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I Goal: a theory of bidding that is robust to speci�cation of
information

I First attempt: First price auction

I Hold �xed underlying value distribution,

I Consider all speci�cations of information and equilibrium

I We deliver:

I A tight lower bound on the winning bid distribution
I A tight lower bound on revenue
I A tight upper bound on bidder surplus

I Other results on max revenue, min bidder surplus, min
e�ciency



Promises

I Goal: a theory of bidding that is robust to speci�cation of
information

I First attempt: First price auction

I Hold �xed underlying value distribution,

I Consider all speci�cations of information and equilibrium

I We deliver:

I A tight lower bound on the winning bid distribution
I A tight lower bound on revenue
I A tight upper bound on bidder surplus

I Other results on max revenue, min bidder surplus, min
e�ciency



Promises

I Goal: a theory of bidding that is robust to speci�cation of
information

I First attempt: First price auction

I Hold �xed underlying value distribution,

I Consider all speci�cations of information and equilibrium

I We deliver:

I A tight lower bound on the winning bid distribution
I A tight lower bound on revenue
I A tight upper bound on bidder surplus

I Other results on max revenue, min bidder surplus, min
e�ciency



Promises

I Goal: a theory of bidding that is robust to speci�cation of
information

I First attempt: First price auction

I Hold �xed underlying value distribution,

I Consider all speci�cations of information and equilibrium

I We deliver:

I A tight lower bound on the winning bid distribution
I A tight lower bound on revenue
I A tight upper bound on bidder surplus

I Other results on max revenue, min bidder surplus, min
e�ciency



Promises

I Goal: a theory of bidding that is robust to speci�cation of
information

I First attempt: First price auction

I Hold �xed underlying value distribution,

I Consider all speci�cations of information and equilibrium

I We deliver:

I A tight lower bound on the winning bid distribution

I A tight lower bound on revenue
I A tight upper bound on bidder surplus

I Other results on max revenue, min bidder surplus, min
e�ciency



Promises

I Goal: a theory of bidding that is robust to speci�cation of
information

I First attempt: First price auction

I Hold �xed underlying value distribution,

I Consider all speci�cations of information and equilibrium

I We deliver:

I A tight lower bound on the winning bid distribution
I A tight lower bound on revenue

I A tight upper bound on bidder surplus

I Other results on max revenue, min bidder surplus, min
e�ciency



Promises

I Goal: a theory of bidding that is robust to speci�cation of
information

I First attempt: First price auction

I Hold �xed underlying value distribution,

I Consider all speci�cations of information and equilibrium

I We deliver:

I A tight lower bound on the winning bid distribution
I A tight lower bound on revenue
I A tight upper bound on bidder surplus

I Other results on max revenue, min bidder surplus, min
e�ciency



Promises

I Goal: a theory of bidding that is robust to speci�cation of
information

I First attempt: First price auction

I Hold �xed underlying value distribution,

I Consider all speci�cations of information and equilibrium

I We deliver:

I A tight lower bound on the winning bid distribution
I A tight lower bound on revenue
I A tight upper bound on bidder surplus

I Other results on max revenue, min bidder surplus, min
e�ciency



A (toy) model of a �rst price auction

I Two bidders

I Pure common value v ∼ U[0, 1]

I Submit bids bi ∈ R+

I High bidder gets the good and pays bid
=⇒ winner's surplus is v − bi

I Allocation of good is always e�cient, total surplus 1/2

I Seller's expected revenue is R = E[max{b1, b2}]
I Bidder surplus U = 1/2− R

I What predictions can we make about U and R in equilibrium?
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Filling in beliefs

I What do bidders know about the value?

I What do they know about what others know?

I Assume beliefs are consistent with a common prior

I Still, many possible ways to ��ll in� information:

I Bidders observe nothing;
Unique equilibrium: b1 = b2 = R = 1/2

I Bidders observe everything;
b1 = b2 = v , R = 1/2

I True information structure is likely somewhere in between:

I Bidders have some information about v , but not perfect
I But exactly how much information do they have?
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Lower revenue?

I Engelbrecht-Wiggans, Milgrom, Weber (1983, EMW):

I Bidder 1 observes v , bidder 2 observes nothing

I b1 = v/2, b2 ∼ U[0, 1/2] and independent of v

I Bidder 2 is indi�erent:
With a bid of b2 ∈ [0, 1/2], will win whenever v ≤ 2b2

Expected value is exactly b2!

I Bidder 1 wins with a bid of b1 with probability 2b1
Surplus is (v − b1)2b1

=⇒ optimal to bid b1 = v/2!

I U1 =
´ 1
v=0

v(v − v/2)dv = 1/6, U2 = 0, R = 1/3
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How we model beliefs matters

I Welfare outcomes are sensitive to modelling of information

I Why? Optimal bid depends on distribution of others' bids, and
on correlation between others' bids and values

I Problem: hard to say which speci�cation is �correct�

I What welfare predictions do not depend on how we model
information?
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Uniform example continued

I Can we characterize minimum revenue?

I Must be greater than zero!

I But seems likely to be lower than EMW

I At min R , winning bids have been pushed down �as far as they
can go�

I Force pushing back must be incentive to deviate to higher bids

I In EMW, informed bidder strictly prefers equilibrium bid
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Towards a bound

I Consider symmetric equilibria in which winning bid is an
increasing function β(v) of v

I Which β could be incentive compatible in equilibrium?

I Consider the following uniform upward deviation:
Whenever equilibrium bid is x < b, bid b instead

I Uniform deviation up to b = β(v) is not attractive if

1

2

ˆ v

x=0

(β(v)− β(x))dx︸ ︷︷ ︸
loss when would have won

≥ 1

2

ˆ v

x=0

(x − β(v))dx︸ ︷︷ ︸
gain when would have lost
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Restrictions on β

I Rearranges to

β(v) ≥ 1

2v

ˆ v

x=0

(x + β(x))dx (IC)

I What is the smallest β subject to (IC) and β ≥ 0?

I Must solve (IC) with equality for all v

I Solution is

β(v) =
1√
v

ˆ v

x=0

x
1

2
√
x
dx

=
v

3
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A lower bound on revenue

I Induced distribution of winning bids is U[0, 1/3]

I Revenue is 1/6

I In fact, symmetry/deterministic winning bid are not needed

I Distribution of winning bid has to FOSD U[0, 1/3] in all

equilibria under any information

I 1/6 is a global lower bound on equilibrium revenue
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Bound is tight

I Can construct information/equilibrium that hits bound

I Bidders get i.i.d. signals si ∼ F (x) =
√
x on [0, 1]

I Value is highest signal

I Distribution of highest signal is U[0, 1]

I Equilibrium bid: σi (si ) = si/3

(
= β(si )

)

I Defer proof until general results
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Beyond the example

I Argument generalizes to:

I Any common value distribution!

I Any number of bidders!
I Arbitrarily correlated values!!!

I Assume symmetry of value distribution for some results

I Minimum bidding is characterized by a deterministic winning

bid given the true values

I In general model, only depends on a one-dimensional statistic
of the value pro�le

I Bound is characterized by binding uniform upward incentive

constraints
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The plan

I Detailed exposition of minimum bidding

I Maximum revenue/minimum bidder surplus

I Restrictions on information

I Other directions in welfare space (e.g., e�ciency)



General model

I N bidders

I Distribution of values: P(dv1, . . . , dvN)

I Support of marginals V = [v , v ] ⊆ R+

I An information structure S consists of

I A measurable space Si of signals for each player i , S = ×N
i=1

Si
I A conditional probability measure

π : V N → ∆(S)
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Equilibrium

I Bidders' strategies map signals to distributions over bids in
[0, v ]

σi : Si → ∆(B)

I Assume �weakly undominated strategies�: bidder i never bids
strictly above the support of �rst-order beliefs about vi

I Bidder i 's payo� given strategy pro�le σ = (σ1, . . . , σN):

Ui (σ,S) =

ˆ
v∈V

ˆ
s∈S

ˆ
b∈BN

(vi − bi )
Ibi≥bj ∀j
| argmaxj bj |

σ(db|s)π(ds|v)P(dv)

I σ is a Bayes Nash equilibrium if

Ui (σ,S) ≥ Ui (σ
′
i , σ−i ,S) ∀i , σ′i
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Other welfare outcomes

Bidder surplus: U(σ,S) =
N∑
i=1

Ui (σ,S)

Revenue: R(σ,S) =

ˆ
v∈VN

ˆ
s∈S

ˆ
b∈BN

max
i

biσ(b|s)π(ds|v)P(dv)

Total surplus: T (σ,S) = R(σ,S) + U(σ,S)

E�cient surplus: T =

ˆ
v∈V

max
i

viP(dv)



General common values

I As we generalize, minimum bidding continues to be
characterized by a deterministic winning bid given values:
β(v1, . . . , vN)

I β has an explicit formula

I Consider pure common values with v ∼ P ∈ ∆([v , v ])

I Minimum winning bid generalizes to

β(v) =
1√
P(v)

ˆ v

x=v
x

P(dx)

2
√

P(x)

I Minimum revenue:

R =

ˆ v

v=v
β(v)P(dv)
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N = 2 and general value distributions

I Write P(dv1, dv2) for value distribution

I Similarly, lots of binding uniform upward IC

I Incentive to deviate up depends on value when you lose

I On the whole, e�cient allocation reduces gains from deviating
up

I Suggests minimizing equilibrium is e�cient, winning bid is
constrainted by loser's (i.e., lowest) value
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General bounds for N = 2

I Similar β, but now depends on lowest value

I Q(dm) is distribution of m = min{v1, v2} (assume
non-atomic)

I Minimum winning bid is

β(m) =
1√
Q(m)

ˆ v

x=v
x

Q(dx)

2
√
Q(x)

I Minimum revenue:
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Losing values when N > 2

I With N > 2, bid minimizing equilibrium should still be e�cient

I Intuition: coarse information about losers' values lowers
revenue

I Consider complete information, all values are common
knowledge

I High value bidder wins and pays second highest value
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Average losing values I

I Simple variation: Bidders only observe

(i) High value bidder's identity
(ii) Distribution of values

I Winner is still high value bidder, but losing bidders don't know
who has which value

I If prior is symmetric, believe they are equally likely to be at
any point in the distribution except the highest

I In equilibrium, winner pays average of N − 1 lowest values:

µ(v1, . . . , vN) =
1

N − 1

(
N∑
i=1

vi −max
i

vi

)
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General bounds

I Q(dm) is distribution of m = µ(v) (assume non-atomic)

I Minimum winning bid and revenue:

β(m) =
1

Q
N−1
N (v)

ˆ v

x=v
x
N − 1

N

Q(dx)

Q
1

N (x)

=
1

Q
N−1
N (v)

ˆ v

x=v
x Q

N−1
N (dx)

I Minimum revenue:

R =

ˆ v

m=v
β (m)Q (dm)

I Let H(b) = Q(β−1(b))
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Main result

Theorem (Minimum winning bids)

1. In any equilibrium under any information structure in which

the marginal distribution of values is P , the distribution of

winning bids must �rst-order stochastically dominate H.

2. Moreover, there exists an information structure and an

e�cient equilibrium in which the distribution of winning bids is

exactly H.
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Implications

Corollary (Minimum revenue)

Minimum revenue over all information structures and equilibria is R .

Corollary (Maximum bidder surplus)

Maximum total bidder surplus over all information structures and

equilibria is T − R .
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Proof methodology

1. Obtain a bound via relaxed program

2. Construct information and equilibrium that attain the bounds

(start with #2)
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Minimizing equilibrium and information

I Bidders receive independent signals si ∼ Q1/N(si )
=⇒ distribution of highest signal is Q(s)

I Signals are correlated with values s.t.

I Highest signal is true average lowest value, i.e.,

µ(v1, . . . , vn) = max{s1, . . . , sn}

I Bidder with highest signal is also bidder with highest value, i.e.,

argmax
i

si ⊆ argmax
i

vi

I All bidders use the monotonic pure-strategy β(si )
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Proof of equilibrium

I β is the equilibrium strategy for an �as-if� IPV model, in which
vi = si

I IC for IPV model with independent draws from Q1/N :

(si − σ(si ))Q
N−1
N (si )

≥ (si − σ(m))Q
N−1
N (m)

I Local IC:

(si − σ(si ))Q
N−1
N (dsi )− σ′(si )Q

N−1
N (si ) = 0

I Solution is precisely

σ(si ) =
1

Q
N−1
N (si )

ˆ si

x=v
x Q

N−1
N (dx) = β(si )
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Downward deviations

I Expectation of the bidder with the highest signal is ṽ(si ) ≥ si
I Downward deviator obtains surplus

(ṽ(si )− β(m))Q
N−1
N (m)

and (
ṽ(si )− β(m)

)
Q

N−1
N (dm)− β′(m)Q

N−1
N (m)

≥
(
si − β(m)

)
Q

N−1
N (dm)− β′(m)Q

N−1
N (m)

I Well-known that IPV surplus is single peaked: if m < si ,

=⇒ (si − β(m))Q
N−1
N (dm)− β′(m)Q

N−1
N (dm) ≥ 0
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(ṽ(si )− β(m))Q
N−1
N (m)

and (
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Average losing values II

I Winning bids depend on avg of lowest values
= average of losing bids (since equilibrium is e�cient)

I Suppose winning bid in equilibrium is β(m) > β(si )
=⇒ µ(v) = m for true values v

I By symmetry, all permutations of v are in µ−1(m) and equally
likely

I If you only know that

(i) you lose in equilibrium and
(ii) v ∈ µ−1(m),

you expect your value to be m!

I By deviating up to win on this event, gain m in surplus
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Upward deviations

I Upward deviator's surplus

(ṽ(si )− β(m))Q
N−1
N (si ) +

ˆ m

x=si

(x − β(m))Q
N−1
N (dx)

I Derivative w.r.t. m:

(m − β(m))Q
N−1
N (dm)− β(m)′Q

N−1
N (m) = 0!

I In e�ect, correlation between others bids' and losing values
induces adverse selection s.t. losing bidders are indi�erent to
deviating up
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Towards a general bound

I Claim is that construction attains a lower bound

I Show this via relaxed program

I Minimum CDF of winning bids subject to uniform upward IC

I Key WLOG properties of solution (and minimizing
equilibrium):

1. Symmetry
2. Winning bid depends on average losing value
3. E�ciency
4. Monotonicity of winning bids in losing values
5. All uniform upward IC bind
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Winning bid distributions

I Choice variables: Measure over i 's winning bids given values:

Hi (db|v1, ..., vn)

I Feasibility:

Hi (b|v) ≥ 0,
∑
i

Hi (b|v) ≤ 1 (Feas)

I Note

H(b) =

ˆ
v∈VN

N∑
i=1

Hi (b|v)P(dv)
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Relaxed program

I Also impose uniform upward incentive constraints (IC):

ˆ
v∈VN

ˆ b

x=v
(b − x)Hi (dx |v)P(dv)︸ ︷︷ ︸

loss when would have won

≥
ˆ
v∈VN

ˆ b

x=v
(vi − b)

∑
j 6=i

Hj(dx |v)P(dv)

︸ ︷︷ ︸
gain when would have lost

I Relaxed program: for �xed f (b) that is weakly increasing,

min

ˆ
v∈VN

N∑
i=1

ˆ v

b=v
f (b)Hi (db|v)P(dv)

over {Hi (b|v)} subject to (Feas) and (IC)

I Note: Objective and constraints are linear in Hi
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I Relaxed program: for �xed f (b) that is weakly increasing,

min

ˆ
v∈VN

N∑
i=1

ˆ v

b=v
f (b)Hi (db|v)P(dv)

over {Hi (b|v)} subject to (Feas) and (IC)

I Note: Objective and constraints are linear in Hi



Symmetry

I WLOG to consider symmetric solutions in which

Hi (·|v) = Hξ(i)(·|ξ(v))

for all permutations ξ

I For example, with N = 2, can create symmetric solution:

H̃1(b|v1, v2) =
1

2
(H1(b|v1, v2) + H2(b|v2, v1))

H̃2(b|v1, v2) =
1

2
(H2(b|v1, v2) + H1(b|v2, v1))
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Average losing values III

I Consider a bidder who uniformly deviates up, so they always

win when the equilibrium winning bid is b

I Say there is a value pro�le v at which b is sometimes the
winning bid

I Symmetry =⇒ b is equally likely to be the winning bid when
values are permutations of v , ξ(v)

I Upward deviator can only control equivalence classes

[v ] = {ξ(v)} on which they win, and expected value on [v ] is
average value

I But someone has to win in equilibrium...

I Incremental gain from winning when you would lose in
equilibrium is the average losing value given [v ]:

µ(v) =
1

N − 1

(
N∑
i=1

vi − expected winner's value

)
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E�ciency

I Can rewrite gain from upward deviating as

ˆ
v∈VN

ˆ
x=v

(µ(v)− b)
N − 1

N

∑
i

Hi (dx |v)P(dv)

I Incentive to deviate is weaker if µ(v) is smaller

I µ(v) is minimized by e�cient allocation

µ(v) =
1

N − 1

(
N∑
i=1

vi −max
i

vi

)

I Can always induce e�cient allocation without changing H(b):
If vi = max v , set

H̃i (b|v) =
1

| argmax v |

N∑
j=1

Hj(b|v)
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Relaxed program II

I Can write H(b|m) for CDF of winning bid given µ(v) = m

I Recall Q(dm) is distribution of m

I Relaxed program:

min

ˆ v

m=v

ˆ v

b=v
f (b)H(db|m)Q(dm)

subject to

0 ≤ H(b|m) ≤ 1 (Feas)

and

1

N

ˆ v

m=v

ˆ b

x=v
(b − x)H(dx |m)Q(dm)

≥ N − 1

N

ˆ v

m=v
(m − b)H(b|m)Q(dm)

(IC)
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Monotonicity

I Only part of (IC) that depends on correlation between b and
m is

m̂(b) =

ˆ v

m=v
mH(b|m)Q(dm),

i.e., average losing value when winning bid is less than b

I Incentive to deviate up is weaker if m̂(b) is lower

I Which correlation structure minimizes m̂(b)?

I Can minimize m̂(b) pointwise by making b and m
comonotonic,
i.e., the α lowest m are associated with the α lowest b

I Implies a deterministic winning bid β(m) s.t. for all m,

H(β(m)) = Q(m)
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Relaxed program III

I Relaxed program is reduced to what we assumed in example:

min

ˆ v

m=v
f (β(m))Q(dm)

subject to β(m) ≥ v and

1

N

ˆ m

x=v
(β(m)− β(x))Q(dx)

≥ N − 1

N

ˆ v

x=v
(x − β(m))Q(dx)

(IC)

I Minimize β(m) pointwise by β(v) = v and (IC) binding
everywhere

I Solution is precisely β!
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Wrapping up

I H solves the relaxed program for an arbitrary f (max b)

I Must therefore be FOSD by any equilibrium H(b)

I Construction attains H, so proof of theorem is complete



Maximum revenue

I With pure common value, no-information and complete
information induce full surplus extraction

I Not true with idiosyncratic values:

I No-information induces ine�ciency
I Complete information gives rents to bidders

I Nonetheless...

Theorem (Maximum revenue and minimum bidder surplus)

For every ε > 0, there exists an information structure and

equilibrium such that revenue is at least T − ε and bidder surplus is

at most ε.
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Additional restrictions on information

I We refer to above model as unknown values:
bidder need not know anything about value

I Sensible starting point in common value models

I Often, want to model values with an idiosyncratic component

I Reasonable to suppose that bidders are more informed about
own value than others' values

I The known values model: own value is known exactly

I Weak dominance: players do not bid more than own value
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A lower bound bidder surplus

I If bid b, always win when others' values are less than b

I Lower bound on bidder surplus U i (vi ) from best responding to
�worst case� in which others bid their values:

U i (vi ) = max
b

{
(vi − b)

ˆ
{v−i |maxj 6=i vj≤b}

P(dv−i |vi )

}

I Integrate over values to obtain an ex-ante bound U i



Maximum revenue/minimum bidder surplus

Theorem (Known values)

1. There exists an equilibrium in which every bidder receives

surplus U i , thus attaining minimum bidder surplus with known

values.

2. Moreover, this equilibrium is e�cient, thus attaining maximum

revenue with known values.
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Proof sketch

I Bidders with vi < max v see entire pro�le v

I Known they will lose to some bj ≥ vi
I =⇒ losers bid bi = vi

I High valuation bidder learns he has the high value

I Receives partial information about losers' values such that

(i) He outbids the others with probability 1
(ii) Indi�erent between equilibrium bid and the bid that generates

U i

I Uses ideas from �The Limits of Price Discrimination�, BBM
2015



Proof sketch

I Bidders with vi < max v see entire pro�le v

I Known they will lose to some bj ≥ vi
I =⇒ losers bid bi = vi
I High valuation bidder learns he has the high value

I Receives partial information about losers' values such that

(i) He outbids the others with probability 1
(ii) Indi�erent between equilibrium bid and the bid that generates

U i

I Uses ideas from �The Limits of Price Discrimination�, BBM
2015



Proof sketch

I Bidders with vi < max v see entire pro�le v

I Known they will lose to some bj ≥ vi
I =⇒ losers bid bi = vi
I High valuation bidder learns he has the high value

I Receives partial information about losers' values such that

(i) He outbids the others with probability 1
(ii) Indi�erent between equilibrium bid and the bid that generates

U i

I Uses ideas from �The Limits of Price Discrimination�, BBM
2015



Known values: Minimum revenue

I Learning own value from bid is no longer an issue

I Instead, bid is informative about others' values

I Also, with unknown values, likelihood of you winning in
equilibrium at a winning bid b is always 1/N

I With unknown values, likelihood may depend on b and
distribution of others' values

I Example: higher winning bids occur when values are higher on
average

I If equilibrium is e�cient and vi is low, I am unlikely to win in
equilibrium at high bids

I Increase in probability of winning from upward deviation varies
with vi
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Binary known values

I Case we can solve completely: vi ∈ {vL, vH}
I Setting �rst considered by Maskin and Riley (1985)

I vL types are in Bertrand competition
=⇒ essentially always bid vL, lose to vH

I All uniform upward constraints bind

I Winning bids are higher when average value is higher

I General known values minimum revenue is an open question
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Other directions

I We talked about max/min revenue, max/min bidder surplus

I What about weighted sums? Minimum e�ciency?

I More broadly, what is the whole set of possible (U,R) pairs?

I Solved numerically for two bidder i.i.d. U[0, 1] model



Other directions

I We talked about max/min revenue, max/min bidder surplus

I What about weighted sums? Minimum e�ciency?

I More broadly, what is the whole set of possible (U,R) pairs?

I Solved numerically for two bidder i.i.d. U[0, 1] model



Other directions

I We talked about max/min revenue, max/min bidder surplus

I What about weighted sums? Minimum e�ciency?

I More broadly, what is the whole set of possible (U,R) pairs?

I Solved numerically for two bidder i.i.d. U[0, 1] model



Welfare set

0 1/3 2/3

0

1/3

2/3

Bidder surplus (U)

R
ev

en
ue

 (
R

)

 

 
F

G

H

D

E

A

B

C

Unknown values
Known values

I Note: Lower bound on e�ciency



What can we do with this?

I Applications/extensions:

I Many bidder limit
I Impact of reserve prices/entry fees
I Identi�cation
I Other directions in welfare space

I Context:

I Part of a larger agenda on robust predictions and information
design
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Thank you!
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