies joint worst outcome feasibility. Thus, Theorem 4.2 says that we can
uniformly virtually implement (T,M¢). In other words, the seller can attain

revenue arbitrarily close to R(7) without knowing anything about the type space.

4.5 Conclusion

The goal of this chapter has been to understand when a designer can recover
features of the environment that are common knowledge among the agents for
the purpose of building this common knowledge into a mechanism. The designer
specifies which mechanism he would like to implement, conditional on a particular
type space being the true one. The designer is willing to augment the desired
mechanism to facilitate the extraction of the common knowledge, but he would
like to use a mechanism that is strategically similar to the one originally intended.
Moreover, the designer is willing to settle for a mechanism whose outcomes mostly
coincide with what he intended, but he would like the outcomes to coincide as
much as possible. The result of the analysis is a simple necessary and nearly
sufficient condition on the mechanisms specified by the designer, namely local
preference measurability, for there to exist a single mechanism that will extract
the common knowledge and fulfill the designer’s other requirements.

There remain many open questions. The results of this chapter depend heavily
on the private-good structure and the existence of a state independent worst-
outcome for each agent. It remains to be seen whether or not these assumptions
can be relaxed. Also, the present exercise of extracting common knowledge for
the purpose of designing a mechanism is a special case of the more general virtual

implementation problem of AM, albeit with infinitely many possible type spaces,
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and therefore types. An important direction for future work is to extend the
theory of virtual implementation of social choice functions to such infinite type

spaces.
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