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Introduction

• Three related papers that use machine learning as a
complement to theoretical modeling, rather than a substitute
for it.

• Focus on evaluating and improving how well a model predicts
outcomes.

• Predictive accuracy is only one of many criteria that matter
for selecting theories: we also value e.g. parsimony,
portability, and causal explanations.

• Our work is intended to clarify some of the tradeoffs and to
help focus efforts to develop better theories
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Key Concepts:

• Completeness compares how well a model predicts to the
“best possible” predictions.

• Restrictiveness measures a theory’s ability to match arbitrary
hypothetical data: A very unrestrictive theory will be complete
on almost any data, so the fact that it is complete on the
actual data is not very instructive.

• Algorithmic experimental design is a way to select which
experiments to run.

3 / 45



Setting

• X ∈ X is an observable feature vector that is used to make
predictions.

• Y ∈ Y is an outcome–the thing we are trying to predict.

• Any f : X → Y is a (predictive) mapping e.g., a mapping
from lotteries into certainty equivalents.
• We consider a parametric economic models FΘ = {fθ}θ∈Θ.
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Example: Predicting Certainty Equivalents
• Subject is offered a risky lottery:

z with probability p
z with probability 1− p

where z > z > 0 (gains domain).
• Ask each subject for their certainty equivalent–the dollar
amount x such that the subject would be indifferent between
the lottery or x dollars for sure.
• Here the features are X = (z, z, p).
• Want to predict the average (over subjects) certainty
equivalent in a lottery, so the outcomes Y are real numbers.
• One parametric model is CARA utility, u(x) = xα.
• Cumulative Prospect Theory (CPT) adds 2 parameters to
capture non-linear probability weighting.
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Completeness

“Measuring the Completeness of Economic Models,”
Fudenberg, Kleinberg, Liang, and Mullainathan, JPE forthcoming.

• More reason to look for ways to improve a model that predicts
poorly than one that predicts well.

• But what constitutes “good" performance?

• Our view is that the answer depends on how well the outcome
could possibly be predicted given the specified features.

• Decompose prediction error into
1. Intrinsic noise given the measured features, the irreducible

error.
2. Regularities in the data that the model does not capture.
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• Irreducible error is an upper bound for how well any model
(based on the measured features) could possibly do.

• A benchmark at the other end is the performance of a
baseline model, such as “guess the outcome at random.”

• We use these to define a model’s completeness.
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Definitions

• Loss function, ` : Y × Y → R gives the error assigned to a
prediction of y′ when the realized outcome is y, e.g.
`(y′, y) = (y′ − y)2 or `(y′, y) = 1(y′ 6= y) respectively.

• The expected error of prediction rule f on a new observation
(x, y) ∼ P is

EP (f) = EP [`(f(x), y)]. (1)

• The prediction rule in the parametric class FΘ that minimizes
the expected prediction error is

f∗Θ = argmin
f∈FΘ

EP (f).

The expected error of this “best" rule in FΘ is EP (f∗Θ).
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• The ideal prediction rule is

f∗(x) = argmin
y′∈Y

EP
[
`(y′, y) | x

]
.

• If the conditional distribution Y | X is not degenerate, then
even this ideal prediction rule does not predict perfectly.

• The irreducible error is

EP (f∗) = EP [`(f∗(x), y)] .

The irreducible error is a lower bound on the error when
predicting Y using the features in X.

• We also fix a baseline model fbase : X → Y suited to the
prediction problem. For example, in the prediction of certainty
equivalents, the lottery’s expected value is a natural baseline.
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The completeness of the parametric model class FΘ is

EP (fbase)− EP (f∗Θ)
EP (fbase)− EP (f∗) .

• Completeness is a normalized measure of the reduction in
error. A model with completeness 0 does no better than the
baseline, while a “fully complete” model with completeness 1
removes all but the irreducible error.

• Measuring “units" of completeness as percentage
improvements in prediction error facilitates comparison across
settings with different loss functions.
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Discussion
• Completeness depends on the baseline fbase: without a

baseline error rate, it’s hard to evaluate the magnitude of a
model’s error.
• Completeness is defined for a fixed feature set X , which we
generally interpret as the measured features in the data. If we
vary X by adding new measured features, the predictive
performance of the original model remains the same, but the
predictive optimum weakly improves.
• In practice estimate the model error EP (f∗Θ) using tenfold
cross validation: Split the data into ten parts, train model on
nine and test on the last.
• When there is sufficient data per feature vector, estimate best
possible loss by Table Lookup: For each x, learn the best
prediction of y on the training data (e.g. learn average y for
each x if loss is MSE).
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Theoretical Guarantees
• We report completeness as

100×
(
Ênaive − ÊΘ

)
/
(
Ênaive − Êbest

)
where Ênaive, ÊΘ, and Êbest denote the estimated quantities
• The estimated losses are consistent estimators for the
theoretical values, and and the empirical estimate of
completeness is a consistent estimator for completeness).
• These estimates are good approximations for the theoretical
quantities when the analyst has many observations for each
distinct x ∈ X .
• This is often the case in applications to lab data.
• And seems to be the case in the applications we consider
• (Summary Both bootstrapped and analytic standard errors are
small, and our “lookup tables” do better than bagged decision
trees.)
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Testing CPT

• We evaluate CPT on data from Bruhin et al [2010]: 179
certainty equivalents for each of 25 binary lotteries.

• Estimate CPT, and evaluate its mean-squared error for
predicting the certainty equivalent Y given the lottery X.

• Use the expected value of the lottery as the baseline model.

• Because we have a large number of reports per lottery, have
good estimates of E[Y | X].
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CPT Predicts Very Well

(Mean Squared) Error

Expected Payoff 103.81

CPT 67.38

Best Possible 65.58

• CPT almost minimizes error in this prediction task

• To get better predictions in these 2-outcome lotteries we would
need more information, e.g. about individual characteristics such as
financial literacy, education, etc.

• Paper also discusses application to mixture models.
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Other Domains/Populations

• We repeat our analysis for the completeness of CPT on two
additional data sets from Bruhin et al. The three experiments
all used the same experimental design, although there was
some variation in the set of lotteries.

• The raw mean-squared error of CPT varies substantially
across the three data sets.

• This might suggest that CPT is a better model for certain
subject populations, but the completeness of CPT turns out
to be very stable across all three data sets, and is lower
bounded by 92%.

• This shows the usefulness of benchmarks for interpreting raw
prediction errors.
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Application #2: Initial Play in Games
"Predicting and Understanding Initial Play," Fudenberg and
Liang, AER [2019] provides the data here and also the illustrations
of using machine learning; I also report some results from the the
"Completeness" paper.
• Non-equilibrium models are better predictors than Nash
equilibrium of the choices that people make when they first
encounter a new game.
• But how much of the predictable regularity do they capture?
• We consider prediction of the action chosen by the row player
in a given instance of play of a 3× 3 normal-form game using
three subsamples of a data set from Fudenberg and Liang
[2019]: 23,137 total observations of initial play from 486 3× 3
matrix games.
• The available features are the 18 entries of the payoff matrix,
and a prediction rule is any map f : R18 → {a1, a2, a3} from
3× 3 payoff matrices to row player actions.
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• Evaluate error using the misclassification rate

1
n

n∑
i=1

1 (f(gi) 6= ai) .

This is the fraction of observations where the predicted action
was not the observed action.

• Baseline: guess uniformly at random for all games, expected
misclassification rate of 2/3.

• Evaluate a prediction rule based on the Poisson Cognitive
Hierarchy Model (PCHM), which was the best-performing of
the models we considered.

• The PCHM achieves 76% of the achievable reduction, which
is good, but leaves room for improvements that capture
additional regularities.
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Using ML to improve theories

• FL [2019] trained a bagged decision tree algorithm to predict
play in these games, and found it predicted better.

• The games where play was predicted correctly by our
algorithm but not by PCHM all had an action whose average
payoffs closely approximated the level-1 action, but which led
to lower variation in possible payoff. Players were more likely
to choose this than the level-1 action.

• One explanation is that players act as if they are risk averse.
This led us to add a single parameter α to the level-1 model,
so that the utility of dollar payoffs z is zα.

• Predicted as well as the the decision trees! Machine learning
helped us discover an interpretable and portable extension of
an existing model.
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Algorithmic Experimental Design
Approach:
• Teach an algorithm to recognize games where the model
performs poorly.

• Randomly generate games.

• Use algorithm to predict performance of model on the
randomly generated games.
• Keep the cases where the model is predicted to perform
poorly.
• Then run new experiments on these algorithmically generated
games to look for new regularities.
• And learned how to improve predictions with a ML- theory
hybrid that used ML to predict which of two theories to use in
a given game.
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Restrictiveness and Flexibility

“How Flexible is that Functional Form”, Fudenberg, Gao, and
Liang.

• CPT does a good job of predicting certainty equivalents for
2-outcome lotteries.

• Is this because it is a good description of how people perceive
risk? or

• Is CPT flexible enough to mimic most functions from binary
lotteries to certainty equivalents?

• We’d like to distinguish between when a model is precisely
tailored to capture real regularities from when it is simply
unrestrictive.
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Measuring Restrictiveness

• Loosely speaking, our idea is to measure the restrictiveness of
a model as 1 minus its expected completeness a range of
“synthetic data“ that is generated at random.

• To simplify this we imagine that each synthetic data set has
infinite number of observations, and so reveals the ideal
prediction rule f∗.

• We then see how well the model class FΘ can approximate
each f using a discrepancy function d.

• When the loss function is mean squared error, as in our
application to certainty equivalents, d is the expected squared
distance between f∗ and the closest element of FΘ.
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More Details

Step 1: Define an “admissible set" F of mappings f : X → Y that obey
some basic background constraints, such as that people prefer more
money to less.

Step 2: Choose a baseline fbase from the model FΘ and evaluate its
approximation error to the randomly drawn mappings.

Step 3: Sample mappings uniformly at random from F and evaluate how
well the model FΘ approximates these mappings.

• The model’s approximation error to each generated mapping f is
d(FΘ, f) ≡ minf ′∈FΘ d(f ′, f).

• Its expected error is E[d(FΘ, f)].
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Why Uniform?

• Our measure uses a uniform distribution over the admissible
mappings.

• The paper discusses a generalized version with respect to
other distributions on F (analyst’s prior).

• We prefer the uniform distribution in our applications: It is
transparent and easy to interpret, and avoids cherry-picking;
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Restrictiveness

The restrictiveness of the model FΘ wrt the admissible set F is

r := E[d(FΘ, f)]
E[d(fbase, f)]

where the expectation is with respect to a uniform distribution on the
admissible set F .

So r is the model’s normalized approximation error to a random
admissible mapping f .

• Restrictiveness ranges from zero (completely unrestrictive) to 1
(approximates admissible mappings no better than fbase does).

• It is unitless (thanks to the normalization), and hence insensitive to
rescaling.
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Related Literature

• Koopmans & Reiersol [1950] introduce a binary notion of
“observationally restrictive," where “unrestrictive” means
completely vacuous. This is typically determined analytically.

• Representation theorems (e.g. in decision theory) characterize
empirical content of models. We don’t have such theorems for
most functional forms used in applied work.]

• We provide a quantitative measure that can be numerically
computed.

• Our approach differs from the literature on model selection
(AIC, BIC, VC dimension), whose objective is to avoid
overfitting—these measure typically prefer more complex
models when the sample is large. We we assume an intrinsic
preference for parsimonious/restrictive models (even with
infinite data).
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• Closest analog is Selten [1991], which proposed measuring the
flexibility of a model by the fraction of possible data sets that
it can exactly explain.

• Our focus on approximate fit can lead to very different
conclusions.

– For example, consider the set {0, 1/n, ....(n− 1)/n, 1} as a
model for the unit interval.

– This model has measure zero, so it is extremely restrictive
according to Selten’s measure no matter the value of n.

– For large n this model would be very unrestrictive according to
our measure with the standard squared distance d.

– And Selten’s measure is generally difficult to evaluate without
the guidance of prior analytical results.
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In the Paper

• Axiomatic foundation for our restrictiveness measure

• Estimators for restrictiveness and completeness and
characterizations of their asymptotic distributions

– Allows us to construct confidence intervals

• Three applications:
1. Certainty equivalents — lab data
2. Initial play in games — lab data
3. Takeup of microfinance in Indian villages — field data

27 / 45



Estimating Restrictiveness

• Randomly sample M times from the admissible set F , and
for each sampled fm ∈ F , compute d(G, fm) and d(fbase, fm).

• Then
r̂ :=

1
M

∑M
m=1 d(G, fm)

1
M

∑M
m=1 d(fbase, fm)

is an estimator for restrictiveness r = r(G,F ).

• Under some regularity conditions, show the estimator is
asymptotically normal, and show how to estimate its standard
deviation.
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Back to the CPT
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Setting
The data: 25 binary lotteries (z, z, p) over positive prizes, with 179
reported certainty equivalents per lottery

z z p f(z, z, p)

20 0 0.25 17.04
40 10 0.95 39.45
...

...
...

...
150 50 0.05 73.99

Define the admissible set F to include all mappings that satisfy:
• First-order stochastic dominance (people prefer more money
to less).
• Certainty equivalents fall in the range of the outcomes.
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Models

Cumulative Prospect Theory, henceforth CPT(α, δ, γ):
• utility of lottery (z, z, p) is w(p)× v(z) + (1− w(p))× v(z), where

– v(z) = zα is a value function over money
– w(p) = δpγ

δpγ+(1−p)γ is a probability weighting function

Disappointment Aversion (Gul, 1991), henceforth DA(α, η):
• same as above, except that the probability weighting function is
w̃(p) = p

1+(1−p)η
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Comparison of Models
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• CPT(α, δ, γ) is nearly complete but not very restrictive.
• This flexibility is not revealed by a simple count of the number of

free parameters!
• DA(α, η) is more restrictive than CPT(α, δ, γ), but substantially less

predictive of the real data.
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The Value of a Parameter

Look at lower-parameter specifications of CPT and DA, e.g.

• Allow probability weighting but suppose that the agent is
risk-neutral

• Shut down probability weighting but allow for risk aversion
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Role of η in DA

Disappointment Aversion:

• v(z) = zα is a value function over money

• w(p) = p
1+(1−p)η is a probability weighting function

• η interpreted as disappointment aversion
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Role of Disappointment Aversion Parameter η in DA
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Role of Probability Weighting Parameter δ in CPT

Cumulative Prospect Theory:

• v(z) = zα is a value function over money

• w(p) = δpγ

δpγ+(1−p)γ is a probability weighting function

• δ governs elevation of probability weighting function
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Role of Probability Weighting Parameter δ in CPT
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Role of Probability Weighting Parameter γ in CPT

Cumulative Prospect Theory:

• v(z) = zα is a value function over money

• w(p) = δpγ

δpγ+(1−p)γ is a probability weighting function

• γ governs curvature of probability weighting function
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Role of Probability Weighting Parameter γ in CPT
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What We Learn

Not all parameters are equally effective.

• Adding the disappointment aversion parameter η or the curve
elevation parameter δ
−→ large drop in restrictiveness

−→ small gain in completeness

• In contrast the curve slope parameter γ substantially increases
completeness with similar or smaller decreases in
restrictiveness. This suggests it captures real risk preferences.
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Conclusion

• The completeness of a model compares how well it predicts to
the “best possible” predictions.

• No point in looking for predictive improvements using the
same features when the current theory is nearly complete.

• The same model (e.g. CPT) might have very different mean
squared error on different data sets but be equally complete in
all of them.

• Machine learning help uncover regularities that can be
incorporated into new theories.

• ML can also help focus experimental effort on the most
informative treatments.
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• Restrictiveness helps distinguish theories that fit because they
captures important regularities in the data from theories can
provide a good approximation of any and all behavior.

• Can also help us understand the role of specific parameters:
prefer parameters that add a lot of completeness (better fit to
real data) w/o a big loss of restrictiveness (i.e. w/o also
allowing a better fit to the synthetic data).

• We provide a practical, algorithmic approach for evaluating
restrictiveness.
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Thank You
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Different Lottery Domain: Three Outcomes

• Evaluate CPT on a set of 18 three-outcome gain-domain
lotteries from Bernheim and Sprenger [2020].
• Impose same background constraints as before: FOSD and
range restriction.
• The restrictiveness of CPT on this set of three-outcome
lotteries is 0.57
−→ CPT is about twice as restrictive on three-outcome lotteries as

on binary lotteries.

• Besides imposing FOSD, CPT imposes the property of “rank
dependence" for lotteries with more than two outcomes.
• We view the increase in restrictiveness as a quantification of
the additional constraints implied by this property.
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