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Abstract

This dissertation studies the impact of learning about unobserved payoff-relevant

variables on economic decisions. In chapter 1, I study a labor market in which em-

ployers learn about a worker’s unobserved skills by observing output. Skills evolve as

a mean-reverting process with a trend that is potentially endogenous due to human

capital accumulation. Output is additively separable in the worker’s skills and in his

hidden effort decision, and is also distorted by Brownian noise. Under general condi-

tions, I show that there is an equilibrium in which effort is a deterministic function

of time. This equilibrium is almost always inefficient.

In chapter 2, I study a class of continuous-time games in which one long-run agent

and a population of small players learn about a hidden state from a public signal that

is subject to Brownian shocks. The long-run agent can influence the small players’

beliefs by affecting the signal or by affecting the hidden state itself, in both cases in

an additively separable way. The impact of the small players’ beliefs on the long-

run agent’s payoff is nonlinear. At a general level, I derive a necessary condition

for Markov Perfect Equilibria in the form of an ordinary differential equation. In a

subclass of games with linear-quadratic structure, I obtain closed-form solutions for

global incentives through solving a new type of partial differential equation. Appli-

cations to procurement and monetary policy in the context of partial information are

developed.

In chapter 3, joint with Yuliy Sannikov, a firm’s earnings are driven by its stock of

capital and by an underlying fundamental process. Earnings are not observable at the

moment of investing in capital, thus making fundamentals unobserved. The manager

learns about fundamentals by observing a signal which is distorted by Brownian noise.

Investment is costly and subject to adjustment costs. We show that the sensitivity

of investment to expected earnings increases as uncertainty decays over time if and
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only if earnings are a concave function of fundamentals. We also show that the firm’s

value is always below its corresponding value in the full-information benchmark.
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Chapter 1

Shock Persistence, Endogenous

Skills and Career Concerns

1.1 Introduction

Environmental uncertainty plays an important role in the evolution of workers’ per-

ceived skills. While firms can influence an employee’s productivity through tailored

programs such as compensation schemes, on-the-job training or learning-by-doing, ex-

ogenous forces that affect the work environment can also have an important impact

on performance. For instance, a worker’s productivity may vary because unforeseen

events force him to be assigned to a different task at which his productivity changes, or

because tasks itself evolve due to technological progress. Moreover, these exogenous

changes affect an employer’s inference process about a worker’s ability, as current

performance can become a poor predictor of future one. Thus, in settings where

wages are based on perceived skills, the degree of randomness of the environment is

thus expected to influence the strategic behavior of a worker whose ultimate goal is

to affect his future income stream by building a good reputation.
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In this chapter I study how career concerns are shaped by the degree of random-

ness in the job environment. More specifically, I build on Holmstrom’s (1982, 1999)

seminal paper of career concerns in order to construct a continuous-time model of

reputation that extends his work along two dimensions. First, I allow skills to be

any process within the class of Gaussian diffusion (the continuous-time analog of an

AR(1) process), with the persistence of shocks to productivity being the measure of

environmental uncertainty. Second, I allow the worker to take actions that directly

affect productivity. Since these actions have persistent effects on skills, they have the

flavor of investments in human capital. The outcome is a very flexible and general

framework that provides particularly clean insights on how belief-distortion mecha-

nisms operate, on how wages and effort levels evolve over time, and on the extent to

which reputation motives generate socially efficient outcomes.

Traditional career concerns models have focused on issues such as the extent of

markets’ efficiency (Holmstrom’s paper), on how different information structures and

multitasking affect incentives (Dewatripont et al. (1999a,b)), on the interplay between

implicit incentives and short-term contracts (Gibbons and Murphy (1992)) and even

on herding behavior (Scharfstein and Stein (1990)). In this chapter, in turn, I provide

a detailed analysis of how different degrees of environmental uncertainty influence the

reputational motives faced by individuals in dynamic settings. It is widely understood

that forward-looking agents evaluate not only the immediate reputational benefits

from their actions, but also their long-run consequences. Such analysis is particularly

relevant in settings where market participants have precise estimates of a worker’s

skills, and hence, convergence to a neighborhood of the stationary learning level occurs

relatively fast. I show that the persistence of shocks to productivity (which is what

really determines the long-run uncertainty associated to skills) crucially affects the size

of the incentives created by career concerns. Moreover, I discover that Holmstrom’s

classic efficiency result (skills evolving as a random walk and an infinitely patient
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worker) is truly an exception, with both under- and over-provision of effort as robust

equilibrium outcomes for more general skills processes. Inefficiencies within career

concerns models with exogenous Gaussian skills are a pervasive phenomena, going

beyond discounting and transient-learning considerations.

The choice of a continuous-time framework is largely motivated by the intention

to provide clean insights on how the dynamics of learning determine the gains that

arise from “signal-jamming”. In continuous-time settings of learning with Gaussian

processes (Liptser and Shiryaev (1977)), the evolution of posterior beliefs reduce to

a stochastic differential equation for the posterior mean and an ordinary differential

equation for the posterior second moment. While the latter is completely exogenous,

the former depends on the observed path of output and thus is controlled by the

worker through his effort decision. In the absence of human capital accumulation,

workers evaluate how much effort to exert, taking into account both how responsive

beliefs are to new output observations, and how fast these beliefs subsequently decay

over time. The strength of these forces are measured by what I call the sensitivity of

beliefs to new information and the rate at which beliefs discount past output observa-

tions, respectively. While higher values of the sensitivity process increase the short-

term benefits from belief-distortion, higher values of the discounting process make

these distortions less persistent, and thus less attractive. In a stationary-learning

setting the sensitivity-discount ratio corresponds to a measure of the overall respon-

siveness of beliefs to aggregate information, and this is what determines the benefits

from belief-distortion. Most interestingly, this ratio is strictly increasing in the degree

of persistence of shocks to skills, allowing us to draw a simple connection between the

degree of randomness in the environment and the corresponding incentives created

by career concerns: as shocks become more persistent, beliefs are gradually more

responsive to overall information, and thus higher effort levels are induced.
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I study human capital accumulation in order to understand how the reputational

incentives that workers face are influenced by the possibility of the workers becoming

endogenously more productive. In such a context, the market’s inability to observe

skills creates belief-manipulation motives on the workers’ side that can be exploited

through hidden investment decisions which boost productivity. Most importantly, I

argue that investments in human capital are, in general, inefficiently low. This is

despite the facts that labor markets are competitive, that there is no limited liability

and that workers bear the full cost of training. Distorted incentives to invest in skills

arise because, in reputation-driven markets, workers value the option to invest in

human capital if and only if it can be used to influence the market’s beliefs about

skills. Market participants know that due to the persistent effects that human capital

has on skills, a temporary additional unit of it today maps into an additional output

stream that a more skilled worker is able to produce. Nevertheless, I show that the

market is able to anticipate only a fraction of the flow actually realized. Competition

then forces the market to pay the expected value of this anticipated stream as an ex-

ante premium, and thus it ceases to have any reputational value for the worker. The

unanticipated component of this additional output stream is thus attributed to non-

observable skills improvement, and it is what determines the worker’s marginal private

benefit from a temporary additional unit of human capital. In a couple of examples

I show how this discrepancy in marginal values actually generates inefficiently low

investments in human capital.

The reason why the market is not able to anticipate the entire additional output

flow coming from human capital accumulation is purely due to discounting. In fact,

the market’s belief process discounts past information at rates always higher than the

rates at which skills keep track of past productivity shocks. This is because market

participants have the history output not explained by effort as their only source of

information. Such a process is the sum of both signal noise and current skills, which
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cannot be disentangled. Therefore, given that this process is not truly a martingale,

the way in which optimal beliefs filter the information conveyed by this signal is

by instantaneously reacting to new output observations, but making these reactions

decay relatively quickly. This in turn can be strategically used by the worker to

extract additional rents from belief-distortion. Even though it is this discounting

wedge which makes human capital accumulation valuable for the worker, learning on

the market’s side is never diffuse enough to induce efficiency.

Following this, I give a detailed study of two types of human capital accumulation

technologies that differ in the degree of irreversibility of the investment technology

mapping investments into skills. In the weak complementarity case investment occurs

through deviating effort to an alternative, but related, activity. Moreover, investments

are perfectly reversible such that temporary ones have low persistence effects on

output. I show that, under some circumstances, the option to acquire training is

delayed: in those environments, the signaling incentives generated by career concerns

are so strong that workers initially focus on influencing the market’s perception about

themselves, and then on investing in skills. Finally, in the strong complementarity

case I study the incentives that are created when human capital accumulation arises

as a byproduct of final goods production. Furthermore, these investments are more

irreversible than in the previous case, so temporary investments have more persistent

effects on output. In such a setting I show that effort profiles are always larger than

predicted in career concern models with exogenous skills. In addition, as long as there

is long-run residual uncertainty concerning beliefs, the effort component associated

with human capital accumulation never vanishes.

Wages in the model have a reputational component and, if the worker can directly

influence output through the choice of an action, an effort component as well. The

latter monotonically decreases, as a consequence of beliefs becoming less responsive

to new information over time. Nevertheless, human capital accumulation introduces
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a positive drift in the beliefs process and, therefore, wages can present increasing and

concave profiles on average. That is, the model is able to generate the observed life-

cycle pattern of wages through the traditional channel of human capital accumulation

(Becker (1964)) and returns to experience (Mincer (1974) and Ben-Porath (1967)).

Even more interesting is the result that, because of learning, the posterior mean

always locally mean-reverts toward the current true value of skills. In numerical

examples I show how reversion towards an stochastically-evolving trend can generate

positive autocorrelation of changes in wages under transient learning, and negative

autocorrelation in steady state.

This chapter is related to various strands in the economic literature. Regarding

career concern models with Gaussian skills, Holmstrom (1982, 1999) provided a formal

framework to analyze Fama’s (1980) conjecture that competitive markets are sufficient

for inducing efficient incentives. He found that stable environments (fixed skills),

discounting and transient-learning effects, among other things, can invalidate Fama’s

claim. Nonetheless, he showed that efficiency is achieved in the random walk case

provided the previous conditions are not met. In a static setting Dewatripont et al.

(1999b) analyzed the effects of additional tasks on career concerns motives, where

they stress the importance that focusing has on incentives. Gibbons and Murphy

(1992) in turn studied the effects of short-term linear contracting on incentives in

the presence of career concerns. They show (theoretically and empirically) that the

sensitivity of optimal wages to performance increases with tenure.

The literature on human capital accumulation is extensive, with Becker (1964) and

Mincer (1974) as classic references. Rosen (1972) has emphasized the role of jobs as

investment opportunities where workers improve their skills and thus increase their

productivity. The idea that workers, through performing tasks, can acquire skills

which in turn are valued by the rest of the market can be understood as task-specific

human capital (see Gibbons and Waldman (2004, 2005)). Regarding wages’ structure,
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Abowd and Card (1988) found negative first-order autocorrelation in changes of wages

using longitudinal date on earnings. They also documented no significant autocorre-

lation for changes in wages separated for more than two periods. Farber and Gibbons

(1996) rejected their pure learning model’s prediction that the residuals of wages

should evolve as a martingale. In a similar vein, the error measure in my model–

the gap between beliefs and true skills– is not a martingale, but instead a mean-

reverting process around zero. Closely related to this chapter is the work of Kahn

and Lange (2011). They find that combining learning and evolving productivity does

a better job at matching the covariance structure of wages in the data used by Baker,

Gibbs and Holmstrom (1994a,b) than a pure learning or pure productivity model by

themselves would. Finally, this chapter is to some extent related to continuous-time

techniques for addressing dynamic incentive problems. In particular, Sannikov (2008)

developed a continuous-time framework to analyze a principal-agent interaction from

a dynamic programming perspective. In his recursive formulation of the problem,

the sensitivity of the agent’s continuation-value to new output observations plays a

crucial role in shaping the agent’s incentives. Similarly, the sensitivity of beliefs to

new information determines an important part of the gains from belief-distortion in

the model presented here.1

In the Section 2 I present the general model. In Section 3 I study how learning

in Gaussian settings takes place, I analyze the forces behind belief-distortion and

show that the existence of equilibria in deterministic strategies is reduced to a simple

optimization problem. In Section 4 I analyze career concerns models with exogenous

skills. In Section 5 I add human capital accumulation and discuss the on-equilibrium

evolution of wages. I conclude in Section 6. All proofs are relegated to Appendix A.

1An important difference between both models is that in Sannikov’s problem the
principal controls the sensitivity process, while in my model it is completely exoge-
nous.
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1.2 The Model

1.2.1 Output Technology, Skills Process and Human Capital

Consider a worker who is able to produce an output ξ := (ξt)t≥0 continuously over

time. I assume it obeys the following dynamic

dξt = (at + θt)dt+ σξdZ
ξ
t , t ≥ 0, (1.1)

where Zξ := (Zξ)t≥0 is a one-dimensional Brownian motion, σξ > 0 represents the

volatility of the signal’s noise component and at is the worker’s effort choice at time t,

which is subject to moral hazard. The term θt is a random variable representing some

measure of the worker’s current skills, t ≥ 0. Equivalently, it could be interpreted as

the value of the worker’s ability in a changing environment.2 The stochastic process

θ := (θt)t≥0 is not observable by the market participants, and I refer to it as the

worker’s skills process. The output process ξ is a public signal in the economy.3

I assume that skills evolve according to the stochastic differential equation (SDE)

dθt = (θ̄t(a) + κθt)dt+ σθdZ
θ
t , t ≥ 0. (1.2)

Here Zθ := (Zθ)t≥0 is a one-dimensional Brownian motion independent from Zξ

representing shocks that affect true skills (or alternatively, that affect the value of a

worker’s ability in a changing environment). I refer to these shocks as productivity

shocks and the parameter σθ > 0 measures their volatility. The family (θt(·))≥0 is an

2In Jovanovic (1979) market participants learn about the quality of a firm-specific
match between a worker and a firm. A similar matching interpretation could be
applied to the model presented here if the match is understood as task-specific within
a changing environment.

3The choice of this technology greatly simplifies the analysis and is standard in
career concerns papers. The combination of complementarities in the production
function, moral hazard and learning, within fully dynamic models is still an open
question in the literature.
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endogenous trend affecting the way in which skills grow over time (see Assumption

1 below for more details). Finally, the parameter κ ∈ R will be referred as the slope

of the skills process. This general specification is able to encompass a wide variety

of situations: workers suffering productivity shocks of different persistence levels,

environments evolving at different speeds, and workers endogenously adapting to the

environment, among others.

To understand the power of this specification, suppose first that skills evolve in

a completely exogenous fashion, i.e. θt(·) ≡ θ ∈ R, for all t ≥ 0. In this case,

by varying θ, κ and σθ the entire class of time-homogeneous Gaussian diffusions is

covered.4 Particular examples are:

(i) Constant skills: σθ = κ = θ = 0;

(ii) Skills evolving as a martingale: κ = θ = 0, σθ 6= 0;

(iii) Mean-reverting skills: κ < 0, σθ 6= 0;

(iv) Skills growing at a positive rate: κ > 0, σθ 6= 0;

(v) I.i.d. skills: σθ = σ
√
|κ|, σ 6= 0, and κ → −∞. In this case θt ∼ N (0, σ2/2) for

all t ≥ 0.

Situations with non-zero volatility can be interpreted as environments subject

to important technological changes, or settings in which workers suffer from non-

negligible productivity shocks. The relative strength of these shocks is represented

by the drift of the skills process. The martingale specification represents rapidly

changing environments and workers who easily adjust to new scenarios. For example,

technological changes that put pressure on the worker falling into obsolescence are,

4A time-homogeneous Gaussian diffusion X := (Xt)t≥0 corresponds to an Ito pro-
cess such that its volatility is constant and its drift is affine with constant coefficients,
i.e. it satisfies the SDE dXt = (α + βXt)dt + σdZt for some σ, α, β ∈ R, where
Z := (Zt)t≥0 is a Brownian motion.

9



on average, immediately canceled out by (unmodeled) skills accumulation. As a

consequence, whether the worker will become more or less productive relative to the

environment cannot be anticipated, as captured by the zero-drift condition. In the

mean-reverting specification (the continuous-time analog of an AR(1) process with

root less than 1), the parameter θ/|κ| corresponds to a value towards which skills are

expected to converge in the long-run. Since skills are driven back to this mean-trend

whenever away from it, there is some short-run predictability on the value of the

worker’s ability. In such a setting, productivity shocks are less persistent than in the

martingale formulation and the rate at which they decay is measured by κ. In fact,

as this parameter decreases, shocks tend to be less and less persistent, disappearing

almost instantaneously in the limit as κ → −∞. A mean-reverting specification of

skills may represent a worker subject to daily productivity shocks that temporarily

push him away from his human capital level (the mean trend), but which tend to

disappear on average as the time horizon expands. Alternatively, it could represent

the value of a worker’s ability in environments where unmodeled frictions prevent

immediate adjustments. In this sense, any advantage or disadvantage relative to

the environment is expected to persist in the near future, but is also expected to

disappear gradually. Finally, in (iv) (the continuous-time analog of AR(1) processes

with root larger than 1), shocks to productivity exhibit higher persistence than in the

martingale formulation. This could represent situations in which initial experiences

have important consequences on the long-run value of skills. For example, a recently

hired worker who is assigned to a negligent mentor may not develop an appropriate

understanding of his assigned task, becoming permanently disadvantaged relative

to other workers in the same cohort but assigned to more competent instructors.

Alternatively, it could represent highly unstable environments characterized by great

dynamism and randomness. For instance, in trying to adapt to the rapid changes

10



in the tech industry a worker may either become permanently obsolete or he may

develop the exact set of skills which will become essential for a long period of time.

In all these formulations different workers can be identified with different sample

paths of Zθ. That is, unmodeled workers’ characteristics that affect skills are summa-

rized in the realization of productivity shocks. This in turn will generate considerable

cross-sectional dispersion of skills within each specification (i)-(v). Yet, the likelihood

at which highly productive, average or unproductive workers arise will depend on the

particular model.

In describing each model, I have emphasized how the persistence of shocks to

productivity varies across specifications. The degree of this persistence is captured

by the slope κ. In fact, the solution to (1.2) has the form

θt = eκtθ0 +

∫ t

0

eκ(t−s)θs(a)ds+ σθ

∫ t

0

eκ(t−s)dZθ
s , t ≥ 0, (1.3)

from where it can observed that κ measures the weight given to past productivity

shocks. When κ = 0, all past productivity shocks are given the same weight, so two

shocks of the same size at different points in time have the same impact on future

skills. When κ < 0, i.e. skills are mean-reverting, productivity shocks are in fact

discounted at a rate |κ|, so their impact on skills tends to disappear as time passes.

Finally, when skills grow at a rate κ > 0, old productivity shocks have more influence

on current ability than the most recent ones.

Regarding human capital accumulation, I assume that workers enter the labor

market with a human capital stock denoted by θ
o ∈ R representing, for instance,

different educational levels. Once in a firm, workers can learn from their experience

and thus become endogenously more productive. For instance, researchers may be-

come more skilled at their fields of expertise as a consequence of permanent attempts

to solve similar problems. Similarly, by constantly monitoring the prospects of the
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companies they invest in, young traders accumulate experience on how to interpret

information coming from markets. This in turn allows them to improve their trading

strategies. In environments like the ones just described, acquiring skills is more a

result of permanent costly-effort decisions than a result of a choice of investment in

its traditional form (upfront payment in exchange for a stream of payoffs). From

this perspective, the current effort history of efforts (as : 0 ≤ s ≤ t), t ≥ 0 can be

understood as a measure of the worker’s experience at that instant. This experience

in turn maps into a value θt(a), which I interpret as the worker’s human capital stock

at time t ≥ 0. This value is, at any point in time, an aggregate measure of both the

worker’s experience acquired on the job and of past investment in human capital made

before entering the labor market. The family of functionals (θt(·))t≥0 captures the

technology behind human capital accumulation and satisfies the following conditions:

Assumption 1. (i) For each t ≥ 0, θt : M([0, t],R+) → R where M([0, t],R+) is

the set of measurable functions from [0, t] to R+.

(ii) For every y ∈ M([0, t],R+), the mapping s 7→ θs(y), 0 ≤ s ≤ t is Borel-

measurable.

Part (i) in the previous assumption states that the mapping between experience–

as measured by the past history of efforts– and human capital occurs in a determinis-

tic way. Part (ii) simply ensures that integrals are well-defined. This is a very general

formulation in which the only restriction I impose is that all the human capital tech-

nology is non-stochastic. Later in sections 5.1 and 5.2 I study particular examples.

Observe also that because of moral hazard, human capital is private information of

the worker at any point in time.

The performance of a worker depends on both his experience and on how he

adapts to the environment. Hence, it is skills– the interaction between human capital

and productivity shocks– the relevant process for production purposes. My model
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is particularly interesting in its mean-reverting specification. In such a setting skills

evolve around a mean-trend that is permanently changing over time, reflecting the

knowledge that workers acquire from their working experience.

The next figure illustrates how a particular realization of productivity shocks (a

fixed worker) varies across environments:
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θ
=0.4, φ=0.2, a

t
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t
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Mean reverting around endogenous skills

Positive growth rate

Human Capital Trend

Mean reverting around 0

Random Walk

Constant

Figure 1.1: Skills models: Random walk, mean-reverting around zero, mean-reverting
around endogenous trend, and positive growth rate.

In the figure, the lowest non-divergent path corresponds to a particular realization

of a standard Wiener process of volatility σθ = 0.4. In such a specification, the worker

receives, on average, negative productivity shocks throughout the horizon studied.

Adding mean-reversion around zero (κ = −2), instead forces the same sequence of

shocks to fluctuate around zero. This may represent unmodeled forces that drive

the worker to an average productivity level. By adding human capital accumulation

according to an ordinary differential equation governed by f(t, θ, a) = αtat − φθ,

φ = 0.2 and αtat ≡ 1, skills now fluctuate around the plotted human capital trend.
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Finally, the diverging path corresponds to the case in which skills change at a rate

κ = 2. Observe that in this case a short sequence of negative shocks in the beginning

of the worker’s career generates a completely different behavior.

1.2.2 Connection with the Literature

Career Concerns: Because of their tractability in discrete-time frameworks, tradi-

tional career concerns models involving Gaussian skills (Holmstrom (1999); Dewa-

tripont et al. (1999); Gibbons and Murphy (1982)) have analyzed only two particular

specifications: when skills are fixed over time and when they evolve as a random

walk. Although interesting in their own, both models are probably too limited to

capture a wide variety of real-life features related to the evolution of workers’ skills

over long horizons. On the one hand, I have argued that workers may suffer non-

negligible productivity shocks that influence short-term performance. On the other

hand, the random walk specification implicitly assumes both workers and the envi-

ronment freely adjusting to constant change, which allows for no predictability on

the short-run evolution of the value of a worker’s skills. The model presented here

offers a more robust approach to modeling how skills– or their value in a changing

environment– can potentially evolve over time. This allows me to recover both spec-

ifications as special cases of my general Gaussian-diffusion model in the absence of

human capital accumulation.

Another important feature of these classic specifications is that they constitute

landmarks within the class of Gaussian diffusions. First, observe that when skills cor-

respond to a time-zero draw from a normal distribution, the underlying uncertainty

in the model is realized at time zero. To the contrary, in any Gaussian specification

with non-zero volatility (σθ > 0) the underlying uncertainty is gradually revealed as

the stochastic process of skills unfolds over time. As shown in Holmstrom’s paper,

the way in which uncertainty is resolved has important effects on the long-run rep-
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utational motives that arise from career concerns. In fact, he showed that in the

fixed “talent” case infinitely long series of observations reveal the true value of skills

in the long-run, and thus the career concerns incentives asymptotically disappear.

Yet, when skills evolve as a random walk, their inherent unpredictability generates

non-negligible long-run residual uncertainty. This maps into career concerns incen-

tives that survive in a steady-state learning level. Second, notice that the martingale

specification is at the boundary between the family of Gaussian diffusions that ad-

mit a long-run stationary distribution (κ < 0) and the ones that do not (κ ≥ 0).

With respect to learning, the latter family offers a more uncertain environment than

the former, even after arbitrarily long sequences of noisy observations of skills. This

chapter contributes to the previous literature not only by characterizing incentives

for the entire class of Gaussian diffusions, but also by providing a particularly clean

characterization on how incentives are shaped by the persistence of shocks to skills.

I address this in Section 4.

General Training: Becker (1964) argued that efficient investments in general skills

take place when markets are competitive and workers can contribute to their training.

Yet, this conclusion relies heavily upon the contractibility– hence, upon the ex-post

verifiability– of these investments. This assumption is suitable in the context of formal

training methods, since in those programs monitoring problems are typically not an

important issue. However, it is less appropriate in settings where training programs

are less rigid and where output is noisy. Moreover, if these investments affect output-

relevant worker’s characteristics that are unobservable to potential employers, it is

not clear that such an efficiency result would hold.

With this in mind, I study the reputational incentives that workers face when

their investments in acquiring skills are imperfectly monitored. As mentioned earlier,

these investments are in the form of costly-effort decisions. Jobs have become much
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more specific over the last decades and, consequently it is sometimes the task itself

(or similar alternative ones) rather than formal training programs which provides the

worker with the necessary on-the-job training. This is done in Section 5.

1.2.3 Market Structure and Equilibrium Concept

I maintain the assumptions on preferences and market structure imposed by Holm-

strom (1982, 1999). The worker is assumed to be risk neutral and his utility function

is separable in consumption and effort.5 The latter is costly according to a non-

negative function g : R+ → R+, which is strictly increasing, strictly convex, and

satisfying g(0) = 0 and g′(0) = 0. As a consequence, if at time t the manager is paid

wt and exerts effort at, he will get a utility flow of wt − g(at), t ≥ 0.

Regarding market structure, no output-based contracts can be written and the

market for workers is perfectly competitive, so firms earn zero expected discounted

profits from production. Moreover, no long-term contracting is possible and hence

firms earn zero profits at any point in time. Since in this model it is the market

that ultimately sets wages, it corresponds to the “principal” in this market-agent

interaction.

Because the market cannot observe the worker’s skills, it will create estimates of it

based on the public signal ξ. The zero-profit condition at every point in time implies

that, if the market expects the agent to follow the effort strategy a∗ := (a∗t )t≥0, it

will pay him a flow payoff corresponding to the rate at which current production is

expected to change:

wt := lim
h→0

Ea∗ [ξt+h|F ξt ]− ξt
h

= Ea∗ [θt|F ξt ] + a∗t , t ≥ 0, (1.4)

5All the results shown in this chapter are also valid for effort strategies taking
multi-dimensional values, but with only one component of effort affecting output ξ.
Unless otherwise stated, effort is uni-dimensional.
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where F ξt denotes the public information at time t, and Ea∗ [·|F ξt ] is the market’s

conditional expectation under the assumption that the worker is following the strategy

a∗.6 This shows that wages have a reputational component and an effort component,

both depending on what the market conjectures is the strategy that the worker will

follow.

I allow for the worker to have potentially much more information about himself

than the one provided by the public signal ξ. The only restriction I impose is that

his posterior beliefs remain Gaussian (in the next section I study the details of the

learning process).7 Let F := (Ft)t≥0 denote the worker’s information structure and

observe that, in particular, the human capital trend (θt(a))t≥0 belongs to it.

Definition 1.1. A feasible strategy for the worker corresponds to any F−progressively

measurable process taking values in R+. Denote this set by A.8

Since Fξ := (F ξt )t≥0 ⊂ F, a class of strategies of particular interest is one of feasible

strategies adapted to the public signal ξ.

Definition 1.2. A strategy is public if it corresponds to a feasible strategy that is

Fξ−progressively measurable.

The equilibrium concept corresponds to perfect public equilibria, as defined next:9

Definition 1.3. A perfect public equilibrium corresponds to a public strategy a∗ :=

(a∗t )t≥0 and a wage process w := (wt)t≥0, such that:

6Different effort strategies generate different probability measures on the set of
paths of ξ. Therefore, if the market conjectures that the worker is following a∗ when
he has actually chosen the process a, their beliefs will differ.

7In fact, as long as screening contracts are not allowed, all the results presented
below hold if the skills process is actually observed by the worker.

8This definition is up to mild integrability conditions on A such that the filtering
equations exist. Of course, the equilibrium strategy will satisfy them. Hence, I do
not constrain A ex-ante.

9More formally, the equilibrium notion corresponds to a sequential equilibrium.
That is: (i) given a law of motion of beliefs (derived in the next subsection), the
equilibrium strategy must be optimal for the agent; (ii) given the equilibrium action
profile, the law of motion of beliefs is obtained via Bayes rule.
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(i) Given a∗, the market sets a wage of the form wt = Ea∗ [θt|F ξt ] + a∗t for all t ≥ 0;

(ii) For any t ≥ 0 and after any private history Ft, the continuation strategy (a∗s)s≥t

is optimal for the worker given the wage process in (i):

(a∗s)s≥t ∈ argmax
a∈At

Ea
[∫ ∞

t

e−r(s−t)(ws − g(as))ds
∣∣∣ Ft]

s.t. ws = Ea∗ [θs|F ξs ] + a∗s, ∀s ≥ t (1.5)

where At is the set of feasible strategies at time t.

Note that this definition emphasizes the fact that, by choosing an effort strategy

a 6= a∗, the worker induces a distribution over outcome paths that differs from the

one anticipated by the market (Ea[·] operator). This in turn will affect the market’s

beliefs about how skilled the worker is. For instance, if the latter deviates from a∗ at

some instant by exerting more effort, this will generate, in expectation, higher output

observations and the market will revise its expectations upwards. As a consequence,

an increase in effort today will generate, on average, a boost in the reputational

component of future wages.

1.3 Preliminary Results

In this section I first explain how learning takes place and I shed light on which

forces determine the agent’s benefits from distorting the market’s beliefs. Next, I

show that the existence of deterministic equilibria –a particular sub-class of perfect

public equilibria based only on the evolution of the posterior second moment– is

reduced to the existence of a deterministic solution to a simple optimization problem.

This simplification is helpful for understanding the differences between the traditional

benefits from “signal-jamming” and the new gains from human capital accumulation.
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1.3.1 Learning: Filtering Equations

This section characterizes the market’s evolution of beliefs under the conjecture that

the worker is following a public strategy a∗.10 Under this assumption, output (1.1)

and skills (1.2) are given by

dξt = (a∗t + θt)dt+ σξdZ
ξ
t ,

dθt = (θt(a
∗) + κθt)dt+ σθdZ

θ
t .

Since the market does not observe θ, it creates beliefs about the worker’s skills

based on the observation of ξ. The first relevant question is how are the Fξ−Brownian

motions, i.e. the subjective source of uncertainty under the publicly available infor-

mation. This question is important because this process will characterize the on-

equilibrium evolution of beliefs.

Lemma 1.1. Suppose the market conjectures that the manager follows a public strat-

egy a∗. Then, the process

Za∗

t :=
1

σξ

(
ξt −

∫ t

0

(a∗s + Ea∗ [θs|F ξs ])ds

)
, t ≥ 0, (1.6)

is an Fξ−Brownian motion from the market’s perspective. In particular, ξ admits a

diffusion representation of the form

dξt = (a∗t + Ea∗ [θt|F ξt ])dt+ σξdZ
a∗

t , t ≥ 0. (1.7)

The process Za∗ := (Za∗
t )t≥0 is called an innovation process under the public strategy

a.

Proof: See Appendix A.

10Observe that reducing the analysis of beliefs to public strategies is an equilibrium
restriction, but not a constraint on the agent’s set of feasible strategies.
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The intuition for this result is straightforward. At any time t ≥ 0, the expected

rate of change in output corresponds to Ea∗ [a∗t + θt|F ξt ] = a∗t + Ea∗ [θt|F ξt ], where

the last equality comes from the fact that a∗ is Fξ−adapted. As a consequence, the

difference ξt−Xt, t ≥ 0, must be a martingale under the public information structure.

Given ξ’s Gaussian form, this translates into the fact that Za∗ has to be a Brownian

motion.11

Suppose that the market’s initial belief is such that θ0|F0 ∼ N (m0, γ0) and that

it is conjectured that the agent follows a public strategy a∗ ∈ A. Given the above

assumptions, the conditional distribution of θt given the information F ξt is also a

Gaussian for all t ≥ 0 (Theorem 11.1. in Liptser and Shiryaev (1977)). Denote

by m∗t := Ea∗ [θt|F ξt ] and γt := Ea∗ [(θt − m∗t )2|F ξt ] the market’s posterior mean and

variance using the public information up to t, respectively, under the assumption

that the agent follows a∗. The following result is a standard one in filtering theory

(Theorem 12.1. in Liptser and Shiryaev (1977)):

Lemma 1.2. The market’s posterior mean and posterior variance processes, m∗t :=

Ea∗ [θt|F ξt ] and γt := Ea∗ [(θt −m∗t )2|F ξt ], t ≥ 0, respectively, satisfy the equations

dm∗t = (θt(a
∗) + κm∗t )dt+

γt
σξ
dZa∗

t , (1.8)

γ̇t = 2κγt + σ2
θ −

(
γt
σξ

)2

, (1.9)

where the Za∗ is defined in Lemma 1.1.

Proof: See Liptser and Shiryaev (1977).

11Standard results in probability theory show that given any Fξ−progressively mea-
surable strategy a∗, there is measurable map b : R+ × C(R+;R) → R+ such that

a∗t = b(t, ξ) and, for each t, b(t, ξ) is F ξt−measurable. As a consequence, θt(a
∗) = θ̃t(ξ)

for some θ̃t(ξ), which is also F ξt− measurable, t ≥ 0. This functional representation
is needed for applying the filtering techniques from Liptser and Shiryaev (1977).
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Three interesting features of (1.8) and (1.9) are worth noting. First, the evolution

of the posterior mean preserves the stochastic structure of the evolution of skills:

since (θt(a
∗))t≥0 is adapted to Fξ, the drift of the posterior mean is also affine with

the same slope and intercept. Second, the posterior mean’s response to unexpected

output observations (captured by the innovation process) increases with the size of

the mean-square error and decreases with the signal’s volatility (σξ). This implies

that beliefs react more strongly in settings where either less information has been

accumulated, or where signals are more accurate. Finally, the mean-square error

evolves in a deterministic fashion, so, provided that γ0 is common-knowledge, the

entire trajectory of the posterior variance is perfectly anticipated by both parties.

This motivates the following equilibrium definition:

Definition 1.4. A public perfect equilibrium a∗ is deterministic if it depends only on

the evolution of the market’s posterior mean-square error.

The reason for looking at equilibria with this characteristic is twofold. Firstly,

and from a purely technical perspective, the task of finding output-dependent PPE

is hard since the worker would also have to take into account the future benefits

from distorting the market’s conjectured action profile– finding such a fixed-point

can become a particularly hard task. Secondly, the main goal of this chapter is to

study both how the career concerns motives of workers are affected by the uncertainty

in the environment and how these motives evolve throughout the workers’ life-cycle.

By introducing an additional endogenous output-dependent process, the worker’s

incentives may be pushed away from the purely reputational ones. Finally, observe

that in any deterministic equilibrium the market’s anticipated human capital path

(θt(a
∗))t≥0 is exogenously fixed from the worker’s perspective.

The speed of learning is measured by the evolution of γ := (γt)t≥0. Suppose for the

moment that learning is constant, that is, the posterior variance is at the stationary
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level γ∗ given by the solution to the equation 0 = 2κγ∗ + σ2
θ − (γ∗/σξ)

2. It is easy to

see that, given a fixed slope κ ∈ R, the unique stationary-learning level is given by

γ∗ = σ2
ξ

(√
κ2 + σ2

θ/σ
2
ξ + κ

)
, κ ∈ R. (1.10)

Thus γ∗ corresponds to the market’s long-run residual uncertainty regarding the

worker’s skills. Observe that a necessary condition for γ∗ to be equal to zero is

the absence of unobservable productivity shocks (σθ = 0). However, as one can see

from the case in which skills grow at a strictly positive rate (κ > 0), this is not

sufficient. This may seem counterintuitive since when skills evolve in a deterministic

way, a huge part of the model’s uncertainty is eliminated. Nonetheless, what really

matters in terms of asymptotic learning is the value that skills take in the long-run,

and either in the presence of productivity shocks or in a setting without them but in

which skills grow at a strictly positive rate, no such a value exists. In these cases,

arbitrarily long sequences of noise observations are never accurate enough to fully

reveal the true value of skills. The steady-state learning levels for the specifications

(i)-(v) are characterized in the following

Proposition 1.1. In a stochastic environment (σθ > 0), there is always a strictly

positive long-run residual level of uncertainty (γ∗ > 0). Moreover, γ∗ is strictly

increasing in κ and lim
κ→−∞

γ∗ = 0. In the absence of productivity shocks (σθ = 0),

the long-run residual uncertainty is zero if and only if κ ≤ 0, and equals 2κ > 0

otherwise. Finally, for the i.i.d. case (θt(·) ≡ θ ∈ R, σθ = σ
√
|κ|, σ > 0 and

κ→ −∞), γ∗iid := lim
κ→−∞

γ∗ = σ2

2
> 0.

Proof: Straightforward.

�

Observe first that for stochastic environments (σθ 6= 0), the long-run residual un-

certainty is strictly increasing in the slope κ (and weakly increasing in deterministic
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settings). That is, environments in which productivity shocks have a higher persis-

tence generate higher levels of long-run residual uncertainty. This is consistent with

the discussion regarding stationary distributions. Second, γ∗iid coincides with the prior

variance of the skills process in the i.i.d. case. This is quite intuitive given that in

this specification productivity shocks have no persistence and hence, no learning takes

place. In the sequel, I assume that the market’s initial variance γ0 is larger or equal

than γ∗, so the quality of information improves over time.

1.3.2 Belief Distortion

Because skills are not observable, the market cannot distinguish between output

changes coming from the signal noise and output changes that are the consequence

of skills’ variation across time. Therefore, once the market has conjectured that the

worker will follow a particular public strategy, say a∗, the only information that it

has available to construct statistics about the worker’s skills is the process

Yt := ξt −
∫ t

0

a∗sds, t ≥ 0, (1.11)

that is, the component of output not explained by effort. Observe that the market’s

posterior mean (1.8) admits the following representation with respect to Y := (Yt)t≥0

dm∗t = (θt(a
∗) + [κ− βt]m∗t )dt+ βt [dξt − a∗tdt]︸ ︷︷ ︸

dYt:=

, (1.12)

where βt := γt/σ
2
ξ , t ≥ 0, is the market’s beliefs sensitivity process– a measure

of the immediate response of beliefs to new information– which is also exogenous.

Representation (1.12) is important because it shows how the market’s beliefs evolve

from the worker’s perspective. In fact, the agent is aware that, by deviating from

a∗, he can affect the evolution of Y and, as a consequence, neither Za∗ nor m∗ are
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exogenous from his standpoint.12 Equivalently, (1.12) shows how the market’s beliefs

are constructed based on the output signal ξ and the conjectured effort strategy a∗,

which are both part of the market’s information structure.

Market participants know that the signal Y has unknown but, most importantly,

non-zero increments. As a consequence, they are aware this process is not truly

a martingale and hence, that changes in it are not really a surprise. As a result,

the optimal way in which beliefs filter the information conveyed by this signal is

by instantaneously reacting to new output observations, but making the reactions

decay relatively fast. Signal-jamming indeed carries some informational costs: even

though the market reacts to the information provided by Y , past observations of it

are discounted more heavily. To see this observe that the solution to (1.12) has the

form

m∗t = m0e
∫ t
0 (κ−βs)ds +

∫ t

0

e
∫ t
s (κ−βu)duθs(a

∗)ds+

∫ t

0

e
∫ t
s (κ−βu)duβsdYs, t ≥ 0. (1.13)

It is straightforward to see that while skills weigh past productivity shocks according

to κ (see eq. (1.3)), skills’ estimates weigh the information generated by Y using

κ− βt, t ≥ 0, which is strictly less that κ. That is, learning creates a wedge between

the rate at which skills keep track of past productivity shocks, and the rate at which

beliefs keep track of past output observations. I call this wedge the discounting wedge

that arises from learning. Suppose for example that skills grow at a rate κ ≥ 0. Then,

while skills give more weight to old productivity shocks relative to most recent ones

using a factor κ, beliefs now discount more heavily past information using a discount

rate δt := βt − κ > 0, t ≥ 0.13 If instead skills are mean-reverting (κ < 0), and hence

past productivity shocks are discounted according to the fixed rate |κ|, beliefs will

12Of course, Za∗ and, consequently, m∗, are exogenous from the market’s perspec-
tive. Thus, the market’s beliefs do admit a representation with respect to Za∗ .

13Recall that βt := γt
σ2
ξ
> γ∗

σ2
ξ

=
√
κ2 + σ2

θ/σ
2
ξ + κ.
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discount the information generated by Y more heavily using the deterministic discount

process δ := (δt)t≥0 > |κ|. The dynamics of the posterior mean are determined by the

sensitivity process β := (βt)t≥0 and the discount rate process δ := (δt)t≥0. While the

first process measures the initial response of beliefs to new information, the second

process measures how these initial reactions decay over time. They measure two

different aspects of the overall responsiveness of beliefs to aggregate information.

Given that the degree of persistence of the Brownian shocks has important conse-

quences on the long-run behavior of the processes analyzed here, a natural question

that arises is how the slope κ affects both β and δ in the long-run. Suppose that learn-

ing is stationary, so γ∗(κ) = σ2
ξ (
√
κ2 + σ2

θ/σ
2
ξ + κ) and, hence, δ∗(κ) =

√
κ2 + σ2

θ/σ
2
ξ .

From this expression it can be seen that the rate at which beliefs keep track of past

output observations is minimized when skills evolve as a martingale. Moreover, al-

though it is intuitive that past output observations are discounted more heavily in

the mean reverting specification than in the martingale model (given the less erratic

of skills beliefs don’t need to keep track of too much information), it is somewhat

surprising that instead past observations are given less weight when skills grow at

positive rates. The reason is that because in these specifications skills have explosive

paths, past output observations become worse predictors for assessing the current

value of skills. More interesting is that the stationary discount rate δ∗(κ) depends

only on the absolute value of the slope. This occurs because the Kalman-Bucy filter

minimizes the distance to the underlying unobservable and thus the weight that es-

timates attach to past information should not depend on the particular sign of the

slope of the skills process. Nonetheless, the way in which the filter differentiates be-

tween processes that admit a long-run stationary distribution and the ones that don’t

is through the sensitivity process. In fact, from Proposition 1.1, β∗(κ) := γ∗(κ)

σ2
ξ

is in-

creasing in κ. Intuitively speaking, as shocks become more persistent it is more likely

that an output surprise is due to skills improvement rather than the consequence of
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noise. This translates into beliefs reacting more strongly to new output observations.

Graphically:
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Figure 1.2: Steady-state levels of discount rate and sensitivity of beliefs. While the
former does not distinguish between mean-reverting and growth rate processes with
the same absolute value of the slope, the optimal filter makes a distinction between
them through the long-run sensitivity parameter.

When learning is stationary, a natural measure of the overall responsiveness of

beliefs to information is given by the sensitivity-discount ratio

w∗(κ) :=
β∗(κ)

δ∗(κ)
= 1 +

κ√
κ2 + σ2

θ/σ
2
ξ

. (1.14)

The sensitivity-discount ratio is monotonically increasing in κ, as a reflect of beliefs

reacting more strongly to information precisely in environments where there is more

underlying randomness. Take as a reference the martingale specification κ = 0. In

this case, the intensity at which beliefs react to new information has the same size as

the rate at which initial responses decay over time. As a consequence, the sensitivity-

discount ratio takes value 1. If skills are instead mean-reverting, productivity shocks

will have less persistence than in the martingale model. Given this less erratic be-

havior, the overall responsiveness of beliefs to information should be lower than in

the martingale specification. This results in w∗(κ) < 1 whenever κ < 0. Finally,
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when skills grow at a positive rate κ > 0 the higher persistence of productivity shocks

increase the overall value of information relative to the martingale model. There-

fore, the responsiveness of beliefs to information will be higher than in the reference

case, which translates into w∗(κ) > 1 when κ > 0. It turns out that this measure

of belief-responsiveness plays a crucial role in the stationary-learning incentives that

arise from career concerns motives.

1.3.3 Problem Reduction: Main Lemma

In this section I first state the general problem the worker solves. Next, I present a

lemma that reduces the existence of a PPE in deterministic strategies to the existence

of a particular type of solution to a simple deterministic optimization problem. In

fact, in order for a solution to this reduced problem to constitute a deterministic PPE,

it needs to be independent of the current history of human capital at any point in

time. This is because the equilibrium concept used here is quite strong: the market

must correctly anticipate the worker’s effort strategy after any possible private history

observed by the worker.

The worker is allowed to have access to additional sources of information than

the one provided by output. This is a reasonable assumption given that skills are an

inherent characteristic of the agent himself. I do impose that the stochastic structure

of the additional signals must lie within the Gaussian framework. Recall that F :=

(Ft)t≥0 denotes the agent’s information structure (containing, in particular, Fξ) and

that A denotes the set of feasible strategies for the worker (see Definition 1.1). Given

a ∈ A, the worker’s posterior mean evolves as

dmt = (θt(a) + κmt)dt+ σtdZt, t ≥ 0 (1.15)
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where Z := (Zt)t≥0 is a F−Brownian motion and σ := (σt)t≥0 is a non-negative

process.14

Suppose that the worker follows a strategy a ∈ A. Then, from his own perspective,

the process

Za
t :=

1

σξ

(
ξt −

∫ t

0

(mt + at)dt

)
, t ≥ 0 (1.16)

is an F−Brownian motion that is correlated with Z. Therefore, as a direct application

of Lemma 1.1 for F−Brownian motions, output can be written as

dξt = (mt + at)dt+ σξdZ
a
t , t ≥ 0, (1.17)

from the worker’s standpoint.

With this in hand, the worker’s optimization problem is straightforward: given a

deterministic conjecture a∗, after any private history Ft (which includes, in particular,

the current output path ξt0 := (ξs)0≤s≤t and current human capital path (θs)0≤s≤t),

the worker solves

max
a∈A

Ea
[∫ ∞

0

e−r(s−t)(m∗s − g(as))ds
∣∣∣Ft]

s.t. dm∗s = (θs(a
∗)− δsm∗s)ds+ βs(dξs − a∗sds), s > t, m∗t = m∗,o,

dξs = (as +ms)ds+ σξdZ
a
s , s ≥ t,

dms = (θs(a) + κms)ds+ σsdZs, s ≥ t, mt = mo,

θs(a), s ≥ t (1.18)

14A process like this can be generated as follows: suppose the agent also observes
d signals of the form dξi = θtdt + Bi

tdZ
i
t + Ci

tdZ
θ
t where {Zθ, Zi : i = 1, ..., d} is a

family of independent one dimensional Brownian motions. Then, if the coefficients
{(Bi

t, C
i
t)t≥0 : i = 1, ..., n} (which may depend on output) satisfy some measurability

and integrability conditions, standard filtering techniques yield that the conditional
mean (mt)t≥0 evolves as dmt = (θt(a) + κmt)dt + ΣtdZ

o
t where Σt ∈ Rd and Zo

t is a
d-dimensional innovation process. Letting dZt := ΣtdZ

o
t /||Σt|| and σt := ||Σt||, proves

the claim.
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where (a∗s)s≥t, (βs)s≥t, (δs)s≥t, (σs)s≥0 and (θs(a
∗))s≥t are functions of calendar time

only, and m∗,o,mo are given.

In the next lemma I show that looking for deterministic PPE is indeed not a bad

guess as long as the family of functionals (θt(·))t≥0 is deterministic, which is part of

Assumption 1:

Lemma 1.3. The existence of a deterministic equilibrium is reduced to the existence

of a calendar-dependent solution to the following deterministic optimization problem

P :=


max
a∈A

∫∞
0
e−rt

[
βtλtat − g(at) + ρtθt(a)

]
dt

s.t. θt(a), t ≥ 0,

γ0 ≥ γ∗,

where γt, βt, ρt := 1
r−κ − λt and

λt =

∫ ∞
t

e−
∫ s
t (r+δu)duds,

t ≥ 0, are all deterministic functions.15

Proof: See the Appendix.

�

As a consequence, if the starting value of human capital θ
0

is common knowledge,

the market can perfectly anticipate the worker’s optimal actions.

This section connects the model to the standard literature of career concerns

without human capital accumulation. I complement the classic inefficiency results

15Implicit in this result is the assumption that r > κ when there is human capi-
tal accumulation (for otherwise, the benefits from experience are unbounded). This
assumption is not needed when (θt(·))t≥0 is exogenous, allowing us to perform com-
parative statics as the discount rate r approaches zero in standard career concerns
models. Finally, observe that this constraint has a bite only when κ > 0, so the
random walk and mean-reverting models admit arbitrarily low discount rates even in
the presence of partially endogenous skills.
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of excessive effort in the early stages of the workers’ life with the new finding that

there are also long-run inefficiencies which are a robust phenomena within the class

of Gaussian diffusions. Human capital is analyzed in Section 5.

1.4 Inefficiencies in Career Concerns Models

Suppose that there is no human capital accumulation, that is, θt(·) ≡ θ ∈ R, for all

t ≥ 0. From Lemma 1.3, the existence of a PPE in deterministic strategies is reduced

to finding a solution to P . In this particular case such a solution can be found through

pointwise optimization:

Proposition 1.2. The unique PPE in deterministic strategies (a∗t )t≥0 is characterized

by the first order condition

g′(a∗t ) = βt

∫ ∞
t

e−
∫ s
t (r+δu)duds︸ ︷︷ ︸
λt:=

, ∀t ≥ 0 (1.19)

where βt := γt/σ
2
ξ and δt := βt − κ, for all t ≥ 0. Moreover,

da∗t
dt
≤ 0 ⇔ dγt

dt
≤ 0.

Proof: See the Appendix.

�

To understand this result observe that, from the worker’s standpoint, the market’s

beliefs take the form

m∗t = m0e
−

∫ t
0 δsds +

∫ t

0

e−
∫ t
s δuduθs(a

∗)ds+

∫ t

0

e−
∫ t
s δuduβs[msds+ σsdZ

a
s ]

+

∫ t

0

e−
∫ t
s δuduβs[as − a∗s]ds︸ ︷︷ ︸

(∗)

,
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where I have plugged into (1.13) the evolution of output from the worker’s perspective

(1.17). From (*) it is extremely clear how incentives are determined in the model:

a marginal increase in effort over [t, t + 1] generates the additional wage flow ds :=

βte
−

∫ s
t δudu, s ≥ t. Standing at t, this reputational dividend flow has a net present

value of size βtλt, t ≥ 0, and the worker just equates the marginal cost from exerting

effort to the marginal benefit from affecting future wages. As it is clearly seen from

this analysis, β is what really determines the short-term gains of belief-distortion

while δ determines the long-run benefits from it.

The last part of the proposition states that, as information improves, the incentives

to exert effort decay over time. This goes in line with the traditional idea that career

concerns motives generate higher returns in environments with more uncertainty.

However, there are two opposing forces that make this conclusion non-trivial: when γt

decreases over time, both the sensitivity of beliefs to new information, βt, and the rate

at which the market’s beliefs decay, δt, decrease. The first force reduces the short-

term benefits from signal-jamming, while the second force makes any reputational

gain more persistent over time. Therefore, the result says that the short-term losses

from increased precision always outweigh the long-term benefits from more permanent

distortions.

The rest of the section is devoted to the analysis of incentives in the long-run. This

is relevant for two reasons. First, it is not irrational to think of situations in which

falling in a neighborhood of the steady-state level of learning γ∗ occurs relatively

fast. For instance, some industries suffer from considerable turnover of workers and,

therefore, past experiences with former employees may allow firms to have relatively

accurate priors about the skills of incoming workers. Second, a stationary-learning

environment corresponds to the natural setting in where we can evaluate the degree

of efficiency of the incentives created by career concerns motives. To see why this is

the case, observe that the first-best effort process ae := (aet )t≥0 maximizes the surplus
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generated by the interaction between the worker and the firm

E
[∫ ∞

0

e−rt(dξt − g(at)dt)

]
= E

[∫ ∞
0

e−rt(θt − g(at))dt

]
.

In the absence of human capital accumulation, efficiency yields constant rule char-

acterized by the condition g′(ae) = 1. As a consequence, given the transient effects

that learning has on incentives, a permanent efficient provision of incentives cannot

be expected away from steady state.

Theorem 1.1. Assume that skills evolve according to time-homogeneous Gaussian

diffusion of slope κ ∈ R. In a stationary-learning setting optimal effort is constant,

say a∗, and characterized by the first order condition

g′(a∗) =
β∗(κ)

r + δ∗(κ)
=

√
κ2 + σ2

θ/σ
2
ξ + κ√

κ2 + σ2
θ/σ

2
ξ + r

(1.20)

As a consequence:

• When κ < 0: g′(a∗(r)) < 1, for all r ≥ 0;

• When κ = 0: g′(a∗(r))↗ 1 as r → 0;

• When κ > 0: g′(a∗(r)) > 1 for all r ∈ [0, κ) and g′(a∗(r)) ≤ 1 for all r ≥ κ

(with equality if and only if r = κ),

where I made explicit the dependence of effort on the discount rate r ≥ 0.

Proof: Direct from Proposition 1.2 when learning is stationary.

�

The question of whether or not markets induce efficient incentives captured spe-

cial attention in the past (see Fama (1980)). In particular, Holmstrom showed that
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efficiency is achieved when skills evolve as a random walk, learning is stationary and

the worker is infinitely patient. The above result proves that the random walk model

is truly an exception, and long-run inefficiencies are robust to the entire class of Gaus-

sian diffusions. In fact, observe that the introduction of a non-zero slope in the skills

process moves the sensitivity-discount ratio w∗(κ) away from 1 (see eq. (1.14)). If for

instance skills are mean-reverting, the overall responsiveness of beliefs to new infor-

mation is too low, and effort levels will be below efficiency. If skills instead grow at

a positive rate κ > 0, the overall responsiveness of beliefs is too high, and effort will

be inefficiently high for a patient worker. It is only in the martingale model where

the sensitivity-discount ratio has the right size to induce the appropriate incentives.

The main message of this analysis is that although the sensitivity-discount ratio is,

for any given degree of shock persistence, optimal from a statistical perspective, it is

almost never optimal from a social-standpoint.

Given the crucial role that the slope κ plays in the model, I illustrate next how the

steady-state effort depends on it, along with its dependence on the ratio of volatilities

σθ/σξ:

Corollary 1.1. For κ ∈ R and σθ, σξ > 0, denote by a∗(κ, σθ/σξ), the stationary-

learning effort level that arises in equilibrium. Then, for fixed r > 0:

(i) Incentives increase with the randomness of the environment: da∗(κ)
dκ

> 0, for all

κ ∈ R. Also, lim
κ→−∞

a∗(κ, σθ/σξ) = 0 and lim
κ→∞

g′(a∗(κ, σθ/σξ)) = 2;

(ii) Asymptotic efficiency obtains as skills become infinitely volatile relative to signal

noise:

lim
σθ/σξ→∞

g′(a∗(κ, σθ/σξ)) = 1. For r > κ the convergence is from below, (a∗(κ, σθ/σξ)

is strictly increasing in σθ/σξ) and from above otherwise.
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(iii) Long-run incentives may survive in settings of deterministic skills or infinitely

noisy signals: For κ > 0 lim
σθ/σξ→0

g′(a∗(κ, σθ/σξ)) = 2κ
r+κ

. Otherwise, the limit is

zero;

(iv) Incentives disappear for i.i.d. skills: If σθ = σ
√
|κ|, σ > 0, then lim

κ→−∞
a∗(κ, σθ(κ)) =

0.

Proof: See the Appendix.

�

Part (i) in the previous corollary is the consequence of a sensitivity-discount ratio that

is increasing in κ. Since beliefs are more responsive to overall information when skills

are more unstable, there are more benefits from signal-jamming in such environments.

Part (ii) states that by expanding the class of stochastic processes for skills, two

traditional ideas in career concerns models are now only partially true: that incentives

increase both with the uncertainty of the environment (as measured by the volatility

of shocks to productivity), and with the precision of the output signal. In fact, in

environments where shocks have a high persistence (κ > 0), a relatively patient agent

may find it optimal to decrease effort as the ratio of volatilities σθ/σξ increases. This

is because the sensitivity-discount ratio is, for very unstable processes, decreasing in

the ratio of volatilities: for low values of σθ/σξ what really matter is shock persistence,

whereas for large values of it the martingale component of skills is the most relevant.

Part (iii) comes from Proposition 1.1, which states that the long-run residual variance

is non-zero for deterministic skills as long as they grow at strictly positive rates.

Finally, part (iv) is just the consequence of the fact that no real learning takes place

under i.i.d. skills. I illustrate next how the worker’s effort varies with the persistence

of the shocks to productivity (part (i) in the previous corollary):
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Figure 1.3: Optimal effort as a function of shock persistence.

1.5 Human Capital Accumulation

Recall that, from Lemma 1.3, the existence of a deterministic equilibrium is reduced

to the existence of a deterministic solution to P :

P :=


max
a∈A

∫∞
0
e−rt

[
βtλtat − g(at) + ρtθt(a)

]
dt

s.t. θt(a), t ≥ 0,

γ0 ≥ γ∗,

where γt, βt, ρt := 1
r−κ − λt and λt =

∫∞
t
e−

∫ s
t (r+δu)duds, t ≥ 0, are all deterministic.

The human capital model differs from the standard career concerns setting in

that there is a new term in P , ρ := (ρt)t≥0, capturing the reputational benefits

from human capital accumulation. This process is deterministic and strictly positive.

Furthermore, ρ is independent the particular technology at hand. More specifically,

ρt corresponds to the marginal private benefit from a temporary additional unit of

human capital.
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To understand how these rents operate, recall that the true value of skills is given

by

θt = θ0e
κt +

∫ t

0

eκ(t−s)θs(a)ds+ σθ

∫ t

0

eκ(t−s)dZθ
s , t ≥ 0. (1.21)

It is easy to see that a temporary marginal increase in human capital at time t boosts

skills by an amount eκ(s−t) at time s ≥ t on average. This in turn translates into

an additional output flow of expected net present value 1
r−κ > 0 that a more skilled

worker is able to produce. However, since the market’s beliefs decay according to

δ > κ, market participants anticipate an additional output stream of value λt only,

which is strictly below the one actually generated. The difference in value between

these two flows, ρt, corresponds to the expected value of a persistent abnormal output

from the market’s perspective. As a result, it is attributed to skills improvement and,

hence, it determines the private value from a temporary additional unit of human

capital.

The appearance of an unanticipated output flows arising from the worker’s hid-

den investment decision is a phenomenon that takes place in equilibrium. It does

not occur in standard signal-jamming models with exogenous skills (Section 4). In

those models the component of output explained by effort is perfectly anticipated in

equilibrium. Yet, the worker still trapped in exerting effort because the market’s high

expectations about output force him to do so. When workers can instead secretely

invest in acquiring skills, they can make strategic use of the discounting wedge to

generate abnormal returns from the market’s perspective. These in turn determine

the reputational benefits from human capital accumulation.

Even though a fraction of the gains arising from human capital indeed have rep-

utational value, the discounting wedge is never large enough to align marginal pri-

vate benefits with social ones. As a matter of fact, the efficient effort allocation
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ae := (aet )t≥0 corresponds to the solution to

Pe :=


max
a∈A

∫∞
0
e−rt

[
at − g(at) + 1

r−κθt(a)
]
dt

s.t. θt(a), t ≥ 0,

Therefore, the social benefit from a temporary additional unit of human capital stock

at any time is in fact 1
r−κ , which is always larger than ρ. In a competitive setting the

worker internalizes all the benefits and costs from production. This implies that the

value of the anticipated output component λ := (λt)t≥0 is also included in the worker’s

payments. Yet, competition among firms forces them to incorporate this anticipated

value in the form of an ex-ante premium on the worker’s wage process. Given this

exogenous up-front payment, the associated additional output stream arising from

human capital accumulation ceases to have any reputational value for the worker.

This type of inefficiency is captured in the following:

Theorem 1.2. Suppose that skills are unobservable and that they evolve according

to (1.2), that is, dθt = (θ̄t(a) + κθt)dt + σθdZ
θ
t , t ≥ 0, where the family (θt(·))t≥0

satisfies Assumption 1. Suppose instead that output evolves according to dξt = θtdt+

σξdZ
ξ
t , t ≥ 0, that is, the worker now solves a pure investment problem. Then, the

existence of a deterministic equilibrium is reduced to finding a solution to

PI :=


max
a∈A

∫∞
0
e−rt

[
ρtθt(a)− g(at)

]
dt

s.t. θt(a), t ≥ 0,

where ρt = 1
r−κ − λt ≥ 0, t ≥ 0. However, the efficient investment allocation is given

by the solution to

PeI :=


max
a∈A

∫∞
0
e−rt

[
1

r−κθt(a)− g(at)
]
dt

s.t. θt(a), t ≥ 0,
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That is, it is generally the case that inefficient training is an equilibrium outcome of

Gaussian models of reputation.

Proof: See the Appendix.

�

In order to ascertain that inefficiencies are truly a robust phenomenon it is nec-

essary to study different subclasses of non-stochastic human capital accumulation

technologies. Nevertheless, given any particular class, it is highly unlikely both PI

and PeI have the same solution. Consider the two following examples.

Example 1. Perfectly reversible human capital technologies: Assume that θt(a) = at,

t ≥ 0. Although the human capital trend is potentially discontinuous, these invest-

ments have persistent and continuous effects on skills that decay over time, as it can

be seen from (1.3)

θt = eκtθ0 +

∫ t

0

eκ(t−s)asds+ σθ

∫ t

0

eκ(t−s)dZθ
s , t ≥ 0

Within this class g′(a∗t ) = ρt <
1

r−κ = g′(ae). Moreover, a∗ := (a∗t )t≥0 is decreasing.

Finally, the same inequality would hold for more general perfectly-reversible technolo-

gies of the form θt(a) = h(t, at) with h increasing in its second argument.

�

Example 2. Physical-Capital Technologies: Assume that (θt(a))t≥0, t ≥ 0, corre-

sponds to the solution to an ordinary differential equation (ODE) of the form

dθt = (αtat − φθt)dt, t ≥ 0, θ0 = θ
o ≥ 0. (1.22)

Here α := (αt)t≥0 is a positive and uniformly bounded deterministic process represent-

ing life-cycle effects from learning-by-doing (typically non-increasing). φ ∈ (0, 1) is a
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depreciation coefficient. Dynamic-programming arguments used Section 5.3 allow us

to conclude that

g′(at) = αt

∫ ∞
0

e−(r+φ)(s−t)ρsds <
αt

(r + φ)(r − κ)
= g′(ae).

Moreover, a∗ := (a∗t )t≥0 is decreasing.

�

The marginal private benefit from a temporary additional unit of human capital,

ρt, decays as time goes by. This is because reputation-driven workers value the

option to invest in human capital if and only it can be used to distort the market’s

beliefs. As information becomes more precise, the market’s beliefs decay less strongly.

This in turn yields abnormal outputs that decrease in size over time, reducing the

reputational value that human capital has. Therefore, when the market learns about

workers’ skills, human capital inefficiencies are expected to worsen as information

improves. The previous examples show that this is indeed the case.

Instead, when skills are observable by all market participants a competitive market

would set a wage flow process of the form wt = θt, t ≥ 0. Observe that since it is

the worker who actually controls θ := (θt)t≥0, the market’s conjectured strategy a∗

plays no role in the way wages are set. Given this wage process, the worker’s problem

coincides with the one that maximizes the surplus. That is, the standard efficiency

result for general training is recovered.

The reason behind this important discontinuity lies in the fact that, when skills

are observable, both parties can implicitly contract on future values of the skills

process. Although the worker receives a fixed wage θt over the interval [t, t + dt),

by investing in human capital at time t the worker affects θt+dt. The latter random

variable in turn determines the worker’s flow wage over the next interval of time. A

worker standing at time t knows that competition induces the market to implicitly
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offer a contract that is contingent on all the possible values that θt+dt can take at

time t + dt. No ex-ante premia on skills are paid (if they are higher than the ones

realized, firms make losses; if they are lower, the worker switches to a different firm).

Since skills are observable, this contract is verifiable. Because of competition, this

contract is enforceable. As a consequence, efficiency is obtained due to Becker’s classic

argument.16 The same efficiency result would hold if skills were not observable, and

the investment action monitored but not contractible. In this case, private and public

beliefs would be always aligned, and controlled by the worker through his investment

decision. Since beliefs would evolve in the same way as skills do (the slope of both

processes coincide), incentives are determined by the same optimality conditions as

in the skills-observability case, which in turn coincides with the efficient investment

allocation.

Before moving on to the next section I would like to summarize the results found

here. When skills are observable, hidden investments in human capital do not generate

inefficiencies. That is, competitive markets induce workers to take socially efficient

actions. However, the market’s inability to observe workers’ skills creates belief-

manipulation motives on the workers’ side. These motives can be exploited through

hidden investment decisions that boost productivity. Nevertheless, these reputation-

driven incentives are never efficient, and their degree of inefficiency is expected to

worsen over time.

16A similar discontinuity occurs in comparative statics with respect to σξ in career
concerns settings with exogenous skills when learning is stationary. As σξ decreases
to zero, efficient incentives are induced in the limit (Corollary 1.1, part (ii)). Yet,
when σξ = 0, skills are observable and thus no incentives to exert effort are generated.
The same comparative static can be performed in Examples 1 and 2 when learning
is stationary. In fact the stationary value of ρ is ρ∗(σξ) = 1

r−κ −
1

r−κ+β∗(σξ)
. But

β∗(σξ) = γ∗(σξ)/σ
2
ξ → 0 as σξ → 0. As a consequence, ρ∗(σξ)→ 0 as σξ → 0.
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1.5.1 Weak Complementarity

I assume that human capital accumulation and final-goods production are inde-

pendent decisions. The worker is allowed to choose an unobservable action profile

a := (a1
t , a

2
t )t≥0, with the first component affecting output and the second one tem-

porarily boosting skills. Moreover, the impact of the agent’s actions on human capital

is additively separable: θt(a) := θ + a2
t , θ ∈ R, t ≥ 0. Without loss of generality,

θ = 0, so skills evolve according to dθt = (a2
t + κθt)dt + σθdZ

θ
t , t ≥ 0. When κ ≥ 0,

a2
t boosts the rate at which skills grow. If in turn κ < 0, skills locally mean-revert

towards a2
t/|κ|. The weak complementarity between human capital accumulation and

final-goods production is understood as follows: because of their perfect reversibility,

temporary investments in human capital have a low impact on future skills. There-

fore, the impact of these investments on output disappears relatively quickly when

compared to more irreversible technologies.

Using Lemma 1.3, the worker solves

max
a∈A

∫ ∞
0

e−rt
[
βtλta

1
t + ρta

2
t − g(a1

t , a
2
t )
]
dt

s.t. (a1
t , a

2
t ) ∈ C ⊂ R2

+, t ≥ 0,

γ0 ≥ γ∗,

where g : C → R+ represents the disutility of effort and C is the set of feasible values

that effort can take.

A case of particular interest is when g(x, y) = g̃(x+y), some function g̃ : R+ → R+

strictly increasing and convex, since in such a setting strategic effects coming effort

substitutability across tasks are eliminated. A natural questions that arises is whether

the agent will actually decide to invest in human capital accumulation, since by

affecting output directly, the choice of a1 probably biases the worker’s preferences
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towards using the traditional signal-jamming channel. As I show next, this may not

be the case and, furthermore, delayed training is sometimes optimal.

Proposition 1.3. Suppose that effort is perfectly substitutable in the cost-of-effort

function and that C = {(x, y) ∈ R2
+| x+y ≤ R} for some R > 0. Then min{a1,∗

t , a2,∗
t } =

0 for all t ≥ 0 and:

(i) If r − κ ≥ 1, a1
t > 0 for all t ≥ 0. That is, the worker never invests in human

capital;

(ii) If r − κ < 1 and there is non-zero long-run residual uncertainty (γ∗ > 0), then

there exists T (γ0) <∞ such that the worker invests in human capital (a2
t > 0)

from T (γ0) on. Moreover, given any γ0 > γ∗, there exists ε > 0 such that if

1− ε < r − κ < 1, then T (γ0) > 0. That is, the worker delays training.

Proof: See the Appendix.

�

Part (i) eliminates any chance for endogenous accumulation of human capital

when skills mean-revert at sufficiently high rates (κ < −1). In such environments,

any investment in human capital vanishes too fast and, hence, the value of the abnor-

mal output generated from it is too low relative to the benefits associated to directly

boosting output. In contrast, as part (ii) shows, for relatively low values of the mean

reversion coefficient or under a positive grow rate of skills, endogenous experience

accumulation may prevail over the standard signal-jamming channel. More interest-

ingly, it is plausible to observe agents that delay human capital accumulation. In

those cases the worker favors signaling early in his working life since this is actually

the fastest channel to quickly build up a reputation. Later on, once information

has improved and the market’s beliefs are less responsive to new signals, the worker

switches to invest in acquiring more skills. Although stylized on its own, this model
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shows that the decision to delay training is sometimes optimal for relatively impatient

agents in environments where productivity shocks have enough persistence. Such a

behavior is consistent with the career paths observed, for example, in the banking

sector.

1.5.2 Strong Complementarity

Finally, I address the case in which human capital accumulation arises as a byproduct

of final goods production. In this setting the worker chooses a unique action profile

a := (at)t≥0 affecting both output and human capital. The latter arises as solution to

the ODE (1.22) in Example 2, that is, dθt = (αtat − φθt)dt. Again, by Lemma (1.3),

the agent’s problem reduces to an optimal control problem

Pc :=


max
a∈A

∫∞
0
e−rt

[
βtλtat − g(at) + ρtθt(a)

]
dt

s.t. dθt = (αtat − φθt)dt, t > 0,

θ0 = θ
o ≥ 0.

I assume that the worker enters the market with a non-negative human capital stock

so as to prevent future levels of it from taking negative values and thus from growing

even without the exertion of effort. Finally, in order for the worker’s problem to

be finite, α ≥ 0 is assumed to be uniformly bounded and effort can take values in a

bounded set [0, `], with ` large enough. As a consequence, the set of feasible strategies

A corresponds to the set of measurable functions from R+ to [0, `].

Strong complementarity is captured by two features. First, human capital is task-

specific: workers become more productive as a consequence of leaning-by-doing. Sec-

ond, since the mean-trend evolves continuously over time, human capital investments

have now a higher degree of irreversibility when compared to the weak complementar-

ity case. This in turn maps into investments having more persistent effects on output

relative to perfectly reversible ones.
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When human capital evolves as in (1.22) the model become fully separable in

effort and the hidden variables (skills and human capital) so a deterministic public

equilibrium exists. For this purpose, define the continuation value

V(t, x) ≡ sup
a∈A

∫ ∞
t

e−rs
[
asβsλs − g(as) + ρsθ

t,x

s (a)
]
ds, (t, x) ∈ R2

+ (1.23)

where (θ
t,x

s (a))s≥t is the solution of the ODE (1.22) with initial condition θt = x.

Classic results in dynamic programming state that if V is smooth enough (of class

C1(R2
+)) and satisfies a growth condition (see Pham (2009)), then it is the unique

solution to the Hamilton-Jacobi equation (HJ)

0 = sup
u∈A

{
e−rt[βtλtu− g(u) + ρtx] +

∂V
∂t

(t, x) +
∂V
∂x

(t, x)[αtu− φx]

}
, (t, x) ∈ R2

+,

satisfying the following transversality condition: lim
t→∞
V(t, θ

0,x

t (a)) = 0 for every x ∈

R+ and any control a ∈ A. Moreover, the optimal effort strategy is given by the

maximizer u∗(·) of the right-hand side in (HJ), i.e. a∗t = u∗(t, θt), t ≥ 0.

The above problem, although linear in its dynamic, it is not straightforward to

solve. First, the cost function g corresponds to any strictly increasing and convex func-

tion and not necessarily of quadratic form. Second the problem is a non-stationary

one. Nevertheless, it has a particularly clean solution:

Proposition 1.4. In the strong complementarity case a deterministic equilibrium

exists. It is characterized by the following first order condition:

g′(a∗t ) = βtλt + αtµt (1.24)
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where µt :=
∫∞
t
e−(r+φ)(s−t)ρsds is a decreasing function and ρt = 1

r+κ
− λt, t ≥ 0.

The continuation-value function takes the form

V(t, x) = e−rt[ηt + µtx], (t, x) ∈ R2
+, (1.25)

where ηt :=
∫∞
t
e−r(s−t)[g′(a∗s)a

∗
s − g(a∗s)]ds for all t ≥ 0.

Proof: See the Appendix.

�

As it can be seen from the result, the optimal effort allocation is larger than

what predicted by traditional career concerns with exogenous skills. The difference is

given by the discounted benefits associated to a marginal increase in human capital µ,

adjusted by the rate at which the worker learns from experience, α. The discrepancy

between ρ and µ comes from the observation that the former corresponds to the benefit

associated to a temporary marginal increase in the stock of human capital. But in this

model of such a marginal increase disappears only gradually, and thus the shadow

value of human capital is given by µ. Since the informational rent that the worker

acquires through the human capital channel ρ decreases as information improves, µ

is also decreasing. However, as long as there is non-zero residual uncertainty and

the marginal productivity of effort in the human capital technology is bounded away

from zero, µ will never vanish.

Finally, a comment on the incentives to acquire human capital before entering

the job market. The worker’s expected discounted benefits from entering it with

a human capital level of size θ are given by V(0, θ) = η0(α, φ) + µ0(φ)θ, where I

made explicit the dependence of the initial values η0 and µ0 on α = (αt)t≥0 and

φ. Given the long-term effects that it has on the worker’s skills, the human capital

depreciation rate φ indeed affects the worker’s schooling choice (the rate at which he

learns from work experience is irrelevant at this stage). Suppose the “future worker”
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makes a static choice on how much education to acquire. The cost of education is

given by an increasing and differentiable function c(e) while the benefits from it by

an increasing and concave function θ(e). The first-order condition of this problem

yields µ0(φ)θ
′
(e∗(φ)) − c′(e∗(φ)) = 0, from where we see that e∗(φ) is be decreasing.

That is, individuals that suffer from less human capital depreciation would choose a

higher level of education before entering the labor market.

1.5.3 Predicted Path of Wages

Recall that the wage process takes the form wt = m∗t + a1
t , t ≥ 0, where effort

either strictly decays over time (away from steady-state) or it remains constant (in a

stationary-learning environment). In equilibrium, the posterior mean evolves as

dm∗t = (θt(a
∗) + κm∗t )dt+

γt
σξ
dZa∗

t , t ≥ 0, (1.26)

where Za∗ is a Brownian motion. As a consequence, and from both parties’ per-

spectives, wages will, on average, decay in the fixed-skills case and martingale model

(κ = θ = 0).

Some of the human capital accumulation models presented here are able to gener-

ate wages with endogenous positive drift. For example, as direct corollary of Propo-

sition 1.3, if effort across tasks were not perfectly substitutable in the cost function,

workers would focus both in human capital accumulation and in final-goods produc-

tion. In such settings, the endogenous accumulation of skills may offset the negative

effect that increasingly precise information has on incentives. Also, the strong comple-

mentarity case predicts increasing wages close to the stationary-learning level as long

as the agent is indeed accumulating human capital. Moving away from steady-state

the fast dynamics of the learning structure used here prevent the model from gener-

ating concave wages. Nevertheless, the presence of contractual rigidities that prevent
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the downward adjustment of wages may still give the model validity in explaining the

path of wages over the life-cycle through the well-known human capital accumulation

channel (Mincer (1974); Ben-Porath (1967)).17 Moreover, the model is still able to

explain the evolution of wages in environments where firms have relatively accurate

estimates of workers’ skills, in settings where the reputational component of wages is

the dominating one (see Dewatripont et al. (1999) for a multi-task analysis motivated

by the case of government agencies), or in environments where signal manipulation

is not possible.

It is important to emphasize that (1.26) does not correspond to the process ac-

tually generating observations from the reputational component of wages. In fact,

because of learning, the distribution of wages under the subjective probability mea-

sure differs from the distribution of wages under the true data-generating process.

More specifically, it is always the case that beliefs locally mean-revert towards the

contemporaneous true value of skills at every point in time, regardless of the speci-

fication used for skills. To understand this, observe that under the true probability

measure, output is driven by dξ = (a∗t + θt)dt+ σξdZ
ξ
t , so that ∆t := m∗t − θt, t ≥ 0,

evolves according to

d∆t = −δt∆t + βtdZ
ξ
t − σθdZθ

t , t ≥ 0, (1.27)

implying that whenever the market is optimistic or pessimistic about the worker’s

ability, the arrival of new information will tend to eliminate this bias.

Traditional pure-learning models (learning about a fixed unobservable) have pre-

dicted that increments in wages should be uncorrelated. However, this is only true

17In a pure learning model Harris and Holmström (1982) provide an alternative
explanation for wages that increase with tenure. When workers are risk averse, firms
learn about workers’ abilities and long-term contracts can be written, workers pay
a risk premium in order to insure themselves from future low-outcome realizations.
This premium decreases with the precision of skills’ estimates, so senior workers have
higher salaries on average.
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from the agents’ perspective in the economy– that is, given their limited information

sets. The econometrician would observe wages coming from the true data gener-

ating process, and, because of mean-reversion, some persistence in wages would be

observed. This point is in fact not new. In an asset pricing context, Lewellen and

Shanken (2002) show how learning about fundamentals can generate predictability in

stock returns even when stock prices follow martingales from the market participants’

perspectives.

There is a vast literature studying the covariance structure of earnings using data

coming from different sources. Relevant to my work are the results from Kahn and

Lange (2011), who give empirical support to the idea of combining workers’ evolving

productivity and employer learning as a way to explain some observed patterns in

wages. In independent work, they show how such a model does a better job at

matching second moments of wages than a pure-productivity model or a pure-learning

model can do on their own.18 Finally, as any model involving Brownian shocks would,

the model predicts that the variance of wages increases over time. More interestingly,

by allowing skills to have residual uncertainty, the variance of changes in wages does

not decay as fast as it would in a pure learning model with fixed skills (see Farber

and Gibbons (1996)). By varying the shock persistence parameter κ, the speed at

which the variance of these increments decays over time changes.

1.6 Conclusions

This chapter developed a flexible dynamic model of career concerns involving Gaus-

sian skills and on-the-job experience accumulation. It contributes to the labor markets

18From a modeling perspective my setting differs from theirs along two lines. First,
the model adds a strategic component to the combined framework of workers’ evolving
productivity and employer learning. Second, I study AR(1) skills processes with
a partially endogenous drift, while they focus on the random walk case with an
exogenous growth trend.
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literature by studying the effects that learning, evolving skills and human capital ac-

cumulation have on incentives. These issues interact significantly in defining the costs

and benefits associated to workers’ careers. The use of continuous-time techniques is

of major importance for elucidating the forces that shape reputation-driven incentives

in competitive markets.

I emphasized the primary role that the environment plays for influencing the

incentives that arise from career concerns. The persistence of shocks to produc-

tivity determines the size of the monetary gains that arise from belief-distortion in

stationary-learning settings. This is because shock persistence dictates the overall re-

sponsiveness of beliefs to aggregate information. As productivity shocks become more

persistent, beliefs become more responsive and, therefore, workers exert more effort.

More interestingly, under-provision of effort is not the unique long-run outcome, since

inefficiently high effort is an optimal strategy for patient workers in highly unstable

environments.

The possibility to secretly invest in human capital creates a new belief-manipulation

channel that workers can exploit. Even though workers internalize the full benefits

from human capital accumulation, only a fraction of them actually have a reputa-

tional value. This is because of the interplay between learning and market competi-

tion. Learning about skills allow firms to anticipate part of the additional benefits

associated with investments in human capital. Market competition in turn forces

firms to incorporate the expected value of these gains as an ex-ante premium in the

workers’ wage processes. As a result, only the unanticipated component of the mon-

etary benefits associated with human capital accumulation determines the worker’s

marginal private value for human capital. Inefficiently low investments are expected

to be a robust finding and I confirm this in two classes of human capital accumulation

technologies.
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There are several tangential issues not presently addressed by the present model.

With respect to turnover, building a model that incorporates learning, separations,

endogenous skills accumulation and moral hazard may seem an attractive challenge,

it is unclear whether new substantial insights can be obtained from such a complex

structure. Also, I have avoided the analysis of career concerns in the presence of

complementarities between skills and effort in the output signal. This has proven itself

to be a particularly challenging question, especially because endogenous information

asymmetries play a non-trivial role. These and other interesting questions are beyond

the scope of this chapter, and are left for future research.

1.7 Appendix A: Proofs

Proof of Proposition 1.1: Since a∗ is an Fξ−progressively measurable process, the

result is a direct application of Theorem 7.12. in Liptser and Shiryaev (1977).

�

Proof of Proposition 1.3: Suppose that the market conjectures that the manager

will follow a deterministic strategy a∗ := (a∗t )t≥0. Since wages take the form wt =

m∗t + a∗t , only (m∗t )t≥0 matter for incentives. Also, the fact that for each t ≥ 0, θt(·)

is a deterministic functional of paths of the form (ys : 0 ≤ s ≤ t), implies that the

trajectory of human capital conjectured by the market, (θt(a
∗)), is fixed at time zero

and unaffected by the worker’s effort choice. The market’s beliefs evolve according to

dm∗t = (θt(a
∗) + κm∗t )dt+

γt
σξ

dξt − (m∗t + a∗t )dt

σξ︸ ︷︷ ︸
dZa
∗
t

(1.28)
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where γt follows the dynamic (1.9) and Za∗ is a Brownian motion from the market’s

perspective. The solution to the above SDE is given by

m∗t = e−
∫ t
0 δsdsm0 +

∫ t

0

e−
∫ t
s δudu[θs(a

∗)ds+ βs(dξs − a∗sds)] (1.29)

where βt := γt
σ2
ξ

and δt := βt − κ for all t ≥ 0. Since from the worker’s perspective

(θt(a
∗))t≥0 and a∗ are exogenously given, incentives are determined only by

Gt :=

∫ t

0

e−
∫ t
s δuduβsdξs. (1.30)

Let (mt)t≥0 denote the worker’s posterior belief process of his own talent when he

follows any strategy a := (at)t≥0. Assume that it evolves according to an SDE of the

form

dmt = (θt(a) + κmt)dt+ σtdZt (1.31)

where Z := (Zt)t≥0 is a Brownian motion from the worker’s standpoint. Moreover,

the process Za
t := 1

σξ

(
ξt −

∫ t
0
(as +ms)ds

)
, t ≥ 0 is also a Brownian motion from

his perspective and is correlated to Z. By Lemma 1.1 we can write output from the

worker’s perspective as

dξt = (mt + at)dt+ σξdZ
a
t , t ≥ 0. (1.32)

Inserting this into the expression for Gt gives us how the worker evaluates belief-

distortions on the market’s side,

Gt :=

∫ t

0

e−
∫ t
s δuduβs[(ms + as)ds+ σξdZ

a
s ]

=

∫ t

0

e−
∫ t
s δuduβs

[
eκsm0 +

∫ s

0

eκ(s−u)(θu(a)du+ dZu) + asds+ σξdZ
a
s

]

51



where I used that ms = eκsm0 +
∫ s

0
eκ(s−u)(θu(a)du+dZu), s ≥ 0. The first term in Gt

is unaffected by the effort decision so the worker’s optimization problem is reduced

to

max
a∈A

Ea
[∫ ∞

0

e−rt
(∫ t

0

e−
∫ t
s δuduβs

{∫ s

0

eκ(s−u)(θu(a)du+ dZu) + asds+ σξdZ
a
s

}
− g(at)

)
dt

]

For any strategy a ∈ A that the worker follows, Za and Z are exogenous Brownian

motions. Moreover, since of any initial condition γ0, (βt)t≥0 and (δt)t≥0 are uniformly

bounded, all the stochastic integrals above will have zero expectation. As a conse-

quence, the problem is reduced to

max
a∈A

Ea
[∫ ∞

0

e−rt
(∫ t

0

e−
∫ t
s δuduβs

{∫ s

0

eκ(s−u)θu(a)du+ asds

}
− g(at)

)
dt

]
(1.33)

Integration by parts and the fact that δt = βt − κ yield

∫ t

0

e−
∫ t
s δuduβs

∫ s

0

eκ(s−u)θu(a)du

= eκt
∫ t

0

e−κsθs(a)ds− e−
∫ t
0 δsds

∫ t

0

e
∫ s
0 δuduθs(a)ds

With this in hand, the manager’s objective function has 3 integrals of the form (up

to multiplicative constants)

I :=

∫ ∞
0

e−rt
[
e−

∫ t
0 τsds

∫ t

0

e
∫ s
0 τuduνs

]
dt

where τ = δ or −κ and ν = a or θ(a). Since in any case r+τ > 0, a direct application

of Fubini’s theorem implies that

I =

∫ ∞
0

e
∫ t
0 τtdtνt

∫ ∞
t

exp−
∫ s
0 (r+τu)du dsdt =

∫ ∞
0

e−rtνt

∫ ∞
t

e−
∫ s
t (r+τu)dudsdt

52



Defining ρt = 1
r−κ − λt and λt :=

∫∞
t
e−

∫ s
t (r+δu)duds, the worker will solve

P :=


max
a∈A

∫∞
0
e−rt

[
βtλtat − g(at) + ρtθt(a)

]
dt

s.t. θt(a), t ≥ 0,

γ0 ≥ γ∗,

concluding the proof of Lemma 1.3.

�

Proof of Proposition 1.2: We only need to show that lt := βtλt is decreases over

time, where βt = γt/σ
2
ξ , λt =

∫∞
t
e−

∫ s
t (r+δu)duds and δt = βt − κ, t ≥ 0. Observe that

d log(l(t))

dt
=
γ̇t
γt

+ r +
γt
σ2
ξ

− κ− 1∫∞
t
e−

∫ s
t (r+γu/σ2

ξ−κ)duds
(1.34)

Suppose γt > γ∗, which occurs if and only if γ̇t ≤ 0. Then,

λt =

∫ ∞
t

e−
∫ s
t (r+γu/σ2

ξ−κ)duds <
1

r + γ∗/σ2
ξ − κ

,

implying that

d log(l(t))

dt
<
γ̇t
γt

+
γt
σ2
ξ

− γ∗

σ2
ξ

Finally, from the ODE that governs γt, (see (1.9)), it can be observe that γ̇t/γt +

γt/σ
2
ξ = 2κ+ σ2

θ/γt, so

d log(l(t))

dt
< 2κ+

σ2
θ

γt
− γ∗

σ2
ξ

< 2κ+
σ2
θ

γ∗
− γ∗

σ2
ξ

= 0

by definition of γ∗. When γ̇t ≥ 0 (and so γt < γ∗ for all t ≥ 0) an analogous argument

shows that lt increases over time (the above inequalities just reverse). This concludes

the proof.

�
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Proof of Corollary 1.1: The only non-trivial assertion in the corollary is the the

first part of (i) when κ > 0. I will show in fact that the derivative is strictly positive

for all κ ∈ R. Recall that β∗ = β∗(κ), δ∗(κ) = β∗(κ) − κ =
√
κ2 − σ2

θ/σ
2
ξ > 0. It is

easy to see that

da∗(κ)

dκ
=

(δ∗(κ) + κ)(r + δ∗(κ)− κ)

δ∗(κ)(r + δ∗(κ))2
> 0

where the last inequality comes from δ∗(κ)± κ > 0 and r > 0.

�

Proof of Proposition 1.2: Comes from the same steps followed in the proof of

Lemma 1.3.

�

Proof of Proposition 1.3: Omitting the dependence on time, the first order con-

ditions of the worker’s problem correspond to

g̃′(a1,∗ + a2,∗)− βλ− µ1 + µ3 = 0

g̃′(a1,∗ + a2,∗)− ρ− µ2 + µ3 = 0

where µi ≥ 0 is the lagrange multiplier associated to the constraint ai ≥ 0, i = 1, 2,

and µ3 ≥ 0 the one corresponding to a1 + a2 ≤ R. Therefore, the optimal effort

allocation satisfies

a1,∗ = (g̃′)−1(βλ) > 0, a2,∗ = 0 ⇔ βλ > ρ

a2,∗ = (g̃′)−1(ρ) > 0, a1,∗ = 0 ⇔ βλ < ρ

and any (a1, a2) s.t. a1 + a2 = (g̃′)−1(ρ) when ρ = βλ.
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(i) Suppose that r − κ ≥ 1. This yields βt+1
r+βt−κ ≥

1
r−κ , for all t ≥ 0. If γ0 > γ∗, βt

is strictly decreasing over time, implying that

(βt + 1)λt := (βt + 1)

∫ ∞
t

e−
∫ s
t (r+βu−κ)duds >︸︷︷︸

(∗)

βt + 1

r + βt − κ
, t ≥ 0.

Therefore, (βt + 1)λt >
1

r−κ , and, recalling that ρt := 1
r−κ − λt, this yields that

βtλt > ρt, t ≥ 0. As a consequence, it is optimal for the worker to specialize in

final-goods production. When γ0 = γ∗, βt = β∗ for all t and (*) becomes a weak

inequality, so the result still holds.

(ii) Now assume that r − κ < 1. In steady state βt = β∗ for all t ≥ 0 and assume

β∗ > 0. Trivially, (r − κ)β∗ < β∗, so

β∗λ∗ =
β∗ + 1

r + β∗ − κ
<

1

r − κ
.

This is equivalent to β∗λ∗ < ρ∗, therefore showing that the agent specializes in human

capital accumulation in steady-state. By continuity, there exists T (γ0) ≥ 0 sufficiently

large s.t. βtλt − ρt < 0 and thus a2,∗
t > 0 for all t ≥ T (γ0).

To conclude, observe that when r − κ = 1, β0λ0 − ρ0 = (β0 + 1)λ0 − 1. But, for

γ0 > γ∗, (βt)t≥0 is strictly decreasing, implying that

(β0 + 1)λ0 = (β0 + 1)

∫ ∞
0

e−
∫ t
s (βu+1)duds > 1.

As a consequence, given γ0 > γ∗, there exists ε > 0 s.t. for 1− ε < r− κ < 1 we have

(β0 + 1)λ0 − 1 = (β0 + 1)λ0 −
1

r − κ
> 0,

implying that it is optimal to set a1,∗
t > 0 and a2,∗

t = 0 in the early stages of the

agent’s working life. This concludes the proof.
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�

Proof of Proposition 1.4: I will find a solution of the form V(t, x) = bt + ctx.

Plugging this in (HJ) we get

sup
u∈A

{
e−rt[βtλtu− g(u) + ρtx] +

dbt
dt

+
dct
dt
x+ ct[αtu− φx]

}
= 0 (1.35)

Impose that (ct)t≥0 satisfies the ODE dct + (e−rtρt − φct)dt = 0 with transversality

condition lim
t→∞

e−φtct = 0. Then,

ct = e−rt
∫ ∞
t

e−(r+φ)(s−t)ρsds︸ ︷︷ ︸
µt:=

, t ∈ R+ (1.36)

In fact, since (ρt)t≥0 is bounded we get a stronger transversality condition: ct → 0 as

t→∞. The (HJ) equation then becomes sup
u∈A

{
e−rt[βtλtu− g(u)] + dbt

dt
+ ctαtu

}
= 0

which yields the first order condition

g′(u∗t ) = βtλt + αtµt, t ∈ R+

and that bt must satisfy dbt = e−rt[g(u∗t ) − g′(u∗t )u
∗
t ]dt. Observe that since (u∗t )t≥0

is bounded ((ρt)t≥0 and (αt)t≥0 are bounded and (βtλt)t≥0 is decreasing and non-

negative) the last condition has as a solution

bt := e−rt
∫ ∞
t

e−r(s−t)[g′(u∗s)u
∗
s − g(u∗s)]ds︸ ︷︷ ︸

ηt:=

, t ∈ R+

and moreover, bt → 0 as t→∞. Therefore, we have found a function V(t, x) = bt+ctx

of class C1(R+×R) such that it satisfies (HJ). We now need to show that is satisfies the

transversality condition. To see this, fix an initial condition x ≥ 0. For any feasible

control a the path t 7→ θ
t,x

t (a) takes values in the interval [0,max{θ, `K/φ}], where K
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bounds (αt)t≥0. As a consequence, the path of human capital remains bounded all the

time. Because bt, ct → 0 as t→∞, we trivially conclude that lim
t→∞

bt + ctθ
t,x

t (a) = 0.

Recall that ρt = κ
κ+r
− κλt where

λt :=

∫ ∞
t

exp

(
−
∫ s

t

(r + δu)du

)
ds, t ≥ 0.

Direct calculations show that λt satisfies the ODE dλt = ([r + δt]λt − 1)dt. If γt is

decreasing over time (γ0 > γ∗), so will be δt = γ∗t /σ
2
ξ +κ, which implies that λt >

1
r+δt

for all t ≥ 0. As a consequence λt is increasing and, furthermore, bounded above by

1
r+δ

(with δ := γ∗/σ2
ξ + κ), so it converges. With this in hand, we conclude that the

marginal benefit from an extra unit of human capital at time t, ρt, decreases over

time and will also converge (it is bounded below by zero). Because of this,

µt =

∫ ∞
t

e−(r+φ)(s−t)ρsds <
ρt

r + φ

for all t ≥ 0. Finally, observing that (ertµt)t≥0 satisfies the ordinary differential

equation dµt = ([r + φ]µt − ρt)dt, we conclude.

�

1.8 Appendix B: General Human Capital Tech-

nologies

It is not unreasonable to think that there are complementarities in the technology con-

necting investments in skills and their current stock or level. The problem with study-

ing more general markovian diffusions of the form dθt = µ(at, θt)dt+σ(at, θt)dZ
θ
t , t ≥

0 is that, even though the filtering equations associated to posterior moments of θ

given ξ may exist, such a system may not be closed. A tractable way to incorporate
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such complementarities is by doing so in a deterministic way through an additional

state variable. In this section I assume that for any feasible effort strategy a ∈ A (a

concept to be defined immediately), (θt(a))t≥0 is the solution to the ODE

dθt = f(t, θt, at)dt, θ0 = θ
o ≥ 0. (1.37)

Since in the above specification the agent’s optimal action will typically depend

on his current human capital stock, we need to relax the equilibrium concept. Even

though the worker’s effort strategy cannot be correctly guessed once a deviation has

taken place, the fact that human capital evolves deterministically allows the market

to perfectly anticipate the on-equilibrium effort strategy.

Definition 1.5. An effort strategy a := (at)t≥0 is of the feedback form is it corresponds

to a function at = a(t, θ), where θ is the agent’s stock of human capital at time t ≥ 0,

for some function a : R+ × R→ R+.

Given θ
o
, which I assume common knowledge, and a conjectured feedback control

a∗, the market conjectures a human capital trend (θt(a
∗))t≥0. This trend is therefore

fixed ex-ante and the question is whether a Bayesian nash equilibrium in feedback

strategies exists:

Definition 1.6. An equilibrium of this economy is a feedback effort strategy a∗ and

a wage process w := (wt)t≥0, such that:

(i) Given a∗, the market sets a wage of the form wt = Ea∗ [θt|F ξt ] + a∗t for all t ≥ 0;

(ii) a∗ is optimal for the manager given the wage process in (i):

a∗ ∈ argmax
a∈A

Ea
[∫ ∞

0

e−rt(wt − g(at))dt

]
s.t. wt = Ea∗ [θt|F ξt ] + a∗t , ∀t ≥ 0. (1.38)
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That is, I have eliminated the requirement that the market perfectly anticipates

the worker’s strategy after all private histories.

Given that the family (θ(a∗))t≥0 is deterministic, Lemma 1.3 applies and the exis-

tence of an equilibrium is reduced to the existence of a feedback control to the optimal

control problem

max
a∈A

∫ ∞
0

e−rt
[
βtλtat − g(at) + ρtθt(a)

]
dt

s.t. dθt = f(t, at, θt)dt, t > 0, θ0 = θ
o
.

I will look for optimal strategies in the following class of controls:

Definition 1.7. (Feasible Control) A control is said to be feasible if it corresponds

to a piecewise continuous19 function of time a : R+ → A := [0, `]. Denote the set of

feasible controls by A.

Since we want to capture that the agent accumulates more human capital as he

becomes more experienced (as measured by how engaged in production the worker

has been), I assume that a 7→ f(t, θ, a) is strictly increasing in for all θ ≥ 0. More

generally, this function is required to satisfy this very weak conditions:

Assumption 2. It is assumed that

(i) f : R+×R×A→ R is such that f(t, ·, a) ∈ C1(R) for all a ∈ A and f(t, θ, ·) is

differentiable for all θ ∈ R.

(ii) For all θ ≥ 0, the function a 7→ f(t, θ, a) is strictly monotone.

19A function φ : R → A ⊆ R is piecewise continuous if for any interval [a, b] ⊂ R
there exists a finite set of points a = t0 < t1 < ... < tn = b such that φ is continuous
in [t0, t1] and (ti, ti+1], for i = 1, ..., n− 1 and has a finite right hand limit for each ti,
i = 1, ..., n. This definition follows from Halkin 1974.
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The following result gives necessary conditions that the any optimal control must

satisfy. It is an application of Pontryagin’s Maximum Principle for infinite horizon

problems (see Halkin (1974)):20

Proposition 1.5. Let a∗ ∈ A be an optimal control and suppose a 6≡ 0, `. Then,

there exists a piecewise continuously differentiable function q : R+ → R such that

(i) For almost every t ∈ R+

dqt =

{
qt

[
r − ∂f

∂θ
(t, θt, a

∗
t )

]
− ρt

}
dt; (1.39)

(ii) For every t ≥ 0 such that 0 < a∗t < `, a∗t satisfies

g′(a∗t ) = βtλt + qt
∂f

∂a
(t, θt(a

∗), a∗t ) (1.40)

where θt(a
∗) is the solution to dθt = f(t, θt, a

∗
t )dt, θ0 = θ ≥ 0.

Proof: By the Pontryagin Maximum Principle for infinite horizon (Halkin (1974)),

if a∗ := (a∗t )t≥0 is an optimal control then there exists µ ≥ 0 and a piecewise contin-

uously differentiable function21 q : R+ → R s.t.

I. |(µ, q0)| 6= 0;

II. q̇t − rqt = − ∂
∂x
H(t, x, a∗t , µ, qt)

∣∣
x=θt

, a.s.

III. H(t, θt, a
∗
t , µ, qt) ≥ H(t, θt, a, µ, qt), for all t ≥ 0, a ∈ A.

where the Hamiltonian H is defined by

H(t, x, a, µ, y) := µ [aβtλt − g(a) + ρtx] + yf(t, x, a).

20The characterization of Proposition 1.5 is also valid when f is decreasing in effort.
That is, what we really require is f to be strictly monotone in effort.

21That is, a differentiable function which derivative is piecewise continuous
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with ρt, βt and λt as in the Proposition.

Now I will prove that, under the hypothesis of the proposition, µ 6= 0. Replacing

the expression for the Hamiltonian in II yields the ODE

q̇t = qt

[
r − ∂f

∂θ
(t, θt(a

∗), a∗t ))

]
− µρt (1.41)

Recall that the set of times where the last ODE does not hold is the set of points

at which a∗ is discontinuous (at those points q is not differentiable). By definition

of piece-wise continuity, for any T > 0 there is only a finite number of times less

than T at which the optimal control is discontinuous. Therefore, II holds for intervals

[0, t1], {(ti, ti+1] | i ∈ N} such that their union is the real line. Moreover, since q is

continuous, it must that the solution of the above ODE at any subinterval (ti, ti+1]

must satisfy

qt+i = qti

where we understand that qt+i is the limit as t decreases to ti of the solution to the

ODE (1.41) in (ti, ti+1] with final condition qti+1
, i ≥ 1. The proof is based on the

following

Lemma 1.4. If µ = 0, then either a∗ ≡ 0 or a∗ ≡ a.

Proof of the Lemma :

Suppose µ = 0. Then it must be that the following relationship holds for t ∈ [0, t∗1]:

qt = q0 exp

(∫ t

0

[
r − ∂f

∂θ
(s, θs(a

∗), a∗s)

]
ds

)

where s 7→ θs(a
∗) is the trajectory generated by (a∗s)s∈[0,t1]. If qt1 = 0, then q0 = 0,

contradicting I. Thus, qt1 6= 0 and therefore q cannot vanish in [0, t1]. Suppose that

q > 0 over this set. Then, the maximum condition II implies that the optimal control
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must satisfy

a∗s ∈ arg max
a∈A

qsf(θs(a
∗), a), ∀s ∈ [0, t1]

But qsf(θs(a
∗), ·) is increasing, and thus a∗s ≡ a for all s ∈ [0, t1]. As a consequence,

whenever µ = 0, if qt1 > 0 then the optimal control takes the maximum possible value

in the first interval. If in turn, qt1 < 0 the same reasoning shows that the optimal

control will take the minimum value over the same set, this because qsf(s, θ
∗
s, ·) would

be decreasing for all s ∈ [0, t1]. In the remainder of the proof, I assume without loss

of generality that qt1 > 0 (the other case is analogous). If qt2 ≤ 0, then (1.41) in

(t1, t2] implies that qs ≤ 0 in the same interval. Therefore

qt+1 := lim
s↘t1

qs ≤ 0 < qt1

contradicting the fact that q is continuous. Hence, qt2 > 0 implying that q is strictly

positive in (t1, t2] and thus the optimal control must take value a over that interval.

Proceeding inductively, if qt1 > 0 then qti > 0 for all i = 0, 2, 3... and by the maximum

condition a is the optimal control. The same reasoning allows us to conclude that

when qt1 < 0, a∗ ≡ 0 must be optimal. This concludes the proof.

�

The previous Lemma shows that when an optimal control exists and is neither

identically zero nor equal to a, then µ > 0. When this is the case it is clear that we

can assume µ = 1 (equivalently, redefine q as q/µ and note that q/µ satisfies all the

conditions of the theorem). This proves part (i) in the proposition. Finally part (ii)

is simply the necessary condition that an unconstrained optimum must satisfy. This

concludes the proof.

�
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The next result states that differentiability of the continuation-value function with

respect to the state variable θ ensures that effort is always above the career concerns

benchmark. For this purpose define

V [t, θ] ≡ sup
a∈A

∫ ∞
t

e−rs
[
asβsλs − g(as) + ρsθ

t

s (a)
]
ds (1.42)

where (θ
t

s (a))s≥t is the solution of the ODE (1.37). We have the following

Proposition 1.6. Fix t ≥ 0 and suppose θ ∈ R is such that V(t, θ) < +∞. Let (a∗s)s≥t

be the continuation strategy that attains this value. Then, the continuation-value

function is increasing in the state variable. Moreover, if V(t, ·) is differentiable in a

neighborhood Θ of θ, then for any s ≥ t such that θs(a) ∈ Θ, qs = ers ∂V
∂θ

(s, θs(a
∗)) > 0.

Proof of Proposition 1.6: If V(t, θ2) = ∞ the first part of the Proposition is

trivially true. Suppose that is finite. Let a∗ := (a∗s)s≥t be the optimal control (a

function of time) that attains value V(t, θ1) when starting from the level θ1 ≥ 0 at

time t. In the same vein let (θs(a
∗; θ))s≥t denote the path of human capital generated

by the feasible control a∗ when starting from point θ ∈ R+ at time t, that is, the

solution to

dθs = f(s, θs, a
∗
s), s > t, θt = θ

Since the solutions of these two ordinary differential equations cannot cross (they

differ only in the initial condition), it must be the that

θs(a
∗; θ2) > θs(a

∗; θ1), ∀s ≥ t

which implies that V [t, θ2; a∗] > V [t, θ1; a∗] = V(t, θ1), so V(t, ·) is increasing. If,

moreover, it turns out to be differentiable in a neighborhood Θ of θ1 and standard

perturbation analysis shows that ∂V
∂θ

(s, θs(a
∗)) = λs, as long as θs(a

∗) ∈ Θ, s ≥ t,

where λs is the multiplier associated to the dynamic that governs the ODE of human
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capital accumulation. Implicit in the formulation of Proposition 1.5 is the fact that

qt = ertλt, t ≥ 0. This concludes the proof.

�
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Chapter 2

Two-Sided Learning and Moral

Hazard

2.1 Introduction

This chapter analyzes a class of continuous-time games in which a long-run agent and

a population of small players (a market) learn about an unobserved state variable from

a public signal that is subject to Brownian shocks. I refer to this unobserved state as

the fundamentals. In these games, the long-run agent’s payoffs are determined by the

small players’ actions, which in turn depend on their beliefs about the hidden state.

Consequently, the long-run agent has the incentive to take costly actions that influence

the market’s learning process. Using continuous-time techniques, I characterize the

long-run agent’s behavior in any equilibrium in which the market is able to perfectly

anticipate such strategic motives.

Strategic behavior in the context of two-sided learning about an unobserved state

variable appears in many economic environments. In labor markets, workers can exert

effort so as to manipulate the beliefs of potential employers about their unobserved

skills (Holmstrom (1999)). As another example, when customers perceive a firm’s
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product to be of high quality, the firm can reduce its technological investments with-

out suffering considerable reputational losses (Board and Meyer-ter-Vehn (2010a)).

Strategic motives also appear in procurement, when a contractor and a government

learn about the contractor’s efficiency to deliver goods and the contractor desires to

sell these goods to the government repeatedly over time. Similarly in monetary policy,

when a central bank generates inflationary surprises by affecting an inflation trend

that is unobserved by all the agents in the economy.

Dynamic incentives in the context of learning, moral hazard and market interac-

tions have been studied only under perfect competition and risk neutrality. However,

these assumptions cease to be appropriate in many interesting settings. For instance,

labor market frictions can result in returns to skills that vary nonlinearly across

workers’ perceived distribution of abilities. In dynamic procurement, the rent that

a contractor obtains can be a non-monotone function of perceived efficiency if the

government purchasing these goods lacks commitment. In monetary policy, a policy-

maker may suffer losses from an unobserved inflation trend which moves away from a

specific target. Similarly, a firm that invests in product quality can face convex costs

of adjustment. Developing methods to understand and quantify the incentives that

arise in environments without perfect competition and linearity is thus an important

task.

In the class of games I analyze, the market perfectly anticipates the long-run

agent’s actions when public and private beliefs are aligned. However, the long-run

agent’s incentives on the equilibrium path are determined by the benefits from hy-

pothetical deviations off the equilibrium path. Evaluating the long-run agent’s off-

equilibrium payoffs is challenging because, after a deviation takes place, the long-run

agent acquires private information about the evolution of the fundamentals and the

market’s belief becomes biased. The long-run agent can thus condition his actions on
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the values that both private and public beliefs take, and the market will construct

beliefs using a wrong conjecture about equilibrium play.

I focus on pure-strategy Markov equilibria in which the relevant state variables

are the agent’s private belief about fundamentals, and the belief-asymmetry process,

which is a measure of the degree of discrepancy between private and public beliefs.

In such a context, I develop a first-order approach for quantifying the value of local

deviations off the equilibrium path. In particular, I show that in any equilibrium

the value that the long-run agent attaches to inducing a small degree of asymmetry

between private and public beliefs is the solution to an ordinary differential equation,

which I refer to as the incentives equation. The incentives equation captures how the

incentives to distort public beliefs vary across different levels of public opinion. Such

variations occur when learning, preferences or the market’s actions are nonlinear.

This necessary condition is obtained under very weak assumptions. The long-

run agent’s actions can affect the public signal directly (signal-jamming games) or

instead, affect the evolution of the fundamentals itself (investment games with learn-

ing). The costs of the long-run agent’s actions are required to be convex. The impact

of the market’s belief on the long-run agent’s payoff can be completely general. Two

assumptions are nonetheless crucial. First, I restrict to learning processes that ad-

mit posterior distributions summarized by a single one-dimensional state variable.1

Second, the long-run agent’s actions must enter additively into the corresponding dy-

namics. The first modeling assumption is purely for tractability reasons. The second

one is economically important, as it prevents the rise of experimentation incentives

which might conflict with belief-manipulation motives.

The incentives equation corresponds to an Euler equation subject to an equilib-

rium condition. Its Euler feature states that the long-run agent must be indifferent to

1More specifically, I use both the Kalman-Bucy filter under stationary learning
and the Wonham filter for studying signal-jamming games. In analyzing investment
with learning, I restrict the analysis to the Kalman-Bucy filter.
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the choice between exerting the last unit of belief manipulation now, or postponing

it to an instant later. The equilibrium condition in turn requires that this last unit

of belief manipulation be perfectly anticipated by the market whenever beliefs are

aligned.

The long-run agent has incentives to distort public beliefs because it allows him

to obtain an immediate marginal flow gain and to smooth out the costs of his actions

due to anticipated changes in the value of belief asymmetry. On the other hand,

by postponing belief manipulation the long-run agent avoids the depreciation costs

resulting from any stock of belief asymmetry gradually depreciating over time. The

rate at which any stock of belief asymmetry depreciates over time in turn depends on

the inherent rate of decay of the learning process, and also on the market’s conjecture

about equilibrium play. This is because the market’s expectation of belief manipu-

lation determine the threshold beyond which the long-run agent’s actions effectively

induce more belief asymmetry. Finally, since the market’s expectation of belief ma-

nipulation are correct in equilibrium, the rate of return on belief asymmetry turns

out to be determined endogenously by the long-run agent’s equilibrium strategy.

The equilibrium properties uncovered by this chapter offer novel insights on the

structure behind the incentives for belief manipulation. In the linear and additive

model of career concerns developed by Holmstrom (1999), workers with the same

tenure exert identical effort levels at every point in time, despite their differences

in perceived abilities or wages. The incentives equation in turn predicts that any

source of nonlinearity will transform perceived ability (hence, wages) into an impor-

tant determinant of a worker’s incentives. In Board and Meyer-ter-Vehn (2010a,b),

linear costs of investment generate bang-bang investment policies and thus consider-

able pooling across different levels of a firm’s reputation. Instead, the convex costs of

adjustment that I analyze induce investment plans that are gradually executed over

time. Finally, in the career concerns model of Bonatti and Hörner (2011), the coarse
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information structure imposed in that paper prevents the rise of any intra-temporal

incentives. On the contrary, when information arrives continuously over time, I show

that it is the local change of the market’s expectation of belief manipulation with

respect to small changes in public beliefs what captures the connection between con-

temporaneous incentives and conjectures.2

The incentives equation, as a necessary condition for on-the-equilibrium path be-

havior, does not ensure that the long-run agent benefits from large deviation away

from the market’s beliefs. In order to verify incentive compatibility globally, it is nec-

essary to study the long-run agent’s value function off the equilibrium path. However,

since the market always constructs beliefs as if the long-run agent had never deviated,

the long-run agent’s value function satisfies a new type of partial differential equation

(PDE) characterized by its particular nonlocal structure: the local evolution of the

long-run agent’s utility off the equilibrium path depends on the marginal value of

belief asymmetry along the equilibrium path. This new class of PDEs correspond to a

standard Hamilton-Jacobi-Bellman (HJB) equations that also satisfies the condition

that the market must perfectly anticipate the long-run agent’s optimal action on the

equilibrium path. Since the latter requirement corresponds to a fixed point condition

on the value function to be found, verification theorems apply.

I use this crucial insight to show the existence of markovian equilibria for a class of

games with linear-quadratic structure: linear learning (Gaussian) and quadratic pay-

offs. For this class of games, I find closed-form solutions to the PDEs that summarize

on- and off-path incentives. Equilibrium actions turn out to be linear in public be-

liefs, which results in realized actions that are stochastic. Moreover, these equilibria

exhibit all the forces that are expected to influence behavior in more nonlinear set-

tings: endogenous rates of return on belief asymmetry and cost-smoothing motives.

2Dewatripont et al. (1999)) show that effort and contemporaneous conjectures
are strategic complements when skills and effort are complements in the technology
that a worker has access to. In the class of games I analyze, such technological
complementarities are absent.
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Off the equilibrium path, the belief asymmetry process evolves deterministically and

vanishes asymptotically.

I exploit the tractability of this linear-quadratic framework in two applications. I

first show that in economies where agents learn about an unobserved inflation trend,

the size of the inflationary bias created by a central bank that lacks commitment is

severely limited by the volatility of both shocks to prices and shocks to trend inflation.

I then show how effort smoothing can exacerbate the ratchet effect in contexts where a

contractor and a government who lacks commitment learn about a firm’s unobserved

efficiency of providing goods.

Finally, the methods delivered in this chapter are also applicable to other situa-

tions in which the nonlocal PDEs are hard to visualize. This is because any solution

to the incentives equation, as a necessary condition for equilibrium incentives, can be

used as a valid guess in the dynamics of belief asymmetry in order to solve a standard

(local) PDE arising from stochastic control. Numerical comparisons between the ini-

tial guess and the policy delivered by the PDE would then validate or eliminate the

former as a candidate of Markov perfect equilibrium. While this numerical approach

is not followed here, it is a feasible avenue to characterize off-equilibrium incentives

in other nonlinear environments.

2.1.1 Literature

In the career concerns literature, Holmstrom (1999) develops a linear and additive

model of career concerns in which equilibrium effort is independent of current wages,

of future effort and independent of the market’s contemporaneous conjectures about

effort. In the static model of Dewatripont et al. (1999), introducing complemen-

tarities between effort and skills in a worker’s output technology generates strategic

complementarity between realized effort and conjectured effort. More recently, in

the context of coarse information, Bonatti and Hörner (2011) show how current and
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future effort can become strategic substitutes. The incentives equation I derive here

instead predicts that a worker’s reputational incentives are affected simultaneously

by the current level of wages he receives, by how these wages are expected to evolve

over time and by the market’s contemporaneous expectations of belief manipulation.

In the context of investment games with belief manipulation, Board and Meyer-

ter-Vehn (2010a) characterize a firm’s equilibrium investment policy in a context of

unobserved product quality, perfectly informative signals and stochastic output tech-

nologies. They obtain an expression for the value attached to belief asymmetry in

integral form, as valuations in their model can jump. Board and Meyer-ter-Vehn

(2010b) instead study a firm’s incentives to influence the public belief about a prod-

uct’s quality when the latter is private information to the firm. Because investment

costs are linear in both models, there is considerable pooling across different levels of

firms’ reputations.

In the class of games analyzed in this chapter, the long-run agent’s equilibrium

incentives incorporate his actions’ impact on the “standard” of belief manipulation

he will face in the near future. A classic example of such strategic motive is captured

by the ratchet effect (Weitzman (1980), Laffont and Tirole (1988) and (1990)). Mar-

tinez (2009) finds ratchet effects when studying the career-concerns incentives in the

presence of piecewise linear wages. The general class of games I study in fact exhibit

“ratchet forces”: everything else equal, the higher the local change in the market’s

conjecture about the level of belief manipulation, the lower the long-run agent’s incen-

tives to improve the perception of fundamentals. However, since ratchet forces, cost

smoothing and marginal flow benefits interact simultaneously to shape the long-run

agent’s incentives, the ratchet effect may not always be observed in equilibrium.

To conclude, this chapter also relates to the literature studying dynamic incentives

using continuous-time techniques. In Sannikov (2007) and (2008) these techniques

are applied to settings of continuous-time games under imperfect monitoring and to
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agency problems, respectively. Faingold and Sannikov (2011) study reputation dy-

namics in settings with imperfectly observable actions and one-sided learning about a

long-run agent’s fixed type. Their characterization of equilibrium incentives is in the

form of ODEs subject to a fixed point condition. A similar characterization is found

by Bohren (2012) in the context of investment games with imperfectly observable

actions and without learning. Finally, Williams (2011) studies agency problems in

the presence of persistent private information, deriving necessary and sufficient condi-

tions for incentive compatible contracts. Although his analysis is focused on adverse

selection, it shares the feature that whenever unobserved payoff-relevant variables

exhibit persistence, an agent’s actions can have a long-term impact on his utility.

2.2 Signal-Jamming Games: General Case

2.2.1 Set-up

Consider an economy in which one long-run agent and a population of small players

– the market– simultaneously learn about a hidden state variable. The unobserved

process is denoted by θ := (θt)t≥0 and takes values in Θ ⊆ R. Hereinafter I refer to

the hidden state variable as the fundamental.

In a signal-jamming game the fundamental is exogenous, and the long-run agent

affects the signal from which the market extracts relevant information about the

unobserved state.3 More specifically, there is public signal ξ := (ξt)t≥0 that takes the

form

dξt = (at + θt)dt+ σξdZt, t ≥ 0, (2.1)

3The term “signal-jamming” was coined by Fudenberg and Tirole (1986) in the
context of firms that take unobserved actions (e.g., price cutting) in order to deter
entry in the markets where they operate.
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where Z := (Zt)t≥0 is a Brownian motion and σξ > 0 is a volatility parameter. The

term at represents the degree of signal manipulation exerted by the agent at time

t ≥ 0. The long-run agent’s manipulation choices are not observed by the rest of the

economy and take values in a set A ⊂ R.4

Since the long-run agent observes his past actions, he also observes the component

of the public signal that is not explained by signal manipulation, Yt := ξt−
∫ t

0
asds, t ≥

0. By definition

dYt = θtdt+ σξdZt, t ≥ 0, (2.2)

from where we can see that Y is an exogenous process that is privately observed

by the long-run agent. Equations (2.1) and (2.2) yield that signal manipulation has

an additive structure. In the sequel, FYt denotes the information generated by the

process Y up to time t, and FY := (FYt ) the (completed) filtration associated to Y .

The corresponding analogous notation is used to denote the filtration generated by ξ.

The long-run agent uses the information conveyed by Y to construct private beliefs

about θ. The private beliefs process is denoted by ρ := (ρt)t≥0 where

ρt(x) := P(θt ≤ x|FYt ), x ∈ Θ, t ≥ 0. (2.3)

In this definition, P(·|FYt ) corresponds to the agent’s posterior belief about θt, given

the observations (Ys : s ∈ [0, t]), t ≥ 0.

The market instead uses the information conveyed by the public signal ξ for the

same purpose. The associated public belief process is denoted by ρ∗ := (ρ∗t )t≥0 and

defined analogously by

ρ∗t (x) := P∗(θt ≤ x|F ξt ), x ∈ Θ, t ≥ 0. (2.4)

4Observe that signal structure (2.1) satisfies the full-support assumption with
respect the the long-run agent’s actions.
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The term P∗(·|F ξt ) denote the market’s (subjective) posterior belief about θt given

the partial observations (ξs : s ∈ [0, t]), t ≥ 0. Private and public beliefs coincide

at time t if, for instance, the market has perfectly anticipated the agent’s hidden

manipulation strategy over the time interval [0, t]. Nevertheless, moral hazard can

give rise to potential divergence between private and public beliefs.

The small players act myopically because their individual actions are anonymous

and they do not affect the population average observed by the long-run agent. Thus,

at any instant of time the small players maximize their ex-ante flow payoffs. Ex-ante

flow payoffs in turn depend on the small player’s beliefs about the current value of

the fundamental θt and on the action that they conjecture the agent is currently

following, a∗t , t ≥ 0. I summarize the small players’ best-response action through the

function

b(ρ∗t , a
∗
t ).

The long-run agent cares about fundamentals because they influence his payoff

through the impact that public beliefs have on the market’s actions. Given a market’s

action profile b := (bt)t≥0 and a signal manipulation strategy a := (at)t≥0, the long-run

agent’s discounted payoffs at time t take the form

∫ ∞
t

e−r(s−t)(u(bs)− g(as))ds, t ≥ 0. (2.5)

The function u : R → R represents the component of the agent’s flow utility that is

determined by the market’s actions. The costs of signal manipulation are given by

a function g : A → R which is convex in a ∈ A. For simplicity, I assume that g is

differentiable everywhere.

The additive signal structure implies that the only source of asymmetric infor-

mation in the model comes from the imperfect observability of the long-run agent’s
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actions. As a result, it is natural to define an equilibrium concept entailing a market

that perfectly anticipates the agent’s strategy:

Definition 2.1. An equilibrium consists of (i) a manipulation strategy of the long-run

agent at(ξs, s ∈ [0, t], ρt), t ≥ 0; (ii) a public strategy of the market bt(ξs, s ∈ [0, t]),

t ≥ 0; (iii) a private belief process of the long-run agent ρt(·|Ys, s ∈ [0, t]), t ≥ 0; and

(iv) a public belief process of the market ρ∗t (·|ξs : s ∈ [0, t]), t ≥ 0, such that:

(a) Given the market’s public strategy (bt)t≥0 and the long-run agent’s belief process

ρ := (ρt)t≥0, the signal manipulation strategy a := (at)t≥0 maximizes the agent’s

continuation payoff

Et
[∫ ∞

t

e−r(s−t)(u(bs)− g(as))dt

]
, (2.6)

after any history (ξs : s ∈ [0, t], as, s ∈ [0, t]), t ≥ 0;

(b) The market’s action at time t, bt, is of the form b(ρ∗t , a
∗
t ), where the latter is

optimal given its belief ρ∗t and the action a∗t (ξs, s ∈ [0, t]) = at(ξs, s ∈ [0, t], ρ∗t ),

t ≥ 0;

(c) The agent’s beliefs ρt = ρt(·|Ys, s ∈ [0, t]) are determined by Bayes’ rule;

(d) The market’s beliefs ρ∗t = ρ∗t (·|ξs, s ∈ [0, t]) are determined by Bayes’ rule under

the assumption that the agent has been playing a∗t (ξs, s ∈ [0, t]) = at(ξs, s ∈

[0, t], ρ∗t ).

Observe that the agent could in principle follow any strategy a := (at)t≥0 that is

progressively measurable with respect to the information generated by ξ and Y . Yet,

the histories of the form (ξs : s ∈ [0, t], ρt), t ≥ 0, summarize all the payoff relevant

information for the agent, so we can restrict the analysis to strategies as in (i). I
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refer to them as (feasible) manipulation strategies. Part (ii) instead requires that the

market’s actions depend on the information generated by ξ only.

Concerning the equilibrium conditions, (a) states that the agent’s strategy speci-

fies actions both on and off the equilibrium path, and has to maximize future payoffs

on and off the equilibrium path. However, the optimality of the market’s actions is

checked only on the equilibrium path (condition (b)). This is because the signal struc-

ture satisfies the full support assumption, which implies that any partial observation

(ξs : s ∈ [0, t]), t ≥ 0, is consistent with equilibrium play. Condition (c) and (d)

correspond to the consistency requirements that both belief processes ρ and ρ∗ must

be constructed via Bayes’ rule using the strategies specified by equilibrium play. In

particular, (d) states that the market’s beliefs are always constructed as if the agent

were taking the actions prescribed along the equilibrium path.

2.2.2 Learning and Belief Manipulation

The purpose of this section is to present a unified framework for the learning and belief

manipulation dynamics in environments where posterior beliefs can be characterized

by one-dimensional state variables. Such settings correspond to fundamentals evolv-

ing as Gaussian diffusions or fundamentals evolving as two-state Markov-switching

processes.5 This general approach reveals that it is the additivity in the signal-

manipulation technology (rather than the particular nature of fundamentals) the key

assumption behind the form of the characterization results derived in this chapter.6

5Going beyond these two classes the analysis becomes intractable, or the set of one-
dimensional sufficient statistics cease to have economically meaningful interpretations.

6Provided ex-ante payoffs can be written as some function of the private and
public posterior mean in each environment, the analysis that follows can be extended
to situations in which the long-run agent’s flow payoff u(·) also depends on the current
state of θ.
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Mean-reverting Fundamentals

Suppose first that fundamentals θ := (θt)t≥0 evolve as an Ornstein-Uhlenbeck process

of the form

dθt = −κ(θt − η)dt+ σθdZ
θ
t , t ≥ 0. (2.7)

The long-run agent creates estimates about θ using the information conveyed by Y

(eqn. (2.2)). The following Lemma is a standard result in filtering theory:7

Lemma 2.1. Private beliefs’ law of motion– Gaussian case. Consider the

system defined by the private signal Y in (2.2) and the fundamentals (2.7). Suppose

that the agent’s initial prior θ0|F0 is normally distributed N (po, γo). Then, ρt
cdf
=

N (pt, γt), where the posterior mean process pt := E[θt|FYt ] and posterior variance

γt := E[(θt − pt)2|FYt ], t ≥ 0, satisfy the stochastic differential equation (SDE) and

ordinary differential equation (ODE)

dpt = −κ(pt − η)dt+
γt
σξ

dYt − ptdt
σξ

, and (2.8)

γ̇t = −2κγt + σ2
θ −

(
γt
σξ

)2

, t > 0, (2.9)

Finally, the process ZY
t := 1

σξ

(
Ys −

∫ t
0
psds

)
, t ≥ 0, is an exogenous FY -Brownian

motion from the agent’s perspective, called the innovation process.

Proof: See Liptser and Shiryaev (1977).

�

Three interesting features of (2.8) and (2.9) are worth noting. First, the evolu-

tion of the posterior mean preserves the stochastic structure of the evolution of true

7 Liptser and Shiryaev (1977) is the main reference for all the filtering results used
in this chapter.
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fundamentals: the posterior mean p mean reverts toward η at the same rate κ ≥ 0.

Second, the posterior mean’s response to unexpected signal observations (captured by

the innovation process ZY ) increases with the size of the mean-square error and de-

creases with the signal’s volatility (σξ). This implies that beliefs react more strongly

in settings where either less information has been accumulated, or in settings where

signals are more accurate. Finally, the posterior variance evolves in a deterministic

way, so its entire trajectory is perfectly anticipated at time zero.

The market, on the other hand, does not observe the long-run agent’s past actions.

Hence, it can only use the information conveyed by ξ to construct estimates about the

current value of fundamentals. More specifically, suppose that the market conjectures

that the long-run agent has been following an Fξ−progressively measurable process

a∗ := (a∗t )t≥0 as a manipulation strategy. From the market’s perspective, the public

signal can be written as

dξt = (a∗t + θt)dt+ σξdZ
∗
t , t ≥ 0, (2.10)

where Z∗ := (Z∗t )t≥0 is a Brownian motion from its standpoint (potentially different

from Z). In equilibrium, this conjecture is correct.

The market’s belief about the fundamental account for the potential bias due to

signal manipulation on the long-run agent’s side. A straightforward application of

Lemma 2.1 yields that the public beliefs’ posterior mean process p∗t := E∗[θt|F ξt ],

t ≥ 0, evolves according to

dp∗t = −κ(p∗t − η)dt+
γt
σξ

dξ − (a∗t + p∗t )dt

σξ
, t > 0,

where 1
σξ

(
ξt −

∫ t
0
(a∗s + p∗s)ds

)
, t ≥ 0, is an innovation process (Fξ−Brownian mo-

tion) from the market’s perspective. Intuitively, since at any point in time a fraction
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of the observed signal is attributable to signal manipulation, only the unexplained

increment dξt − a∗tdt conveys relevant information about fundamentals, t ≥ 0.8

Observe that the agent affects the market’s beliefs by controlling the true distri-

bution of the public signal. From his standpoint, the latter evolves according to

dξt = (at + pt)dt+ σξdZ
Y
t , t ≥ 0,

where ZY is the innovation process defined in Lemma (2.1). As a result, public beliefs

from the agent’s perspective take the form

dp∗t = [−(κ+ βt)(p
∗
t − η) + βt(at − a∗t ) + βt(pt − η)]dt+ βtσξdZ

Y
t , t ≥ 0, (2.11)

where βt := γt/σ
2
ξ , t ≥ 0.

A minimal requirement on both the long-run agent’s feasible strategies and on the

market’s manipulation conjecture is that they must induce a well defined solution to

(2.11). I use the following solution concept:

Definition 2.2. Feasible pair. A strategy at(ξs : s ∈ [0, t], pt), t ≥ 0, of the long-run

agent and a conjecture a∗t (ξs : s ∈ [0, t]), t ≥ 0, of the market are said to be a feasible

pair if the market’s belief process (2.11) admits a unique strong solution satisfying

E
[∫ t

0

|p∗s|2ds
]
<∞ (2.12)

8Theorem 12.3 in Liptser and Shiryaev (1977) ensures that, up to integrabil-
ity conditions, given any family measurable of functionals {a∗t : t ≥ 0} with
a∗t : C([0, t)) → A, t ≥ 0, there exists a unique Fξ−measurable solution (p∗t )t≥0,

to the SDE in x := (xt)t≥0, dxt = −κ(xt − η)dt + γt
σξ

dξ−(a∗t (ξ)+x∗t )dt

σξ
, t > 0. Moreover,

this solution corresponds to E∗[θt|F ξt ], t ≥ 0, when ξ evolves as in (2.10).
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for all t ≥ 0.910

Since effort decisions are subject to moral hazard, the agent can deviate from a∗

and, through controlling ξ, distort the market’s belief about his skills. Deviations

from conjectured strategies create a discrepancy between private and public beliefs.

Hence, it is convenient to introduce a state variable that measures the wedge between

the agent’s and the market’s perception about fundamentals:

Proposition 2.1. Suppose that the market conjectures a manipulation strategy a∗ :=

(a∗t )t≥0, that the long-run agent actually follows a := (at)t≥0 and that (a, a∗) is a

feasible pair. Then, from the long-run agent’s perspective, public beliefs can be written

as p∗t = pt + ∆t, where the process ∆ := (∆t)t≥0 is governed by the ODE

d∆t = [−(κ+ βt)∆t + βt(at − a∗t )]dt, t > 0, (2.13)

with βt := γt/σ
2
ξ , t ≥ 0 and ∆0 = ∆o.

Proof: See the Appendix.

�

The analysis of the dynamics of belief asymmetry (2.13) is crucial for understand-

ing the long-run agent’s incentives to deviate off the equilibrium path. Observe first

that on the equilibrium path, if the long-run agent manipulates the signal beyond the

market’s expectations (at > a∗t ) he then becomes more pessimistic than the market

9Solution concepts to SDEs typically include as part of the definition an integra-
bility condition that determines the class of stochastic processes where the solution is
to be found. For the particular definition used here, the conditions on a and a∗ that
ensure existence are: (i) the random processes (at(·, 0))t≥0 and (a∗t (·))t≥0 satisfy the
integrability condition (2.12) and, (ii) x 7→ at(ξ, x) is Lipschitz, uniformly in ξ and
t ≥ 0.

10Equation (2.11) is an SDE with random coefficients, as strategies depend on the
paths of ξ. All the results derived in this chapter could be obtained under the weaker
requirement that

∫ t
0
|p∗s|2ds <∞, a.s. for all t ≥ 0. Such extension adds no economic

value to the analysis.
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about the current value of fundamentals (d∆t > 0). This is because, conditional on

both parties observing the same public signal, the long-run agent attributes a higher

fraction of the signal to signal-manipulation than the market does.

Second, belief discrepancies have an inherent tendency to disappear as time evolves.

More specifically, any stock of belief asymmetry resulting from a one-shot deviation

from a∗ at time t depreciates at a rate equal to κ+ βt, t ≥ 0. On the one hand, high

rates of mean reversion κ imply that the shocks to fundamentals have low persistence.

Consequently, public beliefs give low weight to past signal observations for large val-

ues of κ. On the other hand, as information accumulates over time unanticipated

changes in the evolution of the public signal are more likely to be the consequence of

changes in fundamentals rather than the consequence of noise. Therefore, provided

γ0 = γo large enough, the weight attached to past signals increases over time ((βt)t≥0

is decreasing for γo large).

Finally, observe that the market’s conjecture acts as a threshold that the long-

run agent has to exceed in order to induce more belief asymmetry. This threshold is

endogenous, as a∗ must correspond to the long-run agent’s strategy on the equilibrium

path. Moreover, since a∗ is a function of the partial observations of ξ, it is also affected

by the long-run agent’s manipulation decision. Hence, in evaluating deviations off the

equilibrium path, the long-run agent also takes into account the effect that his actions

have on the market’s future standard of belief manipulation.

In what follows I assume that learning is stationary, that is, γo = γ∗, where

γ∗ = σ2
ξ (
√
κ2 + σ2

θ/σ
2
ξ − κ) is the unique stationary solution to (2.9) that is strictly

positive. As a result, βt = β := γ∗/σ2
ξ for all t ≥ 0.11

11All the characterization results in this chapter can be easily extended to the case
in which learning is away from steady state.
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Markov-Switching Fundamentals

If fundamentals θ := (θt)t≥0 instead follow a two-state Markov chain, the previous

analysis can be easily replicated. Suppose that θ takes values on Θ = {h, `}, ` < h,

and that the associated transition matrix is given by

Λ :=

 −λ1 λ1

λ0 −λ0

 , (2.14)

where λi corresponds to the transition rate from state i to state j, i, j ∈ {`, h}.

Denote by πt the probability that θt is in state h at time t ≥ 0 given the obser-

vations (Ys : s ∈ [0, t]), i.e. πt := P(θt = h|FYt ), t ≥ 0. Then, the log-likelihood ratio

given the partial observations of Y ,

pt := log

(
πt

1− πt

)
,

is a sufficient statistic for the posterior distribution of θt given FYt , t ≥ 0. The

following result is a Markov-chains counterpart to Lemma 2.1 and Proposition 2.1:

Proposition 2.2. Suppose that θ is a binary-state markov chain taking values in

Θ = {`, h}, ` < h, and with transition matrix (2.14). Then, the log-likelihood ratio

process given the observations of Y , p := (pt)t≥0, satisfies the SDE

dpt =

[
λ1
ept + 1

ept
− λ0(1 + ept)− δ2

2σ2
ξ

(
1− 2ept

1 + ept

)]
︸ ︷︷ ︸

µ(pt):=

dt+
δ

σ2
ξ

(
dYt −

ept

1 + ept
dt

)
,(2.15)

where 1
σξ

(
Yt −

∫ t
0

eps

1+eps
ds
)

is an Fξ−Brownian motion from the agent’s standpoint.

Moreover, from the agent’s perspective, the difference between the public and private
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log-likelihood ratio processes

∆t := p∗t − pt, t ≥ 0,

evolves according to

d∆t = [φ(pt,∆t) + β(at − a∗t )]dt, t > 0, ∆0 = ∆o, (2.16)

where φ : R2 → R is defined by

φ(p,∆) = λ1

[
ep+∆ + 1

ep+∆
− ep + 1

ep

]
− λ0[ep+∆ − ep]. (2.17)

Proof: See the Appendix.

�

Observe that the combination of a finite-state markov chain and Brownian signals

generate learning dynamics that are nonlinear. This is in contrast with the linearity

of the Kalman-Bucy filter p with respect to Y in the Gaussian case. In particular,

this nonlinearity yields a belief-asymmetry process decaying potentially at stochastic

rates (φ depends on p) even when the long-run agent decides to follow the market’s

conjectured strategy after having deviated from it in the past. Finally, it is easy to

see that whenever private and public beliefs coincide and the agent follows a∗, beliefs

remained aligned (φ(·, 0) ≡ 0).

2.2.3 Markov Perfect Equilibrium

Consider an economic environment in which fundamentals evolve as a mean-reverting

process (under stationary learning) or as a Markov-switching one. From the previous

section, there exist state variables p := (pt)t≥0 and ∆ := (∆t)t≥0 that take values
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over the entire real line and that fully characterize both the long-run agent’s and the

market’s posterior distribution about fundamentals, ρ := (ρt)t≥0 and ρ∗ := (ρ∗t )t≥0,

respectively (the latter via the relation p∗t = pt + ∆t, t ≥ 0). Their respective laws of

motion take the form

dpt = µ(pt)dt+ σpdZ
Y
t , p0 = po, and (2.18)

d∆t = [φ(pt,∆t) + β(at − a∗t )]dt, t > 0, ∆0 = ∆o, (2.19)

where µ, σp, φ and β are given in Lemma 2.1 and Propositions 2.1 and 2.2. I refer to

p as the private beliefs process and to ∆ as the belief-asymmetry process, respectively.

In the sequel, I assume that the market’s best-response action is of the form b(p∗, a∗)

and observe that off the equilibrium path the market’s actions can be written as

b(pt + ∆t, a
∗
t ), t ≥ 0, from the long-run agent’s perspective.

Because I restrict to pure strategies, in any equilibrium the market must perfectly

anticipate the long-run agent’s action when starting from a common prior. This

implies that ∆ ≡ 0 on the equilibrium path, leaving p = p∗ as the unique payoff-

relevant state variable. It is natural to think therefore that, at any point in time,

on-path incentives will be a function of the public beliefs process p∗ := (p∗t )t≥0. This

motivates the study of Markov Perfect Equilibria in beliefs.

On the equilibrium path, the impact of a first unit of belief asymmetry ∆ on the

long-run agent’s flow payoffs is likely to vary across different levels of public beliefs.

This is because his preferences (u), or the market’s actions (b) or the learning process

(φ) could be nonlinear functions. Furthermore, after a deviation takes place, the long-

run agent acquires private information about the future evolution of fundamentals

and the market’s belief about them is biased. The long-run agent can therefore find

it profitable to condition his actions on both his private beliefs p and the belief-

asymmetry process ∆.
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Definition 2.3. An equilibrium (a, b, p, p∗) consisting of a manipulation strategy of

the long-run agent a := (at)t≥0, a public action profile of the market b := (bt)t≥0, a

private belief process of the long-run agent p := (pt)t≥0, and a public belief process of

the market p∗ := (p∗t )t≥0 is a Markov Perfect Equilibrium (MPE) in beliefs if and only

if there exists a measurable function a : R2 → A such that

(i) Given any feasible strategy ă := (ăs)s≥0 and any private history (ξs : s ∈ [0, t], ăs :

s ∈ [0, t]) that lead to (pt, p
∗
t − pt) = (p,∆) ∈ R2, the agent’s action at time t is

of the form at = a(p,∆), t ≥ 0;

(ii) After all public histories (ξs : s ∈ [0, t]) that lead to p∗t = p ∈ R, bt = b(p, a(p, 0)),

t ≥ 0,

and (a, b, p, p∗) satisfies (a)-(d) in Definition 2.1.

The interpretation of the previous Definition should be straightforward. It is

worth to emphasize again that since any signal path (ξs : s ∈ [0, t]) is consistent with

equilibrium actions, the market constructs beliefs assuming that the long-run agent

is following a(p∗t , 0), t ≥ 0, that is, as if he had never deviated off the equilibrium

path. On the other hand, the strategy a(pt,∆t) must be optimal for the long-run

agent after all private histories leading to (p,∆) ∈ R2 when the market construct

beliefs using a conjecture of the form a(·, 0).

2.2.4 Necessary Conditions for Markov Perfect Equilibria

The Agent’s Value Function

Suppose that the market conjectures that the long-run agent follows a strategy of the

form (a∗(p∗t ))t≥0 for some measurable function a∗ : R → A. Given this markovian

conjecture the long-run agent’s problem becomes fully recursive in (p,∆). It consists
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of choosing a manipulation strategy a := (at(ξs : s ∈ [0, t], pt))t≥0, such that (i) (a, a∗)

is a feasible pair (Definition 2.2) and (ii) at any time t the continuation strategy

(as)s≥t maximizes the long-run agent’s expected discounted utility

Et
[∫ ∞

t

e−r(s−t)(u(b(ps + ∆s, a
∗(ps + ∆s)))− g(as))ds

]

subject to the dynamics

d∆s = [φ(ps,∆s) + β(as − a∗(ps + ∆s))]dt, s > t, ∆t = ∆

dps = µ(ps)dt+ σpdZ
Y
s , s > t, pt = p,

after all private histories leading to (pt,∆t) = (p,∆), t ≥ 0, and for all (p,∆) ∈ R2.

For notational simplicity I redefine u(b(·, ·)) to be u(·, ·) unless otherwise stated.

Let V a∗(p,∆) denote the long-run agent’s value function associated to the previous

problem, and observe that it explicitly depends on the market’s conjecture a∗. As it

is standard in the dynamic programming literature, if an optimal control exists and

the agent’s value function is smooth enough (of class C2,1(R2)), then V a∗ satisfies the

Hamilton-Jacobi-Bellman (HJB) equation12

rV a∗(p,∆) = sup
a∈A

{
u(p+ ∆, a∗(p+ ∆))− g(a) + µ(p)V a∗

p (p,∆) +
1

2
σ2
pV

a∗

pp (p,∆)

+[φ(p,∆) + β(a− a∗(p+ ∆))]V a∗

∆ (p,∆)
}
, (p,∆) ∈ R2.(2.20)

Consequently, if an optimal markovian strategy â : R2 → R in response to a∗ exists,

then it has to satisfy that

â(p,∆) = arg max
a∈A
{aβV a∗

∆ (p,∆)− g(a)}, (p,∆) ∈ R2. (2.21)

12Subscripts p and ∆ denote partial derivatives with respect to p and ∆, respec-
tively.
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This in turn yields the following equilibrium condition on the market’s conjecture:

a∗(p∗) = arg max
a∈A
{aβV a∗

∆ (p∗, 0)− g(a)}, p∗ ∈ R2. (2.22)

In other words, when the market constructs its beliefs as if the long-run agent is

following the strategy (a∗(p∗t ))t≥0, the optimal policy delivered by the HJB equation

must coincide with the market’s conjecture whenever beliefs are aligned.

The following results summarizes the discussion about on and off the equilibrium

path incentives:

Theorem 2.1. Global incentives. Assume that a MPE a : R2 → R exists and the

associated value function V a is of class C2,1(R2).13 Then, the agent’s value function

V a(p,∆) satisfies the partial differential equation (PDE)

rV (p,∆) = sup
a∈A

{
u(p+ ∆, a(p+ ∆, 0))− g(a) + µ(p)Vp(p,∆) +

1

2
σ2
pVpp(p,∆)

+[φ(p,∆) + β(a− a(p+ ∆, 0))]V∆(p,∆)

}
, (p,∆) ∈ R2 (2.23)

s.t. a(p, 0) ∈ arg max
a∈A
{βV∆(p, 0)a− g(a)}. (2.24)

�

When the long-run agent has deviated in the past private and public beliefs do not

coincide. This results in value functions characterized by partial differential equations

(PDEs). Nevertheless, the type of PDEs that arise in settings involving moral hazard

and belief manipulation are non-standard ones. Specifically, the PDE (2.23)-(2.24)

is nonlocal, as the local behavior of the long-run agent’s continuation value around a

13More formally, since the market construct beliefs using a(·, 0) the correct notation
should be V a(·,0). For notational simplicity, I proceed with the abbreviation V a.
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point (p,∆) depends on the value attached to a marginal deviation off the equilibrium

at the point (p + ∆, 0) (eqn. (2.24) in the Theorem). In other words, since after

all public histories the market constructs beliefs as if the long-run agent had never

deviated, off-path utility depend on on-path marginal utility. This is clearly seen at

points where on-path incentives are interior:

a(p+ ∆, 0) = (g′)−1(βV∆(p+ ∆, 0)).

This type of non-localness, and consequently, this type of PDE, seems to be new.

Remark 2.1. The importance of Theorem 2.1 lies not only in the insights regarding

the determinants of off-path incentives, but also on its applicability for showing the

existence of markovian equilibria for the class of games presented. In fact, if V

solves the PDE (2.23)-(2.24), then it satisfies the HJB equation (2.20) along with the

function

a∗(·) := arg max
a∈A
{aβV∆(·, 0)− g(a)}

taken as given in the dynamics of ∆. As a result, verification theorems in dynamic

programming apply: provided V satisfies some additional conditions, the policy de-

livered by the HJB equation is an optimal control. Furthermore, since V satisfies

the equilibrium condition (2.24), such a policy is, by construction, a Markov perfect

equilibrium. This insight is used in Section 4 to show the existence of markovian

equilibria linear in (p,∆) for a class of games for which the associated PDEs admit

analytic solutions.

An ODE for V∆(p, 0)

The PDE (2.23)-(2.24) is, in almost every setting, very hard to visualize. However,

it is possible to extract properties of equilibrium behavior without the need of fully

solving such equation. More specifically, observe that as long as the long-run agent’s
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actions are interior and beliefs are aligned, the long-run agent’s incentives are, in any

Markov perfect equilibrium, characterized by V∆(p, 0). The next result shows that

the value attached to inducing a small discrepancy between private and public beliefs,

in fact solves an ODE:

Proposition 2.3. (On path behavior) Assume that a Markov perfect equilibrium

a : R2 → R exists and the associated value function V a is of class C2,1(R2). Further-

more, suppose that at a level of public beliefs p

(i) on path incentives are interior and

(ii) on path incentives are locally twice continuously differentiable with respect to

public beliefs, i.e., there exists a neighborhood O of p such that a(·, 0) ∈ C2(O).

Then, g′(a(·, 0)) = βV a
∆(·, 0), where V a

∆(·, 0) satisfies the ODE in p 7→ V∆(p, 0)

r̃(p, V∆(p, 0))V∆(p, 0) = up(p, g
′−1(βV∆(p, 0))) + ua(p, g

′−1(βV∆(p, 0)))
d

dp
g′−1(βV∆(p, 0))

+V∆p(p, 0)µ(p) +
1

2
σ2
pV∆pp(p, 0), p ∈ O, (2.25)

with r̃(p, V∆(p, 0)) := r − φ∆(p, 0) + β d
dp
g′−1(βV∆(p, 0)).

Proof : Differentiate the PDE (2.23)-(2.24) with respect to ∆ and evaluate at

∆ = 0.

�

Equation (2.25) corresponds to a necessary condition that on-path incentives must,

in any (smooth) Markov perfect equilibrium, satisfy. It takes the form of an ODE

for p 7→ V∆(p, 0), the value attached to inducing a small degree of belief asymmetry

across different levels of public beliefs. As a result, it measures the strength of the

long-run agent’s local incentives to deviate off the equilibrium path. I refer to (2.25)

as the incentives equation.
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The incentives equation corresponds to an Euler equation under an equilibrium

condition. The Euler feature of this equation states that the long-run agent must

be indifferent between exerting signal manipulation “today” (the right-hand side in

(2.25)) and delaying signal manipulation to “tomorrow”. Exerting signal manipu-

lation today is beneficial for two reasons. First an additional unit of asymmetry

between private and public beliefs increases the long-run agent’s flow payoffs by

d

d∆
u(p+ ∆, a(p+ ∆, 0))

∣∣∣
∆=0

= up(p, g
′−1(βV∆(p, 0))) + ua(p, g

′−1(βV∆(p, 0)))
d

dp
g′−1(βV∆(p, 0))

so long as no deviations have taken place. The first term in the previous expression

corresponds to the direct effect that an additional unit of belief asymmetry has on the

market’s actions, and consequently, on the long-run agent’s flow utility. The second

term corresponds to the effect that an additional unit of belief asymmetry has on

the market’s action through the indirect channel of affecting the market’s conjecture

about the level of signal manipulation. I elaborate more on this point shortly.

The second benefit from exerting signal manipulation today relates to cost smooth-

ing. More specifically, observe that, on the equilibrium path, the expected rate of

change of the value associated with an additional unit of belief asymmetry takes the

form

lim
h→0

Et[V∆(pt+h,∆t+h)]− V∆(pt, 0)

h
= [φ(pt, 0) + β(a(pt, 0)− a(pt, 0))]︸ ︷︷ ︸

≡0

V∆∆(pt, 0)

+ µ(p)Vp∆(pt, 0) +
1

2
σ2
pVpp∆(pt, 0)

= µ(p)Vp∆(pt, 0) +
1

2
σ2
pVpp∆(pt, 0).

Consequently, if the benefits from signal manipulation are expected to change at high

rates in the near future, then because manipulation costs are convex, it is optimal to
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start investing in belief distortion today. The value attached to belief asymmetry can

change because beliefs are locally predictable (µ(p) 6= 0) or because learning about

fundamentals is valued differently as public beliefs change (third-order term V∆pp).

In any case, future economic conditions will influence the agent’s current decisions if

and only if private beliefs p interact in a non-trivial way with the belief-asymmetry

process ∆. This is likely to occur in settings where the impact of ∆ on the long-run

agent’s flow utility is nonlinear.

When the agent instead decides to postpone signal manipulation to tomorrow, he

saves the costs associated with his investments in belief asymmetry depreciating over

time. These depreciation costs are captured in the required rate of return on belief

asymmetry

r̃(p, V∆(p, 0)) = r − φ∆(p, 0) + β
d

dp
g′−1 (βV∆(p, 0)) , p ∈ R,

in the left-hand side of (2.25). For any fixed discount rate r, the lower r̃(p, V∆(p, 0))

is, the more persistent belief distortions are, and thus the higher the incentives to

manipulate public beliefs today.

The required rate of return r̃ is determined endogenously in equilibrium. Re-

call first that, given any conjecture a∗, the belief-asymmetry process (2.19) evolves

according to

d∆t = [φ(pt,∆t) + β(at − a∗t )]dt, t ≥ 0.

Thus, if the market’s conjecture a∗ were an exogenous function of time, a local de-

viation at pt = p would entail a dividend flow that depreciates at a rate equal to

−φ∆(p, 0). This in turn would map into a monetary loss discounted at a rate equal

to r − φ∆(p, 0).
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However, when equilibrium strategies depend on current beliefs, deviations also

affect the market’s conjecture about equilibrium play. In fact, by inducing a marginal

unit of belief asymmetry, the long-run agent locally distorts the market’s conjecture by

d
d∆
a∗(p+∆) off the equilibrium path. As a result, when a Markov perfect equilibrium

a(p,∆) exists and incentives are interior, the equilibrium condition (2.24) yields that

∂

∂∆
a(p+ ∆, 0)

∣∣∣
∆=0

:=
∂

∂∆
g′−1(βV∆(p+ ∆, 0))

∣∣∣
∆=0

=
∂

∂p
g′−1(βV∆(p, 0)),

on the equilibrium path. The returns from belief asymmetry are thus captured by

r̃(p, V∆(p, 0)) and not by r − φ∆(p, 0) alone.14

Affecting the market’s conjecture can strengthen or weaken the long-run agent’s

incentives to induce belief asymmetry. For instance, if the market expects belief

manipulation to be locally increasing in public beliefs, the returns from inducing

belief asymmetry could be low. In such a case, the long-run agent would have to fulfill

tougher standards of belief manipulation in the future in order to maintain perceived

fundamentals at a fixed level, which in turn reduces the benefits from inducing belief

asymmetry.15 In either case, the equilibrium feature of the incentives equation states

that, when a Markov perfect equilibrium exists, the additional benefits from affecting

the market’s conjecture (summarized in the endogenous rate of return r̃) generate

belief manipulation incentives that coincides with what the market conjectures will

be played on the equilibrium path. As a result, (2.25) does not incorporate any gains

associated with having private information about fundamentals.

14Since beliefs react to new information according to the sensitivity parameter
β, the change on the market’s conjecture ∂

∂∆
a(p + ∆, 0) is amplified by β in the

equilibrium rate of return r̃(p).
15A similar force appears in Kyle’s (1985) model of insider trading. In his model,

a trader who has private information about the value of an asset takes into account
that trading more aggressively today moves the equilibrium price against him in
subsequent trading rounds.

92



The next Theorem summarizes the previous discussion about incentives on the

equilibrium path:

Theorem 2.2. Assume that a Markov perfect equilibrium exists. Furthermore, sup-

pose that the associated value function V (p,∆) is of class C3,1(R2). Then, whenever

(on-path) incentives are interior, the agent’s (on-path) value function V (·, 0) satisfies

the ODE

rU(p) = u(p, q(p))− g(g′−1(βq(p))) + U ′(p)µ(p) +
1

2
σ2
pU
′′(p), p ∈ R (2.26)

whereas the agent’s (on-path) marginal utility function V∆(·, 0) satisfies the ODE

r̃(p, q(p))q(p) = up(p, g
′−1(βq(p))) + ua(p, g

′−1(βq(p)))
d

dp
g′−1(βq(p))

+q′(p)µ(p) +
1

2
σ2
pq
′′(p), p ∈ R, (2.27)

where r̃(p, q(p)) = r − φ∆(p, 0) + β d
dp
g′−1(βq(p)).

Remark 2.2. The choice of formulating the agent’s problem in the (p,∆)-coordinate

system is purely for expositional purposes. It allows us to understand the agent’s

problem as one of investing in belief asymmetry in the presence of convex costs, with

private beliefs playing the role of an exogenous price. Instead, in the (p, p∗)-space

on-path incentives are determined by the value attached to a marginal increment in

public beliefs along the diagonal {(p, p) | p ∈ R}. It is easy to see that the same

envelope argument used to derive (2.25) on the corresponding HJB equation yields

an ordinary differential equation for p 7→ Vp∗(p, p).

Remark 2.3. Following the analogy between this problem and the literature of in-

vestment in the presence of adjustments costs, the resemblance between the incen-

tives equation (2.25) and the ones for the traditional “q” is clear.16 Nevertheless,

16See, for example, Dixit and Pindyck (1994).
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what makes the incentives equation distinctive is that the required rate of return on

belief asymmetry is determined endogenously and also depends on q. In fact, from

the second ODE in the previous theorem, V∆(p, 0) satisfies a highly nonlinear version

of the traditional equations for “q”.

2.2.5 The Incentives Equation: Examples

Linear Environments: Holmstrom’s Career Concerns Model

In Holmstrom’s model of reputation a risk-neutral worker can produce an output (ξ)

using his skills (θ) and effort (a). In continuous-time, the worker’s skills are modeled

as a martingale dθt = σθdZ
θ
t , t ≥ 0, whereas output ξ is given by (2.1). If the pool

of potential employers is competitive, the worker’s wage at time t corresponds to the

market’s expected output flow at that instant. Hence, the market’s action takes the

form b(a∗t , p
∗
t ) = a∗t+p

∗
t , where a∗t is the agent’s equilibrium effort decision at time t and

p∗t = E∗[θt|F ξt ], t ≥ 0. It can be easily verified that the constant function V∆(p, 0) ≡
1

r+β
(with β = σθ/σξ) is a solution to the incentives equation (2.25). As a result, both

the additivity and linearity imposed by Holmstrom generate value functions V that

are fully separable in p and ∆. Thus, current incentives are independent of future

effort decisions and independent of contemporaneous equilibrium conjectures.

Nonlinearities 1: Quadratic Payoffs

As in the procurement example in Section 2, suppose that there exists a market

friction that makes the long-run agent’s payoffs u(p∗) a quadratic loss function of

public beliefs p∗. It can be easily checked that a function of the form a∗(p∗) =

α1 + α2p
∗, p∗ ∈ R, solves the incentives equation for suitably chosen parameters α1

and α2. In the next Section I show that, if u(·) satisfies a mild curvature condition,

such a rule is indeed an equilibrium.
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Nonlinearities 2: Discrete-type Space

One of the most relevant features of the incentives equation is that it can shed lights

on the shape of equilibrium behavior without the need to fully solve the complex

partial differential equations that characterize the long-run agent’s value function.

This is particularly important in environments that exhibit high nonlinearities, as I

illustrate below.

Suppose that an agent’s ability θ is a time zero draw from a discrete random

variable taking values in {0, 1}. Effort is costly according to the function g(a) = a2

2
.

Moreover, assume that the agent’s wage is given by p∗t := P(θt = 1|F ξt ), the posterior

probability that his ability is high given the information up to time t ≥ 0. The agent’s

flow utility is given by a differentiable function u : R→ R.

In this case it can be easily checked that p∗ = p∆
1+p(∆−1)

with (p,∆) evolving as

dpt =
pt(1− pt)

σξ
dZY

t and d∆t =
∆t(at − a∗t )

σ2
ξ

dt, t ≥ 0,

respectively. Moreover, the incentives equation takes the form

[
r +

V∆p(p, 0)

σ4
ξ

]
V∆(p, 0) = p(1− p)

[
u′(p) +

V∆p(p, 0)

σ2
ξ

+
p(1− p)

2σ2
ξ

V∆pp(p, 0)

]
,(2.28)

for p ∈ (0, 1). Some solutions to this ODE are plotted in the following figure:
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Figure 2.1: Some solutions of the ODE (2.28) when u(p∗) = p∗ and V∆(0, 0) = 0.
Parameter values: σξ = 0.2, r = 0.02.

In particular, it can be shown that there exists a non-negative solution of class

C2 to the boundary value problem defined by the above ODE and the boundary

conditions V∆(0, 0) = V∆(1, 0) = 0.One would expect equilibrium effort to vanish as

public beliefs tend to 0 or 1. This is because public beliefs become unresponsive to

new information asymptotically in those limits. Provided effort is constrained to be

non-negative and a pure-strategy equilibrium vanishing at the extremes exist, then

such equilibrium should look like in the figures below:
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Figure 2.2: Left panel: u(p∗) = a∗ + p∗. Right panel: u(p∗) = p∗. Parameter values:
σξ = 1.

In the right panel, the agent is payed according to the perceived value of his skills

only. As a result, the myopic gain from belief distortion is given by

d

d∆
u(p+ ∆)

∣∣∣∣∣
∆=0

=
d

d∆

[
p∆

1 + p(∆− 1)

] ∣∣∣∣∣
∆=0

= p(1− p), p ∈ (0, 1).

Moreover, the learning dynamics are also symmetric around p = 1/2. Yet, incentives

may not exhibit that property. This is because the agent’s actions also affect the

market’s contemporaneous expectations about equilibrium play, and such effect can

play against the agent’s incentives.17 For low reputations, inducing a marginal unit of

belief asymmetry increases the threshold of belief manipulation that the agent will face

in the near future. Moreover, such additional effort is not compensated. Reputational

incentives are thus stronger once the agent has already built a reputation, as it is too

costly for the agent to risk losing his high reputation and start re-building it again.

In the left panel the agent is also rewarded by effort. Now, the (on-path) myopic

gain from belief distortion ceases to be symmetric around p = 1/2 and it is given by

p(1− p)[1 + V∆p(p, 0)], p ∈ (0, 1).

17In fact, from the incentives equation (2.28) it can be seen that the term
V∆p(p, 0)V∆(p, 0) makes the ODE non symmetric around p = 1/2.

97



Whenever equilibrium effort vanishes at the extremes, incentives will be stronger for

low reputations, as in this region effort must be increasing. Even though the agent,

by exerting more effort, also faces a tougher standard in the future, the market

compensates those additional units. Hence, rewarding effort generates incentives for

building a reputation. Since the costs associated with building a reputation are not

as high as in the right panel, an agent with a high reputation can afford to shirk.

2.3 Signal-Jamming Games: Linear-Quadratic En-

vironments

The necessary conditions for utility and marginal utility in Theorem 2.2 are necessary

conditions for the incentives that arise in any pure-strategy Markov perfect equilib-

rium, provided such an equilibrium exists. However, since the incentives equation

(2.25) is a local incentive constraint only, it does not ensure that the long-run agent

does not benefit from large deviations off the equilibrium path. In order to verify

incentive compatibility globally, it is necessary to study the solutions to the PDE

(2.23)-(2.24). At this general level, this is an extremely challenging task.

The purpose of this section is to introduce a subclass of linear-quadratic games

for which (i) Markov perfect equilibria explicitly dependent on beliefs exist, (ii) the

associated value functions are smooth and (iii) on- and off-path incentives can be fully

characterized. In particular, on the equilibrium path the agent’s actions satisfy the

incentives equation (2.25). These games have a linear-quadratic structure because

learning is Gaussian (linear) and the flow utility that the agent derives from the

market’s actions is a quadratic loss function of public beliefs.

Quadratic preferences in the context of belief manipulation arise in many economic

environments. In procurement for instance, a contractor and a government who

interact repeatedly over time can learn about the contractor’s efficiency (costs) to
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deliver goods. Moreover, if the government lacks commitment, the contractor may

want to target a particular level of reputation: high enough to be awarded projects,

but low enough to avoid triggering rent-extracting actions on the government’s side.

Consequently, imperfect competition on the demand side can in fact create negative

returns from being perceived as more able. Another setting is monetary policy in the

context of unobserved components of inflation: the government benefits from inflation

being close to a particular target and, at the same time, from inducing inflationary

surprises that map into more employment (Kydland and Prescott (1977)). This

application is developed in more detail within the class of investment games with

learning analyzed in the next section.

The importance of studying games within this subclass is three-fold. First, these

games generate PDEs summarizing global behavior (Theorem 2.1) that admit ana-

lytic solutions. As a result, on- and off-path dynamics can be fully characterized and

comparative statics with respect to key parameters can be easily performed. Second,

this type of games exhibit all the forces that are expected to influence on-path be-

havior in more nonlinear environments (e.g., cost smoothing and endogenous rate of

returns on belief asymmetry). Finally, linear-quadratic settings are the framework

to study second-order approximations of more nonlinear environments around steady

state.

2.3.1 Existence Result

Definition 2.4. A signal-jamming game is said to be of linear-quadratic form if

(i) Fundamentals θ are a mean reverting process: dθt = −κ(θt− η)dt+σθdZ
θ
t , t ≥ 0;

(ii) The set of feasible action values A is the real line and the cost of signal manip-

ulation is quadratic: g(a) = ψ
2
a2, ψ > 0;
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(iii) The long-run agent’s flow utility derived from the market’s action is a quadratic

loss function of public beliefs u(b(p∗, a∗)) = u0 + u1p
∗ − u2p

∗2
t , where u0, u1 ∈ R

and u2 ≥ 0.18

The next result shows the existence of a linear (in beliefs) equilibrium which ex-

hibits all the forces mentioned in the previous sections. The linear quadratic frame-

work presented here is hence tractable enough to obtain analytic solutions, yet at the

same time, able to induce rich interactions between learning and incentives.

Theorem 2.3. Suppose that a linear-quadratic game of signal manipulation is such

that

u2 ≤
ψ(r + β + 2κ)2

8β2
. (2.29)

Then, a Markov perfect equilibrium in linear strategies exists. In this equilibrium, the

agent’s value function is given by V (p,∆) = α0 + α1p+ α2∆ + α3p∆ + α4p
2 + α5∆2,

where α0, α1 ∈ R, α4, α5 < 0,

α2 =
ηκα3 + u1

r + β + κ+ β2α3

ψ

, and

α3 =
ψ

2β2

[
−(r + β + 2κ) +

√
(r + β + 2κ)2 − 8u2β2

ψ

]
< 0. (2.30)

The optimal degree of signal manipulation corresponds to a(p,∆) := β
ψ
V∆(p,∆) =

β
ψ

[α2+α3p+2α5∆]. On the equilibrium path, signal manipulation takes value a(p, 0) =

β
ψ

[α2 + α3p].

Proof: See the Appendix.

�
18The analysis can be easily extended to the case in which the market’s action is

also linear in a∗: u(b(p∗, a∗)) = u0 + u1(k1p
∗ + k2a

∗)− u2(k1p
∗
t + k2a

∗
t )

2, k1, k2 ∈ R.
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The long-run agent’s on-path utility takes the form V (p, 0) = α0 + α1p + α4p
2,

p ∈ R (see the Appendix for the coefficients’ expressions), and the manipulation

strategy that arises in equilibrium corresponds to a decreasing function of public

beliefs (α3 < 0). This is intuitive as the agent wants to push public beliefs toward

the payoff’s bliss point u1
2u2

. Graphically:
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Figure 2.3: The agent’s value function from two different angles. Parameter values:
ψ = 1, η = −1, σθ = σξ = 0.2, κ = 0.2.
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Figure 2.4: The long-run agent’s utility and the optimal signal manipulation policy
(right panel) on the equilibrium path. Parameter values: ψ = 1, η = −1, σθ = σξ =
0.2, κ = 0.2, u0 = u1 = 0, u2 = 0.1.

Since the long-run agent’s utility must remain uniformly bounded by above, α4

and α5 are strictly negative. This can be seen in Figure 6. The left panel in Figure
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7 shows in turn that α4 < 0. Moreover, the choice of parameters satisfy η < 0 and

u1 = 0, we have that α2 > 0. This yields

α1 :=
−β2α3

ψ
α2 + 2ηκα4

r + κ
> 0.

As a consequence, the long-run agent’s (on path) utility is maximized at − α1

2α4
> 0.

Finally, the fact that the intercept α2 is strictly larger than zero means that the agent

is exerting strictly positive effort at the payoff’s bliss point. I will elaborate more the

properties of the linear equilibrium in the next section.

2.3.2 The Structure of the Agent’s Incentives

The incentives generated within the class of linear-quadratic games satisfy all the

forces identified in the incentives equations. First, the size of marginal flow pay-

offs drive the size of the long-run agent’s incentives: as the myopic gain from belief

manipulation decays, equilibrium effort decreases.

Second, the agent’s incentives respond to anticipated economic conditions through

cost smoothing. Suppose for instance that the linear component of the agent’s utility

u1 is zero and that fundamentals mean revert toward η < 0. Then, since α3 < 0 and

r + β + κ+ β2α3

ψ
> 0, it can be easily seen that

α2 =
ηκα3

r + β + κ+ β2α3

ψ

> 0,

which means that the agent exerts strictly positive effort at the long-run payoffs’ bliss

point. This is because he anticipates that fundamentals will mean revert to η with

high probability, region in which it is optimal to exert signal manipulation. Since the
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cost of signal manipulation is convex, it is optimal to invest in signal manipulation

today.19

Finally, the rate at which a marginal unit of belief asymmetry depreciates over

time is endogenous. In fact, for the linear-quadratic games studied the required rate

of return on belief asymmetry is given by

r̃(p) := r − φ∆(p, 0) +
β2

ψ
V∆p(p, 0) = r + β + κ+

β2

ψ
α3

from which we conclude that the effect of distorting the market’s conjecture on the

rate at which belief asymmetry decays over time is uniform across all levels of public

beliefs. Interestingly, since α3 < 0, the equilibrium rate of return is smaller than

r + β + κ (the rate at which belief asymmetry would decay if equilibrium strategies

were deterministic). This is because the agent signal manipulation moves the market

conjecture a∗ in the direction where it is less costly to keep up with the market’s

expectations. The ability to reduce the standard of belief manipulation imposed by

the market, amplifies the future benefits from belief distortion. All these effects can

be seen in the following figure:

19If κ = 0, public beliefs evolve as martingales and thus cost smoothing disappears.
Yet for more nonlinear environments third order terms should make cost smoothing
considerations important, even when beliefs are unpredictable.
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The relevant parameters of the linear-quadratic model correspond to the rate of

mean reversion κ, the long-run mean of fundamentals η and the convexity parameter

of the effort’s disutility function ψ. The sensitivity of equilibrium incentives to these

parameters can be seen in the following panel:
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Figure 2.6: Sensitivity of equilibrium incentives to ψ, η and κ, respectively.

In the left panel, more convexity in the costs associated with signal manipula-

tion entail higher costs from actions having high volatility. This results in less steep
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manipulation policies as ψ increases. The middle panel, instead shows how the dis-

tance between the agent’s consumption bliss point and the long-run average value

of fundamentals affect incentives. As this distance increases, it is more likely that

fundamentals will move away from the consumption bliss point, which induces the

agent to engage in more signal manipulation. Finally, changes in κ (third panel) can

have two effects on incentives. First, as the rate of mean reversion increases there is

a pressure towards more effort smoothing (numerator in α2). However, an increase in

κ also makes belief distortion less persistent (β+κ =
√
κ2 + (σθ/σξ)2) and public be-

liefs become less responsive to new information (β =
√
κ2 + (σθ/σξ)2−κ decreases in

κ).20 Both less persistence and less sensitivity reduce the incentives for belief manipu-

lation (slope of incentives decay) and the benefits from cost smoothing (denominator

in (2.30)). The outcome is less steep incentives and a relatively unchanged intercept

(which measure cost smoothing).

I conclude this section with an analysis of the dynamics of signal manipulation,

on and off the equilibrium path:

Proposition 2.4. When the environment is linear-quadratic, the long-run agent’s

optimal manipulation strategy satisfies the following properties

(i) Signal manipulation is positively correlated over time, on and off the equilibrium

path. The correlation between signal manipulation at two points in time de-

creases with time distance.

(ii) Off the equilibrium path,

∆t = ∆oeρt, t ≥ 0, ∆0 = ∆o

20Recall that in any equilibrium public beliefs evolve according to dpt = −κ(pt −
η)dt+ βσξdZ

Y
t , t ≥ 0.
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where ρ < 0. That is, discrepancies in beliefs gradually decrease over time, i.e.

ρ < 0.

Proof: See the Appendix.

�

Part (i) is straightforward, as both parties’ beliefs are mean reverting on and off

the equilibrium path. The reason behind why (ii) holds has to do with both the fact

that the long-run agent is risk averse and the fact that a Markov perfect equilibrium

exists. First, risk aversion makes it optimal for the agent to induce dynamics of belief

asymmetry that evolve deterministically. Second, since a Markov perfect equilibrium

exists, the long-run agent does not benefit from large deviations off the equilibrium

path. As a result, any initial stock of belief asymmetry must vanish asymptotically as

time goes by, so ρ < 0. In particular, starting from a different prior (with the market’s

prior being common knowledge) both learning processes converge to the same ergodic

distribution.

2.3.3 The Curvature Condition

Theorem (2.3) ensures the existence of a linear (in public beliefs) Markov Perfect

Equilibrium provided the curvature condition

u2 ≤
ψ(r + β + 2κ)2

8β2
,

holds. In this section I show that the curvature condition is also necessary for the

existence of such a linear equilibria.

In order to understand the intuition behind this result, suppose that the curva-

ture of the payoff function, u2, increases. Then, the myopic benefit from inducing

belief asymmetry goes up. Consequently, in order to prevent deviations off the equi-

librium path, the market has to impose a tougher effort standard, which maps into a
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steeper (conjectured) effort profile a∗. Steeper conjectures of equilibrium play in turn

translate into more persistent benefits from inducing belief-asymmetry. In fact, the

required rate of return on belief asymmetry

r̃(p) = r + β + κ+
β2

ψ

da∗

dp∗
(p∗), p ∈ R,

decays as a∗ becomes more negatively sloped, which means that the value attached

to inducing belief asymmetry increases. This occurs because, by pushing public be-

liefs toward zero, the agent will face an even lower effort standard tomorrow, which

increases the benefits from belief manipulation. Beyond the threshold ū = ψ(r+β+2κ)2

8β2 ,

a linear effort schedule cannot control simultaneously both the local benefits from

a deviation (as measured by marginal flow payoffs) and the long-run benefits from

engaging in large deviations off the equilibrium path.

Formally, consider the optimal control problem P(α̂3)

max
a∈A

∫ ∞
0

e−rt
(
−u2(pt + ∆t)

2 − ψ

2
a2
t

)
dt

s.t. dpt = −κptdt, (2.31)

d∆t =

[
−
(
β + κ+

β2

ψ
α̂3

)
∆t + βat −

β2

ψ
α̂3pt

]
dt, (2.32)

where u2, κ, β, ψ > 0. Observe that the second dynamic corresponds to the belief-

asymmetry process when the market conjectures an effort profile of the form â(p∗) =

βα̂3

ψ
p∗ = βα̂3

ψ
(p + ∆), with α̂3 a scalar. In other words, this problem corresponds to

a deterministic version of the linear-quadratic game previously studied in the case

in which u1, η and the volatility term in the private beliefs process are all zero (β,

however, is assumed to depend on σξ > 0, as in the stochastic game).

Studying this problem is without loss of generality for two reasons. First, u1 and

η do not affect the slope of the effort schedule, which is what at the end of the day

matters for the existence of a linear equilibrium. Second, since the original problem
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has a linear-quadratic structure, any second order term will only affect the level (or

constant term) of the agent’s value function. Thus, provided a linear best-response

to the market’s conjecture exists in the original stochastic problem, this one can be

found through solving this deterministic version (certainty equivalence principle). In

the sequel, α̂3 < 0, which captures the idea that the market wants to prevent belief

manipulation towards zero.21

The next results show that the previous problem always admits a linear best

response. Furthermore, it shows that when the curvature condition is violated, the

long-run agent responds more aggressively to the market’s conjectured effort profile:

Proposition 2.5. The value function associated with P(α̂3), α̂3 < 0, has the form

V (p,∆) = α3p∆ + α4p
2 + α5∆2,

where α3 = α3(α̂3) and α5 = α5(α̂3) are given by

α3(α̂3) =
−2u2 − 2β2

ψ
α5(α̂3)α̂3

r + β + 2κ+ β2

ψ
α̂3 − 2β2

ψ
α5(α̂3)

(2.33)

α5(α̂3) =
r + 2

(
β + κ+ β2

ψ
α̂3

)
−
√(

r + 2
(
β + κ+ β2

ψ
α̂3

))2

+ 8β2

ψ
u2

4β2

ψ

.(2.34)

Moreover, if u2 >
ψ(r+β+2κ)2

8β2 , then α3(α̂3) < α̂3.

Proof: See the Appendix.

�

When the curvature condition is violated, the sensitivity of the long-run agent’s

actions to his private information is higher (in absolute value) than the slope of the

market’s conjectured effort schedule. Consequently, starting from a common prior,

21It is straightforward to argue that there is no equilibrium in which on-path effort
is given by α̂3p

∗, p∗ ∈ R with α̂3 > 0.
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the long-run agent finds it optimal to generate a positive stock of belief asymmetry

from time zero on. This allows him to drive public beliefs quickly towards zero, and

the stock of belief asymmetry disappears asymptotically.

2.3.4 Connection with the Literature: Career Concerns

Career concerns models are an example of signal-jamming games in which the actions

taken by the long-run agent create value. As argued earlier, in Holmstrom (1999) the

long-run agent is risk neutral, learning is Gaussian and wages are linear un public

beliefs. All these these linearities result in reputational incentives that do not re-

spond to current wages (e.g., perceived ability) or to the market’s contemporaneous

conjectures. Since public beliefs evolve as martingales, equilibrium incentives neither

respond to future economic conditions, as these are unpredictable.

In Cisternas (2012) I extend Holmstrom’s environment to allow for some degree

of predictability in future economic conditions. In particular, I show that when skills

are modeled as a mean-reverting process (2.7) and learning is stationary, market

competition generates incentives that are constant at a value aH such that

g′(aH) =
β(κ)

r + β(κ) + κ
, (2.35)

where β(κ) =
√
κ2 + (σθ/σξ)2 − κ and g(·) is the effort cost function. An important

conclusion of this result is that in contexts of linear preferences and linear learning,

introducing predictability in the reputational component of wages does not affect the

structure of the incentives created by career concerns; rather, it is only their level that

changes.22 In particular, mean-reversion bounds incentives away from the efficiency

(defined as g′(ae) = 1) uniformly across all positive discount rates.

22Away from the steady-state level of learning, the dynamics are as in Holmstrom
(1999) with incentives driven evolution of the mean-squared error, which is determin-
istic. Incentives are also deterministic when the agent’s actions affect his productivity
(an investment game), as in learning-by-doing. See Cisternas (2012) for more details.
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The literature on the structure of the incentives created by career concerns is not

extensive. In the static model of Dewatripont et. al. (1999b) effort and conjectured

effort are strategic complements as a result of the complementarity between skills

and effort in the production technology. More recently, Bonatti and Hörner (2012)

show that current and future effort can become strategic substitutes : when an agent

is rewarded by effort and builds a reputation through a single output observation,

high wages in the future reduce the value that a worker attaches to obtaining a

breakthrough today. In Bonatti and Hörner’s model beliefs evolve deterministically

and therefore, the whole evolution of the game (in the absence of a breakthrough)

is fully known at time zero. Finally, in a discrete-time and finite-horizon framework

Martinez (2009) finds ratchet effects when studying career-concerns incentives in a

context of piecewise linear wages arising from job assignments.

Instead, the linear-quadratic model presented here shows how incentives are af-

fected by contemporaneous conjectures even in the absence of complementarities in

the public signal’s technology. It also shows how incentives also respond to anticipated

future economic conditions through effort smoothing. Finally, it shows that ratchet

forces appear through the slope of the market’s contemporaneous conjecture of be-

lief manipulation. Most importantly, these features are present in every environment

exhibiting some degree of nonlinearity.

2.4 Investment Games

This section outlines the basic ingredients of a class of investment games with learning.

Given the analysis performed in the Section 3, setting a framework for the study of

markovian equilibria should be conceptually simple.
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2.4.1 Model and Learning Dynamics

An investment game consists of a public signal ξ := (ξt)t≥0 of the form

dξt = θtdt+ σξdZt, t ≥ 0, (2.36)

where θ := (θt)t≥0 is a hidden state variable affected by the long-run agent’s invest-

ment decision a := (at)t≥0. For technical reasons I restrict the analysis to fundamen-

tals that evolve according to

dθt = (at − κθt)dt+ σθdZ
θ
t , t ≥ 0. (2.37)

If κ > 0 then, at any point in time t, fundamentals locally mean revert to at/κ, and

this convergence is gradual. If κ = 0, the long-run agent’s action just adds a non-zero

drift to the dynamics of θ. Denote by θa := (θat )t≥0 the process of fundamentals

that arises when the long-run agent is following an investment strategy a, and let

ξa := (ξat )t≥0 denote the resulting public signal.

In what follows I rapidly move toward a markovian formulation of the long-run

agent’s problem in which the key points are: 1) deriving filtering equations for the

agent’s and the market’s posterior beliefs, 2) connecting public and private beliefs

via a belief-asymmetry process and 3) showing that given any markovian conjecture

by the market, a best response in markovian form can be found through solving a

well-defined stochastic control problem.23

23This last point is a non-trivial one and is related to the choice of fundamentals
(3.7). In finding optimal markovian policies using a dynamic-programming approach,
both the Brownian motions and associated filtrations must be exogenous. This is
clearly satisfied in the class of signal manipulation games. However, this is not neces-
sarily the case for investment games, as the information generated by the public signal
can depend on the actions taken by the agent though the evolution of θ. Under the
specification (3.3)-(3.7) this issue is circumvented through the use of the Separation
Principle (Wonham (1968)).
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Suppose that the agent follows a strategy a := (at)t≥0 which depends on the

current observations of the public signal. As in the signal-jamming case, standard

results in filtering theory state that, starting from a Gaussian prior, the posterior

distribution of θat given F ξ
a

t is normally distributed (Theorem 12.1 in Liptser and

Shiryaev (1977)). Moreover, pat := E[θat |F
ξa

t ] and γat := E[(θat − pat )
2|F ξ

a

t ] evolve

according to

dpat = (at − κpat )dt+
γat
σξ

dξa − pat dt
σξ

(2.38)

γ̇at = −2κγat + σ2
θ −

(
γat
σξ

)2

.

where 1
σξ

(
ξat −

∫ t
0
pasds

)
, t ≥ 0, is an Fξa−Brownian motion. Observe that the pos-

terior variance does not depend on a, and hence it is exogenous. As in the previous

section, I consider the case in which γ is fixed at the steady-state level of learning γ∗.

However, observe the long-run agent’s actions could also depend on his private

belief about the unobserved process– and this private belief is in turn affected by

the actions he takes. As a result, in order to have well defined posterior beliefs, the

following condition is necessary:

Definition 2.5. A strategy a := (at)t≥0 is said to be feasible if

(i) For each t, at : C([0, t))× R→ R, t ≥ 0, and;

(ii) There exists a unique Fξa− measurable solution (pat )t≥0 to the SDE in (xt)t≥0

dxt = (at(ξ
a, xt)− κxt)dt+

γ∗

σξ

dξa − xtdt
σξ

, t ≥ 0, (2.39)

where ξa and θa are the signal’s and fundamental’s processes, respectively, under

the strategy a.
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Part (i) in the previous definition states that at any point in time t the long-

run agent can condition his actions on the partial observations of the public signal

(ξs : s ∈ [0, t]) and also on his beliefs about the current state of fundamentals, t ≥ 0.

Part (ii) is the minimal requirement that the agent strategy must generate posterior

beliefs characterized by SDEs.24

The market’s learning process is similar to the one studied in the class of signal-

jamming games. The market conjectures an investment strategy a∗ := (a∗t )t≥0 which

depends on the information generated by ξ, under the assumption that the long-run

agent has followed a∗. Denote by pa
∗

:= (pa
∗
t )t≥0 the corresponding posterior mean

process. The following is an analog result to Proposition 2.1 for the case of investment

games, and its proof is straightforward:

Proposition 2.6. Suppose that the market conjectures a manipulation strategy a∗ :=

(a∗t )t≥0, while the long-run agent actually follows a := (at)t≥0. Then, from the long-

run agent’s perspective, public beliefs can be written as pa
∗
t = pat + ∆t, where the

process ∆ := (∆t)t≥0 is governed by the ODE

d∆t = [−(κ+ β)∆t + a∗t − at]dt, t > 0, (2.40)

with β := γ∗/σ2
ξ , t ≥ 0 and ∆0 = ∆o.

Proof: Straightforward.

�

Observe that, as opposed to a signal-jamming game, the gap between the agent’s

actions and the market’s conjecture, a − a∗, reduces the size of the stock of belief

asymmetry. This is because the agent is affecting the evolution of fundamentals,

24Such a solution exists when, for instance, a is linear in x: at(ξ;x) = ât(ξ) + x,
for some family of measurable functions ât : C([0, t)) → R, t ≥ 0, satisfying mild
integrability conditions. Refer to chapters 11 and 12 in Liptser and Shiryaev (1977)
for the analysis of this case.
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rather than distorting a noisy signal of them. The higher the agent’s investment

relative to the market’s conjecture, the more optimistic the agent will be about current

fundamentals compared to the market.

2.4.2 Necessary Conditions for Markov Perfect Equilibria

Off the equilibrium path, the market’s beliefs take the form a∗(pat + ∆t) where

a := (at)t≥0 denotes the strategy followed by the agent, t ≥ 0, and a∗ : R → R,

is a markovian conjecture. Private beliefs and the belief asymmetry process evolve

according to

dpat = (at − κpat )dt+ βσξdZ
a

t (2.41)

d∆t = [−(κ+ βt)∆t + a∗(pat + ∆t)− at]dt, t ≥ 0, (2.42)

where Z
a

t := 1
σξ

(
ξa −

∫ t
0
pasds

)
, t ≥ 0, is an Fξa−Brownian motion from the agent’s

perspective. But because the (θ, ξ) is conditionally Gaussian,

Z
a

t = Z
ã

t , t ≥ 0, a.s.,

for any pair of feasible strategies a, ã.25 Denoting by Z
0

t the Brownian motion asso-

ciated with the strategy 0, observe that the posterior mean process can be written

as

dpat = (at − κpat )dt+ βσξdZ
0

t , t ≥ 0,

where Z
0

is an exogenous Brownian motion from the agent’s perspective.

Under the above conditions the Separation Principle applies. That is, if a best

response to a∗ in markovian form exists, then it can be found by solving the modified

problem

25This can be deduced from (3.7) and (2.38).
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max
a∈A

E
[∫ ∞

t

e−r(s−t)(u(ps, ps + ∆s)− g(as))ds

]
s.t. dps = (as − κps)dt+ βσξdZ

0

s, s ≥ t,

d∆s = [−(κ+ βs)∆s + a∗(ps + ∆s)− as]ds, s ≥ t,

where I have assumed that the agent’s expected flow payoff at time t takes the form

u(pt, p
∗
t ), t ≥ 0.26

The remaining steps toward obtaining necessary conditions for on-path incentives

are straightforward. If a best response in markovian form â : R2 → R to a∗ exists,

and the associated value function V a∗(p,∆) is smooth enough then

â(p,∆) = max
a∈A

{
a[V a∗

p (p,∆)− V a∗

∆ (p,∆)]− g(a)
}
, (p,∆) ∈ R2.

This yields the equilibrium condition

a∗(p) = max
a∈A

{
a[V a∗

p (p, 0)− V a∗

∆ (p, 0)]− g(a)
}
, p ∈ R.

The next result states that in games of investment and learning, the benefits from

investing in the fundamental are, in any equilibrium, characterized by a system of

ODEs: one for the value attached to boosting fundamentals, and another one for the

value attached to inducing a small discrepancy between private and public beliefs.

This is because the long-run agent affects both fundamentals directly through his

26The separation principle states that if we replace the dynamics (2.41)-(2.42) by
the corresponding ones under an exogenous Brownian motion and filtration, then,
provided the modified problem admits an optimal strategy in Markovian form, such
a policy is optimal among the class of controls which are measurable with respect to
the public signal. See Chapter 16 in Liptser and Shiryaev for an application of the
Separation Principle to a linear-quadratic example, or Wonham (1968) for a more
general approach.
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investment decisions, and the belief asymmetry process indirectly through changes in

perceived fundamentals:

Proposition 2.7. Assume that a Markov perfect equilibrium a : R2 → R exists and

the associated value function V a is of class C2,1(R2). Furthermore, suppose that at a

level of public beliefs p̂

(i) on path incentives are interior and

(ii) on path incentives are locally twice continuously differentiable with respect to

public beliefs, i.e., there exists a neighborhood O of p̂ such that a(·, 0) ∈ C2(O).

Then, g′(a(·, 0)) = W a(·, 0) ≡ V a
p (·, 0)−V a

∆(·, 0) in O. Moreover, W a(·, 0) and V a
∆(·, 0)

satisfy the system of ODEs in p 7→ (W (p, 0), V∆(p, 0))

(r + β)W (p, 0) = up(p, p)− βV∆(p, 0) + [g′−1(W (p, 0))− κp]Wp(p, 0)

+
1

2
(βσξ)

2Wpp(p, 0),

r̃(W (p, 0))V∆(p, 0) = up∗(p, p) + Vp∆(p, 0)[g′−1(W (p, 0))− κp]

+
1

2
(βσξ)

2Vpp∆(p, 0), p ∈ O

with r̃(W (p, 0)) := r + β + κ− d
dp
g′−1(W (p, 0)).

Proof: See the Appendix.

�

The interpretation of these equations is as in the class of signal manipulation

games. The main difference from that case is that now the agent’s incentives are

driven by the difference between the benefits from boosting fundamentals (Vp(p, 0))

and the benefits from belief manipulation (V∆(p, 0)). This is captured in the first

ODE for W (p, 0) = Vp(p, 0)−V∆(p, 0). However, since the dynamics of private beliefs

and belief asymmetry are inherently different, it is not possible to summarize the

long-run agent’s incentives in a single ODE.
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2.4.3 Application: Monetary Policy and Unobserved Infla-

tion

In this section I revisit the monetary policy application presented in Section 2. This

example gauges the effectiveness of inflationary surprises in affecting the employment

level of an economy in which agents try to learn about an unobserved component of

inflation.

Recall from Section 2.1 that the fundamental (or trend) inflation rate in an econ-

omy is given by

dθt = (at − κθt)dt+ σθdZ
θ
t , t ≥ 0.

The term at represents the action of the central bank at time t (e.g. money growth),

which is unobserved by the rest of the economy, t ≥ 0. The Brownian motion Zθ :=

(Zθ
t )t≥0 in turn captures unobserved shocks to the state of the economy, thus making

fundamental inflation a hidden state variable. Consequently, all the agents in the

economy (including the policymaker) learn about θ through observing a public signal

dξ = θtdt + σξdZt, t ≥ 0. Finally, the Brownian motion Z := (Zt)t≥0 represents

domestic shocks to prices beyond the central bank’s control.

The central bank’s payoffs are given by

∫ ∞
0

e−rt[k1(dξt − p∗tdt)− k2(θt − θ)2dt− ψ

2
a2
tdt],

where p∗ := (p∗t )t≥0 represents the public beliefs about unobserved inflation, and

dξt − p∗tdt the change in employment due to unanticipated realized inflation, t ≥ 0.27

27Cukierman and Meltzer (1986) study a central bank’s incentives to generate infla-
tionary surprises in a context of imperfectly observable actions and adverse selection.
In their model, a central bank’s preferences for economic stimulation are subject to
private shocks. The market in turn filters the central bank’s actions though observ-
ing a noisy signal of them. In my setting, the central bank’s preferences are common
knowledge and the market instead learns about the mapping between the central
bank’s actions and inflation.
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Observe that when ψ ≡ 0 the bank chooses θ̂ such that it solves

max
z∈R

k1(z − p∗)− k2(z − θ)2.

This yields an optimal inflation level of the form θ̂ = θ + k1
2k2

. The market’s expec-

tations are thus set at p∗ = θ̂ and it is optimal for the bank to choose such a target.

The outcome is that no economic stimulus is possible and the economy suffers from

high inflation rates.

Optimal Policy: Full-commitment Case

Suppose for the moment that θ is observable. Then, unexpected changes in the signal

ξ are driven only by the domestic shocks Z := (Zt)t≥0. Consequently, the monetary

authority’s problem consists of

max
a∈A

E
[∫ ∞

0

e−rt
(
−k2(θt − θ)2 − ψ

2
a2
t

)
dt

]
s.t. dθt = (at − κθt)dt+ σθdZ

θ
t .

This results in the following

Proposition 2.8. When fundamentals are observed, the central bank’s optimal policy

is of the form

ao(θ) =
αo1 + 2αo2θ

ψ
,

where

αo1 =
−2k2θ

2αo2
ψ
− (r + κ)

αo2 =
ψ

2

[
(r + 2κ)−

√
(r + 2κ)2 +

8k2

ψ

]
< 0. (2.43)
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Also, ao(θ) =
αo2κ

2αo2−rψ
> 0 if κ > 0.

Proof: See the Appendix.

�

In other words, since the central bank cannot generate inflationary surprises, it

cares about controlling inflation only. This results in a monetary policy rule that is

countercyclical.

Observe that if instead θ is hidden, but the central bank has commitment power,

then p ≡ p∗. Since no economic stimulus is possible, the central bank’s problem

corresponds to

max
a∈A

E
[∫ ∞

0

e−rt
(
−k2(pt − θ)2 − ψ

2
a2
t

)
dt

]
s.t. dpt = (at − κpt)dt+ βσξdZ

0

t

which has the same structure as the one just solved in Proposition 2.8, except for the

volatility term. Since the optimal rule in Proposition 2.8 does not depend on the size

of the volatility of fundamentals, it is also optimal in this case.28 Graphically:

28Because the payoff function is quadratic, the volatility term only affects the level
of the central bank’s value function.
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Figure 2.7: Full-commitment rule for κ = 0 and κ > 0.

Introducing mean reversion toward zero generates an optimal monetary rule that

entails positive money growth at the inflation target θ. Furthermore, because the

costs of monetary growth are quadratic and it takes time for inflation to move toward

the moving-average at/κ, it is costly for the central bank to sustain a monetary rule

that entails high volatility. As a result, monetary policy is less aggressive than in the

random walk case (κ = 0), and the central bank’s monetary rule is less steep. There-

fore, whenever the inflation target is large relative to the level which fundamental

inflation reverts to, the central bank chooses to exert inflationary pressures over the

region [θ, θc] in exchange of more long-run stability.

Optimal Policy: No Commitment

When the central bank lacks commitment, the relevant state variables correspond to

the private beliefs process p and the belief-asymmetry process ∆ := p∗−p. If learning
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is stationary, their dynamics are given by

dpt = (at − κpt)dt+ βσξdZ
0

t

d∆t = [−(β + κ)∆t + (a∗t − at)]dt

with β := γ∗/σ2
ξ =

√
κ2 + (σθ/σξ)2 − κ.

The central bank’s ex-ante flow payoffs take the form −k1∆t − k2(pt − θ)2 − ψ
2
a2,

t ≥ 0, (up to an additive constant). Observe that, from the central bank’s perspective,

the effect on unemployment is determined by ∆. The following result establishes the

existence of a monetary policy rule as an equilibrium of the learning game between

the monetary authority and the market:

Theorem 2.4. When θ is unobserved, the central bank’s optimal policy takes the form

α∗(p) =
αo1 + 2αo2p

ψ
+
α∗3
ψ

(2.44)

with αo1 and αo2 as in the observable case, and

α∗3 = − k1

2αo2
ψ
− (r + β + κ)

=
k1

r +
√
κ2 + (σθ/σξ)2 − 2αo2

ψ

> 0

When κ = 0, a∗(θ̂) < 0.

Proof: See the Appendix.

�

The previous result shows that moral hazard generates belief-manipulation incen-

tives (inflationary surprises) which are uniform across all levels of public beliefs. The
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size of the shift is given by the term

−V∆(p, 0) = α∗3 = − k1

r + β + κ− 2αo2
ψ

=
k1

r +
√
κ2 + (σθ/σξ)2 − 2αo2

ψ

> 0,

which measures the size of the inflationary bias created by a monetary authority who

lacks commitment.

The size of the benefits from inflation surprises affecting employment are driven

by the of degree of persistence of ∆. This degree of persistence is determined in

equilibrium and can be observed in the denominator for α∗3. First, belief distortions

naturally decay at a rate β + κ. The higher this rate, the lower the effect on employ-

ment. This natural rate of depreciation increases with environmental uncertainty σθ

and decreases with the volatility of domestic shocks σξ. In both cases, beliefs dis-

count past information more heavily, as past prices become less accurate predictor of

current fundamentals. Second, by controlling inflation the central bank also affects

the market’s anticipated level of monetary policy in the near future. As the full com-

mitment rule becomes more aggressive (|αo2|/ψ increases) conjectures about monetary

growth react more strongly to changes in prices. This is costly for the central bank,

as inflation is away from the target θ more frequently. The monetary authority takes

into account these reaction by moderating the shift in its optimal rule by −2αo2
ψ
> 0.

Graphically:
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Figure 2.8: Non-commitment rule and the inflationary bias.

The literature on rules versus discretion is large. In the context of perfectly observ-

able actions, Barro and Gordon (1983) show how a central bank’s reputational forces

can induce more commitment. Instead, when a central bank’s actions are imperfectly

monitored, Cukierman and Meltzer (1986) uncover the trade-off between transparency

and flexibility that a policymaker faces in choosing which monetary policy to follow.

Both papers assume adverse selection regarding the central bank’s preferences. The

model analyzed here instead assumes that the central bank’s preferences are com-

mon knowledge. Yet, the plausible combination of imperfectly observable actions and

learning about an unobserved component of inflation generate similar incentives.
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2.5 Discussion

2.5.1 Smoothness and Robustness

More generally, given any well-behaved conjecture a∗(·), the agent’s value function

V a∗ is a viscosity solution to the HJB equation (2.23).29 As a result, even when an

equilibrium exists, the resulting value function may not be smooth enough to satisfy

the corresponding PDE in a classical sense, thereby invalidating a partial characteri-

zation of incentives via ordinary differential equations. Nevertheless, regardless of the

differentiability properties of the value function, the forces that determine incentives

remain unchanged. In fact, in the case of signal-jamming games, it is optimal for the

long-run agent to choose a strategy a(p,∆) that solves

max
a∈A

E
[∫ ∞

0

e−rt(u(b(pt + ∆t))− g(at))dt

]
s.t. dpt = µ(pt)dt+ σpdZ

Y
t , t > 0, p0 = po,

d∆t = [φ(pt,∆t) + β(at − a(pt + ∆t, 0))]dt, t > 0, ∆0 = ∆o. (2.45)

From the previous problem, we see that the forces that shape the agent’s incentives are

exactly (i) varying marginal flow payoffs, (ii) convex costs of signal manipulation and

(iii) the impact of the agent’s actions on the market’s conjecture about equilibrium

play. Whether incentives are characterized by differential equations or by differential

inclusions instead, it is just a matter of differentiability.30 The structure behind the

incentives that drive belief manipulation motives remains unchanged.

29See Crandall, Ishii and Lions (1990) for a survey of the theory of viscosity solutions
to partial differential equations.

30For a characterization of optimal controls in terms of value functions that are not
smooth enough, see chapter 6 in Yong and Zhou (1999).
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The uniform ellipticity condition is largely the most well known condition that

guarantees the existence of smooth solutions to linear PDEs.31 Strulovici and Szyd-

lowski (2012) use it to show the existence of smooth solutions to HJB equations in

one-dimensional problems. Uniform ellipticity is not applicable to the class of games

presented here, as the diffusion matrix is degenerate (only one innovation process,

and two dynamics of posterior beliefs). Nonetheless, this condition is only sufficient

and not necessary, as shown in the linear-quadratic class of games studied.

2.5.2 Computation: Off-Equilibrium Analysis

The PDE that captures global behavior is, in almost all situations, hard to visualize.

However, this chapter offers a localizing method to the numerical approximation of

markovian equilibria in pure strategies. More specifically, the necessary conditions for

incentives derived, for example, in Proposition 2.3, reduce the class of functions over

which markovian equilibria are to be found. A good guess on the boundary conditions

of the specific problem at hand yields a fully specified conjecture a∗ solution of the

incentives equation (2.25). Since off the equilibrium path public beliefs take the form

p + ∆, it is possible to construct a function f(p,∆) := a∗(p + ∆), which in turn

can be used as an input in the corresponding HJB equation. The resulting PDE is

therefore local and numerical methods to solve these class of equations thus apply. If

it turns out that the solution found satisfies the equilibrium condition (2.24) along

the equilibrium path, then a∗ would correspond to a numerical approximation to a

Markov perfect equilibrium. This numerical approach is a feasible avenue to study in

more detail off-equilibrium dynamics in more nonlinear settings.

31The volatility matrix Σ ∈Mn×n of a diffusion dXt = µ(Xt)dt+ΣdZt satisfies the

uniform ellipticity condition if there is a constant µ > 0 such that
n∑

i,j=1

Σijdidj ≥ µ‖d‖

for all d ∈ Rn, where Σij is the (i, j)−th component of Σ.
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2.6 Conclusions

In this chapter I developed a general class of games that incorporate both learning and

belief manipulation as their main features. I provided necessary conditions for Markov

Perfect Equilibria at a very general level, and showed the existence of markovian

equilibria for a subclass of games with linear-quadratic structure. Most importantly,

the methods and results presented here can be used to understand strategic behavior

in a wide set of environments, ranging from the determinants of workers’ incentives

in labor markets, to central banks’ behavior in response to unobserved states of the

economy.

Rather than re-iterating the novel properties of equilibria that I find and their

implications in different economic settings, in these concluding remarks I discuss three

important topics to be addressed in the future: existence of equilibria, the symmetry

in the model’s information structure and the signal’s technology assumption.

The question of existence of markovian equilibria in pure strategies is a difficult

one. In particular, the combination of imperfectly observable actions and the full

support assumption in the signal structure generates off-equilibrium behavior that is

summarized in PDEs that are more complex than usual. While a curvature condition

on the agent’s payoffs ensured the existence of equilibria in the class of linear-quadratic

games, it is still unknown whether an analogous condition also ensures existence in

more nonlinear environments. Finding explicit sufficient conditions for the existence

of pure-strategy Markov equilibria is undoubtedly an important question for future

research.32

32Faingold and Sannikov (2011) find conditions that guarantee the existence of
markovian equilibria in a general class of reputation games with one-sided and non-
linear learning. However, the methods used in that paper do not carry over to settings
where value functions are characterized by partial differential equations. In the envi-
ronments they analyze the issue of existence is reduced to the study of solutions to
second order differential equations.
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The results obtained in this chapter rely on the economy’s ex-ante symmetric (yet

incomplete) information structure about the fundamentals. If the long-run agent for

instance were to privately observe θ, he could condition his actions on his private in-

formation about the shocks to fundamentals, and the symmetry of the model would

break. An equilibrium concept in which a market perfectly anticipates the agent’s

actions would not be appropriate. Identifying environments that allow for a tractable

analysis of belief-manipulation incentives in the presence of ex-ante asymmetric in-

formation is another area of research that has wide economic applications. In the

class of investment games, the recent work of Board and Meyer-ter-Vehn (2010b) is

particularly interesting.

Finally, the results in this chapter also rely on the manipulation technology hav-

ing an additively-separable structure. Allowing for complementarities between ac-

tions and fundamentals (either in the signal or in the fundamentals’ process itself)

creates another channel for incentives: experimentation. By studying models with an

additively-separable structure, I am able to eliminate the experimentation effect and

concentrate only on belief manipulation motives. Nonetheless, the model’s formula-

tion and the envelope methods used to characterize incentives have a direct analog in

such non-separable settings.

2.7 Appendix

Proof of Proposition 2.2: From Lemma 2.1 the agent’s and market’s posterior variance

evolve under the same dynamic (2.9). The public posterior mean is in turn given by

dp∗t = −κ(p∗t − η)dt+
γt
σξ

dξt − (a∗t + p∗t )dt

σξ
, t > 0, p∗0 = po∗,

where a∗ the market’s conjectured strategy (an Fξ− progressively measurable pro-

cess). Now, when the agent follows a strategy a := (at)t≥0 instead, output evolves,
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from his perspective, according to

dξt = atdt+ dYt = (at + pt)dt+ σdZY
t , t ≥ 0,

where we have used that the process Y admits, from the agent’s standpoint, the

following representation

dYt = ptdt+ σξdZ
Y
t , t ≥ 0

(Theorem 7.12 in Liptser and Shiryaev). Therefore, from the agent’s perspective,

public beliefs can be written as

dp∗t = [−κ(p∗t − η) + βt(at − a∗t ) + βt(pt − p∗t )]dt+ βtσξdZ
Y
t , t ≥ 0,

where βt := γt/σ
2
ξ , t ≥ 0. Since the agent’s private beliefs are governed by

dpt = −κ(pt − η)dt+ βtσξdZ
Y
t , t > 0, p0 = po,

we can conclude that ∆ := p∗ − p satisfies, from the agent’s perspective,

d∆t = [−(κ+ βt)∆t + βt(at − a∗t )]dt, t > 0, ∆0 = ∆o := po∗ − po.

�

Proof of Proposition 2.2: By Theorem 9.1 in Liptser and Shiryaev (1977) the

processes πt := P(θt = h|FYt ) and π∗t = P(θt = h|F ξt ), t ≥ 0 evolve according to

dπt = (λ1(1− πt)− λ0πt)dt+
δπt(1− πt)

σξ

(
dYt − πtdt

σξ

)
,

dπ∗t = (λ1(1− π∗t )− λ0π
∗
t )dt+

δπ∗t (1− π∗t )
σξ

(
dξt − (a∗t + π∗t )dt

σξ

)
,
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where δ := h− ` and

ZY
t :=

1

σξ

(
Yt −

∫ t

0

πsds

)
and Zξ,∗

t :=
1

σξ

(
ξt −

∫ t

0

(a∗s + π∗s)ds

)
, t ≥ 0,

are exogenous FY− and Fξ−Brownian motions from the agent’s and market’s stand-

point, respectively.

It is well known starting from any point in (0, 1), both processes π and π∗ never

hit zero or one (Karlin and Taylor (1981)). We can then write pt := log
(

πt
1−πt

)
and

p∗t := log
(

π∗t
1−π∗t

)
. A direct application of Ito’s rule yields that

dpt =

(
λ1

πt
− λ0

1− πt
− δ2(1− 2πt)

2σ2
ξ

)
dt+

δ

σξ
dZY

t (2.46)

dp∗t =

(
λ1

π∗t
− λ0

1− π∗t
− δ2(1− 2π∗t )

2σ2
ξ

)
dt+

δ

σξ
dZξ,∗

t .

But from the agent’s perspective,

dZξ,∗ = dZY
t +

[at − a∗t + δ(πt − π∗t )]dt
σξ

, t ≥ 0,

which implies that

dp∗t = dpt +

[
λ1

(
1

π∗t
− 1

πt

)
− λ0

(
1

1− π∗t
− 1

1− πt
+

δ

σ2
ξ

(at − a∗t )

)]
dt.

Defining ∆ := p∗t − pt, and observing that π = ep

ep+1
and π∗ = ep

∗

ep∗+1
, it is easy to see

that

d∆t = [φ(pt,∆t) + β(at − a∗t )]dt

where β := δ/σ2
ξ and

φ(p,∆) = λ1

[
ep+∆ + 1

ep+∆
− ep + 1

ep

]
+ λ0[ep − ep+∆].
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Finally, the dynamics of (2.46) as a function of p only are given by

dpt =

[
λ1
ept + 1

ept
− λ0(1 + ept)− δ2

2σ2
ξ

(1− 2
ept

1 + ept
)

]
dt+

δ

σ2
ξ

(
dYt −

ept

1 + ept
dt

)
, t ≥ 0.

This concludes the proof.

�

Proof of Theorem 2.3: Consider the function

V (p,∆) = α0 + α1p+ α2∆ + α3p∆ + α4p
2 + α5∆2 (2.47)

with α2 and α3 as in the theorem (equations (2.30) and (2.56), respectively):

α2 =
ηκα3 + u1

r + β + κ+ β2α3

ψ

=
2(ηκα3 + u1)

r + β +
√

(r + β + 2κ)2 − 8u2β2

ψ

,

α3 =
ψ

2β2

[
−(r + β + 2κ) +

√
(r + β + 2κ)2 − 8u2β2

ψ

]
< 0.

The idea of the proof is as follows: given a market’s conjecture of the form a∗(p∗) =

β
ψ

[α2 + α3p
∗], suitably chosen scalars α0, α1, α4 and α5 yield that

1. V as above is an upper bound to the agent’s problem;

2. The markovian strategy a(p,∆) := βV∆(p,∆) induces an effort process aL such

that (aL, a∗) is a feasible pair;

3. V is attained under the markovian control a : R2 → R.

Observe that, by construction, a∗(p+ ∆) = β
ψ
V∆(p+ ∆, 0), and thus the equilibrium

condition (EC) (see (2.22)) is satisfied.

Before starting to prove the theorem, I make some preliminary observations that

will be used repeatedly below:
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(i) The private beliefs process dpt = −κ(pt − η)dt+ βσξdZ
Y
t , t ≥ 0 is such that

pt ∼ N (e−κtpo + (1− e−κt)η, (βσξ)2(1− e−2κt)/2κ)

from a time-zero perspective. Since κ > 0, E[pt] and E[p2
t ] are uniformly

bounded for all t ≥ 0.

(ii) Denote by Aa∗(po,∆o) the set of strategies a := (at)t≥0 for the long-run agent

such that (a, a∗) is a feasible pair when the the state variables p and ∆ start at

(po,∆o). Then, the integrability condition for p∗ in Definition 2.2 (see (2.12))

is equivalent to

E
[∫ t

0

|∆a,a∗

s |2ds
]
<∞, t ≥ 0, (2.48)

where ∆a,a∗ denotes the solution to (2.13) under the pair (a, a∗). This is because

∆ := p∗ − p and p satisfies the above integrability condition too.

(iii) Also,

E
[∫ t

0

|∆a,a∗

s |2ds
]
<∞⇔ E

[∫ t

0

e−αs|∆a,a∗

s |2ds
]
<∞

for all α > 0, which allows us to conclude that stochastic integrals against

e−αs∆a,a∗
s , s ≥ 0, have all zero mean.

In order to show that V is an upper bound, we need to study first the asymptotic

behavior of e−rtE[V (pt,∆
a,a∗

t )] over the set {a ∈ Aa∗(po,∆o) | V a∗(po,∆o; a) > −∞},

for all (po,∆o) ∈ R2. This analysis is done in the next three Lemmas and concludes

in Corollary 2.1.

Lemma 2.2. Suppose that the market conjectures an effort strategy of the form

a∗(p∗) = β
ψ

[α2 + α3p
∗], α2, α3 ∈ R. Then, Aa∗(po,∆o) 6= ∅ and there exists a ∈

131



Aa∗(po,∆o) such that V a∗(po,∆o; a) is finite for all (po,∆o) ∈ R2. Moreover,

V a∗(po,∆o; a) > −∞ ⇔ E
[∫ ∞

0

e−rt
∣∣∣u(pt + ∆a,a∗

t )− ψ

2
a2
t

∣∣∣dt] <∞ (2.49)

for all a ∈ Aa∗(po,∆o), (po,∆o) ∈ R2.

Proof : Suppose that the market conjectures the agent is following a manipulation

strategy of the form a∗(p∗) = β
ψ

[α2 + α3p
∗]. Observe that the pair (ã, a∗) with

ãt :=
β

ψ
[α2 + α3p

∗
t ] +

κ+ β

β
∆t, t ≥ 0

is a feasible strategy-conjecture pair. In fact, under this pair the discrepancy of

beliefs remains constant at its initial value ∆o, so condition (2.48) is satisfied. Thus,

Aa∗(po,∆o) is non-empty.

Recall that given the conjecture a∗, the agent solves

max
a∈Aa∗ (po,∆o)

E
[∫ ∞

0

e−rt(u(p∗t )−
ψ

2
a2)dt

]
s.t. p∗t = pt + ∆t, t > 0

d∆t = [−(κ+ β)∆t + β(at −
β

ψ
(α2 + α3p

∗
t ))]dt, t > 0, ∆0 = ∆o.

dpt = −κ(pt − η)dt+ βσξdZ
Y
t , t > 0, po = po.

and denote by V a∗(po,∆o) the value of this problem. Observe that V a∗(po,∆o) is

finite. In fact, by following ã, the cost of signal manipulation at any time t is of order

O(p2
t ), t ≥ 0. Since from a time-zero perspective E[pt] and E[p2

t ], t ≥ 0 are uniformly

bounded, the agent’s total utility under ã is finite.
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Finally, because u(·) is uniformly bounded by above, we have that for M > 0 large

enough

E
[∫ ∞

0

e−rt
∣∣∣u(pt + ∆a,a∗

t )− ψ

2
a2
t

∣∣∣dt] ≤ M

r
+ E

[∫ ∞
0

e−rt
∣∣∣u(pt + ∆a,a∗

t )−M − ψ

2
a2
t

∣∣∣]
≤ 2M

r
− E

[∫ ∞
0

e−rt
(
u(pt + ∆a,a∗

t )− ψ

2
a2
t

)
dt

]
=

2M

r
− V a∗(po,∆o; a),

where we used that u(·)−M ≤ 0 for M large. As a result,

V a∗(po,∆o; a) > −∞ ⇔ E
[∫ ∞

0

e−rt|u(pt + ∆a,a∗

t )− ψ

2
at|dt

]
<∞

for all a ∈ Aa∗(po,∆o). This concludes the proof.

�

Lemma 2.3. Let a ∈ Aa∗(po,∆o) be a strategy under which the agent attains finite

utility. Then, there are positive constants C1 and C2(a) such that

|E[∆a,a∗

t ]| < C1[1 + e−(
β2α3
ψ

+β+κ)t] + C2(a)[ert(1 + e−2(
β2α3
ψ

+β+κ)t)]1/2. (2.50)

As a result, lim
t→∞

e−rtE[∆a,a∗

t ] = 0.

Proof: Take any such strategy. Under the market’s conjecture a∗ we can write

∆a,a∗

t = ∆oe−(β+κ+
β2α3
ψ

)t +

∫ t

0

e(β+κ+
β2α3
ψ

)(s−t)[βas − β2(α2 + α3ps)]ds, t ≥ 0.

Using this and the fact that E[pt] is uniformly bounded, we find C1 s.t.

|E[∆a,a∗

t ]| ≤ C1[1 + e−(
β2α3
ψ

+β+κ)t] +

∫ t

0

e(β+κ+
β2α3
ψ

)(s−t)βE[|as|]ds.
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Now,

I :=

∫ t

0

e(β+κ+
β2α3
ψ

)(s−t)E[|as|]ds <
(
ert
∫ t

0

e2(β+κ+
β2α3
ψ

)(s−t)ds

)1/2(
e−rt

∫ t

0

E[a2
s]ds

)1/2

where in the last inequality we used Cauchy-Schwarz’s and Jensen’s inequalities.

But e−rt
∫ t

0
E[a2

s]ds < C(a) :=
∫∞

0
e−rsE[a2

s]ds, which is finite since flow payoffs are

bounded by above and a attains finite utility. Therefore

I ≤ C2(a)[ert(1 + e−2(
β2α3
ψ

+β+κ)t)]1/2,

for some positive constant C2(a). This proves (2.50).

Finally, from α3’s definition it is easy to see that β + κ + β2α3

ψ
+ r

2
> 0. This

inequality and the bound just proven above, yield lim
t→∞

e−rtE[∆a,a∗

t ] = 0.

�

Lemma 2.4. Let a ∈ Aa∗(po,∆o) be a strategy under which the agent attains finite

utility. Then, lim
t→∞

e−rtE[pt∆
a,a∗

t ] = 0. As a consequence, lim inf
t→∞

e−rtE[(∆a,a∗

t )2] = 0.

Proof : Applying Ito’s rule to e(
β2α3
ψ

+β+2κ)tps∆
a,a∗

t we obtain the expression

pt∆
a,a∗

t = e−(
β2α3
ψ

+β+2κ)tpo∆o +

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)∆a,a∗

s [κηds+ βσξdZ
Y
s ]︸ ︷︷ ︸

It:=

+ β

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)psasds︸ ︷︷ ︸
Jt:=

−β
2

ψ

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)[α2ps + α3p
2
s]dps︸ ︷︷ ︸

Kt:=

It is clear that the first term in the right-hand side of the previous expression

goes to zero when discounted at rate r. Regarding the last term, observe that since

pt|FYt ∼ N (e−κtpo + (1 − e−κt)η, (βσξ)2(1 − e−2κt)/κ), E[pt] and E[p2
t ] are uniformly

bounded for all t > 0. As a result lim
t→∞

e−rtE[Kt] = 0, where we used again that
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β2α3

ψ
+ β + 2κ+ r > 0.

Now, by (2.48) the stochastic integral in It has zero mean, for all t ≥ 0. Hence,

E[It] = ηκ

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)E[∆a,a∗

s ]ds, t ≥ 0.

Using the bound (2.50) derived in the previous lemma, we obtain that for some

positive constant C3(a)

|E[It]|
C3(a)

≤
∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)[1 + e−(
β2α3
ψ

+β+κ)s]ds

+

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)[ers(1 + e−2(
β2α3
ψ

+β+κ)s)]1/2ds

≤
∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)ds+ e−(
β2α3
ψ

+β+2κ)t e
κt − 1

κ

+e−(
β2α3
ψ

+β+2κ)t

∫ t

0

[e(
β2α3
ψ

+β+2κ+r/2)s + e(κ+r/2)s]ds.

Observing that β2α3

ψ
+ β + ν + r > 0 and β2α3

ψ
+ β + ν + r > β2α3 + β + ν + r/2 > 0

for ν = κ, 2κ, we conclude that lim
t→∞

e−rtE[It] = 0.

It remains to show that lim
t→∞

e−rtE[Jt] = 0. Applying the Cauchy-Schwartz in-

equality twice

e−rt|E[Jt]| ≤
(
e−rt

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)E[a2
s]ds

)1/2(
e−rt

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)E[p2
s]ds

)1/2

Since (E[p2
t ])t≥0 is uniformly bounded and β2α3

ψ
+ β + 2κ+ r > 0 the last term in

the right-hand side of the previous expression goes to zero as t→∞. Consequently,

it suffices to show that

lim
t→∞

e−rt
∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)E[a2
s]ds <∞.
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But observe that

e−rt
∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)E[a2
s]ds =

∫ t

0

e(
β2α3
ψ

+β+2κ+r)(s−t)e−rsE[a2
s]ds

<

∫ ∞
0

e−rsE[a2
s]ds <∞

where we used that β2α3

ψ
+ β + 2κ > 0 and the fact that Ja

∗
(po,∆o; a) > −∞ when a

is feasible. This argument shows that lim
t→∞

e−rtE[pt∆
a,a∗ ] = 0 for any feasible strategy

that yields finite utility.

Finally, since for any a ∈ A(po,∆o), V a∗(po,∆o; a) > −∞, and flow payoffs are

bounded by above, we must have that E[
∫∞

0
e−rtu(pt + ∆a,a∗

t )dt] must be finite. As a

consequence, lim sup
t→∞

e−rtE[u(pt + ∆a,a∗

t )] ≥ 0, because otherwise the agent’s expected

discounted would be −∞. Using that lim
t→∞

e−rtE[pt + ∆a,a∗

t ] exists and it is equal to

zero, we obtain that

lim sup
t→∞

e−rtE[−u2(pt + ∆a,a∗

t )2] ≥ 0⇒ lim inf
t→∞

e−rtE[(pt + ∆a,a∗

t )2] = 0

But

0 = lim inf
t→∞

e−rtE[(pt + ∆a,a∗

t )2] ≥ lim inf
t→∞

e−rtE[(pt)
2]︸ ︷︷ ︸

=0

+ lim inf
t→∞

e−rt2E[pt∆
a,a∗

t ]︸ ︷︷ ︸
=0

+ lim inf
t→∞

e−rtE[(∆a,a∗

t )2]

This concludes the proof.

�

With these 3 lemmas we obtain the following
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Corollary 2.1. Suppose that the function V in (2.47) is such that α5 < 0. Then, for

any a ∈ {a ∈ Aa∗(po,∆o) | Ja∗(po,∆o; a) > −∞},

lim sup
t→∞

e−rtE[V (pt,∆
a,a∗

t )] = 0. (2.51)

Proof: Using Lemmas 2.3 and 2.4, we have that, for all a ∈ Aa∗(po,∆o) such that

Ja
∗
(po,∆o; a) > −∞,

lim
t→∞

e−rtE[χt] = 0, χ = p,∆a,a∗ , p∆a,a∗ , p2.

Thus,

lim sup
t→∞

e−rtE[V (pt,∆
a,a∗

t )] = lim sup
t→∞

e−rtα5E[(∆a,a∗

t )2] = α5 lim inf
t→∞

e−rtE[(∆a,a∗

t )2] = 0,

where in the last two equalities we used that α5 < 0 and Lemma 2.4, respectively.

This concludes the proof.

�

Now we prove the Theorem:

1. For suitably chosen constants, V is an upper bound to the agent’s utility : Recall

that α2 > 0 and α3 < 0 are defined by

α2 =
2(ηα3 + u1)

r + β +
√

(r + β + 2κ)2 − 8u2β2

ψ

.

α3 =
ψ

2β2

[
−(r + β + 2κ) +

√
(r + β + 2κ)2 − 8u2β2

ψ

]
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Now, it is easy to verify that given a∗(p∗) = β
ψ

(α2 +α3p
∗), V as in (2.47) satisfies the

HJB equation

rV (p,∆) = max
a

{
u0 + u1(p+ ∆)− u2(p+ ∆)2 − ψ

2
a2

+− κ[p− η]Vp(p,∆) +
1

2
β2σ2

ξVpp(p,∆)

+

[
−∆(β + κ) + βa− β2

ψ
(α2 + α3(p+ ∆))

]
V∆(p,∆)

}
(2.52)

when α0, α1, α4 and α5 solve the following system of equations:

(α0) : 0 = rα0 − u0 − ηκα1 +
1

2ψ
β2α2

2 − β2σ2
ξα4

(α1) : 0 = rα1 − u1 + κα1 +
β2α3

ψ
α2 − 2ηκα4

(α4) : 0 = rα4 +
1

2ψ
β2α2

3 + 2κα4 + u2

(α5) : 0 =

(
r + 2

[
κ+ β +

β2α3

ψ

])
α5 −

2β2

ψ
α2

5 + u2

In fact, a quadratic guess for V reduces the HJB equation to the above system of

equations plus the conditions

(α2) : 0 =

(
r + κ+ β +

β2α3

ψ

)
α2 − ηκα3 − u1

(α3) : 0 = (r + β + 2κ)α3 +
β2

ψ
α2

3 + 2u2.

The latter are trivially satisfied by our choice of α2 and α3. Moreover, given α3 the

equations (α0), (α1),(α2) and (α4) have a unique solution. For equation (α5), we

choose the its unique negative solution, that is

α5 =
r + 2(β + κ) + 2α3β2

ψ
−
√(

r + 2(β + κ) + α3β2

ψ

)2

+ 8β2u2
ψ

4β2

ψ

, (2.53)
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as the value function must be bounded by above over the whole plane.

Now we show that this choice of V is in fact an upper bound to the agent’s utility.

Assume that a ∈ Aa∗(po,∆o) is such that V a∗(po,∆o; a) > −∞. Consider the process

Ga,a∗

t =

∫ t

0

e−rs
(
u(ps + ∆a,a∗

s )− ψ

2
a2
s

)
ds+ e−rtV (pt,∆

a,a∗

t ), t ≥ 0.

Observe that

dGa,a∗

t

e−rt
=

{(
u(pt + ∆a,a∗

t )− ψ

2
a2
t − rV (pt,∆

a,a∗

t ) + La,a∗V (pt,∆
a,a∗

t )

)
dt

+
1

2
β2σ2

ξVpp(pt,∆
a,a∗

t )dZY
t

}

where

La,a∗V (pt,∆
a,a∗

t ) = −κ[pt − η]Vp(pt,∆
a,a∗

t )

+

[
−∆a,a∗

t (β + κ) + βat −
β2

ψ
(α2 + α3(pt + ∆a,a∗

t ))

]
V∆(pt,∆

a,a∗

t )

Because,

E
[∫ t

0

e−rsβ2σ2
ξVpp(pt,∆

a,a∗

t )dZY
t

]
= 2E

[∫ t

0

e−rsβ2σ2
ξα5dZ

Y
t

]
= 0, t ≥ 0

and V satisfies the HJB equation (2.52), we conclude that the drift of G is non-

positive, i.e., it is a supermartingale. In particular, E[Ga,a∗

t ] ≤ Ga,a∗

0 for all t ≥ 0 and

therefore

e−rtE[V (pt,∆
a,a∗

t )] ≤ V (po,∆o)− E
[∫ t

0

e−rs
(
u(ps + ∆a,a∗

s )− ψ

2
a2
s

)
ds

]
, t ≥ 0.
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Now,

∣∣∣ ∫ t

0

e−rs(u(ps + ∆a,a∗

s )− ψ

2
a2
s)ds

∣∣∣ ≤ ∫ ∞
0

e−rs
∣∣∣u(ps + ∆a,a∗

s )− ψ

2
a2
s

∣∣∣ds
and the latter is integrable for all a ∈ Aa∗ such that V a∗(po,∆o; a) > −∞ (Lemma

2.2). Using Corollary 2.1 and the dominated convergence theorem we conclude that

0 ≤ V (po,∆o)−E
[∫ ∞

0

e−rt
(
u(pt + ∆a,a∗

t )− ψ

2
a2
t

)
ds

]
= V (po,∆o)−V a∗(po,∆o; a),

that is, V it is an upper bound to the agent’s value function.

�

2. The markovian strategy a(p,∆) := β
ψ
V∆(p,∆) induces well defined dynamics of

∆ and the process aLt := a(pt,∆
a
t ), t ≥ 0 is a feasible strategy:

It is easy to see that the maximum in HJB (2.52) is achieved under a(p,∆) :=

β
ψ

(α2 + α3p + 2α5∆). Then, for any ∆o ∈ R, the dynamics of belief-asymmetry (eq.

(2.40)) have as a solution the deterministic function

∆a
t = ∆oeρt, t ≥ 0. (2.54)

with ρ := (2α5−α3)β2

ψ
− κ− β as a solution. As a consequence, (a, a(·, 0)) satisfies the

integrability condition (2.48), so the pair is feasible. Using α5’s definition (2.57) we

see that

ρ =
r −

√(
r + 2(β + κ) + 2α3β2

ψ

)2

+ 8β2u2
ψ

2
, (2.55)

yielding that both ρ− r and 2ρ− r are strictly less than zero. It is easy to conclude

from here that the agent attains finite utility under aL.
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�

3. V is attained under the markovian control a : R2 → R. The fact that both ρ

and 2ρ− r are strictly negative implies that

lim
t→0

e−rtE[∆a
t ] = lim

t→0
e−rtE[(∆a

t )
2] = 0.

Lemmas 2.3 and 2.4 allow us to conclude that the following transversality condition

holds:

lim
t→∞

e−rtE[V (pt,∆
a
t )] = 0 (TV C)

Finally, observe first that a(p,∆) attains the supremum in the HJB equation.

Hence, we have equality in (2.54) for all t ≥ 0 under the pair (aL, a∗). Using the

dominated convergence theorem and (TVC) we can take limits in (2.54) and conclude

that V (po,∆o) = V a∗(p,∆; aL). Therefore, aL is an optimal control.

�

Proof of Proposition 2.4: Recall that off the equilibrium path

∆t = ∆oeρt, t ≥ 0,

where ρ := (2α5−α3)β2

ψ
− β − κ. From α5’s definition we can see that

ρ =
r −

√(
r + 2(β + κ) + 2α3β2

ψ

)2

+ 8β2u2
ψ

2
,
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so ρ < 0 if and only if

0 ≤ 4(β + κ)2 +
4β4α2

3

ψ2
+ 4r(β + κ) +

4rβ2α3

ψ
+

8β2(β + κ)α3

ψ
+

8β2u2

ψ

⇔ 0 ≤︸︷︷︸
(∗)

(β + κ)2 + r(β + κ) +
β3α3

ψ
+
β2

ψ
[β2α2

3 + (r + β + 2κ)α3 + 2u2]︸ ︷︷ ︸
=0, by α′3s definition

But, using α3’s definition

β3α3

ψ
= β
−(r + β + 2κ) +

√
(r + β + 2κ)2 − 8β2u2

ψ

2

from where we can see that (*) is true. Moreover 2α5− α3 > 0. This is equivalent to

[r + 2(κ+ β)]2 >

(
r + 2(β + κ) +

2α3β
2

ψ

)2

+
8β2u2

ψ

⇔ 0 > 4β4α2
3 + 4rβ2α3 + 8β2(β + κ)α3 + 8β2u2

⇔ 0 > β3α3 + β2 [β2α2
3 + (r + β + 2κ)α3 + 2u2]︸ ︷︷ ︸

=0, by α′3s definition

which is true.

�

Proof of Proposition 2.5: It is easy to conclude that the system (p,∆) is (i)

stabilizable (the belief-asymmetry process is controllable and private beliefs decay

to zero) and that (ii) the system is detectable (in the (p, p∗) coordinate system, the

“unobserved” component p (i.e. the state variable that does not contribute to the flow

payoff) decays to zero). Consequently, the solution of this linear-quadratic regulator

problem exists, it is unique and the value function is quadratic (Theorem 12.3. in

Wonham (1985)).
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Guess a solution of the form:

V (p,∆) = α3p∆ + α4p
2 + α5∆2.

Then, αi = αi(α̂3), i = 3, 4, 5 are given by

α3(α̂3) =
−2u2 − 2β2

ψ
α5(α̂3)α̂3

r + β + 2κ+ β2

ψ
α̂3 − 2β2

ψ
α5(α̂3)

(2.56)

α4(α̂3) =
−u2 + β2α3(α̂3)

2ψ
(α3(α̂3)− 2α̂3)

r + 2κ
(2.57)

α5(α̂3) =
r + 2

(
β + κ+ β2

ψ
α̂3

)
±
√(

r + 2
(
β + κ+ β2

ψ
α̂3

))2

+ 8β2

ψ
u2

4β2

ψ

.(2.58)

Choose the negative root of α5(α̂3). Then, α3(α̂3) and α4(α̂3) are uniquely defined.

Moreover, it is easy to show that

ρ(α̂3) := β+κ+
β2

ψ
α̂3−

2β2

ψ
α5(α̂3) =

1

2

√(r + 2

(
β + κ+

β2

ψ
α̂3

))2

+
8β2

ψ
u2 − r

 ,

yielding that r + ρ(α̂3) > 0 and r + 2ρ(α̂3) > 0. In particular, the denominator of

α3(α̂3), r + κ+ ρ(α̂3) > 0, so α3(α̂3) < 0.

Under the control a(p,∆) = α3(α̂3)p + α5(α̂3)∆, the belief-asymmetry process

takes the form

∆t = ∆0e
−ρ(α̂3)t +

β2(α3(α̂3)− α̂3)

ψ

∫ t

0

e−ρ(α̂3)(t−s)psds

with ps = p0e
−κs, s ≥ 0. Consequently, e−rt∆2

t converges to zero as t → ∞. Since

e−rtp2
t also converges to zero as t → ∞, the conjectured value function satisfies the
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transversality conditions. It follows that V as above must be the long-run agent’s

value function.

Now, suppose that α3(α̂3) < α̂3. Then, using that the denominator of α3(α̂3) is

strictly positive, we conclude that this inequality is true if and only if

β2

ψ
(α̂3)2 + (r + β + 2κ)α̂3 + 2u2 > 0,

which holds for all values of α̂3 if the curvature condition is violated. This concludes

the proof.

�

Proof of Proposition 2.7: Suppose that an equilibrium a(·, ·) exists and that the

associated value function V a is of class C2. Then, V a satisfies the HJB equation

rV (p,∆) = max
a∈A

{
u(p, p+ ∆)− g(a) + [a− κp]Vp(p,∆) +

1

2
β2σ2

ξVpp(p,∆)

+[−∆(β + κ) + a(p+ ∆, 0)− a]V∆(p,∆)}

along with the equilibrium condition

g′(a(p, 0)) = Vp(p, 0)− V∆(p, 0).

whenever incentives are interior at (p, 0). If, moreover a(·, 0) is locally twice differ-

entiable around a point p ∈ R, we can applying the envelope theorem to the above

HJB equation with respect to ∆ and p and evaluate at ∆ = 0. This yields the system

of ordinary differential equations (2.43)-(2.43) in the proposition. This concludes the

proof.

�
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Proof of Proposition 2.8: It is easy to see that V (θ) = αo0 + αo1θ + αo2θ
2 solves the

HJB equation

rV (θ) = max
a∈R

{
−k2(θ − θ)2 − ψ

2
a2 + [a− κθ]Vθ(θ) +

1

2
σθVθθ(θ)

}

when

αo0 = −k2θ
2

+
αo1
2ψ

+ α2σ
2
θ

αo1 = − 2k2θ
2αc2
ψ
− (r + κ)

αo2 =
ψ

2

[
(r + κ)−

√
(r + κ)2 +

8k2

ψ

]

In order to show that V is the agent’s value function and that ao(θ) = 1
ψ
Vθ(θ) an

optimal monetary, two things remain to be checked:

1. Any policy a such that

E
[∫ ∞

0

e−rt
∣∣∣− k2(θat − θ)2 − ψ

2
a2
t

∣∣∣dt] <∞
must also satisfy lim sup

t→∞
e−rtE[V (θa

o

t )] ≥ 0, where θa
o

is the dynamic of θ under

the policy ao.

2. Second, that along the conjectured optimal strategy ao, lim inf
t→∞

e−rtE[V (θa
o

t )] ≤

0.

Part 1. implies that V is an upper bound to the agent’s utility. Part 2. yields

that V is attainable under the Markov control ao (refer to the proof of Theorem 2.3

for a proof of these statements). Conditions 1. and 2. are proven to be true in

the non-commitment case, which corresponds to a slightly more general environment
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than the one analyzed here. We refer the reader to the proof of Theorem 2.4 below

in which it can be seen that the exact same steps performed to show that 1. and 2.

indeed hold in that setting can be replicated in the full commitment case.

�

Proof of Theorem 2.4: Suppose the the market conjectures a manipulation strat-

egy of the form a∗(p∗) = 1
ψ

[α1 − α2 + 2α3p
∗] where

α1 = − 2k2θ
2α3

ψ
− (r + κ)

α2 =
k1

2α3ψ − (r + β + κ)

α3 =
ψ

2

[
(r + κ)−

√
(r + κ)2 +

8k2

ψ

]
,

and observe that α1 = αo1 and α3 = αo2 the parameters of the full observability case.

It is easy to the that the quadratic form

V = α0 + α1p+ α2∆ + α3p
2

with α0 = −k2θ
2

+ 1
2ψ

(α2
1 − α2

2) + (βσξ)
2α3, solves the HJB equation

rV (p,∆) = max
a∈R

{
−k1∆− k2(p− θ2

)2 − ψ

2
a2 + [a− κp]Vp(p,∆) +

1

2
β2σ2

ξVpp(p,∆)

+[−∆(β + κ) +
1

ψ
(α1 − α2 + 2α3(p+ ∆))− a]V∆(p,∆)

}

In fact, the right-hand side yields a first order condition of the form

â(p,∆) =
1

ψ
[Vp(p,∆)− V∆(p,∆)] =

1

ψ
[α1 − α2 + 2α3p] = a∗(p)

which is also sufficient. The market’s conjecture off the equilibrium path then takes

the form a∗(p + ∆) = 1
ψ

[α1 − α2 + 2α3(p + ∆)], as expressed in the last line of the
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HJB equation. Inserting the above first order condition along with the corresponding

expressions for V, Vp, V∆ and Vpp in the HJB yields the system of equations

(α0) : rα0 = −k2θ
2

+
1

2ψ
(α2

1 − α2
2) + (βσξ)

2α3

(α1) : rα1 = 2k2θ − α1κ+
2α1α3

ψ

(α2) : rα2 = −k1 + α2

[
2α3

ψ
− (β + κ)

]
(α3) : rα3 = −k2 − 2α4κ+

2α2
4

ψ
.

The expressions for αi, i = 0, 1, 2, 3, stated above are the unique solution to this

system.

In order to show that V is the agent’s value function and a∗ an equilibrium, two

things remain to be checked:

1. Any strategy a such that

E
[∫ ∞

0

e−rt
∣∣∣− k1∆a,a∗

t − k2(pat − θ)2 − ψ

2
a2
t

∣∣∣dt] <∞ (2.59)

must also satisfy lim sup
t→∞

e−rtE[V (pat ,∆
a,a∗

t )] ≥ 0.

2. Second, that along the conjectured optimal strategy a∗, lim inf
t→∞

e−rtE[V (pa
∗
t ,∆

a∗
t )] ≤

0.

Part 1. implies that V is an upper bound to the agent’s utility. Part 2. yields

that V is attainable under the Markov control a∗ (refer to the proof of Theorem 2.3

for a proof of these statements).
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1. The transversality condition lim sup
t→∞

e−rtE[V (pat ,∆
a,a∗

t )] ≥ 0 holds for any strat-

egy a satisfying (2.59):

Observe that under the pair (a, a∗), the belief-asymmetry process ∆a,a∗ takes the

form

∆a,a∗ = e−ϑt∆o + [1− e−ϑt]α1 − α2

ψϑ
+

∫ t

0

e−ϑ(t−s)
[

2α3

ψ
pas + as

]
ds (2.60)

with ϑ := β + κ− 2α3 > 0. Moreover, since

pat = e−κtp0 +

∫ t

0

e−κ(t−a)[asds+ βσξdZ
0

s], t ≥ 0, (2.61)

we can use integration by parts and Fubini’s theorem to show that the agent’s ex-

pected discounted utility under strategy a can be written as

E
[∫ ∞

0

e−rt
(
−k1∆a,a∗

t − k2(pat − θ)2 − ψ

2
a2
t

)
dt

]
= E

[∫ ∞
0

e−rt
(
−k2(pat )

2 + C1as −
ψ

2
a2
s

)
dt

]
+ C2

for some constants C1 and C2. As a result, the agent’s flow payoffs are uniformly

bounded from above by a large constant. Therefore, (2.59) holds if and only if

E
[∫ ∞

0

e−rt(pat )
2dt

]
<∞ and E

[∫ ∞
0

e−rta2
tdt

]
<∞. (2.62)

from where we conclude that lim inf
t→0

E[e−rt(pat )
2] = 0. Since α3 < 0,

lim sup
t→0

E[e−rtα3(pat )
2] = 0.
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Now, plugging the expression for pat into (2.60) and using integration by parts, we

can find positive constants C3, C4 and C5 such that

|E[∆a,a∗

t ]| ≤ C3e
−ϑt + C4

∫ t

0

e−κ(t−s)E[|as|]ds+ C5

∫ t

0

e−ϑ(t−s)E[|as|]ds.

The Cauchy-Schwartz’s and Jensen’s inequalities then yield that

e−rt
∫ t

0

e−λ(t−s)E[|as|]ds ≤
(
e−rte−2λt

∫ t

0

e2λsds

)1/2

︸ ︷︷ ︸
L1
t :=

(
e−rt

∫ t

0

E[a2
s]ds

)1/2

︸ ︷︷ ︸
L2
t :=

.

for λ = κ, ϑ > 0. It is easy to see that L1
t → 0 as t→∞. For L2

t , observe that

e−rt
∫ t

0

E[a2
s]ds <

∫ t

0

e−rsE[a2
s]ds <

∫ ∞
0

e−rsE[a2
s]ds <∞

and thus L2 is uniformly bounded. This shows that lim
t→0

e−rtE[∆a,a∗

t ] = 0. The same

argument (Cauchy-Schwartz’s and Jensen’s inequalities and below) applied to E[pat ]

in (2.61) yields lim
t→0

e−rtE[pat ] = 0. We conclude that lim sup
t→∞

e−rtE[V (pat ,∆
a,a∗

t )] ≥ 0

for any feasible strategy satisfying (2.59).

2. V is attained under a∗: lim inf
t→∞

e−rtE[V (pa
∗
t ,∆

a∗
t )] ≤ 0.

If the agent follows the conjectured markov policy a∗, the belief-asymmetry process

evolves according to

d∆t = [−(β + κ)∆t + α3∆]dt, t > 0, ∆0 = ∆o.
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As a consequence, ∆a∗
t = e−(r+β+κ+α3)t∆o. Moreover, since α3 < 0, e−rt∆a∗

t → 0 as

t→∞. Now the posterior belief process pa
∗
t satisfies the SDE

dpt = (α1 − α2 + α3pt − κpt)dt+ βσξdZ
0

t , t > 0,

i.e. (pa
∗
t )t≥0 is mean reverting around α1−α2

κ−α3
. As a result,

pa
∗

t |F0 ∼ N
(
α1 − α2

κ− α3

[1− e−(κ−α3)t] + poe(κ−α3)t, (βσξ)
2 1− e−2(κ−α3)

2(κ− α3)

)
, t ≥ 0.

with κ − α3 > 0, from where we conclude that the agent attains finite utility under

the strategy a∗ (i.e. it is feasible) and, moreover,

lim
t→∞

E[pa
∗

t ] = lim
t→∞

E[(pa
∗

t )2] = 0.

This concludes the proof of the theorem.

�
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Chapter 3

Learning, Investment and

Adjustment Costs

3.1 Introduction

This chapter studies the effects of the time-profile of uncertainty on a firm’s invest-

ment behavior. In the model we study, a firm makes investments whose cash flows

are realized ahead in the future, and the value of these cash flows is driven by an un-

observed stochastic process. However, the firm can learn about the current value of

this underlying fundamental from observing a noisy signal. Consequently, and unlike

the existing literature, the firm faces both current and future uncertainty when mak-

ing its investment decisions: both the current value of fundamentals and the future

evolution of perceived fundamentals are unknown. In such a context, we show how a

firm’s investment decisions are affected by the way in which uncertainty resolves over

time, and how better information generates more value.

Understanding the determinants of firms’ investment decisions has been a cen-

tral topic in macroeconomic research. While in the neoclassical model of Jorgenson

(1963) marginal revenue of capital always equates its user cost, subsequent studies

151



have recognized the impact that frictions can have on investment behavior. A large

literature modeling internal frictions in the form of convex costs of adjustment (Eisner

and Strotz (1963) the earliest reference) has shown how anticipated future economic

conditions can generate investment smoothing, something absent in Jorgenson’s fric-

tionless model. Another strand of literature has argued that the forward looking

behavior of some investment decisions is closely related to their inherent irreversibil-

ity (see Dixit and Pindyck (1994) and references therein). In all these environments,

investment is a function of Tobin’s marginal q, that is, the value of an installed unit

of capital (Tobin (1969), Hayashi (1982)).

When investment decisions are affected by future economic conditions, uncertainty

plays a crucial role in determining the dynamics of capital. The literature on sequen-

tial investment under uncertainty is large (classic examples are Pindyck (1982) and

Abel (1983)), yet mostly focused on long-run analysis:1 production functions exhibit

constant returns to scale and firms have perfect information about all current payoff

relevant variables (e.g. technological parameters or the law of motion of prices). A

large bulk of this literature has concentrated on the case in which it is only the future

evolution of stochastic variables what is unknown to the firm at any point in time.

Changes in uncertainty in turn refer to changes in parameters that capture the degree

of randomness of the stationary environment at hand, such as output price volatility.

In the short run however, firms face physical constraints when making their in-

vestment decisions. For instance, some factors of production can be potentially fixed,

preventing firms from freely adjusting all production inputs to their desired level.

Moreover, firms face informational constraints when choosing how much to invest.

For example, firms make ex-ante investments when payoff-relevant variables are real-

ized ahead in the future, or firms make investments in a context of partial information

when these payoff-relevant variables are simply unobserved (e.g. the demand for a

1An exception is Bertola and Caballero (1994).
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firm’s product can fluctuate between unobserved states, or the current state of a

firm’s technological process can be in fact hidden). While it is known that decreasing

return to scale will make Tobin’s q to depend on the firm’s size, it is unknown what

is the effect that the time profile of uncertainty has on a firm’s investment behavior.

This chapter develops a simple model of investment in the presence of adjustment

costs in the context of partial information. More specifically, a firm learns about a

hidden technological process that affects its cash-flows generating capacity (or more

succinctly, its earnings) from observing a noisy signal about the current state of its

technology. At the same time, the firm makes investments in capital that affects its fu-

ture earnings. The model has the following characteristics: (i) investment is perfectly

reversible, yet costly according to quadratic adjustment costs satisfying homogene-

ity of degree one; (ii) the firm’s earnings technology has decreasing returns to scale

with respect to capital; (iii) the firm earning’s technology depends on an unobserved

technological process, which we refer to as the firm’s fundamentals ; (iv) learning is

Gaussian. Because fundamentals are not observed, the model allows for uncertainty

about current economic conditions. Because the evolution of beliefs about the under-

lying fundamental is driven by an exogenous signal, there is also uncertainty about

the future value of perceived fundamentals, which in turn determines the perceived

marginal return of capital at all future dates. This model seems to be the first one to

allow for these two different types of uncertainty, a distinction first made by Pindyck

(1982).

In the particular specification we study, we show how the degree of convex-

ity/concavity of fundamentals in the earnings function crucially determines how in-

vestment responds to the time profile of uncertainty. Because the model allows for

convex costs of adjustment, the optimal level of investment depends on all future

levels of marginal productivity of capital. Thus, when the marginal productivity of

capital is concave (convex) in fundamentals, higher uncertainty reduces (increases)
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the value of installed capital. But since the firm learns about its own fundamentals

as information accumulates, this uncertainty will decrease over time. As a result,

when earnings are concave (convex) in fundamentals, the sensitivity of investment to

perceived earnings will be an increasing (decreasing) function of time, everything else

equal.

The implications on firm-level investment are particularly interesting. When earn-

ings are linear in fundamentals, investment is independent of the time profile of un-

certainty. Thus, all firms with the same size and perceived fundamentals invest the

same amount of capital at any point in time. If earnings are instead concave in funda-

mentals, higher uncertainty will decrease investment relative to the linear benchmark,

everything else equal. Consequently, among two firms with the same size, earnings

technology and perceived fundamentals, younger firms invest less. The opposite oc-

curs when earnings are convex in fundamentals. This results are in contrast with

the traditional steady-state analysis in which two seemingly identical firms exhibit

the same investment policies. In the presence of learning about unobserved payoff

relevant variables, time in an industry is expected to have non-negligible effects over

investment.

The model also provides a useful framework for studying the effect of more precise

information structures on the value of the firm. In particular, we show that the firm’s

value when fundamentals are unobserved (second-best) is always below its ex-ante

value in the corresponding full-information benchmark (first-best). Consequently,

firms would be willing to pay ex-ante an strictly positive amount of money for perfectly

informative signals that reveal the true value of fundamentals at all future dates. The

possibility of eliminating contemporaneous uncertainty thus generates strictly positive

value from a resource-allocation perspective.

Finally, another important aspect of this model is its tractability: we are able

to obtain closed for solutions for the dynamic programming problem faced by a firm
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in the context of (i) time-dependent dynamics (which arise due the firm’s learning

process) and (ii) adjustment costs that explicitly depend on the firm’s size. To our

best knowledge, this is the first model that is able to obtain exact solutions for an

optimization problem with such characteristics.2 Because the earnings production

function has decreasing returns to scale, investment depends both on the firm’s size

and on the marginal value of installed capital.

The literature studying the determinants of investment is large, starting with the

seminal work of Jorgenson (1963) and the adjustment costs model of Einer and Strotz

(1963). Tobin (1969) argued that investment is an increasing function of the ratio

of the firm’s market value to the replacement cost of capital, or average q. Hayashi

(1982) (and also Mussa (1977)) shows how investment is actually determined by

marginal q, and he derives conditions under which average q equals marginal q. All

these models are deterministic.

Stochastic models of reversible investment in the context of convex costs of ad-

justment were developed in the 1980’s and 1990’s. Pindyck (1982) is the first model

of investment under adjustment costs that studies the impact of future uncertainty

using dynamics that are distorted by Brownian noise. Abel (1983, 1985) studied

models involving production functions exhibiting constant returns to scale and con-

vex adjustment costs independent of firm size. He finds that increased uncertainty

(as measured by an increase in price volatility) increases investment. In his model,

operating profits as a function of capital and the price of the final good only (i.e.

maximizing over all other inputs of production) is a convex function of the latter

variable. Consequently, his results are consistent with my findings.

The idea of irreversible economic decisions and its consequences on investment

goes back to Arrow (1968). More recent studies involving partially irreversible in-

2Existing closed-form solutions for investment problems allowing for payoff-
relevant state variables other than capital (for instance, prices) assumed both time-
homogenous dynamics and costs of investment that are independent of the firm’s size.
See for instance Abel (1983) and Abel and Eberly (1997).
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vestments are Abel and Eberly (1994, 1997 and 1999) and Bertola and Caballero

(1994). In all these models there are “inaction regions” where the firm does not in-

vest in capital. For a general treatment of all these type of irreversibilities, see Dixit

and Pindyck (1994).

3.2 The Model

Consider a infinitely lived firm that uses its capital to generate revenue. More specifi-

cally, I model a firm as an economic entity that is able to generate a cash flow stream

at every point in time. Denoting by kt the firm’s stock of capital at time t, the (true)

net present value of the cash flow stream generated at time t is given by

yt = δαt
√
kt, t ≥ 0, (3.1)

where α > 0 is a scalar. In this specification, the process δ := (δt)t≥0 corresponds to a

state variable reflecting current economic conditions. This fundamental variable could

be external to the firm (e.g. an underlying state of the economy such as the state

of demand) or internal to it (e.g. the current state of a firm’s technology). In either

case, δ captures the idea that the performance of any investment decision depends

on forces that are exogenous to the manager. The specification I use corresponds to

a geometric Brownian motion

dδt
δt

= gdt+ σdZt, t ≥ 0, (3.2)

with g and σ two positive scalars and Z := (Zt)t≥0 a Brownian motion.

I refer to the process y := (yt)t≥0 as the firm’s realized earnings. Moreover, I

assume that the earnings associated with an investment decision at time t, yt, are

received far ahead in the future, making yt not readily observable at time t ≥ 0.
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Thus, the current level of the firm’s fundamentals at time t, δt, is unobserved to the

manager at time t ≥ 0. This is in contrast with the traditional investment models in

which operating profits are observable without any lags.

The manager instead observes a noisy signal of current fundamentals. Letting

θt := log(δt), t ≥ 0, the manager observes the process

dξt = θtdt+ σξdZ
ξ
t , t ≥ 0, (3.3)

where Zξ := (Zξ
t )t≥0 is a Brownian motion independent of Z. Using the information

conveyed by ξ := (ξt)t≥0, the manager learns about the current value of fundamentals.

The firm’s stock of capital evolves according to the traditional dynamic

dkt = (it − λtkt)dt, t ≥ 0, (3.4)

where it denotes the firm’s investment level at time t ≥ 0, and λ is the rate at which

capital depreciates. Adjusting the firm’s level of capital is costly according to the

function

c(i, k) = i+ ψ
i2

2k
, (3.5)

where ψ > 0. Observe that the investment required to keep the firm’s size (given by

its stock of capital) constant is linear in its size k (scale invariance).

Finally, the manager’s problem is to choose an investment process (it)t≥0 that

maximizes the firm’s expected discounted benefits

E
[∫ ∞

0

e−rt
(
δαt
√
kt − it − ψ

i2t
2kt

)
dt

]
(3.6)

subject to (3.2), (3.3) and (3.4), where r > 0 is the manager’s discount rate.
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Two interpretations regarding the timing of earnings and the learning in the model

are possible. The first one is that all earnings generated by the firm are received very

far in the future (technically, at +∞). In this case, r > 0 is represents a preference-

driven discount rate only. The second one is that there is an exponentially-distributed

random time τ , at which all earnings (yt)t≤τ are received (and, consequently, the whole

path (δ)t≤τ is revealed), and the firm stops operating at τ . In this case, r > 0 can

be decomposed into a time-preference component, and the rate at which this day of

reckoning is expected to arrive.

3.3 Learning

In this Section we show that the firm’s learning problem has a Markovian structure

which allows us to use dynamic programming.

A direct application of Ito’s rule yields that the process θt := log(δt), t ≥ 0, evolves

according to

dθt = (g − σ2/2)dt+ σtdZt, t ≥ 0. (3.7)

Consequently, the system (3.7)-(3.3) consisting of the dynamics of fundamentals and

the signal ξ, respectively, is a Gaussian system. When starting from a Gaussian prior,

the Kalman-Bucy filter applies. Letting mt := E[θt|F ξt ] and γt := E[(θt − mt)
2|F ξt ]

denote the posterior first and second moment of θt given the information F ξt , t ≥ 0,

respectively, we have the following:

Lemma 3.1. Consider the system defined by the firm’s fundamentals (3.7) and

the signal ξ (3.3). Suppose that the agent’s initial prior θ0|F0 is normally dis-

tributed N (mo, γo). Then, θt|F ξt ∼ N (mt, γt), where the posterior mean process

mt := E[θt|F ξt ] and posterior variance γt := E[(θt − mt)
2|FYt ], t ≥ 0, satisfy the
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stochastic differential equation (SDE) and ordinary differential equation (ODE)

dmt = (g − σ2/2)dt+
γt
σξ

dξt −mtdt

σξ
, and (3.8)

γ̇t = σ2 −
(
γt
σξ

)2

, t > 0, (3.9)

respectively. Finally, the process Z ′t := 1
σξ

(
ξs −

∫ t
0
msds

)
, t ≥ 0, is an exogenous

Fξ-Brownian motion from the manager’s perspective, called the innovation process.

Proof: See Liptser and Shiryaev (1977).

�

Three interesting features of (3.8) and (3.9) are worth noting. First, the evolution

of the posterior mean preserves the stochastic structure of θ: the drift of the posterior

mean remains unchanged. Second, the posterior mean’s response to signal surprises

(captured by the innovation process) increases with the size of the mean-square error

and decreases with the signal’s volatility (σξ). This implies that beliefs react more

strongly in settings where either less information has been accumulated, or where

signals are more accurate. Finally, the mean-square error evolves in a deterministic

fashion.

From the manager’s perspective, the exogenous component of the firm’s expected

earnings is driven by the process δ′t := E[δt|F ξt ], t ≥ 0. Using θ’s definition, it is easy

to see that

δ′t = E[exp(θt)|F ξt ] = exp
(
mt +

γt
2

)
,

which yields that

Et[δαt ] = exp

(
αmt +

1

2
α2γt

)
= (δ′t)

α exp

(
α(α− 1)

2
γt

)
, t ≥ 0. (3.10)
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Moreover, applying the product rule to δ′t = exp(mt) exp(γt/2) and using the previous

Lemma, it is easy to show that

dδ′t
δ′t

= gdt+ σ′tdZ
′
t, t ≥ 0, (3.11)

where Z ′ is a Brownian motion from the manager’s perspective, and σ′t := σ2−
(
γt
σξ

)2

.

The manager thus solves

max
(it)t≥0

E
[∫ ∞

0

e−rt
(

(δ′t)
α exp

(
α(1− α)

2
γt

)√
kt − it − ψ

i2t
2kt

)
dt

]
(3.12)

s.t. (3.11) and the dynamics of capital (3.4).

In the next section we show that the previous problem admits an analytic solution

in the state variables (t, δ′, k).

3.4 The Value of the Firm

Let V (t, δ′, k) denote the firm’s value at time t when perceived fundamentals are

δ′ ≥ 0 and the firm’s size is k ≥ 0. It is well know that when V is regular enough, it

must satisfy the following Hamilton-Jacobi-Bellman (HJB) equation: For all (t, δ′, k)

rV (t, δ′, k) = max
i∈R

{
exp

(
α(1− α)γt

2

)
(δ′)α
√
k − i− ψ i

2

2k
+
∂V

∂t
(t, δ′, k)

+(i− λk)
∂V

∂k
(t, δ′, k) + δ′g

∂V

∂δ′
(t, δ′, k) +

1

2
(σ′tδ

′)2∂
2V

∂δ′2
(t, δ′, k)

}
.

(3.13)

The optimal investment rule given is

i =
k

ψ

[
∂V

∂k
(t, δ′, k)− 1

]
, for all (t, δ′, k), (3.14)
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and the HJB equation becomes

rV (t, δ′, k) = exp

(
α(1− α)γt

2

)
(δ′)α
√
k +

k

2ψ

[
1 +

(
∂V

∂k

)2
]
− k

(
λ+

1

ψ

)
∂V

∂k

+
∂V

∂t
(t, δ′, k) + δ′g

∂V

∂δ′
(t, δ′, k) +

1

2
(σ′tδ

′)2∂
2V

∂δ′2
(t, δ′, k). (3.15)

The next result shows that the previous partial differential equation (PDE) admits

a closed-form solution which turns out to be the value of the firm:

Theorem 3.1. Suppose that r > 2αg+α(2α−1)σ2. Then, the firm’s value takes the

form

V (t, δ′, k) = β1k + β2,t(δ
′)2α + β3,t(δ

′)α
√
k (3.16)

where

β1 = ψ

r + λ− 1

ψ
−

√(
r + λ− 1

ψ

)2

− 1

ψ2

 (3.17)

β3,t =
e
α(α−1)

2
γt

ρ
, and (3.18)

β2,t = eα(2α−1)γt

∫ ∞
t

e−[r−2αg−α(2α−1)σ2](s−t)e−α(2α−1)γs
β2

3,s

8ψ
ds, t ≥ 0, (3.19)

with ρ = r + λψ+(1−β1)
2ψ

− αg − α(α−1)
2

σ2 > 0.

Proof: See the Appendix.

�

The proof of the theorem relies on verification theorems for dynamic programming.

We first show that an additively separable function of the form

V (t, δ′, k) = β1,tk + β2,t(δ
′)2α + β3,t(δ

′)α
√
k,
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solves the PDE whenever (βi,t)t≥0, i = 1, 2, 3 solve a particular system of differential

equations. Then, we show that β1, β2,t and β3,t as in the theorem, satisfy suitable

transversality conditions (ensuring that V corresponds to the firm’s value) as long as

r > 2αg+α(2α−1)σ2 holds. The latter condition ensures that the firm’s value if finite.

3.5 Capital Dynamics and Optimal Investment Rule:

The Time-Profile of Uncertainty

Theorem 3.1 delivers a particularly clean solution of the firm’s problem. The optimal

investment rule is given by

i(t, k, δ′) =
k

ψ

[
∂V

∂k
(t, δ′, k)− 1

]
=

1

ψ

[
k(β1 − 1) +

β3,t

2
(δ′)α
√
k

]
, (3.20)

where

β3,t =
exp

(
α(α−1)

2
γt

)
ρ

, t ≥ 0,

captures how the evolution of uncertainty affects the firm’s investment behavior.

We refer to this deterministic function as the sensitivity of investment to expected

earnings.

When a young firm is very uncertain about its fundamentals, uncertainty will

decrease over time as information accumulates ((γt)t≥0 is strictly decreasing when γ0

is large). Hence, if the earnings technology is concave in fundamentals (α < 1), the

sensitivity of investment to expected earnings will be an increasing function of time.

Hence, higher uncertainty reduces investment, everything else equal. The opposite

result holds when earnings are a convex function of fundamentals (α > 0). Finally,

when earnings are linear in fundamentals, investment is not affected by the future

evolution of uncertainty.
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The next proposition summarizes this discussion:

Proposition 3.1. Starting from k0 > 0, the optimal stock of capital at any time t is

given by

kt =

[
e−

λψ+1−β1
2ψ

tk0 +
1

4ψ

∫ t

0

e−
λψ+1−β1

2ψ
(t−s)β3,s(δ

′
s)
αds

]2

, t ≥ 0. (3.21)

Finally, α ≤ 1 if and only if i(s, δ′, k) ≤ i(t, δ′, k), 0 ≤ s < t.

Proof: See the Appendix.

�

The previous result has implications on the cross sectional distribution of invest-

ment profiles observed in an industry. When earnings are concave in fundamentals,

two seemingly identical firms (same size and perceived investment opportunities) will

have different investment profiles, with older firms growing faster. The contrary oc-

curs when earnings are convex in fundamentals. Finally, when earnings are linear in

fundamentals, two seemingly identical firms should be expected to grow at similar

rates, irrespective of differences in their time in an industry.

The intuition for the results stems the monotone evolution of uncertainty over

time. When earnings are concave in fundamentals, the expected marginal productiv-

ity of capital at all future increases with time in an industry, everything else equal.

Hence, capital becomes more valuable for this type of firms as they learn more about

their unobserved fundamentals.

3.6 First-Best: The Value of Information

An important question in the analysis presented in this chapter is whether better

information adds value to the firm or not. Intuitively, better information structures
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allow firms to allocate capital more optimally across different states of the world, and

this in turn yields a higher value.

In this section we show that the value of the firm found in the previous sec-

tion (second-best) is always below the firm’s ex-ante value in the corresponding full-

information benchmark (first-best). The difference between both values represents

the firm’s willingness to pay for the resolution of contemporaneous uncertainty at all

future dates, given its current beliefs about fundamentals.

We can assume that α = 1 without loss of generality. This is because we will

compare the firm’s value across two different information structures at any given

point in time, and because δα also follows a geometric Brownian motion.

From Theorem 3.1, the value of the firm takes the form

V (t, δ′, k) = β1k + β2,t(δ
′)2 + β3,tδ

′
√
k,

with β1, (β2,t)t≥0 and (β3,t)t≥0 as in the Theorem, and δ′ = exp
(
m+ γ

2

)
. In particular,

β3,t = β3 := 1
ρ

and

β2,t =
eγt

8ψρ2

∫ ∞
t

e−(r−2g−σ2)(s−t)e−γsds

when α = 1.

It is easy to see that when δ is perfectly observed, the firm’s value V fb is given by

V fb(δ, k) = βfb1 k + βfb2 δ
2 + βfb3 δ

√
k

with βfb1 = β1, βfb2 = 1
8ψρ2

1
r−2g−σ2 and βfb3 = β3 := 1

ρ
(that is, the corresponding values

of βi, i = 1, 2, 3 when γ ≡ 0). The firm’s ex-ante value at time t is thus given by

Et[V fb(δt, kt)] = β1kt + βfb2 Et[δ2
t ] + β3Et[δt]

√
kt,
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where kt denotes the stock of installed capital right before observing the full path

(δs)s>t, t > 0. Since log(δt) ∼ N (mt, γt) the firm’s ex-ante value at time t in the

full-information benchmark takes the form

Et[V fb(δt, kt)] = β1kt + βfb2 exp (2mt + 2γt) + β3 exp
(
mt +

γt
2

)√
kt, t > 0.

Hence,

Et[V fb(δt, kt)]− V (t, δ′t, kt) = βfb2 exp (2mt + 2γt)− β2,t exp (2mt + γt) t ≥ 0.

From the expression for β2,t we obtain that

β2,t <
eγt

8ψρ2

∫ ∞
t

e−(r−2g−σ2)(s−t)ds = eγtβfb2 ,

yielding Et[V fb(δt, kt)]− V (t, δ′t, kt) > 0.

3.7 Conclusions

This chapter developed a tractable model of investment in the context of partial

information. A firm learns about an unobserved process which drives the evolution

of its earnings. At the same time, the firms invest in capital, which also affects its

cash-flows generating capacity. Since the contemporaneous optimal level of capital is

always unknown, the firm faces uncertainty about current economic conditions at the

moment of making a decision. But the firm also faces uncertainty about the future, in

the sense that the future evolution of perceived fundamentals (hence, the value of the

marginal productivity of capital at all future dates) cannot be perfectly anticipated.

In this context, we showed how learning about a firm’s technology generates invest-

ment behavior that varies across a firm’s lifecycle. More specifically, since uncertainty
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decreases as information accumulates, the sensitivity of investment to perceived cur-

rent economic conditions vary with time in an industry. The main prediction of this

result is that two firms with similar size and expected earnings, but different time in

an industry, should exhibit different investment profiles, something absent in tradi-

tional dynamic models of investment under uncertainty. We also showed that having

perfect information generates higher benefits (in terms of allocation of investment

resources) than the second-best case involving learning about fundamentals. Conse-

quently, more imprecise information about fundamentals reduces a firm’s value.

Closed-form solutions for non-linear parabolic PDEs are certainly an exception.

Consequently, the analytic results derived in this chapter depend heavily on the func-

tional forms assumed. However, the economic properties of the solution found here

are expected to hold in more general environments characterized by: (i) earnings

technologies that are increasing and concave in capital and (ii) convex costs of ad-

justment that are homogenous of degree one. Deriving qualitative properties of the

firm’s value function along with numerical solutions to the associated PDEs is a

promising approach to understanding the dynamics generated in these more general

environments.

Finally, it would be interesting to connect the predictions generated by this model

both to the empirical evidence regarding investment within particular industries, and

to the accounting literature studying how the information contained in cash flows,

earnings and market valuations impacts investment. These and other questions are

left for future research.

3.8 Appendix

Before stating the proof of the Theorem, it is instructive to show the following Lem-

mas:
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Lemma 3.2. For all t ≥ 0:

E[(δ′t)
α] = (δ′0)α exp

(
α(α− 1)

2
(γ0 − γt)

)
exp

(
αgt+

α(α− 1)

2
σ2t

)

Proof: Observe first that

δ′t = δ′0 exp

(
gt− 1

2

∫ t

0

(σ′u)
2du+

∫ t

0

(σ′u)dZ
′
u

)
, t ≥ 0,

with δ′0 = E[δ0] = E[exp(θ0)] = exp(m0 + γ0
2

), solves the SDE dδ′t = δ′tgdt + δ′tσ
′
tdZ

′
t,

t ≥ 0. Now, since

∫ t

0

(σ′u)dZ
′
u ∼ N

(
0,

∫ t

0

(σ′u)
2du

)
, t ≥ 0,

we have that

E[(δ′t)
α] = (δ′0)α exp

(
αgt− α

2

∫ t

0

(σ′u)
2du

)
exp

(
α2

2

∫ t

0

(σ′u)
2du

)
, t ≥ 0.

Using that
∫ t

0
(σ′u)

2du = σ2t+ γ0 − γt we conclude.

�

Lemma 3.3. Suppose that r > 2αg + α(2α− 1)σ2 and let

β1 := ψ

r + λ− 1

ψ
−

√(
r + λ− 1

ψ

)2

− 1

ψ2

 .
Then, the ordinary differential equation

0 = β̇3,t − β3,t

[
r +

λψ + (1− β1)

2ψ
− αg − α(α− 1)

2
(σ′t)

2

]
+ exp

(
α(1− α)γt

2

)
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with transversality condition

lim
t→∞

β3,t exp

(
−
∫ t

0

[
r +

λψ + (1− β1)

2ψ
− αg − α(α− 1)

2
(σ′s)

2

]
du

)
= 0

admits β3,t = ρ−1e
α(α−1)

2
γt , t ≥ 0, with ρ := r + λψ+(1−β1)

2ψ
− αg − α(α−1)

2
σ2, as a

solution.

Proof: Observe first that since α and ψ are strictly positive, r > 2αg+α(2α−1)σ2

implies

r +
2

ψ
+

√(
r + λ+

1

ψ2

)2

− 1

ψ2︸ ︷︷ ︸
=2(r+λψ+1−β1

2ψ )

> 2αg + α(α− 1)σ2.

Consequently,

ρ = r +
λψ + 1− β1

2ψ
− αg − α(α− 1)

2
σ2 > 0.

Now, by definition of σ′, (σ′t)
2 :=

(
γt
σξ

)2

= σ2− γ̇t, t ≥ 0. Hence, the ODE can be

written as

0 = β̇3,t − β3,t

[
ρ+

α(α− 1)

2
γ̇t

]
+ exp

(
α(1− α)γt

2

)
.

It is easy to see that ρ−1e
α(α−1)

2
γt , t ≥ 0, solves this ODE. To check the transversality

condition, notice that

exp

(
−
∫ t

0

[
r +

λψ + (1− β1)

2ψ
− αg − α(α− 1)

2
(σ′s)

2

]
du

)
= e−ρte

α(α−1)
2

(γ0−γt).

Since γt ↘ γ∗ = σσξ and ρ > 0, we conclude.

�

Lemma 3.4. Under the assumptions of the previous Lemma, the ODE

0 = β̇2,t − β2,t[r − 2αg − α(2α− 1)(σ′t)
2] +

β2
3,t

8ψ
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with transversality condition

lim
t→∞

β2,t exp

(
−
∫ t

0

[r − 2αg − α(2α− 1)(σ′s)
2]ds

)
= 0

admits

β2,t =
eα(2α−1)γt

8ψ

∫ ∞
t

e−(r−2αg−α(2α−1)σ2)(s−t)e−α(2α−1)γsβ2
3,sds, t ≥ 0,

as a solution.

Proof: Since (σ′t)
2 = σ2 − γ̇t, t ≥ 0, the ODE can be written as

0 = β̇2,t − β2,t[r − 2αg − α(2α− 1)σ2 + α(2α− 1)γ̇t] +
β2

3,t

8ψ
,

from where it is clear that β2,t as in the Lemma solves this equation.

Finally, the transversality condition takes the form

lim
t→∞

eα(2α−1)γt

8ψ

∫ ∞
t

e−(r−2αg−α(2α−1)σ2)se−α(2α−1)γsβ2
3,sds,

which is equivalent to

lim
t→∞

∫ ∞
t

e−(r−2αg−α(2α−1)σ2)sds,

since both (γt)t≥0 and (β3,t)t≥0 are uniformly bounded. The last limit equal zero

because of the condition r − 2αg − α(2α− 1)σ2 > 0.

�

Now we can prove the Theorem:

Proof of Theorem 3.1: Consider the PDE (3.15) given by
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rV (t, δ′, k) = exp

(
α(1− α)γt

2

)
(δ′)α
√
k +

k

2ψ

[
1 +

(
∂V

∂k

)2
]
− k

(
λ+

1

ψ

)
∂V

∂k

+
∂V

∂t
(t, δ′, k) +

∂V

∂δ′
(t, δ′, k)δ′g +

1

2
(σ′tδ

′)2∂
2V

∂δ′2
(t, δ′, k),

and conjecture a solution of the form

V (t, δ′, k) = β1,tk + β2,t(δ
′)2α + β3,t(δ

′)α
√
k. (3.22)

The PDE is then reduced to solving the following system of ordinary differential

equations:

0 = β̇1,t − β1,t

[
r + λ+

1

ψ

]
+

1

2ψ
(1 + β2

1,t) (3.23)

0 = β̇2,t − β2,t[r − 2αg − (2α− 1)α(σ′t)
2] +

β2
3,t

8ψ
(3.24)

0 = β̇3,t − β3,t

[
r +

λψ + (1− β1,t)

2ψ
− αg − α(α− 1)

2
(σ′t)

2

]
+ exp

(
α(1− α)γt

2

)
(3.25)

For the first ODE, consider its smallest stationary solution:

β1 = ψ

r + λ− 1

ψ
−

√(
r + λ− 1

ψ

)2

− 1

ψ2


For the second and third ODEs, consider the solutions derived in Lemmas (3.4) and

(3.3), respectively.

In order to show that V as defined above is the firm’s value function, it suffices

to show that
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(i) The investment rule i(t, k, δ′) = k
ψ

[
∂V
∂k

(t, δ′, k)− 1
]

induces a well-defined law

of motion of capital and;

(ii) Along the capital path induced by the previous investment rule, the following

transversality condition holds

lim
t→0

e−rtE[V (t, δt, kt)] = 0 (3.26)

For (i), it is easy to show that, under the (candidate to) optimal investment rule,

capital takes the form

kt =

[
e−

λψ+1−β1
2ψ

tk0 +
1

4ψ

∫ t

0

e−
λψ+1−β1

2ψ
(t−s)β3,s(δ

′
s)
αds

]2

, t ≥ 0,

so (i) holds (see the proof of Proposition 3.1 for a proof of the previous expression).

In order to show (ii), I will prove that each component of e−rtE[V (t, δ′, k)] vanishes

asymptotically.

Part 1: lim
t→0

e−rtE[β3,t(δ
′
t)
α
√
kt] = 0.

Since β3,t is uniformly bounded, we can reduce the analysis to studying

lim
t→0

e−rtE[(δ′t)
α
√
kt].

Regarding the first term in this expression (see the expression of capital above), notice

that

lim
t→∞

e−(r+λψ+1−β1
2ψ )tE[(δ′t)

α]

= e−(r+λψ+1−β1
2ψ )t exp

(
αgt+

α(α− 1)

2
σ2t

)
(δ′0)α exp

(
α(α− 1)

2
(γ0 − γt)

)
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where the last equality comes from Lemma 3.2. But from Lemma (3.3)

r +
λψ + 1− β1

2ψ
− αg − α(α− 1)

2
σ2 > 0,

so the limit above is actually zero.

Regarding lim
t→∞

e−rtE
[
(δ′t)

α
∫ t

0
e−

λψ+1−β1
2ψ

(t−s)β3,s(δ
′
s)
αds
]
, it suffices to analyze

lim
t→∞

e−rtE
[∫ t

0

e−
λψ+1−β1

2ψ
(t−s)E[(δ′t)

α(δ′s)
α]ds

]
︸ ︷︷ ︸

:=Lt

.

From Lemma 3.2

E[(δ′t)
α(δ′s)

α] = (δ′0)2α exp

(
αgt+ αgs− α

2

∫ t

0

(σ′u)
2du− α

2

∫ s

0

(σ′u)
2du

)
×E

[
exp

(
α

∫ t

0

(σ′u)dZ
′
u + α

∫ s

0

(σ′u)dZ
′
u

)]
︸ ︷︷ ︸

=E[exp(2α
∫ s
0 (σ′u)dZ′u) exp(α

∫ t
s (σ′u)dZ′u)]

, t ≥ 0. (3.27)

But since
∫ s

0
(σ′u)dZ

′
u and

∫ t
s
(σ′u)dZ

′
u are independent and normally distributed random

variables, we have that

E[(δ′t)
α(δ′s)

α] = (δ′0)2α exp

(
αgt+ αgs− α

2

∫ t

0

(σ′u)
2du− α

2

∫ s

0

(σ′u)
2du

)
exp

(
2α2

∫ s

0

(σ′u)
2du

)
exp

(
α2

2

∫ t

s

(σ′u)
2du

)
, t ≥ 0. (3.28)

This results in

Lt = e−(r+λψ+1−β1
2ψ

−αgt+α
2
σ2)te

α
2

(γt−γ0) ×∫ t

0

e−(λψ+1−β1
2ψ

−αgt+α
2
σ2)se

α
2

(γs−γ0)+2α2σ2s+2α2(γ0−γs)+α2

2
σ2(t−s)+α2

2
(γs−γt)ds.

(3.29)
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Ignoring all the terms involving γ (it is uniformly bounded), we are left with analyzing

L̃t = e−(r+λψ+1−β1
2ψ

−αgt+α
2
σ2)t

∫ t

0

e(
λψ+1−β1

2ψ
+αg−α

2
σ2)se2α2σ2s+α2

2
σ2(t−s)ds

= e−(r+λψ+1−β1
2ψ

−αgt−α(α−1)
2

σ2)t
∫ t

0

e(
λψ+1−β1

2ψ
+αg−α

2
σ2(1−3α))sds

∝ e−(r−2αg−σ2α(2α−1))t − e−(r+
λψ+1−β1

2ψ
−αgt−α(α−1)

2
σ2)t (3.30)

and both term go to zero as t→∞ (Lemma 3.3). This concludes part 1.

�

Part 2: lim
t→∞

e−rtE[β2,t(δ
′
t)

2α] = 0.

Observe that since r > 2αg+α(2α− 1)σ2 > 0, and (β3,t)t≥0, (γt)t≥0 are uniformly

bounded, (β2,t)t≥0 will be uniformly bounded as well.

Now, from Lemma 3.2,

E[(δ′t)
2α] = (δ′0)2α exp (α(2α− 1)(γ0 − γt)) exp

(
2αgt+ α(2α− 1)σ2t

)
,

and since r > 2αg + α(2α− 1)σ2, we conclude.

�

Part 3: lim
t→∞

e−rtE[kt] = 0.

Recall that

kt = e−
λψ+1−β1

ψ
tk0 +

e−
λψ+1−β1

2ψ
t

2ψ

∫ t

0

e−
λψ+1−β1

2ψ
(t−s)β3,s(δ

′
s)
αds

+

(
1

4ψ

∫ t

0

e−
λψ+1−β1

2ψ
(t−s)β3,s(δ

′
s)
αds

)2

, t ≥ 0. (3.31)
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By definition of β1,

r +
λψ + 1− β1

ψ
=

2

ψ
+

√(
r + λ− 1

ψ

)2

− 1

ψ2
> 0

so lim
t→∞

e−rte−
λψ+1−β1

ψ
tk0 = 0. Regarding the second term, using Lemma 3.2 and that

(β3,t)t≥0 and (γt)t≥0 are both uniformly bounded, it suffices to study the limiting

behavior of

e−(r+λψ+1−β1
2ψ )t

∫ t

0

e−
λψ+1−β1

2ψ
(t−s)e(αg+

α(α−1)
2

σ2)sds

∝ e−(r+λψ+1−β1
2ψ

−αg−α(α−1)
2

σ2) − e−(r+λψ+1−β1
ψ )t (3.32)

and both terms go to zero as t→∞.

Finally, in order to study

L1 := e−rtE

[(∫ t

0

e−
λψ+1−β1

2ψ
(t−s)β3,s(δ

′
s)
αds

)2
]

we can apply the Cauchy-Schwartz inequality to obtain

L1 ≤ e−rt
(∫ t

0

E[(δ′s)
2α]ds

)(∫ t

0

e−
λψ+1−β1

ψ
(t−s)β2

3,sds

)

Observe that since (β3,t)t≥0 is uniformly bounded and

λψ + 1− β1

ψ
=

2

ψ
− r +

√(
r + λ− 1

ψ

)2

− 1

ψ2
> 0

the limit lim
t→∞

∫ t
0
e−

λψ+1−β1
ψ

(t−s)β2
3,sds is finite. Thus, it suffices to show that

lim
t→∞

e−rt
∫ t

0

E[(δ′s)
2α]ds = 0.
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From Part 2, it is equivalent to study

lim
t→∞

e−rt
∫ t

0

e−(2αg+α(2α−1)σ2)sds = lim
t→∞

e−(r−2αg−α(2α−1)σ2)t − e−rt = 0.

This concludes the proof of the Theorem.

�

Proof of Proposition 3.1: Given the investment rule

i(t, δ′, k) =
1

ψ

[
(β1 − 1)k +

β3,t

2
(δ′)α
√
k

]
,

the dynamics of capital can be written as

dkt =

[
−ψλ+ 1− β1

ψ
kt +

β3,t

2
(δ′t)

α
√
kt

]
dt, t ≥ 0.

This implies that xt =
√
kt satisfy the ODE

dxt =
1

2

[
−ψλ+ 1− β1

ψ
xt +

β3,t

2
(δ′t)

α

]
dt,

which has as a solution

√
kt = xt = e−

λψ+1−β1
2ψ

tk0 +
1

4ψ

∫ t

0

e−
λψ+1−β1

2ψ
(t−s)β3,s(δ

′
s)
αds, t ≥ 0.

The rest of the results are straightforward.

�
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