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1 Introduction

Agents must make a binary choice about where to locate. They have heterogeneous pref-

erences over locations. In addition, there are positive externalities from choosing the same

location as others. Whichever location an agent chooses, his utility also includes an ag-

glomeration effect that is increasing in the proportion of the population that chooses that

location. Each individual is uncertain about the distribution of preferences in the population,

but knows his own preferences, which serve as a noisy signal of population preferences. Un-

der reasonable conditions,1 there will be a unique equilibrium where the majority of agents

go to the more popular location, but agents with sufficiently extreme preferences go to the

other location. However, agglomeration externalities imply that there may be over- or under-

agglomeration in equilibrium relative to the efficient outcome.

We show that if the marginal returns to agglomeration are sufficiently decreasing in

the proportion of the population co-locating (returns are more concave than log(·)) then

there will be over-agglomeration. The marginal (indifferent) person generates a much larger

marginal benefit at the smaller location, so even though fewer people benefit, it would be so-

cial efficient for them to move there, thereby decreasing agglomeration. If the agglomeration

function is less concave than log(·) (for example, linear) there will be under-agglomeration in

equilibrium. The marginal (indifferent) person benefits more people if they go to the location

with more people. If the marginal social benefit at that location is not too much smaller
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1It is sufficient that either there is sufficient homogeneity in preferences or there is sufficient heterogeneity;

see discussion in Section 4.1.
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than at the location with fewer people, it is socially efficient to move the marginal person

to the location with more people, thereby increasing agglomeration. Analogous results hold

then there are multiple equilibria, idiosyncratic signals of common preferences over locations

and negative externalities of co-locating.

The model has natural interpretations in a variety of contexts and the critical condition

on the concavity of agglomeration thus has corresponding economic interpretations. If firms

are making decisions about which city to locate in, agglomeration may correspond to positive

spillovers via the labor market, product market, or infrastructure. If high quality students are

making decisions about which university to attend, agglomeration might reflect the benefit

to high quality students locating together. If individuals are deciding between alternative

technologies or standards, agglomeration corresponds to benefit to standardization. In each

case, there is a natural interpretation to the concavity of the agglomeration, i.e., the rate at

which the marginal benefit of agglomeration falls as the level of agglomeration increases.

The conflict between private and social benefits of agglomeration are studied in Mitchell

and Skrzypacz (2006) and Argenziano (2008).2 In a different, dynamic, model, Mitchell

and Skrzypacz (2006) use the concavity of ln(·) condition.3 Our model is the static one

of Argenziano (2008); we thus extend her result showing that there is under-agglomeration

with linear agglomeration and normally distributed benefits. As we discussion in Section 4.5,

our paper also connects to the empirical literature estimating agglomeration effects of firms

co-locating, especially the more recent efforts to capture non-linearities of these spillovers.

2 Model

There are two sectors and a unit mass of agents. If proportion l of the population is in

sector 1, then agent i gets utility 1
2
xi +h(l) from being in sector 1 and −1

2
xi +h (1− l) from

being in sector 2, where h is an increasing function, bounded on the interval (0, 1) by h̄. The

difference in agglomeration benefits between the two sectors is

h̃ (l) = h (l)− h (1− l) .

Observe that h̃ is increasing, h̃
(

1
2

)
= 0, and h̃ has rotational symmetry around 1

2
, i.e.,

h̃ (l) = −h̃ (1− l) for all l. An individual’s decision depends on the difference in utility

between sector 1 and sector 2, xi + h̃(l).

2Both papers are about the impact of endogenizing prices in such settings, but address the problem with
exogenous prices first.

3They assume (page 326) that (the level of) agglomeration times the marginal benefit of agglomeration
is increasing in agglomeration, a condition equivalent to the ln(·) condition.
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A state θ is distributed according to a symmetric, unimodal, continuous prior distribution

g with mean µ, which we assume w.l.o.g is greater than zero. Each agent’s benefit is xi =

θ + εi, where εi is distributed according to a symmetric density f , with mean zero and

full support. After observing xi, agent i believes θ is distributed according to the posterior

g(θ|xi). We assume benefits satisfy first order stochastic dominance (FOSD): observing a

higher xi leads to a FOSD increase in beliefs about θ, that is

∂

∂x

kˆ

−∞

g(θ|xi)dθ < 0 ∀k, xi.

The FOSD property guarantees that any equilibrium is in monotone strategies, where an

agent goes to sector 1 if and only if his benefit xi is greater than a threshold, x̂. Moreover,

since there is an increased incentive to locate in sector 1 when others locate in sector 1 and

when the benefit xi is higher, the game is “monotone supermodular” (in the language of

Van Zandt and Vives (2007)). Monotone supermodularity implies the existence of largest

and smallest monotone pure strategy equilibria. Because the game is symmetric across

agents, these equilibria will be symmetric.

A player who has benefit xi and thinks others follow a strategy with threshold x̂ gets

payoff

U (xi, x̂) = xi +

∞̂

−∞

h̃ (1− F (x̂− θ)) g (θ|xi) dθ

for sector 1 relative to sector 2. A threshold x̂ is an equilibrium if U (x̂, x̂) = 0. To guarantee

that the equilibrium is unique, we maintain the assumption that payoffs are single-crossing:

that is, U (x, x) = 0 has a unique solution. A sufficient condition for this maintained as-

sumption is that heterogeneity is sufficiently small, so that f is sufficiently concentrated.

We discuss this and other related sufficient conditions on primitives for single-crossing, in

Section 4.1.

Because U(x, x) is continuous, U(µ, µ) = µ > 0 and U(−h̄ − ε,−h̄ − ε) < 0, there will

always be an equilibrium at some threshold x̂ < µ.

3 Agglomeration and Welfare

It is immediate that social welfare is maximized by allocating agents according to a threshold

strategy. If an agent allocated to sector 2 has a lower benefit than an agent allocated to sector

1, welfare is increased by swapping them. We will say there is over-agglomeration, when the
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equilibrium threshold implies a less even distribution of people between the two sectors than

the socially optimal threshold. Since we have assumed µ > 0, this corresponds to there is

over (under) agglomeration if the equilibrium threshold is below (above) the socially optimal

threshold.

Our main result is:

Proposition 1. When h is more (less) concave than log(·), there is over (under) agglomer-

ation.

Suppose everyone uses the threshold strategy of going to sector 1 if and only if xi ≥ x̂.

Ex-ante welfare (for an arbitrary cutoff) is

W (x̂) =

∞̂

−∞

 1
2

∞́

ε=x̂−θ
(θ + ε) f (ε) dε− 1

2

x̂−θ´
ε=−∞

(θ + ε) f (ε) dε

+ (1− F (x̂− θ))h (1− F (x̂− θ)) + F (x̂− θ)h (F (x̂− θ))

 g (θ) dθ

Differentiating with respect to x̂ gives

W ′ (x̂) =

∞̂

−∞

 −x̂f (x̂− θ)− f(x̂− θ) (1− F (x̂− θ))h′ (1− F (x̂− θ))
−f (x̂− θ)h (1− F (x̂− θ)) + f (x̂− θ)h (F (x̂− θ))
+f (x̂− θ)F (x̂− θ)h′ (F (x̂− θ))

 g (θ) dθ

= W ′
1 +W ′

2,

where

W ′
1 =

∞̂

−∞

(−x̂+ h (F (x̂− θ))− h (1− F (x̂− θ))) f (x̂− θ) g (θ) dθ

W ′
2 =

∞̂

−∞

(F (x̂− θ)h′ (F (x̂− θ))− (1− F (x̂− θ))h′ (1− F (x̂− θ))) f (x̂− θ) g (θ) dθ

The first part of the welfare derivative (W ′
1) is the value to the marginal person of switch-

ing sectors when the threshold moves. If the threshold increases they lose x̂ in private value

from leaving sector 1 and gain or lose h (F (x̂− θ)) − h (1− F (x̂− θ)) from the agglomer-

ation difference. This is proportional to the difference in utility between the same sectors

for the marginal person, that is W ′
1 ∝ −U(x, x).4 We therefore know that W ′

1 is zero at the

equilibrium x̃ and W ′
1(x) > 0 if and only if x < x̃.

4This uses g(θ|xi) ∝ f(x̂ − θ)g (θ), they are not equal because one is conditional on being the marginal
person and the other includes the probability of being the marginal person.
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The second part of the welfare derivative (W ′
2) is the effect of changing the threshold on

everyone’s value from agglomeration. It has rotational symmetry around µ, that is W ′
2(µ+

∆) = −W ′
2(µ − ∆). For any threshold x̂ < µ, more weight will be where θ > x̂ and

F (x̂− θ) < 1−F (x̂− θ). This means that W ′
2(x̂) > 0 for x̂ < µ if and only if F (a)h′(F (a)))

is decreasing, which corresponds to h(·) being more concave than log(·). If h is more concave

than log(·) then for x̂ < x̃ both W ′
1 and W ′

2 are positive and if x̂ > µ both W ′
1 and W ′

2 are

negative; in either case their sum cannot be zero. So the social optimum must lie in (x̃, µ).

Moving the threshold towards the mean decreases agglomeration, so we see that when h′ is

more concave than log(·), the social optimum has less agglomeration than the global games

equilibrium.

When h(·) is less concave than log(·), then for x̂ ∈ (x̃, µ) both W ′
1 and W ′

2 are negative,

so the optimum cannot be in this range. It is sufficient to show that in this case the optimum

cannot be at a threshold above the mean. To see this, we return to the welfare function

and, for any x > µ, we look at the symmetric point x′ such that x − µ = µ − x′ = ∆ and

show that welfare is higher at x′ that at x. Because they result in the same distribution of

agglomeration,5 the difference in welfare between the two thresholds is

W (µ−∆)−W (µ+ ∆) =

∞̂

−∞

 µ+∆−θˆ

µ−∆−θ

(θ + ε) f (ε) dε

 g (θ) dθ,

which is zero at ∆ = 0 and

∂

∂∆
(W (µ−∆)−W (µ+ ∆)) =

∞̂

−∞

((µ+ ∆)f(µ+ ∆− θ) + (µ−∆)f(µ−∆− θ)) g (θ) dθ

=

∞̂

−∞

The first term is positive and the second term is zero because g(θ) is symmetric around µ.6 So

for ∆ > 0, we have W (µ−∆)−W (µ+ ∆) > 0, implying that the globally optimal threshold

cannot be greater than µ. Therefore the optimal threshold is less than the equilibrium

5Argenziano (2008) shows this for normal distributions. By taking the derivative with respect to ∆ we
do not need to rely on properties of the normal distribution, just the symmetry of the distributions.

6Symmetry around µ implies that g(θ) = g(2µ− θ) and

f(µ+ ∆− θ)− f(µ−∆− θ) = (f(−µ−∆ + θ)− f(−µ+ ∆ + θ)

= − (f(µ+ ∆− (2µ− θ))− f(µ−∆− (2µ− θ)))

so the overall integral is zero.
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threshold x̃; since the equilibrium threshold is below the mean (x∗ < x̃ < µ), this means the

optimal threshold results in more agglomeration than the global games equilibrium.

4 Discussion

4.1 Uniqueness

We now discuss primitive assumptions under which the maintained single-crossing assump-

tion holds.

First, consider the case where the agglomeration function is linear, with h (l) = 1
2
l and

thus h̃ (l) = l − 1
2
; and the benefits are normally distributed, with θ ∼ N(µ, 1

α
) and εi ∼

N(0, 1
β
). In this case, one can confirm by simple calculation that single-crossing is satisfied

if
α2β

(α + β) (α + 2β)
≤ 2π.

The calculations appear in Morris and Shin (2005) and this corresponds to the case analyzed

in Argenziano (2008).

Notice that this condition is automatically satisfied if we fix α (the precision of θ) and

let β (the precision of the idiosyncratic component) tend to infinite. This corresponds to

looking at what happens in the limit as heterogeneity disappears. In fact, there is a unique

equilibrium in general as heterogeneity disappears. This is a key finding of the global games

literature (Carlsson and Van Damme, 1993; Morris and Shin, 2003).7

The uniqueness condition for the linear normal case is also automatically satisfied if we

fix β and let α tend to infinite. This corresponds to looking at what happens in the limit as

heterogeneity blows up. In this case, there is a unique equilibrium because the benefits terms

swamps the strategic effect. Morris and Shin (2005) show that there will be uniqueness in

general as heterogeneity blows up as long as the derivative of the agglomeration function h is

bounded above and below. They also discuss the relation to uniqueness sufficient conditions

based on large heterogeneity in the literature.

4.2 With multiple equilibria

When there are multiple equilibria, we do not know the shape of the function U(x, x) (the

utility of threshold-person); therefore we cannot globally sign the first part of the welfare

7This literature has focused on the “common value” case where the idiosyncratic component of agents’
types are payoff-relevant, but the results also apply when in the “private value” case analyzed here where
the idiosyncratic component is payoff-relevant. This common value / private value comparison is discussed
in Morris and Shin (2005). Note that first order stochastic dominance is not needed as an assumption in
this literature because it is automatically satisfied in the limit as heterogeneity disappears.
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derivative, W ′
1. However, we still know that at any threshold equilibrium W ′

1(x̃) = 0, so

we can sign the local derivative of welfare with respect to the threshold and therefore with

respect to agglomeration. At a threshold equilibrium, welfare will be locally increasing in

agglomeration if and only if h′ is less concave than log(·).

4.3 Common Value

In an alternative common value model, xi = θ+εi, is not a private value, but a private signal

about the common true value, θ. The expected value of agglomeration is unchanged, but the

individual cares about E[θ|x] for the direct part of their payoff. As long as the social planner

and individual agree that θ is the true value, the conditions for over and under-agglomeration

are unaffected. The derivative of welfare still breaks down into the the marginal person’s

utility and the effect via the agglomeration benefits, which depends on ∂
∂a

(ah′(a)) > 0.

If the planner cares about θ and individuals care about x, there is an additional term

in the derivative of the planner’s welfare function, (x̂ − E[θ|x̂])Pr[x̂], which always pushes

for more agglomeration. The planner thinks the marginal person is less different from the

average than the person themself does; so what is right for the majority of people is more

likely to be right for the marginal person. The previous condition ∂
∂a

(ah′(a)) > 0 is now

sufficient, but not necessary for under agglomeration.

4.4 Negative externality.

There may be reasons – traffic, social signaling, and limited resources – for people to want

to go to the location with fewer people. In our model this corresponds to h′ < 0. This makes

uniqueness less likely,8 but conditional on a unique threshold equilibrium existing, the same

conditions for over- and under-agglomeration hold. If h′′ > 0 then the marginal person at

the larger location does less harm than at the smaller location; if the effect is enough smaller

(h′′ > −ah(a) ⇒ ∂
∂a

(ah′(a)) > 0) than the total damage is less even though the harm is

inflicted on more people. Conversely, if h′′ < −ah(a) then the fact that the harm is done to

more people outweighs the lower level of harm and the social planner would like to decrease

agglomeration.

4.5 Empirical Concavity

While there is a substantial literature that tries to estimate agglomeration effects and

spillovers in location choice, those with sufficient data to look at the curvature (as op-

8With h′ < 0, first-order stochastic dominance no longer ensures that every equilibrium is a threshold
equilibrium. There may be an equilibrium where person A with xA does not want to go to sector 1 because
she thinks there will be a lot of people there, but person B with signal xB < xA, will go to sector one (even
though she likes it less than person A) because she does not think there will be many people in sector 1.
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posed to the slope) are more limited.9 Martin et al. (2011) analyze plant level data and

find agglomeration spillovers on productivity that are bell-shaped, suggesting some areas are

overly concentrated and others are under-concentrated. Maré and Graham (2013) find de-

creasing returns to agglomeration for most industries in New Zealand, but do not report the

parameters to check whether the effects are more concave than log(·). Davis and Henderson

(2008) look at the location of firms’ headquarters in the United States. The estimates from

their quadratic specification suggest that the spillovers are more concave than log(·) once

there are more than 7 headquarters in an area, meaning they are generally overly concen-

trated. Cainelli et al. (2015) also find spillovers are more concave than log(·) using a cubic

specification.
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Maré, D. C. and Graham, D. J. (2013). Agglomeration elasticities and firm heterogeneity.
Journal of Urban Economics, 75:44–56.

Martin, P., Mayer, T., and Mayneris, F. (2011). Spatial concentration and plant-level pro-
ductivity in france. Journal of Urban Economics, 69(2):182–195.

Mitchell, M. F. and Skrzypacz, A. (2006). Network externalities and long-run market shares.
Economic Theory, 29(3):621–648.

Morris, S. and Shin, H. S. (2003). Global games: Theory and applications. In Hansen;,
M. D. L. P. and Turnovsky, S. J., editors, Advances in Economics and Econometrics, the
Eighth World Congress. Cambridge University Press, Cambridge.

Morris, S. and Shin, H. S. (2005). Heterogeneity and uniqueness in interaction games. In
Blume, L. and Durlauf, S., editors, The Economy as an Evolving Complex System III.
Oxford University Press.

Sokullu, S. (2016). Network effects in the german magazine industry. Economics Letters,
143:77–79.

Van Zandt, T. and Vives, X. (2007). Monotone equilibria in bayesian games of strategic
complementarities. Journal of Economic Theory, 134(1):339–360.

9Sokullu (2016) estimate nonlinear network externalities in the German magazine industry.

8


