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ABSTRACT

Behavioral Types and Partially Informed Decision Makers in

Communication Games

Ying Chen

2005

This dissertation consists of two chapters on communication games.

The first chapter introduces two behavioral types into a model of strategic commu-
nication based on Crawford and Sobel (1982). With positive probability, the sender
is an honest type who always tells the truth, and the receiver is a naive type who
always foﬂows whatever message is sent to her. We establish existence and unique-
ness of monotonic equilibrium (a sequential equilibrium in which the sender’s message
strategy is non-decreasing in the state of the world) under certain assumptions. In
this important class of equilibria, we find that only the most informative equilibrium
in the C-S model is robust to the perturbation of the behavioral types. In a monotonic
equilibrium, the dishonest sender always distorts the messages in the direction of his
bias. If the message space is discrete and the dishonest sender has an upward bias,
then his messages will cluster around the top few messages. Interestingly, the so-
phisticated receiver’s strategy is not monotonic in the messages she receives even

in a monotonic equilibrium. The existence of monotonic equilibrium may fail when



the message space is a continuum. Following Manelli (1996), we show that adding
incentive compatible communication (cheap-talk extension) restores existence.

The second chapter incorporates partially informed decision makers into commu-
nication games. We analyze three extensive form games in which the expert and the
decision maker (DM) each privately observe a signal about the state of the world.
In game 1, the DM reveals her private signal to the expert before the expert reports
to her. In game 2, the DM keeps her signal private. In game 3, the DM strategi-
cally communicates to the expert before the expert reports to her. We find that the
DM’s expected equilibrium payoff is not monotonically increasing in the accuracy
of her private signal because the expert may reveal less information when facing a
well-informed DM. Whether the DM extracts more information from the expert in
game 1 or in game 2 depends on the parameters. Allowing the DM to communicate

strategically to the expert first does not help her extract more information.
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Chapter 1

Perturbed Communication Games
with Honest Senders and Naive

Receivers

1.1 Introduction

It is common in economic life that a decision maker does not have all the relevant
information for making a good decision and therefore needs access to better informed
people for knowledge and expertise. Here are a few examples: government officials
consult experts before making policies; investors constantly get suggestions and rec-
ommendations from financial analysts; employers routinely ask for references from

job applicants.

To a large extent, the information in many of these situations is transmitted

through what economists call “cheap talk”, that is, unmediated communication that
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does not directly affect either side’s payoff. Since the interests of the two parties
are usually not perfectly aligned, the informed party has an incentive to mislead the
decision maker to believe something other than the truth. One central concern is
whether information can ever be conveyed through cheap talk.

In Crawford and Sobel’s (1982) seminal article, they model the situations described
above as sender-receiver games in which the sender, after privately observing the state
of the world, sends a costless message to the receiver who then chooses an action
that affects both players’ payoffs. They find that due to the difference in interests,
information can never be fully transmitted in equilibrium. However, when the two
parties’ interests are close enough, cheap talk can be effective — there exist equilibria
in which the sender introduces noise into his messages and the receiver extracts a
certain amount of imprecise information from them.

Although cheap talk can convey some information when the sender’s bias is small
enough, it need not do so — there are always equilibria in which cheap talk is ineffective
and no information is conveyed from the sender to the receiver. The problem of
multiplicity of equilibria in cheap talk games provides a major motivation for our
study. In this paper, we address the problem by introducing behavioral types into a
game of information transmission through costless messages based on Crawford and
Sobel (C-S for short) (1982). Specifically, with some positive probability, the sender
is an honest type who always truthfully reports his observation of the state of the

world and the receiver is a naive type who always follows whatever message is sent
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to her. Otherwise, the players are the same as in the original C-S model and act fully
strategically to maximize their expected payoffs.!

Experimental? and anecdotal® evidence supports the observation that some players
follow these behavioral rules. We will not attempt to explain why some people “me-
chanically” tell the truth or follow the messages. Some players may have preferences
that induce them to adopt the “behavioral rules” as their optimal strategies in this
one-shot interaction. Alternatively, some players may lack the strategic sophistication
to figure out how to play the game optimally and therefore act “irrationally” in ways
as if their preferences were the same as the former kind of players. In this paper, we
take the existence of the behavioral types as given and explore its implications. For
our purpose, we view them in the following way: they have different preferences from
the non-behavioral players that make “telling the truth” or “following the sender’s
messages” dominant strategies for them.

Introducing behavioral types into the C-S model fundamentally changes the way

the game is played. The messages are no longer pure “cheap talk” because they

1The strongest results in Crawford and Sobel (1982) are obtained for the “uniform-quadratic”
case in which the prior on the state of the world is uniform on a bounded interval and the players’
payoff functions have the quadratic form. This paper adopts the “uniform-quadratic” assumption.
At this point, it is not clear how to extend the results to more general settings.

28ee Forsythe, Lundholm and Rietz (1999) for an experimental study which finds that in a cheap
talk game, the subjects (as senders) display a tendency to reveal the true state of the world in
their costless disclosures and they (as receivers) show a certain amount of gullibility even when their
opponents have a clear incentive to lie.

3For example, news stories have documented that rumors on a stock’s prospects that float on
internet message boards can drive the price of the stock up or down drastically because some investors
believe those messages despite the fact that they come from anonymous sources with dubious motives.
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enter the sender’s payoff function through the fixed responses of the naive receiver.
Moreover, this “cost” of sending a particular message varies with the true state of
the world. When the dishonest sender decides what message to send, he weighs the
strategic response of the sophisticated receiver against the fixed response of the naive
receiver. This imposes a lot of structure on the incentive constraints that the sender
faces and drives many of the results we derive in this paper.

The existence of the honest sender implies that every message is sent on the
equilibrium path if we assume that the message space is the same as the state space.
This enables us to always find the receiver’s posterior belief by using Bayes’ rule.
The question of what kind of restrictions to impose on beliefs off the equilibrium
path, which is a prominent issue in signaling and cheap talk games, simply does not
arise in our model. By developing some of the techniques for solving signaling games
with a continuum of types,* we are able to translate the equilibrium conditions into
a differential equations system in terms of the non-behavioral types’ strategies and
solve for the equilibrium numerically.

Perturbing the C-S model with the behavioral types provides a new perspective
on the equilibrium selection problem in cheap talk games, which are notorious for
having a serious problem of multiplicity of equilibria. In the C-S model, the size of
the sender’s bias determines how much information can be transmitted in the “most

informative” equilibrium. However, due to the circularity embedded in the solution

4See, in particular, Mailath (1987), (1992).
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concepts we typically use, there are always other equilibria in which the messages
are less informative. This is highlighted in the example of babbling equilibrium in
which the sender’s messages are uncorrelated with his private information and are
taken to be meaningless. The receiver who responds to each message with the same
action does not have any incentive to deviate because the messages contain no useful
information. In turn, the sender’s “babbling” is justified since the receiver “ignores”
what he says. By letting the probabilities of the behavioral types approach zero,
we can conduct a formal robustness test for the multiple equilibria that exist in the
C-S model. We find that if we focus on the class of monotonic equilibria (these are
equilibria in which the sender’s message strategy is non-decreasing in the state of
nature), then we rule out all but the most informative equilibrium in the C-S model.
To see why, let’s suppose, without loss of generality, the sender has an upward rather
than downward bias. Then, in a monotonic equilibrium in the perturbed model, the
dishonest sender with the lowest signal always has the opportunity to report that
he is the lowest type and be believed by the receiver. This immediately implies
that the expected equilibrium payoff for the lowest type of sender has to be at least
as high as the payoff he gets if identified by the receiver as the lowest type. This
condition on expected equilibrium payoffs holds in the limit as the probabilities of
the behavioral types go to zero. Because among all the equilibria in the C-S model,
only the most informative one satisfies this condition, all the other equilibria are

eliminated by the perturbation. This result is different from what we get when we
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apply prominent refinements of cheap talk equilibria in the literature to the C-S
model. None of the equilibria in the C-S model is “neologism-proof” (Farrell (1993))
or “announcement-proof” (Matthews, Okuno-Fujiwara and Postlewaite (1991)). In
contrast, the solution concept of “credible message rationalizability” (Rabin (1990))
does not rule out any equilibrium in the C-S model. In section 1.5.2, we provide a
more detailed discussion of the refinements mentioned above. An exception is Kartik’s
(2003) paper which considers a model of communication through both costly signals
and cheap talk and uses it as a refinement of equilibria in the C-S model. Similar
to our result, Kartik (2003) selects the most informative equilibrium. There are
some interesting connections between Kartik’s model and ours and a more detailed
comparison of the two models is provided at the end of section 1.3.

In many situations of strategic information transmission, the messages that the
sender uses have pre-existing, commonly understood focal meanings. However, in
most models of cheap talk, the real meaning of a message, i.e., the information it con-
tains, arises endogenously in equilibrium and the focal meaning (which is established
in a much larger environment than the game) is completely irrelevant. In fact, given
an equilibrium in a cheap talk game, “any permutation of messages across mean-
ings gives another equilibrium.”® This makes perfect sense from a purely theoretical
standpoint because the focal meanings are completely extrinsic to the game. But it

is also counter-intuitive. Imagine a situation in which people communicate through

5Farrell (1993).
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a natural language or some other system where messages have well-understood fo-
cal meanings. Although rational agents may choose not to interpret the messages
literally, we would still expect the messages’ focal meanings to influence the commu-
nication process. In our model, this is indeed the case. With just a small fraction of
players being “literal-minded,” exaggeration arises naturally in a monotonic equilib-
rium — the dishonest sender always distorts his messages in the direction of his bias
in the attempt to manipulate the receiver’s beliefs. Moreover, if the sender has an
upward bias and the message space is discrete, then it emerges in equilibrium that
messages will cluster around the top few messages. Interestingly, in equilibrium, the
action that the sophisticated receiver takes is not monotonic in the messages she re-
ceives, even when the dishonest sender’s reporting strategy is increasing in the state
of nature. Roughly speaking, a higher message may lead the receiver to choose a
lower action if she believes that with a relatively high probability, the message is sent
by the dishonest sender (who exaggerates his claims in equilibrium).

Another contribution of this paper is the analysis of the relationship between the
game with a continuous message space and its finite approximating versions. Econo-
mists often choose to model games with an uncountable number of actions because it
is easier to work with a continuum than with a large finite grid. Indeed, in this paper,
tools from calculus enable us to reduce an infinite number of incentive constraints to
an analytically simple form — a system of differential equations. However, when the

message space is a continuum, the existence of monotonic equilibrium may fail. For-
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tunately, we can show that the non-existence problem does not arise if the message
space is discrete. Approximating the infinite game with similar games that have finite
message spaces resolves the non-existence problem. To find the limit distribution of
the equilibrium outcomes in the converging sequence of finite games, we use a device
that is introduced by Manelli (1996), the “cheap-talk extension” game.® In a cheap-
talk extension of our sender-receiver game, in addition to the regular message the
sender reports, he makes a costless, non-binding suggestion of action to the receiver.
Manelli (1996) establishes upper hemi-continuity of sequential equilibria between the
finite approximating games and the cheap-talk extension of the limit continuous game.
We also establish lower hemi-continuity between the two in our model. The one-to-
one mapping between the limit distribution of the equilibrium outcomes in the finite
approximating games and the equilibrium outcome in the cheap-talk extension of the
continuous game allows us to find the former by characterizing the latter. This exer-
cise highlights the root of the non-existence problem in the continuous game. When
the message space is discrete, the sender is able to convey different information by
using different messages that are at the top and right next to each other in the mes-
sage space. As the message space approaches the continuum, those messages collapse
to one, and the sender can no longer use them to convey different information to the
receiver, thereby resulting in non-existence.

Two papers in the literature are closely related to ours. Crawford (2003) considers

6 Jackson, Simon, Swinkels and Zame (2002) apply a similar idea to a broader class of games of
incomplete information.
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a binary, asymmetric, zero-sum game in which one of the players can costlessly signal
his intention of play. Standard equilibrium analysis predicts that when the players
have opposite interests, pre-game communication like this involves babbling in which
the signals are completely ignored. However, by introducing “mortal types” (these
include “truth tellers” and “liars” on the sender’s side and “believers” and “inverters”
on the receiver’s side), Crawford (2003) finds that misrepresentation of intentions can
be successful sometimes — when the probabilities of the mortal types are high enough,
even the sophisticated receiver can be fooled ex post. Ottaviani and Squintani (2002)
introduce honest senders/naive receivers into a C-S kind of sender-receiver game.
However, instead of maintaining the bounded state/message space of the C-S model
as this paper does, their model assumes that the state/message space is unbounded
and generates different results. Because there is no bound on how distorted a message
can be, there always exists a fully separating equilibrium in which the sender adopts
a strictly increasing message strategy.

Incomplete information about the players’ preferences plays an important role in
a number of other studies on information transmission, in both static and dynamic
settings. Morgan and Stocken (2003) analyze how uncertainty about stock analysts’
incentives affects stock recommendations. Sobel (1985) and Benabou and Laroque
(1992) model the dynamics of a sender’s “credibility” in a long term relationship when
he can be either a “friend” or an “enemy” to the receiver. Morris (2001) explains

that an advisor whose preferences are identical with the decision maker’s may have a
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reputational incentive to lie and be “politically correct” because he does not want to
be perceived as being biased.

The rest of the chapter is organized as follows. Section 1.2 describes the model.
Section 1.3 lays out the theory that links the game that has a continuous message
space with its finite approximations. Section 1.4 characterizes the class of monotonic
equilibria. Section 1.5 presents a detailed examination and interpretation of the
model’s predictions, which include the case where the probabilities of behavioral types
are non-negligible as well as the asymptotic case as the probabilities approach zero.
For most part of the paper, we focus on the important class of monotonic equilib-
ria. Section 1.6 discusses what happens when we relax this restriction. Section 1.7

concludes.

1.2 The Model

The benchmark is the classic model of strategic information transmission introduced
by Crawford and Sobel (1982).

They consider the following game. There are two players, called a sender (S) and
a receiver (R). At the beginning of the game, S privately observes the realization of a
random variable, w, called the “state of the world” and then sends a costless message,
m, to R. Upon receiving m, R chooses an action, a, which affects both players’ payoffs.
For the rest of the paper, we are going to focus on the leading case of this sender-

receiver game, known as the “uniform-quadratic” case. It is assumed that the state
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space 2 = [0, 1] and the prior probability distribution of w is the uniform distribution
on the interval [0,1]. Both players have quadratic utility functions. Specifically, the

von Neumann-Morgenstern utility functions for S and R are given respectively by

uS(w,a,b) = —(a—w~—0b)?

Ww,a,b) = —(a—w)?

The “bias” of the sender, b, parameterizes the divergence of interest between the
two parties. Without loss of generality, we are going to assume that b > 0. This
means that for any w, the sender’s ideal action is always higher than the receiver’s
ideal action.

Note that unlike typical signaling models where differential signaling costs are ex-
ogenously given, the message m does not directly enter either player’s payoff function.
So we are dealing with “cheap talk.” One of the main insights of the C-S paper is
that even if the messages do not have any exogenous costs, R’s equilibrium action
rule generally creates endogenous signaling costs which allow equilibria with partial
sorting. Specifically, they find that all the equilibria take a very simple form in which
S partitions the state space (2 into subintervals and introduces noise into his messages
by reporting, in effect, which element of the partition his observation of w actually
lies in. Moreover, for any b > 0, there is an upper bound, denoted by N (b), on the
size of an equilibrium (i.e., the number of subintervals of an equilibrium partition).

There exists one equilibrium of each size from 1 through N(b). Intuitively, the closer
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S and R’s interests are, the more information can be transmitted in equilibrium in
the sense that N(b) is non-increasing in b.

We depart from the C-S model by introducing two behavioral types into the
model. On the sender’s side, there is an “honest” type who always reports truthfully
his observation of w. On the receiver’s side, there is a “naive” type who always blindly

follows whatever message is sent to her. Their utility functions are:

up(myw) = —(m—w)?
uf (a,m) = —(a—m)

With uf (m,w), it is a dominant strategy for the sender to tell the truth (i.e., choose
m = w) and with uff(a,m), it is a dominant strategy for the receiver to follow the
message(i.e. choose a =m).”

Those players who have the same preferences as in the original C-S model we call
“dishonest senders” and “sophisticated receivers”, or “strategic types” in general.

Denote by 6 the probability that the sender is honest and by A the probabil-
ity that the receiver is naive. We say that the sender has a two-dimensional type
space T = § x P where P = {honest,dishonest}. The receiver’s type space is
Q = {naive, sophisticated}. The two elements of the sender’s type have independent

probability distributions and are also independent of the receiver’s type distribution.

70Of course, there are many other utility functions with which choosing “m = w” and “a = w”
are dominant strategies. Choosing different utility functions won’t change our results.
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Let p denote the probability distribution on T'. We assume that the message space
M is the same as the state space ). Therefore M = Q = [0,1]. This seems to
be a natural assumption with the existence of the naive receiver in the model. The
receiver’s action space is A = R.

Here we have an extensive form game of incomplete information. It is not a
standard signaling game because the receiver, as well as the sender, has private in-
formation on her type. We would like to “convert” it into a signaling game in order
to apply some of the results in the literature that have been established for signaling
games. This requires nothing more than a little redefinition because the naive type
of receiver responds to the messages in a predetermined way and the only impor-
tant role that the receiver’s private information plays is to change the payoff function
of the sender. Specifically, consider the following signaling game summarized by
T[(T,p), M, A, US, U8 In this game, player S first observes his type t from set T
and then sends a signal m from the set M. Player R receives the signal m, infers
player S’s probable type and then selects an action a from the set A. The game ends
and each player i receives payoff U’ (t,m, a,b) (i = S, R), which is defined as follows.

Define I(p) as the indicator function such that

1 if p = honest
I(p) =
0 if p = dishonest

8We borrow this notation from Manelli (1996).
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Also, define

US(t,m,a,b) = (~A(m—w—10)*—(1-X)(a—w=1b)")
(1= I(p)) = (m — w)*1(p)

wheret = (w,p) €T.

And

UR(t,m,a,b) = —(a — w)*.

To complete the specification of the game, assume that player R has prior beliefs
p about the possible types ¢ of player S and p is common knowledge.

Clearly, the only difference between the signaling game I" and the game described
earlier is that the naive receiver is not explicitly modeled in I'. However, since we
are interested in only the strategic types’ equilibrium behavior, this difference is
inconsequential and for our purpose, we can treat the two games as equivalent.

In the rest of the paper, we use I to refer to the game as described above and I'" to
refer to a similar game with a different message space M™ to be introduced in the next
section, that is, I = T[(T, p) , M", A,U®,U¥®|. Game I and I'* are parameterized by
), 6 and b. Obviously, when A = 6 = 0, we are back to the C-S model. We use I'c_g
and T'%_g to refer to the C-S model with message space M and M", respectively. For
notational convenience, uj (w,m, a,b) is used to denote the dishonest sender’s payoff

function: u3 (w,m,a,b) = —A(m —w—0)2—(1—X)(a—w— b)*.
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1.3 Monotonic Equilibrium in Infinite Game I', Fi-
nite Approximating Games [ and the Cheap-

talk Extension Game ['(L)

Since the strategies for the honest sender and the naive receiver are given exogenously,
we only need to find the equilibrium strategies for the strategic types. Let m (W) :
Q) — M be the dishonest sender’s (pure) reporting strategy and a(m) : M — A be
the sophisticated receiver’s (pure) action strategy. (Note that since the sophisticated
receiver has a strictly concave utility function, she never plays a mixed strategy in
equilibrium.) In this section, we are going to focus on a very important class of

equilibria, which we call monotonic equilibria.

Definition 1.1. A monotonic equilibrium in I is a sequential equilibrium® in which

m (w) is weakly increasing in w.

So, we require the dishonest sender’s strategy to be pure and non-decreasing
in his observation of w. (The honest sender’s reporting strategy, by definition, is
increasing in w.) Given that both the sender and the receiver prefer higher actions

for higher states, this seems to be a natural assumption to make, especially with

9Kreps and Wilson (1982) define sequential equilibrium only for finite games. Manelli (1996)
adapts their definition to infinite signaling games and we are going to use his definition for the
infinite games considered in this paper. The definition requires that the sender selects a best reponse
for any type realization and that the receiver selects a best response to any message on and off the
equilibrium path. No “inferior response” is allowed in equilibrium, even for a set of types/messages
of measure zero. In T, since every message is sent on the equilibrium path, we are in effect using
the solution concept of Bayesian Nash equilibrium with the restriction of interim optimality.
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a fraction of receivers taking the messages literally. (We are going to discuss in
section 1.6.2 what happens when we allow the sender to randomize and to have a
non-increasing reporting strategy.) Since every m € M is sent on the equilibrium
path, the sophisticated receiver’s beliefs on the type distribution of the sender can
always be derived by Bayes’ rule.

The advantage of studying the continuous game I" where Q@ = M = [0,1] is
that equilibria are relatively easy to characterize. The incentive constraints can be
translated into a system of differential equations with boundary conditions whereas
if 0 and/or M are discrete, the incentive constraints are much more complicated
to analyze. However, there is no preexisting theorem that guarantees the existence
of monotonic equilibrium (or, for that matter, sequential equilibrium) in game I
Indeed, we shall see that for certain parameter configurations of A, 6 and b, there is
no monotonic equilibrium in I".

One way to get around this non-existence problem is to discretize the message
space. In Theorem 1.1 below, we establish the existence of monotonic equilibrium in
game I'. Game I'™ is the same as I except that " has the discrete message space
M™ defined as follows.

Pick n+ 1 different real numbers m;(i = 0, 1,2,..,n) from the interval [0, 1] where
O=mg<my <mg < ..<Mp1 <my=1

Define M, = {mg,m1,Ma, ..., Mn-1,Mn} = {0,m1, Mg, ..., Mp_1, 1}.

Theorem 1.1. For any b >0 and )\, 0 € (0,1), there exists a monotonic equilibrium
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for game T™ if max{m; — m;_1}i=1,..n < D.

Theorem 1.1 states that for a game with discrete message space where the distances
between adjacent messages are small enough, there always exists an equilibrium where

the dishonest sender’s reporting strategy is weakly increasing in his observation of w.

Outline of proof. For details, see appendix.

The proof has two main steps.

First, by Kakutani’s fixed point theorem, there exists a fixed point for the “re-
stricted” best response correspondence where the dishonest sender’s strategy is re-
stricted to be weakly increasing in w.

Second, we show that for the fixed point we found in the first step, the reporting
strategy that corresponds to the fixed point is still a best response even without the

monotonicity constraint, thus establishing the existence of monotonic equilibrium. 1

Theorem 1.1 guarantees that there exists a monotonic equilibrium in finite games
™ that are close to the infinite game I'. As we take an increasingly finer discretization
of [0, 1], the corresponding sequence of monotonic equilibrium outcomes will converge
(in a subsequence) to a limit distribution. But the limit distribution may not be
feasible in the limit game, i.e., no strategy profile in the limit game can generate this

distribution, the result being non-existence.

To illustrate, consider the following example.

Example 1.1. Suppose b = 0.05.
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In the C-S model, we have an equilibrium partition consisting of 3 subintervals:
[0, &1, [5% 550, [ 1]

In our perturbed model, to make matters simple, we consider the limit case as A
and 6 go to 0. (In the following charaterization, the equilibria are found as the limit
equilibria of T™(X,60) when X and 6 — 0.)

Consider a sequence of finite approximating games I'™ with M"
= {0, 3, 2., 2=l 1}. For T™, we are going to have equilibrium'® strategies:

4

2 2
=2 fwel0,

mw) = ¢ "—;1- ifwé[f—s-,{—s

| 1 ifwels ]

5o men
a(m) = 3 ifm=nt
% ifm=1

\

These strategies, together with the prior distribution on T', induce a joint proba-

bility distribution on Q x M™ x A such that pr{w € [0, %),m =r2g=41}= %,
pr{w € [%’%)’m = E'r_z_l’a’ = 13_0} = _1§ and pr{w € ['17_5,1],77'& = l,a = % =

L. As M™ — [0,1], these outcomes will converge weakly to the distribution where

pr{w € [07125)’777’ = 1,(1 = %} = 12_57 m{w € ['3_5,1_75‘),777: = ].,(l = E} = % and

pr{welg,)ym=lLa=1}=%.

But no strategy pair of the limit game I can generate this distribution. In order

10 As we will show in Proposition 1.5, this constitutes the unique limit equilibrium outcome of I'
as A, 0 — 0 for b =0.05.
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to generate this distribution, the dishonest sender must send m =1 for allw € [0, 1]

and the sophisticated receiver must respond to m = 1 with a = & when w € [0, 2),
with a = & when w € [, %) and with a = {; when w € [£,1], which is obviously
impossible.

In any finite approzimating game, the “top three” messages in the finite message
space are used to convey different information, but there are no “top three ” messages

in the infinite game T’ and therefore equilibrium breaks down in the limat.

The non-existence problem as illustrated above has been investigated in the liter-
ature. Manelli (1996) provides an ingenious way to “solve” the non-existence problem
in infinite signaling games similar to I". The idea is simple: consider a variant of game
I in which the sender, in addition to his message m, makes a non-binding suggestion
of response a € A to the receiver. Adding such cheap-talk suggestions to the original
game T restores existence of equilibrium. Going back to Example 1.1, we can see that
this variant of game I has an equilibrium in which the dishonest sender sends m =1
and suggests what the receiver should do ( when w € [0, &), suggests a = =&, when
wE [%, 175), suggests a = %, when w € [%, 1], suggests a = %), and the sophisticated
receiver follows that suggestion.

The above idea can be formalized like this. Imagine the following (artificial)
game. After observing his type ¢t € T, the sender sends, in addition to m € M,
a costless message [ € L. The receiver receives both m and [ before choosing an

action a € A. The additional messages [ are pure cheap talk — they do not affect
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the payoffs of any type of the players. Given the utility functions U® and U R this
means that there is no restriction on how the honest sender sends [, although he still
tells the truth about w through m. It also implies that the naive receiver simply
ignores [ in her decision and still chooses a = m. Following the terminology in
Manelli(1996), we shall call this game the cheap-talk extension of game I', denoted
by T'(L) = (T, p) , M, L, A,U%,UR).

In general, incorporating cheap talk into a game enlarges the set of equilibria. Of
course, the set of available cheap-talk messages plays an important role in determining
what results we get. As the space of L gets richer, the possibilities of communication
increase and potentially, so does the the set of equilibrium outcomes. For the purpose
of our analysis, we are going to focus on what is called the canonical cheap-talk
extension of T' in which the cheap-talk message space L is equal to the action space
A. Our interpretation of the canonical cheap-talk extension game I' (A) is that the
sender, in addition to m, also makes a non-binding recommendation of action a € A
to the receiver. Further, we can focus on what is called a simple equilibrium in I" (A).
A simple equilibrium of T' (A) is a sequential equilibrium in I'(A) in which the sender
sends a message m and suggests a response a to the receiver, who then follows the
suggestion on the equilibrium path.'! We can without loss of generality study simple

equilibrium in the canonical cheap-talk extension game I' (A) because Proposition 1

11 A simple equilibrium has two requirements in addition to the sequential equilibrium condition.
1. The sophisticated receiver follows the sender’s suggestions on the equilibrium path. 2. The
sophisticated receiver’s responses do not depend on the suggestions received off the equilibrium
path.
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in Manelli’s (1996) paper guarantees that any sequential equilibrium outcome of any
cheap-talk extension game I'(L) can be obtained as a simple equilibrium outcome of
I'(A). To facilitate comparison with T', the equilibrium outcomes of T' (L) are defined
on T x M x A.

Next, we state Theorem 1.2 which provides the link between finite games I'"* and

infinite game I through the cheap-talk extension game I'" (A).

Theorem 1.2. Let I = [(T, p),M" A US, UR] ,n=1,2 ... be a sequence of games
converging to the limit game I' = [(T, p), M, A, U5, UR|. Suppose E™ is an equi-
librium outcome of the game I'* and (E") — E. Then, E is a simple equilibrium

outcome of the canonical cheap-talk extension of the limit game I' (A).

Proof. : Application of Theorem 2 in Manelli (1996). O

Since there always exists a monotonic equilbrium in the finite approximating
games, as we have established in Theorem 1.1, it follows from Theorem 1.2 that
there always exists a simple equilibrium in I'(A) where the dishonest sender has a
reporting strategy m(w) that is non-decreasing in w.

We would like to interpret the cheap-talk extension game I'(A) in a non-literal
fashion. We don’t believe that it is a realistic depiction of the economic situations we
want to model. It plays a largely auxiliary role in our analysis, enabling us to find

the limit distribution of the equilibrium outcomes in the finite approximating games
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by working within the continuous framework.!?

1.4 Characterization of Monotonic Equilibrium

In this section, we are going to first characterize monotonic equilibrium in the infinite
game T, assuming existence. Then, we will discuss when monotonic equilibrium fails
to exist in I' and how adding cheap talk suggestions enlarges the set of equilibria
and restores existence. We will also prove the uniqueness of monotonic equilibrium
outcomes in the canonical cheap-talk extension game I' (A) for any fixed parameter

values X, 6 € (0,1) and b > 0.

12 A recent paper by Kartik (2003) considers a model of communication through multiple channels.
Specifically, there is one dimension of signaling where the signals have misrepresentation costs and
there is a second dimension where the signals are costless. Formally, Kartik’s model is very close to
the cheap-talk extension of the continuous sender-receiver game we consider, with the probability of
the honest sender being 0. The message m and the cheap-talk suggestion [ in our model correspond
to the “costly” and “costless” signals in Kartik’s model, respectively.

Despite the formal similarity, the pure cheap-talk messages have completely different interpreta-
tions in the two papers. In Kartik’s model, the cheap-talk messages are an intrinsic part of the
communication process and they have direct interpretation in economic applications. In our model,
the cheap-talk suggestions are a technical device that we use to solve the non-existence problem.

Kartik’s model has the problem of multiple equilibria and he invokes an equilibrium refinement —
the monotonic D1 criterion that imposes restrictions on beliefs off the equilibrium path to rule out
“ynreasonable” equilibria. Due to the existence of the honest type of sender in our model, every
message is sent on the equilibrium path and we have uniqueness in the class of monotonic equilibrium
without imposing any ad hoc restrictions on the receiver’s beliefs. Both Kartik’s model and ours
select the most informative equilibrium in the C-S model as the only equilibrium that is robust to
the perturbations we introduce. However, when the probabilities of the behavioral types are strictly
positive, our models provide different predictions (for example, the non-monotonicity of a (m)). We
also discuss what equilibria look like when the message space is discrete and the connection between
the game with an infinite message space and its finite approximating versions.
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1.4.1 Monotonic Equilibrium in I'

The two propositions below provide a full characterization of monotonic equilibria in
I". Proposition 1.1 summarizes a series of properties on the continuity, differentiability
and shape of the equilibrium strategies m (w) and a(m). Proposition 1.2 presents
the differential equations system translated from the incentive constraints under the
differentiability conditions. Following the propositions, we give an example which
illustrates what equilibrium strategies look like for a specific set of parameter values.
Throughout this section, the maintained assumptions are b > 0, A,0 € (0, 1) and that
m (w) is weakly increasing in w.

Before we proceed to the propositions, here are a few useful notations and facts.

Define g () as the inverse function of m (-) whenever m (-) is invertible.

Since w is uniformly distributed on [0,1], the random variable m, defined by
m (w), has the following distribution function: Fy, (z) = pr (m (w) < z). When m(:)
is invertible, F,, (z) = pr (w < m™ (z)) = g (z).

In addition, when g (-) is differentiable, the density function for m is well defined:

Given that the sophisticated receiver’s payoff function is — (a — w)2, her optimal
choice of action when receiving a message m is equal to the conditional expectation
of w, E (w|m).

If m < m(0), the sophisticated receiver infers that m was sent by the honest

sender with probability 1. Hence a (m) = E (w|m) = m when m < m (0).
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If m > m(0) and g (m) is well defined and differentiable, a (m) = E (wlm) =

m+(1-6)g'(m)g(m) 13
0+(1-0)g'(m)

Proposition 1.1. In a monotonic equilibrium in game ', the equilibrium strategies

m (w) and a(m) have the following properties:
1. m (w) is continuous for w € [0,1] and 0 <m(0) < b;
2. m (w) is strictly increasing for w € [0,w); m(w) =1 forw € @, 1];
3. m(w) is differentiable on (0,@);
4. a(m) is continuous on [0,1) and differentiable on (m (0),1);

5. If m < m(0), a(m) = m; if m € (m(0),1), m > a(m) > g(m) and a(m) <

g(m)+b; ifm=1,a(m) = 2.

Proposition 1.1 establishes continuity and differentiability for the dishonest sender’s

message strategy m (w). It says that in a monotonic equilibrium, there is separation

13This is how the posterior is computed. Given the honest sender’s message strategy mh (w)
(m" (w) = w) and the dlshonest sender’s message strategy m (w), we have two random variables m"
and m? defined by m" = m" (w) and m? = m (w).

The c.d.f. and the density function of m” are the same as those of w, which is uniformly distributed
on [0 1]. Also, as shown in the main text, the c.d.f. of m? is given by g (-) and its density function
is g ().

With probability 6, the receiver observes the realization of m" and with probablhty (1 —0), she
observes the realization of m¢. Therefore, given the probablhty distributions of m” and m<, when the
receiver observes m, she infers that with probability 3 W’ she has observed the reahzatlon

of m" (i.e. the sender is honest) and with probability —QMLK——L, she has observed the realization
f+(1-08)g’(m)

of m® (i.e., the sender is dishonest). Hence, the conditional expectation of w given m is equal to

0m+(1—6)g’ (m)g(m)
T ot
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for the dishonest sender with observation below a threshold value @. For w higher
than @, the dishonest sender pools at the upper bound of the message space, m = 1.

The action strategy of the sophisticated receiver, a (m), is continuous except for
a possible jump at m = 1. It is also differentiable on (m (0), 1).

The message sent by the dishonest sender with the lowest observation w = 0 in
equilibrium is bounded away from 0 but strictly below his ideal point b. At m (0), the
sophisticated receiver’s response a (m) = m. This ensures the continuity of a (m) at
m = 0 since a (m) = m for m < m(0). It also implies that the posterior probability
attached by the sophisticated receiver to the sender being dishonest is zero when the
message received is m (0). This in turn implies that g’ (m (0)) = 0 (alternatively,
m’ (m (0)) = 00).

For m between m (0) and 1, the Proposition says that the message sent by the
dishonest sender with observation w is always strictly higher than w and the equilib-
rium response he gets from the sophisticated receiver is also higher than w, but lower
than his ideal point w + 0.

A detailed, step-by-step proof of Proposition 1.1 is in the appendix. Here we give
an outline of the proof.

First, it is straightforward to see that m (w) is continuous because otherwise there
exists an m’ > m (0) such that no dishonest sender sends m’ in equilibrium, a (m) =
m’ and it is a profitable deviation for some type of dishonest sender to send m' and

induce a = m/ from both types of receivers, a contradiction.
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Next, under the assumptions that m (w) is strictly increasing, g(m) is differ-
entiable and a (m) is continuous, we show that a(m) is differentiable and satisfies

do — — (1_:\\)(22(_71252(—7?)_17). The approach we use in the proof is similar to Mailath

(1987). Basically, we expand uj (w/,m (w"),a(m(w")),b) in a Taylor series and

1

use incentive compatibility constraints for w” close to w’ to establish that

a(m(w"))—a(m(w')) duf (v ,m(w’),a(m(w')))
m(w")—m(w’) dm

duf (w',m(w’),a(m(w
da

) limgr = 0, which under the
assumptions implies that —2 (1 — X) (a(m) — g (m) —b)a’(m) — 2A(m — g (m) —b) = 0.
Notice that this is just the F.O.C. for the reporting strategy m (w) to be (locally)
optimal, given that the sophisticated receiver’s strategy is a (m). By computing the
S.0.C. for the optimality of m (w), we find that %&—&%@% < 0, which implies that
either (i) m = a(m) or (ii) m > a(m) > g (m) and a(m) < g(m) + b must hold.

The F.O.C. and the S.0.C. are derived under a number of monotonicity, conti-
nuity and differentiability constraints. We need to show that they are satisfied in
equilibrium so that the F.O.C. and the S.0.C. apply.

Step by step, we show that if m (w) is strictly increasing, then the continuity of
the dishonest sender’s equilibrium payoff function (which is implied by the incentive
constraints) implies that a (m) is continuous. The continuity of a(m) implies the
differentiability of g (m). Also, we show that pooling of the dishonest sender cannot
happen at any message m below 1 because otherwise we can find a message m/(>

m) close to m where m (w) is strictly increasing and the S.0.C. for optimality of

m (w) is violated. Therefore, for m € [m (0),1), m (w) is strictly increasing, g (m) is
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differentiable, a (m) is continuous so that the F.O.C. and the S.0.C. apply.

It is easy to show that a (m (0)) = m (0). Suppose not. Then a (m (0)) (a weighted
average of m (0) and 0) < m (0) and there exists ¢ > 0 such that it is a profitable
deviation for the dishonest sender with observation 0 to send m (0) — ¢ and induce
both types of the receiver to respond with m (0) — e > a (m (0)).

To show that m (0) is bounded away from 0 and is strictly lower than b, we again
use proof by contradiction: if m (0) = 0 or if m (0) > b, then there always exists a
profitable deviation for the dishonest sender with observation w = 0.

From the F.O.C. a’ (m) = — (1—?52%52(—7?)—1:)’ we know that whether a (m) is in-

creasing or decreasing depends on the signs of (m — g (m) — b) and (a (m) — g (m) — b).
Since a (m (0)) = m (0) < b, the right derivative of a (m) at m (0) is negative and
a (m) starts to decrease at m (0). For the range that a (m) is decreasing, it is obvious
that a (m) < g (m) + b since g (m) is increasing. In addition, if a (m) is increasing, it
must be the case that m > g (m)+b and a (m) < g (m)+b. Hence, for m € (m(0),1),

we have m > a (m) > g (m) and a (m) < g (m) + b. Since a(m) = em;&i)eg)'g(f?%(@,

a(m) > m implies that ¢’ (m) # 0 and m’ (-) is well defined for m € (m (0),1).
Proposition 1 is a summary of these results.
Now define g (1) = lim,,_1- g (m) and ¢’ (1) = limp,_1- g’ (m).

For a fixed strategy m (w) that satisfies properties (1) — (3) in the previous propo-



1.4 Characterization of Monotonic Equilibrium 28

sition, define

m if m € [0,m(0))
En (wlm) = § - G lpiotn) if m € [m(0),1)
14g(1 P
-—g—l ifm=1.

Fixing the dishonest sender’s strategy m (w), Em() (w|m) is the sophisticated re-
ceiver’s conditional expectation of w when she receives a message m. E,.) (w|m) is

a function in m.

Proposition 1.2. The strategy profile (m (w),a(m)) constitutes a monotonic equi-
librium strategy profile in game T if and only if m (w) and a(m) satisfy properties
(1) — (5) in Proposition 1.1 and g(m), a (m)are a solution to the following system of

differential equations with two boundary conditions at m = m (0) and m = 1:

1. Form € [m(0),1),

a(m) = En() (wlm)

2. For m € [m(0),1),

A(m — g (m) —b) + (1 — A) (a(m) — g (m) — b)a'(m) =0

a(m (0)) = m(0)
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i a(m) —g () =0 = (22— g 1) )

m—1— 2

Sketch of Proof. Necessity is quite clear since all the conditions come from the in-
centive constraints. Condition 4 is an implication of the continuity of the dishonest
sender’s equilibrium payoff: u3 (@, m (@),a(m ")) — ui @,m (@),a(m@))) as
w" — w. The function a (m) doesn’t have to be continuous at m = 1. It may jump
at m = 1 and in that case, a (1) = —1%1—) >g(1)+b.

For sufficiency, we need to check that there is no profitable deviation once these
conditions are satisfied. It is clear that there is no profitable deviation for the receiver.
For the dishonest sender, we need to show that m (w) globally maximizes his utility,

for all w € [0,1]. For details of the proof, see appendix. O

We cannot solve the differential equations system analytically. The following

example gives us a concrete idea as to what equilibrium strategies look like.

Example 1.2. Suppose b = 0.5, =0.2,0 =0.2.

The figures below illustrate the strategies for the strategic players in a monotonic
equilibrium of T with b= 0.5 and A = 0 = 0.2.

As we can see from figure 1.1, the dishonest sender adopts an increasing message
strategy m (w): for w € [0,0.125), he reports a (strictly) higher message when he
observes a (strictly) higher state of the world; for w € [0.125, 1], he reports the highest

message in the message space( m = 1). Observe that m (w) is above the 45° line, so
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the dishonest sender always exaggerates his claims no matter what his observation of

w 18.
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Figure 1.1: m (w)

Figure 1.2 shows that the sophisticated receiver’s strategy a (m) has an interesting
shape.

Since m (0) = 0.3835, if the sophisticated receiver receives a message m that is
below 0.3835, she infers that it was sent by the honest sender with probability 1 and
in that case, her optimal action would be equal to m. Therefore, for m € [0,0.3835),
a(m) coincides with the 45° line.

On the other hand, if she receives a message m € [0.3835,1), she infers that it
could be sent by either the honest sender with observation w = m or the dishonest

sender with observation w = g (m). In that case, the optimal action for the sophisti-
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Figure 1.2: a(m)

cated receiver is equal to a weighted average of m and g (m). Intuitively, if m is high
enough (in this ezample, if m > 0.3835), the sophisticated receiver doubts the truth-
fulness of the message she receives. Since the dishonest sender always ezaggerates,
the sophisticated receiver’s optimal response is not as high as m. For m € (0.3835, 1),
a(m) is below the 45° line.

Since the dishonest sender with observation of w between 0.125 and 1 reportsm =1
and the honest sender reports m = 1 only when w = 1, the sophisticated receiver infers

that the message is sent by the dishonest sender with probability 1 when she receives

m = 1. Therefore, a (1) = 1+‘2’(1) = 0125 — (0.5625. For the parameter values we

have chosen in this example, a (m) is continuous at m = 1.

One intriguing feature of a (m) is its non-monotonicity. In this example, a(m)
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coincides with the 45° line and is strictly increasing for m € [0,0.3835). However,
a(m) becomes a decreasing function in m when m exceeds 0.3835 until a (m) reaches
a local minimum at m = 0.5147. Then, a (m) starts to rise again.

From condition 2 in Proposition 1.2, we know that a’ (m) = (1——,\/;82;5)1(—7-1;%;3)-1;)'

Since we have established in Proposition 1.1 that a (m) < g (m)+b, the sign of a’ (m)
is the same as the sign of (m — g (m) — b). In this exzample, when w € [0,0.0147) (and
correspondingly, m € [0.3835,0.5147) ), we have m (w) < w +b and a’ (m) < 0, which
implies that a higher message leads to a lower action by the sophisticated receiver.
Intuitively, when m (w) < w + b, the dishonest sender has an incentive to distort his
messages further to induce the naive receiver to choose an action that is even more
favorable to him. But more distortion is not optimal in equilibrium because it will also
result in a worse response from the sophisticated recewer. On the other hand, when
w € [0.0147,0.125) (and correspondingly m € [0.5147,1)), we have m (w) > w + b and
' (m) > 0. This is the opposite of the previous case. For the dishonest sender, more
distortion will result in a more favorable response from the sophisticated receiver but
it will also induce the naive receiver to choose an action which is further away from
the sender’s ideal point. These two marginal effects work in opposite directions and
cancel out at the optimum.

The sender’s bias is quite large in this example (b = 0.5) and there is no infor-
mative equilibrium in the C-S model. However, as we see from this example, when a

positive fraction of the players are the behavioral types, the dishonest sender follows a
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strictly increasing reporting strategy for w € [0,0.125) and there is some information

being transmitted in equilibrium.

The problem of non-existence of monotonic equilibrium in I' arises when there is
no solution to the differential equations system as specified in Proposition 1.2 and
this happens, loosely speaking, when A and 6 are close to 0 and b is small.

To see why, let’s take a closer look at the differential equations system 1— 4 in
Proposition 1.2. To find a solution to the system, we can imagine fixing m (0) = mg
where my is between 0 and b. The initial conditions at mg are g (mo) = 0 and

a (mg) = mg. Together with these initial value conditions, the differential equations

a(m) = oGO and A(m—g (m)—b)+(1 — A) (a(m)—g (m)—b)a'(m) = 0 will
determine the trajectories of g (m) and a (m) on [mg, 1). If we have chosen the “right”
mo, then the paths of g (m) and a (m) will lead to lim,,_,;- (a(m) — g(m) — b)? =
(#)- —g(1)— 6)2 and we arrive at a solution to the differential equations system,
i.e., we find a monotonic equilibrium in I". However, this is not feasible for all parame-
ter values. When \ and 6 are close to 0, no matter what mg we choose, g (1) is going
to be close to 0. From Proposition 1.1, we know that g (m) < a(m) < g (m) + b for
m < 1, and therefore g (1) < lim,,_;- a(m) < g (1) + b. Clearly, when g (1) is close
to 0 (which implies that a (1) = 1%@ is close to 3) and b is small, condition 4 cannot

be satisfied and there is no solution to the differential equation system implied by the

equilibrium conditions, resulting in the non-existence of monotonic equilibrium.
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1.4.2 Monotonic Equilibrium in the Canonical Cheap-talk

Extension Game I' (A4)

In section 1.3, we have laid out the theory that guarantees the existence of monotonic
equilibrium in the canonical cheap-talk extension game I' (A). What makes the dif-
ference when we add cheap talk suggestions to the original game I'? As we shall see
below, many of the properties that we established for equilibrium strategies m (w) and
a(m) in T are still true in I" (A). It is still the case that m (w) is strictly increasing
for m < 1 in equilibrium. Cheap-talk suggestions have no effect on how information
is transmitted when m (w) is strictly increasing. However, they may be effective at
m = 1 where the dishonest sender with different observations of w pools. Mathe-
matically, the existence of monotonic equilibrium is restored in I' (A) because adding
cheap talk suggestions may change the boundary condition at m = 1 so that there
exists a solution to the new differential equations system implied by the equilibrium
conditions in I" (A4).

In T'(A), the cheap-talk space is L = A and the sender sends both a regular
message m € M and a cheap-talk suggestion | € A to the receiver. So the strat-
egy for the sender consists of two parts: a message strategy s(t) : T — M and
a cheap-talk suggestion strategy [(¢) : T — A. For notational convenience and
consistency, we use m (w) to denote the dishonest sender’s message strategy, i.e.,
m (w) = s ((w,dishonest)). Also, we use m” (w) to denote the honest sender’s mes-

sage strategy. By definition, m” (w) = w. But the cheap-talk suggestion strategy for
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the honest sender, [ ((w, honest)), is determined endogenously in equilibrium. Under
our assumptions on the payoff functions, the naive receiver ignores the cheap-talk
suggestions and always chooses a = m. As to the sophisticated receiver’s strategy in
['(A), it is a mapping from M X L to A. Let’s call it r (m, ).

Define a monotonic simple equilibrium as a simple equilibrium in I"(A) where
m (w) is weakly increasing in w. As we have established in section 1.3, we can without
loss of generality focus on simple equilibria in I" (A). The main advantage of studying
simple equilibria is clarity: we can pin down exactly what the cheap-talk suggestions
are on the equilibrium path, which makes our analysis easier. The following lemma

is an illustration of this property.

Lemma 1.1. Suppose in a monotonic simple equilibrium in T (A), {w: m (w) = m'}
is a singleton form' € [m (0),1]. Letw’ =m™! (m'). We must have | ((«', dishonest)) =

[((m/, honest)) and they are equal to Ep ., (w|m').

Proof. By contradiction. Suppose [ ((', dishonest)) # [ ((m/, honest)). Since we are
in a simple equilibrium and {w|m (w) = m'} is a singleton, it must be the case that
[((m/, honest)) = m' and r (m/,m') = m/, i.e., the honest sender with observation
w = m’ sends message m = m’ and also recomrﬁends the receiver to take action
a = m' and the sophisticated receiver follows that recommendation in equilibrium. If
m’ > b, it is a profitable deviation for the dishonest sender with observation w = m/—b
to send (m’,m’) and incur the response a = m’ from both the sophisticated and the

naive receivers. If m’ < b, then sending (m/,m’) is a profitable deviation for the
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dishonest sender with observation w = 0, a contradiction.
Let I! =1 ((w, dishonest)) = [ ((m/, honest)). In equilibrium,  (m/,l') = En) (w|m’).
Since in a simple equilibrium the rational receiver follows the sender’s suggestion on

the equilibrium path, we must have I’ = E . (w|m'). O

From this lemma, we know that adding cheap-talk suggestions doesn’t change the
incentive constraints when m (w) is strictly increasing. Therefore, the properties we
derived from the incentive compatibility constraints in I" still apply here.

In a monotonic simple equilibrum in I" (A), only the honest sender sends messages
that are below m (0). For w < m(0), m" (w) = w and [ ((w, honest)) = w. In this
case, the cheap-talk suggestions are in effect ignored by the sophisticated receiver. In
light of lemma 1.1, we can see that when m (w) is strictly increasing, the cheap-talk
suggestions are also effectively ignored by the sophisticated receiver. Hence, under
cases (i) m < m(0) and (ii) m > m (0) and m (w) is strictly increasing, we have a well
defined function a (m) that gives the sophisticated receiver’s equilibrium response to
m when the pair (m,!) that has been received is on the equilibrium path. In other
words, a (m') =1 (m/,l') if I' = Ep) (w|m’).

Since the incentive constraints do not change in I" (A) under the assumption that
m (w) is strictly increasing, the results we found in game I' are still true in I"(4).
Specifically, in a monotonic simple equilibrium in I" (A), if m (w) is strictly increasing,

then g (m) and a (m) are differentiable, a’ (m) = — (1—?)(8(—%2(—1?)—17) ,a(m) < g(m)+b

and either m = a (m) or m > a(m) > g (m).
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What happens when m (w) is not strictly increasing, in other words, when the
dishonest sender with different observations of w send the same message? How does
adding cheap-talk suggestions affect the information transmission process in this case?
Imagine we have wy < wr and m (w) = m’ for w € [wo,ws]. In game T', this means
that all w € [wo,w;] are pooled together and a (m') = “eF“L whereas in game I' (A),
the dishonest sender with different observations of w on [wg,w;| may use different
cheap-talk suggestions to separate themselves as long as incentive constraints are
satisfied.

If we focus on the part where m (w) = m’ for w € [wo,w;] in I" (4), we are in effect
back to a Crawford-Sobel situation: a strategic sender conveys his private information
on w € [wo,wj] to a strategic receiver through pure cheap talk [; the behavior of the
non-strategic types can be ignored because the naive receiver’s response is fixed at a =
m/ and the honest sender occurs with probability 0. Using the insight from Crawford-
Sobel, we know that cheap talk is not necessarily ignored and information can be
conveyed in equilibrium through certain partitions of [wo, wr] if b is small relative to
the size of the interval [wp,w;]. Specifically, suppose there are I subintervals in the
partition: [wo,w1], [w1,ws], ..., [Wr—1,ws], then the equilibrium conditions require that

(1) (s, 2552 8) = wf (s, 2552 D) (2) 1w, dishonest) = 252,

r(m!, 2=y = St for o€ (Wi-n,wi), @ = 1,0, 1 Condition (1) is from

1 There are different ways to specify the equilibrium behavior for the dishonest sender with ob-
servation w = w;,% = 1,...,] — 1 because he is indifferent between actions “”‘12+"‘” and “"i+; 2
However, different specifications will not change the equilibrium outcome since the set of w;’s are of
measure zero.
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Crawford-Sobel. It is the indifference condition for the types on the end-points of
the subintervals. Condition (2) comes from the definition of a simple equilibrium in
T'(A). It says that for the dishonest sender with observation w € (w;_1,w;), he sends
message m’ and makes a suggestion of action w—‘f—gi‘—‘fl to the receiver and the rational
receiver follows the suggestion on the equilibrium path.

In the previous section, we have shown that in ', pooling for the dishonest sender
with different observations of w can happen only at the highest message m = 1 in
equilibrium. Here we want to show that this is also true for game I' (4). In other
words, even with cheap talk suggestions, it is not possible, in a monotonic simple
equilibrium of T" (4), for the dishonest sender with different observations of w to send
the same message if that message is below 1. We can borrow the argument we had
for game T'. Imagine in a monotonic simple equilibrium in I" (A) ,there exist wy < wy,
m/ < 1 and m(w) = m’ for w € [wp,w;]. Then there exists ¢ > 0 such that for m” €
(m/,m' + €), m(w) is strictly increasing. As we have established in lemma 1.1, the
equilibrium response of the sophisticated receiver is a (m”) = Ep,) (w|m”) for m" €
(m/,m/ +¢). Incentive compatibility constraints require that u (w ,m, “’"—124””—’-, b) =
limyp e 15 (wr,m’ya (m”),b). Since a (m”) < g(m")+0b, as shown earler, it must be

wi_1+wr

true that =1L = limp»_m a ("), which in turn implies that m” < wy, but this

contradicts the property that m” > a (m”). Hence, we have the following lemma.

Lemma 1.2. In a monotonic simple equilibrium in T (A), m (w) is strictly increasing

in w forw € [0,00), where w = inf{w : m (w) = 1}.
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So, adding cheap-talk suggestions can only change what happens at m = 1 in
equilibrium.

Call the system of equations {uj (wi, m, “’—"'174'1"1, b) = uj (wi,m, ﬂ%“ﬁ—ﬂ, b) Fim1,..1-1
(A) and say that a sequence {wo,ws,...,wr} Where w; € €2 and wy = 1 is a solu-
tion to (A) if either of the following two cases holds: (i) I = 1, (ii) / > 2 and

S Wi—11W; — S witwitl .
uy (wi,m, T’,b) = uy (wi,m,T,b) fori=1,...,1—1.

Proposition 1.3. In a monotonic simple equilibrium in T (A), the equilibrium strate-

gies satisfy the following conditions:

1. m(w) and a (m) satisfy the properties 1-5 in Proposition 1.1.

2. There exist an integer I > 1 and a sequence {wg,wr,...,w; = 1} which is a
solution to (A) such that g (m) and a (m) are a solution to the following system

of differential equations:

(a) For m € [m(0),1),

a(m) = Em() (wm)

(b) Form € [m(0),1),

A(m —g(m) =b) + (1= A) (a(m) — g (m) = b)a’ (m) =0

(¢) a(m(0)) = m(0)

(d) 9(1) = wo
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(e) limy,_1- (a (m) — g(m) — b)* = (2221 — g (1) — 1)’

E ) (wm=m ifw € |0,
3. l(w,dishonest) = w @] SO (0,0)

Bty € (wimn,ws), 8= 1,00

l(w, honest) = Ep) (wlm =m" () if w e [0,1)

I(w, honest) € {<=1} =1, .., T ifw=1

4. Form < 1, r(m,l) = L if | = Ep)(wlm) and r(m,l') = r(m,I"),¥(m,l'),
(m, 1) if U, 1" # By (wlm).
Form =1, r(m)d) =1 ifl € {““'—I;Lfi}izl,_,_,I_l and v (m,l') = r(m,l"),

v (m,l), (m,1") if I',1" ¢ {&)‘i_lgii}izl,...,l—l-

The important change in the differential equations system, when we compare it
with the one in Proposition 1.2, is the boundary condition at m = 1, as can be
seen in 2.(¢). When cheap talk is effective, the dishonest sender with observation

w = g(1) = wp induces response a = £F<L instead of %—1- from the sophisticated

receiver. A dishonest sender with different observations of w(> wy) sends the same
message m (w) = 1, but he can potentially induce different responses from the so-
phisticated receiver by making different cheap-talk suggestions. Intuitively, when
cheap-talk suggestions are not ignored (and that’s precisely when we have the non-
existence problem in the original game T'), they help determine the continuation of
the game by indicating the direction to follow.

Condition 3 specifies the sender’s suggestion strategy [ (¢). Condition 4 says that

the sophisticated receiver follows the sender’s suggestions on the equilibrium path.
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Off the equilibrium path, her responses do not depend on the cheap talk suggestions,
as the definition of simple equilibrium requires.

As we can see from condition 2, by choosing a different 7 and/or a different se-
quence {wo,w1,...,wr = 1}, we have different boundary conditions at m = 1 and
potentially, different solutions and different equilibria in I' (A). If that is the case,
not only do we have a multiple equilibria problem, we also have to be concerned with
a “lower hemi-continuity” problem. In other words, we need to consider whether a
particular monotonic equilibrium outcome we find in the infinite cheap-talk extension
game I" (A) is the limit distribution of equilibrium outcomes in some sequence of fi-
nite approximating games I'". Fortunately, we can establish uniqueness of monotonic
equilibrium outcome in I' (4), which makes the “lower hemi-continuity” problem vac-

uous.

Theorem 1.3. Fiz parameters b > 0 and X\,0 € (0,1). There is only one monotonic

equilibrium outcome in the cheap-talk extension game I' (A).

Sketch of Proof. For details, see appendix.

There are two main steps in our proof.

First, suppose (@ (m),§(m)) and (a(m), g (m)) are solutions to 2. (a) and 2. (b) in
Proposition 1.3, with initial conditions (@ (7g) = g, § (7o) =0) and
(@ (o) = o, § (Tho) = 0), respectively. Define a (1) = lim,,_;- @(m) and a (1) =
lim,,, ;- @ (m). We can show that if b > 7hg > g, then a (1) > a (1) and § (1) < g (1).

Second, we show that we cannot find two different sequences {&g, 01, ...,w; = 1}
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and {@g, @1, ...,@; = 1} that are solutions to (A) and also satisfy 2.d. and 2.e with
(a(1),5 (1)) and (a(1),5 (1))

Hence, there is only one monotonic simple equilibrium outcome in T'(A). Since
any monotonic equilibrium outcome in I' (A) is also a monotonic simple equilibrium

outcome in I' (A), we have proved the theorem. O

1.5 Model Predictions

1.5.1 Strictly Positive A and 6

In the previous section, we established a series of properties on equilibrium strategies
when a positive fraction of players are behavioral types. Here we want to explore
the economic implications of these results further. Again, we focus on the class of
monotonic equilibria.

Distorted claims. Quite intuitively, m (w) > w. Since the dishonest sender has an
upward bias, he would like to manipulate the belief of the the receiver so that she
would choose a higher action than what is optimal for herself. In the C-S model, such
an attempt to fool the receiver is bound to fail in equilibrium because the receiver
is strategically sophisticated. In contrast, if a fraction of receivers blindly follow the
messages, the dishonest sender can gain from exaggeration. Therefore, in a monotonic
equilibrium, the claims of the dishonest sender are always inflated.

Marginal effects of distortion at the optimum. When the dishonest sender with

observation w makes a strategic choice of what message to send, he weighs the response
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of the sophisticated receiver’s against that of the naive receiver’s. Consider the case
where m > w+b. In this case, the dishonest sender makes an “extreme exaggeration”—
the message he sends is not only higher than the true state of the world, but also
exceeds his own ideal point. Clearly, making an even higher claim than m incurs a
marginal cost: since m > w + b, the naive receiver’s response to m is already too
high for the sender and further distortion will mislead the naive receiver even more.
However, there is also a marginal gain from more distortion because a higher message
would result in a higher belief for the sophisticated receiver and induce her to choose
an action that is closer to the sender’s ideal point. At the optimal m (w), these two
effects cancel out.

Non-monotonicity of the receiver’s response. The more interesting case is when
m < w~+b. When m < w + b, the dishonest sender is only making a “moderately”
exaggerated claim and he has an incentive to exaggerate even more so that the naive
receiver would choose an action closer to his ideal point. The dishonest sender is
deterred from doing so at the optimal m (w) because a higher message will result
in a lower response from the sophisticated receiver (a’(m) < 0), which hurts the
sender. How can we have a decreasing response function for the receiver when both
types of sender are following an increasing reporting strategy? Recall that when the
sophisticated receiver receives a message m, she infers that it could be sent by the
honest sender with observation w = m or by the dishonest sender with observation

w = g (m). Therefore, the sophisticated receiver’s optimal response to message m is a
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weighted average of m and g (m). Conditional on the sender being the honest or the
dishonest type, a higher message implies a higher state of the world in a monotonic
equilibrium. However, the sophisticated receiver may infer from a higher message that
there is a higher probability that the sender is not telling the truth — the message is
“too good to be true.” Overall, the expectation (unconditional on the sender being
honest or dishonest) of w may be lower when the message is higher, resulting in a
decreasing response function for the sophisticated receiver.'?

The non-monotonicity of a (m) holds for all parameter values b > 0 and A, 0 €
(0,1). Recall that 0 < m(0) < b. Due to the continuity of m (-), this implies that
there always exists a range of w close to 0 such that in a monotonic equilibrium
of T, when his observation of w lies in this range, the dishonest sender makes a

moderately exaggerated claim and the sophisticated receiver’s response is decreasing

in the messages she receives.

1.5.2 Limit Case as A and 6§ Approach 0

As the probabilities of the behavioral types approach 0, the perturbed models I' and
I'™ are arbitrarily close to the original C-S model. Quite naturally, the question arises
as to whether all the equilibrium outcomes in the C-S model are limit equilibrium

outcomes of I' and I'"™ as )\ and 6 go to 0. To avoid the potential non-existence

15We show that a (m) may be decreasing in m. However, when taking into account that the
receiver is possibly naive, the strategic sender’s expectation of the receiver’s response to m is equal
to Am + (1 — X) a (m) and it is increasing in m in a monotonic equilibrium.
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problem in I, we will look for limit equilibria in the cheap-talk extension game I' (A)
as A and 6 approach 0. As shown in the previous section, we have a rather clean
characterization of monotonic equilibrium outcomes in I' (A), which gives the limit
distribution of equilibrium outcomes in the converging finite games I'"". Later in this
section, we’ll also discuss what equilibria look like in the finite game I'" as A and 6 go
to 0. With a discrete message space, we derive interesting and intuitive results about

how messages are used in communication.

Unique Equilibrium Outcome

Fix b > 0. Consider two converging sequences {);}2; and {6;}%2, where A\; — 0 and
0; — 0. For each I'y, g, (A), there is a unique monotonic equilibrium outcome defined
on 2 x M x A. Call it E)\z.’gj. Since E’,\i,gj is defined on a compact metric space, as
A — 0, 8; — 0, it converges (in a subsequence) to a distribution E also defined on
QO x M x A. Let EQX a be the marginal distribution of E on Q x A. Following the
norm in the literature, we define the equilibrium outcomes in the C-S model only on
the payoff relevant space: 0 x A. Denote by Ec_g an equilibrium outcome of the C-S
model T'c_g'. Say that Ec_g is a limit monotonic equilibrium outcome of T"(A) if
and only if there exist convergent sequences {A;}$2; and {6;}%2, such that as \; — 0
and 0; — 0, EQXA = Ec—s-

Recall that in Crawford and Sobel (1982), the equilibrium of the largest size,

16 Note that an equilibrium outcome in I'c_g is also an equilibrium outcome in I'},_ ¢ because the
equilibrium outcomes in a C-S model are defined only on the payoff relevant space 2 x A.
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N (b), is called the most informative equilibrium in I'c_s. We have the following

proposition.

Proposition 1.4. Only the most informative equilibrium outcome in I'c_g is a limit

monotonic equilibrium outcome of ' (A).

See appendix for the proof. The intuition behind this proposition is simple. Ob-
serve that among all the equilibria in T'c_g, only in the most informative equilibrium
does the sender with the observation w = 0 have a higher equilibrium payoff than
the payoff he could get if the receiver knew that w = 0. That is, the following in-
equality holds in the most informative equilibrium and not any other equilibrium:
—(a; —0— b)2 > —b%, where a,; is the equilibrium action of the receiver when she
believes that w belongs to the lowest subinterval of the equilibrium partition.!” Re-
call that in any I'(A) with A\,8 > 0, 0 < a(m(0)) = m(0) < b in equilibrium.

Therefore, the equilibrium payoff for the dishonest sender with w = 0 is equal to

17This condition on equilibrium payoffs is not an algebraic coincidence but has its inner logic.
Imagine fixing other parameters in T'c_g and varying b from large to small values. When b is large,
only the babbling equilibrium exists. When b reaches a threshold value b,, there exists an w that
partitions [0, 1] into subintervals [0,w], (w,1] and — (a3 —w — b)? = — (ag — w — b)® where q; is the
receiver’s best response if she believes that w belongs to subinterval i. The threshold value b; is
found by setting w = 0 and solving — (0 — 0 — l’))2 =— (% -0- b)z. When b = b, the lowest type’s
equilibrium payoff is the same as the payoff he gets if identified as type 0. As b gets smaller than
b1, an informative equilibrium (with two subintervals) comes into existence and the lowest type
prefers being identified as himself than playing the non-informative equilibrium and inducing action
%. As b decreases, the cutoff point w shifts to the right until it reaches a point where the lowest
type is indifferent between being identified as type 0 and playing the informative equilibrium with
two subintervals. If b decreases further, an equilibrium with three subintervals comes into existence.
Again, in less informative equilibria (equilibria with one or two subintervals), a; is too high for the
lowest type of sender and his expected equilibrium payoff is lower than the payoff he gets if identified
as type 0. This argument carries on as b gets smaller and smaller. As we can see, it applies to more
general settings than the uniform-quadratic case. In fact, if condition (M) in the C-S paper (p.1444)
is satisfied, this condition on equilibrium payoff holds.
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~A(m(0) =0—1b)*> — (1=X)(a(m(0)) —0— b)> > —b?. Consider a sequence of
games {0, (A)}. Since the inequality holds for any Ty, (4) with A;,8; > 0,
it must be the case that in the limit as \; — 0,6; — 0, the equilibrium payoff for the
dishonest sender with w = 0 is at least as high as —b?. The result follows.

The proposition says that if we perturb the original C-S model with small uncer-
tainties about the players’ preferences, then we have a much sharper prediction on
equilibrium outcome than the C-S model does. Only the most informative equilib-
rium outcome in the C-S model is Tobust to the introduction of small probabilities of
non-strategic behavior.

Standard extensive-form refinements that put restrictions on players’ beliefs off
the equilibrium path don’t have much power in games with costless signals and there
are a number of refinements in the literature that directly address the multiplicity
problem in cheap talk games. Since the limit case of our model can be used as a
refinement of equilibria in a pure cheap talk model, we would like to compare our
approach with other refinements in the literature.

The idea of “neologism-proofness” (Farrell (1993)) is the following. Fix a sequen-
tial equilibrium in a sender-receiver game and consider a message “My type ¢ is in
the set X”. This message is not used in equilibrium and therefore considered a ne-
ologism. Suppose the receiver hypothesizes that the message is sent by a type in
X and so updates her belief by Bayes’ rule conditioning on the sender’s type being

in X. If the receiver’s best response given this belief is (strictly) preferred precisely
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by those types in the set X over what they would get in the putative equilibrium,
then the neologism is deemed credible. An equilibrium is neologism-proof if there are
no credible neologisms. Matthews, Okuno-Fujiwara and Postlewaite (1991) propose
a closely related criterion called “announcement-proofness” which deals with a few
conceptual inconsistencies in the “neologism-proofness” criterion. Perhaps the most
debatable feature of these two concepts is that the test of credibility of a neologism
or an announcement is relative to the putative equilibrium and therefore based on
counterfactuals. A solution concept that does not involve counterfactuals is “credible
message rationalizability”, proposed by Rabin (1990). The premise of this concept is
that agents are rational and they have a propensity to speak the truth and believe
that others speak the truth but use the game’s strategic incentives to check whether
such behavior and belief are rational. So the credibility of a message is tested by
the strategic incentives of the players with no reference to an equilibrium. All the
above concepts have natural predictions in certain examples of sender-receiver games.
However, none of them provides a satisfactory answer to the multiplicity problem in
the C-S model. On the one hand, there is no equilibrium in the C-S model that
satisfies the “neologism-proofness” or the “announcement-proofness” criterion. On
the other hand, the concept of “credible message rationalizability” does not rule out
any equilibrium in the C-S model.

The approach this paper takes is different from those discussed above. Instead

of trying to rule out “unreasonable” equilibria from a conceptual standpoint, we in-
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corporate an important missing element in the original C-S model: the possibility of
players being honest/naive. Our analysis shows that the introduction of the behav-
ioral types fundamentally changes the way the game is played. Indeed, under some

natural assumptions, “unintuitive” equilibria in the C-S model are eliminated.

How Messages Are Used

The C-S model, like most models of cheap talk, deals mainly with the question of how
much information can be transmitted in equilibrium and doesn’t answer the question
of how messages are used in communication. In our model, although the literal
meanings of messages have a direct impact only on the behavioral types’ actions, they
also influence how strategic players encode and interpret messages endogenously. So
we can make predictions about what particular messages are used to convey what
information in equilibrium.

Again, fix b > 0. Consider a sequence of games {I‘f\‘iﬂj} with discrete message space
M,,. We assume that M,, = {mg =0, my,...,m,, = 1}, max{m; —m;_1 }i=1,.n < b. So
there exists a monotonic equilibrium in I'}, 5. and M, contains at least N (b) distinct
messages.

Let {[wk—1,ws) }r=1,..,n() be the partition of € in the most informative equilibrium
in I'%_g. Now let \; and 6; approach 0. The next proposition tells us how messages

are used to convey information in the limit equilibrium.

Proposition 1.5. In the limit monotonic equilibrium of F’;i’(,j as A; and 6; approach
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0, m(w) = Mp_(N@p)—k) f w € (Wp—1,wr), for k=1,2,..., N (b).

For proof, see appendix. The proposition restates that as the fractions of the
behavioral types go to zero, the limit equilibrium outcome of the perturbed model
corresponds to the most informative equilibrium outcome in the C-S model. More-
over, with a discrete message space, the dishonest sender who has an upward bias
uses only the messages that are at the top in the message space in the limit equi-
librium. This clustering of messages in the direction of the informed party’s bias is
consistent with what we observe in real life. For example, we can analyze the “grade
inflation” problem in the context of a sender-receiver game.'® Think of a university
as the sender. It has superior information on its students’ academic performances
and conveys this information through reports on the students’ grades to prospec-
tive employers, graduate schools, etc, who make hiring or admission decisions. The
university may be biased in its students’ favor, creating an incentive to inflate their
grades. As predicted in our model, a concentration of high grades (for example, A,

A- and B+ ) is commonly observed.

1.6 Discussion

So far, we have focused on monotonic equilibria. Under the assumptions that the
dishonest sender is choosing a pure reporting strategy and the messages he sends to

the receiver are non-decreasing in his observation of the state of nature, we find a set

18For a related but different analysis, see Ottaviani and Squintani (2002).
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of tractable and well-behaved equilibria. Below, we discuss what happens when we

relax these assumptions.

1.6.1 Mixed Strategies

In the C-S model, there are plenty of mixed strategy equilibria. For example, there
exists a babbling equilibrium in which the sender randomizes over the full support
of the message space with the same probability distribution no matter what w he
observes. Then, no message will change the receiver’s belief from the prior and no
information is conveyed in equilibrium. Call this a “full randomization” babbling
equilibrium. For each size from 1 to N (b), there is an equilibrium that has the “full
randomization” feature. In an equilibrium like this, all types that belong to the same
subinterval in the equilibrium partition randomize over the same set of messages and
every message in the message space is sent by some type of sender in equilibrium.

With the introduction of behavioral types, the scope for randomization is much
more limited. We do not have a formal proof that mixed strategy equilibria don’t
exist in the perturbed model, but we can provide some discussion as to why the degree
of randomization is small and why the “full randomization” equilibria cannot exist
as limit equilibria in the perturbed model.

Due to the strict concavity of her payoff function, the sophisticated receiver never
randomizes. Now consider the indifference curves for the dishonest sender with ob-

servations w; and wy. As illustrated in figure 1.3, the indifference curves cross at
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Figure 1.3: indifference curves for w; and ws

most twice. Therefore, the support of the mixed strategies for w; and wy can have at
most two common elements. Moreover, as we show in Lemma 1.3 in the appendix, if
both types w; and wy prefer one message-action pair (m,a) to another pair (m/,a’),
then any type between w; and wy have the same preference over the two pairs as
well. This implies that if two different messages m; and my are in the support of
the strategies for both types w; and ws, then any type beween w; and w, must send
either m; or my in equilibrium. In this sense, the degree of randomization is quite
small in the perturbed model. Intuitively, the fixed response of the naive receiver
creates a differentiated “signaling cost” for the different types of senders so that in-
difference conditions are not as easily satisfied as in the unperturbed game. Mixed
strategy equilibria like the “full randomization” equilibria where different types of

sender randomize over a large set of messages in the C-S model are not robust to the



1.6 Discussion 53

introduction of behavioral types, no matter how small the perturbation is.

1.6.2 Non-increasing Message Strategy

In many signaling models, the monotonicity of the signaling strategy arises endoge-

nously in equilibrium due to the assumption of the single-crossing property. However,

duf (w,m,a,b)/Bm __ __2\(m—w=b)
ous(wm,ab)/8a —  2(1-X)(a—w—b)

in our model, — is not monotonic in w and the single-
crossing property is violated, as the indifference curves in figure 1.3 show. This opens
the door for non-increasing message strategies. For certain parameter values, we can-
not rule out equilibria where the dishonest sender employs a reporting strategy that
is not increasing in w. For example, when A and 6 are small enough, we can construct
an equilibrium in which the dishonest sender’s message strategy is decreasing in w,
i.e., when he observes a high state, he reports a low message and vice versa.

The counter-intuitive predictions of the non-monotonic equilibria are in sharp con-
strast with those provided by the monotonic equilibria. In our model, the possibility
that the sender is honest affects the inferences that the sophisticated receiver draws
from the messages she receives and potentially lends more credibility to the claims
that the sender makes. Moreover, the existence of naive receivers, whose choice of
action can be easily manipulated by the sender’s report, provides an opportunity for
exploitation. In a monotonic equilibrium, the dishonest sender takes full advantage

of this by distorting the messages in the direction of his bias. By contrast, in an

equilibrium where the dishonest sender’s message strategy is not increasing in w, he
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may be “lying to his disadvantage.” A dishonest sender who reports message m,
as the equilibrium strategy prescribes, would be better off if the receiver were able
to distinguish him from the honest type and identify him as a strategic player with
observation m~! (m).!® Oddly enough, in this equilibrium, the dishonest sender has
an incentive to convince the receiver that he is not telling the truth. Furthermore,
because the literal meaning of the message that the dishonest sender sends in equi-
librium is far from, if not the opposite of, what he wants the receiver to believe, the

naive receiver’s literal-minded responses make the dishonest sender worse off as well.

1.7 Conclusion

In this paper, we enrich the strategic information transmission model introduced by
Crawford and Sobel (1982) by incorporating two behavioral types — honest senders
and naive receivers — into the original game. By modifying the C-S model in this
simple and empirically plausible way, we present a more realistic picture of how
people communicate through messages that have pre-existing, commonly understood
meanings (e.g., a natural language).

We find that the existence of the behavioral types profoundly changes the way

the game is played. Indeed, the prominent problem of multiple equilibria in the C-S

1914 is familiar in cheap talk games that certain types of sender would be better off if they could
distinguish themselves from the other types but cannot credibly do so in equilibrium. In the C-S
model, this is true for types that are at the top of each subinterval in the equilibrium partition, if
the sender has an upward bias.
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and other cheap talk games, doesn’t arise in our model when we consider the class
of monotonic equilibria. Only the most informative equilibrium in the C-S model is
robust to the perturbation of the behavioral types.

The C-S paper is celebrated for its elegant result about how much information can
be transmitted between strategic players. It shows that full separation cannot happen
in equilibrium when the interests of the sender and the receiver are not perfectly
aligned, but some imprecise information can be conveyed by the sender’s intentionally
ambiguous messages if the two parties’s interests do not differ too much. However,
we cannot meaningfully discuss other important concepts such as “distortion” in the
C-S model because the messages are completely extrinsic to the game. This paper
provides a natural framework for such discussion. Uncertainty about the opponent’s
payoff/behavior, which seems to be a realistic characterization of many situations of
communication, provides an explanation for commonly observed phenonmena such
as exaggeration and the clustering of messages at one end of the message space. A
somewhat puzzling aspect of communication, that sometimes people react to more
aggressive claims with more conservative actions, is also accounted for in a simple

way in our model.
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1.8 Appendix

The following lemma is used in the proof of Theorem 1.1.

Lemma 1.3. Consider sender types t; = (w1, dishonest) and ty = (wg,dishonest)
where w1 < wo. If both types t, and ty prefer message/action pair (my,a1) to
(mg,az), i-e., if uf (wi,m1,a1,b) > uj (wa,ma,a,b) for both t,ts, then type t3 =

(ws, dishonest) where w1 < ws < wy prefers (my,a1) to (mg,az) as well, i.e.,

u§ (w3, ma,a1,0) > ug (w3, mg, az,b).
Simple algebra shows that Lemma 1.3 is true.

Proof of Theorem 1.1. We prove Theorem 1.1 in two steps.

Step 1. Given M, = {m;}iz01,.n, there are (n + 1) potential messages. A
non-decreasing reporting strategy for the dishonest sender, m (w) : @ — M,, is a
step function. Define 3% = {x € [0,1]"*?,z = 0,21 < 2 <, ..., < Ty, Tnp1 = 1}
Following Athey (2001), m (w) can be represented by a vector x € ZS according to an
algorithm (detailed definition can be found in Athey (2001)) where each component
of x is a “jump point” of m (w). That is, z; represents the value of w at which the
dishonest sender jumps from one message to the next higher message.

Now we define the dishonest sender’s “restricted” best response correspondence.
Think of the constrained maximization problem like this. Given the sophisticated
receiver’s action strategy a(m), sender type (1, dishonest) chooses his best response

from the whole set of M,,. For the dishonest senders who have observed 0 < w < 1,
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they have to choose a best response from M, that is at least as low as the messages
that are chosen by those who have observed higher signals. In the event of indifference,
the highest message is chosen.

Formally, define the dishonest sender’s “restricted” best response functions like
this:

max{arg maxear, v (w, m,a,b)} forw=1
By (wla(m)) =
max{arg MaXme M, m< B (w'|a(m)) Vo' >w u3 (w,m,a,b)} for 0 <w <1

Given the finiteness of M,, a “restricted” best response always exists for any
w € Q. The way we treat indifference also guarantees uniqueness.

For the receiver’s part, define S.% = {x € [0, 1]"*!,x = (=0, 71, ...7,)}. Note that
the action strategy for the sophisticated receiver, a(m) : M,, — A, can be represented
by a vector x € ZR where z; = a(m;) for i = 0,1,...,n. The naive receiver’s best
response is defined in the obvious way. Because of the existence of the honest type
of senders (given the utility function, their reporting strategy is to send the message
in M, that is the closest to w), every m € M, is sent on equilibrium path. The
sophisticated receiver’s posterior can be computed by Bayes’ rule. Due to the strict
concavity of her utility function, the best response is unique.

Define 3" = (3%, 3°%). The best response correspondence as described above can
be represented by > — >_.

Since 3 is a compact, convex subset of R*"2+"+! we can apply Kakutani’s fixed

point theorem.
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Following Athey (2001) , we can verify that the best response correspondence is
non-empty, convex and has a closed graph and therefore has at least one fixed point.

Step 2. Now we need to check that the fixed point(s) we found in the first step is
an equilibrium of the game I'" provided that the distance between adjacent messages
is less than b.

Denote the strategic players’ strategies that are consistent with the fixed point
found in step 1 by (m* (w),a* (m)). All we need to show is that m* (w) is a best
response to a* (m).

Given the honest sender’s utility function uf(m,w) = — (m —w)?, an honest
sender with observation w sends a message m € M,, that minimizes |m — w|. WLOG,
assume that if the honest sender with observation w is indifferent between sending
m;_; and m;, then he sends m;. Let m" (w) be the honest sender’s message strategy
and a” (m) be the sophisticated receiver’s optimal response given that she believes
the message m was sent by the honest sender with probability 1. So, a" (m) = %“”
where w = inf{w : m" (w) = m} and W’ = sup{w : m" (w) = m}.

We’ll use the following properties later in the proof. First, min,eas, Im —at (m/ )| =
m/,¥Ym' € M,. Second, given that max{m; — m;_1}i=1,., < b, it follows that
max{a” (m;) — a” (m;_1) }iz1,..n < b and max{m; — a" (m;_1)}iz1,.n < 0.

Given a* (m), a dishonest sender who has observed w does not want to deviate

and send a message m < m* (w) by definition of m* (w). Hence, we only need to show

that Vw € [0,1], the dishonest sender doesn’t have an incentive to deviate and send
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m > m* (w).
First, note that m*(1) = 1. Suppose not, then m* (1) < 1 and a* (1) = a" (1) <
a* (m* (1)). Now suppose «' = inf{w|m*(w) = m*(1)} and the dishonest sender
with observation «' is indifferent between sending m* (w) = m* (1) and sending
b

m' (< m* (w)). Since a* (m* (1)) is a weighted average of 1,w’ and a" (m* (1)),1-% <

a" (1) < a*(m*(1)) implies that o' > 1 — Since the dishonest sender with

o

observation ' is indifferent between sending m* (w) and m’ where |m’ —w’ —b| >
|m* (W) —w’ — b|, it has to be the case that a* (m’) > a* (m* («')), but this is not
possible.

If Vvm € M, N [m*(0),1], there exists an w € Q s.t. m*(w) = m, then no
type w € Q would want to deviate and send m > m* (w). We show this by con-
tradiction. Suppose m’ € arg max,en, {u5 (wo, m,a* (m))} and m’ > m* (wp). De-
fine ' = sup{w|m* (w) = m'}. Then, it is true for w = wy and w = ' that
Vm(e M,) < m/, uj(w,m',a*(m')) > uj(w,m,a* (m)). By Lemma 1.3, the in-
equality holds also for any w € [wg,w’]. It follows from the definition of m* (w)
that m* (w) = m' for any w € [wp,w'], but this contradicts the assumption that
m' > m* (wo).

What remains to be shown is that Vm € M, N [m*(0),1], there exists an w €
s.t. m* (w) = m.

Again, we show this by contradiction. Suppose not. Then, there exists an

wy st ug (wi,my,a* (mf)) = ui (w1, my,a* (m})) (ie., the dishonest sender with
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@, W () 3 Wy

Figure 1.4: m{, and m] are not adjacent

observation w; is indifferent between sending my and m};) where m} = m*(w1),
mh,m;, € [m*(0),1] N M,, my < m; and mj and m} are not adjacent to each other
in M,. WLOG, we can assume that for any m € [m{,1] N M,, there 3 w €
s.t. m* (w) = m and the dishonest sender with observation w; is indifferent between
sending adjacent messages m/_; and m; that are higher than mj. See figure 1.4.

Next, we show that Vm € M, N (mg, m}), m < w;. First, note that since given
m* (w), 7 is sent only by the honest sender, a* () = a”(m). It follows that a(m) <
w; + b because otherwise there exists w = a"(m) — b > w; such that the dishonest
sender with observation w achieves a higher payoff by sending 7 instead of m* (w), a
contradiction.

Since a” (1) < wi+b and arg min,, |m — a® ()| = m, it follows that [m — wy — b] <
|mjy — wy —b]. Since uS (w1, mp, a* (mg)) > uf (w1,7,a* (M)), it must be the case
that |a* (m)) — wi —b] < |a"() — wy — b|. It follows that a"(m) < wi. This is

because a* (mj) is a weighted average of wg,w; and a(mp). If wy < a(7n), then
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a* (m}) < a”(1h) < wi + b which contradicts |a* (mf) — w; — b| < |a™(m) — w1 — D).

Now that we have a”() < w;, by using the properties of a" (m), we also have
m) < wy +band a" (m}) < w; +0.

Since uj (w1, mp,a* (mf)) = uf (wi,m},a*(m})) where |mj—wi—Db|
> |mj —w; — b, it must be the case that |a* (mj) —wi — b < |a* (w1) — w1 —b].
Since a* (m}) < wy, it follows that either a* (m}) < a* (my) or a* (m}) > wy + b.

The first case cannot happen. To see this, suppose a* (m}) < a*(my) < wi.
Since my < mj < wy + b and uj (w1, mp, a* (mf)) = uj (w1, m},a* (m})), there exists
w € (w1,ws) (where dishonest sender with wy is indifferent between sending m/ and
sending mj) such that u§ (w, my, a* (mp)) > uf (w, my,a* (m})), a contradiction.

Now consider the second case where a* (m}) > w; +b. Since a* (m}) is a weighted
average of a”(m)),w1,ws, a* (m}) > w; +b and a*(m}) < w; +b imply that a"(m}) <
a* (m}) < we. Also, mj < wy +b < a*(m)) < we. It follows that mj < my +b <
we + b and a® (m}) < wy +b. Since uf (wq, M}, a* (m})) = uf (w1, mh,a* (m})) where
|mfy — wy —b| > |m} —wy — b|, by the same argument as above, we have a* (mj) >
ws + b, w3 > a* (mh) > mh, ws + b >mj, wz + b > a" (mg).

Continuing this argument, if the dishonest sender with observation w; is indifferent
between sending m/_; and m}(: = 1,2,3,...,I, where m} = 1), we have m;_; < w;,
m, < w; + b,a” (mg_l) < w; and a* (m}) > w; + b. Hence, we have w; +b > m} =1
and wy + b < a* (m}) = a* (1). These imply that a* (1) > 1, which is impossible.

The constradiction implies that for every m € [m* (0), 1] N M, there exists w € §2
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s.t. m* (w) =m.

To summarize, we have shown that m* (w) is an unrestricted best response to
a*(m). a*(m) is a best response to m* (w) by definition. Since m* (w) is weakly
increasing in w, we have established existence of monotonic equilibrium in game I'™

with discrete message space where the adjacent messages are close to each other. [
To prove Proposition 1.1, we need the following lemmas and claims.
Lemma 1.4. m(w) is continuous.

Proof. Suppose not. Then there exists an w € [0,1] s.t. lim, . m (W) # m(W).
This implies that 3m’ > m (0) s.t. pr (h = honest|m = m’) = 1, i.e., only the honest
sender sends m/. It follows that a(m’) = m/. If m’ > b, then by sending m/, the
dishonest sender with w = m’ — b gets his highest possible payoff 0, which must
be higher than the payoff he gets by sending m (w). This contradicts the fact that
m (w) and a (m) are equilibrium strategies. If m’ < b, then the dishonest sender with
w = 0 is better off by sending m’ instead of m (0), again a contradiction. Hence, the

equilibrium strategy m (w) has to be continuous. O

Lemma 1.5. Suppose m (w) is strictly increasing, g (m) is continuously differentiable

and a(m) is continuous on an open interval I contained in [0,1]. Then, for any o'

’ . . . / da(m(w)) __ Mm(w')—w'—b)
s.t. m(W') € I, a(m) is differentiable at m (w') and =3 = = — G Gmen) ="

Proof. Fixb > 0andletv (w,m,a) = uj (w,m,a,b) = =A(m—w—b)>—(1 — A) (@ —w — b)®.
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Define, for a fixed o/,
h (171, L2, $3) =v (xla T2, -773) —v (1131, m (wl) @ (m (wl)))
Define, for w” # ', the following:

zi(a) = o,z (a) =amW") + (1 - a)mW),
z3(a) = aa(mw")+(1-a)a(m(w))

B1(0) = aw+(1-a)w, 3 (a) = m(u"), & (o) = a(m ("))
If m (w) is incentive compatiable, then

h(w’,mW"),a(mw"))) > 0

h(w',m(W"),a(mWw"))) < 0

Expanding  (w”,m (w") ,a (m (w"))) and then hy (', m (W) ,a (m (w"))) in a Tay-

lor series yields, for some «, § € [0, 1],

A, m (") (m ("))
= (), (m@) +h (W m@"),a (m W) (@ )

b (3 () (& — )
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= h(W,m("),a(mw")) +h (W, mW),a(m)) W -
+hiz (z () (m (W) = m () (W = )
+hiz (z () (a (m (W) —a(m (W)))) (W' =)

gt (7 (8)) (o — /) 2 0
Because hy (W', m (w'),a(m(w'))) =0,

0 > h(W,mw),a(mw")

AV

—ha (z (@) (m (") = m () (W = o)
—haz (2 (a)) (@ (m (W) = a(m (W)))) (V" =)

]‘ =, i /
—5hn (#(6)) (@ - )

Expanding h (u',m (w"),a (m (w"))) around (w',m (v'),a(m (w'))) in the above

inequality, we have, for some v € [0, 1],

0 > h(w,mW"),a(mw")))
= hy(W',m('),a(mW)))(mW") —mw))

+hs (', m (o) ;a(m (W) (@ (m (W) = a(m (W)

s (@ (1)) (@ (m (") = a(m (W) + Sha (2 (1)) (1 (&) = m )"

+has (z (7)) (a (m (W")) — a (m (W))) (m (&) = m (1))
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> —hiz (z () (m (W) = m () (&' =)
~haz (2 (a)) (@ (m (@) — a(m (W)))) (W' =)

1 ~ " "2
—5hn (Z(8) (W' =)

Dividing by (w” — «'), we have the following inequalities (here we assume w” > o/,

otherwise the inequalities are reversed but the argument does not change):

(m (w") —m ()

W — o

0> (he (&', m (W), @ (m(W))) + %hm (z (7)) (m (") = m ()))

+ (hs (W', m (W) ;a(m ())) + %h:m (z (1) (a(m (")) = a(m (W)

+hgs (z (7)) (m (W) —m (w,)))a (mW") —a(m(w))

LU” — (U,

> —hia (z (@) (m (w") = m (@) = has (2 (@) (a (m (W) = a(m ()

1 ~ 1! /
— 5ha (Z(8)) (W' =)

Since we assume that m (-) and a (+) are continuous, taking the limit as w"—w' — 0,

we have m (w”) — m (w') — 0 and a(m (w")) — a (m (w')) — 0. Therefore,

(m (w") —m(v))

0> hy(w,m(w),a(mw))) lim

s W' —
by (&, () 0 (m () tim 2N 0D

As we assume that m (+) is strictly increasing and differentiable, lim ., (m(w") —m(w'))

o —o!

exists and is strictly greater than 0.
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Therefore , we have

ha (W', m (), a (m (W)

+h3 (w/7m(w/) ,a(m (w/))) lim a(m (w”)) _a’(m (wl))

=0
m(w'")—m(w') m (w”) —-m (w’)

Since hy (W',m (W'),a(mW'))) = =2X (m (') — W' — b) and
hs (W', m (@) ,a(m (W) = —2X (a(m (') — ' — b), for an ' such that a (m (') —
W' —b#0, a(m) is differentiable at m = m (') and

da (m («))

dm

A(m (W) —w' —b) + (1= A) (a(m(W)) —w —b) =0 (11

Now all we need to show is that for any m € I, a(m) — g (m) — b # 0.

First we show that there doesn’t exist E, an open subinterval of I, such that
a(m) —g(m)—b =0 on E. Suppose the contrary. Since we assume that g (m) is
differentiable, a/ (m) = ¢’ (m) on E. Then, equation (1.1) implies that m —g(m)—b =

0 as well. But when m = g(m) + b, a(m) = gm;f(i)eg)'g(f(ﬁf)(m) # m for § # 1, a

contradiction.
Now suppose there exists m’ € I such that a (m') — g (m/) —b=0.
First consider the case where m’ — g(m/) — b # 0. Then, due to the continuity

of a(m) and g (m) and the assumption a (m') — g (m') — b = 0, there exists ¢ > 0,

da(m'’)
dm

st. 0 < |m’'—m/| <eanda(m)—gm")—-0+#0=

> l dg(m’”) ‘ and

dm

(m” — g (m") — b) has the same sign as (m' — g (m') —b).
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Define f (m) = a(m) — g(m) —b. Then f(m') =0 and f’' (m”) has the same sign
as ' (m") for a(m”) —g(m”) —b#0and 0 < |m" —m/| <e.

For 0 < |m"—m/| < ¢ and a(m”) — g(m”) — b # 0, equation (1.1) implies
f(m") >0 f'(m") (m" —g(m") - b) <0.

Suppose for 0 < |m” —m/| < g, m" — g(m”) —b < 0. Since there does not
exist an open subinterval of I on which a (m) — g(m) — b = 0, there exists m” s.t.
m —e <m’" <m' and a(m”) —g(m”) —b # 0. If f(m") > 0, then because of
the uniform continuity of f on I, f'(m) > 0 for all m”" < m < m' and therefore
f(m) > f(m") > 0, a contradiction. If f(m”) < 0, then f'(m”) < 0 for all
m” <m < m’ and therefore f (m') < f(m"”) < 0, again a contradiction.

Suppose for 0 < |m”" —m/| < e, m" — g(m”) —b > 0. Then choose m” s.t.
m' <m” <m/+eand a(m”) —g(m") —b+#0. A similar argument as above can be
used with obvious changes.

Finally, let’s consider the case where m’ = g (m') + b. Since we also assume that
a(m') = g(m') + b, this implies ¢’ (m’) = 0. Because of the continuity of g, there
exists ¢ > 0, such that for m' < m” < m' +¢, a(m”) — g(m”) — b # 0, we have
m"” > g(m”) + b and f’(m”) has the same sign as a’ (m”). We can see that the

argument in the previous paragraph follows through. O

Lemma 1.6. Suppose m (w) s strictly increasing, g (m) is differentiable, and a (m)
is continuous. Then we have either (i) m = a(m) or (it) m > a(m) > g(m) and

a(m) < g(m) +b.
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Proof. Lemma 1.5 shows that under certain assumptions, a’ (m) = — (l_f\‘gzz(:fl ;T_”;(;?)_b).

So a" (m) is well defined as well.
Note that =\ (m — g (m) — b)—(1 — ) (a(m) — g (m) —b) a’ (m) = 0is the F.O.C.
for the (local) optimality of m (w), given the sophisticated receiver’s strategy g (m).

The S.0.C. for m (w) to be optimal is

—A = (1=2) ((¢ (m))* + (a(m) — g (m) = b)a” (m)) <0.

After substituting, we can simplify the S.0.C. as %% < 0. Since ¢’ (m) >
0, the S.0.C. can be satisfied under the following three cases: (i) m = a(m), (ii)
m > a(m) and a(m) < g(m) + b or (iii) m < a(m) and a > g(m) + b. Since
a(m) is a weighted average of g () and m, the two inequalities in (iii) cannot hold

simultaneously. Also, because g’ (m) is bounded when m (w) is strictly increasing,

m > a (m) implies that a (m) > g (m). O

Lemmas 1.5 and 1.6 provide the equilibrium conditions under a number of monotonic-
ity, continuity and differentiability constraints. The following lemmas show that for
m € [m(0),1), m(w) is strictly increasing, g (m) is differentiable and a (m) is con-

tinuous so that lemmas 1.5 and 1.6 apply.

Lemma 1.7. When m (w) s strictly increasing and a(m) is continuous, g(m) is

differentiable.

Proof. We can prove the lemma by contradiction.
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If g (m) is differentiable, we have

B _ Om+ (1-0)g'(m)g(m)
a(m) = Ewlm) = == =15 (m)

We know that for an increasing function, there can be at most a countable number
of points at which the function is not differentiable. Suppose g (m) is not differentiable
at 7. Then there exist 61, §s > 0 s.t. g(m) is differentiable on (7 — §;,71) and

(th, ™ + 62). But limp, 5~ ¢’ (m) # limp,_,m+ ¢’ (m). Then we have

Om + (1 - 0)g'(m)g(m)

I s
ma(m) = lm e )
. Im+ (1= 0)g(mglm) _ .
7o m 1-0gm) m a(m),
contradicting the assumption that a (m) is continuous. O

Lemma 1.8. uj (W', m(W'),a(m(w")),b) — uj (W,m),a(m(w)),b) as " —

w'.

Proof. For any € > 0, there exists §; such that |w" — /| < 6; = |v(W,m(W'),a) —
v(w,mW"),a)| <e.
If m (w) is incentive compatible, then

v(W,mW),a(m W) 2 v(W,mW),a(mw)) > v, m), a(mw)) -

There also exists 8, such that |’ —w'| < 83 = |v(W',m (W), a)—v(W",mW"),a)] <

and |v(w”’,m (') ,a) — v(W',mW'),a)| < 5.

DM



1.8 Appendix 70

Therefore, v (o, m (o), a (m (&))) 2 v (", m (") ,a (m (")) - §

>0 (W,m () ,a(m (W)~ § 2 0 (&, m@),a(m)) —e.

Combining yields

W —o/| < min{8y, 62} = o (&, m (&) ,a (m (W))) — v (o, m () a (m ()] <

E. O

Lemma 1.9. If g (m) is strictly increasing on an open interval I C [0, 1], then a(m)

18 continuous on I.

Proof. Suppose a(m) is discontinuous at m; € I. Then there exists an open in-
terval I; C I such that m; € I; and the only discontinuity of a (m) on I; is m;.
Suppose {m,}, {ml.} C I, are two convergent sequences such that m; T m; and
m” | my. Since u3 (g (m1),my,a(m),b) — u (g (m1),m1,a(m1),b) asm — my, we
have (g (m1) +b—a(m))* = (g(m1) + b — a(my))* as m — my. Since a (m) is dis-
continuous at my, either lim,, ., a(m}) > g (m1) + b or lim,_, a (m!) > g(my) + b,

a contradiction of Lemma 1.6. Therefore, a (m) is continuous on /. O
Lemma 1.10. m (w) is strictly increasing on [0,@) where @ = inf{w : m (w) = 1}.

Proof. First, observe that @ > 0. Suppose not. Then, m (w) = 1 for w € [0,1] and
a(m) =mif m < 1and a(l) = 4. Clearly, there is a profitable deviation for the
dishonest sender with high observations of w, say, w = 1.

We can show by contradiction that m (w) is strictly increasing on [0,@). Suppose

not. Then there exist w;, ws where 0 < w; < wg < @ and g7 > 0 such that for
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w € [wi,ws], m(w) = my and for w € (wa,ws + €1), m(w) is strictly increasing
and differentiable. Since a(m;) = 32, by continuity of a(m), limm_.m, a(m) =
a(my) = “4*2 < w,. Since a(m) is a weighted average between m and g (m)
for w € (wg,ws + €1), this implies that m; < ws and there exists e > 0 s.t. for
w € (we,ws + €2), m < a(m), which contradicts Lemma 1.6.

Hence, there can’t be pooling at any message below 1. Therefore, m (w) is strictly
increasing on [0,@). O

With the above lemmas, we can make further claims on the conditions that equi-

librium strategies m (w) and a (m) have to satisfy.
Claim 1.1. a(m (0)) = m(0).

Since a (m) = m for m < m (0), this claim, together with Lemma 1.9 and Lemma

1.10, implies that a (m) is continuous on [0, 1).

Proof. a(m(0)) = E (wlm = m (0)).

If m. (0) = 0, then a (m (0)) = m (0) = 0.

If m (0) > 0, then a (m.(0)) < m (0).

Suppose m (0) > 0 and a (m (0)) < m (0). Since for m < m (0), we have a (m) =
m, if a (m (0)) < m (0), we can find an £ > 0 such that a (m (0) — &) = m (0) — & >

a(m (0)) and

> =X (m(0) = b)* — (1= A) (a (m(0)) — b)*
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Then, instead of sending m (0), the rational sender would deviate and send
m(0) — & when w = 0, thus violating the equilibrium condition. Hence, when

m (0) > 0, we must also have a (m (0)) =m (0). O
Claim 1.2. 0 <m(0) <b.

Proof. Suppose m (0) = 0. Then by continuity there exists ¢ € (0,0) s.t. 0 <a(e) <b
and the dishonest sender with w = 0 would be better off sending m = ¢ instead of
m = 0, a contradiction.

Suppose m (0) > b. Then m (0) — b > 0. Because pr (h = honestjm < m(0)) =1,
we have a (m) = m for m < m (0). Then, instead of sending m = m (w), the dishonest
sender with w € [0, m (0) —b) would be better off sending m = w+b < m (0), inducing
both the naive and sophisticated receivers to respond with a = w + b and achieving
his highest possible payoff (a contradiction).

Suppose instead m (0) = b. Then a (m (0)) = m (0) = b and therefore a (m (0)) =
g(m(0)) +b. We can use the argument in the proof of Lemma 1.5 to show that
a(m(0)) # g (m(0)) + b. Therefore, m (0) # b. O
Claim 1.3. For m € (m(0),1), m > a(m) > g(m) and a (m) < g (m) +b.

Proof. Consider the condition found in Lemma 1.5: a'(m) = _(1—:\\522(—5352(—7?)—12)'

Suppose a (m) < g (m) + b. Then the following must be true. If m — g(m) — b > 0,
then o’ (m) > 0; if m — g (m) — b < 0, then o’ (m) < 0; if m = g (m) + b, a’ (m) = 0.
Since a (m (0)) = m (0) < b, the right derivative of a (m) at m = m (0) is negative.

Therefore, in equilibrium, for m (0) < m < 1, either m < g(m) + b and ' (m) < 0
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or m > g(m)+band a(m) < g(m)+b. In both cases, m > a(m) > g(m) and

a(m) < g(m)+b. O
Proposition 1.1 follows directly from the above lemmas and claims.

Proof of Proposition 1.2. We need to show that when the conditions in the Proposi-
tion are satisfied, there is no profitable deviation for the dishonest sender.

We can show this by contradiction. Suppose (m (w),a(m)) satisfy all the con-
ditions in the Proposition and there exists an wy € [0, 1] such that m (wq) is not a
global maximum for the dishonest sender with observation w = wy. Instead, there
exists my # m (wp) s.t. my € argmax{—\ (m — wy — b)°— (1 — X) (a (m) — wo — b)*}.
Note that m; > m (0).

Suppose m (0) < m; < 1, then there exists wi s.t. m (w1) = my and A (my — wo — b)
+(1 =X (a(m) —wo—0b)=0and A(m; —w; —b)+ (1= X)(a(my) —w; —b) =0.

d mi—w—>b

This implies that —m=2e=b mwi=b. Since my > a (my) an 2 Is strictly

a(m1)—wo—b  a(m1)—wi—

increasing in w when m; > a (m,), this is not possible.
Suppose m; = m (0) and wp # 0. Then there exists € > 0 s.t. wp > &. Consider
O<d<e,m=m(w),a=a(m(@)). We have

dus (wo, ™, a,b)

am = =2\ (f —wo—b) = 2(1 = A) (@ —wo — b)d (1)

oA (—wo—b) —2(1 = N) (6 — wo— b) (—2 (

= —2\(G—-wo—b) (be_“’o_b m"‘“:).

a—wy—2> a—w-—
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. b s s . R duS (wo,,d,b
Since ==t ig increasing in w and & — wg — b < 0, we have dug (o) - ) for all
b ’ dm

a—w—

0 < & < e. Therefore, it’s not possible to have m; = m (0) as a global maximum for

wWg-

Suppose m; = 1 and a(m) is continuous at m = 1. Then

“22(1—wy—5b)—2(1-X)(a(l) —wp—10))a’ (1) >0

oy (A —g @) =D

((1) ’ Z;)( (1(—/\)(?()1) —)9(1)—b)>§0
l—wo—b 1—g(1)—b

=>(a(1)—w°_b)<(a(1)—wo—b)n(a(l)-g(l)"b)>SO

= A1—-wr—b)+(1-X)(a

Since g (1) > wo, the above inequality implies that a (1) —wo — b > 0, but since
a(m(wp)) —wo — b < 0 and a(m) is continuous, this means that m = 1 cannot be

the optimal choice of message when w = wy.

Suppose m; = 1 and a (m) is not continuous at m = 1. Let a' (1) = lim,,_,; a (m).

Since

— (@' (1) —wo = )" = (— (a(1) —wo — b)*)
= (a()) = d' (1)) (a(1) +a' (1) = 2wo — 20)

= (a(1)-a'(1)) (29(1) — 2wo) >0,

again m = 1 cannot be the optimal choice when w = wy.

Therefore, there is no profitable deviation for the dishonest sender. O

Proof of Theorem 1.3. Step 1: Suppose (a(m),§(m)) and (a(m),g(m)) are solu-
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tions to 3.(a) and 3.(b) in Proposition 1.3, with initial conditions
(& (10) = Tho, § (1) = 0) and (@ (hg) = 1o, J (o) = 0), respectively. Suppose also
that 7o > 7o, then we can show that a(m) > a(m) and §(m) > §(m) for
1>m > .

Note that at 9y, d (the) = 7o > @ (1), § (The) = 0 < g (1g). First, we want to

show that if & (m) > a(m) for m > my, then § (m) < g (m) for m > 7y. To see this,

Om+(1—8)g’ (m)g(m)

i) Because g (m) < m, it follows that if

consider equation a(m) =
a(m) > a(m) and g (m) < g(m), then §’ (m) < g’ (m). Together with the condition
G (o) < g (g), @(m) > a(m) for m > 1, implies § (m) < g (m) for m > 1.

We need to show that G (m) > @(m) for m > rg. Suppose not. Since a (1) >
a (o) and @ (+),a(-) are continuous, d (m) and a(m) have to intersect. Suppose m*
is the lowest point at which @ (m) and a(m) intersect. Then, for my < m < m*,
a(m) > @ (m) and by the argument made in the previous paragraph, g (m) < g(m)
for mg <m<m*

Consider equation a’ (m) = — (1—?%(—7%2(—72))-@' We can show that at m*, § (m*) <

§(m*) and @ (m*) = a(m*) imply that &’ (m*) > @ (m*). By continuity, 3¢ > 0
st. for m where |m —m*| < g, & (m) > @ (m). But since a(m) > a(m) for
o < m < m*, it is not possible that G (m*) = a (m*), a contradiction. Hence, a (m)
and @ () never intersect. Since @ (7o) > @ (7)), we can conclude that & (m) >
a(m) and §(m) < g(m) for 1 > m > my. From our proof we can also see that

limy,_ & (m) > lim,, 1 @ (m) and limg, 1 § (m) < limp,1 § (m).
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~

Step 2: Suppose sequence {@g,d1,...,&; = 1} is a solution to (A) and satis-
fies — (a (1) —@p—b)? = — (28 — oy —b)® where @ < a(1) < @ +b , se-
quence {@o,d1,...,07 = 1} is a solution to (A) and satisfies — (@ (1) — @ — b)? =
— (Bt — g —b)” where @ < (1) < G +b.

If ] = I, then it straightforward to show that if ©g < @o, then a (1) < a(1).

If [ # I, without loss of generality we can assume [ > I, we have — (@ (1) — @ — b)®

. . 2 . . 2
_ Dot~ 2 A s S _ oo e O S8 S
_—(—02——L wo—b) and <-—2——w1_1—-b) —-—(——2———-——w1_1—-b .
. - - ~ D poA0i_; N .
Since Wy < a(l) < @+ b and w—"iﬁw# < @j_j it must be the case that

©7_; < @o(therefore Wy < o) and @ (1) < w;_; <@ < a(1).

Combining the two steps, we see that for a set of fixed parameters A, 8,0 > 0 there
can be no more than one solution to the differential equations system 3. (a) — 3. (e).
Since the solution to 3.(a) — 3.(e), (a(m),g(m),{wo,w1,...,wr}), determines the
equilibrium outcome defined on T' x M x A, the monotonic equilibrium outcome in

the cheap-talk extension game I" (A) is unique. O

Proof of Proposition 1.4. Consider an equilibrium in I'c_g. Suppose in this equilib-
rium, there are N subintervals in the partition of 2. Then, the equilibrium payoff for

1 _ 2
the sender with observation w = 0 is equal to — (ﬂibz(l———]—v—) -0- b) 20

Since N (b) is the smallest integer that is greater than or equal to —3 + 3 (1 + %) %,
1 1o 2
if N # N(), then N < =1 +1(1+%)? and -—(1+2b2(1 N) -O—b) < -8 i

2

1 1 _ 2
N=N@®),N>-4+5(1+2)%and - (22 _0—p) > 2

20For a step-by-step derivation, see Crawford and Sobel (1982), p. 1441.
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Recall that in Claim 1.1 and Claim 1.2, we show that in any I'(A) with A > 0
and § > 0, 0 < a(m(0)) = m(0) < b in equilibrium. Therefore, the equilibrium
payoff for the rational sender with observation w = 0 is uj (0,m (0),a (m (0))) =
—X(m(0) =0 —=b)*~(1=)) (a(m(0)) — 0 —b)* > —b* Now consider the converging
sequence of games {T'y, 4, }. Since the inequality holds for all A; > 0,6; > 0, in the
limit equilibrium as \; and 6; approach 0, the payoff for the dishonest sender with
observation w = 0 must be greater than or equal to —b?. From the previous paragraph,
we know that only in the most informative equilibrium in I'c_s does this inequality

hold. Hence the result. O

Proof of Proposition 1.5. Let E™ be a limit monotonic equilibrium of {Ff{iﬂj} as A\
and 6; approach 0. Suppose {[wk—1,wk]}e=1,..x (1 < K < N (b)) is the partition of
Qin Em.

First, we show that m (w) = 1 for w € (wg_1,wk) in E™. Suppose not. Then,

mw) < 1for w € (wg_1,wg) and a(m(l)) = 2E=LFK in Er. Also, a(1) is
a weighted average of wgx = 1 and a* (1) where a* (1) > 1 — 2 > 2E=LI9K giyep

our assumption that max{m; — m;_;} < b. Therefore, a (1) > 5"—’—{—‘—121“’—’{ and the
sender with observation w = 1 would be better off sending m = 1 instead of sending
m (1) < 1, a contradiction.

Next, we show that if K > 2, then m (w) = my—; for w € (Wg_2,wr_1) in
E™. Again, we can show this by contradiction. Suppose not, then m(w) < m,_;

for w € (wWg—g,wx-1). Since we have established in the previous paragraph that
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m(w) = 1for w € (Wg_1,wk) in E™, this implies that a (m,_1) is‘a weighted average
of wg_1 and a™ (my,_1)?! (> wg_1), which in turn implies that a (m,—1) > wx_1. It
follows that a (m,_1) = a(m,) = EK%“L“K > wg_1+ b.(If a(my-1) # a(m,), then
there always exists w € (wg_1,wg) s.t. it is a profitable deviation for the sender
with observation w to send a(m,_;) instead of a(m,).) Now, given that E" is a
limit monotonic equilibrium of {Fﬁiﬁj} as \; and 6; approach 0, for any &; > 0, there
exists 6 > 0 s.t. if 0 < \;, 6; < 8, there exists w satisfying |w — wg_1| < €1 s.t. in a
monotonic equilibrium of I'}, 5 , the sender with observation w is indifferent between
sending m,, and sending m,,_;. We can always find €; s.t. m, > m,_1 > w +b and
a(mp_1) = a(mn,) > w+b in a monotonic equilibrium of I'} , . But then there exists
gg > 0 s.t. for 0 < ' —w < ¢, the dishonest sender with observation w' prefers
sending m,_; to sending m,, a contradiction. Therefore, in the limit equilibrium
Er m(w) = mp_q for w € (Wr_g,wk_1)-

Continuing this argument, we can show that in £, m(w) = my,_; for w €
(Wi k1, WK—k)-

Finally, we need to show that K = N (b). From the previous paragraphs, we know
that in £, m (w) > mg = 0 for w € (0, 1]. Therefore, a (0) is a weighted average of 0
and a” (0) and 0 < a (0) < 2. It follows that in E™, the equilibrium payoff of the sender
with observation w = 0 must be greater than or equal to — |a (mg) — 0 — b]* (> —b?).

In light of the proof for proposition 4, we know that the limit equilibrium Em must

21The definition of a® (m;) is the same as in the proof of Theorem 1.1.
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correspond to a most informative equilibrium in the C-S model, ie., K = N (b).

Hence the result. O



Chapter 2

Partially Informed Decision

Makers in Communication Games

2.1 Introduction

Standard sender-receiver games' usually assume that the sender has all the relevant
information for making a good decision and the receiver, while having the decision
making power, is completely ignorant of the state of the world and has to rely on the
sender for useful information. While this assumption simplifies analysis, it also fails
to capture something quite important in real life communication — that the decision
maker is usually partially informed as well. For example, the decision maker may have
her own expertise. Imagine a CEO trying to decide which project is most profitable to

take. She may need the division managers’ input on the specifics of certain projects,

IFor example, Crawford and Sobel’s (1982) classic model of strategic information transmission.

80
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but she has her own knowledge about investments as well. Alternatively, there may
exist other sources of information. Consider an individual trying to decide what
brand/model of a product she should purchase by consulting a salesperson in a store.
she may already know something about the candidate products because she has read
ratings on their characteristics and qualities in a magazine or her friends have told
her about them.

The interesting situations to study involve players whose interests are not per-
fectly aligned and the expert may have an incentive to lie. How does the decision
maker’s partial information affects the expert’s communication incentives? Is the
expert more likely to lie to someone who knows practically nothing or someone who
is well informed? What could the decision maker do to elicit more information from
the expert? And how is the welfare of the players affected? To address these ques-
tions, we analyze three extensive form games (which correspond to three different
communication environments) with partially informed decision makers.

In all three games, the players — the expert and the decision maker (DM) — both
privately observe (conditionally independent) signals about the state of the world
and communicate (through costless messages?) before the DM chooses an action that
affects both players’ payoffs. The games differ in the way the communication is
structured. In game 1, the DM reveals her information truthfully to the expert before

the expert reports to her. In game 2, the DM keeps her information private while

2The messages are “cheap talk” except in game 1 where the DM commits to telling the truth.
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the expert communicates to her. In game 3, the DM cannot commit to revealing her
information truthfully to the expert, but before the expert reports to her, she has an
opportunity to communicate strategically to the expert.

Several unexpected results arise. The decision maker’s expected equilibrium pay-
off is not monotonically increasing in the accuracy of her own information. This is
because an enhancement in the quality of the decision maker’s information may dis-
courage the expert from revealing his information. In the games that we consider,
whether the expert truthfully reveals his information in equilibrium depends on the
expected impact of his messages on the DM’s choice of action. When the impact is
sufficiently large/small, the expert can/cannot credibly reveal his information to the
DM in equilibrium. For example, suppose the expert has an upward bias in the binary
model we study. So the expert’s ideal point (i.e., the DM’s action that maximizes
his payoff) is always higher than the DM’s ideal point, no matter what the state of
the world is. The expert with the high signal always wants to convince the DM that
his signal is indeed high and the question is whether the expert with the low signal
can credibly convey his information to the DM. If the DM’s responses to different
messages are far apart, then the low type expert would not want to send a high mes-
sage because the action induced would be too high for himself, in spite of his upward
bias. However, if the DM’s responses to different messages are close, the expert with
either the high or the low signal would prefer the higher action and therefore the low

type expert cannot credibly communicate his observation to the DM. If the DM’s own
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information is highly accurate, then the expert’s messages do not change her beliefs
very much, which implies that the impact of the expert’s messages on the DM’s choice
of action is small. In this case, as we explained above, the expert cannot credibly
convey his information in equilibrium. Therefore, the DM’s expected payoff may fall
as a result of an increase in the quality of her own information if the gain does not
adequately compensate for the loss of the expert’s information.

Another somewhat surprising result is that allowing one extra round of commu-
nication in which the DM strategically communicates to the expert does not help her
extract more information from the expert than if she keeps her signal private. It is
obvious that any equilibrium outcome in game 2 is also an equilibrium outcome in
game 3 because there always exists an equilibrium in game 3 in which the DM babbles
in the first stage and in effect keeps her information private. Therefore, in game 3 the
DM can do at least as well as in game 2. Why can’t she do strictly better in game 37
Observe that the DM wants to elicit as much information as possible from the expert
and the expert realizes this. If sending a particular message to the expert induces him
to reveal more information, then the DM would always want to send this message,
irrespective of the realization of her signal. But this undermines the credibility of her
messages. Therefore, without committing to revealing her signal truthfully, the DM
cannot effectively communicate with the the expert and the extra round of strategic
communication does not help her extract more information.

What would the DM do if she could choose between the different communication
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environments, i.e., what game to play? Our analysis shows that whether she prefers to
reveal her information or to keep it private depends on the parameters of the model.
Fixing the other parameters and varying the expert’s bias, we find that the DM is
indifferent between playing game 1 and game 2 when the expert’s bias is extreme, but
prefers one to the other when the bias is in the intermediate range. When the bias is
very small, the expert reveals his information truthfully in both games and the DM
is indifferent. As the bias increases from a small value to a moderate value, the DM
may extract more information from the expert by keeping her signal private than by
revealing her signal truthfully to the expert. However, as the bias gets even larger,
the DM’s preference switches — revealing her information to the expert generates a
higher expected payoff. When the bias is sufficiently large, the expert babbles in both
games and the DM is indifferent again. A similar result is obtained by varying the
accuracy of the DM’s information while keeping other parameters fixed.

Only a few papers in the literature have explicitly modeled informed receivers in
communication games. Olszewski (2004) analyzes a model in which the receiver, as
well as the sender, has private information on the state of the world and the sender
wants to be perceived as honest. The paper provides conditions on the informa-
tion structure with which the unique equilibrium is full information revelation if the
sender’s reputational concerns are strong enough. Harris and Raviv (2004) consider
the problem of delegation versus communication when both a CEO and a division

manager have private information on the profitability of different investment projects.
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They find that if the division manager’s information is sufficiently important relative
to the CEO’s, then it is optimal for the CEO to delegate the investment decision
to the division manager instead of making the decision herself with a report from
the manager. Seidmann (1990) gives examples which illustrate that the receiver’s
partial information may induce the sender to tell the truth in equilibrium even if the
sender always prefers higher actions independent of his private information. The ex-
amples show that the uncertainty created by the receiver’s private information helps
separation in equilibrium.

Austen-Smith (1993) does not explicitly model informed receivers in communi-
cation games. However, since his paper considers multiple referrals under open rule
and the receiver gets information from two different sources, some of his results are

similar to what our model generates.

2.2 The Model

Suppose there are two players, the expert (player 1) and the decision maker (player
2).

The state of the world, w, is a random variable which takes on two values, 0
and 1. The common prior on w is prob{w = 1} = p and prob{fw = 0} = 1 —p
where p € (0,1). The expert has private information about the state of the world.
Specifically, he privately observes a signal s; where prob{s; = zjw = z} = ¢ and

prob{s; =1—z|w =z} =1—¢ for z =0, 1. The accuracy of s; is parameterized by
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g1 and we assume that ¢; € (%, 1]. When ¢; = 1, the expert is perfectly informed. Like
most sender-receiver games in the literature, we consider games in which the expert
strategically and costlessly communicates to the DM about his private information
and the DM then takes an action a which affects both players’s payoffs. We depart
from the standard models by assuming that the DM may also have private information
on w. Specifically, we assume that she privately observes a signal s, with accuracy
@ € [3,1) (e, prob{s; = zjw = 2} = gz and prob{s; = 1 —zlw =z} = 1 — @
for x = 0,1). Obviously, when go = 3, the DM is not informed as in the standard
models.?

The von Neumann-Morgenstern utility functions of the players are assumed to

take the following “quadratic loss” functional form:

WP (a,w,b) = —(a—w-—D)>

WM (g,0) = —(a—w)?

where a € A = R is the action that the decision maker takes and b, short for bias,
measures the divergence of interest between the two players. WLOG, we assume that
b>0.

Now that the DM is partially informed, the strategic incentives of the players are

changed. How they are changed depends how the communication between the expert

31t may be natural to assume that ¢; > g¢q, i.e., the expert is better informed than the DM.
However, making this assumption does not generate extra insight in our model. For generality, we
will not impose it.
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and the DM is structured.

There are at least three simple communication environments ( which correspond
to three different extensive form games) we can consider.

1. The DM reveals her signal s, truthfully to the expert before the expert reports
to her. Call this I';.

2. The DM keeps her signal s, private while the expert reports to her. Call this
Is.

3. The DM cannot commit to revealing sp truthfully to the expert. But before
the expert reports to the DM, the DM strategically sends a message to the expert
about her signal sg. Call this I's.

In I'y, the DM has the commitment power to reveal her signal truthfully to the
expert. This could happen, for example, if the DM’s information comes from a neutral
third party and the DM allows this third party to reveal the information to the expert.

So far we have referred to sy as the DM’s private signal. However, there is an
alternative and perhaps more natural interpretation of sy in I'; and I'y. Think of s;
as a public signal that both players observe and it arrives after the expert observes
s;. Then, game I'; describes the strategic situation if the expert reports to the DM
after the arrival of sy. On the other hand, if the expert reports to the DM before
the arrival of sy and the DM chooses her action after hearing the expert’s report and
learning about the realization of sz, we are in I'y. In this interpretation , it is the

timing of communication that makes the difference.
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Throughout the analysis of these three games, we are going to use m to denote
the message that the expert sends to the DM and [ to denote the message that the
DM sends to the expert (if she does that in the game). Since we have a binary
state space, we assume, for simplicity, that the message spaces are also binary, i.e.,
L=M=1{0,1}.

Let o; denote the expert’s mixed reporting strategy and s; denote his pure report-
ing strategy in game I';. Due to the strict concavity of the DM’s payoft function, she
never plays a mixed strategy in equilibrium and let’s use a; to denote her pure action
strategy in game I';.

Since the DM truthfully reveals s to the expert in I';, the expert’s mixed strategy
is o1 : 81 X S x M — [0,1], where o (s1, 52, m) stands for the probability that the
expert with observation s; sends m if the DM reveals her signal to be so. The expert’s
pure strategy m; is a mapping from S; x Sy to M. In I'1, the DM’s choice of action
depends on her signal s, as well as the message sent by the expert. Therefore, the
DM’s strategy is a; : M X Sy — A.

In Ty, the expert does not know what s, is when sending a message to the DM.
Therefore, his mixed strategy is o5 : S; X M — [0, 1] where o2 (s1,m) stands for the
probability that the expert with observation s; sends message m. His pure strategy
is mg : S — M. Also, the DM’s action strategy is ag : M X Sy — A.

In I'3, the DM sends a message to the expert in the first round of communication.

Let p : Sy x L — [0,1] denote her mixed strategy where p(s2,!) stands for the



2.3 Baseline case : o = £ 89

probability that the DM with observation s, sends a message [ to the expert. In
the second round of communicaiton, the expert’s choice of message may depend on
s; as well as the DM’s cheap-talk message [. Therefore, his mixed strategy is o3 :
Sy x L x M — [0, 1] where o3 (s1,1,m) stands for the probability that the expert with
observation s; sends message m if he receives a message [ sent by the DM. His pure
strategy is mz : S; x L — M. And the DM’s action strategy is az : L X M X Sy — A.

The solution concept we use is Perfect Bayesian Equilibrium (PBE). As is typical
in cheap talk models, the problem of multiple equilibria arises in all three games. We
will address this problem later. For now, we focus on finding the conditions under

which separation (truth telling) on the expert’s part can happen in equilibrium.

2.3 Baseline case : ¢ = %

Let’s first consider the baseline case where go = -é—, i.e., the DM is not informed.
Since we assume that the DM has no useful information, letting her communicate
(either truthfully or strategically) to the expert does not add anything. Therefore,
we will analyze game I'y in which there is only one round of communication from the
expert to the DM. Much of the intuition we develop in analyzing this simple case
can be generalized easily and will help us understand the results in more complicated
settings. For this reason, we will discuss the derivation of the results in details here.

Define a truth-telling equilibrium as an equilibrium in which the expert adopts a
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truthful message strategy, i.e., m(s;)* = s; where s; € {0,1}.°

To find the conditions for truth telling to happen in equilibrium, we analyze
the incentive compatibility (IC) constraints for the players. Suppose there exists a
truth-telling equilibrium. What is the DM’s action strategy, a(m), in the truth-
telling equilibrium? Given her payoff functions, the DM’s best response is the con-
ditional expectation of w, i.e., a(0) = E (w|s; =0) and a(1) = E(w|s; =1). By
sending message m, the expert with observation s; = 0 (call him type 0 expert)
has an expected payoff equal to E (—(a (m) — w — b)%|s; = 0). Similarly, the expert
with observation s; = 1 (call him type 1 expert) has an expected payoff equal to
E(—(a(m) —w—b)%ls; = 1). It’s useful to note that given the quadratic loss func-
tional form, E (—(a (m) —w — b)?|s1) = — (a (m) — E (w|s1) — b)>—Var (wls;). Since
the variance terms do not depend on m, they usually cancel out when we consider
the IC constraints.

Since we assume that the expert has an upward bias, type 1 expert would like
to convince the DM that his signal is indeed equal to 1. That is what the following

lemma says.

Lemma 2.1. Suppose b > 0 and ¢ = % In a truth-telling equilibrium wn I's,

E(UF (a(1),w,b)|s1 =1) > E(U* (a(0),w,b)|s1 = 1).

4To make notation cleaner, we suppress the subscript that indicates that we are considering I's.
We will continue doing this in this chapter whenver it is clear what game is under consideration and
the suppression does not cause confusion.

5In general, a truth-telling equilibrium in T; is defined as a PBE in which m; (s1,-) = s; for
S1 € {O, ].}
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Proof. All we need to show is that

—(a(1) = E(w|s; = 1) = b)* = Var (w|s; = 1)

> —(a(0)— E(w]sy =1) —b)* = Var (w|s1 = 1).

Since a (1) = E (w|s; = 1) > a (0) = E (w|s1 = 0), the above inequality is satisfied

when b > 0. O

Therefore, the IC constraint for type 1 expert is never binding and we just need
to consider one IC constraint for the truth-telling equilibrium, that is, type 0 expert
does not have an incentive to deviate and report to the DM that his signal is 1. By

analyzing this IC constraint, we have the following proposition.

Proposition 2.1. Suppose go = -;— and b > 0. A truth-telling equilibrium exists if and

. 1 p(1-p)(2q1—1)
only if b < 3 (pq1+(1—p>(1—q1)(p(1—q1>+(1—p>q1))'

Proof. If the IC constraint for the type 0 expert is satisfied, then there exists a truth-
telling equilibrium.

The constraint requires that
E(—(a(O)—w—b)2|31 = 0) 2E(—(a(1)——w—b)2|51——-0).
This implies that

—(a(0) = E (w|sy = 0) — b)* — Var (w|s; = 0)
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v

—(a(1) — E (w|s; = 0) = b)* — Var (w|s; =0) =
P> ( 2 p(l—q) b>2

p+(1-p(l-a) pl-a)+0-pa

Since we assume b > 0, the above inequality is equivalent to

1 p(1-p)2n -1 >

<3 (pq1+(1—p)(l—ql)(P(l“‘h)“L(l"p)m)

1 (1=p) (2q1—1) -
Ifb >3 ( o +(1_p)(p1_q5(pél_ql) +(1_p)q1)>, then the IC constraint for type 0 expert

is violated and truth telling cannot happen in equilibrium. O

Quite intuitively, a truth-telling equilibrium exists when the expert’s bias is suffi-
ciently small. In fact, if a truth-telling equilibrium exists for a certain (positive) value
of b, then it must exist for any smaller (positive) value of b.

From the proof of Proposition 2.1, we see that whether a truth-telling equilibrium
exists depends on the difference between a (1) and a (0), relative to the size of b.
When a (1) and a (0) are far apart, type 0 expert has no incentive to deviate from
telling the truth: although a (0) is below his expected ideal point, a (1) is just too
high to be profitable for him. On the other hand, when the distance between a (1)
and a (0) is small relative to b, type 0 expert has an incentive to lie and induce the
DM to choose a (1) which is higher than a (0), but not too high for the expert since
he has an upward bias. In that case, the IC constraint for type 0 expert is violated
and truth telling cannot happen in equilibrium.

How does the accuracy of the expert’s information affect his incentives for telling
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=1 (1-p)(20:1-1) e
the truth? Let b= 5 (qu_ (1—p)€1——q5 (p(qll_ql)+(1—p)q1)>' From Proposition 2.1, we know
that when b lies in the interval [O,E], a truth-telling equilibrium exists. We have the

following result.

Remark 2.1. The range of b for which a truth-telling equilibrium exists is increasing

in the accuracy of the expert’s signal, q;.

See appendix for proof.

The more accurate the expert’s information is, the larger the range of b for which
truth telling can happen in equilibrium. The intuition behind this result should be
quite clear. According to previous discussion, whether a truth-telling equilibrium
exists depends on the distance between a (0) and a(1). Suppose the expert’s signal
is not very informative. Then, even if he completely reveals his information to the
DM, his messages cannot have a large impact on the DM’s choice of actions, i.e.,
the difference between a (0) and a (1) is small. In this case, truth telling cannot be
sustained in equilibrium because type 0 expert would have an incentive to lie and
induce the DM to choose a (1) instead of a (0). In constrast, if the expert observes a
highly accurate signal, then he expects the DM’s choice of action to be very sensitive
to the messages that he sends, provided that the DM believes that he is telling the
truth. In this case, type 0 expert would like to be separated from type 1 expert because
a (1) is too high to be profitable. Hence truth telling is sustainable in equilibrium.

When the expert’s bias is higher than the threshold value b, the IC constraint for

type 0 expert is violated and a truth-telling equilibrium fails to exist. But does there
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exist an equilibrium in which some information is transmitted from the expert to the
DM, that is, an equilibrium other than babbling? The discussion below shows that
the answer is no.

To see this, fix the parameters p,q; and b > b and suppose there exists a non-
babbling equilibrium. Since the expert’s messages contain some information, the
DM responds to the messages 0 and 1 with different actions in equilibrium, i.e.,
a(m = 1) # a(m = 0). This immediately implies that type 1 expert does not play a
mixed strategy in this equilibrium since he strictly prefers the higher action. WLOG,
let’s assume that type 1 expert sends message 1 with probability 1, i.e., o (1,1) = 1.
In this semi-separating equilibrium, type 0 expert must send both messages 0 and 1
with positive probability, i.e., o (0,1),0(0,0) € (0,1). Given these reporting strate-
gies, if the DM receives message 0, she infers that it is sent by type 0 expert with
probability 1 and if she receives message 1, she infers that it could be sent by either
type of the expert with positive probability. Therefore, a (m = 0) = E (w|s; = 0) and
E(w|s; =0) <a(m=1) < E(w|s; =1). In this mixed strategy non-babbling equi-
librium, type 0 expert is indifferent between the two actions a (m = 0) and a (m = 1)
as defined above. It follows that the action E (w|s; =1) is too high to be prof-
itable for type 0 expert and he strictly prefers the action E (w|s; = 0) to the action
E(w|sy =1). So type 0 expert’s IC constraint for truth telling is satisfied, which

contradicts our assumption that b > b. Therefore, we have the following proposition.

Proposition 2.2. A mized strategy non-babbling equilibrium exists only when a truth-
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telling equilibrium ezists. In this mized strategy equilibrium, type O expert is indifferent

between sending message 0 and message 1 and sends both with positive probability.

Hence, given the parameters p, ¢; and b, the most informative equilibrium involves
either truth telling or babbling.

What about the players’ preferences over different equilibria? Since the DM wants
to elicit as much information as possible in order to make better decisions, she has the
highest expected payoff in the most informative equilibrium. Given the assumption
that the players’ payoff functions take on the quadratic-loss form, it is not surprising
that the expert also has a higher expected payoff (unconditional on his type) in
a truth-telling equilibrium than in a babbling equilibrium. Moreover, if a mixed
strategy non-babbling equilibrium coexists with a truth-telling equilibrium, then both
types of the expert have (weakly) higher payoffs in the truth-telling equilibrium. To
see why, recall that in a mixed strategy non-babbling equilibrium, type 0 expert is
indifferent between sending message 0 (and being identified as type 0) and sending
message 1 (and partially pooling with type 1). Since he is identified as type 0 in both
equilibria, type 0 expert’s expected payoff is the same in the truth-telling equilibrium
and the semi-separating equilibrium. As to type 1 expert, he induces a lower action
in the semi-separating equilibrium than in the truth-telling equilibrium. With an
upward bias, type 1 expert has a strictly higher expected payoff in the truth-telling

equilibrium. Hence, we have the following proposition.

Proposition 2.3. The truth-telling equilibrium ex ante Pareto dominates the babbling
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equilibrium. It also Pareto dominates the mized strategy mon-babbling equilibrium,

even in the interim sense.

See appendix for proof.

2.4 Partially Informed DM: % <qgp <l

Now suppose the decision maker also observes an informative signal s9, with its ac-
curacy being ¢; € (3,1).

We are going to consider the three games described before one by one.

2.4.1 Game [';: Commitment — The DM truthfully reveals

82

Suppose the DM reveals her signal to the expert before the expert sends his message.
(Alternatively, suppose the expert observes the public signal sy as well as his private
signal s; before communication.)

In this game, the expert’s message can depend on sy as well as on s;. Again, type
1 expert would like to convince the DM that s; = 1, independent of the realization of
s9. So the IC constraints for type 1 expert are never binding. To find the conditions
for truth telling in this game, we just need to consider the IC constraints for type 0
expert. In I'y, there are two of them, one when sy = 0, and the other when s, = 1. In
each case, we need type 0 expert not to have an incentive to lie to the DM. Let’s use

ICy and IC; to refer to the IC constraint for type 0 expert when so = 0 and when
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sy = 1, respectively.

Let
by = % (wlsy = 1,8 = 0) — B (w|s1 = 0,55 = 0))
_ _1_< pa: (1 — q2) _ P(1—q)(1—q) )
2\pn (1—g)+(1-p)(1-q)ee p(1—q)(1—q)+(1-p)age
_ l( p(1-p)(1-q)e(2qa—1) >
2\(pn(1-@)+(1-p)(1-a) ) (P(1-q)(1—-q)+1-p)age)
and

1
by = §(E(w|81 =1,s55=1) - E(w|s1 =0,50=1))

1 ( Dq1q2 _ p(l—q1)q )
2\ppe+(1-p)(1-¢)(1-¢) pl-a)e+1-p)a(l-qg)
l( p(1-—p)(1—-¢q)q(2qa —1) )
2\(pnez+(1-p)1—q) A —@)(p(l-q)@+1-p)a(1-g))/

We have the following proposition.

Proposition 2.4. Suppose b > 0. In Ty, there exists an equilibrium in which the
expert reports s1 truthfully when sy = 0 (i.e., m(s1,0) = s; for s; € {0,1}) if and
only if b < by and there exists an equilibrium in which the expert reports sy truthfully

when sy =1 (i.e., m(sy,1) = s for s; € {0,1}) if and only if b < by.

See appendix for proof.
Again, whether truth telling can happen in equilibrium depends on the difference
in beliefs and therefore actions that the expert’s messages induce, relative to the size

of the expert’s bias. As to the comparative statics, we have the following remarks.
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(Proofs of the remarks can be found in the appendix.)
Remark 2.2. by (p, q1,3) > by (p,¢1,2) if and only if p > L.

This is quite intuitive. If the prior is such that w = 1 with a higher probability,
then the difference in posterior beliefs that the expert’s messages induce (if DM
believes that the expert is telling the truth) is larger when the DM’s signal is against
the prior, i.e., when s; = 0. Therefore, the range of bias for which a truth-telling
equilibrium exists is larger when sy = 0 than when sy =1if p > % The result is the

mirror image of the above if p < 7.

Remark 2.3. The signs of dbO(Z’qqll’”) and dbl(s;lqllm) are both positive.

The intuition is similar to the baseline case where g5 = % Here, since s; and s
are conditionally independent, even with the knowledge of sy, an expert with a highly
accurate private signal expects that his messages will have a large impact on the DM’s
choice of action if they are believed by the DM to be truthful. Therefore, the ranges
of bias for which a truth-telling equilibrium exists is increasing in the accuracy of the

expert’s signal, no matter what the realization of s is.

Remark 2.4. The sign of W is the same as the sign of (p — q2) and the sign

of -‘ﬂ’—l(—flf;—’@ is the same as the sign of (1 —p — ¢2).

Therefore, when the prior is symmetric (p = %), both bg (p, 1, g2) and by (p, 1, ¢2)
are decreasing in go, the accuracy of the DM’s signal. When the prior is not symmetric

(p + %), at least one of by and b; is decreasing in go. This means that an increase
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in the accuracy of the DM’s signal may discourage the expert from telling the truth.
This happens when an increase in go lowers the impact of the expert’s information
(which is transmitted to the DM in a truth-telling equilibrium) on the DM’s choice
of action.

We have shown before that in the baseline case where g3 = %, a mixed strategy
non-babbling equilibrium exists only when there exists a truth-telling equilibrium.
The same argument applies in T';. Consider the subgames in T'; after s, is revealed
to the players. Since the DM has no private information in the subgames, each
of the subgames is formally equivalent to a baseline game where ¢z = -;—, with an
appropriately chosen parameter p. No matter s, is revealed to be 0 or 1, an equilibrium
where the expert’s private information is partially revealed to the DM exists only
when there exists another equilibrium where the expert completely reveals his private
information. Again, depending on the paramters, the most informative equilibrium
involves either truth telling or babbling. And the Pareto ranking of the equilibria in

each of the subgames is the same as in Proposition 2.3.

2.4.2 Game I's: No Commitment — The DM keeps sy private

Let’s turn to the case where the DM does not reveal her signal to the expert but
keeps it private throughout the communication game.
Because the DM keeps her information private, the expert does not know for sure

what action the DM will choose in response to his messages in equilibrium, even
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though the DM always plays a pure strategy. From the expert’s point of view, his
messages induce probability distributions of actions by the DM.

Again, to find the conditions for a truth-telling equilibrium, we need to consider
the IC constraint for type 0 expert. Since the DM keeps s; private in I's, there

is only one IC constraint to consider. Call this constraint /Cprivate- Let bprivate

_ 1p(1-p)(21-1)g2(1—g2) ( pg192+(1-p)(1—q1)(1—q2)
2 pai+(1-p)(1-q1) (pg1(1—g2)+(1—p)(1~g1)q2) (P(1—q1) (1 —q2)+(1-p)q192)

+ Pq1(1-g2)+(1-p)(1—q1)g2
(pg192+(1-p)(1—q1)(1—g2))(P(1—q1)g2+(1—p)q1(1—g2))

). By analyzing ICpiyate, We establish

the following proposition.

Proposition 2.5. Suppose b > 0. In T'g, there exists a truth-telling equilibrium if

and only if b < bprivate-

See appendix for proof.

The constraint /Cpiyqte in I'o is a convex combination of the constraints ICy and
IC; in I'y. Accordingly, the threshold value bprivate is a convex combination of by and
by, which are derived from ICy and IC;. In the following section, we will compare
these constraints and discuss the economic implications.

Is the expert more likely to lie to someone who is well informed, or someone poorly
informed? One may expect the expert to be more reluctant to lie when facing a DM
who has accurate information of her own. However, the following result shows that

the contrary is true in I's.

dbpriuate (p:Ql 92 )
Remark 2.5. — = <0,
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See appendix for proof.

The more accurate the DM’s signal is, the smaller the range of bias for which a
truth-telling equilibrium exists when the DM keeps s, private.

As we explained before, whether or not a truth-telling equilibrium exists depends
on the difference in the actions that the DM chooses in response to messages 0 and
1. When this difference in actions is sufficiently large relative to the expert’s bias,
type 0 expert does not have an incentive to lie and induce the DM to choose the
higher action and therefore truth telling can happen in equilibrium. However, when
the difference in actions is sufficiently small, the IC constraint for type 0 expert is
violated and a truth-telling equilibrium fails to exist. When it is common knowledge
that the DM has relatively accurate private information, the expert expects that his
messages do not weigh very much in the DM’s choice of action. This means that the
DM’s (expected) responses to different messages are not very far apart and henceforth,
type 0 expert has an incentive to deviate from revealing his signal honestly and truth
telling fails to be an equilibrium.

One interesting and perhaps surprising implication is that having a more accurate
signal does not necessarily benefit the DM. It is possible that the loss of information
from the expert more than offsets the gain from the increase in the accuracy of the
DM'’s own signal. This will be illustrated in the example we provide in the next
section.

Using a similar argument as in section 2.3, we can show that in I'y, if there exists a
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mixed strategy equilibrium in which the expert’s information is partially transmitted
to the DM, then it must be the case that b < bprivate and a truth-telling equilibrium
exists as well. Therefore, given the parameters, the most informative equilibrium

involves either full revelation or babbling on the expert’s part.

2.4.3 Comparision of equilibria in I'; and I'y

Both I'; and T'y are commonly observed in real life. We would imagine that at
least sometimes the DM may have some discretion in choosing the communication
environment. For example, if s, comes from the (truthful) report of a neutral third
party, the DM may decide whether or not to allow the expert to be present when the
third party makes the report. Alternatively, if s, is a public signal, then it may be
possible for the DM to choose the timing of the communication. That is, she could
decide whether to ask the expert to report his private observation of s; before or after
the arrival of the public signal sy. In yet another interpretation, s, could be the DM’s
private information that can be verified by the expert at no cost once revealed. Then,
the choice between playing I'; and I'y is the same as the decision of whether or not
to reveal s, to the expertS.

If the DM could choose between I'; and I'y, what would she do? With the analysis

of I'; and Ty in previous sections, we can compare the two games. In particular, we

6Tn this interpretation, we assume that the DM’s decision of whether or not to reveal s is made
before she learns the realization of sy so that the choice of “not revealing” does not signal anything
to the expert.
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can compare their effectiveness as mechanisms to facilitate information transmission
from the expert to the DM. Note that the DM’s expected utility is monotonically
increasing in the amount of information she extracts from the expert and therefore
she favors the environment that is most conducive to information transmission.

We find that whether the DM extracts more information from the expert (in the
most informative equilibrium) in I'; or 'y depends on the parameters. Neither I'; nor
I's dominates the other in terms of facilitating information transmission.

First, let’s fix p, q1, g2 and vary the expert’s bias b. Suppose p > %, which implies
that b; < bprivate < bo.

If b < by, then both ICy and IC; are satisfied. As a convex combination of 1Cqy
and IC1, ICprivate is also satisfied. This means that a truth-telling equilibrium exists
in both T'; and I’y and the DM extracts the maximal amount of information in both
games.

If by < b < byrivate, then ICy and ICyripate are satisfied while IC} is violated. This
implies that if the DM reveals s, to the expert before he reports, then in the most
informative equilibrium, the expert truthfully reveals his signal if s, = 0 but babbles
if s5 = 1. In constrast, if the DM does not reveal sy to the expert, then there exists
an equilibrium in which the expert truthfully reveals his signal. Therefore, the DM
can extract more information from the expert by keeping her signal private when b
lies in this range.

If bprivate < b < by, then only ICq is satisfied. In I'y, the expert still truthfully
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reveals his signal if s, = 0. However, only babbling can happen in equilibrium in
Ty since ICprivate is violated. Therefore, when b lies in this range, by commiting to
revealing sy to the expert, the DM can extract useful information from him in the
event that s; = 0 (which is the less likely event a priori) while she can extract no
information if she keeps sg private.

Finally, if by < b, then all three incentive constraints are violated and the expert
babbles in both I'; and T's.

We just provided a comparison between I'y and I'; by varying the size of the
expert’s bias. Suppose the DM can choose between I'; and I's, then we have the
following result. She is indifferent between the two games if the bias of the expert
is extreme (either very small or very large) but strictly prefers one over the other if
the bias is in the intermediate range. Specifically, as the bias increases from a small
value to a moderate value, the DM chooses keeping her signal private over revealing
it to the expert. However, as the bias gets even larger, her preference switches from
keeping the signal private to revealing it.

It is also interesting to compare the two games by fixing p, g, b and varying gz,
the accuracy of the DM’s signal. The analysis is parallel to the above since there is
a one-to-one mapping between go and each of the threshold values by, b1 and byrivate-
Specifically, when ¢y is either very low or very high, the DM is indifferent between
the two games. However, when ¢ is in the intermediate range, the DM prefers one

mechanism over the other.
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Figure 2.1: the DM’s expected equilibrium payoff

To illustrate, consider the following example.

Example 2.1. Suppose p=0.7, ¢ = 0.8 and b = 0.2.

It is useful to note that when gz = 0.67839, by = 0.2, when go = 0.91990, by = 0.2
and when gz = 0.89711, bprivate = 0.2.

Figure 2.1 shows the DM’s expected payoff as a function in gy in the most infor-
mative equilibirum in Ty and Ty. The thick plot is for T’y and the thin one is for T's.
The two plots coincide for extreme values of g2, but they are different for intermediate
values of .

Let’s considerT'; first. The DM’s payoff depends on how much information she has
when making a decision. The increase in ga has two effects on her payoff. On the one
hand, it benefits the DM since the signal she directly observes is more accurate. On

the other hand, it could be disadvantageous because the increase in g may discourage
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the expert from revealing his information, as we have shown earlier. Combining these
two effects, we see that the DM’s expected payoff is NOT monotonically increasing
in qo. Specifically, the thick curve has two discontinuities at gz = 0.67839 and q» =
0.91990. These are the two points at which the information content of the expert’s
communication changes. They divide the interval [0.5,1] into three ranges. Within
each of the three ranges, the DM’s payoff is increasing in g.

The analysis is quite similar in T'y. The thin curve has only one discontinuity
at o = 0.89711. If g2 € [0.5,0.89711], a truth-telling equilibrium exists in T'y; if
¢ € (0.89711, 1], only babbling equilibrium exists.

As we can see from the figure, when g € (0.67839,0.89711], the DM extracts more
information in Ty by keeping sy private and therefore enjoys a higher expected utility.
However, when g € (0.89711,0.91990], she could extract more information in I'y by

revealing sg to the expert.

2.4.4 Game I's: No commitment — The DM strategically

communicates to the expert

Now suppose we add an extra round of communication in which the DM strategically
and costlessly communicate her observation of sy to the expert before the expert
reports to her. How does this extra round of communication affect the DM’s ability
to extract information from the expert?

Define equilibrium outcomes in all three games on the payoff relevant space Sy X
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S, x A. Denote by EO (T;) the set of equilibrium outcomes for game I';, i =1, 2, 3.

Clearly, the set depends on the parameter values p, g1, g2 and b.
Lemma 2.2. Fiz p, q1, ¢2 and b. EO () C EO (Ts).

The intuition behind this lemma is simple. Consider any equilibrium in I'y. Call
it F(I'y). Since the messages used by the DM in the first round of communication
in T'3 are “cheap talk,” there always exists an equilibrium in I's in which the DM
babbles in the first round of communication and in effect keeps her signal s, private
and the players follow the strategies prescribed in E (T'z) in the continuation of T's.
Therefore, when given an opportunity to costlessly communicate to the expert first,
the DM can do at least as well as when she keeps her information private.

What is more surprising is the following result.

Proposition 2.6. Fiz p, q1, ¢o and b. The DM cannot extract more information

from the expert in I's than in T';.

See appendix for proof.

This proposition says that the extra round of strategic communication does not
help the DM. Her expected payoff in the most informative equilibrium in I'; is the
same as that in ['s.

What is the intuition behind this result? In I's, the sole purpose of the first round

of (the DM’s) communication is to elicit information from the expert in the second



2.5 Equilibrium Selection 108

round’. If one particular message does strictly better than the other for this purpose,
the other message cannot be sent by the DM in equilibrium and pooling happens in
the first round of communication. In this case, the set of equilibrium outcomes in I's
is the same as that in I'y. If both messages 0 and 1 are sent in equilibrium in the first
round of communication in I's, then it must be the case that the expert responds to
messages 0 and 1 in the same way. That is, the expert reveals the same amount of
information in the most informative equilibrium in the continuation of I's, no matter
what message he receives from the DM. It follows that the expert will reveal the
same amount of information even if the DM keeps her signal private. Again, in this
case, the DM does no better in I's than in I';. Put it in a nutshell, since the DM’s
preference for information (at the final stage of the game, when she makes decisions) is
monotone (the more information the better), she cannot effectively communicate her
private information to the expert without the commitment to revealing s, truthfully

and is therefore unable to extract more information from the expert.

2.5 Equilibrium Selection

So far we have focused on finding the conditions for the existence of truth-telling

equilibria. In our comparative statics analysis and comparison of different games,

"This is different from Aumann and Hart’s “long cheap talk” (2003). They consider two-person
games in which one player is better informed but both players take payoff-relevant actions and they
allow the players to talk as long as they wish. In their model, different rounds of cheap talk can
help the players agree on compromises as well as reveal substantive information.
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we have implicitly focused on the “most informative” equilibrium. But is there any
reason why we should select it among the multiple equilibria that may exist? When
the parameters are such that a truth-telling equilibrium exists as well as a babbling
equilibrium, why should the former be considered more “reasonable”?

From a welfare perspective, we have shown before that all types of players have
higher expected payoffs in a truth-telling equilibrium than in a mixed strategy non-
babbling equilibrium. Moreover, the truth-telling equilibrium ez ante Pareto dom-
inates the babbling equilibrium. Therefore, if we believe that the players would
coordinate on a Pareto dominant equilibrium, then the most informative equilibrium
should prevail. However, Pareto dominance (especially in the ex ante sense) is not
generally accepted as a formal refinement criterion. Below we'll use two different
approaches and see whether we can eliminate “unreasonable” equilibria in our model.

”

The first selection criterion is Farrell’s (1993) “neologism-proofness.” To under-
stand this concept, let’s fix an equilibrium of a cheap talk game. Consider an an-
nouncement by the sender “my type is in the set X.” This announcement is a neol-
ogism if it is not sent in the candidate equilibrium. A neologism is deemed credible
(relative to the equilibrium) if it is precisely those types in the set X that receive
strictly higher payoffs than their equilibrium payoffs if the neologism is believed by
the receiver. An equilibrium is neologism-proof if there does not exist any credible

neologism relative to it.

If we apply the neologism-proofness criterion to the games under consideration,
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we have the following result.

Proposition 2.7. In game I's and the subgames of I'1 and I's after the DM sends
the expert a message, a truth-telling equilibrium is always neologism-proof for any
parameter values; a mized strategy non-babbling equilibrium is never neologism-proof;
a babbling equilibrium is neologism-proof if the following two conditions hold: (1) type
0 exp.ert (strictly) prefers being perceived as type 1 than pooling with type 1 and (2)

type 0 expert (weakly) prefers pooling with type 1 than being identified as type 0.

In a truth-telling equilibrium, two announcements “my type is 1” and “my type
is 07 are made in equilibrium and the only neologism is “my type is in {0,1}.” Since
type 1 expert would never want to make this announcement, it is not credible and
therefore a truth-telling equilibrium is neologism-proof.

As we have shown before, in a mixed strategy non-babbling equilibrium, type 0
expert randomizes between sending message 0 and message 1 and type 1 expert sends
only one message. Therefore, “my type is 1” is a neologism. It is also a credible one
because only type 1 expert gets a strictly higher payoff than the equilibrium payoff if
the neologism is believed.® Hence the equilibrium is not neologism-proof.

Now consider a babbling equilibrium. Relative to a babbling equilibrium, there

are two neologisms: “my type is 1” and “my type is 0.” First consider the neologism

81n the candidate equilibrium, type 0 is indifferent between being identified as type 0 and (par-
tially) pooling with type 1. So the action that the DM takes when believing that the expert is type
1 is too high to be profitable. And obviously, with an upward bias, type 1 expert would be better
off if identified as type 1.
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“my type is 1.” Type 1 expert would want to make the announcement since he gets
a strictly higher payoff if it is believed. Moreover, if type 0 expert prefers playing the
babbling equilibrium than being perceived as type 1, then it is a credible neologism.
As to the other neologism “my type is 0,” it is clear that type 1 expert would not
want to make the announcement and type 0 would if and only being identified as
type 0 gives him a (strictly) higher payoff than babbling and in that case, this is a
credible neologism. For the babbling equilibrium to be neologism-proof, there cannot
exist any credible neologism and hence the result in Proposition 2.7.

One well-recognized problem with the selection criterion of “neologism-proofness”
is that in certain games, “neologism-proof” equilibria do not exist. In fact, take any of
the three games considered in this paper, there are parameters with which “neologism-
proof” equilibria fail to exist. To see this, fix a game and suppose the parameters
are such that only babbling on the expert’s part can happen in equilibrium. The two
neologisms relative to the equilibrium are “my type is 0” and “my typeis 1.” Are they
credible? As we have shown before, when babbling is the unique equilibrium outcome,
the IC constraint for type 0 expert does not hold and he prefers being perceived as
type 1 to being identified as type 0. It follows that he prefers babbling to being
identified as type 0 as well. Hence the neologism “my type is 0” is not credible.
However, in light of Proposition 2.7, the other neologism “my type is 1” is credible
provided that type 0 prefers babbling to being perceived as type 1. Hence, when the

expert’s bias is sufficiently large (so that babbling is the unique equilibrium outcome)
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but not too large (so that “my type is 17 is a credible neologism), no equilibrium
passes the “neologism-proofness” test.

The second approach of refinement that we take is similar to what we did in
Chapter 1. Imagine there is a small probability that the players do not behave
strategically. Specifically, suppose with probability 8, the expert is an “honest” type
who always tells the truth about his signal s; through the messages m and with
probability A, the DM is a “naive” type who believes (potentially incorrectly) that the
messages sent by the expert are truthful and chooses her actions accordingly. Assume
that the probability distributions of the players’ types (strategic or “behavioral”) are
independent and they are also independent of the distribution of w.

When we perturb our games with small probabilities of the behavioral types, we
can conduct a robustness test of the multiple equilibria that exist in the unperturbed
game. Similar to Chapter 1, we focus on the class of “monotonic” equilibria. However,
since we are considering a model where the state/message space is binary instead
of continuous, the definition of “monotonicity” is modified. Consider the strategic
expert’s strategy, o; (s1,m, ), in a perturbed version of the game I';. Fix the other
variables that o; (s1,m,-) may depend on. Monotonicity requires that o;(0,0,) >
0; (1,0,-) (or equivalently, o; (1,1,-) > 05 (0,1,-). That is, the probability with which
type 0 expert sends message 0 is higher than the probability with which type 1 expert
sends message 0.

Consider an unperturbed game I" (I can be T'y or the subgames in I'; and I's after
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the DM sends a message to the expert.) Fix an equilibrium E in game T'. We say
that F is robust to the perturbation if there exist converging sequences {6, }oe; and
Dy (limp—eo 0 = 0 and limg, 0o An = 0) such that E is the limit monotonic

equilibrium of the sequence of games {T'y,, x, }. We have the following proposition.

Proposition 2.8. The equilibrium E in game T is robust to the perturbation if and
only if one of the following conditions is satisfied:

1. E is a truth-telling equilibrium.

2. E is a mized strateqy non-babbling equilibrium in which type 1 expert sends
m = 1 with probability 1 and type 0 expert sends both m =1 and m = 0 with strictly
positive probability.

3. E is a babbling equilibrium in which both types of expert send m = 1 with

probability 1 and type 0 expert strictly prefers babbling to being identified as type 0.

See appendix for proof.

As we see, the above two approches of equilibrium selection generate different
predictions.

The concept of “neologism-proofness” yields stronger predictions for the games
under consideration. However, sometimes it is too strong that no equilibrium is
neologism-proof.

The “perturbation” approach does not have the non-existence problem. To see
this, fix a game and suppose the parameters are such that a truth-telling equilibrium

fails to exist (which implies that a mixed strategy non-babbling equilibrium does
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not exist either), so the unique equilibrium outcome involves babbling. Since type
0 expert’s IC constraint for truth telling is violated, type 0 expert prefers being
(incorrectly) perceived as type 1 to being identified as type 0 by the DM. This implies
that he strictly prefers pooling with type 1 to being identified as type 0.° According
to Proposition 2.8, the babbling equilibrium where both type of the expert send the
high message is robust to the perturbation.

Although the problem of non-existence does not arise, the perturbation approach
is not fully satisfactory for the purpose of equilibrium selection either because for
certain parameter values, it still admits multiple equilibria.!® It is interesting to note
that if there are multiple equilibria that pass our robustness test, then among them,
only the truth-telling equilibrium is neologism-proof. To see this, first note that the
mixed strategy non-babbling equilibrium is not neologism-proof. Now consider the
babbling equilibrium where both types of the expert send message 1 and type 0 expert
prefers babbling (and pooling with type 1) to being identifed as type 0. Since a truth-

telling equilibrium exists, type 0 expert must prefer being identifed as type 0 to being

9The action that type 0 expert induces the DM to take when pooling with type 1 is between
the actions he induces when identified as type 0 and when perceived as type 1. Since type 0’s IC
constraint for truth telling does not hold, the action that he induces when perceived as type 1 is not
too high to be profitable. Accordingly, type 0 expert must prefer the higher action that he induces
when pooling with type 1 to the action he induces when identified as type 0.

10When applied to the Crawford and Sobel (1982) model with a continuous state space, the
perturbation approach generates strong results. However, when the state space is binary, the results
are weaker. In both cases, we find that in a monotonic equilibrium of a perturbed game, the expected
equilibrium payoff for the lowest type of expert (type 0) must be at least as high as the payoff he
gets if identified by the DM as the lowest type. This condition implies uniqueness in the case of a
continuous state space, but not necessarily so when the state space is binary.
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perceived as type 1. It follows that type 0 expert prefers babbling to being perceived
as type 1. This implies that relative to the babbling equilibrium, “my type is 1”7 is a

credible neologism and therefore the babbling equilibrium is not neologism-proof.

2.6 Conclusion

In order to make good decisions, people often seek advice and information from others
(whom are usually referred to as experts in the literature), who do not necessarily
share the same interests.

In a one-shot communication game between an expert and a DM where reputa-
tional concerns are absent, the expert’s incentives for information transmission are
largely determined by the actioﬁs that the DM takes in response to his messages,
which are in turn affected by the private information that the DM possesses, as we
assume that the DM is partially informed as well.

When taking this strategic interaction into consideration, we find that the DM
does not necessarily benefit from having more accurate information of her own since
it may have the adverse effect of discouraging the expert from revealing his private
information in equilibrium.

Even in the simple setting that we consider, the DM’s choice between revealing
her information to the expert before the expert reports to her or keeping it private is
not trivial. Which alternative yields a higher expected payoff to the decision maker

depends on how aligned the players’ interests are. Furthermore, given that the DM
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always wants to extract as much information as possible from the expert, even if she
has an opportunity to communicate (without committing to telling the truth) to the
expert before he reports, the DM cannot extract more information than if she keeps

her own signal private.
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2.7 Appendix

Proof of Remark 2.1. We need to show that 3‘% > 0.

db _ 1 (1-p) p—2q1+1+8pq1 —2p—8pq?+297—8p?q1 +8p? ¢} +2p°
dgn — 2 (2pq1+1-a1-p)* (—p+2pg1 —a1)” '
Since 1 (L-p)p > 0, all we need to show is —2¢; + 1+ 8pg; —2p —

2 (2pg1+1-a1—p) 2 (—p+2p1—q1)°

8pq? + 2¢% — 8p°qy + 8p*q? + 2p® > 0. Note that

—2g; + 1+ 8pgy — 2p — 8pg: + 2q; — 8p°q + 8p°q; + 2p°
= 1+22pg —q1 +1-p) (2pg1 — q1 — p)

= 1-2(pn+(1-p)(1-q)p(l-q)+1-p)a) >0,

since (pg1 + (L —p) (1 —q1)) (p(1 —q1) + (1 = p) 1) < 3. Hence % > 0. O

Proof of Proposition 2.3. We have shown in the main text that the DM and both
types of the expert has higher payoff in the truth-telling equilibrium than in the
mixed strategy non-babbling equilibrium (type 1 expert has strictly higher payoff).
We need to compare the players’ expected equilibrium payoffs in the truth-telling
equilibrium and the babbling equilibrium.

Obviously, the DM’s expected payoff is higher in the truth-telling equilibrium
since more information is transmitted. Now consider the expert.

In a truth-telling equilibrium, the expert’s expected payoff is

prob (s = 1) (—b* — var (w|s; = 1)) + prob (s; = 0) (—b* — var (w|s; = 0))
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= —b? — prob (s; = 1) var (w|s; = 1) — prob(s; = 0)var (w|s; = 0).

In a babbling equilibrium, however, the expert’s expected payoff is equal to

p(-=(p—-1-0%) +(1-p)(-(-0-1)7°)

= —b* —wvar (w)

Since prob(s; = 1)var (w|sy = 1) + prob (s; = 0) var (w|s; = 0) < var (w) when

q > %, the expert has a higher expected payoff in the truth-telling equilibrium. [0

Proof of Proposition 2.4. Suppose there exists an equilibrium in which the expert
reports s; truthfully when s; = 0. In this equilibrium, the DM’s action strat-
egy must satisfy a(m=0,s5 =0) = E(w|s; =0,52=0) and a(m= 1,5, =0) =

E (w|s; = 1,55 = 0). The constraint /Cp requires that
E(UE (G(0,0) ,w,b) |81 = 0,82 = O) > E(UE (a(l,O) ,w,b) |81 = 0,82 == 0),
which is equivalent to

E(—(a(0,0) —w —b)*|s; = 0,5, = 0) > E(—(a(1,0) —w — b)*|s; = 0,8, = 0) =
—(E (w|sy = 0,8, = 0) — E (w|s; = 0,55 = 0) — b)* — Var (w|s; = 0,55 = 0)

> — (E(w|s1 = 1,5 =0) — E (w|s; = 0,8, = 0) — b)* — Var (w|s; = 0,53 =0) =

12 pqi (1—g2) pP(l—q)(1—g) _ ’
vz <pq1(1—qz)+(1—p)(1—q1)qz p(l—aq)(1-q)+(1-p) ag b)
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When b > 0, the above inequality can be simplified as b < by.

If b > by, then ICj is violated and truth telling cannot happen in equilibrium
when sy = 0.

Suppose there exists an equilibrium in which the expert reports s; truthfully when
59 = 1. In this equilibrium, the DM’s action strategy must satisfy a (m = 0,52 = 1) =
E(w|s1 =0,s9 =1)and a(m = 1,50 = 1) = E (w|s; = 1,52 = 1). The constraint /C;

requires that
E(UE (a (0’ 1) 7w’b) |81 = 0782 = 1) > E(UE ((1,(1, 1) y W, b) isl = 0; S = 1))

When b > 0, the above inequality can be simplified as b < b;. Also, if b > by, then
IC is violated and truth telling cannot happen in equilibrium when s; = 1. Hence

the result. O

_1 p(1-p)g2(1—g2)(291 1)
Proof of Remark 2.2. bo = 3 o=y i p) a0 G(-a)(0-2) T pas) 20d

b, = % P(1—p)g2(1—g2)(2q1—1)
1 2 (pq1q2+(1—p)(1—q1)(1—q2))(p(l_ql)q2+(1_p)ql(1_q2)) .

The numerators are the same. If we compare the denominators, we see that

(Per(1-q)+(1-p)(1-q1)a)(Pl-a)(1-q)+(1-p)ag) -
(P +(1=p)(1-q)(1-q)p(1-a)e+(1-p)a(l-g))

= qa(1-q1)(2¢2—1)(1—-2p)

Given that ¢,¢2 € (%, 1), we have by > by if and only if p > % O
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Proof of Remark 2.3. Consider b first. Since

1
d((ﬁ(l—@)ﬂl-z’)(l——ﬂ )a2) (P(1—g1)(1—g2) +(1—P)d192) )

dq1
_ (p—22)*(2q1 1)
= s = (e (e —a) =) apna)?? W have
dbg _ p(l—p)qz(l—qz)( (p-22)*(201-1)°
dq 2 (pa1(1-q2)+(1—p)(1—-q1)q2)* (p(1—q1) (1-g2)+(1-p)q192)°

2
+(pql(1—q2)+(1—P)(1—Q1)qz)(P(l—ql)(l—q2)+(1—P)qlqz)) > 0.

Similarly, since

1
d( (pq1q2+<1—p)(1-q1)(1-q2>>(p<1—q1)q2+<1—p)q1<1—q2>)l
dq1

_ (1—;0—(12)2(2(11-—1)
= GraT P ) el —a) e ai—a)® Ve have

dby _ p(1-p)a2(1-q2) ( (1-p—g2)*(21—1)*
dq 2 (pa1g2+(1—p)(1—q1)(1—42))* (pP(1—01)g2+(1-p)gq1 (1—g2))°

2
e e e—maraacay) > O =

dby — 91(1-q1) (P(1~g2) +(1-p)q2) (P—32) .
Proof of Remark 24 3 = G ar(-n(-aa) Gi-a)(-@) +a-paa? Smee &l
the other terms are positive, the sign of ——————db"(z;}q;’qz) is the same as the sign of (p — g2).
dby _ @1(1—q1)(pg2+(1-p)(1-g2))(1—p—q2) e :
d‘l; T (para+(1-p)(1-q1) (1-2))*(P(1—a1) a2 +(1-p) a1 (1-2))*” Similarly, since all the other
terms are positive, the sign of ilm(g;f%‘”) is the same as thesign of (1 —p—g¢2). O

Proof of Proposition 2.5. Suppose there exists a truth-telling equilibrium in I';. In
this equilibrium, the DM’ action strategy satisfies a(m =0,s2=0)
=E(w|s1=0,s9=0) anda(m=1,s, =0) = E(w|s; = 1,50 =0).

The constraint /Cprivate Tequires that

prob (se =0|s; = 0) (E(UE (a(0,0),w,b)|s1 =0,s2 =0))

+prob (s; = 1]s; = 0) (E(U® (a(0,1) ,w,b) [s1 = 0,52 = 1))



2.7 Appendix 121

> prob(sy =0|s; =0) (BE(U” (a(1,0),w,b)|s1 = 0,55 =0))

+prob (s; = 1]sy = 0) (E(U (a(1,1),w,b) |s1 = 0,52 = 1))

Simplifying this constraint, we have

1- Q2)
—bv* > —prob(sy;=0|s; =0 pa: (
prob(s; = Ols )(pql(l~qz)+(1—p)(1~ql)q2
B p(l-—aq)(1—g) Y
p(l—q)(1—g)+ (1 —-p)qge
pa192
—prob (sg = 1ls; =0
probls: = s = 0) (G i~ (- @)
3 p(l-—a)e _p)?
pl-q)@e+(1-p)a(l-q) ’
h ob (s0 = Olsy = 0) = 2A=0)A-0)+(-P)a1gr 4,4
where prob (s; = 0[s1 = 0) p-a)+(-pa o8

_ — 0 — P=g1)g2+(1—p)q1(1—g2)
prob(sz = 1|Sl - O) - p(1—q1)+(1-p)ax

Further simplification shows that the constraint is equivalent to b < bpriyate if & > 0.
This proves that b < byrivate is a necessary condition for a truth-telling equilibrium to
exist in I'y. It is also a sufficient condition because type 0 expert does not have an
incentive to deviate from telling the truth if ICpiyate is satisfied and type 1 expert’s

IC constraint is not binding. O

Proof of Proposition 2.6. WLOG, assume p > %, which implies that by > bprivate > b1-
Fix p,q1, -
If b < bprivate (0, @1, 92), then a truth-telling equilibrium exists in I';. Since the

DM extracts the maximal amount of information fromt the expert in I'y, he cannot
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do better in I's.

Now suppose b > bprivate (P, q1,¢2). So there is no information transmitted in I's.

Suppose b > by > b;. Then clearly the DM cannot extract any information
from the expert in I's either. If b > by, for any belief that the expert may have
over the distribution of sy, the bias b is too high for the IC constraint to hold. As
shown before, when truth telling fails to be an equilibrium, babbling is the unique
equilibrium outcome.

Suppose by > b > bprivate > b1. We can show by contradiction that no information
can be transmitted from the expert to the DM in I's. First, observe that in a PBE
in T3, the expert has to reveal the same amount of information in response to any of
the messages sent with positive probability by the DM (and the information revealed
by the expert on the equilibrium path has to be at least as much the information
revealed off the equilibrium path). Also, recall that an equilibrium where partial
information is transmitted from the expert to the DM exists only if a truth-telling
equilibrium exists. Let’s suppose in I'; an equilibrium exists in which the expert
truthfully reveals s; upon hearing either message 1 or message 0 from the DM. Then,
for the IC constraints to hold, type 0 expert’s posterior belief on the distribution of
sy upon hearing any one of the DM’s messages must be such that with probability
strictly higher than prob (sy = 0|s; = 0), s, = 0. Obviously, this can never be true
with any admissible (mixed) strategy of the DM. Therefore, the expert can only

babble in [z if by > b > bprivate > b1. The DM cannot extract more information by
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strategically sending a message about her signal than by keeping it private. O

Proof of Proposition 2.8. We will prove the proposition for the case where I is the
subgame of I'; after s, is revealed to the expert to be equal to 0 because this case
involves the simplest notation. The same argument applies in other games.

Let 059 and ayy denote the strategic expert and the strategic DM’s strategies in
the perturbed game I'y o.

Suppose Eisa truth-telling equilibrium in the unperturbed game I'. That is, in E ,
(0,001 =1,0(1,1)=1,a(0) = E(w|s1 =0,52=0), a (1) = E(w|s1 = 1,8, = 0).

Now consider a perturbed game I'y ¢. It is easy to see that we have an equilibrium
in Ty ¢ if the strategic players keep their strategies prescribed in E since the strategies
of the strategic types and the behavioral types are the same. Hence a truth-telling
equilibrium is robust to the perturbation.

Suppose E is a mixed strategy non-babbling equilibrium in the unperturbed game

. That is, in E, 0(0,0), ¢(0,1) € (0,1) and o(1,1) = 1. Also,
we have a(0) = FE(w|sy=0,50=0) = p(l_quzl__‘zéggi‘(fi)p)qm and a(1)

_ P(1—g¢2)(g1+(1—q1)o(0,1)) te il
= @ +(1_q1)'f(0?f)) +(1f;)q2 CTEREEE Type 0 expert is indifferent between a (0)

and a(1).
Due to continuity, we can show that for any 61, 62, 63, 64 > 0, there exist €1, €2

s.t. for any A € (0,e;1) and 6 € (0,¢e2), there exist a strategy profile (org (-),ang (+))

11\We suppress the dependence of the strategies on s because in T, s5 is already revealed to be
equal to 0.
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that satisfy |06 (0,0)— ¢ (0,0)] < 81, |oap(0,1)— ¢ (0,1)] < b2, oap(1,1) = 1,
laxe (0) — a(0)] < 63 and |arg (1) — a(1)| < 64 and (orp (-),axre (+)) is a monotonic
equilibrium in T'yy. Hence, a mixed strategy non-babbling equilibrium is robust to
the perturbation.

Suppose Eis a babbling equilibrium in I's in which both types of expert send
m = 1 and type 0 expert strictly prefers babbling to being identified as type 0. That
is, in B, 0(0,1) =0 (1,1) =1 and a(1) = E(w|s; =0) = ZTI_%—}%)_—%. Assume
that a (0) = E (w|s1 = 0, s2 = 0). By assumption, type 0 expert prefers a (1) to a (0).

Now consider a perturbed game I') 5. Suppose in Iy ¢, the strategic expert follows

his strategy in E, i.e., 09 () = o (-). Then, the best response for the strategic DM

. — ] —6
satisfies  axe (O) = a (0) and  ag (1) = P(l—Q2)Z()g¢lh i%i(—g;;r((ll—lz))%(l—e)

6
p(l_q2)<941 +L8—9) +1)
0
p(l-g2) (——4——9%{%1_9) +1) +(1-p)g2

> a(1). The naive DM responds to m = 1 with a =
E (w|s; = 1,8, =0) and to m = 0 with a = E (w|s; = 0,5, = 0). Since type 0 expert
has a continuous utility function and he strictly prefers a (1) to a (0), there exist €1,
ggs.t. forany 0 < A < g1 and 0 < 6 < ey, type 0 expert prefers inducing a4 (1)
with probability (1 — A) and a = E (w|s; = 1, s3 = 0) with probability A to inducing
a (0) with probability 1. Therefore, for 0 < A < e; and 0 < 6 < &2, (020 (-), are ()
constitutes an equilibrium. Hence, E is robust to the perturbation.

To see the “only if” part, note that in a monotonic equilibrium in a perturbed
game [, 5, we have a, g (1) > ay (0) and therefore 054 (1,1) = 1.

Hence, a separating equilibrium or a semi-separating equilibrium in which o (1,1) #
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1 is not robust to the perturbation. Similarly, a babbling equilibrium in which both
types of expert send m = 0 with probability 1 is not robust to the perturbation. Nei-
ther is a babbling equilibrium where both types of expert send both messages with
the same positive probabilities.

Now consider a babbling equilibrium in which both types of expert send m =
1 with probability 1 but type 0 expert weakly prefers being identified as type 0
to babbling. This equilibrium is not robust to the perturbation because in I'yp,
axe (0) = E (w|s1 = 0,52 =0) and aypg (1) > E (w|s2 = 0) and type 0 expert always

has an incentive to deviate and send m = 0 instead of m = 1. O
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