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Abstract

This thesis consists of three essays on diverse topics but shared emphasis on statistical
models with theory and empirics. The first and third essay examines the role of
cognitive limitations in understanding biases in communication and learning. The
second essay, joint with Masao Fukui, highlights the role of distributional assumptions
of infection rates for epidemiological predictions, responding to the recent COVID-19
outbreak.

The first chapter considers the effects of aggregation frictions on scientific commu-
nication and shows that publication bias emerges even when researchers are unbiased
and communicate their findings optimally for readers. Specifically, when readers are
cognitively constrained, they may only consider the binary conclusions rather than the
estimates of the papers. Under such aggregation frictions of readers, researchers are
shown to omit noisy null results and inflate marginal results. This chapter presents
evidence consistent with this prediction, and develops a new bias correction method,
called stem-based correction method, that is robust under the prediction of this and
other models of publication selection processes.

The second chapter examines the role of infection rate distributions for aggregate
epidemiological dynamics in Susceptible-Infectious-Recovered (SIR) models. Specif-
ically, we show that superspreading events (SSEs) of recent coronavirus outbreaks,
including SARS, MERS, and COVID-19, follow a power law distribution with fat
tails, or infinite variance. When embedding this distribution to stochastic SIR mod-
els, we find that idiosyncratic variations in SSEs generate important uncertainties in
aggregate epidemiological dynamics. This result stands in contrast with the exist-
ing literature on stochastic SIR models that have assumed thin tailed distributions,
and thus concluded that the idiosyncratic uncertainties are unimportant when the
population is large.

The third chapter considers the impact of imperfect recall on experimentation
decisions and resulting inferences. When a Bayesian experimenter has an imperfect
recall over past actions and information, her decisions depend not only on a confidence
level but also on the expectation the future self will hold for today’s action. This
expectation arises from the persistent prior belief, and leads to the biases to conform to
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it. Meditation, to regulate one’s attention with focus on the present, is shown to have
an ameliorating effect: when the attention is focused, prior belief becomes essentially
diffused so that the self-imposed expectation over behaviors becomes agnostic.

Thesis Supervisor: Abhijit V. Banerjee
Title: Ford Foundation International Professor of Economics

Thesis Supervisor: Stephen Morris
Title: Peter A. Diamond Professor in Economics
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Chapter 1

Unbiased Publication Bias:
From Communication Model to New
Correction Method

1.1 Introduction

In many settings, professionals often rely on scientific publication when making im-
portant decisions. For example, suppose doctors are deciding whether to prescribe
a new medication. Suppose they find 10 studies, and out of them, 7 report positive
results whereas 3 report negative1 results. Since most of the evidence is positive, they
decide to use the new drug. Later they read a New York Times article that writes
“researchers and pharmaceutical companies never published about one third of drug
trials that they conducted to win the government approval, misleading the doctors
and consumers regarding the drug’s true effectiveness.” The article2 reports that 94
percent of positive results were published whereas only 14 percent of negative results
were published. Moreover, while there were 14 studies with negative results according
to conventional statistical thresholds, 11 of them emphasized positive aspects of their
conclusions. These forms of publication bias, both omission and inflation, are widely
documented in economics and other areas of science.

Concern about publication bias plays a prominent role in discussions of scientific
reporting and meta-analyses today (Christensen and Miguel 2018, Andrews and Kasy
2019). The basis of these discussions is a belief that, if the aim of research is to as-

1By “negative”, this paper refers to any non-positive results, including both results that are not
statistically significant and statistically significant negative.

2This is based on an actual article titled “Anti-depressant unpublished” by Cray 2008.
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sist policymakers with their decisions, then all results must be published accurately.
However, since researchers are known to omit or inflate many negative results, they
must have biased objectives that compromise readers’ welfare (or, social welfare in the
case of policymaker). When experiments depend financially on funding from industry,
researchers may wish to report positive results that support them; when careers de-
pend on publications, researchers may wish to report significant results that surprise
journal editors and referees. While the bias may come from a variety of incentive
structures, these concerns have led to a number of initiatives to reduce publication
bias, ranging from developing registries of experimental protocols to introducing jour-
nal policies that de-emphasize statistical significance.3 In addition, most commonly
used bias correction methods are based on either of these interpretations and assume
that any sufficiently positive estimates or any statistically significant ones will have
a higher likelihood of publication than all other estimates.

This paper proposes an alternative approach to publication bias and meta-analyses
by re-examining the belief that underlies the above concerns: to maximize readers’
welfare, should researchers publish all their results just as they are? When policymak-
ers can process all the information contained in the papers at no cost, then the answer
will be yes, as accurate reporting always helps readers make more informed decisions.
However, when they have cognitive limitations to process the information, the answer
will be no. Among the various possible frictions such as cost of communicating results,
this paper will focus on an aggregation friction. Even though researchers know the
details of statistical estimates, readers cannot fully process such details and thus only
consider the binary (positive or negative) conclusions of each paper. This friction is
documented in discussions of meta-analyses and some experiments4. The paper de-
velops a model of communication between multiple researchers and one reader under
aggregation frictions, and shows that the publication bias will emerge even when re-
search is communicated optimally for readers. Various predictions of publication bias

3AEA RCT registry and clinical trial.gov. In economics, for example, the American Economic
Review has banned stars in regression tables in 2016, and the Journal of Development Economics
has promised result-independent reviews in 2018.

4While this assumption may appear too simplistic, even aggregation in major policy decisions
may rely on such vote-counting. For example, an influential campaign that reached President Obama
in 2013 had summarized 12,000 articles without consulting statistical details; it merely wrote “97
percent of climate papers stating a position on human-caused global warming agree that global
warming is happening” (The Consensus Project 2014). Some experiments suggest dichotomous
interpretation is common even among experts in statistics (McChane and Gal 2017). Due to the
cost of processing information, to the limited expertise to understand subtleties, or to the paucity
of memory to recall details, readers may only consult binary conclusions of each study to make their
decisions.

14



Figure 1-1: Equilibrium publication decision

Notes: Figure 1 is a “funnel plot” where a study 𝑖 is plotted according to its coefficient
estimate 𝛽𝑖 on 𝑦-axis and its standard error 𝜎𝑖 on 𝑥-axis. The studies that have coefficient
estimates and standard errors in the top region will be reported as positive; those in the
bottom region will be reported as negative; those in the intermediate region will be omitted.
Details of simulation environment are given in Section 2.4.2. Each dot is a simulated example
rather than real-world data.

implied by this model can be summarized by a figure that plots the studies’ coefficient
estimates and standard errors (Figure 1-1). It shows what sets of results will be pub-
lished as either positive or negative results. We use this implication on conditional
publication probabilities to develop a new, non-parametric stem-based bias correction
method that provides robust meta-analysis estimate relative to existing methods.

The first set of theoretical results is that there will be an omission of non-extreme
and imprecise estimates and also a bias towards publishing more positive results than
negative ones. To see why omission occurs, note that researchers wish to convey as
much information as possible but the aggregation friction permits them to convey
only the signs, but not the strengths, of their estimates. In this context, omission
of “weak” (i.e. non-extreme or imprecise) results can, in equilibrium, convey more
information because when studies are reported, even readers with aggregation frictions
can know that those studies are “strong” (i.e. either extreme or precise). To see why
the omission will be biased, note that researchers publish results to provide useful
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information that will improve the reader’s decision, jointly with other researchers.
But without knowing what others researchers will report, a researcher can only guess
the results of other research when their own reports are consequential. Now, suppose
that the reader uses a supermajoritarian rule: that is, she chooses to adopt a policy
(e.g. prescribe a new drug) whenever there are strictly more positive than negative
results. In this situation, a single positive report will induce the reader to adopt the
policy when other studies report an equal number of positive and negative results,
while a single negative report will induce her to reject the policy when other studies
report one more positive than negative results. Given these asymmetric conditions,
in equilibrium, researchers will be more cautious of reporting negative results than
positive results, leading to bias by omission. We show that the supermajoritarian rule
is optimal for the reader among alterantive aggregation rules that the reader could
adopt.

The second main theoretical result is that, if journals only publish studies with
sufficiently small 𝑝-values, then even unbiased researchers may inflate some marginal
estimates to turn them statistically significant. To see why such inflation emerges,
note that the Bayesian posterior mean of a normal distribution divides each coefficient
estimate by its variance. However, null hypothesis testings rely on 𝑡-statistics, which
divide each coefficient estimate by its standard error. Due to this sharp contrast
between the use of variance versus standard errors, neither the researchers nor their
readers will wish to strictly be concerned with hypothesis testing in deciding whether
or not to adopt the policy. In this way, even though 𝑝-values could be a reasonable rule
of thumb for publishing results that might appropriately guides the readers’ decision,
there will be some room for inflation of results to improve reader welfare.

The third, additional result is that, even when the differences in underlying biases
are small, the researchers will have large polarization of reporting rules to draw their
binary conclusions. This amplification of small biases arises because the reporting de-
cisions are strategic substitutes. That is, if another researcher reports positive results
frequently, then a researcher would like to report positive results less frequently to
offset the bias of another researcher, and this adjustment induces another researcher
to report positive results even more often. This result suggests that the reporting
decisions will be highly sensitive to the objectives, making it difficult to model parsi-
moniously.

The paper presents a range of evidence to suggest that the above three theoretical
results are highly relevant in the published literature of both economics in other
sciences, and has important implications for the meta-analysis literature. First, under
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moderate assumptions, a range of reported evidence suggest all forms of publication
bias are prevalent in the social sciences. Second, evidence derived in this paper shows
that the communication model presented here can explain the pattern of omission
more adequately than other models used in meta-analyses. Specifically, it suggests
that noisy null results are likely to be omitted, whereas other models, for tractability,
suggest either that any null results or any extremely negative results are likely to be
so. Evidence from labor union effects (Doucouliagos et al. 2018), some of the largest
meta-analytic data set in economics, shows that the prediction of the communication
model presented in this paper holds, and thus, the bias correction methods that
assume the parsimonious selection process may have misspecification problems.

Finally, this paper offers a solution for correcting publication bias in meta-analyses
of the type described above. The challenge is that publication selection will depend
on asymmetric and non-uniform omission, as well as inflation of marginal results,
that cannot be parsimoniously modeled. Further, their exact process will depend
on economic primitives unobservable to meta-analysts. Nonetheless, even without
estimating the publication selection process, we can mitigate the bias by focusing
on a subset of data that exhibits less bias under any selection models commonly
used. Theory suggests that, across the parameters of communication models and
many models, precise estimates are less biased than imprecise ones. Heuristically,
more precise studies have more reliable estimates, and thus there is little reason
not to publish. The stem-based method proposed in this paper derives the meta-
analysis estimate from some 𝑛* most precise studies, where 𝑛* is chosen optimally.
A simulation study with realistic parameter values suggests that the estimates from
the stem-based method are significantly more robust than other methods (Hedges
1992, Duval and Tweedie 2001) because the stem-based method imposes much weaker
assumptions on the publication selection process and underlying distributions than
do other studies. Robustness is particularly crucial in meta-analyses, where the goal
is to build a consensus among often contradictory results in the literature.

Related Literature. This paper relates to two sets of microeconomic theory lit-
erature on communication. It also relates to the statistics literature on bias correction
methods.

First, this paper builds on and derives contrasting results from the canonical mod-
els of information aggregation and transmission. The results of (i) omission, (ii) bias,
and (iii) amplification of small bias relate to the models of voting as information aggre-
gation (Austen-Smith and Banks 1996, Feddersen and Pesendorfer 1996, 1997, 1998,
1999): (i) omission of inconclusive results is analogous to abstention of uninformed
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voters; (ii) biased reporting is similar to jurors’ bias to convict in order to counter-
balance unanimity rules, but differs in that such biased reporting is socially optimal;
(iii) amplification of small bias due to strategic substitution between researchers is
an extension of the result of the non-partisan voters’ vote against the bias of parti-
san voters. Moreover, the result that coarseness of message5 space leads to biased
reporting stands in contrast with the models of information transmission (Crawford
and Sobel 1982, Li, Rosen, and Suen 2001): whereas bias of senders leads to coarse
messages due to the incentive constraints in their model, technological restriction of
coarse message space leads to biased reporting due to pivotality conditions in this
model.

Second, this paper also relates to the growing literature of microeconomic mod-
els of scientific communication6 and, specifically, publication bias. The result of
𝑡-statistics relates to the microeconomic decision models of statistical testing (Man-
ski 2004, Tetenov 2016). The broad conclusion that publication bias needs not be
socially detrimental is consistent with papers with various reasoning, such as incen-
tives for endogenous information acquisition with biased researchers (Glaeser 2006,
Libgober 2015, Henry and Ottaviani 2014), or limited number of studies readers may
process (de Winter and Happee 2012) or journal space for publication (Frankel and
Kasy 2018). In contrast, this paper derives the result even when information is exoge-
nously given, even when researchers are unbiased, and even when there is no limit or
cost of communication. This paper instead focuses the cognitive friction, which some
papers (Suen 2004, Fryer and Jackson 2008, Blume and Board 2013) have shown as
a possible reason for biased communication and decisions, and applies to the context
of scientific communication.

Finally, this paper also contributes to the large and growing (Simonsohn et al.
2014, Bom and Rachinger 2018, Andrews and Kasy 2019) literature on correction
methods for publication bias in meta-analyses. In contrast with the most commonly
used methods (Hedges 1992, Duval and Tweedie 2000) that rely on specific assump-
tions on publication selection process and underlying distribution, the stem-based
method depends on assumptions that hold across various assumptions made in lit-

5Coarseness is also a key friction in papers such as Dewan et al. (2015). The difference is that
signals are more coarse than states in their paper whereas messages are more coarse than signals in
this paper.

6In a broad way, the paper contributes to the empirical analyses of communication models that
have been advanced specifically in the research on media in the real world (Gentzkow et al. 2016,
Puglisi and Snyder 2016) or on hypothetical communication settings in the laboratories (Crawford
1998, Battaglini et al. 2010). This paper advances these empirical studies by obtaining a direct
measure of bias in the real world data.
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erature. The method extends approaches to focus on some arbitrary number of the
most precise studies (Barth et al. 2013, Stanley et al. 2010) by providing a formal
criteria and estimation methods to select the optimal number of studies to focus on.

The remainder of the paper is organized as follows: Section 2 presents the com-
munication model and its related evidence; Section 3 develops and implements its
empirical test; Section 4 proposes a bias correction method given this observation;
and Section 5 concludes.

1.2 A Communication Model of Publication Bias

This Section presents a communication model between multiple researchers and a
policy maker with the friction that the researchers can only communicate yes-or-
no conclusions even though they are informed of their experiments’ estimates. The
analysis will show that the aggregation friction can provide explanation for various
kinds of publication bias, such as (i) omission of insignificant results, (ii) inflation
of marginally insignificant results, and (iii) amplification of small researchers’ bias.
Results on omission will also provide an empirical prediction on the meta-analysis
data sets.

1.2.1 Set-up

The set-up is based on a static communication model between 𝑁 senders, called
researchers, and 1 receiver, called a policymaker. Researchers receive private unbiased
signals of the treatment effect of policy, 𝛽𝑖, and its standard error, 𝜎𝑖, and report their
results, 𝑚𝑖. Given the reports from the researchers, the policymaker decides whether
to implement the policy 𝑎 ∈ {0, 1}.

The model’s key element is an aggregation friction: even though researcher’s pri-
vate signals, {𝛽𝑖, 𝜎𝑖}, take continuous values, researchers can only convey a positive
result, 𝑚𝑖 = 1, or a negative result, 𝑚𝑖 = 0, or do not report their study, 𝑚𝑖 = ∅.
Given the standard error independently drawn from some distribution 𝜎𝑖 ∼ 𝐺 (𝜎), the
treatment effect estimate has a normal distribution around the true benefit, 𝑏, so that
𝛽𝑖 ∼ 𝒩 (𝑏, 𝜎2

𝑖 ). However, the policymaker only considers what results the researchers
have reported to make their decision. Henceforth, let us denote the number of positive
results by 𝑛1 =

∑︀𝑁
𝑖=11(𝑚𝑖 = 1), and negative results by 𝑛0 =

∑︀𝑁
𝑖=11(𝑚𝑖 = 0).

19



Both the researchers and the policymaker maximize the social welfare:

𝑎 (E𝑏− 𝑐) , (1.1)

where 𝑐 is the cost of policy implementation.7 They have a common prior 𝑏 ∼
𝒩 (0, 𝜎2

𝑏 ). The number of players, their pay-offs, priors, and the cost of policy imple-
mentation 𝑐 are public information and common knowledge.

The timeline is as follows: first, researchers8 receive their own signals, and simul-
taneously decide whether to publish their binary conclusions. Then, the policymaker
sees the reports and makes her policy decision using her posterior belief. Finally, the
payoffs are realized.

1.2.2 Analyses

The analysis will focus on Perfect Bayesian Nash Equilibria (PBNE), the standard
equilibrium concept in communication models. The strategy of a researcher 𝑖, 𝑠𝑖 ∈ 𝑆𝑖,
is a mapping from his own signal {𝛽𝑖, 𝜎𝑖} to probability distribution over his message
𝑚𝑖 𝑠𝑖 : R×R+ ↦→ Δ {1, ∅, 0}. The strategy of policymaker, 𝜋, is a mapping from the
messages to the probability distribution over binary policy action 𝑎 ∈ {0, 1}: that is,
𝜋 : {1, ∅, 0}𝑁 ↦→ Δ {0, 1}. The policymaker’s belief over the researchers’ strategy is
denoted by 𝜇 ∈ Δ

(︁
{𝑆𝑖}𝑖=1,...,𝑁

)︁
.

Definition 1.1 : An equilibrium is a tuple of strategies and belief, {𝑠1, ..., 𝑠𝑁 , 𝜋, 𝜇}
such that (i) researcher 𝑖’ strategy maximizes (3.1) given strategies of
all other researchers and the policymaker, for all 𝑖; (ii) policymaker’s
strategy maximizes (3.1) given strategies of researchers and belief; (iii)
the policymaker’s belief is consistent with Bayes’ rule.

As communication models always have multiple equilibria, including a babbling equi-
librium, we introduce following criteria to focus on non-trivial and plausible equilib-
ria:

7While this set-up may appear to assume no uncertainty in welfare when the policy is not imple-
mented since it is fixed to be 0, it also represents such setting: suppose the welfare under policy is
𝑢1 ∼ 𝒩

(︀
𝑢1, 𝜎

2
𝑢1

)︀
and the welfare in the absence of policy is 𝑢0 ∼ 𝒩

(︀
𝑢0, 𝜎

2
𝑢0

)︀
. Then, it is optimal

to implement the policy if and only if 𝑢1 − 𝑢0 ≥ 𝑐. Thus, defining 𝑏 ≡ 𝑢1 − 𝑢0 and 𝜎2
𝑏 ≡ 𝜎2

𝑢1 + 𝜎2
𝑢0

above will be an equivalent set-up.
8I suggest readers of this paper to think of researchers in this model not as individual authors in

the real world, but as a collection of authors, referees, and editors who jointly make the publication
decisions. In peer reviewed journals, individual researchers play both roles of authors and referees.
Even if researchers may seek to maximize publications when they are authors, journals ask referees
and editors to publish socially valuable information.
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Definition 1.2 : An equilibrium is fully responsive if ∀𝑚𝑖,𝑚
′
𝑖 ∃𝑚−𝑖 such that 𝜋 (𝑚𝑖,𝑚−𝑖) ̸=

𝜋 (𝑚′
𝑖,𝑚−𝑖); and fully informative if E [𝑏|𝑚] is not constant analogously.

In any fully responsive and fully informative equilibria9, both the policymaker’s and
researchers’ strategy will be monotone in their information, at least in a benchmark
set-up10:

Lemma 1 (Monotonicity of equilibrium strategies). For N=2, for any 𝑐,
and constant 𝜎𝑖, any fully responsive and fully informative equilibrium has strategies
that are monotone:

(i) the policymaker’s decision 𝜋* (𝑚) is increasing in number of positive results
(𝑛1) and decreasing in number of negative results (𝑛0) in the following sense.
For every 𝑖

𝜋* (𝑚𝑖,𝑚−𝑖) > 0 ⇒ [∀𝑚′
𝑖 𝑠.𝑡. 𝑚

′
𝑖 ≻ 𝑚𝑖, 𝜋

* (𝑚′
𝑖,𝑚−𝑖) = 1]

𝜋* (𝑚𝑖,𝑚−𝑖) < 1 ⇒ [∀𝑚′
𝑖 𝑠.𝑡. 𝑚

′
𝑖 ≺ 𝑚𝑖, 𝜋

* (𝑚′
𝑖,𝑚−𝑖) = 0]

, where messages are ordered by 1 ≻ ∅ ≻ 0 without loss of generality.

(ii) each researcher 𝑖 takes the threshold strategy: there exist 𝛽𝑖, 𝛽𝑖 ∈ (−∞,∞) such
that

𝑚*
𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 𝛽𝑖 ≥ 𝛽𝑖

∅ if 𝛽𝑖 ∈
[︀
𝛽𝑖, 𝛽𝑖

)︀
0 𝛽𝑖 < 𝛽𝑖

Sketch of proof. By Bayes’ rule, combined with the law of iterated expectation and
monotonicity of the mean of a truncated normal distribution with respect to the mean
of the underlying distribution. Appendix A1.3 contains a full proof. �

Finally, to assess desirability and plausibility of particular equilibrium among non-
trivial equilibria, we introduce the following definitions:

Definition 1.3 : An equilibrium is optimal if no other sets of strategies can attain
strictly higher ex ante welfare; and locally stable if, for every neighbor-
hood of the equilibrium, there exists a sub-neighborhood of the equilib-
rium from which a myopic and iterative adjustment of strategies stays

9Note that this definition differs from usual responsiveness and informativeness in that it requires
all messages to be influential and informative. For example, the policy rule 𝑎* = 1 ⇔ 𝑛1 = 2 is not
fully responsive in that the choice between 𝑚 = 0, ∅ never alters the decision.

10As shown in Appendix A1.3, the monotonicity requires a constant standard error since the mono-
tone likelihood ration property needs not hold under normal distribution with unknown standard
errors.
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in that neighborhood. Formally, a myopic and iterative adjustment on
the tuple ℰ𝑡 ≡

{︁
𝜋𝑡 (𝑚) , 𝛽1,𝑡, 𝛽1,𝑡, 𝛽2,𝑡, 𝛽2,𝑡

}︁
, is a dynamic process for 𝑡 =

1, 2, ... in which, in each 𝑡, (i) the policymaker plays best response to{︁
𝛽1,𝑡−1, 𝛽1,𝑡−1, 𝛽2,𝑡−1, 𝛽2,𝑡−1

}︁
, (ii) researcher 1 plays best response to{︁

𝜋𝑡 (𝑚) , 𝛽2,𝑡−1, 𝛽2,𝑡−1

}︁
, and (iii) researcher 2 does so to

{︁
𝜋𝑡 (𝑚) , 𝛽1,𝑡, 𝛽1,𝑡

}︁
.

An equilibrium ℰ is locally stable if for every 𝑑 > 0, there exists 𝑑 > 0 such
that, given any disturbance 𝜖 such that sup metric 𝑑 (𝜖) < 𝑑, 𝑑 (ℰ − ℰ∞) <

𝑑; that is, the equilibrium stays in the neighborhood of the equilibrium.

It is standard to focus on the most informative equilibrium in sender-receiver games,
and on the optimal equilibrium in common interest games. Local stability assures
robustness to small deviations from the equilibrium strategies.

Henceforth, the analysis will combine analytical and numerical approaches to show
that the main mechanisms play important roles in plausible settings that satisfy
the above criteria. Analytical results will illustrate the logic behind the kinds of
publication bias that arises from the model by focusing on a tractable environment and
equilibrium with various symmetry properties. Analytical results will focus primarily
on the case of 𝑁 = 2,11 𝑐 = 0, and often constant 𝜎. Then, numerical results will
show that the mechanism will play important roles in asymmetric environment that
is more plausible yet analytically difficult to solve.

1.2.3 Main Result 1. Omission of Insignificant Results

The first main result is that, in the optimal and locally stable equilibrium, there will
be an asymmetric omission of intermediate results such that the average estimates
underlying published studies will have an upward bias.

Analytical Results

The following propositions will first show, in a symmetric environment with constant
𝜎, there will be equilibria with asymmetric omission, no omission, and symmetric
omission; and, second show that the equilibrium with asymmetric omission is both

11Given that meta-analyses often include more than 2 studies, this set-up with 𝑁 = 2 may appear
restrictive. However, this simple setting is common in the committee decision-making literature to
which this paper is closely related, such as Gilligan and Krehbiel 1989, Austen-Smith 1993, Krishna
and Morgan 2001, and Hao, Rosen, and Suen 2001. Analytical characterization for 𝑁 ≥ 3 is difficult
due to technical challenge of analytically evaluating multivariate normal’s truncated mean. Instead,
this paper takes numerical approach to settings with 𝑁 ≥ 3.
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optimal and locally stable whereas other two kinds of equilibria are not. The relation
to the information aggregation models in voting theory will be discussed.

Proposition 1.1 (Equilibrium with asymmetric omission). Let 𝑁 = 2,
𝑐 = 0, and 𝜎𝑖 = 𝜎. There exists an equilibrium with the following strategies. The
policymaker’s strategy is a supermajoritarian policy decision rule:

𝜋* =

⎧⎨⎩1 if 𝑛1 > 𝑛0

0 if 𝑛1 ≤ 𝑛0

(1.2)

The researchers’ strategies are identical to each other and characterized by the unique
thresholds, 𝛽, 𝛽, that satisfy

𝛽 > 0 > 𝛽 and 𝛽 < −𝛽 (1.3)

so that there will be an upward bias in the estimates of the reported studies: E [𝛽𝑖|𝑚𝑖 ̸= ∅] >
0.

Sketch of Proof : By a combination of information asymmetry among researchers
and a message space that is coarser than a signal space. Suppose the policymaker
adopts (1.2). Since a researcher does not know what another researcher will observe
and report, he conditions his reporting decision on the state in which his own report
will be pivotal and swing the policy decision in the direction of its conclusion. A pos-
itive result switches the policymaker from canceling to implementing the policy only
when another researcher did not report his result as his signal had an intermediate
value. Thus, the optimal threshold 𝛽 satisfies the indifference condition, 𝛽𝑖+𝛽−𝑖 = 0,
in expectation conditional on pivotality:

𝛽 + E
[︀
𝛽−𝑖|𝛽 > 𝛽−𝑖 ≥ 𝛽, 𝛽𝑖 = 𝛽

]︀
= 0 (1.4)

In contrast, a negative result leads the policymaker to cancel rather than to implement
the policy only when his report is positive. Thus, the optimal threshold 𝛽 satisfies:

𝛽 + E
[︀
𝛽−𝑖|𝛽−𝑖 ≥ 𝛽, 𝛽𝑖 = 𝛽

]︀
= 0 (1.5)

Because the binary conclusion cannot convey the strength and can only communi-
cate the sign of the continuous signal each researcher receives, omission of intermediate
results can better convey information than always reporting either positive or negative
results. In addition, comparing the conditions (1.4) and (1.5), researchers are more
cautious of reporting negative results than positive results and thus, given that results
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are reported, the coefficients are on average upward biased: E [𝛽𝑖|𝑚𝑖 ̸= ∅] > E [𝛽𝑖].
Finally, it is strictly optimal for the policymaker to follow the supermajoritarian rule
(1.2) since he focuses on the average value conditional on {𝑚𝑖} whereas the researcher
focused on the marginal value. Appendix A2.1 contains a formal proof. �

There will also be an equilibrium with asymmetric omission that generates a down-
ward omission when 𝑐 = 0. However, as Appendix Figure B3 shows, the equilibrium
in Proposition 1.1 attains a strictly higher welfare when 𝑐 ≥ 0. In this sense, the
“positive” results are defined as the messages that alter the default decisions whereas
“negative” results are the ones that suggest to maintain the default. The following
propositions will now show that there are also equilibria without bias of underlying
estimates:

Proposition 1.2 (Equilibria with symmetric or no omission ). Let 𝑁 = 2

and 𝑐 = 0, and 𝜎𝑖 = 𝜎. There exist equilibria with the following strategies:

∙ Symmetric omission: the policymaker follows

𝜋* =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 𝑛1 > 𝑛0

1
2

if 𝑛1 = 𝑛0

0 𝑛1 < 𝑛0

(1.6)

and the researchers’ thresholds satisfy 𝛽 > 0 > 𝛽 and 𝛽 = −𝛽 so that E [𝛽𝑖|𝑚𝑖 ̸= ∅] =
0.

∙ No omission: the policymaker follows

𝜋* =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 𝑛1 = 2

𝜋̃ if 𝑛1 = 1, 𝑛0 = 0

0 𝑛1 ≤ 𝑛0,

(1.7)

where 𝜋̃ ∈ (0, 1] and the researchers’ thresholds satisfy 𝛽 = 𝛽 < 0 so that
E [𝛽𝑖|𝑚𝑖 ̸= ∅] = 0.

Sketch of Proof: The equilibrium with symmetric omission exists because (i) the
indifference conditions of researchers that determine 𝛽, 𝛽 will be symmetric to each
other when 𝜋 = 1

2
when 𝑛1 = 𝑛0, and (ii) given symmetric thresholds, the policymaker

will be indifferent between 𝑎 = 0, 1 when 𝑛1 = 𝑛0. The equilibria with no omission
exist because (i) the welfare gain from omission exists only when another researcher
omits, and (ii) given that researchers always report 𝑚𝑖 = 0, 1, the decision when there
are omissions may be defined arbitrarily. �

24



Figure 1-2: Equilibrium thresholds and policy decisions for 𝑁 = 2, 𝑐 = 0

Notes: Panel 1 plots the benchmark first-best policy implementation rule (𝛽1 + 𝛽2 ≥ 0)
as given by the Bayes’ rule and an example of the bivariate normal distribution of signal
realizations {𝛽1, 𝛽2}. Panel 2, 3, and 4 illustrate the equilibrium thresholds and policy
decisions under three responsive and informative equilibria. The dotted line shows the
thresholds for each equilibrium, and the policy is implemented if {𝛽1, 𝛽2} were in the region
northwest to the solid line for Panel 1 and 2. For Panel 3, policy is implemented with
1
2 probability in region surrounded by the dotted line. “False negative” (“False positive”)
regions denote signal realizations such that the policy is (is not) implemented under the full
information but is not (is) implemented in equilibrium. The figures’ origin is {0, 0}.

While Proposition 1.2 shows that there are also fully informative and fully re-

25



sponsive equilibria without bias under reported studies, the following Proposition 1.3
shows that the equilibrium with bias of reported studies is more desirable and likely:

Proposition 1.3 (Optimality and local stability of equilibria). The equi-
librium with asymmetric omission as characterized in Proposition 1.1 is optimal and
locally stable; the equilibria characterized in Proposition 1.2 are neither optimal nor
locally stable.

Sketch of Proof: The heuristic reasons for optimality and local stability are sum-
marized by Figure 1-2. The equilibrium with asymmetric omission is optimal because
its policy implementation rule as in (1.2) described in Panel 2 most closely approxi-
mates the first best threshold of 𝛽1 + 𝛽2 = 0 as depicted in Panel 1; it minimizes the
probabilities of false positive and false negative errors that leads to welfare losses. It
is also locally stable since the policymaker’s decision is based on strict preference and
the researchers’ strategies are only moderate substitutes of one another. On the other
hand, the equilibria with symmetric or no omission are neither optimal nor locally
stable as small perturbation of researchers’ thresholds and policymaker’s strategy
can improve the welfare and its subsequent iterative adjustment leads to a different
equilibrium. For example, in the symmetric equilibrium (Panel 3), consider a small
decrease in researchers’ strategy, 𝛽′

= 𝛽 − Δ and 𝛽′ = 𝛽 − Δ. This perturbation
leads to a first order welfare increase because it increases E [𝑏|𝑛1 > 𝑛0] by quantity
proportional to Δ but only has a second order welfare loss, and thus increases the
total welfare. The symmetric equilibrium is also not locally stable because the poli-
cymaker now prefers to implement the supermajoritarian rule. Analogous argument
applies to the equilibrium with no omission; and Appendix A2.3 contains a complete
proof. �

The concepts of optimality and local stability are closely related to each other
because the model is a common interest game: if an equilibrium is not locally stable,
then it cannot be optimal since every steps of iterative adjustment must be intended
to improve welfare.

These results relate to the models of information aggregation and transmission.
First, it builds on the models of voting as information aggregation (Austen-Smith and
Banks 1996, Feddersen and Pesendorfer 1996, 1997, 1998, 1999) as the result regard-
ing omission is analogous to the result that uninformed and unbiased voters abstain
when there are other informed and unbiased voters (Feddersen and Pesendorfer 1996).
The result regarding biased reporting echoes the result that unanimity rule, counter-
intuitively, may increase the probability of false conviction if the jurors condition their
votes on the states in which their votes are pivotal (Feddersen and Pesendorfer 1998).
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The novel result of this paper is that the biased reporting is socially optimal whereas
it was argued to be sub-optimal in their voting theory. This difference is due to the
information coarsening: while these voting models have often assumed binary states,
this paper assumes continuous states even though the messages can only be yes, no,
or abstention.

Second, this paper relates to communication models that show that biases of
senders result in coarse messages, both with one sender (Crawford and Sobel 1982)
and multiple senders (Hao, Rosen, and Suen 2001). In contrast, this paper shows
that the technological restriction of coarseness12 leads to the biased reporting. In
this sense, the relationship between conflict of interest and coarseness of information
transmission may have causalities running in both ways.

Numerical Results

There are two results from the numerical simulation that are critical for understanding
the asymmetric equilibrium characterized in Proposition 1.1. First, the probability
of policy implementation is less than that in the environment where the estimates
can be directly communicated: P (𝑎 = 1) ≤ 1

2
(Appendix Figure B2). In this sense,

the upward bias among the reported estimates is a way to mitigate the inherent
conservativeness in supermajoritarian rule. Second, when 𝑐 > 0, the welfare under
the equilibrium with supermajoritarian rule, 𝜋 = 1 (𝑛1 > 𝑛0), is higher than that
with submajoritarian rule, 𝜋 = 1 (𝑛1 ≥ 𝑛0) (Appendix Figure B3). Therefore, while
the equilibrium with 𝜋 = 1 (𝑛1 ≥ 𝑛0) also exists, this paper focuses on the case with
𝜋 = 1 (𝑛1 > 𝑛0).

Evidence

A number of studies suggest that omission is prevalent by reporting a positive correla-
tion between the coefficient magnitude and the standard error; on average, imprecisely
estimated studies have higher coefficient values than precise studies13. In economics,

12This assumption is similar to some papers that examined the implication of communication
frictions on biases, such as Suen 2004, Fryer and Jackson 2008, and Blume and Board 2013.

13This could be due to researchers omitting studies unless they are positive statistically significant.
If the study is imprecise, then a large coefficient magnitude is needed whereas if the study is precise,
then coefficient magnitude can be modest (Hedges 1992). Alternatively, this could also be due to
researchers omitting studies when the coefficient values are low (Duval and Tweedie 2000, Copas
and Li 1997). There are two formal tests that examine the presence of publication bias through
examining the correlation between coefficient magnitude and study precision: an ordinal test that
examines their rank correlations (Begg and Mezuemder 1994) and a cardinal test that examines the
correlation by regression (Egger et al. 1997). Second, there is occasionally excess variance in the
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important estimates such as the impact of minimum wage on employment (Card and
Krueger, 1995), the return to schooling (Ashenfelter et al., 1999), and the intertempo-
ral elasticity of substitution (Havránek, 2015), have evidence of a positive correlation.
In environmental studies, estimates of the social cost of carbon, a key statistic for
carbon tax policy, were shown to have the bias (Havránek et al., 2015). Moreover, the
probability of omission around 30 percent is roughly consistent with some examples
reported in Andrews and Kasy 2019.

1.2.4 Main Result 2. Inflation of Marginally Insignificant Re-

sults

The second main result is that, given heterogeneous standard errors, the equilibrium
𝑡-statistic threshold will not be constant across 𝜎𝑖. This result has two empirical
implications: (i) if journals apply a 𝑡-statistic threshold to publish positive results,
then even unbiased researchers will inflate some marginally insignificant results; and
(ii) there will be omission of imprecisely estimated null results.

Analytical Results

Analytical results show that the absolute value of 𝑡-statistics14 threshold will be in-
creasing in 𝜎𝑖. While the model set-up does not impose restrictions on the messages
based on 𝑡-statistics, we can define the analogous 𝑡-statistics naturally in terms of the
equilibrium threshold:

Definition 2 𝑡-statistics: Define the 𝑡-statistics thresholds, 𝑡𝑖 (𝜎𝑖) and 𝑡𝑖 (𝜎𝑖), as
the ratio between the threshold coefficient and standard error: 𝑡𝑖 (𝜎𝑖) =
𝛽(𝜎𝑖)
𝜎𝑖

, 𝑡𝑖 (𝜎𝑖) =
𝛽(𝜎𝑖)

𝜎𝑖
.

The following proposition claims that, in a unique symmetric equilibrium such that
the two researchers apply the identical thresholds 𝑡 (𝜎𝑖) = −𝑡 (𝜎𝑖), the 𝑡-statistics
thresholds will be increasing in 𝜎𝑖 so that precise studies will be more likely to be
published than imprecise ones.

Proposition 1.2. (𝑡-statistic threshold increasing in 𝜎) Suppose 𝑁 = 2, 𝑐 =
0, 𝜎𝑏 = ∞, and 𝑆𝑢𝑝𝑝 (𝐺) is some interval in R++. There exists a unique symmetric

estimates with an abundance of studies at the extreme values beyond significance thresholds and a
scarcity of studies with intermediate coefficients (Stanley 2005).

14While it is formally a 𝑧-statistics since standard error is assumed to be known in the model, the
paper uses the term 𝑡-statistics to be coherent with the way empirical studies usually conduct null
hypothesis testing.
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equilibrium such that the policymaker follows the mixed strategy 𝜋* in ( 1.6), and the
researchers adopt threshold strategies with cut-offs that depend on 𝜎𝑖, as in Lemma
1.1. Then the t-statistics will be symmetric so that, 𝑡𝑖 (𝜎𝑖) = −𝑡𝑖 (𝜎𝑖) ≡ 𝑡 (𝜎𝑖) for both
𝑖 = 1, 2, and will be increasing in 𝜎𝑖:

𝜕𝑡 (𝜎𝑖)

𝜕𝜎𝑖

> 0

for every 𝜎𝑖 ∈ 𝑆𝑢𝑝𝑝 (𝐺) for both researchers.

Sketch of Proof : By rearranging the indifference condition of researchers. By the
Bayes’ rule and law of iterated expectation, the researcher 𝑖’s indifference condition
on 𝛽𝑖 (𝜎𝑖) is

E

⎡⎣ 𝛽𝑖(𝜎𝑖)

𝜎2
𝑖

+
𝛽𝑗

𝜎2
𝑗

1
𝜎2
𝑖
+ 1

𝜎2
𝑗

| 𝐼𝑖, 𝐼𝑗

⎤⎦ = 0, (1.8)

where 𝐼𝑖 =
{︀
𝛽𝑖 = 𝛽𝑖 (𝜎𝑖) , 𝜎𝑖

}︀
is the information set of researcher 𝑖, and 𝐼𝑗 = {𝛽𝑗 ∈ 𝑃𝑖𝑣 (𝜎𝑗, 𝜋) , 𝜎𝑗}

is the information set of researcher 𝑗, where 𝑃𝑖𝑣 (𝜎𝑗, 𝜋) is the pivotality condition,
and the expectation is taken over 𝐼𝑗. Reorganizing this condition (1.8), the threshold
𝑡 (𝜎𝑖) must satisfy

𝑡 (𝜎𝑖) =
𝛽 (𝜎𝑖)

𝜎𝑖

= 𝜎𝑖

E
[︁
− 𝛽𝑗

𝜎2
𝑗+𝜎2

𝑖
|𝐼𝑖, 𝐼𝑗

]︁
E
[︁

𝜎2
𝑗

𝜎2
𝑗+𝜎2

𝑖
|𝐼𝑖, 𝐼𝑗

]︁ (1.9)

In this way, the 𝑡-statistics threshold is increasing in 𝜎𝑖 since E
[︁
− 𝛽𝑗

𝜎2
𝑗+𝜎2

𝑖
|𝐼𝑖, 𝐼𝑗

]︁
is

positive in equilibrium. Appendix A2.2 contains a complete proof, which focuses on
the symmetric equilibrium that provides a tractable environment where the term,

E
[︁
− 𝛽𝑗

𝜎2
𝑗+𝜎2

𝑖
|𝐼𝑖, 𝐼𝑗

]︁
× E

[︁
𝜎2
𝑗

𝜎2
𝑗+𝜎2

𝑖
|𝐼𝑖, 𝐼𝑗

]︁−1

, does not change substantively enough to alter
this sign. Analogous results hold for 𝑡 (𝜎𝑖). �

The impossibility of equating the optimal thresholds with a constant 𝑡-statistics
threshold arises from the difference in the use of standard errors between the Bayesian
updating and the null hypothesis testing. In Bayesian updating, the coefficient is
divided by the variance, 𝜎2, since the weights on each coefficient must be proportional
to its information that increases at rate 𝑛 in the absence of study-specific effects
(𝜎0 = 0). In null hypothesis testing, the coefficient is divided by the standard errors,
𝜎, since 𝑡-statistics normalize the convergence of distribution of 𝛽𝑖 that occurs at rate
√
𝑛. In this model, the thresholds are determined by approximating the Bayes rule,

which stands in contrast with the focus on the 𝑝-value that measures how unlikely
that a given observation occurs under the null hypothesis of zero effect.
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This observation, while highlighting the contrast between 𝑡-statistics and optimal
thresholds, renders support for 𝑡-statistics as a rule of thumb since the threshold 𝛽 (𝜎)

is increasing and 𝛽 (𝜎) is decreasing. This result relates to a decision-theoretic and
statistics literature that examines the optimality of null hypothesis testing as criteria
for choosing alternative treatments (Manski 2004). A recent paper (Tetenov 2016)
rationalized the 𝑡-statistics approach based on communication in the settings with
commonly known value of standard error. This model considers the environment
where the standard error is a private information, and shows that the equilibrium
𝑡-statistics may not be constant across 𝜎𝑖.

Numerical Results

The analytical results have shown that, in the symmetric equilibrium with 𝑁 =

2, 𝑐 = 0, 𝜎𝑏 = ∞, the constant 𝑡-statistics threshold will be sub-optimal. While
tractable, symmetric equilibria will not be locally stable and thus less plausible than
the asymmetric equilibrium analogous to that characterized in Proposition 1.1. The
numerical analysis henceforth will show that the key qualitative predictions will hold
even under asymmetric equilibrium and even with 𝑁 ≥ 3, 𝑐 ≥ 0, 𝜎𝑏 < ∞. Moreover,
it quantifies the bias, omission, and welfare gains from omission and inflation, and
derives empirical predictions.

The equilibrium thresholds, 𝛽 (𝜎) , 𝛽 (𝜎), of the asymmetric equilibrium in a plau-
sible environment (Figure 1-3) show that the two analytical results hold in a more
general set-up. First, 𝛽 (𝜎), the threshold between sending positive message or not
reporting the study, is strictly convex in 𝜎. Thus, if academic communities impose a
rule-of-thumb 𝑡-statics level to claim positive results, there could be some studies in
the shaded region that might still be considered as a “positive” result even though it
is marginally insignificant. Second, the omission occurs most importantly among the
imprecisely estimated studies with intermediate coefficients. That is, when negative
results are reported, they will be either precisely estimated null results or imprecisely
estimated and yet extremely negative results. Since precisely estimated studies will
be less subject to asymmetric omission, there will also be less bias among them.

A numerical simulation, presented in Appendix B1.5, shows a substantive welfare
gain from allowing some inflation and frequency of omission can be substantive across
a range of parameter values. Imposing a constant one-sided 𝑡-statistic, 𝛽 (𝜎) = 𝑡𝜎,
with no omission, will lead to 3 ∼ 50 percent of welfare loss relative to the environment
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Figure 1-3: 𝛽 (𝜎) and 𝛽 (𝜎) thresholds

Notes: Figure 1-3 plots the 𝛽 (𝜎) , 𝛽 (𝜎) thresholds under the prior standard deviation 𝜎𝑏 =
0.7, no study-specific effect 𝜎0 = 0, and distribution of standard errors such that, 𝜎𝑖, that
approximates the empirical data as shown in B1.1, and policy cost 𝑐 = 1

2 . The darker solid
line is 𝛽 (𝜎), the lighter solid line is 𝛽 (𝜎), and the dashed line represents a linear 𝑡-statistic
threshold. Studies in the shaded region draw positive conclusions even though they are
marginally statistically insignificant. The Figure 1-1 in Introduction shows the equilirium
thresholds in identical environment except 𝑐 = 0.3.

in which estimates can be directly communicated, even when 𝑡 ∈ R is chosen to
minimize the welfare loss. Allowing for flexible equilibrium threshold can more than
halve the welfare losses, leading to only 1 ∼ 23 percent of welfare loss. The omission
probability is roughly 7 percent among the most precisely estimated studies whereas
it could be as large as 60 percent among the least precisely estimated studies. On
average, omission probability is around 30 ∼ 50 percents. Similarly, the bias is
minimal and 0 ∼ 20 percent of the underlying benefit distribution (𝜎𝑏) among the
most precise studies whereas it could be very large among the least precise studies.

Numerical exploration also shows that the comparative static of thresholds with
respect to 𝑁 is ambiguous, and that the threshold for reporting negative results,
𝛽 (𝜎), could be increasing in 𝜎 when 𝑐 is high. Appendix B1.1 describes the details
of the simulation set-up and procedure, and Appendices B1.2 and B1.3 contains a
thorough discussion of these observations.
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Evidence

There are various quantitative evidence of inflation and some qualitative evidence of
omission that is heterogeneous across values of study precision.

Inflation: When the originally intended specification has a marginally insignifi-
cant 𝑡-statistic, researchers may inflate the statistical significance through the choice
of specifications for outcome, control variables, and samples (Leamer 1978). If inflat-
ing 𝑡-statistic incurs search costs, then there will be an excess mass right above the
threshold. In economics, Brodeur et al. (2016) argues that about 8% of results as
statistically significant may be due to inflation. There is an excess mass right about
the significance cut-off in sociology and political science, too (Gerber and Malhotra
2008a, 2008b). In psychology with lab experiments such that sample size can be
adjusted subsequently, Simonsohn et al. (2014) reported density of 𝑝-values among
the statistically significant tests were increasing in 𝑝-values and interpreted this as
evidence of inflation.

Omission heterogeneity across study precision: There are some examples
in which either precisely estimated null results and extremely negative results, while
imprecisely estimated, are published. Some examples of precise null results15 include
the large-scale clean cookstove study (Hanna et al. 2016), the air pollution regulation
in Mexico (Davis 2008), and the community-based development programs (Casey et
al. 2012). The examples of extreme negative results include the negative labor supply
elasticities close to −1 among the taxi driver papers (Camerer 1997); the positive
impact of inequality on economic growth (Forbes, 2000); the unexpected harmful
effect of a therapeutic strategy on the cardiovascular events found in one trial (the
Action to Control Cardiovascular Risk in Diabetes trial 2008). While these are only
some examples, the empirical analyses in Section 3 will provide a formal evidence.

1.2.5 Additional Result. Amplification of Small Bias of a Re-

searcher

The main results have shown that, even when researchers are completely unbiased,
there will still be publication bias with omission and inflation. Nonetheless, in the
real world, researchers’ and policymakers’ objectives are not completely aligned with

15There is one apparent counterexample: DEVTA study, the largest randomized trial that showed
null effects of deworming and vitamin A supplementation on child mortality and health, was not
published until 7 years after the data collection (Garner, 2013). While the delay required by the
careful analysis of authors is extensive, that it was published in the Lancet, a top medical journal,
is, in a way, reassuring of the academic journal’s willingness to report precise negative results.
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one another due to different information and interests regarding policies. This Section
shows that there will be a large polarization of reporting rules among researchers even
when a researcher’s bias is small.

Analytical Results

Let us begin by introducing the strategic multiplier between researchers that quantifies
on the strategic interdependence between them, keeping the policymaker’s strategy
fixed, given the researcher 𝑖’s objective, 𝑎 (E𝑏− 𝑐+ 𝑑𝑖), so that 𝑑𝑖 is his bias for policy
implementation.

Definition 3 Strategic multiplier between researchers: Define the strategic
multipliers, 𝜁, 𝜁, as the ratio of the effect of small bias 𝑑𝑖 of one researcher
on the difference between thresholds of two researchers, between the envi-
ronment with or without strategic effects, keeping the policymakers’ strat-
egy 𝜋* fixed:

𝜁 ≡
𝜕(𝛽𝑖−𝛽𝑗)/𝜕𝑑𝑖

𝜕(𝛽𝑖−𝛽𝑗)/𝜕𝑑𝑖|𝜎𝑗=𝜎*
𝑗

and 𝜁 ≡
𝜕(𝛽𝑖−𝛽𝑗)/𝜕𝑑𝑖

𝜕(𝛽𝑖−𝛽𝑗)/𝜕𝑑𝑖|𝜎𝑗=𝜎*
𝑗

.

In a tractable case of symmetric equilibrium, the following proposition shows that the
strategic multiplier is larger than 1; that is, the effect of small bias of one researcher
will be amplified:

Proposition 1.3. (Amplification of Bias of a Researcher) Suppose 𝑁 = 2,
𝑐 = 0, and 𝜎𝑖 = 𝜎 for both 𝑖 = 1, 2. In a symmetric equilibrium in Proposition 1.2,
the strategic multiplier between researchers satisfies 𝜁 = 𝜁 ≡ 𝜁, and

𝜁 =
𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙

𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙 − 𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
, (1.10)

where 𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 ≡ 𝑉 𝑎𝑟
(︀
𝛽𝑖|𝛽𝑖 ≤ 𝛽

)︀
and 𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙 ≡ 𝑉 𝑎𝑟 (𝛽𝑖) = 𝜎2+𝜎2

𝑏 . Thus, 𝜁 > 1.
Sketch of Proof : By deriving the comparative statics with the researchers’ indif-

ference condition. Let us focus on the indifference condition for 𝛽𝑖; the condition for
𝛽𝑖 can be derived analogously. We consider the symmetric equilibrium with no bias
at the beginning. The indifference condition of researcher 𝑖 with bias, 𝑑𝑖, is

𝛽𝑖 + E
[︀
𝛽𝑗|𝛽𝑗 ≤ 𝛽𝑗

]︀
= −

(︂
2 +

𝜎2

𝜎2
𝑏

)︂
𝑑𝑖, (1.11)

where 𝑑𝑖 = 0 at first. This expression (1.11) already shows that 𝛽𝑖 will be decreasing
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in 𝛽𝑗. The expression (1.10) is derived from the comparative statics of 𝛽𝑖 on 𝑑𝑖

with the expression (1.11). Since 𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙 > 𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 by definition of truncated
distribution, 𝜁 > 1. Appendix 1.3 contains a complete proof. �

In words, the two researchers’ thresholds, 𝛽𝑖 and 𝛽𝑗, are strategic substitutes of
one another: when a small increase in 𝑑𝑖 shifts 𝛽𝑖 downwards, 𝛽𝑗 will be adjusted
upwards to offset this effect, which then causes 𝛽𝑖 to shift downwards even further,
and so on. The strategic multiplier quantifies how the difference between 𝛽𝑖 and 𝛽𝑗

due to such repeated adjustments is larger than the case when there was only the
first adjustment of 𝛽𝑖, keeping 𝛽𝑗 fixed.

The multiplier (1.10) shows, heuristically, that the strategic substitution effect is
very large. If the equilibrium thresholds, 𝛽𝑖 and 𝛽𝑗, are low so that 𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 =

2
3
,

then 𝜁 = 3: the equilibrium difference in reporting is three times larger than the
primitive difference in objectives. When the conventional threshold, 𝛽

𝜎
= 1.96, is

applied in the environment with zero true effect (𝑏 = 0) and small variation in true
effects (𝜎𝑏 ≃ 0), then 𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 ≃ 0.88, which suggests 𝜁 ≥ 8: that is, the underlying
difference in objectives is only 12 percent of the observed difference in reporting
thresholds.

This amplification result builds on the results of information aggregation models
(Feddersen and Pesendorfer 1996) that illustrates strategic substitution effects among
voters. In the voting model, when there are partisan voters, independent voters vote
against the bias of the partisan voters to offset their influence on electoral outcomes.
In this model, when another researcher is biased in one direction, the researcher
will bias her reporting in the opposite direction. The new result is that, because the
voting model has considered binary decisions whereas this model considers continuous
decisions of reporting thresholds, the original bias will be amplified in equilibrium.

Numerical Results

While the Proposition 1.3 focused on the analytically tractable case of symmetric
equilibrium with 𝛽 = −𝛽, the same effect of strategic substitution also exists in the
asymmetric equilibrium in Proposition 1.1. A numerical simulation shows strategic
substitution can have a quantitatively important influence not only on symmetric
equilibrium but also on asymmetric equilibrium that is locally stable. Let us consider
an example with 2 researchers, 𝑐 = 0, and 𝜎0 = 𝜎 = 1. If neither researcher is biased,
then the equilibrium threshold is 𝛽𝑖 = 0.19. If researcher 𝑖 has bias 𝑑𝑖 = −0.1 so
that he has bias towards policy implementation and researcher 𝑗 does not have bias,
𝑑𝑗 = 0, then their thresholds will become 𝛽𝑖 = −0.25 and 𝛽𝑗 = 0.5. Note that, if there
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were only 1 researcher, then the threshold for recommending policy only changes by
−0.2. Thus, the strategic multiplier is 𝜁 ≃ 3 in this example, consistent with the
back-of-the-envelope calculation above.

Evidence

A large body of public health research has shown that industry funded research are
more likely to have positive outcomes, and thus, interpreted this as a result of pub-
lication bias. A meta-analysis of 30 studies has found that industry-funded research
is roughly four times more likely to have positive outcomes than the publicly funded
research (Lexchin 2003). Given such evidence, it is common to consider that the
pharmaceutical companies have large bias towards drug approval with little regards
for patients’ welfare (Goldcare 2010). This model’s amplification result suggests that,
however, caution is warranted when interpreting the difference in reporting decisions
as quantitatively reflective of the underlying differences in the objectives. While
research funded by industries will perhaps have some bias towards the outcomes fa-
vorable to the industry, the bias in objectives need not be so large to explain the
strong associations between results and identities of funding sources.

1.2.6 Discussions of Key Assumptions

The analyses have shown that coarse aggregation can explain various kinds of publi-
cation bias. Overall, the discussions henceforth will show that the main conclusions
are not highly sensitive to some auxiliary assumptions, and the main assumptions are
standard in economics literature and relevant in the real world. The caveat must be
in place if there is a reviewer who directly meta-analyze the results, or if the conflict
of interest is large.

Sensitivity to Alternative Assumptions

The following discussions show the implications of (i) sequential reporting, (ii) conflict
of interests, (iii) unknown number of researchers, and (iv) risk aversion:

(i) sequential vs simultaneous reporting: the characterized equilibria will still re-
main as equilibria even if the reporting is sequential when there are 2 researchers,
since the analysis of simultaneous reporting had researchers condition their re-
ports on pivotality. This logic is analogous to Dekel and Piccione 2000. If
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the later researcher observes the early researcher’s estimate, then the later re-
searcher can summarize both estimates through meta-analyses and full reporting
of all estimates will be the optimal equilibrium.

(ii) conflict vs consistency of interests: the Section 2.5 has shown that the omission
and inflation results are robust to small conflict of interest. When there is a large
conflict of interest such as when merely profit-maximizing pharmaceutical firms
report studies, however, the incentive constraints will bind: rigid publication
rules to eliminate publication bias will be optimal.

(iii) unknown vs known number of researcher: the analysis has assumed that, 𝑁 ,
the number of researchers is a public information. The numerical analysis in
Appendix B1.3 shows that, in a plausible setting, the policymaker’s optimal
strategy is to implement the policy if and only if there are strictly more positive
results than negative results. In this sense, the reader needs not know how
many researchers there are to implement the optimal rule (1.2).

(iv) risk aversion vs risk neutrality: when the payoff exhibits risk aversion, the
study precision has benefits of reducing the uncertainty in addition to its role in
determining weights of Bayesian updating. Nonetheless, small risk aversion does
not alter the results since the objective is continuous in risk aversion parameter;
by Taylor approximation of constant relative risk aversion preference 𝛾 implies
the decision rule (E𝑏)1−𝛾

1−𝛾
− 𝛾

2
𝑉 𝑎𝑟(𝑏)

(E𝑏)1+𝛾 ≥ 𝑐.

Validity of Main Assumptions

The results rely on the key assumptions that the message space is smaller than signal
space, and that researchers can make contingent reasoning. The following discussions
explore their validity:

(i) large state and signal space vs limited action and message space: the critical
assumption that drives the results is the distinction between space of states
and signals that are continuous, and the space of action and messages that are
discrete. When either assumptions are modified, then the omission with bias
no longer arises. However, I argue that this set of assumptions is particularly
appropriate for scientific communication: the information the researchers have
are rich and complex whereas the messages they can convey will be limited and
must be simple. Binary actions also apply in key applications such as whether
to adopt a particular medicine or policy.
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(ii) PBNE and contingent reasoning: the implicit yet important assumption is that
the senders of information condition the reporting decision on events in which
their reports are pivotal. This logic is key to and common across models of in-
formation aggregation that have been applied in a number of settings, including
general public’s voting (Feddersen and Pesendorfer 1996), juror’s voting (Fed-
dersen and Pesendorfer 1998), opinion polls (Morgan and Stocken 2008), and
demonstrations (Battaglini 2017). While such sophisticated reasoning may ap-
pear unrealistic and some lab experiments show individuals are unable to engage
in such reasoning (Esponda and Vespa 2013), there is also evidence from both
lab (Battaglini et al. 2010, Dickhaut 1995) and fields (Kawai and Watanabe
2013) that some people condition their voting decisions on others’ decisions.

1.3 An Empirical Test of the Communication Model

The communication model has shown that, if aggregation frictions are a key reason
of omission, then both precise null results and extremely negative results will be
reported. This Section develops a new empirical test to compare this prediction
against some other publication selection processes, and applies this to show it holds
with an economics data set.

1.3.1 Various Models of Publication Bias

Various existing bias correction methods have assumed specific publication selection
process. This sub-Section shows that the selection process based on the communica-
tion model makes different predictions than the two most commonly16 used methods
assume.

Data Generating Process

The data generation process of the published estimates, {𝛽𝑖, 𝜎𝑖}, will be assumed to
take three steps given various independence assumptions. First, the underlying effect,

16While there are also some other models, this paper focuses on the comparison with most com-
monly used models: as of December 2018, Duval and Tweedie (2000) that introduced trim-and-fill
method is cited over 4,900 times, and Hedges and Vivea (2000) that extends Hedges (1992) is cited
over 2,000 times on Google Scholar. It is beyond the scope of this paper to fully explore the other
selection models: Copas and Li (1997) (note that the working paper version had contained full
discussions), Fafchamps and Labonne (2016), and Frankel and Kasy (2018).
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𝑏𝑖 ∼ 𝐹 , and the study precision, 𝜎𝑖 ∼ 𝐺, are independently17 determined. Second, the
random error, 𝜖𝑖 ∼ 𝒩 (0, 𝜎2

𝑖 ), is independently drawn and the coefficient, 𝛽𝑖 = 𝑏𝑖 + 𝜖𝑖,
is determined. Third, the study is published with some probabilities, 𝑃 (𝛽𝑖, 𝜎𝑖), that
depend on {𝛽𝑖, 𝜎𝑖}. We will denote 𝑏0 ≡

∫︀
𝑏𝑖𝑑𝐹 and 𝜎2

0 ≡
∫︀
(𝑏𝑖 − 𝑏0)

2 𝑑𝐹 as the mean
and variance of underlying effect. Moreover, let us denote 𝐻 (𝛽𝑖) as the distribution
of coefficient estimates given 𝐹 and 𝐺. 𝜎2

0 measures heterogeneity of effects across
studies, whereas 𝜎2

𝑏 had measured heterogeneity of effects across policies.

Distinct Predictions of Various Models of Publication Bias

The communication model of this paper makes a distinct prediction on a form of
publication selection, 𝑃 (𝛽𝑖, 𝜎𝑖), compared to the selection assumption behind the 2
most commonly used bias correction methods. Let us denote 𝐺̃∅ (𝜎) as the distri-
bution of all standard errors conditional on the study being the non-positive results
without any selection, and 𝐺∅ as its observed distribution with selection; let us also
denote 𝐻̃0 (𝛽) as the distribution of coefficient estimates conditional on the study not
rejecting the null hypothesis with threshold 𝑡, and 𝐻0 as its observed distribution
with selection. The Figure 1-4 summarizes the distinct predictions.

(1) communication model-based selection: the model of this paper suggests
that, under aggregation frictions, the imprecisely estimated results with coefficients
with small absolute values will be omitted18. As has been discussed in Section 2.3 and
illustrated in Figure 1-3, the omission probability shrinks to zero when the between-
study heterogeneity, 𝜎0, is small. Therefore, when negative results are published, they
are either precise null results so that 𝐺∅ > 𝐺̃∅, or imprecisely esimated but extremely
negative results so that 𝐻0 > 𝐻̃0.

(2) uniform selection: the model behind “Hedges” bias correction method,
proposed by Hedges 1992, suggests that the statistically insignificant results will be

17This independence assumption imposes that the studies with small vs large effects have identical
true effects. This assumption is violated, for example, when the sample size affects the quality of
treatment. Nonetheless, it is also assumed in other influential meta-analysis papers, such as Hedges
1992, Duval and Tweedie 2000, and Andrews and Kasy 2019.

18If the estimates can be directly communicated, then imprecise null results can be valuable
(Abadie 2018).
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(1) communication
model: 𝐺̂∅ > 𝐺̃∅ and

𝐻̂0 > 𝐻̃0

(2) uniform selection:
𝐺̂∅ = 𝐺̃∅ and 𝐻̂0 > 𝐻̃0

(3) extremum selection:
𝐺̂∅ > 𝐺̃∅ and 𝐻̂0 < 𝐻̃0

Figure 1-4: Selection models described in funnel plots

Notes: Using the funnel plot, the Figure 1-4 visualizes the (1) communication-based selec-
tion, (2) uniform selection, and (3) extremum selection models. The reported studies are
depicted in dark dots, whereas the regions of omissions are approximated by the shaded
area. The figures are generated by the author for an illustrative purpose, and do not reflect
actual data.

uniformly less likely to be published than statistically significant results19:

P (study 𝑖 is reported) =

⎧⎨⎩𝜂1 if |𝛽𝑖|
𝜎𝑖

≥ 1.96

𝜂0 if |𝛽𝑖|
𝜎𝑖

< 1.96,
(1.12)

where 𝜂1 > 𝜂0 > 0. This suggests that the results that are not positively significant
are systematically unlikely to be published. Thus, conditional on being null results,
the distribution is identical to the underlying distribution of null results: 𝐺̃∅ = 𝐺∅.
Nonetheless, published negative results will be likely to be extreme negative results
since results with intermediate coefficients have low 𝑡-statistics: 𝐻0 > 𝐻̃0. With an as-
sumption that 𝐹 is normal, this model is commonly used in economics with maximum
likelihood estimation to correct for publication bias. (Hedges, 1992, Ashenfelter et
al. 1999, McCrary et al. 2016, Andrews and Kasy 2019). This selection is consistent
with the setting in which the researchers select based only on statistical significance
to make their publication decisions.

19While the 𝑡-statistic thresholds can be specified more flexibly, it is common to apply the con-
ventional threshold of 𝑡 = 1.96 on both positive and negative signs; since the sample size is often
small in meta-analyses, it is practically difficult to estimate a model with many cut-offs.
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(3) extremum selection: the model behind “trim-and-fill” bias correction method,
proposed by Duval and Tweedie 2000, suggests that the most extreme negative results
will be omitted.

P (study 𝑖 is reported) =

⎧⎨⎩1 if 𝛽𝑖 ≥ 𝛽min

0 if 𝛽𝑖 < 𝛽min,
(1.13)

where 𝛽min is some threshold. In common case where 𝛽min < 𝑏0, there arises little
selection among the most precise studies. Thus, null results are more likely to be
reported when the standard error is small so that 𝐺∅ > 𝐺̃∅. At the same time, the
model also suggests that marginally insignificant negative results are not particularly
more likely to be omitted since the selection is unrelated to the statistical significance
milestones: 𝐻0 < 𝐻̃0. With an assumption that the underlying distribution of benefit,
𝐹 , is symmetric, the trim-and-fill method imputes the most negative missing studies
and computes the bias corrected estimate 𝑏̂0. This reporting rule is consistent with the
setting in which the researcher is biased towards positive results and do not hope to
show extreme negative results, given a completely uninformed reader with improper
uniform prior.

1.3.2 A Test to Distinguish the Various Models

Given that each model has distinct implications on the distribution of standard errors
and coefficients of published studies, we develop an empirical test to examine them.
The key obstacle is that the underlying distributions are unobserved. We (1) show
that the underlying distribution can be predicted with some assumptions, and (2)
describe the overview of the estimation and testing steps.

Assumptions

To estimate the underlying distribution of {𝛽𝑖, 𝜎𝑖} without selection, we need some re-
gions of the estimates that do not suffer from selection, and need ways to extrapolate
from those regions to other regions with selection. To operationalize these require-
ments, we will use the following assumptions20 that are parsimonious and common in
meta-analyses:

20These assumptions suggest that the bias due to inflation of marginal results is unimportant.
With the limited sample sizes that is relevant for meta-analysis, it is infeasible to distinguish the
inflation and omission; such test requires large sample size at the margin of statistical significance.
While restrictive, this is an assumption applied in all other studies on bias correction.
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A1. Constant selection within statistically significant results: 𝑃 (𝛽𝑖, 𝜎𝑖) = 𝑃 ∈
(0, 1) for any |𝛽𝑖|

𝜎𝑖
≥ 𝑡.

A2. Underlying effects with independent normal distribution: 𝑏𝑖
𝑖𝑖𝑑∼ 𝐹 (𝑏𝑖) =

Φ
(︁

𝑏𝑖−𝑏0
𝜎0

)︁
Under the extremum selection model, A1 will be satisfied so long as 𝛽min < 0;

under the uniform selection, both A1 and A2 will be satisfied. Note that A1 does not
require that the publication probability is 1 for statistically significant results.

Semi-parametric Estimation and Testing Steps

We estimate the underlying distributions semi-parametrically using the Assumptions
A1 and A2, and compare them against the observed distribution with a Kolmogorov-
Smirnov (KS)-type test. The estimation is non-parametric along the dimension of 𝜎
while it assumes normal distribution along the dimension of 𝛽. While the complete
description and discussion are relegated to the Appendix B2.1, the following overview
describes the three steps of estimation and testing:

1. estimate
{︁
𝑏̂0, 𝜎̂0

}︁
by the stem-based bias correction method that is robust to

various kinds of distribution, 𝐹 (𝑏𝑖), and selection, 𝑃 (𝛽𝑖, 𝜎𝑖);

2. estimate (i) the distribution 𝐺∅

(︁
𝜎|𝑏̂0, 𝜎̂0

)︁
using the studies such that |𝑡𝑖| ≥

1.96, and (ii) the distribution 𝐻0

(︁
𝜎|𝑏̂0, 𝜎̂0

)︁
using the distribution 𝐺∅

(︁
𝜎|𝑏̂0, 𝜎̂0

)︁
estimated using the studies such that 𝑡𝑖 ≥ 1.96;

3. estimate the KS statistic for each distribution, 𝐷𝐺 and 𝐷𝐻 :

𝐷𝐺 = sup
𝜎

{︁
𝐺̂∅ (𝜎)− 𝐺̃∅

(︁
𝜎|𝑏̂0, 𝜎̂0

)︁}︁
and 𝐷𝐻 = sup

𝛽

{︁
𝐻̂0 (𝛽)− 𝐻̃0

(︁
𝛽|𝑏̂0, 𝜎̂0

)︁}︁
and associated one-sided 𝑝-values using the two-step bootstrap over estimates
of 𝑏0 and sampling of each study’s 𝜎𝑖 and 𝛽𝑖.

1.3.3 Application

Using the test above, this sub-Section analyzes a meta-analysis data set with data
selected from the papers that highlight the binary conclusions21. The result shows

21A previous version of this paper (Furukawa 2016) also analyzes the data of Intertemporal Elas-
ticity of Substitution, which highlight the “binary conclusions” less since the quantity of interest is
a continuous estimate.
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that the communication model-based selection pattern fits the data more adequately
than the other two models.

Data

The data come from the set of 106 studies (i) that are included in the total of 111
studies meta-analysis of labor union’s effect on firm productivity (Doucouliagos et al.
2018) and (ii) that have the binary conclusions from 𝑡-statistics that match with the
conclusions highlighted in the original papers. How the labor union affects firms is a
highly contested issue, with various evidence supporting both positive and negative
views. As each paper contains many estimates from various specification, the analysis
uses its median value. To focus on the coefficients underlying the highlighted conclu-
sions, two independent readers examined the abstract, introduction, and conclusions
of each paper and excluded some papers whose highlighted conclusions in the paper
did not match the implication of 𝑡-statistics in Doucouliagos et al.’s data set22.

Results

The results suggest that the reporting patterns of null and negative results23 are
consistent with the communication model-based selection process, but not with other
processes. Figure 1-5 visualizes the two results. First, observed null results tend to
be more precise than predicted distribution of null results: 𝐺̂∅ > 𝐺̃∅. Concretely,
while only 20 percent of studies are predicted to have standard errors less than .08,
above 70 percent of studies have standard errors smaller than 0.8 (𝑝 = .000). This
pattern is not consistent with the uniform omission model, which suggest that the
two distributions will be roughly equal with one another. Second, observed negative
results, including null results and negative significant results, tend to be more negative
than their predicted distribution: 𝐻̂0 > 𝐻̃0. Concretely, while only roughly 14 percent
of studies are expected to have coefficient less than -0.125, the observed distribution
has over 29 percent of studies have such negative values (𝑝 = .0311). This pattern is

22The detailed discussions on the inclusion criteria, as well as classification’s text evidece, are
available in https://github.com/Chishio318/Data_publication_bias. The meta-analysis can include
only one estimate from one study: when there are multiple estimates in one study, it is common to
choose the estimates of median magnitude (for example, in Havránek 2015).

23As Figure 1-2 suggests that no studies will be reported in an omission region, taken literally,
the data may appear to contradict the communication model. However, existence of some studies
in omission regions could be explained by dispersed beliefs across researchers that lead to different
– even overlapping – thresholds of reporting positive vs negative results as illustrated in Section
2.5. The paper does not claim that aggregation friction is the only reason behind publication bias:
instead, it only suggests that aggregation friction can explain some regularities of publication bias.
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not consistent with the extremum omission model, which suggest that the reported
studies will have more moderate coefficient values. Taken together, among the three
models, the communication-based selection process is the only one that can account
for the pattern of omission in this data set.

(1) distribution of 𝜎𝑖 of null results: (2) distribution of 𝛽𝑖 of non-positive
results:

Figure 1-5: KS-type test illustrated in funnel plots

Notes: Figure 1-5 are the funnel plots that illustrate the KS-type test described in Sec-
tion 3.2.2. The filled diamonds with dark blue are observed significant results; the empty
diamonds are predicted non-positive results; and filled circle with orange are predicted non-
positive results. The dashed lines represent the values at which the KS-type test is evaluated.

1.4 A New “Stem-based” Bias Correction Method

The communication model in Section 2 has suggested an alternative publication se-
lection process, and the empirical analysis in Section 3 has shown its relevance in
a real-world data set. Moreover, the model suggests, if aggregation friction is the
important reason of publication selection, then the selection will depend on a number
of economic primitives unobservable to meta-analysts. What could we do to alleviate
the bias that arises from publication selection when aggregating various estimates?
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This Section presents a new, non-parametric, fully data-dependent, and gener-
ally conservative bias correction method, to be called a “stem-based” bias correction
method. The estimate uses the studies with highest precision, which correspond to
the “stem” of the “funnel” plot, to estimate a bias corrected average effect. It has
both theoretical and empirical merits over other existing methods: theoretically, the
estimate is based on weaker assumptions on the publication selection process and the
underlying distribution than other methods; empirically, the simulation shows that
the estimate has adequate coverage probabilities across different publication selection
processes.

1.4.1 Main Argument

The stem-based bias correction method uses some of the most precise studies because,
across various selection models, precise studies suffer less from publication bias than
imprecise studies. In the communication model of this paper, the most precise studies
are omitted less often, as visualized in Figure 1-1. In the two most commonly used
models described in Section 3.1.224, the following Proposition shows that the bias is
decreasing in study precision, and that, under some conditions, the bias is zero as
studies become infinitely precise.

24While rigorous analysis is beyond the scope of this paper, this pattern also holds with other
models such as Copas and Li (1997), Fafchamps and Labonne (2016), and both static and dynamic
models of Frankel and Kasy (2018).

44



(1) communication
model

(2) uniform selection (3) extremum selection

Figure 1-6: Meta-analysis estimates in funnel plots

Notes: Using the funnel plot, the Figure 1-6 visualizes the (1) communication-based se-
lection, (2) uniform selection, (3) extremum selection models. The reported studies are
depicted in dark dots, whereas the regions of omissions are approximated by the shaded
area. The thick red lines indicate the mean level of estimates at given values of standard
errors. The figures are generated by the author for an illustrative purpose, and do not reflect
actual data.

Proposition 2 (minimal bias among most precise studies across selection
models).

Define the bias of studies with precision 𝜎𝑖 as Bias(𝜎𝑖) ≡ E [𝛽𝑖|𝜎𝑖, study 𝑖 reported]−
𝑏0.

1. (Monotonicity) 𝐵𝑖𝑎𝑠 (𝜎𝑖)
2 is increasing in 𝜎𝑖 for all 𝜎𝑖 under the extremum

selection models, and for 𝜎𝑖 ∈ [0, 𝜎] for some 𝜎 > 0 under the uniform selection
model.

2. (Limit) lim𝜎𝑖→0𝐵𝑖𝑎𝑠 (𝜎𝑖)
2 = 0 if 𝜎0 = 0 and threshold 𝛽min is sufficiently low

under the extremum selection model, and always under the uniform selection model.
Sketch of Proof. By comparison of conditional across values of 𝜎𝑖 expectation

given the bias selection model. Appendix A5 contains a proof. �
That is, more precise studies are less subject to the publication selection; and

moreover, the bias approaches zero as the studies become infinitely precise under
some conditions. Heuristically, concerns for low statistical significance or extremely
negative values become unimportant when studies are precise.

The stem-based method chooses the number of studies, 𝑛stem, to include by op-
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timizing over the bias-variance trade-off. While focusing only on the most precise
studies give the least biased estimate, it also suffers from high variance. Therefore,
the stem-based method includes 𝑛stem to minimize the Mean Squared Error (MSE)
of the estimate while ensuring that the assumed and implied variance are consistent
with one another. Denoting the publication selection process as 𝑃 as in Section 3.1.1,
it strives to solve:

min
𝑛

𝑀𝑆𝐸
(︁
𝑏̂𝑛0 |𝜎0

)︁
= 𝑉 𝑎𝑟

(︁
𝑏̂𝑛0 , 𝜎0

)︁
+𝐵𝑖𝑎𝑠2

(︁
𝑏̂𝑛0 , 𝑏0

)︁
subject to 𝑉 𝑎𝑟

(︁
𝑏𝑖|𝑏̂𝑛0 , 𝑃

)︁
= 𝜎2

0

(1.14)
However, this problem of minimizing the exact MSE requires the knowledge of 𝑏0, true
mean, and 𝑃 , publication selection process. Since solving this criteria is infeasible,
the method instead solves its empirical analogue:

min
𝑛

˜𝑀𝑆𝐸
(︁
𝑏̂𝑛0 , 𝑏̂0, 𝜎0

)︁
subject to ^𝑉 𝑎𝑟

(︁
𝑏𝑖|𝑏̂𝑛0

)︁
= 𝜎2

0. (1.15)

That is, the MSE is replaced by an unbiased estimate of its relevant component,
˜𝑀𝑆𝐸

(︁
𝑏̂𝑛0 , 𝑏̂0, 𝜎0

)︁
, and the implied variance term is replaced by its empirical analogue,

^𝑉 𝑎𝑟
(︁
𝑏𝑖|𝑏̂𝑛0

)︁
.

The estimates of stem-based method can be visually represented with a funnel
plot (Figure 1-7): with uniform selection generating 80 studies in this simulation,
it is optimal to include 17 studies, which is roughly an average number of studies
included in simulations. Including all studies leads to an upward bias, as indicated by
theory. On the other hand, only a few most precise study can be noisy, both because
of between-study heterogeneity and of insufficient high within-study heterogeneity
due to low total sample size, so that inclusion of more studies leads to a smaller 95
confidence interval that covers 0.4, the true mean value.

1.4.2 Estimation

Given the objective (1.14), this sub-Section describes a particular approximation to
(1.15) that this paper proposes, illustrates estimation steps, and discusses the as-
sumptions necessary to ensure its reliability.
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Figure 1-7: A visualization of stem-based method

(1) Funnel plot

(2) Mean Squared Error

Notes: Figure 1-7 are an illustration of (1) a funnel plot of stem-based bias correction
method, and (2) the Mean Squared error criteria for choosing the 𝑛𝑠𝑡𝑒𝑚, the optimal num-
ber of studies to include. The data comes from a simulation of 80 studies under the uniform
selection model such that the number of included studies is 17. (1) The funnel plot, with
𝑦-axis denoting a measure of precision, describes the stem-based method. The orange di-
amond at the top indicates the stem-based estimate along with its 95 percent confidence
interval. The connected line is the estimate with various 𝑛𝑠𝑡𝑒𝑚 ∈ {1, ..., 𝑁}, indicating how
aggregate estimates change. The diamond at the middle of the curve indicates minimal level
of precision for the inclusion. Therefore, the stem-based estimate is given by the studies,
represented by circle, whose precision are above this diamond. (2) The relevant compo-
nents of Mean Squared Error is plotted, indicating that the ˜𝐵𝑖𝑎𝑠

2
is increasing while 𝑉 𝑎𝑟

is decreasing in 𝑛𝑠𝑡𝑒𝑚.
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Estimation Steps

The stem-based method computes the estimates with the following inner and outer
algorithms: the inner algorithm computes the bias corrected mean given an assumed
value of 𝜎2

0; the outer algorithm computes the implied variance and ensure that it is
consistent with its assumed value.

I. Inner algorithm: estimate 𝑏̂stem, 𝑆𝐸
(︁
𝑏̂stem

)︁
, 𝑛stem given an assumed value of 𝜎0.

1. rank and index studies in the ascending order of standard error so that 𝜎1 ≤
𝜎2... ≤ 𝜎𝑁

2. for each 𝑛 = 2, ..., 𝑁 , compute the relevant mean squared error, ˜𝑀𝑆𝐸 (𝑛), as
follows: given weights 𝑤𝑖 ≡ 1

𝜎2
𝑖 +𝜎2

0
,

˜𝑀𝑆𝐸 (𝑛) =

∑︀𝑛
𝑖=2

∑︀𝑛
𝑗 ̸=𝑖 𝑤𝑖𝑤𝑗𝛽𝑖𝛽𝑗∑︀𝑛

𝑖=2

∑︀𝑛
𝑗 ̸=𝑖 𝑤𝑖𝑤𝑗

− 2𝛽1

∑︀𝑛
𝑖=2𝑤𝑖𝛽𝑖∑︀𝑛
𝑖=2 𝑤𝑖

3. compute the optimal number of included studies, 𝑛stem: 𝑛stem minimizes the
relevant components of MSE, so that

𝑛stem ∈ argmin
𝑛

˜𝑀𝑆𝐸 (𝑛)

Thus, the stem-based estimate is 𝑏̂stem ≡
∑︀𝑛stem

𝑖=1 𝑤𝑖𝛽𝑖∑︀𝑛stem
𝑖=1 𝑤𝑖

, 𝑆𝐸
(︁
𝑏̂stem

)︁
≡ 1√∑︀𝑛stem

𝑖=1 𝑤𝑖

. The es-

timation of 𝑏̂stem applies the inverse variance weights since they minimize the variance
of the estimator given the sample.

II. Outer algorithm: search over values of 𝜎2
0 such that the implied ^𝑉 𝑎𝑟

(︁
𝑏𝑖|𝑏̂𝑛0

)︁
is

consistent. Throughout, we adopt the formula of variance proposed by DerSimonian
and Laird (1996)25: given weights 𝑤′

𝑖 ≡ 1
𝜎2
𝑖
, ^𝑉 𝑎𝑟

(︁
𝛽𝑖|𝑏̂𝑛0

)︁
= max

{︁
^̂

𝑉 𝑎𝑟
(︁
𝛽𝑖|𝑏̂𝑛0

)︁
, 0
}︁

,
where

^̂
𝑉 𝑎𝑟

(︁
𝛽𝑖|𝑏̂𝑛0

)︁
=

∑︀𝑁
𝑖=1 𝑤

′
𝑖

(︁
𝛽𝑖 − 𝑏̂𝑛0

)︁2
− (𝑁 − 1)∑︀𝑁

𝑖=1𝑤
′
𝑖 −

∑︀𝑁
𝑖=1 𝑤

′2
𝑖∑︀𝑁

𝑖=1 𝑤
′
𝑖

. (1.16)

Here, 𝑏̂𝑛0 ≡
∑︀𝑛

𝑖=1 𝑤𝑖𝛽𝑖∑︀𝑛
𝑖=1 𝑤𝑖

is the estimate based on 𝑛 studies.

25This formula is commonly used in non-parametric estimations of 𝐹 . For example, trim-and-fill
proposed by Duval and Tweedie (2000) also uses this originally. While there are some criticisms
to this approach (Veroniki et al. 2015), it is left for future work to explore how between-study
heterogeneity can be adequately estimated.
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1. set two initial estimates of 𝜎2
0 by applying (1.16) to 𝑏̂min

0 =
∑︀𝑁

𝑖=1 𝑤
′
𝑖𝛽𝑖∑︀𝑁

𝑖=1 𝑤
′
𝑖

and 𝑏̂max
0 =∑︀𝑁

𝑖=1 𝛽𝑖.

2. compute the implied stem-based estimates and their variance by applying (1.16)

3. iterate step 2 until it converges; if the limit of maximum and minimum disagree,
then choose the maximum.

Additional Arguments

Turning an ideal problem (1.14) into a feasible problem (1.15) had required ways
to approximate the knowledge of 𝑏0, true mean, and 𝑃 , publication selection pro-
cess. The method had applied non-parametric estimation techniques of unbiased
Cross-Validation criteria to approximate 𝑏0; and estimated 𝜎2

0 to give a conservative
confidence interval of 𝑏̂stem given unknown 𝑃 :

Unbiased Cross-Validation criteria for 𝑏0: we can replace the component,
𝑀𝑆𝐸 (𝑛), by its relevant term, ˜𝑀𝑆𝐸 (𝑛), since they differ only by a constant26. The
formula proposed in the inner algorithm provides an approximately unbiased estimate
of ˜𝑀𝑆𝐸 (𝑛) under some assumptions: if (A1) E𝛽1 ≃ 𝑏0 and (A2) E𝑏̂2,𝑛 ≃ E𝑏̂1,𝑛, then

E ˜𝑀𝑆𝐸 (𝑛) = E
∑︀𝑛

𝑖=2

∑︀𝑖
𝑗 ̸=𝑖𝑤𝑖𝑤𝑗𝛽𝑖𝛽𝑗∑︀𝑛

𝑖=2

∑︀𝑖
𝑗 ̸=𝑖𝑤𝑖𝑤𝑗

− 2E𝛽1

∑︀𝑛
𝑖=2𝑤𝑖𝛽𝑖∑︀𝑛
𝑖=2𝑤𝑖

=

∑︀𝑛
𝑖=2

∑︀𝑖
𝑗 ̸=𝑖 𝑤𝑖𝑤𝑗E𝛽𝑖E𝛽𝑗∑︀𝑛

𝑖=2

∑︀𝑖
𝑗 ̸=𝑖𝑤𝑖𝑤𝑗

− 2E𝛽1E
∑︀𝑛

𝑖=2 𝑤𝑖𝛽𝑖∑︀𝑛
𝑖=2 𝑤𝑖

≃ 𝑏̂20 − 2𝑏0𝑏̂0

There are two statistical techniques involved in these steps: the first term computes
the squared term by leaving one sample out in order to avoid the bias that arises due
to the squared term27. More importantly, the second term applies a Cross-Validation
(CV) technique by replacing the true value of 𝑏0 by its estimate. Since 𝛽1 is the
least biased estimate of 𝑏0, we apply the “leave-one-out” method in CV technique by
splitting the sample into the most precise estimate that constitutes a testing set and
all other estimates that constitute a training set.

26To see this, we can expand the bias squared term:

˜𝑀𝑆𝐸
(︁
𝑏̂0

)︁
≡ 𝑏̂20 − 2𝑏0𝑏̂0 =

(︁
𝑏̂0 − 𝑏0

)︁2
− 𝑏20 = 𝑀𝑆𝐸

(︁
𝑏̂0, 𝑏0

)︁
− 𝑏20.

27The method requires at least 𝑁 = 3 studies to compute the relevant MSE.
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Equating ^𝑉 𝑎𝑟
(︁
𝑏𝑖|𝑏̂𝑛0

)︁
= 𝜎̂2

0: the outer algorithm likely leads to a large estimate of
𝜎2
0 for three reasons. (i) While the exact selection process, 𝑃 , is unknown, the variance

is overestimated when it is the intermediate results that is omitted as suggested
by theory; (ii) the estimation of ^𝑉 𝑎𝑟

(︁
𝑏𝑖|𝑏̂𝑛0

)︁
uses the entire sample so as to avoid

underestimating the variance with only few samples used in stem-based estimation;
and (iii) when there are multiple values of 𝜎2

0 that are consistent with one another,
the method uses a larger one. By choosing the specification such that the estimate of
𝜎2
0 is large, the method strives to make a conservative estimate of the 95 confidence

interval for 𝑏̂stem.

Summary of Assumptions

In summary, for the stem-based method to generate a reliable estimate, we need that
the MSE can be well-approximated, (A1) 𝛽1 ≃ 𝑏0 and (A2) 𝑏̂2,𝑛 ≃ 𝑏̂1,𝑛, and that the
variance implied is close to the true variance, ^𝑉 𝑎𝑟

(︁
𝑏𝑖|𝑏̂𝑛0

)︁
≃ 𝜎2

0. These conditions may
not be satisfied when the underlying variance, 𝜎2

0, is large since even the most precise
studies may not approximate the true underlying mean. While the method imposes
no assumptions on underlying distribution, 𝐹 , and only monotonicity assumption on
the selection process, 𝑃 , it instead relies on these assumptions to mitigate publication
bias.

One implicit and important assumption is that the studies’ precision is correctly
reported. An inflation of 𝑡-statistics through under-reporting the standard error, such
as through choice of units of clustering, can compromise the reliability of this method.
I recommend investigating the specifications of most precise studies in detail to avoid
severe misreporting of study precision.

1.4.3 Assessment

Given the theoretical foundations and the assumptions made in estimation steps, how
does stem-based bias correction method perform across various selection processes?
The simulation henceforth shows that the stem-based correction method provides a
more reliable estimate of confidence intervals than other commonly used methods in
meta-analysis settings calibrated to plausible values28.

28There are new methods that have been developed, including regression-based approach of PET-
PEESE (Stanley 2008), maximum likelihood approach (Andrews and Kasy 2018), selection model
analogous to Heckman’s two step process (Copas and Li 1997), other methods that focus on precise
studies such as top10 (Stanley et al. 2010) and kink-based methods (Bomy and Rachinger 2018),
and bias correction using only significant studies (Simonsohn et al. 2014). It is left for future work
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Simulation set-up

This simulation will compute the coverage probabilities and interval lengths with
a Monte Carlo experiment. The studies’ standard errors, 𝜎𝑖, is drawn from 𝐺 (𝜎)

that approximates the implied distribution from the labor union data sets (Appendix
B1.1). Concretely, 𝐺̂ (𝜎) has the distribution of 𝜎2 that is 𝜒2 distribution with 2
degrees of freedom with support of [0, 4] that is re-scaled such that 𝑆𝑢𝑝𝑝 (𝐺) = [0, 1].
The studies’ coefficients are determined by 𝛽𝑖 = 𝑏𝑖 + 𝜖𝑖, where 𝑏𝑖 ∼ 𝒩 (𝑏0, 𝜎

2
0) and

𝜖𝑖 ∼ 𝒩 (0, 𝜎2
𝑖 ) and is independently drawn. 𝜎0 = 0.3 so that match the degree of

heterogeneity in the labor union data set; 𝑏0 = 0.4 so that the average effect size
( 𝑏0√

2𝜎0
≃ 0.94) is large but reasonable. We consider the data with 30 and 80 published

studies to investigate how sample size affects the reliability of estimates; these are
the range of small and large meta-analysis data also used in other simulation studies
(Duval and Tweedie 2000, Stanley and Doucouliagos 2014).

There will be three sets of data generating processes and four estimation meth-
ods29, as presented in Table 1. We begin by simulating the data without selection
(row 1) and the estimation method without any bias correction (columns (i) and (ii)).
Then, row 2 presents the estimates with uniform selection model in which statisti-
cally insignificant results with 𝑡 = 1.96 thresholds are reported with only 30 percent
of the time (𝜂1 = 1, 𝜂0 = 0), and columns (iii) and (iv) show the uniform MLE
method (Hedges 1992, Hedges and Vevea 2005) that assumes this; row 3 presents
the estimates with extremum selection model in which some very negative results
are reported (𝛽 = −0.1), and columns (v) and (vi) presents the trim-and-fill method
that assumes such selection process. The selection parameters, 𝜂1, 𝜂0, are based on
the estimates from Andrews and Kasy 2019, and the parameter 𝛽 is chosen so that
the coverage probability with no correction is roughly equal between the two selec-
tion models. Finally, columns (vii) and (viii) presents estimation results using the
stem-based method. In this way, with realistic parameter values, this simulation will
assess not only how each method performs given the selection process that the method
assumes, but also how each performs given the process that it does not assume.

to exhaustively investigate the relative merits and demerits of these methods.
29Each estimation has utilized the canned command available in R. The trim-and-fill correction uses

a package in metafor (Viechtbauer 2010), with between-study variance estimated using DerSimonian
and Laird method as proposed in the original paper by Duval and Tweedie 2000. The uniform
correction uses the package weightr (Coburn and Vevea 2017). Note that each algorithm had
implementation difficulties due to non-convergence in trim-and-fill, and non-singularity of Hessian.
In this simulation, each estimation method was evaluated with the data sets that do not have these
estimation problems.
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Results

The main result is that the confidence intervals based on the stem-based correc-
tion method are more reliable across various selection models than those based on
other methods. With estimation with no correction (columns (i) and (ii)), the cov-
erage probabilities are close 0.95 when there is no publication selection but are 0.26
when there is serious omission; with estimation with correction methods, the coverage
probabilities are reasonable when their respective assumed selection process is correct,
they can be low when it is different. With uniform MLE, it is roughly 0.76~0.88 given
uniform selection model, but is 0.13~0.47 with extremum selection; with trim-and-
fill method, the coverage probability is roughly 0.64~0.67 given extremum selection
model, but is 0.43~0.69 with uniform selection; On the other hand, the stem-based
estimates have coverage probabilities of above 0.78 across selection models.

The improvement of robustness of stem-based methods comes with the disadvan-
tage of larger average interval lengths. The simulation underlying the Table 1-1 finds,
on average, roughly 𝑛*

𝑠𝑡𝑒𝑚 = 9 studies for 𝑁 = 30, and 𝑛*
𝑠𝑡𝑒𝑚 = 15 studies for 𝑁 = 80

since the distribution 𝐺̂ (𝜎) has high density of very precise studies.30 Table 1-1 shows
that the average interval length is roughly 1.5 to 2 times larger than the other meth-
ods that use all data points. Nonetheless, when a less permissive estimation methods
such as stem-based methods reject the null hypotheses, one can be more confident
that the conclusion is not driven by particular selection method that the method has
imposed.

30The number of included studies, 𝑛*
𝑠𝑡𝑒𝑚, varies substantially across replication data sets within

the same simulation environment. This heterogeneity of 𝑛*
𝑠𝑡𝑒𝑚 suggests the advantage of stem-

based method relative to the rule-of-thumb approach that uses some fixed number or fraction of
all studies. At the same time, there are many studies with only a few studies included. While
𝑛*
𝑠𝑡𝑒𝑚 may appear to indicate severity of publication selection since 𝑛*

𝑠𝑡𝑒𝑚 = 𝑁 in the absence of
any selection, simulation indicates that the difference in 𝑛*

𝑠𝑡𝑒𝑚 between the data with or without
selection is limited.
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no correction uniform MLE trim-and-fill stem-based
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

no selection 0.94 0.93 0.89 0.78 0.85 0.83 0.95 0.93
[0.25] [0.40] [0.29] [0.42] [0.23] [0.38] [0.55] [0.64]

uniform 0.26 0.63 0.88 0.76 0.43 0.69 0.80 0.85
[0.25] [0.41] [0.31] [0.42] [0.22] [0.37] [0.58] [0.65]

extremum 0.26 0.62 0.13 0.47 0.64 0.67 0.78 0.79
[0.21] [0.33] [0.20] [0.34] [0.20] [0.31] [0.43] [0.48]

𝑁 80 30 80 30 80 30 80 30

Table 1.1: Simulation of bias correction methods across various models

Notes. Table 1-1. reports the coverage probability and average interval length (noted in [])
for the sample in which there are 𝑁 = 80 studies and 𝑁 = 30 studies. The simulation is
based on a 1, 000 replications of the data sets.

1.4.4 Final Remarks

The two most influential bias correction methods with high citations have relied on
specific assumptions about the publication selection process, 𝑃 , and the underlying
distribution31, 𝐹 . Various authors defend their own assumptions against each other:
Duval and Tweedie (2000) justifies the extremum selection model by writing “A num-
ber of authors ... have pointed out that this simple 𝑝-value suppression scenario is
rather simplistic since it fails to acknowledge the role of other criteria, such as size of
study.” Simonsohn (2014) criticizes this approach and writes “In most fields, however,
publication bias is governed by 𝑝-values rather than effect size.” The communication
model of this paper suggests both criticisms are valid: while the selection process
can be approximated by the constant 𝑡-statistics approach, study precisions also have
important impact on publication decisions.

The stem-based bias correction method takes a different approach that uses the
monotonicity property of various selection processes, and makes no assumptions on
the underlying distribution unlike in other methods that assumed normality or sym-
metry. While there are other assumptions in estimation steps to perform well, the

31Even the “trim-and-fill” method’s assumption that 𝐹 is symmetric can be problematic when
economists hope to produce a meta-analysis estimates of elasticity, on which microeconomic theories
impose sign restrictions.
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numerical simulation shows that the method has more adequate coverage probabili-
ties across a range of publication selection processes. In fact, there have been authors
who have suggested to focus on some arbitrary number of most precise studies (Barth
et al. 2013, Stanley et al. 2010). This paper builds on their ideas, proposes a for-
mal theoretical justification of this approach, and develops an algorithm to choose
an optimal number of most precise studies to include. In this way, the method can
provide a meta-analysis tool that has merits to the researchers who believe in either
processes of publication selection and who wish to build consensus among researchers
who believe in different processes.

1.5 Conclusion

There are two thought experiments that question the common interpretation that (i)
the publication bias must arise from the biased motives of journals and researchers,
and that (ii) it will be socially optimal if journals publish all binary conclusions:

(i) if readers prefer publication outlets with full reporting of all results, then a
journal or a researcher can singularly announce that they will publish all re-
sults that they observe. Given the current technology of record keeping and
replication, this statement can be verifiable. Then, the demand for such jour-
nals and researchers must increase, resulting in a higher demand that journals
and researchers are seeking. Yet this deviation from the current communication
equilibrium with publication bias is not observed today.

(ii) if researchers report all results of null hypothesis testing and readers wish to use
any drugs with positive effects but consider only the binary conclusions, then
readers must use the drug even when only 3 percent of studies are positive and
97 percent of studies are negative. This is because, with a conventional null
hypothesis testing, zero effect implies exactly 2.5 percent of positive and 97.5
percent of negative results; thus, when there are many studies, having positive
results more than 2.5 percent of the time implies that the true underlying effect
is positive. Yet ordinary readers will, I think, interpret 97 percent negative
results not as an approval but as a disapproval of the drug.

While most discussions on publication bias have focused on biased incentives of re-
searchers, the model of this paper, along with these thought experiments, suggest
aggregation frictions may play important roles in understanding reasons why publi-
cation bias is prevalent and persistent.
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Publication bias is commonly believed to contradict the unbiasedness of researchers,
which has been put forth as a core ethos of science (Merten 1947). If information can
be fully and costlessly communicated, then conveying all results, as they are, is what
unbiased researchers must do. Yet this paper has shown that aggregation frictions
can explain various kinds of publication bias. The casual expressions such as “excit-
ing” vs “boring” results appear to suggest biases and irrationality among researchers.
This paper is an attempt to provide a rational theory of “interesting results” – they
are results whose binary conclusions can influence the decisions of the readers, when
other results are collectively inconclusive.

The model also suggests that the publication selection process under aggregation
frictions will not only differ from commonly assumed parsimonious processes, but also
cannot have other parsimonious representations. This impossibility arises because (i)
omission will be asymmetric between positive and negative results; (ii) inflation due
to nonlinear thresholds will be difficult to address; and (iii) exact thresholds will
depend critically on primitives – objectives and prior beliefs – that are unobservable
to meta-analysts. Shared across commonly assumed processes and this model is the
prediction that more precisely esimated studies suffer less from publication bias. This
paper extends the existing methods that use arbitrary number of most precise studies
(Stanley et al. 2010, Barth et al. 2013) by developing a formal method to choose an
optimal number of studies to include. In this way, this paper provides a tool that
has merits not only to meta-analysts who believe in different forms of publication
bias, and but also to those who wish to build a consensus by relying not on contested
assumptions but only on regularities common across them.
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Appendix A. Proofs

Appendix A presents the proofs of propositions and some additional analytical results.
Appendix A1 presents some preliminary results to prepare for the main analyses;
Appendix A2 presents proofs of propositions in Section 2.3; Appendix A3 presents
the proof of Section 2.4; Appendix A4 presents the proof of Section 2.5; Appendix
A5 presents an example in Section 2.5; Appendix A6 presents the proof of Section
4.1. For notational ease, let us denote 𝜋 (𝑛1, 𝑛0) as the policymaker’s strategy given
the number of positive and negative results.

A1. Preliminaries

We begin by proving three lemmas that will be relevant throughout the proofs: with
normally distributed random variable, (1) conditional mean of will be increasing in
the mean of its underlying distribution, (2) higher conditional mean implies that the
likelihood ratio will be increasing in the mean of its underlying istribution, and (3)
strategies will be monotone as in Lemma 1 in any fully responsive and fully informa-
tive equilibria. While these properties need not hold in general, normal distribution
imposes sufficient structure to facilitate the analyses of the model.

A1.1. Monotonicity of Conditional Mean

Lemma A1 will show that the conditional mean of normally distributed random vari-
able with any arbitrary condition will equal the ratio of conditional variance to total
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variance. This is a generalization of the proof for truncated normal distribution by
Alecos Papadopoulos (2013).

Lemma A1. Derivative of conditional mean with respect to uncondi-
tional mean. Given any 𝑠𝑚 (𝛽) ≡ P (𝑠 = 1|𝛽), the derivative of conditional mean
E [𝛽𝑠|𝑠𝑚 (𝛽)] of 𝛽 ∼ 𝒩 (𝜇, 𝜎2) with respect to its mean 𝜇 satisfies

𝜕E [𝛽𝑠|𝑠𝑚 (𝛽)]

𝜕𝜇
=

𝑉 𝑎𝑟𝑚
𝜎2

, (1.17)

where 𝑉 𝑎𝑟𝑚 ≡ E {𝛽 − E [𝛽𝑠|𝑠𝑚 (𝛽)]}2 is the variance of the random variable condi-
tional on the message.

Proof. By applying the property of density of normal distribution. We will first
express the conditional mean, then take the derivative by the chain rule, and finally
reorganize the expression to see that (1.17) holds for any 𝑠 (𝛽).

First, by definition, we have

E [𝛽𝑠|𝑠𝑚 (𝛽)] =
𝑓1 (𝜇)

𝑓2 (𝜇)
,

where 𝑓1 (𝜇) ≡
∫︀
𝛽𝑠𝑚 (𝛽)𝜑

(︀
𝛽−𝜇
𝜎

)︀
𝑑𝛽, 𝑓2 (𝜇) ≡

∫︀
𝑠𝑚 (𝛽)𝜑

(︀
𝛽−𝜇
𝜎

)︀
𝑑𝛽, and 𝜑 (·) is the

density of standard normal distribution.

Second, we can apply the chain rule to obtain

𝜕E [𝛽𝑠|𝑠𝑚 (𝛽)]

𝜕𝜇
=

𝑓 ′
1 (𝜇) 𝑓2 (𝜇)− 𝑓1 (𝜇) 𝑓

′
2 (𝜇)

[𝑓2 (𝜇)]
2 , (1.18)

where

𝑓 ′
1 (𝜇) = − 1

𝜎

∫︁
𝛽𝑠𝑚 (𝛽)𝜑′

(︂
𝛽 − 𝜇

𝜎

)︂
𝑑𝛽 and 𝑓 ′

2 (𝜇) = − 1

𝜎

∫︁
𝑠𝑚 (𝛽)𝜑′

(︂
𝛽 − 𝜇

𝜎

)︂
𝑑𝛽.

Third, using the property of normal density that 𝜑′ (︀𝛽−𝜇
𝜎

)︀
= −𝛽−𝜇

𝜎
𝜑
(︀
𝛽−𝜇
𝜎

)︀
, we can

reorganize them as

𝑓 ′
1 (𝜇) =

1

𝜎2

∫︁
𝛽𝑠𝑚 (𝛽) (𝛽 − 𝜇)𝜑

(︂
𝛽 − 𝜇

𝜎

)︂
𝑑𝛽 =

𝑓3 (𝜇)− 𝜇𝑓1 (𝜇)

𝜎2

𝑓 ′
2 (𝜇) =

1

𝜎2

∫︁
𝑠𝑚 (𝛽) (𝛽 − 𝜇)𝜑

(︂
𝛽 − 𝜇

𝜎

)︂
𝑑𝛽 =

𝑓1 (𝜇)− 𝜇𝑓2 (𝜇)

𝜎2
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where 𝑓3 (𝜇) ≡
∫︀
𝛽2𝑠𝑚 (𝛽)𝜑

(︀
𝛽−𝜇
𝜎

)︀
𝑑𝛽. By substituting into the condition (1.18),

𝜕E [𝛽𝑠|𝑠𝑚 (𝛽)]

𝜕𝜇
=

1

𝜎2

(𝑓3 − 𝜇𝑓1) 𝑓2 − 𝑓1 (𝑓1 − 𝜇𝑓2)

𝑓 2
2

=
1

𝜎2

𝑓3𝑓2 − 𝑓 2
1

𝑓 2
2

=
1

𝜎2

[︃
𝑓3
𝑓2

−
(︂
𝑓1
𝑓2

)︂2
]︃

=
1

𝜎2

{︀
E
[︀
𝛽2𝑠𝑚|𝑠 (𝛽)

]︀
− (E [𝛽𝑠𝑚|𝑠 (𝛽)])2

}︀
=

𝑉 𝑎𝑟𝑚
𝜎2

where the last line followed by the definition of variance. �

A1.2. Monotonicity of Mean Likelihood Ratios

Lemma A2. will show that the messages with higher conditional mean will also be
more likely to be sent when the mean of underlying distribution increases. This
monotonicity of likelihood ratio is not equivalent to the standard Monotone Likeli-
hood Ratio Property of normal distribution with known variance, since the standard
statement is concerned with each value whereas the following lemma addresses the
average value. This property is key to deriving the Lemma 1 monotonicity of equi-
librium strategies: the analogue of Lemma 1 will not hold when the standard errors
are heterogeneous and unknown.

Lemma A2. Equivalence of change in likelihood ratio and mean ranking.
Consider two strategies, 𝑠𝑚 (𝛽) and 𝑠𝑚̃ (𝛽), given 𝛽 ∼ 𝒩 (𝜇, 𝜎2) and the associated
likelihood ratio of each messsages, 𝐿𝑅 (𝜇) ≡ P(𝑚|𝜇)

P(𝑚̃|𝜇) . Then, 𝐿𝑅′ (𝜇) > 0 if and only if
E [𝛽𝑠|𝑠𝑚 (𝛽)] > E [𝛽𝑠|𝑠𝑚̃ (𝛽)].

Proof. By definition,

𝐿𝑅 (𝜇) ≡
∫︀
𝑠𝑚 (𝛽)𝜑

(︀
𝛽−𝜇
𝜎

)︀
𝑑𝛽∫︀

𝑠𝑚̃ (𝛽)𝜑
(︀
𝛽−𝜇
𝜎

)︀
𝑑𝛽
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By chain rule and the property of normal density that 𝜑′ (︀𝛽−𝜇
𝜎

)︀
= −𝛽−𝜇

𝜎
𝜑
(︀
𝛽−𝜇
𝜎

)︀
,

𝐿𝑅′ (𝜇) ≡ − 1

𝜎

∫︀
𝑠𝑚𝜑

′ ×
∫︀
𝑠𝑚̃𝜑−

∫︀
𝑠𝑚𝜑×

∫︀
𝑠𝑚̃𝜑

′(︀∫︀
𝑠𝑚̃𝜑

)︀2
=

∫︀
[𝛽 − 𝜇] 𝑠𝑚𝜑×

∫︀
𝑠𝑚̃𝜑−

∫︀
𝑠𝑚𝜑×

∫︀
[𝛽 − 𝜇] 𝑠𝑚̃𝜑(︀

𝜎
∫︀
𝑠𝑚̃𝜑

)︀2
=

∫︀
𝛽𝑠𝑚𝜑×

∫︀
𝑠𝑚̃𝜑−

∫︀
𝑠𝑚𝜑×

∫︀
𝛽𝑠𝑚̃𝜑(︀

𝜎
∫︀
𝑠𝑚̃𝜑

)︀2
Therefore,

𝐿𝑅′ (𝜇) > 0 ⇔
∫︁

𝛽𝑠𝑚𝜑×
∫︁

𝑠𝑚̃𝜑 >

∫︁
𝑠𝑚𝜑×

∫︁
𝛽𝑠𝑚̃𝜑

⇔
∫︀
𝛽𝑠𝑚𝜑∫︀
𝑠𝑚𝜑

>

∫︀
𝛽𝑠𝑚̃𝜑∫︀
𝑠𝑚̃𝜑

⇔E [𝛽𝑠|𝑠𝑚 (𝛽)] > E [𝛽𝑠|𝑠𝑚̃ (𝛽)]

where the last line followed by the definition of conditional mean. �

A1.3. Monotonicity of Equilibrium Strategies

Lemma 1 in Section 2.2 claims that, for any 𝑐 and 𝜎𝑖 = 𝜎, the strategies will be
monotone if the equilibrium is fully responsive and fully informative: (i) researchers
will apply threshold strategies and (ii) the policymaker’s probability of policy imple-
mentation will be increasing in positive results and decreasing in negative results.

Proof. Since the result of monotonicity of policymaker’s strategy will be used for
that of researcher’s strategy, we will first derive the result of policymaker’s and then
that of researchers’.

(i) Policymaker’s strategy: suppose 𝜋* (𝑛1, 𝑛0) > 0 for some 𝑛1, 𝑛0. Then, by
the policymaker’s optimization condition, E [𝑏|𝑛1, 𝑛0] ≥ 𝑐. By full informativeness and
Bayes’ rule, E [𝑏|𝑛1 + 𝑘, 𝑛0] > E [𝑏|𝑛1, 𝑛0] for 𝑘 ∈ {1, 2} and thus, E [𝑏|𝑛1 + 𝑘, 𝑛0] ≥ 𝑐.
By the policymaker’s optimization, 𝜋* (𝑛1 + 𝑘, 𝑛0) > 0 . Analogous argument holds
for 𝜋* (𝑛1, 𝑛0) < 1 ⇒ 𝜋* (𝑛1, 𝑛0 + 𝑘) = 0.

(ii) Researchers’ strategies: by the Bayes’ rule, full responsiveness, and domain
of signals. The proof consists of three steps: the first step organizes the indifference
conditions, and the second step shows the existence of solution, and the third step
shows the uniqueness.

Step 1. indifference conditions: given any policymaker’s strategy 𝜋 (𝑚𝑖,𝑚−𝑖) and
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another researcher’s strategy 𝑠 (𝛽−𝑖), the expected welfare of reporting message 𝑚𝑖

given the signal 𝛽𝑖 can be written as

𝑊 (𝑚𝑖, 𝛽𝑖) =
∑︁
𝑚−𝑖

𝜋 (𝑚𝑖,𝑚−𝑖)P (𝑚−𝑖|𝛽𝑖)

{︃
1
𝜎2

1
𝜎2
𝑏
+ 2

𝜎2

[𝛽𝑖 + E [𝛽−𝑖|𝑚−𝑖, 𝛽𝑖]]− 𝑐

}︃

by the objective (3.1).
At some thresholds, 𝛽 and 𝛽, in which the researcher will be willing to switch the

messages, the indifference conditions 𝑊
(︀
1, 𝛽
)︀
= 𝑊

(︀
∅, 𝛽
)︀

and 𝑊
(︀
0, 𝛽
)︀
= 𝑊

(︀
∅, 𝛽
)︀

must be satisfied. Rewriting, for each threshold, the conditions are,

𝐼
(︀
1, ∅, 𝛽

)︀
= 0 and 𝐼

(︀
∅, 0, 𝛽

)︀
= 0,

where
𝐼 (𝑚𝑖,𝑚

′
𝑖, 𝛽𝑖) ≡

∑︁
𝑚−𝑖

𝑝 (𝑚𝑖,𝑚
′
𝑖|𝑚−𝑖) 𝑞 (𝑚−𝑖|𝛽𝑖) 𝑟 (𝛽𝑖|𝑚−𝑖) ,

where

𝑝 (𝑚𝑖,𝑚
′
𝑖|𝑚−𝑖) ≡ 𝜋 (𝑚𝑖,𝑚−𝑖)− 𝜋 (𝑚′

𝑖,𝑚−𝑖)

𝑞 (𝑚−𝑖|𝛽𝑖) ≡ P (𝑚−𝑖|𝛽𝑖)

𝑟 (𝛽𝑖|𝑚−𝑖) ≡ 𝛽𝑖 + E [𝛽−𝑖|𝑚−𝑖, 𝛽𝑖]− 𝑐

(︂
2 +

𝜎2

𝜎2
𝑏

)︂
By full responsiveness, there must exist some 𝑚−𝑖,𝑚

′
−𝑖 such that 𝜋 (1,𝑚−𝑖) > 𝜋 (∅,𝑚−𝑖)

and 𝜋
(︀
∅,𝑚′

−𝑖

)︀
> 𝜋

(︀
0,𝑚′

−𝑖

)︀
. Thus, these conditions are not vacuous. The meaning

of messages is, without loss of generality, assigned to be consistent with the set-up.
Step 2. existence: for all 𝑚−𝑖, another researcher’s strategy, 𝑠 (𝛽−𝑖), by Lemma

A1, there exist some 𝛽′
𝑖 such that 𝑟 (𝛽′

𝑖|𝑚−𝑖) < 0 and some other 𝛽′′
𝑖 such that

𝑟 (𝛽′′
𝑖 |𝑚−𝑖) > 0. Since 𝑝 (1, ∅|𝑚−𝑖) > 0 and 𝑞 (𝑚−𝑖|𝛽𝑖) > 0 and 𝑞 (·) and 𝑟 (·) are

continuous functions of 𝛽𝑖, there must exist some 𝛽 and 𝛽 that satisfy the indifference
condition by intermediate value theorem.

Step 3. uniqueness: to show that there is a unique value that satisfies an indif-
ference condition, we first show that 𝑝 (𝑚𝑖,𝑚

′
𝑖|𝑚−𝑖) = 0 for at least 1 𝑚−𝑖 and then

show 𝜕𝐼 (𝑚𝑖,𝑚
′
𝑖, 𝛽𝑖) /𝜕𝛽𝑖 > 0 when evaluated at 𝐼 (𝑚𝑖,𝑚

′
𝑖, 𝛽𝑖) = 0 so that there is a

unique value of 𝛽𝑖 that satisfies this.

∙ 𝑝 (𝑚𝑖,𝑚
′
𝑖|𝑚−𝑖) = 0 for at least 1 𝑚−𝑖: first, note that 𝜋 (1, 1) = 1 and 𝜋 (0, 0) =

0. To see why, suppose 𝜋 (1, 1) < 1. Then by policymaker’s optimization,
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𝜋 (1, ∅) = 𝜋 (∅, 1) = 0, which then implies 𝜋 (0,𝑚−𝑖) = 0 for all 𝑚−𝑖 and
𝜋 (𝑚𝑖, 0) = 0 for all 𝑚𝑖, contradicting full responsiveness. Second, we consider
three cases of 𝜋 (∅, ∅):

– when 𝜋 (∅, ∅) = 1, 𝜋 (1, ∅) = 𝜋 (∅, 1) = 1 by policymaker’s monotonic-
ity. Thus, 𝑝 (1, ∅|∅) = 𝑝 (1, ∅|1) = 0. Moreover, by full responsiveness
for another researcher, either {𝜋 (0, ∅) , 𝜋 (0, 1)} = {0, 𝜋} with 𝜋 > 0 or
{𝜋 (0, ∅) , 𝜋 (0, 1)} = {𝜋, 1} with 𝜋 < 1. If former, 𝑝 (∅, 0|0) = 0 another
researcher and if later, 𝑝 (∅, 0|1) = 0 for the researcher himself. In this way,
𝑝 (𝑚𝑖,𝑚

′
𝑖|𝑚−𝑖) = 0 for at least 1 𝑚−𝑖 for both {𝑚𝑖,𝑚

′
𝑖} ∈ {{1, ∅} , {∅, 0}}

in any fully responsive equilibria.

– when 𝜋 (∅, ∅) = 0, a symmetric argument analogous to above applies.

– when 𝜋 (∅, ∅) = 𝜋 for 𝜋 ∈ (0, 1), 𝜋 (1, ∅) = 𝜋 (∅, 1) = 1 and 𝜋 (0, ∅) =

𝜋 (∅, 0) = 0 by policymaker’s monotonicity. Thus, 𝑝 (1, ∅|1) = 0 and
𝑝 (∅, 0|0) = 0.

∙ 𝜕𝐼 (𝑚𝑖,𝑚
′
𝑖, 𝛽𝑖) /𝜕𝛽𝑖 > 0 at 𝐼 (𝑚𝑖,𝑚

′
𝑖, 𝛽𝑖) = 0: for each {𝑚𝑖,𝑚

′
𝑖} ∈ {{1, ∅} , {∅, 0}},

let us consider two cases:

– when 𝑝 (𝑚𝑖,𝑚
′
𝑖|𝑚−𝑖) = 0 for 2 values of 𝑚−𝑖: denoting 𝑚*

−𝑖 as the value
such that 𝑝

(︀
𝑚𝑖,𝑚

′
𝑖|𝑚*

−𝑖

)︀
> 0, the indifference condition is 𝑝

(︀
𝑚𝑖,𝑚

′
𝑖|𝑚*

−𝑖

)︀
𝑟
(︀
𝛽𝑖|𝑚*

−𝑖

)︀
=

0. 𝑟 (𝛽𝑖|𝑚−𝑖) is strictly increasing.

– when 𝑝 (𝑚𝑖,𝑚
′
𝑖|𝑚−𝑖) = 0 for only 1 value of 𝑚−𝑖: denoting 𝑚*

−𝑖,𝑚**
−𝑖 as the

value such that 𝑝 (𝑚𝑖,𝑚
′
𝑖|𝑚−𝑖) > 0,

𝑝
(︀
𝑚𝑖,𝑚

′
𝑖|𝑚*

−𝑖

)︀
𝑞
(︀
𝑚*

−𝑖|𝛽𝑖

)︀
𝑟
(︀
𝛽𝑖|𝑚*

−𝑖

)︀
+𝑝
(︀
𝑚𝑖,𝑚

′
𝑖|𝑚**

−𝑖

)︀
𝑞
(︀
𝑚**

−𝑖|𝛽𝑖

)︀
𝑟
(︀
𝛽𝑖|𝑚**

−𝑖

)︀
= 0,

where 𝑞 (𝑚−𝑖|𝛽𝑖) ≡ 𝑞(𝑚−𝑖|𝛽𝑖)

𝑞(𝑚*
−𝑖|𝛽𝑖)+𝑞(𝑚**

−𝑖|𝛽𝑖)
is the normalized probability. The

derivative of the indifference condition with respect to 𝛽𝑖 is

𝑝
(︀
𝑚𝑖,𝑚

′
𝑖|𝑚*

−𝑖

)︀
𝑞
(︀
𝑚*

−𝑖|𝛽𝑖

)︀
𝑟′
(︀
𝛽𝑖|𝑚*

−𝑖

)︀
+ 𝑝

(︀
𝑚𝑖,𝑚

′
𝑖|𝑚**

−𝑖

)︀
𝑞
(︀
𝑚**

−𝑖|𝛽𝑖

)︀
𝑟′
(︀
𝛽𝑖|𝑚**

−𝑖

)︀
+𝑝
(︀
𝑚𝑖,𝑚

′
𝑖|𝑚*

−𝑖

)︀
𝑞′
(︀
𝑚*

−𝑖|𝛽𝑖

)︀
𝑟
(︀
𝛽𝑖|𝑚*

−𝑖

)︀
+ 𝑝

(︀
𝑚𝑖,𝑚

′
𝑖|𝑚**

−𝑖

)︀
𝑞′
(︀
𝑚**

−𝑖|𝛽𝑖

)︀
𝑟
(︀
𝛽𝑖|𝑚**

−𝑖

)︀
* by Lemma A1, 𝑟′

(︀
𝛽𝑖|𝑚*

−𝑖

)︀
> 0 and 𝑟′

(︀
𝛽𝑖|𝑚**

−𝑖

)︀
> 0.

* by Lemma A1 and full responsiveness, 𝑟
(︀
𝛽𝑖|𝑚*

−𝑖

)︀
< 0 and 𝑟

(︀
𝛽𝑖|𝑚**

−𝑖

)︀
>

0 must hold at the indifference condition 𝐼 (𝑚𝑖,𝑚
′
𝑖, 𝛽𝑖) = 0 since all

other terms are positive (the meaning of 𝑚*
−𝑖,𝑚**

−𝑖 is without loss of
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generality.) By Lemma A2, 𝑞′
(︀
𝑚*

−𝑖|𝛽𝑖

)︀
< 0 and 𝑞′

(︀
𝑚**

−𝑖|𝛽𝑖

)︀
> 0:

higher mean implies higher relative likelihood of message 𝑚**
−𝑖 sent by

another researcher.
Since all terms are thus positive, 𝜕𝐼 (𝑚𝑖,𝑚

′
𝑖, 𝛽𝑖) /𝜕𝛽𝑖 > 0 at 𝐼 (𝑚𝑖,𝑚

′
𝑖, 𝛽𝑖) =

0.

Since 𝑝 (𝑚𝑖,𝑚
′
𝑖|𝑚−𝑖) = 0 at least for 1 value of 𝑚−𝑖, we saw that the

indifference condition must be increasing in 𝛽𝑖 when it is satisfied so that
the solution will be unique.

�

A2. Proofs of 2.3 Omission of Insignificant Results

This sub-Section presents the proofs of propositions in Section 2.2. A2.1 proves
Proposition 1.1; A2.2 proves Proposition 1.2; A2.3 proves Proposition 1.3.

A2.1. Proof of Proposition 1.1

Proposition 1.1 claims that there exists an equilibrium in which the policymaker
adopts a supermajoritarian decision rule and the researchers apply a threshold that
is asymmetric such that the estimates underlying reported studies will have an up-
ward bias. The proof will show first that the policymaker’s strategy is a part of the
equilibrium, and second the researchers’ strategies are also a part of the equilibrium.

(i) Policymaker’s strategy: If the decision rule (1.2) is consistent with policy-
maker’s optimization, we need that E [𝑏 | 𝑛1 > 𝑛0] ≥ 0 and E [𝑏 | 𝑛1 ≤ 𝑛0] ≤ 0 given
thresholds (1.3). This holds because the researchers’ strategy must satisfy the indif-
ference condition at the margin whereas the policymaker assess whether the condition
holds on average. To see why E [𝑏 | 𝑛1 > 𝑛0] ≥ 0, note that E [𝑏 | 𝑛1 = 1, 𝑛0 = 0] ≥ 0

since

E [𝑏 | 𝑚1 = 1,𝑚2 = ∅] =
1
𝜎2

1
𝜎2
𝑏
+ 2

𝜎2

E
[︀
𝛽1 + E

[︀
𝛽2 | 𝛽 > 𝛽2 ≥ 𝛽, 𝛽1

]︀
|𝛽1 ≥ 𝛽

]︀
>

1
𝜎2

1
𝜎2
𝑏
+ 2

𝜎2

{︀
𝛽 + E

[︀
𝛽2 | 𝛽 > 𝛽2 ≥ 𝛽, 𝛽1 = 𝛽

]︀}︀
= 0,
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where the last equality holds due to the researchers’ indifference condition. Analogous
arguments also hold for E [𝑏 | 𝑛1 ≤ 𝑛0] ≤ 0,showing (1.2) is an equilibrium.

(ii) Researchers’ strategy: given the supermajoritarian voting rule in (1.2),
the equilibrium thresholds will (1) be unique and symmetric between researchers, (2)
lead to some omissions (𝛽 ≥ 0 > 𝛽), (3) be asymmetric between the thresholds for
positive vs negative results (𝛽 < −𝛽), so that together will (4) have an upward bias
of reported studies E [𝛽𝑖|𝑚𝑖 ̸= ∅] > 0. The following proof shows these results in turn.

(1) uniqueness of symmetric solution: given 𝜋* as in (1.2), the thresholds will be
unique since the researchers’ strategies are moderate strategic substitutes of

one another. When the best response function satisfies
𝜕𝛽𝑖(𝛽𝑗)

𝜕𝛽𝑗
∈ (−1, 0), there

can be at most one value that satisfies the equlibrium conditions and will be
symmetric between researchers so that 𝛽𝑖 = 𝛽𝑗 = 𝛽 and 𝛽𝑖 = 𝛽𝑗 = 𝛽. The

following Lemma A3 shows
𝜕𝛽𝑖(𝛽𝑗)

𝜕𝛽𝑗
∈ (−1, 0):

Lemma A3. (Moderate Strategic Substitution). Define 𝛽𝑖

(︀
𝛽𝑗

)︀
as the

best response to some threshold 𝛽𝑗 that satisfies the equilibrium conditions:

𝛽𝑖 + E
[︁
𝛽𝑗|𝛽𝑗 > 𝛽𝑗 ≥ 𝛽𝑗, 𝛽𝑖 = 𝛽𝑖

]︁
= 0

𝛽𝑗 + E
[︁
𝛽𝑖|𝛽𝑖 ≥ 𝛽𝑖, 𝛽𝑗 = 𝛽𝑗

]︁
= 0

Then

−1 <
𝜕𝛽𝑖

(︀
𝛽𝑗

)︀
𝜕𝛽𝑗

< 0

Proof. By totally differentiating the equilibrium conditions. Writing 𝐾𝑗 =
𝜕E[𝛽𝑗 |𝛽𝑗>𝛽𝑗≥𝛽𝑗 ,𝛽𝑖=𝛽𝑖]

𝜕𝛽𝑗
, 𝐾𝑗 =

𝜕E[𝛽𝑗 |𝛽𝑗>𝛽𝑗≥𝛽𝑗 ,𝛽𝑖=𝛽𝑖]
𝜕𝛽𝑗

, 𝐾𝑖 =
𝜕E[𝛽𝑗 |𝛽𝑗>𝛽𝑗≥𝛽𝑗 ,𝛽𝑖=𝛽𝑖]

𝜕𝛽𝑖
, and

𝐿𝑗 =
𝜕E[𝛽𝑖|𝛽𝑖≥𝛽𝑖,𝛽𝑗=𝛽𝑗]

𝜕𝛽𝑗
and 𝐿𝑖 =

𝜕E[𝛽𝑖|𝛽𝑖≥𝛽𝑖,𝛽𝑗=𝛽𝑗]
𝜕𝛽𝑖

, the system of derivatives sat-
isfy: [︃

1 +𝐾𝑖 𝐾𝑗

𝐿𝑖 1 + 𝐿𝑗

]︃⎡⎣ 𝜕𝛽𝑖

𝜕𝛽𝑗
𝜕𝛽𝑗

𝜕𝛽𝑗

⎤⎦ =

[︃
−𝐾𝑗

0

]︃

Inverting the matrix, we have⎡⎣ 𝜕𝛽𝑖

𝜕𝛽𝑗
𝜕𝛽𝑗

𝜕𝛽𝑗

⎤⎦ =
1(︀

1 +𝐾𝑖

)︀ (︁
1 + 𝐿𝑗

)︁
−𝐾𝑗𝐿𝑖

[︃
1 + 𝐿𝑗 −𝐿𝑖

−𝐾𝑗 1 +𝐾𝑖

]︃[︃
−𝐾𝑗

0

]︃
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Thus,

𝜕𝛽𝑖

𝜕𝛽𝑗

=
−𝐾𝑗

(︁
1 + 𝐿𝑗

)︁
(︀
1 +𝐾𝑖

)︀ (︁
1 + 𝐿𝑗

)︁
−𝐾𝑗𝐿𝑖

By the definition of truncated distribution, 𝐾𝑖 +𝐾𝑗 +𝐾𝑗 = 1 and 𝐿𝑖 +𝐿𝑗 = 1.
Moreover, all terms, 𝐾𝑗, 𝐾𝑗, 𝐾𝑖, 𝐿𝑗, 𝐿𝑖, are positive and less than 1 by Lemma
A1. Thus,

– 𝜕𝛽𝑖

𝜕𝛽𝑗
< −1 since 𝐾𝑗

(︁
1 + 𝐿𝑗

)︁
<
(︀
1 +𝐾𝑖

)︀ (︁
1 + 𝐿𝑗

)︁
−𝐾𝑗𝐿𝑖⇔

(︀
1−𝐾𝑖 −𝐾𝑗

)︀ (︁
1− 𝐿𝑗

)︁
<(︀

1 +𝐾𝑖 −𝐾𝑗

)︀ (︁
1 + 𝐿𝑗

)︁
– 𝜕𝛽𝑖

𝜕𝛽𝑗
< 0 since

(︀
1 +𝐾𝑖

)︀ (︁
1 + 𝐿𝑗

)︁
> 𝐾𝑗𝐿𝑖. �

Given that 𝛽𝑖 = 𝛽𝑗 = 𝛽 and 𝛽𝑖 = 𝛽𝑗 = 𝛽, we will be able to substitute the
threshold values to derive the results.

(2) omission 𝛽 > 0 > 𝛽: towards contradiction, suppose 𝛽 ≤ 0. By the indifference
condition (1.4) and by (1) 𝛽𝑖 = 𝛽𝑗 = 𝛽, 𝛽 = −E

[︀
𝛽−𝑖|𝛽−𝑖 ∈ [𝛽, 𝛽), 𝛽𝑖 = 𝛽

]︀
> 0

since E
[︀
𝛽−𝑖|𝛽−𝑖 < 𝛽

]︀
< 0 regardless of other conditions. Because this contra-

dicts the assumption, 𝛽 ≥ 0. Substituting this into (1.5), 𝛽 = −E
[︀
𝛽−𝑖|𝛽−𝑖 > 𝛽, 𝛽𝑖 = 𝛽

]︀
<

0.

(3) asymmetry 𝛽 < −𝛽: towards contradiction, suppose 𝛽 ≥ −𝛽 given 𝛽 ≥ 0.
Then, 𝛽 = −E

[︀
𝛽−𝑖|𝛽−𝑖 ∈ [𝛽, 𝛽), 𝛽𝑖 = 𝛽

]︀
< 0 because the combinations of con-

ditions 𝛽−𝑖 ∈ [𝛽, 𝛽) by (1) and 𝛽𝑖 = 𝛽 imply E
[︀
𝛽−𝑖|𝛽−𝑖 ∈ [𝛽, 𝛽), 𝛽𝑖 = 𝛽

]︀
> 0.

Since this contradicts the assumption, 𝛽 < −𝛽 must hold.

(5) bias of estimates underlying reported studies E [𝛽𝑖|𝑚𝑖 ̸= ∅] > 0: the following
algebraic argument formally shows that the asymmetry in (1.3) leads to the
upward bias:

E [𝛽𝑖|𝑚𝑖 ̸= ∅]

=P [𝑚𝑖 = 1|𝑚𝑖 ̸= ∅]E [𝛽𝑖|𝑚𝑖 = 1] + P [𝑚𝑖 = 0|𝑚𝑖 ̸= ∅]E [𝛽𝑖|𝑚𝑖 = 0]

=
1− Φ

(︀
𝛽
)︀

1− Φ
(︀
𝛽
)︀
+ Φ

(︀
𝛽
)︀√︁𝜎2 + 𝜎2

𝑏

𝜑
(︀
𝛽
)︀

1− Φ
(︀
𝛽
)︀ − Φ

(︀
𝛽
)︀

1− Φ
(︀
𝛽
)︀
+ Φ

(︀
𝛽
)︀√︁𝜎2 + 𝜎2

𝑏

𝜑
(︀
𝛽
)︀

Φ
(︀
𝛽
)︀

=
√︁
𝜎2 + 𝜎2

𝑏

𝜑
(︀
𝛽
)︀
− 𝜑

(︀
𝛽
)︀

1− Φ
(︀
𝛽
)︀
+ Φ

(︀
𝛽
)︀ > 0
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Since both the policymaker and researchers’ strategies satisfy the indifference con-
ditions given the strategy of one another, and beliefs are consistent with the Bayes’
rule, the strategies in Proposition 1.1. constitutes an equilibrium. �

A2.2. Proof of Proposition 1.2

Proposition 1.2 claims that there are both (1) an equilibrium with symmetric omis-
sion with policymaker’s decision rule, 𝜋 (𝑛0 = 𝑛1) =

1
2
, and (2) an equilibrium with no

omission with policymaker’s decision rule, 𝜋 (𝑛1, 𝑛0) = 1 (𝑛1 = 2) and 𝜋 (𝑛1 = 1, 𝑛0 = 0) ∈
(0, 1]. We will prove this for the one with (1) symmetric omission, and then with (2)
no omission.

(1) Proof for equilibrium with symmetric omission. The policymaker’s
strategy is an equilibrium because, given 𝑛0 = 𝑛1, the researcher will be indifferent
between implementing or not implementing the policy. The researchers’ strategies
will constitute an equilibrium because, given 𝜋 (𝑛0 = 𝑛1) = 1

2
, the criteria for the

thresholds 𝛽 and 𝛽 will be symmetric with one another.
(i) Policymaker’s strategy: For the policymaker’s strategies to be optimal, it

is necessary that E [𝑏 | 𝑛1 = 𝑛0] = 0; moreover, this condition is also sufficient due to
the monotonicity as in Lemma 1. We consider two cases, 𝑛1 = 𝑛0 = 0 and 𝑛1 = 𝑛0 = 1

in turn given the researchers’ strategies such that 𝛽 = −𝛽:

∙ Case of 𝑛1 = 𝑛0 = 0: by Bayes’ rule,

E [𝑏 | 𝑛1 = 𝑛0 = 0] =
1
𝜎2

1
𝜎2
𝑏
+ 2

𝜎2

E
[︀
𝛽1 + 𝛽2|𝛽1, 𝛽2 ∈

[︀
𝛽, 𝛽

]︀]︀
– When 𝛽1 = Δ,

E
[︀
𝛽1 + 𝛽2|𝛽1 = Δ, 𝛽2 ∈

[︀
𝛽, 𝛽

]︀]︀
= 𝜑

(︂
Δ

𝜎

)︂∫︁ 𝛽

𝛽

(Δ + 𝛽2)𝜑

(︂
𝛽2 − 𝜌Δ

𝜎

)︂
𝑑𝛽2

– When 𝛽1 = −Δ,

E
[︀
𝛽1 + 𝛽2|𝛽1 = −Δ, 𝛽2 ∈

[︀
𝛽, 𝛽

]︀]︀
= 𝜑

(︂
−Δ

𝜎

)︂∫︁ 𝛽

𝛽

(−Δ+ 𝛽2)𝜑

(︂
𝛽2 + 𝜌Δ

𝜎

)︂
𝑑𝛽2

– Since 𝛽1 is symmetrically distributed, 𝜑
(︀
Δ
𝜎

)︀
= 𝜑

(︀
−Δ

𝜎

)︀
. Using the two

expressions above, we have

E
[︀
𝛽1 + 𝛽2|𝛽1 = Δ, 𝛽2 ∈

[︀
𝛽, 𝛽

]︀]︀
+ E

[︀
𝛽1 + 𝛽2|𝛽1 = −Δ, 𝛽2 ∈

[︀
𝛽, 𝛽

]︀]︀
= 0
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for the following two reasons by 𝛽 = −𝛽:

* on the term multiplied by Δ,

∫︁ 𝛽

𝛽

Δ

[︂
𝜑

(︂
𝛽2 − 𝜌Δ

𝜎

)︂
− 𝜑

(︂
𝛽2 + 𝜌Δ

𝜎

)︂]︂
𝑑𝛽2

=Δ

{︂[︂
Φ

(︂
𝛽 − 𝜌Δ

𝜎

)︂
− Φ

(︂
𝛽 − 𝜌Δ

𝜎

)︂]︂
−
[︂
Φ

(︂
𝛽 + 𝜌Δ

𝜎

)︂
− Φ

(︂
𝛽 + 𝜌Δ

𝜎

)︂]︂}︂
=Δ

{︂[︂
Φ

(︂
𝛽 − 𝜌Δ

𝜎

)︂
− Φ

(︂
𝛽 − 𝜌Δ

𝜎

)︂]︂
−
[︂
Φ

(︂
−
𝛽 − 𝜌Δ

𝜎

)︂
− Φ

(︂
−𝛽 − 𝜌Δ

𝜎

)︂]︂}︂
=Δ

{︂[︂
Φ

(︂
𝛽 − 𝜌Δ

𝜎

)︂
− Φ

(︂
𝛽 − 𝜌Δ

𝜎

)︂]︂
−
[︂
1− Φ

(︂
𝛽 − 𝜌Δ

𝜎

)︂
−
[︂
1− Φ

(︂
𝛽 − 𝜌Δ

𝜎

)︂]︂]︂}︂
=0

* on the term multiplied by 𝛽2,∫︁ 𝛽

𝛽

𝛽2

[︂
𝜑

(︂
𝛽2 − 𝜌Δ

𝜎

)︂
− 𝜑

(︂
𝛽2 + 𝜌Δ

𝜎

)︂]︂
𝑑𝛽2

=

∫︁ 𝛽

0

𝛽2

[︂
𝜑

(︂
𝛽2 − 𝜌Δ

𝜎

)︂
− 𝜑

(︂
𝛽2 + 𝜌Δ

𝜎

)︂]︂
𝑑𝛽2

+

∫︁ 0

𝛽

𝛽2

[︂
𝜑

(︂
𝛽2 − 𝜌Δ

𝜎

)︂
− 𝜑

(︂
𝛽2 + 𝜌Δ

𝜎

)︂]︂
𝑑𝛽2

=

∫︁ 𝛽

0

𝛽2

[︂
𝜑

(︂
𝛽2 − 𝜌Δ

𝜎

)︂
− 𝜑

(︂
𝛽2 + 𝜌Δ

𝜎

)︂]︂
𝑑𝛽2

−
∫︁ 𝛽

0

𝛽2

[︂
𝜑

(︂
−𝛽2 − 𝜌Δ

𝜎

)︂
− 𝜑

(︂
−𝛽2 + 𝜌Δ

𝜎

)︂]︂
𝑑𝛽2

=

∫︁ 𝛽

0

𝛽2{
[︂
𝜑

(︂
𝛽2 − 𝜌Δ

𝜎

)︂
− 𝜑

(︂
𝛽2 + 𝜌Δ

𝜎

)︂]︂
−
[︂
𝜑

(︂
−𝛽2 − 𝜌Δ

𝜎

)︂
− 𝜑

(︂
−𝛽2 + 𝜌Δ

𝜎

)︂]︂
}𝑑𝛽2

=0

where the last line followed by 𝜑
(︀
𝛽2+𝜌Δ

𝜎

)︀
= 𝜑

(︀
−𝛽2+𝜌Δ

𝜎

)︀
and 𝜑

(︀
𝛽2−𝜌Δ

𝜎

)︀
=

𝜑
(︀
−𝛽2−𝜌Δ

𝜎

)︀
.

∙ Case of 𝑛1 = 𝑛0 = 1: by Bayes’ rule, without loss of generality, let us consider
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𝑚1 = 1 and 𝑚2 = 0.

E [𝑏 | 𝑛1 = 𝑛0 = 1] =
1
𝜎2

1
𝜎2
𝑏
+ 2

𝜎2

E
[︀
𝛽1 + 𝛽2|𝛽1 ≥ 𝛽, 𝛽2 ≤ 𝛽

]︀
Note that we can express E

[︀
𝛽1 + 𝛽2|𝛽1 ≥ 𝛽, 𝛽2 ≤ 𝛽

]︀
as

∫︁ 𝛽

−∞

∫︁ −𝛽2

𝛽

[𝛽1 + 𝛽2]𝜑 (𝛽1, 𝛽2) 𝑑𝛽1𝑑𝛽2 +

∫︁ ∞

𝛽

∫︁ 𝛽

−𝛽1

[𝛽1 + 𝛽2]𝜑 (𝛽1, 𝛽2) 𝑑𝛽2𝑑𝛽1

By the change of variable using the symmetry of distribution,∫︁ 𝛽

−∞

∫︁ −𝛽2

𝛽

[𝛽1 + 𝛽2]𝜑 (𝛽1, 𝛽2) 𝑑𝛽1𝑑𝛽2 +

∫︁ ∞

𝛽

∫︁ 𝛽

−𝛽2

[𝛽1 + 𝛽2]𝜑 (𝛽1, 𝛽2) 𝑑𝛽1𝑑𝛽2

At each 𝛽2 = Δ,∫︁ −Δ

𝛽

[𝛽1 +Δ]𝜑

(︂
𝛽1 − 𝜌Δ

𝜎

)︂
𝑑𝛽1 +

∫︁ 𝛽

−Δ

[Δ + 𝛽1]𝜑

(︂
𝛽1 − 𝜌Δ

𝜎

)︂
𝑑𝛽1

=

∫︁ −Δ

𝛽

{[𝛽1 +Δ]− [Δ + 𝛽1]}𝜑
(︂
𝛽1 − 𝜌Δ

𝜎

)︂
𝑑𝛽1

=0

Thus, taking together, E
[︀
𝛽1 + 𝛽2|𝛽1 ≥ 𝛽, 𝛽2 ≤ 𝛽

]︀
= 0, satisfying the policy-

maker’s indifference condition. �

(ii) Researchers’ strategy: given the policymaker’s strategy, the researchers’ in-
difference conditions are given by

𝛽 +
1

2

∑︁
𝑚−𝑖∈{0,∅}

{︀
P
(︀
𝑚−𝑖|𝛽,𝑚−𝑖 ∈ {0, ∅}

)︀
E
[︀
𝛽−𝑖|𝑚−𝑖, 𝛽

]︀}︀
= 0

𝛽 +
1

2

∑︁
𝑚−𝑖∈{0,1}

{︀
P
(︀
𝑚−𝑖|𝛽,𝑚−𝑖 ∈ {0, 1}

)︀
E
[︀
𝛽−𝑖|𝑚−𝑖, 𝛽

]︀}︀
= 0

Applying the formula of truncated normal distribution,

𝛽𝑖 +
1

2
E
[︀
𝛽−𝑖|𝛽−𝑖 ≤ 𝛽−𝑖, 𝛽𝑖

]︀
= 0

𝛽𝑖 +
1

2
E
[︁
𝛽−𝑖|𝛽−𝑖 ≥ 𝛽−𝑖, 𝛽𝑖

]︁
= 0

Note that when 𝛽𝑖 = −𝛽𝑖 and 𝛽−𝑖 = −𝛽−𝑖, these conditions are equivalent to each
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other. Moreover, the solution 𝛽𝑖 is strictly decreasing in 𝛽−𝑖. Combining, there exists
a unique solution 𝛽𝑖 = −𝛽𝑖 = 𝛽−𝑖 = −𝛽−𝑖 that satisfies the researchers’ indifference
conditions. �

(2) Proof for equilibrium with no omission. the policymaker’s strategy will
be a part of the equilibrium by an immediate implication of researchers’ indifference
condition; the researchers strategy 𝛽, 𝛽 will be determined by the identical conditions,
leading to 𝛽 = 𝛽.

(i) Policymaker’s strategy: given that the researcher will be indifferent at the
switching point, 𝛽 = 𝛽, the policymaker will also be indifferent between implementing
or not implementing the policy since the policymaker knows 𝛽𝑖 = 𝛽 = 𝛽 if 𝑚𝑖 = ∅
(even though 𝑚𝑖 = ∅ occurs with probability zero). Since the decisions when 𝑚𝑖 ̸= ∅
for both 𝑖 can be given by the monotonicity of Lemma 1, the policy rule (1.7) is a
part of the equilibrium. �

(ii) Researchers’ strategy: suppose that another researcher follows 𝛽 = 𝛽 and
the policymaker adopts the policy rule as (1.7). Then, regardless of one’s own signal,
P (𝑚−𝑖 = ∅|𝛽𝑖) = 0. Therefore, one can write the indifference conditions as

P
(︀
𝑚−𝑖 = 1|𝛽𝑖

)︀
(1− 𝜋̃)

1
𝜎2

1
𝜎2
𝑏
+ 2

𝜎2

[︀
E
[︀
𝛽−𝑖|𝛽−𝑖 ≥ 𝛽−𝑖, 𝛽𝑖

]︀
+ 𝛽𝑖

]︀
= 0 (1.19)

P
(︀
𝑚−𝑖 = 1|𝛽𝑖

)︀
𝜋̃

1
𝜎2

1
𝜎2
𝑏
+ 2

𝜎2

[︀
E
[︀
𝛽−𝑖|𝛽−𝑖 ≥ 𝛽−𝑖, 𝛽𝑖

]︀
+ 𝛽𝑖

]︀
= 0 (1.20)

Since these conditions are proportional to each other, researcher 𝑖’s optimal strategy
has 𝛽𝑖 = 𝛽𝑖.

�

A2.3. Proof of Proposition 1.3

Proposition 1.3 claims that the asymmetric equilibrium is locally stable whereas equi-
libria with symmetric or no omission are not; the former is also optimal whereas later
are not. We will first prove the results of local stability, and then that of optimality.

Proof of local stability: we will focus on the concept of local stability in
Definition 1.3, which is adopted from Defition 6.1 in Chapter 1 of Fudenberg and
Levine (1998) with a particular order of adjustment. The equilibria satisfying local
stability are more plausible to emerge than those without local stability since small
perturbation of strategies likely occur in the real world.

We consider a perturbation of equilibrium with monotone strategies, ℰ ≡
{︀
𝜋 (𝑛) , 𝛽1, 𝛽1, 𝛽2, 𝛽2

}︀
,
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and consider the distance between two equilibria, ℰ , ℰ̃ , as 𝑑
(︁
ℰ − ℰ̃

)︁
≡ max𝑠 {|𝜖𝑠|},

where 𝜖 ≡ ℰ − ℰ̃ . While one could consider a richer perturbation on researchers’
strategies as the mapping from the signals 𝛽𝑖 × 𝜎𝑖 ∈ R2 into probability distribu-
tion over messages, this definition is intuitive and analytically tractable. Moreover,
Lemma 1 has shown that all fully responsive and fully informative equilibria will take
this form. We first consider the asymmetric equlibrium in Proposition 1.1, and then
analyze the other equilibria in Proposition 1.2.

(1) Asymmetric equlibrium in Proposition 1.1. is locally stable: Let us denote the
perturbation of researcher 𝑖 = 1, 2’s strategies by the set of perturbations,

{︀
𝜖𝑖, 𝜖𝑖

}︀
so

that 𝛽𝑖,0 = 𝛽+𝜖𝑖, 𝛽𝑖,0 = 𝛽+𝜖𝑖. Without loss of generality, suppose that the researcher
2 receives a larger perturbation so that max

{︀
|𝜖2|, |𝜖2|

}︀
≥ max

{︀
|𝜖1|, |𝜖1|

}︀
.

The proof takes four steps: first, we observe that the policymaker’s strategy does
not change; second, consider researcher 1’s adjustment in 𝑡 = 1; third, consider
researcher 2’s adjustment in 𝑡 = 1; and finally argue that these results show the local
stability of the asymmetric equilibrium.

Step 1. policymaker’s strategy: in 𝑡 = 1, even with small perturbation of re-
searchers’ strategy, the policymaker’s strategy will not change since it relied on strict
preference. Thus, the strategy (1.2) will continue to be played.

Step 2. researcher 1’s strategy: given the supermajoritarian rule (1.2) and the
researcher 2’s initial strategy 𝛽2,0, 𝛽2,0, the researcher 1’s strategy will satisfy⃒⃒⃒

𝛽1,1

(︁
𝛽2,0, 𝛽2,0

)︁
− 𝛽

⃒⃒⃒
< max

{︀
|𝜖2|, |𝜖2|

}︀⃒⃒⃒
𝛽1,1

(︀
𝛽2,0

)︀
− 𝛽

⃒⃒⃒
< |𝜖2|

by the property of derivative of the truncated normal distribution.
Step 3. researcher 2’s strategy: given the supermajoritarian rule (1.2) and the re-

searcher 1’s strategy after adjustment 𝛽1,1, 𝛽1,1, the researcher 2’s strategy will satisfy⃒⃒⃒
𝛽2,1

(︁
𝛽1,1, 𝛽1,1

)︁
− 𝛽

⃒⃒⃒
< max

{︀
|𝜖2|, |𝜖2|

}︀⃒⃒⃒
𝛽2,1

(︀
𝛽1,1

)︀
− 𝛽

⃒⃒⃒
< |𝜖2|

by the property of derivative of the truncated normal distribution.
Step 4. relating to the definition of local stability: for equilibrium ℰ to be locally

stable, we need for every 𝑑 > 0, there exist some 𝑑 such that

𝑑 (ℰ − ℰ0) < 𝑑 ⇒ 𝑑 (ℰ − ℰ∞) < 𝑑.
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By Step 2 and 3, we know that 𝑑 (ℰ − ℰ1) < max
{︀
|𝜖2|, |𝜖2|

}︀
= 𝑑 (ℰ − ℰ0). Interating

the adjustment ad infinity, we have 𝑑 (ℰ − ℰ∞) < 𝑑 (ℰ − ℰ0). Thus, setting any 𝑑 ≤ 𝑑

can satisfy the condition.
(2) Equlibria in Proposition 1.2. are not locally stable:
Lemma A3: any equilibrium such that 𝜋* (𝑛1, 𝑛0) ∈ (0, 1) for some 𝑛1, 𝑛0 is not

locally stable.
Proof. This is because the policymaker must be exactly indifferent between

whether or not implementing the policy; that is, the posterior belief E [𝑏|𝑛1, 𝑛0] = 0

must hold for such 𝑛1, 𝑛0. However, even with a small perturbation of some thresh-
olds

{︀
𝛽𝑖𝛽𝑖

}︀
, the policymaker will have E [𝑏|𝑛1, 𝑛0] ̸= 0 so that his optimal strategy

in 𝑡 = 1 will be either 𝜋* (𝑛1, 𝑛0) ∈ {0, 1} for that 𝑛1, 𝑛0. Since the modification in
policymaker’s strategy is large, the researchers’ strategies will not converge back to
the original strategies. �

On the equilibrium with no omission such that 𝜋̃ = 1, we can consider how a small
perturbation of another researcher’s strategy, 𝛽𝑖+Δ, makes the probability of omission
to be strictly positive; that is, with such perturbation, the iterative adjustment to
examine the local stability will lead to the asymmetric equilibrium characterized in
Proposition 1.1. �

Proof of optimality: we will first show that the equilibria characterized in
Proposition 1.2 are not optimal by using the relationship to the concept of local
stability; then show that the equilibrium in Proposition 1.1 is optimal by examining
all other possible equilibria.

(1) Equilibria in Proposition 1.2 are not optimal : since the model is a common
interest game, we have the following close relationship between local stability and
optimality:

Lemma A3: if an equilibrium ℰ is optimal, then it is locally stable.
Proof. Let us write the welfare attained in the equilibrium ℰ ≡

{︀
𝜋 (𝑛) , 𝛽1, 𝛽1, 𝛽2, 𝛽2

}︀
as 𝑊

(︀
𝜋 (𝑛) , 𝛽1, 𝛽1, 𝛽2, 𝛽2

)︀
. By policymaker’s optimization, 𝜕𝑊

𝜕𝜋
|𝜋=1 ≥ 0, 𝜕𝑊

𝜕𝜋
|𝜋=0 ≤

0, 𝜕𝑊
𝜕𝜋

|𝜋∈(0,1) = 0 (where the derivative at the boundaries are either or left or right
derivatives) and by researchers’ optimalization, 𝜕𝑊

𝜕𝛽𝑖
= 𝜕𝑊

𝜕𝛽𝑖
= 0 when evaluated at the

equilibrium since 𝑊 is continuous in each element. If an equilibrium is optimal, then
it is locally stable since 𝑊 must be locally concave at each local maximum. �

Using the contropositive of Lemma A3, if an equilibrium is not locally stable, then
it is not optimal. Since the equilibria in Proposition 1.2 are not locally stable, it is
not optimal.

(2) Asymmetric equilibrium in Proposition 1.1 is optimal : while optimality implies
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local stability, the converse does not hold. The proof consists of arguing that (i)
any optimal equilibria must be fully responsive, and (ii) there are only two fully
responsive and locally stable equilibria: one with 𝜋* (𝑚) = 1 (𝑛1 ≥ 𝑛0) and another
with 𝜋* (𝑚) = 1 (𝑛1 > 𝑛0). Then, since these two equilibria are symmetric to one
another, they attain the identical level of welfare.

(i) if an equilibrium is not fully responsive or not fully informative, then it is
not optimal. Suppose there exists 𝑚𝑖,𝑚

′
𝑖 such that 𝜋 (𝑚𝑖,𝑚−𝑖) = 𝜋 (𝑚′

𝑖,𝑚−𝑖)

or E [𝑏|𝑚𝑖,𝑚−𝑖] = E [𝑏|𝑚′
𝑖,𝑚−𝑖]for all 𝑚−𝑖. Then, by changing the reporting

strategies of 𝑚𝑖,𝑚
′
𝑖, the researcher 𝑖 can better convey the private information

𝛽𝑖 to the policymaker. Since this is a common interest game, this strictly
improves welfare.

(ii) the only fully responsive equilibria that are also locally stable have 𝜋* (𝑚) =

1 (𝑛1 ≥ 𝑛0) or 𝜋* (𝑚) = 1 (𝑛1 > 𝑛0). By Lemma A4, local stability requires
𝜋 (𝑚𝑖,𝑚−𝑖) ∈ {0, 1} for all 𝑚𝑖,𝑚−𝑖. Moreover, by Lemma 1, 𝜋 (𝑚𝑖,𝑚−𝑖) will be
monotone.

– if 𝜋 (𝑚𝑖,𝑚−𝑖) = 0 for all 𝑚𝑖 ∈ {∅, 0} for either 𝑖, then it is not fully
responsive. Thus, the fully responsive equilibria with minimum number of
𝜋 = 1 is 𝜋* (𝑚) = 1 (𝑛1 > 𝑛0).

– suppose 𝜋* (𝑚) = 1 if 𝑚𝑖 = 1 and {𝑚𝑖,𝑚−𝑖} = {∅, 1}. Then for an-
other researcher, whether 𝑚−𝑖 = ∅ or 0 does not make any difference.
Suppose 𝜋* (𝑚) = 1 if 𝑚𝑖 ̸= 0 for both researchers. Then, for either re-
searcher, whether 𝑚−𝑖 = ∅ or 1 does not make any difference. Thus, the
fully responsive equilibria with the second minimum number of 𝜋 = 1 is
𝜋* (𝑚) = 1 (𝑛1 ≥ 𝑛0).

Since we can consider 𝜋 = 0 symmetrically, we have considered all equilibria
with monotone strategy of researchers and 𝜋 (𝑚𝑖,𝑚−𝑖) ∈ {0, 1} for all 𝑚𝑖,𝑚−𝑖.
Verifying that 𝜋* (𝑚) = 1 (𝑛1 > 𝑛0) and 𝜋* (𝑚) = 1 (𝑛1 ≥ 𝑛0) satisfies full re-
sponsiveness, we have that there can be at most two equilibria.

Note that the two equilibria 𝜋* (𝑚) = 1 (𝑛1 > 𝑛0) and 𝜋* (𝑚) = 1 (𝑛1 ≥ 𝑛0) are
symmetric to one another when 𝑐 = 0, and thus, attains identical welfare. Since the
welfare under 𝜋* (𝑚) = 1 (𝑛1 ≥ 𝑛0) is not strictly higher than that under 𝜋* (𝑚) =

1 (𝑛1 > 𝑛0), the equilibrium characterized in Proposition 1.1 is an optimal equilibrium.
Since an optimal set of strategies must constitute an equilibrium, the equilibrium that
attains weakly higher welfare than any other equilibria must also be optimal. �
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A3. Proof of 2.4 Inflation of Marginally Insignificant Results

This sub-Section presents the proof of Proposition 1.2 in Section 2.4.

Proof of Proposition 1.2 The Proposition 1.2 claims that there exists a unique
symmetric equilibrium (researchers’ thresholds are identical with one another, and
their thresholds are symmetric so that 𝛽 (𝜎) = −𝛽 (𝜎)), and in that equilibrium the
absolute value of the t-statistics must be increasing in 𝜎𝑖. The proof proceeds in three
steps: first, we express and simplify the researchers’ indifference conditions assuming
the policymakers’ strategy in Proposition 1.2; second, we show the existence of the
solution and characterize that solution; and finally, we verify that the researchers’
and policymakers’ strategies constitute an equilibrium.

Step 1. researchers’ indifference conditions with heterogeneous 𝜎𝑖: we express the
indifference conditions by extending the expression of thresholds derived in Proposi-
tion 1.2(i) in three sub-steps.

First, by researcher 𝑖’s optimization, the posterior belief on expected benefit must
equal zero at the thresholds at every 𝜎𝑖 ∈ 𝑆𝑢𝑝𝑝 (𝜎): by Bayes’ rule and the law of
itereated expectations,

∫︁ 𝛽𝑖

𝜎2
𝑖
+

E[𝛽𝑗 |𝜎𝑗 ,𝛽𝑗∈𝑃𝑖𝑣(𝜎𝑗),𝜋,𝛽𝑖=𝛽𝑖]
𝜎2
𝑗

1
𝜎2
𝑏
+ 1

𝜎2
𝑖
+ 1

𝜎2
𝑗

𝑔 (𝜎𝑗) 𝑑𝜎𝑗 = 0, (1.21)

where the expectation is taken over another researcher’s signals {𝜎𝑗, 𝛽𝑗} and the
policymaker’s strategy 𝜋. 𝑃𝑖𝑣 (𝜎𝑗) is a set of values of 𝛽𝑗 such that the researcher 𝑖’s
message can alter the policymaker’s decision.

Second, we rearrange the condition (1.21) by (i) assumption of policymaker’s
strategy, (ii) improper prior assumption (𝜎𝑏 = ∞), (iii) change of variables from 𝛽𝑖

to 𝑡 (𝜎𝑖), and (iv) re-expressing the inverse Mills ratio:

(i) as shown in Section A2.2, if policymaker adopts the strategy in symmetric
equilibrium (1.6), then E

[︀
𝛽𝑗|𝜎𝑗, 𝛽𝑗 ∈ 𝑃𝑖𝑣 (𝜎𝑗, 𝜋) , 𝛽𝑖

]︀
= 𝜌𝑖𝑗𝛽𝑖 − 𝜎𝑖𝑗

𝜑(·)
Φ(·) , where

𝜌𝑖𝑗 =
𝜎2
𝑏√

𝜎2
𝑖 +𝜎2

𝑏

√
𝜎2
𝑗+𝜎2

𝑏

is the correlation coefficient, 𝜎𝑖𝑗 =
√︀
𝜎2
𝑖 + 𝜎2

𝑏

√︁
𝜎2
𝑗 + 𝜎2

𝑏 −𝜎2
𝑏

is the standard deviation of 𝛽𝑗 conditional on 𝛽𝑖, and the argument of inverse
Mills ratio is 𝛽𝑗(𝜎𝑗)−𝜌𝑖𝑗𝛽𝑖

𝜎𝑖𝑗
with 𝛽𝑗 (𝜎𝑗) denoting the researcher 𝑗’s threshold con-

ditional on 𝜎𝑗.

(ii) by the assumption 𝜎𝑏 = ∞, 1
𝜎2
𝑏
= 0, 𝜌𝑖𝑗 = 1, and 𝜎𝑖𝑗 =

√︁
𝜎2
𝑖 +𝜎2

𝑗

2
. Therefore, the
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indifference condition (1.21) is equivalent to

2𝛽𝑖 −
𝜎𝑖√
2

∫︁ √︃
𝜎2
𝑖

𝜎2
𝑖 + 𝜎2

𝑗

𝜑 (·)
Φ (·)

𝑔 (𝜎𝑗) 𝑑𝜎𝑗 = 0, (1.22)

where the argument of 𝜑 (·) and Φ (·) is 𝛽𝑗(𝜎𝑗)−𝛽𝑖√︂
𝜎2
𝑖
+𝜎2

𝑗
2

.

(iii) dividing the condition (1.22) by 𝜎𝑖 and writing 𝑡𝑖 =
𝛽𝑖(𝜎𝑖)
𝜎𝑖

for brevity,

𝑡𝑖 =
1

4

∫︁ √︃
2

1 + 𝜎2
𝑟

𝜑 (𝑡𝑗𝜎𝑟 − 𝑡𝑖)

Φ (𝑡𝑗𝜎𝑟 − 𝑡𝑖)
𝑔 (𝜎𝑗) 𝑑𝜎𝑗, (1.23)

where 𝜎𝑟 ≡ 𝜎𝑗

𝜎𝑖
.

(iv) we can express the condition (1.23) as a conditional mean of a truncated stan-
dard normal distribution using some hypothetical random variables: Noting
that, for some random variable, 𝜏1 ∼ 𝒩

(︁
𝑡𝑖,

1+𝜎2
𝑟

2

)︁
, E [𝜏1|𝜏1 ≤ 𝑡𝑗𝜎𝑟] = 𝑡𝑖 −√︁

1+𝜎2
𝑟

2

𝜑(𝑡𝑗𝜎𝑟−𝑡𝑖)

Φ(𝑡𝑗𝜎𝑟−𝑡𝑖)
,

𝜑 (𝑡𝑗𝜎𝑟 − 𝑡𝑖)

Φ (𝑡𝑗𝜎𝑟 − 𝑡𝑖)
=

√︃
2

1 + 𝜎2
𝑟

{𝑡𝑖 − E [𝜏1|𝜏1 ≤ 𝑡𝑗𝜎𝑟]} ,

=

√︃
2

1 + 𝜎2
𝑟

{−E [𝜏2|𝜏2 ≤ 𝑡𝑗𝜎𝑟 − 𝑡𝑖]} , where 𝜏2 ∼ 𝒩
(︂
0,

1 + 𝜎2
𝑟

2

)︂

=

√︃
2

1 + 𝜎2
𝑟

E [𝜏2|𝜏2 ≥ 𝑡𝑖 − 𝑡𝑗𝜎𝑟]

=

√︃
2

1 + 𝜎2
𝑟

E

[︃√︂
1 + 𝜎2

𝑟

2
𝜏3|
√︂

1 + 𝜎2
𝑟

2
𝜏3 ≥ 𝑡𝑖 − 𝑡𝑗𝜎𝑟

]︃
, where 𝜏3 ∼ 𝒩 (0, 1)

= E

[︃
𝜏3|𝜏3 ≥

√︃
2

1 + 𝜎2
𝑟

(𝑡𝑖 − 𝑡𝑗𝜎𝑟)

]︃

Combining with (1.23), the indifference condition is

𝑡𝑖 =
1

4

∫︁ √︃
2

1 + 𝜎2
𝑟

E

[︃
𝜏 |𝜏 ≥

√︃
2

1 + 𝜎2
𝑟

(𝑡𝑖 − 𝑡𝑗𝜎𝑟)

]︃
𝑔 (𝜎𝑗) 𝑑𝜎𝑗, (1.24)

where 𝜏 ∼ 𝒩 (0, 1).
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Step 2. characterization: using the formula (1.25), we can show that 𝜕𝑡(𝜎𝑖)
𝜕𝜎𝑖

> 0.

Writing 𝐾 (𝜎𝑟) =
√︁

2
1+𝜎2

𝑟
, 𝐿 (𝜎𝑟) = E

[︁
𝜏 |𝜏 ≥

√︁
2

1+𝜎2
𝑟
(𝑡𝑖 − 𝑡𝑗𝜎𝑟)

]︁
,

𝜕𝑡𝑖 (𝜎𝑖)

𝜕𝜎𝑖

=
𝜕𝜎𝑟

𝜕𝜎𝑖

× 1

4

∫︁
[𝐾 (𝜎𝑟)𝐿

′ (𝜎𝑟) +𝐾 ′ (𝜎𝑟)𝐿 (𝜎𝑟)] 𝑔 (𝜎𝑗) 𝑑𝜎𝑗 (1.25)

by the chain rule. Note that 𝐿′ (𝜎𝑟) < 0 since

𝜕
√︁

2
1+𝜎2

𝑟
(𝑡𝑖 − 𝑡𝑗𝜎𝑟)

𝜕𝜎𝑟

= −𝑡𝑗

√︂
1 + 𝜎2

𝑟

2
− (𝑡𝑖 − 𝑡𝑗𝜎𝑟)

(︂
1

2

)︂ 3
2 (︀

1 + 𝜎2
𝑟

)︀− 1
2

= −1

2

√︂
1 + 𝜎2

𝑟

2

[︂
2𝑡𝑗 +

𝑡𝑖 − 𝑡𝑗𝜎𝑟

1 + 𝜎2
𝑟

]︂
= −1

2

√︂
1 + 𝜎2

𝑟

2

{︃
𝑡𝑖 + 2𝑡𝑗

[︀
(1− 𝜎𝑟)

2 + 𝜎𝑟

]︀
1 + 𝜎2

𝑟

}︃
< 0

Together with observations that 𝜕𝜎𝑟

𝜕𝜎𝑖
< 0, 𝐾 (𝜎𝑟) > 0, and 𝐿 (𝜎𝑟) > 0 and 𝐾 ′ (𝜎𝑟) < 0

, 𝜕𝑡𝑖(𝜎𝑖)
𝜕𝜎𝑖

> 0 holds at every 𝜎𝑖, as stated by Proposition 1.2.

Step 3. existence and uniqueness of researchers’ strategies in symmetric equilibrium:
to show that the equilibrium characterization is meaningful, we will show the exis-
tence of such threshold 𝑡 (𝜎𝑖| {𝑡𝑗}) defined by (1.24). We will apply the contraction
mapping theorem, which also shows that the thresholds will be unique.

The functional equation 𝑡 (𝑡𝑗) (a simplification of notation 𝑡 (𝜎𝑖| {𝑡𝑗})) is said
to be a contraction mapping if there exists some constant 𝑘 ∈ (0, 1) such that
𝑑 {𝑡 (𝜏0) , 𝑡 (𝜏1)} ≤ 𝑘𝑑 {𝜏0, 𝜏1} for any 𝜏0, 𝜏1. Here, let us define the distance between
two strategies, 𝜏0 (𝜎) and 𝜏1 (𝜎), as the sup metric:

𝑑 {𝜏0, 𝜏1} = sup
𝜎

|𝜏0 (𝜎)− 𝜏1 (𝜎)| .

We first show that 𝑡 (𝜎𝑖| {𝑡𝑗}) is a contraction mapping when 𝜏0, 𝜏1 are differentiable
with respect to 𝜎 in three sub-steps, and then apply the contraction mapping theorem.

(i) Sub-step 1: we first show that we can consider a corresponding totally ordered
two functions, rather than considering directly the arbitrary functions that may
not be totally ordered.

Sub-Lemma 1. Define 𝜏 (𝜎) ≡ max {𝜏0 (𝜎) , 𝜏1 (𝜎)} and 𝜏 (𝜎) ≡ min {𝜏0 (𝜎) , 𝜏1 (𝜎)}.
For any 𝑘, if 𝑑 {𝑡 (𝜏) , 𝑡 (𝜏)} ≤ 𝑘𝑑 {𝜏 , 𝜏}, then 𝑑 {𝑡 (𝜏0) , 𝑡 (𝜏1)} ≤ 𝑘𝑑 {𝜏0, 𝜏1}.
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Proof. The expression (1.24) shows that 𝑡 (𝜏) is strictly decreasing in 𝜏 so that

𝑡 (𝜎| {𝜏}) ≤ 𝑡 (𝜎| {𝜏𝑠}) ≤ 𝑡 (𝜎| {𝜏})

for both 𝑠 = 0, 1, for all 𝜎. Thus, 𝑑 {𝑡 (𝜏) , 𝑡 (𝜏)} ≥ 𝑑 {𝑡 (𝜏0) , 𝑡 (𝜏1)}. Since 𝜏0 (𝜎)

and 𝜏1 (𝜎) are assumed to be differentiable, it is continuous and attains the
maximum and minimum. Since 𝑑 {𝜏 , 𝜏} = 𝑑 {𝜏0, 𝜏1}, the Sub-Lemma 1 holds.�

(ii) Sub-step 2: we then show that we can consider the derivative of function to
prove that the two functions satisfy the condition to be a contraction map.

Sub-Lemma 2. If there exists some 𝑘 such that

𝜕𝑑 {𝑡 (𝜏 + 𝛿) , 𝑡 (𝜏)}
𝜕𝛿

< 𝑘

for any 𝜏 and for any 𝛿, then the function 𝑡 satisfies 𝑑 {𝑡 (𝜏) , 𝑡 (𝜏)} ≤ 𝑘𝑑 {𝜏 , 𝜏}
for any totally ordered {𝜏 , 𝜏}.

Proof. Given any {𝜏 , 𝜏} that is totally ordered (i.e. 𝜏 (𝜎) > 𝜏 (𝜎) for all 𝜎), let
𝛿 ≡ sup𝜎 {𝜏 (𝜎)− 𝜏 (𝜎)}. Then

𝑑 {𝑡 (𝜏) , 𝑡 (𝜏)} ≤ 𝑑 {𝑡 (𝜏 + 𝛿) , 𝑡 (𝜏)}

= 𝑑 {𝑡 (𝜏) , 𝑡 (𝜏)}⏟  ⏞  
=0

+

∫︁ 𝛿

0

𝜕𝑑
{︁
𝑡
(︁
𝜏 + 𝛿

)︁
, 𝑡 (𝜏)

}︁
𝜕𝛿⏟  ⏞  
≤𝑘

𝑑𝛿

≤ 𝑘𝛿

= 𝑘𝑑 {𝜏 , 𝜏}

The first line follows because 𝑡 is strictly decreasing in 𝜏 ; the second line follows
from the fundamental theorem of calculus; the third line follows by assumption
of Sub-Lemma 2; and the fourth line by definition of 𝛿. �

(iii) Sub-step 3: using the expression (1.24), we derive the expression of the bound
on the derivative.

Sub-Lemma 3. For any 𝜏 and for any 𝛿, with 𝑡 defined as (1.24),

𝜕𝑑 {𝑡 (𝜏 + 𝛿) , 𝑡 (𝜏)}
𝜕𝛿

<
1

2
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Proof. There are three steps to prove this: first, we note that analyzing
𝜕
𝜕𝛿
𝑡 (𝜎* (𝛿) | {𝜏 + 𝛿}) will be sufficient:

𝜕𝑑 {𝑡 (𝜏 + 𝛿) , 𝑡 (𝜏)}
𝜕𝛿

=
𝜕

𝜕𝛿
[𝑡 (𝜎* (𝛿) | {𝜏})− 𝑡 (𝜎* (𝛿) | {𝜏 + 𝛿})] ,

where 𝜎* (𝛿) ≡ argmax
𝜎

{𝑡 (𝜎| {𝜏 + 𝛿})− 𝑡 (𝜎| {𝜏})}

= − 𝜕

𝜕𝛿
𝑡 (𝜎* (𝛿) | {𝜏 + 𝛿})

+
𝜕

𝜕𝜎
[𝑡 (𝜎* (𝛿) | {𝜏})− 𝑡 (𝜎* (𝛿) | {𝜏 + 𝛿})] |𝜎=𝜎*(𝛿) ×

𝜕𝜎* (𝛿)

𝜕𝛿

= − 𝜕

𝜕𝛿
𝑡 (𝜎* (𝛿) | {𝜏 + 𝛿})

where the first equality followed by definition (the maximum exists since 𝑆𝑢𝑝𝑝 (𝐺)

is closed and bounded), the second equality followed by the chain rule, and the
third equality followed by the envelope theorem given differentiability of 𝑡.

Second, writing Σ ≡
√︃

2

1+

(︂
𝜎*
𝜎𝑗

)︂2

{︁
𝑡 (𝜎*| {𝜏 + 𝛿})− [𝜏 (𝜎𝑗) + 𝛿] 𝜎

*

𝜎𝑗

}︁
for notational

ease, we can derive the bound on − 𝜕
𝜕𝛿
𝑡 (𝜎* (𝛿) | {𝜏 + 𝛿}): given (1.24),

𝜕

𝜕𝛿
𝑡 (𝜎*| {𝜏 + 𝛿}) = 1

4

∫︁ ⎯⎸⎸⎷ 2

1 +
(︁

𝜎*

𝜎𝑗

)︁2 𝜕E [𝜏 |𝜏 ≥ Σ]

𝜕Σ
× 𝜕Σ

𝜕𝛿
𝑔 (𝜎𝑗) 𝑑𝜎𝑗 (1.26)

By the chain rule, 𝜕Σ
𝜕𝛿

=
√︃

2

1+

(︂
𝜎*
𝜎𝑗

)︂2

{︁
𝜕
𝜕𝛿
𝑡 (𝜎*| {𝜏 + 𝛿})− 𝜎*

𝜎𝑗

}︁
. Thus, rearranging

(1.26),

− 𝜕

𝜕𝛿
𝑡 (𝜎*| {𝜏 + 𝛿}) =

∫︀ 𝜎*
𝜎𝑗

1+

(︂
𝜎*
𝜎𝑗

)︂2
𝜕E[𝜏 |𝜏≥Σ]

𝜕Σ
𝑔 (𝜎𝑗) 𝑑𝜎𝑗

2−
∫︀

1

1+

(︂
𝜎*
𝜎𝑗

)︂2
𝜕E[𝜏 |𝜏≥Σ]

𝜕Σ
𝑔 (𝜎𝑗) 𝑑𝜎𝑗

Note that 𝜕E[𝜏 |𝜏≥Σ]
𝜕Σ

< 1 because it is a derivative with respect to a truncated nor-
mal distribution. Given 1

1+

(︂
𝜎*
𝜎𝑗

)︂2 < 1, we note that 2−
∫︀

1

1+

(︂
𝜎*
𝜎𝑗

)︂2
𝜕E[𝜏 |𝜏≥Σ]

𝜕Σ
𝑔 (𝜎𝑗) 𝑑𝜎𝑗 >

1. Combining,

− 𝜕

𝜕𝛿
𝑡 (𝜎*| {𝜏 + 𝛿}) <

∫︁ 𝜎*

𝜎𝑗

1 +
(︁

𝜎*

𝜎𝑗

)︁2 𝑔 (𝜎𝑗) 𝑑𝜎𝑗.
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Third, note that
𝜎*
𝜎𝑗

1+

(︂
𝜎*
𝜎𝑗

)︂2 ≤ 1
2

for any 𝜎* and 𝜎𝑗 since

0 ≤ (𝜎𝑖 − 𝜎𝑗)
2 ⇒ 2𝜎𝑖𝜎𝑗 ≤ 𝜎2

𝑖 + 𝜎2
𝑗 ⇒ 𝜎𝑖𝜎𝑗

𝜎2
𝑖 + 𝜎2

𝑗

=

𝜎*

𝜎𝑗

1 +
(︁

𝜎*

𝜎𝑗

)︁2 ≤ 1

2
.

Combining the three steps, we conclude that the Sub–Lemma 3 holds. �

Since the expression (1.24) implies that the equilibrium threshold must be differ-
entiable with respect to 𝜎, we do not have to consider functions 𝜏 (𝜎) that is not
differentiable. Since (i) 𝑘 = 1

2
< 1 and (ii) the space of continuous functions is a com-

plete metric space under sup metric, we can apply the contraction mapping theorem
to claim that the function 𝑡 (𝜎) satisfying (1.24) exists and is unique.

Step 4. verifying the policymaker’s indifference condition: To show that the poli-
cymaker will be willing to follow the strategy in the symmetric equilibrium (1.6), we
need to show E [𝑏|𝑛1 = 𝑛0] = 0. 𝛽 (𝜎) = −𝛽 (𝜎) holds at every 𝜎 by the uniqueness
of the threshold that satisfies the indifference condition. By the proof of existence of
symmetric equilibrium in A2.2, E [𝑏|𝑛1 = 𝑛0, 𝜎] = 0 for all 𝜎. Thus,

E [𝑏|𝑛1 = 𝑛0] =

∫︁
E [𝑏|𝑛1 = 𝑛0, 𝜎] 𝑔 (𝜎) 𝑑𝜎 = 0.

By combining Steps 1 to 4, the result 𝜕𝑡(𝜎𝑖)
𝜕𝜎𝑖

> 0 holds in the unique symmetric
equilibrium. �

A4. Proof of 2.5 Amplification of Small Bias of a Researcher

This sub-Section proves the Proposition 1.3 in Section 2.5.

A3 Proof of Proposition 1.3 The Proposition 1.3 provides an expression for
the strategic multiplier between researchers, and claims that it will be greater than
1. The proof consists of two steps: first, we derive comparative statics in equilibrium;
and second, derive the multiplier and show that it is greater than 1. Note that the
results for 𝛽𝑖 can be derived analogously.

Step 1. comparative static with researchers’ indifference conditions: as derived in
Appendix [],in a symmetric equilibrium with 𝑑𝑖 = 𝑑𝑗 = 0, the indifference conditions
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are given by

𝛽𝑖 + E
[︀
𝛽𝑗|𝛽𝑗 ≤ 𝛽𝑗, 𝛽𝑖 = 𝛽𝑖

]︀
= −

(︂
2 +

𝜎2

𝜎2
𝑏

)︂
𝑑𝑖 (1.27)

𝛽𝑗 + E
[︀
𝛽𝑖|𝛽𝑖 ≤ 𝛽𝑖, 𝛽𝑗 = 𝛽𝑗

]︀
= −

(︂
2 +

𝜎2

𝜎2
𝑏

)︂
𝑑𝑗 (1.28)

Totally differentiating the indifference conditions with respect to 𝑑𝑖, we have[︃
1 𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙
𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙
1

]︃[︃
𝜕𝛽𝑖/𝜕𝑑𝑖
𝜕𝛽𝑗/𝜕𝑑𝑖

]︃
= −

[︃
2 + 𝜎2

𝜎2
𝑏

0

]︃

since
E[𝛽𝑗 |𝛽𝑗≤𝛽𝑗 ,𝛽𝑖=𝛽𝑖]

𝜕𝛽𝑖
= 𝜌𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝜎2 with 𝜌 = 𝜎2

𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙
, and 𝛽𝑖 = 𝛽𝑗 in the symmetric

equilibrium. Rearranging,[︃
𝜕𝛽𝑖/𝜕𝑑𝑖
𝜕𝛽𝑗/𝜕𝑑𝑖

]︃
= − 1

1−
(︁

𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙

)︁2
[︃

1 −𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙

−𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙
1

]︃[︃
2 + 𝜎2

𝜎2
𝑏

0

]︃

Therefore, we have
𝜕
(︀
𝛽𝑖 − 𝛽𝑗

)︀
𝜕𝑑𝑖

= −
2 + 𝜎2

𝜎2
𝑏

1− 𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙

(1.29)

Step 2. deriving and interpreting the strategic multiplier: using the expression
(1.29), we can derive the expression of the multiplier, and show that it will always be
greater than 1.

∙ expression: in the absence of strategic effects,

𝜕
(︀
𝛽𝑖 − 𝛽𝑗

)︀
𝜕𝑑𝑖

|𝜎𝑗=𝜎*
𝑗
=

𝜕𝛽𝑖

𝜕𝑑𝑖
|𝜎𝑗=𝜎*

𝑗
−

𝜕𝛽𝑗

𝜕𝑑𝑖
|𝜎𝑗=𝜎*

𝑗
= −

(︂
2 +

𝜎2

𝜎2
𝑏

)︂
− 0 = −

(︂
2 +

𝜎2

𝜎2
𝑏

)︂
.

Thus, the multiplier is 𝜁 = 1

1−𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙

.

∙ interpretation: by the definition of truncated distribution, 𝑉 𝑎𝑟𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

𝑉 𝑎𝑟𝑡𝑜𝑡𝑎𝑙
∈ (0, 1).

Thus, 𝜁 ∈ (1,+∞).

�
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A5. Proof of 4.1 A New “Stem-based” Bias Correction Method

This sub-Section contains the proof of Proposition 2 in Section 4.1, concerning the
properties of bias used for the stem-based bias correction method.

A3.1. Proof of Proposition 2.

Proposition 2 claims that the bias squared is increasing in the standard error of the
studies under some conditions, both for the extremum and uniform selection models.
We will prove the result for the extremum selection, and then for the uniform selection.
For notational ease, let us henceforth write 𝜎 =

√︀
𝜎2
0 + 𝜎2

𝑖 .

Proof of bias under extremum selection. We derive the monotonicity and
limit results from the definition of truncated normal distribution. For notational ease,
we the true mean, 𝑏0, to zero.

(i) Monotonicity: let us write

𝐵𝑖𝑎𝑠 (𝜎𝑖) = −𝜎
𝜑
(︀
𝛽min
𝜎

)︀∫︀∞
𝛽min

𝜑
(︀
𝛽
𝜎

)︀
𝑑𝛽

= −𝜎

⎡⎢⎢⎢⎣
∫︁ |𝛽min|

𝛽min

𝜑
(︀
𝛽
𝜎

)︀
𝜑
(︀
𝛽min
𝜎

)︀𝑑𝛽⏟  ⏞  
=0

+

∫︁ ∞

|𝛽min|

𝜑
(︀
𝛽
𝜎

)︀
𝜑
(︀
𝛽min
𝜎

)︀𝑑𝛽
⎤⎥⎥⎥⎦

−1

where the second line considered the case when 𝛽min < 0. By the chain rule,
𝑆𝑖𝑔𝑛

(︁
𝜕|𝐵𝑖𝑎𝑠(𝜎)|

𝜕𝜎

)︁
= 𝑆𝑖𝑔𝑛 (𝐷), where

𝐷 =

∫︁ ∞

|𝛽min|

𝜑
(︀
𝛽
𝜎

)︀
𝜑
(︀
𝛽min
𝜎

)︀𝑑𝛽 − 𝜎
𝜕

𝜕𝜎

∫︁ ∞

|𝛽min|

𝜑
(︀
𝛽
𝜎

)︀
𝜑
(︀
𝛽min
𝜎

)︀𝑑𝛽
=

∫︁ ∞

|𝛽min|
exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
− 2

𝛽2 − 𝛽2
min

𝜎2 exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
𝑑𝛽

=

∫︁ ∞

|𝛽min|

[︂
1 + 2

𝛽2
min − 𝛽2

𝜎2

]︂
exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
𝑑𝛽

=

∫︁ ∞

|𝛽min|

[︂
1 + 2

𝛽2
min

𝜎2

]︂
exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
𝑑𝛽 +

∫︁ ∞

|𝛽min|
−2

𝛽2

𝜎2 exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
𝑑𝛽

= |𝛽min|

>0,
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where the last line followed by the integration by parts32. Thus,

𝜕𝐵𝑖𝑎𝑠2 (𝜎𝑖)

𝜕𝜎𝑖

= 2𝐵𝑖𝑎𝑠 (𝜎)
𝜕𝐵𝑖𝑎𝑠 (𝜎)

𝜕𝜎

𝜕𝜎

𝜕𝜎𝑖

> 0.

(ii) Limit: let us consider the two cases in turn while considering the original ex-

pression 𝐵𝑖𝑎𝑠 (𝜎𝑖) = −𝜎
𝜑
(︁

𝛽min
𝜎

)︁
1−Φ

(︁
𝛽min

𝜎

)︁ : by using the L’Hopital’s rule wherever applicable,

∙ 𝛽min < 0:

lim
𝜎→0

𝐵𝑖𝑎𝑠 (𝜎) = − lim
𝜎→0

𝜎
lim𝜎→0 𝜑

(︀
𝛽min
𝜎

)︀
lim𝜎→0

[︀
1− Φ

(︀
𝛽min
𝜎

)︀]︀ = −0× 0

1
= 0

∙ 𝛽min = 0:

lim
𝜎→0

𝐵𝑖𝑎𝑠 (𝜎) = − lim
𝜎→0

𝜎
lim𝜎→0 𝜑 (0)

lim𝜎→0 [1− Φ (0)]
= −0× 𝜑 (0)

1
2

= 0

∙ 𝛽min ≥ 0:

lim
𝜎→0

𝐵𝑖𝑎𝑠 (𝜎) = −
lim𝜎→0 𝜎𝜑

(︀
𝛽min
𝜎

)︀
lim𝜎→0

[︀
1− Φ

(︀
𝛽min
𝜎

)︀]︀
= −

lim𝜎→0

[︀
𝜑
(︀
𝛽min
𝜎

)︀
− 𝛽min

𝜎2 𝜎𝜑′ (︀𝛽min
𝜎

)︀]︀
lim𝜎→0

[︀
𝛽min
𝜎2 𝜑

(︀
𝛽min
𝜎

)︀]︀
= −

lim𝜎→0

[︁
𝜑
(︀
𝛽min
𝜎

)︀
+
(︀
𝛽min
𝜎

)︀2
𝜑
(︀
𝛽min
𝜎

)︀]︁
lim𝜎→0

[︀
𝛽min
𝜎2 𝜑

(︀
𝛽min
𝜎

)︀]︀
= −

[︃
lim
𝜎→0

𝜎2𝜑
(︀
𝛽min
𝜎

)︀
𝛽min𝜑

(︀
𝛽min
𝜎

)︀ + lim
𝜎→0

𝛽min
𝜑
(︀
𝛽min
𝜎

)︀
𝜑
(︀
𝛽min
𝜎

)︀]︃
= 𝛽min,

32Concretely, we can write:

∫︁ ∞

|𝛽min|
−2

𝛽2

𝜎2 exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
𝑑𝛽 =

∫︁ ∞

|𝛽min|
𝛽 × 𝜕

𝜕𝛽
exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
𝑑𝛽

= 𝛽 × exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
|∞|𝛽min| −

∫︁ ∞

|𝛽min|
exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
𝑑𝛽

= |𝛽min| −
∫︁ ∞

|𝛽min|
exp

(︂
𝛽2

min − 𝛽2

𝜎2

)︂
𝑑𝛽
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where the third line followed by the property of normal density that 𝜑′ (𝑥) =

−𝑥𝜑 (𝑥).

Thus, the most precise study is unbiased as 𝜎𝑖 → 0 when 𝜎0 = 0 if and only if
𝛽min ≤ 0. �

Proof of bias under uniform selection. We derive the monotonicity and limit
results from the definition of truncated normal distribution:we can write the bias as

Denoting 𝛽 = 𝑡𝜎𝑖−𝑏0
𝜎

and 𝛽 = −𝑡𝜎𝑖−𝑏0
𝜎

, we can write the bias as

𝐵𝑖𝑎𝑠 (𝜎) = 𝜎
𝜂1
[︀
−𝜑
(︀
𝛽
)︀
+ 𝜑

(︀
𝛽
)︀]︀

− 𝜂0
[︀
𝜑
(︀
𝛽
)︀
− 𝜑

(︀
𝛽
)︀]︀

𝜂1
[︀
Φ
(︀
𝛽
)︀
+ 1− Φ

(︀
𝛽
)︀]︀

+ 𝜂0
[︀
Φ
(︀
𝛽
)︀
− Φ

(︀
𝛽
)︀]︀

= −𝜎2𝜕 ln {𝜂1 + (𝜂1 − 𝜂0)ΔΦ (𝑏0)}
𝜕𝑏0

,

where ΔΦ(𝑏0) = Φ
(︀
𝛽
)︀
− Φ

(︀
𝛽
)︀
> 0.

(i) Monotonicity: let us write (from the expression above, we can write

𝐵𝑖𝑎𝑠 (𝜎) = 𝜎
(𝜂1 − 𝜂0)

𝜂1 + (𝜂1 − 𝜂0)ΔΦ (𝑏0)
𝐾 (𝜎𝑖) ,

where 𝐾 (𝜎𝑖) = 𝜑
(︀
𝛽
)︀
− 𝜑

(︀
𝛽
)︀

∙ By an assumption 𝜂1 − 𝜂0 > 0, we know that (𝜂1−𝜂0)
𝜂1+(𝜂1−𝜂0)ΔΦ(𝑏0)

is increasing in 𝜎𝑖.

∙ We show that there exists some range [0, 𝜎] such that 𝐾 (𝜎𝑖) will be increasing
in 𝜎𝑖:

𝜕𝐾 (𝜎𝑖)

𝜕𝜎𝑖

= 𝜑′ (︀𝛽)︀ 𝜕𝛽 (𝜎𝑖)

𝜕𝜎𝑖

− 𝜑′ (︀𝛽)︀ 𝜕𝛽 (𝜎𝑖)

𝜕𝜎𝑖

By the definitions above,

𝜕𝛽 (𝜎𝑖)

𝜕𝜎𝑖

=
𝑡𝜎 − (𝑡𝜎𝑖 − 𝑏0)× 1

2
𝜎−1 × 2𝜎𝑖

𝜎2 =
𝑡

𝜎
− (𝑡𝜎𝑖 − 𝑏0)𝜎𝑖

𝜎3

𝜕𝛽 (𝜎𝑖)

𝜕𝜎𝑖

=
−𝑡𝜎 − (−𝑡𝜎𝑖 − 𝑏0)× 1

2
𝜎−1 × 2𝜎𝑖

𝜎2 = − 𝑡

𝜎
+

(𝑡𝜎𝑖 + 𝑏0)𝜎𝑖

𝜎3
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Substituting,

𝜕𝐾 (𝜎𝑖)

𝜕𝜎𝑖

= 𝜑′ (︀𝛽)︀ [︂ 𝑡
𝜎
− (𝑡𝜎𝑖 − 𝑏0)𝜎𝑖

𝜎3

]︂
− 𝜑′ (︀𝛽)︀ [︂− 𝑡

𝜎
+

(𝑡𝜎𝑖 + 𝑏0)𝜎𝑖

𝜎3

]︂
=

1

𝜎

{︁
𝑡
[︀
𝜑′ (︀𝛽)︀− 𝜑′ (︀𝛽)︀]︀+ 𝑡

𝜎𝑖

𝜎

[︀
𝜑′ (︀𝛽)︀ 𝛽 − 𝜑′ (︀𝛽)︀ 𝛽]︀}︁

When 𝜎𝑖 is small, term
[︀
𝜑′ (︀𝛽)︀− 𝜑′ (︀𝛽)︀]︀ determines the sign of 𝜕𝐾(𝜎𝑖)

𝜕𝜎𝑖
. Since

𝛽 > 𝛽, 𝜑′ (︀𝛽)︀ > 𝜑′ (︀𝛽)︀, and thus, 𝜕𝐾(𝜎𝑖)
𝜕𝜎𝑖

> 0. On the other hand, When 𝜎𝑖

is large, the term, 𝜑′ (︀𝛽)︀ 𝛽 − 𝜑′ (︀𝛽)︀ 𝛽 = 𝜑
(︀
𝛽
)︀
𝛽
2 − 𝜑

(︀
𝛽
)︀
𝛽2 will be important,

and can be negative since 𝜑
(︀
𝛽
)︀
> 𝜑

(︀
𝛽
)︀

when the thresholds are at the tail of
normal distribution.

(ii) Limit: since the cumulative distribution function is continuously differentiable,
we can analyze by distributing the limit:

lim
𝜎𝑖→0

𝐵𝑖𝑎𝑠 (𝜎𝑖) = − lim
𝜎𝑖→0

𝜎2 × 𝜕 ln {𝜂1 + (𝜂1 − 𝜂0) lim𝜎𝑖→0ΔΦ(𝑏0)}
𝜕𝑏0

= −𝜎2
0 ×

𝜕 ln
{︀
𝜂1 + (𝜂1 − 𝜂0)

[︀
Φ
(︀−𝑏0

𝜎

)︀
− Φ

(︀−𝑏0
𝜎

)︀]︀}︀
𝜕𝑏0

= 0

Thus, lim𝜎𝑖→0𝐵𝑖𝑎𝑠 (𝜎𝑖) = 0 for any parameter values. �

�

Appendix B. Supplementary Numerical Discussions

Appendix A has provided various analytical proofs. Due to limited analytical tractabil-
ity, however, this paper has extensively employed numerical approach. Appendix B
provides details of numerical simulations and presents some additional results: B1 will
illustrate equilibrium thresholds under the general environments, and B2 describes
details of empirical tests.

B1. Thresholds under General Environments

This Section describes the simulation of thresholds, 𝛽 (𝜎𝑖) and 𝛽 (𝜎𝑖), in a more gen-
eral environment and in an equilibrium that is the main focus of the analysis. The
environment is more general since the simulation can consider settings with 𝑁 ≥ 3,
𝑐 > 0, 𝜎𝑏 < ∞, and heterogeneous values of 𝜎𝑖. While Proposition 2.1 concerning
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the thresholds under heterogeneous 𝜎𝑖, for analytical tractability, focused on the sym-
metric equilibrium such that 𝛽 (𝜎𝑖) = −𝛽 (𝜎𝑖), the numerical analysis can explore the
properties of the asymmetric equilibrium with 𝛽 (𝜎𝑖) < −𝛽 (𝜎𝑖).

This analysis will show when the analytical results are robust to alternative envi-
ronments. B1.1 will first describe the overview of simulation algorithm; B1.2 shows
some additional results regarding omission; B1.3 shows that the threshold 𝛽 (𝜎) need
not be concave when 𝑐 is high; B1.4 explores the implication of 𝑁 , the number of
researchers, on the thresholds; B1.5 summarizes the magnitude of omission, bias, and
welfare consequences of various reporting rules.

B1.1 Simulation Step Overview

We compute the equilibrium thresholds, 𝛽 (𝜎𝑖) , 𝛽 (𝜎𝑖), that are symmetric between
𝑁 researchers, given primitive environments’ parameters such as threshold policy
effectiveness, 𝑐, and number of researchers, 𝑁 , as well as underlying variance, 𝜎2

𝑏 , and
between-study heterogeneity, 𝜎2

0. By discretizing the support of standard errors to
{𝜎1, 𝜎2, ..., 𝜎𝑆} with 𝜎1 ≤ 𝜎2 ≤ ... ≤ 𝜎𝑆, the equilibrium thresholds at each standard
error, 𝛽 (𝜎𝑖) , 𝛽 (𝜎𝑖), is given by a system of 2× 𝑆 equations:

𝛽 (𝜎𝑖) =
𝜎2
𝑖

E𝜎−𝑖

[︂
1∑︀𝑁

𝑗=0 𝜎
−2
𝑗

⃒⃒⃒
𝑃𝑖𝑣1

]︂
⎧⎨⎩𝑐− E𝜎−𝑖

⎡⎣E𝑚−𝑖

[︁
E𝛽−𝑖

∑︀ 𝛽−𝑖

𝜎2
−𝑖

⃒⃒⃒
𝑃𝑖𝑣1

]︁
∑︀𝑁

𝑗=0 𝜎
−2
𝑗

⃒⃒⃒
𝑃𝑖𝑣1

⎤⎦⎫⎬⎭(1.30)

𝛽 (𝜎𝑖) =
𝜎2
𝑖

E𝜎−𝑖

[︂
1∑︀𝑁

𝑗=0 𝜎
−2
𝑗

⃒⃒⃒
𝑃𝑖𝑣0

]︂
⎧⎨⎩𝑐− E𝜎−𝑖

⎡⎣E𝑚−𝑖

[︁
E𝛽−𝑖

∑︀ 𝛽−𝑖

𝜎2
−𝑖

⃒⃒⃒
𝑃𝑖𝑣0

]︁
∑︀𝑁

𝑗=0 𝜎
−2
𝑗

⃒⃒⃒
𝑃𝑖𝑣0

⎤⎦⎫⎬⎭ ,(1.31)

where the 𝑃𝑖𝑣𝑚 for 𝑚 ∈ {0, 1} denotes the other’s message realization such that the
researchers’ switch between ∅ and 𝑚 is pivotal. Concretely, denoting the number of
others’ positive results and negative results as 𝑛′

1, 𝑛
′
0 respectively, 𝑃𝑖𝑣1 is 𝑛′

1 = 𝑛′
0 and

𝑃𝑖𝑣0 is 𝑛′
1 = 𝑛′

0 + 1 in the asymmetric equilibrium with supermajoritarian rule (1.2).
The algorithm solves the above system of 2 × 𝑆 equations with 2 × 𝑆 unknowns

iteratively by inner and outer loops. The inner loop computes E𝑚−𝑖

[︁
·
⃒⃒⃒
𝑃𝑖𝑣𝑚

]︁
for ev-

ery combination of 𝑚−𝑖 in 𝑃𝑖𝑣𝑚; the outer loop computes E𝜎−𝑖 [·] for every 𝜎−𝑖 ∈
{𝜎1, 𝜎2, ..., 𝜎𝑆}𝑁 . Since there is no analytical solution of mean of correlated multi-
variate normal distribution, E𝛽−𝑖 [·], the algorithm used numerical integration with
rejection sampling. The iterative adjustment takes the estimated thresholds under
𝑁−1researchers as an input conjecture, 𝛽𝑐𝑜𝑛𝑗𝑒𝑐𝑡𝑢𝑟𝑒, and computes the updated thresh-
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olds, 𝛽𝑛𝑒𝑤, by 𝛽𝑛𝑒𝑤 = Δ𝛽𝑠𝑜𝑙+(1−Δ) 𝛽𝑐𝑜𝑛𝑗𝑒𝑐𝑡𝑢𝑟𝑒, where Δ is a step of adjustment, loop-
ing over every 𝜎𝑖. The initial values for 𝑁 = 2 are some linear functions 𝛽 (𝜎) = 𝐴𝜎+𝑐,
𝛽 (𝜎) = −𝐴𝜎 + 𝑐; but the thresholds are not sensitive to the choice of 𝐴 > 0. The
algorithm stops when the updates, |𝛽𝑛𝑒𝑤−𝛽𝑐𝑜𝑛𝑗𝑒𝑐𝑡𝑢𝑟𝑒|, are smaller than some tolerance
level.

For a sufficiently large 𝑆 that permits fine grid for 𝑆𝑢𝑝𝑝 (𝜎), the computational
time increases exponentially as 𝑁 increases. This is because dimensions of the inputs
into computation increase exponentially: the weights on probabilities given message

realizations take 𝑆𝑁 dimensions and the message realizations take
∑︀⌊𝑁/2⌋

𝑘=0

(︃
𝑁

𝑘

)︃
×

(𝑁 − 1) dimensions to compute. Moreover, we have set Δ = 0.5 and tolerance level
to be 0.05. For the simulation with heterogeneous priors, we chose {𝜎1, 𝜎2, ..., 𝜎𝑆} =

{0.1, 0.2, ..., 1} so that 𝑆 = 10. Due to limitations of feasibility, the simulation with
heterogeneous thresholds compute only up to 𝑁 = 4.

To approximate some real-world settings with reasonable algorithms, we choose
a distribution of 𝐺 (𝜎) close to the distribution of 𝜎 in the labor union data set
(Doucouliagos et al. 2018). Since the observed distribution of 𝜎 in the data set
is the distribution with publication selection, we impute the underlying distribu-
tion with the positive significant results from the example of labor union (𝐺 (𝜎) =

1
𝐶

∑︀
𝑖

(︂
1− Φ

(︂
1.96𝜎𝑖−𝑏̂0√

𝜎2
𝑖 −𝜎̂2

0

)︂)︂−1

1 (𝜎 ≥ 𝜎𝑖) , where 𝐶 =
∑︀

𝑖

(︂
1− Φ

(︂
1.96𝜎𝑖−𝑏̂0√

𝜎2
𝑖 −𝜎̂2

0

)︂)︂−1

is the

normalizing constant, and
{︁
𝑏̂0, 𝜎̂

2
0

}︁
are estimated with the stem-based method. The

largest standard error is normalized to be 1. The figure shows that 𝜒2 distribution
with 2 degrees of freedom with support [0, 4] approximates the empirical distribution
of variance, 𝜎2, reasonably.
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Figure B1: Approximation of empirical distribution
Notes: Figure B1 plots the imputed empirical distribution of variance, 𝜎2 against 𝜒2 distri-
bution with 2 degrees of freedom with support of [0, 4] normalized to support of [0, 1].

The simulation henceforth will incorporate between-study heterogeneity, 𝜎2
0, on

equilibrium thresholds. When there is study-specific effects on underlying benefits,
𝑏𝑖 = 𝑏+𝜁𝑖 with 𝜁𝑖 ∼ 𝒩 (0, 𝜎2

0), the estimates are generated by 𝛽𝑖 = 𝑏𝑖+ 𝜖𝑖 = 𝑏+𝜁𝑖+ 𝜖𝑖.
Thus, given the estimated standard error 𝜎𝑖 due to the sampling variance, the true
variance, 𝜎2*

𝑖 , satisfies 𝜎2*
𝑖 = 𝜎2

𝑖 + 𝜎2
0. As the formula shows, we can consider these

heterogeneities by shifting the values of inverse variance weights used in Bayesian
updating.

B1.2 Numerical results on omission

The following two figures show that P (𝑎 = 1) < 1
2

under supermajoritarian rule, and
that the welfare attained under supermajoritarian rule is higher than those under
submajoritarian rule.
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Figure B2: Likelihood of policy implementation

Notes: Figure B2 plots the probability of policy implementation P (𝑎 = 1) for 𝑁 = 2, 𝑐 =
0, 𝜎𝑏 = 1

3 , and various values of standard error of signal, 𝜎, in the equilibriun characterized
by Proposition 1. It shows that, relative to the policy implementation probability under
communication of estimates, P (𝑎 = 1) = 1

2 , policy is slightly less likely to be implemented.
This is primarily due to the conservative rule of supermajoritarian voting rule 𝑎* = 1 ⇔ 𝑛1 >

𝑛0, largely mitigated by the thresholds 𝛽, 𝛽 that lead to the upward bias of the estimates
that underlie reported studies.

Figure B3: Optimality of supermajoritarian voting rule
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Notes: Figure B3 plots the welfare (measured as a fraction of benchmark case with
communication of estimates) under a supermajoritarian rule (𝑎* = 1 ⇔ 𝑛1 > 𝑛0) and a
submajoritarian rule (𝑎* = 1 ⇔ 𝑛1 ≥ 𝑛0) for 𝑁 = 2, 𝜎𝑏 = 𝜎 = 1, and various values of 𝑐 ≥ 0.
It shows that the supermajoritarian rule attains higher welfare than the submajoritarian rule
for 𝑐 > 0, and identical welfare for 𝑐 = 0. The supermajoritarian rule is better than the
submajoritarian rule especially when 𝑐 is high and thus there is large relative welfare loss.

B1.3 Shape of 𝛽 (𝜎) under high 𝑐 > 0

Simulations show that, while Proposition 2.1 suggested that 𝛽 (𝜎𝑖) will be concave in
the symmetric equilibrium with 𝑐 = 0, it can be convex in the asymmetric equilibrium
with large 𝑐 > 0 and supermajoritarian voting rule. Figure B2 illustrates this in a
setting with 𝑁 = 2, 𝑐 = 2, 𝜎𝑏 =

3
4
, 𝜎0 = 0 and distribution 𝐺 (𝜎) that approximates

an empirical distribution as discussed in Section B1.1. This result suggests that the
pattern of omission and inflation may be very different between positive and negative
results.

Figure B4: Example of convex 𝛽 (𝜎)

Notes: Figure B4 plots the thresholds 𝛽 (𝜎) and 𝛽 (𝜎) for 𝑁 = 2, 𝑐 = 2, 𝜎𝑏 = 3
4 , 𝜎0 = 0 and

distribution 𝐺 (𝜎) that approximates an empirical distribution as discussed in Section B1.1.

This result is driven by the prior belief of effectiveness, E𝑏, that is more conser-
vative than the target effectiveness, 𝑐. By Bayes’ rule, when the estimates can be
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conveyed, it is optimal to implement the policy if and only if the average signal 𝛽
satisfies 𝛽 ≥ 𝑐−E𝑏

𝜎2
𝑏

𝜎2
𝑖

𝑁
: that is, whenever the prior is conservative so that 𝑐 > E𝑏, the

required level of average signal 𝛽 is convex in 𝜎2
𝑖 . When 𝑐 is large, this force can

dominate the effect of less information as characterized in Proposition 2.1, turning
the threshold 𝛽 (𝜎𝑖) to be convex rather than concave.

This result clarifies that the omission is not driven by the uninformedness of re-
searchers per se, but by the lack of strong belief in whether it is optimal to implement
the policy. In the most stark example, the omission probability approaches zero as the
researchers’ signals become imprecise (𝜎𝑖 → ∞). This observation clarifies the dis-
cussion of informedness and abstention in voting theories (Feddersen and Pesendorfer
1999): the lack of information needs not arise from lack of signal, but can also arise
from lack of strong prior belief.

B1.4 Implications of Many Researchers (High 𝑁)

Due to the analytical tractability, the propositions did not examine the implications
of many researchers on the equilibria. This sub-Section shows that the supermajori-
tarian rule holds even wigh high 𝑁 , and analyzes how the omission and bias change
given high 𝑁 .
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Figure B5: consistency of policymakers’ posterior beliefs
Notes: Figure B5 plots the distribution of posterior belief E𝑏 (𝑛) in the equilibrium of
supermajoritarian policy rule (𝑎* = 1 ⇔ 𝑛1 ≥ 𝑛0) with 𝜎𝑏 = 𝜎 = 0 and 𝑐 = 0 for
𝑁 = 2, ..., 10. It shows that, when there are marginally more positive results than negative
results (𝑛1 = 𝑛0 + 1), then the posterior belief is positive; conversely, when there are equal
numbers of positive and negative results (𝑛1 = 𝑛0), then the posterior belief is negative.
Since the posterior beliefs are monotone in the number of positive and negative results, this
confirms that the conjectured supermajoritarian policy rule (𝑎* = 1 ⇔ 𝑛1 ≥ 𝑛0) is consistent
with the belief and utility maximization of the policymaker. This result of consistency of
supermajoritarian policy rule holds for various values of 𝑐. Here, the analysis restricts to
the case of constant 𝜎 due to the computational feasibility.

First, the policymaker’s supermajoritarian rule (𝑎* = 1 ⇔ 𝑛1 > 𝑛0) holds in a
communication equilibrium even for 𝑁 = 3, ..., 10 (Figure B5). This suggests that
even if the policymaker does not know the number of underlying studies, they can still
compare the number of reported positive vs negative results to make the decisions
they would have taken with knowledge of 𝑁 . While this result may rely on risk
neutrality as will be discussed in sensitivity analysis, it suggests that the assumption
that the policymaker knows 𝑁 needs not be critical.33

33The set-up needs to maintain the assumption that the researchers know how many other re-
searchers exist on the same subject. First, this appears to be closer to actual scientific practice than
the assumption that the readers also know number of researchers. Second, the Figure B4 demon-
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Second, the researchers’ omission probability gradually increases as 𝑁 increases.
The Figure B6 depicts the example equilibrium thresholds for 𝑁 = 1, ..., 4 keeping
all other environment constant when (A) 𝜎𝑏 is high and 𝜎0 is high, (B) 𝜎𝑏 is low and
𝜎0 is low, and (C) 𝜎𝑏 is high and 𝜎0 is low. In all cases, the probability of omission
conditional on study precision, P (𝑚𝑖 = ∅|𝜎𝑖), increases with 𝑁 for any values of 𝜎𝑖.
This is because, as 𝑁 increases, the total information owned by other researchers rises
and leaving the decisions to others’ papers becomes more desirable.34

Nevertheless, the bias on the coefficients that underlie reported studies may in-
crease or decrease as increase in 𝑁 may shift the thresholds in either directions.35

This is because there are three channels through which 𝑁 alters the thresholds. As
Figure B6(A) shows, the effect of changing pivotality condition shifts 𝛽 upwards and
𝛽 in ambiguous directions, potentially mitigating the bias as 𝑁 increases.36 As Figure
B6(B) shows, the decreasing effect of conservative prior shifts both 𝛽 and 𝛽 down-
wards. When there are more researchers, each researcher needs less extreme signals
to overturn the default decision. As Figure B6(C) suggests, there is also the effect of
equilibrium thresholds adjustment that shifts both 𝛽 and 𝛽 in directions that offset
the effect of the first two effects. For example, 𝛽 may shift downwards due to upward
shift in 𝛽 especially among noisy studies, increasing the bias. These considerations
jointly determine the conditions under which the increase in number of researchers,
𝑁 , may increase or decrease the bias.

strates that the thresholds do not change qualitatively with 𝑁 and the changes are not quantitatively
large: thus, even if there were uncertainty in 𝑁 from researchers’ perspective, they may still be able
to choose approximately optimal thresholds.

34This result is consistent with the literature on voting theory that shows that the abstention
probability increases as the number of voters increases.

35This inquiry relates to the literature on media that explores the impact of market competition
on media bias, and finds that the higher number of competing senders may increase the bias arising
from taste and decrease bias arising from reputation motives (Gentzkow et al., 2016).

36Consider, for example, the pivotality conditions for 𝑁 = 2 and 𝑁 = 3. 𝛽 (𝑁 = 2) is lower
than 𝛽 (𝑁 = 3) because it satisfies the indifference condition (1.30) when one researcher receives
high signal as opposed to when one receives high signal and another receives intermediate signal.
𝛽 (𝑁 = 2) may be lower or higher than 𝛽 (𝑁 = 3) because it satisfies the indifference condition
(1.31) when only one another researcher receives intermediate negative signal as opposed to two
researchers receiving intermediate negative signals or one receiving positive and another receiving
negative signals.
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Figure B6. 𝛽 (𝜎) , 𝛽 (𝜎) thresholds under various 𝜎𝑏 and 𝜎0

Notes: Figure B6 plots the 𝛽 (𝜎) , 𝛽 (𝜎) thresholds under 𝑐 = 2 and distribution 𝐺 (𝜎) that
approximates an empirical distribution as discussed in Section B1.1, and varying 𝑁 , 𝜎𝑏 and
𝜎0. In each figure, the convex solid lines are 𝛽 (𝜎) and concave solid lines are 𝛽 (𝜎). There
is only one threshold for 𝑁 = 1 since there is no benefit of omission when there is only one
researcher. 98



B1.5 Quantifying bias, omission, and welfare

The discussions of bias, omission, and welfare in Section 2.4.2 were based on a simu-
lation under various parameters. This Appendix describes the simulation more fully.
The results are presented in Table B1.

Table B1: Bias, omission, and welfare

(1) (2) (3) (4) (5)
Baseline High 𝜎𝑏 High 𝜎0 High 𝑐 High 𝑁

(A) Bias: i. overall 0.42 0.27 0.22 −0.78 0.38
ii. 𝜎𝑖 = 0.1 0.06 0.19 0.00 −0.31 0.04
iii. 𝜎𝑖 = 1 0.93 0.40 0.73 −1.06 0.92

(B) P(omission): i. overall 0.49 0.46 0.33 0.54 0.53
ii. 𝜎𝑖 = 0.1 0.24 0.41 0.07 0.36 0.26
iii. 𝜎𝑖 = 1 0.69 0.53 0.62 0.65 0.77

(C) Welfare: i. unrestricted 0.95 0.95 0.99 0.77 0.93
ii. restricted 0.85 0.85 0.97 0.46 0.84

Specification changes from baseline - 𝜎𝑏 = 1 𝜎0 = 1 𝑐 = .05 𝑁 = 3

Notes: Table B1 summarizes (A) bias E [𝛽𝑖|𝑚𝑖 ̸= ∅, 𝜎𝑖], (B) omission probability
P (𝑚𝑖 = ∅|𝜎𝑖), and (C) ex-ante welfare E [𝑎* (𝑚* (𝛽𝑖, 𝜎𝑖)) [E𝑏 (𝛽𝑖, 𝜎𝑖)− 𝑐]] under various set-
tings. In (A) and (B), i. overall values are expected values unconditional on 𝜎𝑖 realization;
ii focuses on the most precise studies (𝜎𝑖 = 0.1); and iii focuses on the least precise studies
(𝜎𝑖 = 1). In (C), welfare is computed as a fraction of full information welfare. i. unrestricted
refers to the environment without linear 𝑡-statistics rule whereas ii. restricted refers to the
hypothetical setting in which no omission is allowed and the threshold is restricted to follow
𝛽 (𝜎) = 𝑡𝜎. Here, 𝑡 is computed to be the optimal value. Since there is no omission by
the exogenous restriction, bias and omission probability are both zero. The baseline spec-
ification applies 𝜎𝑏 = 0.25, 𝜎0 = 0.1, 𝑐 = 0, and 𝑁 = 2. Columns (2)-(4) modifies this
environment for each specification as presented. The simulation is based on heterogeneous
𝐺 (𝜎) that approximates an empirical distribution as discussed in Section B1.1.

In many specifications, Panel (A) suggests sizable upward bias in unweighted37

37Note that this is different from the meta-analysis estimates with Bayes’ rule, which puts higher
weight on the more precise studies. Many meta-analysis studies often discuss these unweighted
estimates.
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average estimates. Consistent with Figures 2, these biases are driven by noisy studies.
In contrast, most precise studies have very small biases. Note, for large 𝑐 > 0, there
can be downward bias because the studies whose coefficients near 𝑐 are omitted.
Quantitatively, despite its symmetric set-up with 𝑐 = 0, among the lease precise
studies, the model can explain the bias greater than one standard deviation of the
underlying distribution of benefits.

Panel (B) shows that the average omission rate can be as high as roughly 30 to 50
percents. While most precise studies have only 7 percent omission rate, most noisy
studies may be omitted roughly 70 to 80 percents.

Finally, the model can quantify welfare gains from permitting publication bias
relative to imposing restriction that every binary conclusion of null hypothesis test-
ing needs to be reported. As discussed in the introduction, coarse communication
can be largely welfare-reducing, and even with sophisticated readers who compute
the posterior correctly and flexible adjustment of 𝑡-statistics, there is roughly 3 to
30 percent welfare loss relative to the full information benchmark. The gain from
allowing for some omission and inflation is to roughly halve these welfare losses to
1 to 12 percents. This analysis demonstrates that the welfare consequences can be
quantitatively important.

B2. Estimation and Testing Steps

Section 3.2.2 has described the overview of the estimation and testing steps of the
semi-parametric Kolmogorov-Smirnov (KS)-type test. This Appendix Section adds
additional description and discussion of computing the 𝑝-values in this test, and
provides some results supplementary to Section 3.3.2.

The computation of KS statistics requires estimating the two theoretical distri-
butions: 𝐺∅ (𝜎), the distribution of standard errors of null results, and 𝐻0 (𝛽), the
distribution of coefficients of negative results. The estimates use the stem-based es-
timates of

{︁
𝑏̂0, 𝜎̂0

}︁
and apply

𝐺̃∅

(︁
𝜎|𝑏̂0, 𝜎̂0

)︁
=

1

𝐶

∑︁
𝑖||𝛽𝑖|≥𝑡𝜎𝑖

Φ
(︁

𝑡𝜎𝑖−𝑏̂0
𝜎

)︁
− Φ

(︁
−𝑡𝜎𝑖−𝑏̂0

𝜎

)︁
[︁
1− Φ

(︁
𝑡𝜎𝑖−𝑏̂0

𝜎

)︁]︁
1
(︀
𝛽𝑖 ≥ 𝑡𝜎𝑖

)︀
+ Φ

(︁
𝑡𝜎𝑖−𝑏̂0

𝜎

)︁
1
(︀
𝛽𝑖 < 𝑡𝜎𝑖

)︀1 (𝜎 ≥ 𝜎𝑖)

(1.32)
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𝐻̃0

(︁
𝛽|𝑏̂0, 𝜎̂0

)︁
=

1

𝑛0

∑︁
𝑖|𝛽𝑖≥𝑡𝜎𝑖

min

⎧⎨⎩ Φ
(︁

𝛽−𝑏̂0
𝜎

)︁
Φ
(︁

𝑡𝜎𝑖−𝑏̂0
𝜎

)︁ , 1
⎫⎬⎭ , (1.33)

where 𝐶 =
∑︀

𝑖||𝛽𝑖|≥𝑡𝜎𝑖

Φ

(︃
𝑡𝜎𝑖−𝑏̂0√
𝜎2
𝑖
+𝜎̂2

0

)︃
−Φ

(︃
−𝑡𝜎𝑖−𝑏̂0√

𝜎2
𝑖
+𝜎̂2

0

)︃
[︃
1−Φ

(︃
𝑡𝜎𝑖−𝑏̂0√
𝜎2
𝑖
+𝜎̂2

0

)︃]︃
1(𝛽𝑖≥𝑡𝜎𝑖)+Φ

(︃
𝑡𝜎𝑖−𝑏̂0√
𝜎2
𝑖
+𝜎̂2

0

)︃
1(𝛽𝑖<𝑡𝜎𝑖)

and 𝜎 =
√︀

𝜎2
𝑖 + 𝜎2

0.

We can understand these formula by considering how many null or negative studies
in some intervals of parameters there must have been in order to have the number
of observed positive or significant studies. For example, let us consider some interval
with length Δ > 0 that has 𝑛1 positive studies. If the mean and variance of underlying
normal distribution is given by {𝑏0, 𝜎0}, then in expectation, there must have been
Φ
(︁

𝑡𝜎𝑖−𝑏0
𝜎

)︁
−Φ
(︁

−𝑡𝜎𝑖−𝑏0
𝜎

)︁
1−Φ

(︁
𝑡𝜎𝑖−𝑏0

𝜎

)︁ × 𝑛1 null results. The formulas (1.32) and (1.33) are constructed

with this logic.

𝑝-values: we wish to compute the probability of observing the discrepancy be-
tween observed (𝐺̂∅ (𝜎) and 𝐻̂0 (𝛽)) and predicted distributions, defined by the KS-
type statistics, 𝐷𝐺 = sup

{︁
𝐺̂∅ (𝜎)− 𝐺̃∅

(︁
𝜎|𝑏̂0, 𝜎̂0

)︁}︁
and 𝐷𝐻 = sup

{︁
𝐻̂0 (𝛽)− 𝐻̃0

(︁
𝛽|𝑏̂0, 𝜎̂0

)︁}︁
.

We cannot apply the standard KS tests since they compare either one theoretical and
one empirical, or two empirical distributions; here, the predicted distribution con-
tains uncertainties not only in studies used for estimation but also in the estimates
of parameters

{︁
𝑏̂0, 𝜎̂0

}︁
; ignoring the uncertainty in two-step estimation (Newey and

McFadden 1994) may underestimate the 𝑝-values.

The 𝑝-value of this test equals the average 𝑝-values given each value of {𝑏0, 𝜎0}
simulated given errors in their estimates. This is because the overall 𝑝-value is defined
as the probability that the maximum difference between the empirical and predicted
distributions is at least as large as the observed difference. For each draw of {𝑏0, 𝜎0}
and resultant predicted distribution, the algorithm applies the inverse cumulative
distribution function method to generate a simulated distribution with sample size
𝑛0. Then, the 𝑝-value given each value of {𝑏0, 𝜎0} is the fraction of simulated estimates
such that their KS statistic is at least as large as 𝐷𝐺 and 𝐷𝐻 respectively. The test
computes one-sided 𝑝-values, and repeats the simulation until the estimated 𝑝-value
converges.

The bootstrap estimates are appropriate since the parameters {𝑏0, 𝜎0} are not
the extremum statistics of the distribution. Since the stem-based method treats as
a nuissance parameter, the estimation employs the bootstrap method to obtain the
distribution of

{︁
𝑏̂0, 𝜎̂0

}︁
estimates. Since each study has equal level of information
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on the distribution of study-specific effeicts, 𝑏𝑖, each study has equal weight in the
bootstrap method. The stem-based method suggests

{︁
𝑏̂0, 𝜎̂0

}︁
= {−0.02, 0.05} in this

data set. In addition, the KS-type statistics are 𝐷𝐺 = 𝐺̂∅ (.08)− 𝐺̃∅ (.08) = 0.40 and
𝐷𝐻 = 𝐻̂0 (−.13)− 𝐻̃0 (−.13) = 0.15.
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Chapter 2

Power Laws in Superspreading
Events: Evidence from Coronavirus
Outbreaks and Implications for SIR
Models

2.1 Introduction

On March 10th, 2020, choir members were gathered for their rehearsal in Washing-
ton. While they were all cautious to keep distance from one another and nobody
was coughing, three weeks later, 52 members had COVID-19, and two passed away.
There are numerous similar anecdotes worldwide.1 Many studies have shown that the
average basic reproduction number (ℛ0) is around 2.5-3.0 for this coronavirus (e.g.
Liu et al., 2020), but 75% of infected cases do not pass on to any others (Nishiura
et al., 2020). The superspreading events (SSEs), wherein a few primary cases infect an
extraordinarily large number of others, are responsible for the high average number.
As SSEs were also prominent in SARS and MERS before COVID-19, epidemiology
research has long sought to understand them (e.g. Shen et al., 2004). In particular,
various parametric distributions of infection rates have been proposed, and their vari-
ances have been estimated in many epidemics under an assumption that they exist
(e.g. Lloyd-Smith et al., 2005). On the other hand, stochastic Susceptible-Infectious-
Recovered (SIR) models have shown that, as long as the infected population is moder-
ately large, the idiosyncratic uncertainties of SSEs will cancel out each other (Roberts

1See Table 2.5.2 in Appendix for a list of several examples.
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et al., 2015). That is, following the Central Limit Theorem (CLT), stochastic models
quickly converge to their deterministic counterparts, and become largely predictable.
From this perspective, the dispersion of SSEs is unimportant in itself, but is useful
only to the extent it can help target lockdown policies to focus on SSEs to efficiently
reduce the average rates ℛ0 (Endo et al., 2020).

In this paper, we extend this research by closely examining the distribution of
infection rates, and rethinking how its dispersion influences the uncertainties of ag-
gregate dynamics. Using data from SARS, MERS, and COVID-19 from around the
world, we provide consistent evidence that SSEs follow a power law, or Pareto, dis-
tribution with fat tails, or infinite variance. That is, the true variance of infection
rates cannot be empirically estimated as any estimate will be an underestimate how-
ever large it may be. When the CLT assumption of finite variance does not hold,
many theoretical and statistical implications of epidemiology models will require re-
thinking. Theoretically, even when the infected population is large, the idiosyncratic
uncertainties in SSEs will persist and lead to large aggregate uncertainties. Statisti-
cally, the standard estimate of the average reproduction number (ℛ0) may be far from
its true mean, and the standard errors will understate the true uncertainty. Because
the infected population for COVID-19 is already large, our findings have immediate
implications for statistical inference and current policy.

We begin with evidence. Figure 2-1 plots the largest clusters reported worldwide
for COVID-19 from data gathered by Leclerc et al. (2020). If a random variable
follows a power law distribution with an exponent 𝛼, then the log of its scale (e.g. a
US navy vessel had 1,156 cases tested positive) and the log of its severity rank (e.g.
that navy case ranked 1st in severity) will have a linear relationship, with its slope
indicating −𝛼. Figure 2-1 shows a fine fit of the power law distribution.2 Moreover,
the slope is very close to 1, indicating a significant fatness of the tail to the extent
that is analogous to natural disasters such as earthquakes (Gutenberg and Richter,
1954) that are infrequent but can be extreme3. While data collection through media
reports may be biased towards extreme cases, analogous relationships consistently
hold for other SARS, MERS, and COVID-19 data based on surveillance data, with

2In Appendix 2.5, we also estimate the exponent with a small sample bias correction proposed
by Gabaix and Ibragimov (2011), which shows the exponent is 1.16, and the 𝑅2 is 0.98. With
maximum likelihood estimation, the exponent is 1.01. When using the Kolmogorov-Smirnov test
(Clauset et al., 2009), the p-value given 𝛼 = 1.01 is 0.75, failing to reject the null hypothesis that
the empirical observation arises from the power law distribution. On the other hand, the p-value
given 𝛼 = 2 is 0.000, rejecting the null hypothesis that the distribution is observed from power law
distribution with a finite variance.

3The power law distribution with 𝛼 = 1 is called the Zipf’s law.
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COVID−19 Cluster Sizes Worldwide
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Source: CMMID COVID−19 Working Group online database (Leclerc et al., 2020)
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Figure 2-1: Log cluster size vs log rank for COVID-19 worldwide
Notes: Figure 2-1 plots the number of total cases per cluster (in log) and their ranks (in
log) for COVID-19, last updated on June 3rd. It fits a linear regression for the clusters with
size larger than 40. The data are collected by the Centre for the Mathematical Modelling
of Infectious Diseases COVID-19 Working Group (Leclerc et al., 2020).

exponents often indicating fat tails. Note that other distributions, including the
negative binomial distributions commonly applied in epidemiology research, cannot
predict these relationships, and significantly underestimate the risks of extremely
severe SSEs.

Using fat-tailed power law distributions, we show that stochastic SIR models pre-
dict substantial uncertainties in aggregate epidemiological outcomes. Concretely, we
consider a stochastic model with a population of one million, whereby a thousand
people are initially infected, and apply epidemiological parameters adopted from the
literature. We consider effects of tails of distribution while keeping the average rate
(ℛ0) constant. Under thin-tailed distributions, such as the estimated negative bino-
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mial distribution or power law distribution with 𝛼 = 2, the epidemiological outcomes
will be essentially predictable. However, under fat-tailed distributions close to those
estimated in the COVID-19 data worldwide (𝛼 = 1.1), there will be immense varia-
tions in all outcomes. For example, the peak infection rate is on average 14%, but
its 90the percentile is 31% while its 10th percentile is 4%. Under thin-tailed dis-
tribution such as negative binomial distribution, the average, 90th percentile and
10th percentile of the peak infection is all concentrated at 26-27%, generating largely
deterministic outcomes.

While our primary focus was on the effect on aggregate uncertainty, we also find
important effects on average outcomes. In particular, under a fat-tailed distribution,
the cumulative and peak infection, as well as the herd immunity threshold, will be
lower, and the timing of outbreak will come later than those under a thin-tailed dis-
tribution, on average. For example, the average herd immunity threshold is 66% with
thin-tailed distribution, it is 39% with a fat-tailed distribution.These observations
suggest that the increase in aggregate uncertainty over ℛ0 has effects analogous to a
decrease in average ℛ0. This relationship arises because the average future infection
will be a concave function of today’s infection rate: because of concavity, mean pre-
serving spread will lower the average level. In particular, today’s higher infection rate
has two countering effects: while it increases the future infection, it also decreases the
susceptible population, which decreases it. We provide theoretical interpretations for
each outcome by examining the effect of mean-preserving spread of ℛ0 in analytical
results derived in deterministic models.

Our findings have critical implications for the design of lockdown policies to mini-
mize the social costs of infection. Here, we study lockdown policies that target SSEs.
We assume that the maximum size of infection rate can be limited to a particular
threshold (e.g., 50, 100, or 1000 per day) with some probabilities by banning large
gatherings. Because both the uncertainty and mean of the infection rate in the fat-
tailed distribution are driven by the tail events, such policies substantially lower the
uncertainty and improve the average outcomes. Because the cost of such policy4 is
difficult to estimate reliably, we do not compute the cost-effectiveness of such policy.
Nonetheless, we believe this is an important consideration in the current debates on
how to re-open the economy while mitigating the risks of subsequent waves.

Finally, we also show the implications of a fat-tailed distributions for the esti-
mation of the average infection rate. Under such a distribution with small sample

4For example, it is prohibitively costly to shut down daycare, but it is less costly to prevent a
large concert.
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sizes, the sample mean yields estimates that are far from the true mean and standard
errors that are too small. To address such possibility, it will be helpful to estimate the
power law exponent. If the estimate indicates a thin-tailed distribution, then one can
be confident with the sample mean estimate. If it indicates a fat-tailed distribution,
then one must be aware that there is much uncertainty in the estimate not captured
by its confidence interval. While such fat-tailed distributions cause notoriously dif-
ficult estimation problems, we explore a “plug-in” method that uses the estimated
exponent. Such estimators generate median estimates closer to the true mean with
adequate confidence intervals that reflect the substantial risk of SSEs.

Related Literature. First, our paper belongs to a large literature on stochastic
epidemiological models. The deterministic SIR model was initiated by Kermack and
McKendrick (1927), and later, Bartlett (1949) and Kendall (1956) developed stochas-
tic SIR models (see Britton (2010, 2018) , Britton et al. (2015) for surveys). The
traditional view of the stochastic SIR model is that while useful when the number of
infected is small, once the infected population is moderately large, it behaves simi-
larly to the deterministic model due to the CLT. Britton (2010) writes “Once a large
number of individuals have been infected, the epidemic process may be approximated
by the deterministic counter-part.” Roberts (2017) also considers an SIR model with
small fluctuations of epidemiological parameters, but shows that deterministic models
approximate its average reasonably. Here, we consider large aggregate fluctuations
arising from idiosyncratic shocks and show that even the average deviates significantly
from preditions of deterministic models. There are recent applications of stochastic
SIR models that study the very beginning of COVID-19 outbreaks when the num-
ber of infection is small (for example, Abbott et al. (2020), Karako et al. (2020),
Simha et al. (2020) and Bardina et al. (2020)). However, the major modeling effort
has been to use deterministic models based on the common justification above. Our
point is that when the distribution is fat-tailed, which we found an empirical support
for, the CLT no longer applies, and hence the stochastic model behaves qualitatively
differently from its deterministic counterpart even with a large number of infected
individuals.

Second, the empirical importance of SSEs is widely recognized in the epidemiolog-
ical literature before COVID-19 (Lloyd-Smith et al., 2005; Galvani and May, 2005)
and for COVID-19 (Frieden and Lee, 2020; Endo et al., 2020). These papers fit the
parametric distribution that is by construction thin-tailed, such as negative binomial
distribution. It has been common to estimate “the dispersion parameter 𝑘” of the
negative binomial distribution. We argue that the fat-tailed distribution provides a
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better fit to the empirical distribution of SSEs, in which a tail parameter, 𝛼, parsimo-
niously captures the fatness of the tail. A recent contribution by Cooper et al. (2019)
consider Pareto rule in the context of malaria transmission, but they nonetheless
estimate the dispersion with finite variance for the entire infections.

Third, our paper also relates to studies that incorporate heterogeneity into SIR
models, incorporating differences in individual characteristics or community struc-
tures. Several recent papers point out that the permanent heterogeneity in individ-
ual infection rates lower the herd immunity threshold (Gomes et al., 2020; Hébert-
Dufresne et al., 2020; Britton et al., 2020). Although we obtain a similar result, our
underlying mechanisms are distinct from theirs. In our model, there is no ex-ante het-
erogeneity across individuals, and thus their mechanism is not present. Zhang et al.
(2013) and Szabó (2020) consider a model in which individuals have heterogeneous
infection rates that follow power laws in scale-free networks, but their heterogeneity is
permanent (i.e. due to individual characteristics). Instead, what matters for us is the
aggregate fluctuations in ℛ0 (i.e. due to idiosyncratic variations in environments),
which their models do not exhibit. Some recent papers emphasize the importance
of age-dependent heterogeneity and its implications for lockdown policies (Acemoglu
et al., 2020; Davies et al., 2020; Gollier, 2020; Rampini, 2020; Glover et al., 2020;
Brotherhood et al., 2020). We emphasize another dimension of targeting: target-
ing toward large social gatherings, and this policy reduces the uncertainty regarding
various epidemiological outcomes. Roberts (2013) analyzes a deterministic model in
which basic reproduction number is estimated with noise, and derives probability
distributions over epidemiological outcomes due to the uncertainty of the estimates.

Finally, it is well-known that many variables follow a power law distribution.
These include the city size (Zipf, 1949), the firm size (Axtell, 2001), income (Atkin-
son et al., 2011), wealth (Kleiber and Kotz, 2003), consumption (Toda and Walsh,
2015) and even the size of the earthquakes (Gutenberg and Richter, 1954), the moon
craters and solar flares (Newman, 2005). Regarding COVID-19, Beare and Toda
(2020) document that the cumulative number of infected population across cities and
countries is closely approximated by a power law distribution. They then argue that
the standard SIR model is able to explain the fact. We document that the infection
at the individual level follows a power law. We are also partly inspired by economics
literature which argue that the fat-tailed distribution in firm-size has an important
consequence for the macroeconomics dynamics, originated by Gabaix (2011). We
follow the similar route in documenting that the SSEs are well approximated by a
power law distribution and arguing that such empirical regularities have important
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consequences for the epidemiological dynamics.
Roadmap. The rest of the paper is organized as follows. Section 2.2 documents

evidence that the distribution of SSEs follows power law. Section 2.3 embed the
evidence into an otherwise standard SIR models to demonstrate its implications for
the epidemiological dynamics. Section 2.4 studies estimation of the reproduction
numbers under fat-tailed distribution. Section 2.5 concludes by discussing what our
results imply for ongoing COVID-19 pandemic.

2.2 Evidence

We present evidence from SARS, MERS, and COVID-19 that the SSEs follow power
law distributions. Moreover, our estimates suggest the distributions are often fat-
tailed, with critical implications for the probabilities of extreme SSEs. Evidence also
suggests a potential role of policies in reducing the tail distributions.

2.2.1 Statistical model

Let us define the SSEs and their distribution. Following the notations of Lloyd-Smith
et al. (2005), let 𝑧𝑖𝑡 ∈ {0, 1, 2, ...} denote the number of secondary cases5 an infected
individual 𝑖 has at time 𝑡. Then, given some threshold 𝑍, an individual 𝑖 is said to
have caused SSE at time 𝑡 if 𝑧𝑖𝑡 ≥ 𝑍 . To make the estimation flexible, suppose the
distribution for non-SSEs, 𝑧𝑖𝑡 < 𝑍, needs not follow the same distribution as those
for SSEs.

In this paper, we consider a power law (or Pareto) distribution on the distribution
of SSE. Denoting its exponent by 𝛼, the countercumulative distribution is

P (𝑧𝑖𝑡 ≥ 𝑍) = 𝜋 (𝑍/𝑍)−𝛼 for 𝑍 ≥ 𝑍, (2.1)

where 𝜋 is the probability of SSEs. Notably, its mean and variance may not exist
when 𝛼 is sufficiently low: while its mean is 𝛼

𝛼−1
𝑍 if 𝛼 > 1, it is ∞ if 𝛼 ≤ 1. While

its variance is 𝛼
(𝛼−1)2(𝛼−2)

𝑍2 if 𝛼 > 2, it is ∞ if 𝛼 ≤ 2. In this paper, we formally call
a distribution to be fat-tailed if 𝛼 < 2 so that they have infinite variance. While non-
existence of mean and variance may appear pathological, a number of socioeconomic
and natural phenomenon such as city sizes (𝛼 ≈ 1), income (𝛼 ≈ 2), and earthquake
energy (𝛼 ≈ 1) have tails well-approximated by this distribution as reviewed in the

5Note that the number of “secondary” cases include only direct transmissions and exclude indirect
transmissions. This is how the COVID-19 data in Figure 2-1 were also collected (Leclerc et al., 2020).
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Introduction. One concrete example6 that can explain a power law distribution is
due to the result in Beare and Toda (2019): suppose each participant can invite some
others with some probability. Conditional on inviting, the number of people each
participant invites follows some distributions such as log-normal distribution. Then,
the resulting distribution of all participants follows a power law.

This characteristics stands in contrast with the standard assumption in epidemi-
ology literature that the full distribution of 𝑧𝑖𝑡 follows a negative binomial (or Pascal)
distribution7 with finite mean and variance. The negative binomial distribution has
been estimated to fit the data better than Poisson or geometric distribution for SARS
(Lloyd-Smith et al., 2005), and given its theoretical bases from branching model (e.g.
Gay et al., 2004), it has been a standard distributional assumption in the epidemiology
literature (e.g. Nishiura et al., 2017).

2.2.2 Data

This paper uses five datasets of recent coronavirus outbreaks for examining the dis-
tribution of SSEs: COVID-19 data from (i) around the world, (ii) Japan, and (iii)
India, and (iv) SARS data, (v) MERS data.

(i) COVID-19 data from around the world: this dataset contains clusters of
infections found by a systematic review of academic articles and media reports, con-
ducted by the Centre of the Mathematical Modelling of Infectious Diseases COVID-19
Working Group (Leclerc et al., 2020). The data are restricted to first generation of
cases, and do not include subsequent cases from the infections. The data are contin-
uously updated, and in this draft, we have used the data downloaded on June 3rd.
There were a total of 227 clusters recorded.

(ii) COVID-19 data from Japan: this dataset contains a number of secondary
cases of 110 COVID-19 patients across 11 clusters in Japan until February 26th, 2020,
reported in Nishiura et al. (2020). This survey was commissioned by the Ministry of
Health, Labor, and Welfare of Japan to identify high risk transmission cases.

(iii) COVID-19 data from India: this dataset contains the state-level data

6Another theoretical reason why this distribution could be relevant for airborne diseases is that
the number of connections in social networks often follow a power law (Barabasi and Frangos, 2014).

7Denoting its mean by 𝑅 and dispersion parameter by 𝑘, the distribution is

P (𝑧𝑖𝑡 ≥ 𝑍) = 1−
𝑍∑︁

𝑧=0

Γ(𝑧 + 𝑘)

𝑧!Γ(𝑘)

(︂
ℛ
𝑘

)︂𝑧 (︂
1 +

ℛ
𝑘

)︂−(𝑧+𝑘)

The variance of this distribution is ℛ
(︀
1 + ℛ

𝑘

)︀
. The distribution nests Poisson distribution (as

𝑘 → ∞) and geometric distribution (when 𝑘 = 1.)
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collected by the Ministry of Health and Family Welfare, and individual data collected
by covid19india.org.8 We use the data downloaded on May 31st.

(iv) SARS from around the world: this dataset contains 15 incidents of SSEs
from SARS in 2003 that occured in Hong Kong, Beijing, Singapore, and Toronto, as
gathered by Lloyd-Smith et al. (2005)9 through a review of 6 papers. The rate of
community transmission was not generally high so that, for example, the infections
with unknown route were only about 10 percent in the case of Beijing. The data
consist of SSEs, defined by epidemiologists (Shen et al., 2004) as the cases with
more than 8 secondary cases. For Singapore and Beijing, the contact-tracing data is
available from Hsu et al. (2003) and Shen et al. (2004), respectively. When compare
the fit to the negative binomial distribution, we compare the fit of power law to that
of negative binomial using these contact tracing data.

(v) MERS from around the world: this dataset contains MERS clusters
reported up to August 31, 2013. The cases are classified as clusters when thee are
linked epidemiologically. The data come from three published studies were used in
Kucharski and Althaus (2015). Total of 116 clusters are recorded.

We use multiple data sets in order to examine the robustness of findings.10 Having
multiple data sets can address each other’s weaknesses in data. While data based on
media reports is broad, they may be skewed to capture extreme events; in contrast,
data based on contact tracing may be reliable, but are restricted to small population.
By using both, we can complement each data’s weaknesses.

2.2.3 Estimation

The datasets report cumulative number of secondary cases, either
∑︀

𝑖 𝑧𝑖𝑡 (when a
particular event may have had multiple primary cases) or

∑︀
𝑡 𝑧𝑖𝑡 (when an individual

infects many others through multiple events over time). Denoting these cumulative
numbers by 𝑍, we consider this distribution for some 𝑍 ≥ 𝑍*. As discussed in Ap-
pendix 2.5, we can interpret the estimates of this tail distribution as approximately
the per-period and individual tail distribution and therefore map directly to the pa-

8https://www.kaggle.com/sudalairajkumar/covid19-in-india. covid19india.org is a volunteer-
based organization that collects information from municipalities.

9Even though Lloyd-Smith et al. (2005) had analyzed 6 other infectious diseases, SARS was the
only one with sufficient sample sizes to permit reliable statistical analyses.

10he infectious diseases considered here share some commonalities as SARS-CoV that causes SARS,
MERS-CoV that causes MERS, and SARS-CoV-2 that causes COVID-19 are human coronaviruses
transmitted through the air. They have some differences in terms of transmissibility, severity, fatality,
and vulnerable groups (Petrosillo et al., 2020). But overall, as they are transmitted through the air,
they are similar compared to other infectious diseases.
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rameter of the SIR model in the next section. The thresholds for inclusion, 𝑍*, will
be chosen to match the threshold for SSEs when possible, but also adjust for the
sample size. For COVID-19 in the world, we apply 𝑍 = 40 to focus on the tail of the
SSE distribution. For SARS, we apply 𝑍 = 8 as formally defined (Shen et al., 2004).
For other samples, we apply 𝑍 = 2 because the sample size is limited.

To assess whether the distribution of 𝑍 follows the power law, we adopt the
regression-based approach that is transparent and commonly used. If 𝑍 follows power
law distribution, then by (2.1), the log of 𝑍 and the log of its underlying rank have
a linear relationship: log 𝑟𝑎𝑛𝑘(𝑍) = −𝛼 log𝑍 + log(𝑁𝜋𝑍𝛼). This is because, when
there are 𝑁 individuals, the expected ranking of a realized value 𝑍 is E𝑟𝑎𝑛𝑘(𝑍) ≃
P(𝑧 ≥ 𝑍)𝑁 for moderately large 𝑁 . Thus, when 𝑁 is large, we obtain a consistent
estimate of 𝛼 by the following regression:

log 𝑟𝑎𝑛𝑘(𝑍) = −𝛼 log𝑍 + log(𝑁𝜋𝑍𝛼) + 𝜀 (2.2)

When 𝑁 is not large, however, the estimate will exhibit a downward bias because
log is a concave function and thus E log 𝑟𝑎𝑛𝑘(𝑍) < logE𝑟𝑎𝑛𝑘(𝑍). While we present
the analysis according to (2.2) in Figures 2-1 and 2-2 for expositional clarity, we
also report the estimates with small sample bias correction proposed by Gabaix and
Ibragimov (2011) in Appendix 2.5.11 We also estimate using the maximum likelihood
in Appendix 2.5. Note that when there are ties (e.g. second and third largest had 10
infections), we assigned different values to each observation (e.g. assigning rank of 2
and 3 to each observation).

Next, we also compare the extent to which a power law distribution can approxi-
mate the distribution of SSEs adequately relative to the negative binomial distribu-
tion. First, we plot what the predicted log-log relationship in (2.2) would be given
the estimated parameters of negative binomial distribution.12 Second, to quantify the
predictive accuracy, we compute the ratio of likelihood of observing the actual data.

11Their approach is to turn the dependent variable into log
[︀
𝑟𝑎𝑛𝑘(𝑍)− 1

2

]︀
instead of log [𝑟𝑎𝑛𝑘(𝑍)].

We examine the performance of their bias correction method through a estimating regression given
random variables generated from power law distributions. While their bias correction almost elim-
inates bias when 𝑁 is moderately large, it has an upward bias of 𝛼 whereas the equation (2.2) has
a downward bias. The magnitude of bias is similar when 𝑁 = 10 or 𝑁 = 15. Thus, our preferred
approach is to refer to both methods for robustness.

12This approach stands in contrast with a common practice to plot the probability mass functions.
Unlike such approaches where differences in tail densities are invisible since it is very close to zero,
this approach highlights the differences in tail densities.
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2.2.4 Results

Our analysis shows that the power law finely approximates the distribution of SSEs.
Figure 2-1 visualizes this for COVID-19 from across the world, and Figure 2-2 for
SARS, MERS, and COVID-19 in Japan and India. Their 𝑅2 range between 0.93
and 0.99, suggesting high levels of fit to the data. Because our focus is on upper-tail
distribution, Figure 2-1 truncates below at the cluster size 40, Figure 2-2 truncates
at 8 for SARS and at 2 for MERS and COVID-19 in India and Japan. Figure 2.5.1
in Appendix presents a version of Figure 2-1 truncated below at 20.

In addition, the estimates of regression (2.2) suggest that the power law expo-
nent, 𝛼, is below 2 and even close to 1. Table 2.1 summarizes the main findings.
The estimated exponents near 1 suggest that extreme SSEs are not uncommon. For
COVID-19 in Japan and India, the estimated exponents are larger than 1 but often
below 2. Since applying the threshold of 𝑍* = 2 is arguably too low, we must in-
terpret out-of-sample extrapolation from these estimates with caution. When higher
thresholds are applied, the estimated exponents tend to be higher. For example, when
applying the threshold of 𝑍* = 8 as in SARS 2003 to COVID-19 in India, the esti-
mated exponent is 1.85 or 2.25. This pattern is already visible in Figure 2-2. Table
2.5.1 in Appendix 2.5 presents results using bias correction technique of Gabaix and
Ibragimov (2011) as well as maximum likelihood. The results are very similar.

Notably, the estimated exponent of India is higher than those of other data. There
are two possible explanations. First, the lockdown policies in India have been imple-
mented strictly relative to moderate approaches in Japan and some other parts of the
world during the outbreaks. By discouraging and prohibiting large-scale gatherings,
sometimes by police enforcement, they may have been successful at targeting SSEs.
Second, contact tracing to ensure data reliability may have been more difficult in In-
dia until end of May than in Japan until end of February.13 While missing values will
not generate any biases if the attritions were proportional to the number of infections,
large gatherings may have dropped more than in Japan where the SSEs were found
through contact tracing. Nonetheless, these estimates suggest that various environ-
ments and policies could decrease the risks of the extreme SSEs. This observation
motivates our policy simulations to target SSEs.

13Concretely, there were only 248 cases of more than one secondary infections reported in the
data among 27,890 primary cases in the data from India. That is, only 0.8 percents of primary cases
were reported to have infected more than one persons. In contrast, there were 27 cases with more
than one secondary infections among 110 primary cases in Japan. That is, 25 percent of primary
cases were infectious. This difference in ration likely reflects the data collection quality than actual
infection dynamics.

113



Number of secondary cases ≥ 8
SARS in HK, Beijing, Singapore, and Toronto

Number of secondary cases per single case (in log)

R
an

ki
ng

 (
in

 lo
g)

10 50 100 150

1s
t

5t
h

10
th

15
th

log(rank) =  − 0.85 log(num)  + 1.99

R2 = 0.96

MERS Worldwide

Number of total cases per cluster (in log)

R
an

ki
ng

 (
in

 lo
g)

Number of secondary cases ≥ 2

2 10 25

1s
t

10
th

25
th

log(rank) =  − 1.17 log(num)  + 1.84

R2 = 0.96

COVID−19 in Japan

Number of secondary cases per single case (in log)

R
an

ki
ng

 (
in

 lo
g)

Number of secondary cases ≥ 2

2 10

1s
t

10
th

log(rank) =  − 1.17 log(num)  + 1.3

R2 = 0.93

COVID−19 in India

Number of secondary cases per single case (in log)

R
an

ki
ng

 (
in

 lo
g)

Number of secondary cases ≥ 2

2 10 20

1s
t

10
th

10
0t

h

log(rank) =  − 1.62 log(num)  + 2.51

R2 = 0.97

Figure 2-2: Log size vs log rank for COVID-19

Notes: Figure 2-2 plots the number of total cases per cluster (in log) and their ranks (in
log) for MERS, and the number of total cases per cluster (in log) and their ranks (in log)
for SARS and COVID-19 in Japan and India. The data for SARS are from Lloyd-Smith
et al. (2005), and focus on SSEs defined to be the primary cases that have infected more
than 8 secondary cases. The data for MERS come from Kucharski and Althaus (2015).
The data for Japan comes from periods before February 26, 2020, reported in Nishiura
et al. (2020). The data for India are until May 31, 2020, reported by the Ministry of
Health and Family Welfare, and covid19india.org. The plots are restricted to be the cases
larger than 2.
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COVID-19 SARS MERS
World Japan India World Singapore Beijing World

(1) (2) (3) (4) (5) (6) (7)

𝛼̂ 1.07 1.17 1.62 0.85 0.75 0.75 1.17
(0.04) (0.10) (0.03) (0.06) (0.08) (0.06) (0.07)

𝑍 40 2 2 8 2 2 2
Obs. 60 11 109 15 19 8 36
R2 0.98 0.93 0.97 0.96 0.91 0.94 0.96
log10 𝐿𝑅 - 11.39 - - 19.51 8.04 40.89

Table 2.1: Estimates of power law exponent (𝛼̂) and their fit with data

Notes: Table 2.1 summarizes the estimates of power law exponent (𝛼̂) given as the coef-
ficient of regression of log of number of infections (or size of clusters) on the log of their
rankings. Heteroskedasticity-robust standard errors are reported in the parenthesis. 𝑍

denote the threshold number of infection to be included. log10(LR) denotes “likelihood
ratios”, expressed in the log with base 10, of probability of observing this realized data with
power law distributions relative to that with estimated negative binomial distributions.
Columns (1)-(3) report estimates for COVID-19; columns (4)-(6) for SARS, and column
(7) for MERS.

Next, we compare the assumption of power law distribution relative to that of a
negative binomial distribution. Figure 2-3 shows that the negative binomial distri-
butions would predict that the extreme SSEs will be fewer than the observed dis-
tribution: while it predicts the overall probability of SSEs accurately, they suggest
that, when they occur, they will not be too extreme in magnitude. Table 1 reports
the relative likelihood, in logs, of observing the data given the estimated parameters.
It shows that, under the estimated power law distribution relative to the estimated
negative binomial distribution, it is 108− 1020 times more likely to observe the SARS
data (1040 times more for MERS, and 1011 times more COVID-19 data in Japan).
Such large differences emerge because the negative binomial distribution, given its
implicit assumption of finite variance, suggests that the extreme SSEs are also ex-
tremely rare when estimated with entire data sets14. If our objective is to predict
the overall incidents of infections parsimoniously, then negative binomial distribution
is well-validated and theoretically founded (Lloyd-Smith et al., 2005).15 However, if

14For example, the binomial distribution estimate suggests an incidence of 185 cases (residential
infection in Hong Kong) only has a chance of 9.5× 10−10 occurring for any single primary case.

15Since the power law distribution is fitted only to SSEs, estimated power law distribution may
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Figure 2-3: Comparison of power law and negative binomial distributions

Notes: Figure 2-3 plots the predicted ranking of infection cases given the estimated nega-
tive binomial (NB) distribution, in addition to the log-log plots and estimated power law
(PL) distributions. The negative binomial distribution is parameterized by (𝑅, 𝑘), where
𝑅 is mean and 𝑘 is the dispersion parameter with the variance being 𝑅(1 + 𝑅/𝑘). The
estimates for SARS Singapore come from our own estimates using the maximum likeli-
hood (𝑅 = 0.88, 𝑘 = 0.09); MERS come from the world (𝑅 = 0.47, 𝑘 = 0.26) estimated
in Kucharski and Althaus (2015); and COVID-19 in Japan were from our own estimates
using the maximum likelihood (𝑅 = 0.56, 𝑘 = 0.21). The estimates of Singapore is slightly
different from Lloyd-Smith et al. (2005) because we pool all the samples.

our goal is to estimate the risks of extreme SSEs accurately, then using only two
parameters with finite variance to estimate together with the entire distribution may
be infeasible.

These distributional assumptions have critical implications for the prediction of
the extreme SSEs. Table 2.2 presents what magnitude top 1%, top 5%, and top 10%
among SSEs will be given each estimates of the distribution. Given the estimates of
the negative binomial distribution, even the top 1% of SSEs above 8 cases will be
around the magnitude of 19-53. However, given a range of estimates from power law
distribution, the top 1% could be as large as 569. Thus, it is no longer surprising
that the largest reported case for COVID-19 will be over 1,000 people. In contrast,

fit the data better than the estimated negative binomial distribution that was meant to fit the
entire data set. Rather than making such comparison, this estimation is intended to illustrate the
magnitude of difference between the two distributional assumptions. Because of significant missing
values for the low number of infections in the COVID-19 from across the world and India, we will
not use the data sets for estimation of negative binomial distributions.
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Power Law Negative Binomial
𝛼 = 1.08 𝛼 = 1.1 𝛼 = 1.2 𝛼 = 1.5 𝛼 = 2 SARS MERS COVID-19

1% 569 526 371 172 80 44 18 19
5% 128 122 97 59 36 31 15 15
10% 67 65 55 37 25 25 13 14

Table 2.2: Probabilities of extreme SSEs under each distribution

Notes: Table 2.2 shows the size of secondary cases at each quantile, top 1 percentile, 5
percentile, and 10 percentile, given each distributions. The negative binomial distribution’s
estimates for SARS are from Singapore, for COVID-19 are from Japan, and for MARS is
from around the world.

such incidents have vanishingly low chance under binomial distributions. Since the
SSEs are rare, researchers will have to make inference about their distribution based
some parametric methods. Scrutinizing such distributional assumptions along with
the estimation of parameters themselves will be crucial in accurate prediction of risks
of extreme SSEs.

2.3 Theory

Motivated by the evidence, we extend an otherwise standard stochastic SIR model
with a fat-tailed SSEs. Unlike with thin-tailed distributions, we show that idiosyn-
cratic risks of SSEs induce aggregate uncertainties even when the infected population
is large. We further show that the resulting uncertainties in infection rates have
important implications for average epidemiological outcomes. Impacts of lockdown
policies that target SSEs are discussed.

2.3.1 Stochastic SIR model with fat-tailed distribution

Suppose there are 𝑖 = 1, ..., 𝑁 individuals, living in periods 𝑡 = 1, 2, .... Infected
individuals pass on and recover from infection in heterogeneous and uncertain ways.
Let 𝛽𝑖𝑡 denote the number of new infection in others an infected individual 𝑖 makes
at time 𝑡. Let 𝛾𝑖𝑡 ∈ {0, 1} denote the recovery/removal, where a person recovers
(𝛾𝑖𝑡 = 1) with probability 𝛾 ∈ [0, 1]. Note that, whereas 𝑧𝑖𝑡 in Section 2.2 was a
stochastic analogue of “effective” reproduction number, 𝛽𝑖𝑡 here is such analogue of
“basic reproduction number.” Assuming enough mixing in the population, these two
models are related by 𝑧𝑖𝑡 = 𝛽𝑖𝑡

𝑆𝑡

𝑁
, where 𝑆𝑡 is a number of susceptible individuals in
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the population.

This model departs from other stochastic SIR models only mildly: we consider a
fat-tailed, instead of thin-tailed, distribution of infection rates. Based onthe evidence,
we consider a power law distribution of 𝛽𝑖𝑡: its countercumulative distribution is given
by

P (𝛽𝑖𝑡 ≥ 𝛽) = 𝜋(𝛽/𝛽)−𝛼

for the exponent 𝛼 and a normalizing constant 𝛽, and 𝜋 ∈ [0, 1] is the probability
that 𝛽 ≥ 𝛽. Note that the estimated exponent 𝛼 can be mapped to this model, as
discussed in Appendix 2.5. If we assume 𝛽𝑖𝑡 is distributed according to exponential
distribution or negative binomial distribution, we obtain a class of stochastic SIR
models commonly studied in the epidemiological literature (see Britton (2010, 2018)
for surveys). We will compare the evolution dynamics under this power law dis-
tribution against those under negative binomial distribution as commonly assumed,
keeping the average basic reproduction number the same. To numerically implement
this, we will introduce normalization to the distributions.

The evolution dynamics is described by the following system of stochastic differ-
ence equations. Writing the total number of infected and recovered/removed popu-
lations by 𝐼𝑡 and 𝑅𝑡, we have

𝑆𝑡+1 − 𝑆𝑡 = −
𝐼𝑡∑︁
𝑖=1

𝛽𝑖𝑡
𝑆𝑡

𝑁
(2.3)

𝐼𝑡+1 − 𝐼𝑡 =
𝐼𝑡∑︁
𝑖=1

𝛽𝑖𝑡
𝑆𝑡

𝑁
−

𝐼𝑡∑︁
𝑖=1

𝛾𝑖𝑡 (2.4)

𝑅𝑡+1 −𝑅𝑡 =
𝐼𝑡∑︁
𝑖=1

𝛾𝑖𝑡. (2.5)

This system is a discrete-time and finite-population analogue of the continuous-time
and continuous-population differential equation SIR models.

Parametrization: we parametrize the model as follows. The purpose of simu-
lation is a proof of concept, rather than to provide a realistic numbers. We take the
length of time to be one week. We set the sum of the recovery and the death rate per
day is 1/18 following Wang et al. (2020), so that 𝛾 = 7/18. The total population is
set to 𝑁 = 105, and initially infected population is 1% of the total population. As a
benchmark case, we set 𝛼 = 1.1, which is in line with the estimates for the COVID-19
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Parameter Description Value Source
A. Common parameters
𝛾 recovery & death rate 7/18 (Wang et al., 2020)
𝑁 total population 105

𝐼0 initially infected populatoion 103 1% of population
ℛ0 ≡ E[𝛽𝑖𝑡]/𝛾 mean basic reproduction number 2.5 (Remuzzi and Remuzzi, 2020)
B. Power law
𝜋 probability of infecting 0.25 (Nishiura et al., 2020)
𝛼 tail parameter {1.08, 1.1, 1.2, 1.5, 2}
C. Negative binomial
𝑘 overdispersion parameter 0.16 (Lloyd-Smith et al., 2005)

Table 2.3: Parameter values

data worldwide, but we explore several other parametrization, 𝛼 ∈ {1.08, 1.2, 1.5, 2}.
As documented in Nishiura et al. (2020), 75% of people did not infect others. We
therefore set 𝜋 = 0.25. This number is also in line with the evidence from SARS
reported in Lloyd-Smith et al. (2005), in which 73% of cases were barely infectious.
We choose 𝛽, which controls the mean of 𝛽𝑖𝑡, so that the expected ℛ0 ≡ E𝛽𝑖𝑡/𝛾 per
day is 2.5, corresponding to the middle of the estimates obtained in Remuzzi and
Remuzzi (2020). This leads us to choose 𝛽 = 0.354 in the case of 𝛼 = 1.1.

We will contrast the above model to a model in which 𝛽𝑖𝑡 is distributed according
to negative binomial, 𝛽𝑖𝑡/𝛾 ∼ negative binomial(ℛ0, 𝑘). The mean of this distribution
is E𝛽𝑖𝑡/𝛾 = ℛ0, ensuring that it has the same mean basic reproduction number as
in the power law case, and the variance is ℛ0(1 + ℛ0/𝑘). The smaller values of 𝑘
indicate greater heterogeneity (larger variance). We use the estimates of SARS by
Lloyd-Smith et al. (2005), 𝑘 = 0.16. The mean is set to the same value as power law
case, ℛ0 = 2.5,

2.3.2 Effects of fat-tailed distribution on uncertainty

Figure 2-4a shows 10 sample paths of infected population generated through the
simulation of the model with 𝛼 = 1.1. One can immediately see that even though
all the simulation start from the same initial conditions under the same parameters,
there is enormous uncertainty in the timing of the outbreak of the disease spread,
the maximum number of infected, and the final number of susceptible population.
The timing of outbreak is mainly determined by when SSEs occur. To illustrate the
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Figure 2-4: Ten sample paths from simulation

Note: Figure 2-4 plots 10 sample path of the number of infected population from simula-
tion, in which we draw {𝛽𝑖𝑡, 𝛾𝑖𝑡} randomly every period in an i.i.d. manner. Figure 2-4a
plots the case with power law distribution, and Figure 2-4b plots the case with negative
binomial distribution.

importance of a fat-tailed distribution, Figure 2-4b shows the same sample path but
with a thin-tailed negative binomial distribution. In this case, as already 1,000 people
are infected in the initial period, the CLT implies the aggregate variance is very small
and the model is largely deterministic. This is consistent with Britton (2018). Britton
(2018) shows that when the total population is as large as 1,000 or 10,000, the model
quickly converges to the deterministic counterpart.

Figure 2-5 compares the entire distribution of the number of cumulative infec-
tion (top-left), the herd immunity threshold (top-right), the peak number of infected
(bottom-left), and the days it takes to infect 5% of population (bottom-right). The
herd immunity threshold is defined as the cumulative number of infected at which
the number of infected people is at its peak. The histogram contrast the case with
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Figure 2-5: Histogram from 1000 simulation

Note: Figure 2-5 plots the histogram from 1000 simulations, in which we draw {𝛽𝑖𝑡, 𝛾𝑖𝑡}
randomly every period in an i.i.d. manner. The cumulative number of infected is 𝑆𝑇 , where
we take 𝑇 = 204 weeks. The herd immunity threshold is given by the cumulative number
of infected, at which the infection is at the peak. Formally, 𝑆𝑡* where 𝑡* = argmax𝑡 𝐼𝑡.
The peak number of infected is max𝑡 𝐼𝑡.

power law distribution with 𝛼 = 1.1 to the case with negative binomial distribution.
It is again visible that uncertainty remains in all outcomes when the distribution of
infection rate is fat-tailed. For example, the cumulative infection varies from 65% to
100% in the power law case, while the almost all simulation is concentrated around
92% in the case of negative binomial distribution.

Table 2.4 further shows the summary statistics for the epidemiological outcomes
for various power law tail parameters, 𝛼, as well as for negative binomial distribu-
tion. With fat-tails, i.e. 𝛼 close to one, the range between 90th percentile and 10th
percentile for all statistics is wide, but this range is substantially slower as the tail
becomes thinner (𝛼 close to 2). For example, when 𝛼 = 1.08 the peak infection rate
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can vary from 6% to 32% as we move from 10the percentile to 90th percentile. In
contrast, when 𝛼 = 2, the peak infection rate is concentrated at 26–27%. More-
over, when 𝛼 = 2, the model behaves similarly to the model with negative binomial
distribution because the CLT applies to both cases.

2.3.3 Effects of fat-tailed distribution on average

While our primary focus was the effect on the uncertainty of epidemiological out-
comes, Figure 2-5 also shows significant effects on the mean. In particular, fat-tailed
distribution also lowers cumulative infection, the herd immunity threshold, the peak
infection, and delays the time it takes to infect 5% of population, on average. Why
could such effects emerge?

To understand these effects, we consider a deterministic SIR model with contin-
uous time and continuum of population. In such a textbook model, we consider the
effect of small uncertainties (i.e. mean-preserving spread) in ℛ0. Such theoretical
inquiry can shed light on the effect because the implication of fat-tailed distribution
is essentially to introduce time-varying fluctuation in aggregate ℛ0. We can thus
examine how the outcome changes by ℛ0, and invoke Jensen’s inequality to interpret
the results.16

1. Effect on cumulative infection: note that the cumulatively infected popula-
tion is given by 1− 𝑆∞/𝑁 , where 𝑆∞ is the ultimate susceptible population as
𝑡 → ∞. Taking the standard derivation, 𝑆∞ satisfies the following equation:17

log(𝑆∞/𝑁) = −ℛ0(1− 𝑆∞/𝑁) (2.6)

In Appendix 2.5, we prove that 𝑆∞ is a convex function of ℛ0 if ℛ0 > 1.125,
, which is likely to be met in SARS or COVID-19.18 Thus, the cumulative
infection is concave in ℛ0, and the mean-preserving spread in ℛ0 lowers the
cumulative infection.

2. Effect on herd immunity threshold: denoting the number of recovered/removed
and infected population by 𝑅, the infection will stabilize when ℛ0

(︀
𝑁−𝑅
𝑁

)︀
= 1.

16This assumes that ℛ0 is drawn at time 0, and stay constant thereafter for each simulation. This
exercise is not exactly the same as our original SIR model because there ℛ0 fluctuates over time
within a simulation. Thus this is for providing intuition, rather than a proof.

17Here, we set the initially recovered population to zero, 𝑅0 = 0.
18Numerically, we did not find any counterexample even when ℛ0 ∈ [1, 1.125].
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Rearranging this condition, the herd immunity threshold, 𝑅* is given by

𝑅*

𝑁
= 1− 1

ℛ0

, (2.7)

where ℛ0 ≡ 𝛽/𝛾. Since 𝑅* is concave in ℛ0, the mean-preserving spread in ℛ0

lowers the herd immunity threshold.

3. Effect on timing of outbreak: let us consider the time 𝑡* when some thresh-
old of outbreak

(︀
𝐼
𝑁

)︀* is reached. Supposing 𝑆/𝑁 ≈ 1 at the beginning of
outbreak, 𝑡* satisfies (︂

𝐼

𝑁

)︂*

≈ 𝐼0
𝑁

exp(
1

𝛾
(ℛ0 − 1)𝑡*) (2.8)

Thus, 𝑡* is convex in ℛ0, and the mean-preserving spread in ℛ0 delays the
timing of the outbreak.

4. Effect on peak infection rate: the peak infection rate, denoted by 𝐼max

𝑁
,

satisfies
𝐼max

𝑁
= 1− 1

ℛ0

− 1

ℛ0

log(ℛ0𝑆0), (2.9)

where 𝑆0 is initial susceptible population. We show in the Appendix that (2.9)
implies that the peak infection, 𝐼max/𝑁 , is a concave function of ℛ0 if and only
if ℛ0 ≥ 1

𝑆0
exp(0.5). If we let 𝑆0 ≈ 1, this implies ℛ0 ≥ exp(0.5) ≈ 1.65. This

explains why we found a reduction in peak infection rate, as we have assumed
ℛ0 = 2.5. Loosely speaking, since the peak infection rate is bounded above by
one, it has to be concave for sufficiently high ℛ0.

Overall, we have found that the increase in the uncertainty over ℛ0 has effects sim-
ilar to a decrease in the level of ℛ0. This is because the aggregate fluctuations in
ℛ0 introduce negative correlation between the future infection and the future sus-
ceptible population. High value of today’s ℛ0 ≡ E𝛽𝑖𝑡

𝛾
increases tomorrow’s infected

population, 𝐼𝑡+1, and decreases tomorrow’s susceptible population, 𝑆𝑡+1. That is,
𝐶𝑜𝑣(𝑆𝑡+1, 𝐼𝑡+1) < 0. Because the new infection tomorrow is a realization of 𝛽𝑡+1 mul-
tiplied by the two (that is, 𝛽𝑡+1𝐼𝑡+1

𝑆𝑡+1

𝑁
) this negative correlation reduces the spread

of the virus in the future on average, endogenously reducing the magnitude of the
outbreak.

This interpretation also highlights the importance of intertemporal correlation
of infection rates, 𝐶𝑜𝑣(𝛽𝑡, 𝛽𝑡+1). When some individuals participate in events at
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infection-prone environments more frequently than others, the correlation will be
positive. Such effects can lead to a sequence of clusters and an extremely rapid rise
in infections (Cooper et al., 2019) that overwhelm the negative correlation between
𝑆𝑡+1 and 𝐼𝑡+1 highlighted above. On the other hand, when infections take place at
residential environments (e.g. residential compound in Hong Kong for SARS, and
dormitory in Singapore for COVID-19), then the infected person will be less likely to
live in another residential location to spread the virus. In this case, the correlation
will be negative. In this way, considering the correlation of infection rates across
periods will be crucial.

Note that the mechanism we identified on herd immunity thresholds is distinct
from the ones described in Gomes et al. (2020); Hébert-Dufresne et al. (2020); Britton
et al. (2020). They note that when population has permanently heterogenous activity
rate, which captures both the probability of infecting and being infected, the herd
immunity can be achieved with lower threshold level of susceptible. They explain
this because majority of “active” population becomes infected faster than the remain-
ing population. Our mechanism does not hinge on the permanent heterogeneity in
population, which could have been captured by 𝐶𝑜𝑣(𝛽𝑖𝑡, 𝛽𝑖𝑡+1) = 1. The fat-tailed
distribution in infection rate alone creates reduction in the required herd immunity
rate in expectation.

2.3.4 Lockdown policy targeted at SSEs

How could the policymaker design the mitigation policies effectively if the distribu-
tion of infection rates is fat-tailed? Here, we concentrate our analysis on lockdown
policy. Unlike the traditionally analyzed lockdown policy, we consider a policy that
particularly targets SSEs. Specifically we assume that the policy can impose an up-
per bound on 𝛽𝑖𝑡 ≤ 𝛽 with probability 𝜑. The probability 𝜑 is meant to capture
some imperfection in enforcements or impossibility in closing some facilities such as
hospitals and daycare19. Here, we set 𝜑 = 0.5. For tractability, we assume that the
government implements targeted lockdown policies for entire periods. We experiment
with 𝛽 for various values: 1000 cases per day, 100 cases per day, and 50 cases per day.

While Table 2.5.3 in Appendix presents results in detail, we briefly summarize the
main results here. First, the policy reduces the mean of the peak infection rate if and
only if the distribution features fatter tails. Second, the targeted lockdown policy is

19Note that, even though the theoretical variance is infinite, the realized variance in numerical
simulations will always be finite. Therefore, such stochastic reductions can still reduce the simulated
variance even though the theoretical variance remains infinite.
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effective in reducing the volatility of the peak infection rate in the case that such risks
exist in the first place. For example, consider the case with 𝛼 = 1.1. Moving from
no policy to the upper-limit of 100 cases reduces the 90th percentile of peak infection
from 31% to 17%.20 In contrast, when 𝛼 = 2 or with negative binomial distribution,
the policy has virtually no effect. Therefore the policy is particularly effective in
mitigating the upward risk of overwhelming the medical capacity. This highlights
that while the fat-tailed distribution induces the aggregate risk in the epidemiological
dynamics, the government can partly remedy this by appropriately targeting the
lockdown policy.

We conclude this section by discussing several modeling assumptions. First, we
have assumed that {𝛽𝑖𝑡} is independently and identically distributed across individ-
uals and over time. This may not be empirically true. For example, a person who
was infected in a big party is more likely to go to a party in the next period. This in-
troduces ex ante heterogeneities as discussed in (Gomes et al., 2020; Hébert-Dufresne
et al., 2020; Britton et al., 2020), generating positive correlation in {𝛽𝑖𝑡} along the
social network. Or, a person who tends to be a superspreader may be more likely to
be a superspreader in the next period. This induces a positive correlation in {𝛽𝑖𝑡}
over time. If the resulting cascading effect were large, then the average effects on
the epidemiological outcomes we have found may be overturned. Second, we have
exogenously imposed power law distributions without fully exploring underlying data
generation mechanisms behind them. The natural next step is to provide a model
in which individual infection rate follows a power law. We believe SIR models with
social networks along the line of Pastor-Satorras and Vespignani (2001), Moreno et al.
(2002), Castellano and Pastor-Satorras (2010), May and Lloyd (2001), Zhang et al.
(2013), Gutin et al. (2020), and Akbarpour et al. (2020) are promising avenue to
generate endogenous power law in individual infection rates.

2.4 Estimation methods

We began with the evidence that SSEs follow a power law distribution with fat tails
in many settings, and showed that such distributions substantively change the pre-

20We may be concerned that the unbounded support of power law distribution is unrealistic; at
the extreme case, one cannot infect more than 8 billion people since that will exceed the world
population. Imposing some upperbound on the distribution of infection rate will be equivalent
to imposing a lockdown policy with perfect implementation (𝜑 = 1). As shown in the results of
lockdown policy, imposing such upperbounds can significantly reduce the volatility relative to the
unbounded case, and nonetheless, some uncertainties will persist and remain much larger than the
predictions of negative binomial distributions.
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dictions of SIR models. In this Section, we discuss the implications of power law
distributions for estimating the effective reproduction number.

2.4.1 Limitations of sample means

Estimation of average reproduction numbers (ℛ𝑡) has been the chief focus of empirical
epidemiology research (e.g. Becker and Britton, 1999). Our estimates across five
different data sets suggest that the exponent satisfies 𝛼 ∈ (1, 2) in many occasions:
that is, the infection rates have a finite mean but an infinite variance. Since the
mean exists, by the Law of Large Numbers, the sample mean estimates (see e.g.
Nishiura, 2007) that have been used in the epidemiology research will be consistent
(i.e. converge to the true mean asymptotically) and also unbiased (i.e. its expectation
equals the true mean with finite samples.)

Due to the infinite variance property, however, the sample mean will converge very
slowly to the true mean because the classical CLT requires finite variance. Formally,
while the convergence occurs at a rate

√
𝑁 for distributions with finite variance, or

thin tails, it occurs only at a rate 𝑁1− 1
𝛼 for the power law distributions with fat tails,

𝛼 ∈ (1, 2) (Gabaix, 2011).21 Under distributions with infinite variance, or fat tails,
the sample mean estimates could be far from the true mean with reasonable sample
sizes, and their estimated 95 confidence intervals will be too tight. Figure 2-6 plots
a Monte Carlo simulation of sample mean’s convergence property. For thin-tailed
distributions such as the negative binomial distribution or the power law distribution
with 𝛼 = 2, even though the convergence is slow due to their very large variance,
they still converge to the true mean reasonably under a few 1,000 observations. In
contrast, with fat-tailed distributions such as power law distribution with 𝛼 = 1.1 or
𝛼 = 1.2, the sample mean will remain far from the true mean. Their sample mean
estimates behave very differently as the sample size increases. Every so often, some
extraordinarily high values occur that significantly raises the sample mean and its
standard errors. When such extreme values are not occurring, the sample means
gradually decrease. With thin tails, such extreme values are rare enough not to cause
such sudden increase in sample means; however, with fat tails, the extreme values are
not so rare.

21For 𝛼 = 1 exactly, the convergence will occur at rate ln𝑁 .
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Estimates under distributions with fat tails
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Figure 2-6: An example of sample mean estimates

Notes: Figure 2-6 depicts an example of sample mean estimates for thin-tailed and fat-
tailed distributions. The draws of observations are simulated through the inverse-CDF
method, where the identical uniform random variable is applied so that the sample means
are comparable across four different distributions. All distributions are normalized to have
the mean of 2.5. The negative binomial (NB) distribution has the dispersion parameter
𝑘 = 0.16 taken from (Lloyd-Smith et al., 2005). The range of power law (PL) parameters
is also taken from the empirical estimates.

2.4.2 Using power law exponents to improve inference

What methods could address the concerns that the sample mean may be empirically
unstable? One approach may be to exclude some realizations as an outlier, and focus
on subsamples without extreme values22. However, such analysis will neglect major
source of risks even though extreme "outlier" SSEs may fit the power law distributions
as shown in Figure 2-1. While estimating the mean of distributions with rare but
extreme values has been notoriously difficult23, there are some approaches to address

22In Japan, the case of over 620 infections in the cruise ship Diamond Princess was excluded from
all other analyses.

23Consider, for example, a binary distribution of infection rates such that one infects 𝑁 others with
1/𝑁 probability, and 0 others with 1−1/𝑁 probability. In this case, the true mean 𝑅𝑡 = 1. Suppose
a statistician observes 10 infected cases for each estimation. If 𝑁 were 1,000, then with 99(≈ 0.99910)
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this formally.

With power law distributions, the estimates of exponent have information that can
improve the estimation of the mean. Figure 2-7 shows that the exponents 𝛼 can be
estimated adequately with reasonable sample sizes.24 If 𝛼 > 2, as may be the case for
the India under strict lockdown, then one can have more confidence in the reliability
of sample mean estimates. However, if 𝛼 < 2, the sample mean may substantially
differ from the true mean. At the least, one can be aware of the possibility.

One transparent approach is a “plug-in” method: to estimate the exponent 𝛼̂, and
plug into the formula of the mean 𝛼̂

𝛼̂−1
𝑍. This method yields a valid 95 confidence

intervals (C.I.) of the median25 since the estimated 𝛼̂ has valid confidence intervals.26

Figure 2-7 shows the estimation results for the same data with 𝛼 = 1.1, 1.2 as shown
in Figure 2-6. First, while the sample mean in Figure 2-6 had substantially under-
estimated the mean, this estimated median is close to the true mean. Second, while
the sample mean estimation imposed symmetry between lower and upper bounds of
95 percent confidence intervals, this estimate reflects the skewness of uncertainties:
upward risks are much higher than downward risks because of the possibility of ex-
treme events. Third, the standard errors are much larger, reflecting the inherent
uncertainties given the limited sample sizes.27 Fourth, the estimates are more stable
and robust to the extreme values28 than the sample mean estimates that have sudden
jumps in the estimates after the extreme values.

Table 2.5 demonstrates the validity of the “plug-in” method through a simulation
experiment. The table shows the comparison of the probability that the constructed
95% C.I. covers the true mean using the 1,000 Monte-Carlo simulation. When the

percent chance, nobody becomes infected so that 𝑅̂𝑡 = 0, and the estimates’ confidence interval will
be [0, 0]. But with less than 1 percent chance when any infection occurs, 𝑅̂𝑡 will be larger than 100.
Thus, the 95 percent confidence interval contains the true mean in less than 1 percent of the time.
To the best of our knowledge, there is no techniques that can help us completely avoid this problem
given the fundamental constraint of small sample size.

24The standard errors are computed by the maximum likelihood approach, as the linear regressions
are known to underestimate the standard errors (see Gabaix and Ibragimov, 2011).

25Note that the estimate corresponds to the median estimate because 𝛼̂
𝛼̂−1 is a non-linear trans-

formation of 𝛼̂.
26To be more formal, the correct C.I. will be to consider the uncertainties with the mean of

observations below 𝑍. To focus on the uncertainty from upper tail, we construct the 95 percent C.I.
from that of the estimate of $\alpha$ here.

27When the number of observations is less than 1000, the estimated confidence interval of 𝛼
contains values less than 1.0, turning the upper bound of the mean to be ∞. This does not mean
that a correct expectation is ∞ infections in the near future, but that there is serious upward risks
in infection rates.

28This is because the estimation through log-likelihood will take the log of the realized value,
instead of its level.
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Estimates of power law exponents (α)

Number of observations (from 100)

E
st

im
at

es
 (

w
ith

 9
5 

%
 C

.I.
)

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

100 1000 2000 3000 4000 5000

PL (α=1.1)
PL (α=1.2)
1.1
1.2

(a) Power law exponents estimates

Estimates under distributions with infinite variance

Number of observations (from 100)
Q

ua
nt

ile
s

With estimation of power law exponents

0
1

2.
5

4

100 1000 2000 3000 4000 5000

PL (α=1.1)
PL (α=1.2)
true mean

(b) Sample median using the estimated ex-
ponents

Figure 2-7: An example of “plug-in” estimates

Notes: Figure 2-7 plots the estimates of power law exponents and the resulting
estimates of sample median, using the same data as in Figure 2-6. Note that while
the number of observations contains all observations, the data points contributing
to the estimates are only above some thresholds: only less than 25 percents of the
data contribute to the estimation of the exponents.

estimate is unbiased and has correct standard errors, this coverage probability is
95%. When the power law exponent is close to one, the traditional “sample means”
approach has the C.I. that covers the true mean only with 20-40% for all sample sizes.
By contrast the “plug-in” method covers the true estimates close to 95%. As the tail
becomes thinner toward 𝛼 = 2, the difference between the two tends to disappear,
with “sample mean” approach performing better some times. When the underlying
distribution has fat-tails, however, estimation using the plug-in method is preferred.

While the C.I. in the plug-in method has adequate coverage probabilities, it is of-
ten very large and possibly infinite. Figure 2-7 visualizes this. This large C.I. occurs
especially when 𝛼 ≃ 1 because the mean of a power law distribution is proportional
to 𝛼

1−𝛼
. How could the policymakers plan their efforts do given such large uncertainty

in ℛ0? Given the theoretical results in Section 3 that the epidemiological dynamics
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will be largely uncertain even when 𝛼 ≃ 1 is perfectly known, we argue that applying
the estimated ℛ0 into a deterministic SIR model will not lead to a reliable prediction.
Instead of focusing on the mean, it will be more adequate and feasible to focus on
the distribution of near-future infection outcomes. For example, using the estimated
power law distribution, policymakers can compute the distribution of the future in-
fection rate. The following analogy might be useful: in planning for natural disasters
such as hurricanes and earthquakes, policymakers will not rely on the estimates of
average rainfall or average seismic activity in the future; instead, they consider the
probabilities of some extreme events, and propose plans contingent on realizations.
Similar kinds of planning may be also constructive regarding preparation for future
infection outbreaks.

To overcome data limitations, epidemiologists have developed a number of sophis-
ticated methods such as backcalculation assuming Poisson distribution (Becker et al.,
1991), and ways to account for imported cases. There are also a number of methods
developed to account for fat-tailed distributions (see e.g. Stoyanov et al., 2010, for a
survey), such as tail tempering (Kim et al., 2008) and separating the data into sub-
groups (Toda and Walsh, 2015). In the future, it will be important to examine what
power law distributions will imply about existing epidemiological methods, and how
statistical techniques such as plug-in methods can be combined with epidemiological
techniques to allow more reliable estimation of risks.

2.5 Conclusion: implications for COVID-19 pandemic

Most research on infection dynamics has focused on deterministic SIR models, and
have estimated its key statistics, the average reproduction number (ℛ0). In contrast,
some researchers have concentrated on SSEs, and estimated the dispersion of infection
rates using negative binomial distributions. Nonetheless, stochastic SIR models based
on estimated distributions have predicted that idiosyncratic uncertainties in SSEs
would vanish when the infected population is large, and thus, the epidemiological
dynamics will be largely predictable. In this paper, we have documented evidence
from SARS, MERS, and COVID-19 that SSEs actually follow a power law distribution
with the exponent 𝛼 ∈ (1, 2): that is, their distributions have infinite variance, or fat
tails. Our stochastic SIR model with these fat-tailed distributions have shown that
idiosyncratic uncertainties in SSEs will persist even when the infected population is
large, inducing major unpredictability in aggregate infection dynamics.

Since the currently infected population is estimated to be around 3 million in

130



the COVID-19 pandemic,29 our analysis has immediate implications for policies of
today. For statistical inference, the aggregate unpredictability suggests caution is
warranted on drawing inferences about underlying epidemiological conditions from
observed infection outcomes. First, large geographic variations in infections may
be driven mostly by idiosyncratic factors, and not by fundamental socioeconomic
factors. While many looked for underlying differences in public health practices to
explain the variations, our model shows that these variations may be more adequately
explained by the presence of a few, idiosyncratic SSEs. Second, existing stochastic
models would suggest that, keeping the distribution of infection rates and pathological
environments constant, recent infection trends can predict the future well. In contrast,
our analysis shows that even when the average number of new infections may seem to
have stabilized at a low level in recent weeks, subsequent waves can suddenly arrive
in the future.

Such uncertainties in outbreak timing and magnitude introduce substantial socioe-
conomic difficulties, and measures to assess and mitigate such risks will be invaluable.
The death rate is shown to increase when the medical capacity binds. Thus, reducing
uncertainties can reduce average fatality. Furthermore, uncertainties can severely de-
ter necessary investments and impede planning for reallocation and recovery from the
pandemic shocks. To assess such risks, we can estimate the tail distributions to im-
prove our inference on the average number. To address such risks, social distancing
policies and individual efforts can focus on large physical gatherings in infection-
prone environments. Our estimates suggest, like earthquakes, infection dynamics will
be largely unpredictable. But unlike earthquakes, they are a consequence of social
decisions, and efforts to reduce SSEs can significantly mitigate the uncertainty the
society faces as a whole.

29According to worldometers.info, the cumulative infection worldwide is 7 million, among which
4 million have already recovered or died, as of June 9, 2020.
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Power law Negative
𝛼 = 1.08 𝛼 = 1.1 𝛼 = 1.2 𝛼 = 1.5 𝛼 = 2 binomial

1. Cumulative infected
mean 60% 73% 89% 92% 92% 92%
90th percentile 85% 91% 95% 93% 92% 92%
50th percentile 59% 71% 88% 92% 92% 92%
10th percentile 39% 59% 84% 91% 92% 92%

2. Herd immunity threshold
mean 39% 49% 62% 65% 66% 66%
90th percentile 65% 75% 78% 71% 69% 69%
50th percentile 35% 45% 59% 65% 66% 66%
10th percentile 17% 29% 51% 60% 62% 64%

3. Peak infection
mean 14% 18% 25% 27% 27% 27%
90th percentile 31% 34% 36% 29% 28% 27%
50th percentile 9% 13% 22% 26% 27% 27%
10th percentile 4% 7% 18% 25% 26% 26%

4. Days infecting 5%
mean (days) 137 93 47 37 35 35
90th percentile 252 147 56 42 35 35
50th percentile 119 84 49 35 35 35
10th percentile 49 42 35 35 35 35

Table 2.4: Summary statistics for epidemiological outcomes

Note: Table 2.4 shows the summary statistics from 1000 simulations for five different
tail parameters for the case of power law distribution, and for the negative binomial
distribution.
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𝛼 = 1.08 𝛼 = 1.1 𝛼 = 1.2 𝛼 = 1.5 𝛼 = 2

1. 𝑁 = 100

Sample means 21% 26% 42% 74% 89%
Plug-in 98% 98% 98% 94% 87%

2. 𝑁 = 500

Sample means 24% 29% 45% 78% 90%
Plug-in 98% 98% 95% 94% 84%

3. 𝑁 = 1000

Sample means 24% 26% 48% 78% 92%
Plug-in 97% 97% 93% 93% 86%

Table 2.5: Coverage probability of 95% confidence interval

Note: Thable 2.5 reports the probability that the 95% confidence interval, constructed in
two different ways, covers the true value in 1000 simulation. “Sample means” is simply
uses the sample mean. “Using power laws uses” first estimates the Pareto exponent using
the maximum likelihood, and then convert it to the mean estimates.

133



134



Bibliography

Abbott, S., J. Hellewell, J. Munday, CMMID nCoV working group, and

S. Funk (2020): “The Transmissibility of Novel Coronavirus in the Early Stages
of the 2019-20 Outbreak in Wuhan: Exploring Initial Point-Source Exposure Sizes
and Durations Using Scenario Analysis,” Wellcome Open Research, 5, 17.

Acemoglu, D., V. Chernozhukov, I. Werning, and M. D. Whinston (2020):
“Optimal Targeted Lockdowns in a Multi-Group SIR Model,” Working Paper 27102,
National Bureau of Economic Research.

Akbarpour, M., C. Cook, A. Marzuoli, S. Mongey, A. Nagaraj, M. Sac-

carola, P. Tebaldi, S. Vasserman, and H. Yang (2020): “Socioeconomic
Network Heterogeneity and Pandemic Policy Response,” 77.

Atkinson, A. B., T. Piketty, and E. Saez (2011): “Top Incomes in the Long
Run of History,” Journal of Economic Literature, 49, 3–71.

Axtell, R. L. (2001): “Zipf Distribution of U.S. Firm Sizes,” Science, 293, 1818–
1820.

Barabasi, A.-l. and J. Frangos (2014): Linked: How Everything Is Connected
to Everything Else and What It Means for Business, Science, and Everyday Life,
Basic Books.

Bardina, X., M. Ferrante, and C. Rovira (2020): “A Stochastic Epidemic
Model of COVID-19 Disease,” arXiv:2005.02859 [q-bio].

Bartlett, M. S. (1949): “Some Evolutionary Stochastic Processes,” Journal of the
Royal Statistical Society. Series B (Methodological), 11, 211–229.

Beare, B. K. and A. A. Toda (2019): “Geometrically Stopped Markovian Random
Growth Processes and Pareto Tails,” arXiv:1712.01431 [econ, math, stat].

135



——— (2020): “On the Emergence of a Power Law in the Distribution of COVID-19
Cases,” arXiv:2004.12772 [physics, q-bio].

Becker, N. G. and T. Britton (1999): “Statistical Studies of Infectious Disease
Incidence,” Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 61, 287–307.

Becker, N. G., L. F. Watson, and J. B. Carlin (1991): “A Method of
Non-Parametric Back-Projection and Its Application to Aids Data,” Statistics in
Medicine, 10, 1527–1542.

Britton, T. (2010): “Stochastic Epidemic Models: A Survey,” Mathematical Bio-
sciences, 225, 24–35.

——— (2018): “Basic Stochastic Transmission Models and Their Inference,”
arXiv:1801.09594 [stat].

Britton, T., T. House, A. L. Lloyd, D. Mollison, S. Riley, and P. Trap-

man (2015): “Five Challenges for Stochastic Epidemic Models Involving Global
Transmission,” Epidemics, 10, 54–57.

Britton, T., P. Trapman, and F. G. Ball (2020): “The Disease-Induced Herd
Immunity Level for Covid-19 Is Substantially Lower than the Classical Herd Im-
munity Level,” Preprint, Infectious Diseases (except HIV/AIDS).

Brotherhood, L., P. Kircher, C. Santos, and M. Tertilt (2020): “An
Economic Model of the Covid-19 Epidemic: The Importance of Testing and Age-
Specific Policies,” SSRN Scholarly Paper ID 3594329, Social Science Research Net-
work, Rochester, NY.

Castellano, C. and R. Pastor-Satorras (2010): “Thresholds for Epidemic
Spreading in Networks,” Physical Review Letters, 105, 218701.

Clauset, A., C. R. Shalizi, and M. E. J. Newman (2009): “Power-Law Distri-
butions in Empirical Data,” SIAM Review, 51, 661–703.

Cooper, L., S. Y. Kang, D. Bisanzio, K. Maxwell, I. Rodriguez-

Barraquer, B. Greenhouse, C. Drakeley, E. Arinaitwe, S. G. Staedke,

P. W. Gething, P. Eckhoff, R. C. Reiner, S. I. Hay, G. Dorsey, M. R.

Kamya, S. W. Lindsay, B. T. Grenfell, and D. L. Smith (2019): “Pareto

136



Rules for Malaria Super-Spreaders and Super-Spreading,” Nature Communications,
10, 3939.

Davies, N. G., P. Klepac, Y. Liu, K. Prem, M. Jit, C. C.-. working Group,

and R. M. Eggo (2020): “Age-Dependent Effects in the Transmission and Control
of COVID-19 Epidemics,” medRxiv, 2020.03.24.20043018.

Endo, A., Centre for the Mathematical Modelling of Infectious Dis-

eases COVID-19 Working Group, S. Abbott, A. J. Kucharski, and

S. Funk (2020): “Estimating the Overdispersion in COVID-19 Transmission Using
Outbreak Sizes Outside China,” Wellcome Open Research, 5, 67.

Frieden, T. R. and C. T. Lee (2020): “Identifying and Interrupting Superspread-
ing Events-Implications for Control of Severe Acute Respiratory Syndrome Coron-
avirus 2,” Emerging Infectious Diseases, 26, 1059–1066.

Gabaix, X. (2009): “Power Laws in Economics and Finance,” Annual Review of
Economics, 1, 255–294.

——— (2011): “The Granular Origins of Aggregate Fluctuations,” Econometrica, 79,
733–772.

Gabaix, X. and R. Ibragimov (2011): “Rank - 1 / 2: A Simple Way to Improve
the OLS Estimation of Tail Exponents,” Journal of Business & Economic Statistics,
29, 24–39.

Galvani, A. P. and R. M. May (2005): “Dimensions of Superspreading,” Nature,
438, 293–295.

Gay, N. J., G. De Serres, C. P. Farrington, S. B. Redd, and M. J. Papania

(2004): “Assessment of the Status of Measles Elimination from Reported Outbreaks:
United States, 1997-1999,” The Journal of Infectious Diseases, 189 Suppl 1, S36–42.

Glover, A., J. Heathcote, D. Krueger, and J.-V. Ríos-Rull (2020): “Health
versus Wealth: On the Distributional Effects of Controlling a Pandemic,” CEPR
Covid Economics: Vetted and Real-Time Papers, 6, 22–64.

Gollier, C. (2020): “Cost-Benefit Analysis of Age-Specific Deconfinement Strate-
gies,” CEPR Covid Economics: Vetted and Real-Time Papers, 24, 1–31.

137



Gomes, M. G. M., R. M. Corder, J. G. King, K. E. Langwig, C. Souto-

Maior, J. Carneiro, G. Goncalves, C. Penha-Goncalves, M. U. Fer-

reira, and R. Aguas (2020): “Individual Variation in Susceptibility or
Exposure to SARS-CoV-2 Lowers the Herd Immunity Threshold,” medRxiv,
2020.04.27.20081893.

Gutenberg, B. and C. Richter (1954): Seismicity Of The Earth And Associated
Phenomena.

Gutin, G., T. Hirano, S.-H. Hwang, P. R. Neary, and A. A. Toda (2020):
“The Effect of Social Distancing on the Reach of an Epidemic in Social Networks,”
arXiv:2005.03067 [physics, q-bio].

Hébert-Dufresne, L., B. M. Althouse, S. V. Scarpino, and A. Allard

(2020): “Beyond $R_0$: Heterogeneity in Secondary Infections and Probabilistic
Epidemic Forecasting,” arXiv:2002.04004 [physics, q-bio].

Hsu, L.-Y., C.-C. Lee, J. A. Green, B. Ang, N. I. Paton, L. Lee, J. S.

Villacian, P.-L. Lim, A. Earnest, and Y.-S. Leo (2003): “Severe Acute
Respiratory Syndrome (SARS) in Singapore: Clinical Features of Index Patient
and Initial Contacts,” Emerging infectious diseases, 9, 713.

Jessen, A. H. and T. Mikosch (2006): “Regularly Varying Functions,” Publica-
tions de l’Institut Mathématique, 80(94), 171–192.

Karako, K., P. Song, Y. Chen, and W. Tang (2020): “Analysis of COVID-
19 Infection Spread in Japan Based on Stochastic Transition Model,” BioScience
Trends, advpub.

Kendall, D. G. (1956): “Deterministic and Stochastic Epidemics in Closed Popula-
tions,” in Proceedings of the Third Berkeley Symposium on Mathematical Statistics
and Probability, Volume 4: Contributions to Biology and Problems of Health, The
Regents of the University of California.

Kermack, W. O. and A. G. McKendrick (1927): “A Contribution to the Math-
ematical Theory of Epidemics,” Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical Character, 115, 700–721.

Kim, Y. S., S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2008): “Finan-
cial Market Models with Lévy Processes and Time-Varying Volatility,” Journal of
Banking & Finance, 32, 1363–1378.

138



Kleiber, C. and S. Kotz (2003): Statistical Size Distributions in Economics and
Actuarial Sciences, John Wiley & Sons.

Kucharski, A. J. and C. L. Althaus (2015): “The Role of Superspreading in
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Transmission,” Eu-
rosurveillance, 20, 21167.

Leclerc, Q. J., N. M. Fuller, L. E. Knight, CMMID COVID-19 Working

Group, S. Funk, and G. M. Knight (2020): “What Settings Have Been Linked
to SARS-CoV-2 Transmission Clusters?” Wellcome Open Research, 5, 83.

Liu, Y., A. A. Gayle, A. Wilder-Smith, and J. Rocklöv (2020): “The Repro-
ductive Number of COVID-19 Is Higher Compared to SARS Coronavirus,” Journal
of Travel Medicine, 27.

Lloyd-Smith, J. O., S. J. Schreiber, P. E. Kopp, and W. M. Getz (2005):
“Superspreading and the Effect of Individual Variation on Disease Emergence,”
Nature, 438, 355–359.

May, R. M. and A. L. Lloyd (2001): “Infection Dynamics on Scale-Free Networks,”
Physical Review E, 64, 066112.

Moreno, Y., R. Pastor-Satorras, and A. Vespignani (2002): “Epidemic Out-
breaks in Complex Heterogeneous Networks,” The European Physical Journal B -
Condensed Matter and Complex Systems, 26, 521–529.

Newman, M. E. J. (2005): “Power Laws, Pareto Distributions and Zipf’s Law,”
Contemporary Physics, 46, 323–351.

Nishiura, H. (2007): “Time Variations in the Transmissibility of Pandemic Influenza
in Prussia, Germany, from 1918–19,” Theoretical Biology & Medical Modelling, 4.

Nishiura, H., K. Mizumoto, and Y. Asai (2017): “Assessing the Transmission
Dynamics of Measles in Japan, 2016,” Epidemics, 20, 67–72.

Nishiura, H., H. Oshitani, T. Kobayashi, T. Saito, T. Sunagawa, T. Mat-

sui, T. Wakita, M. C.-. R. Team, and M. Suzuki (2020): “Closed Environ-
ments Facilitate Secondary Transmission of Coronavirus Disease 2019 (COVID-
19),” medRxiv, 2020.02.28.20029272.

Pastor-Satorras, R. and A. Vespignani (2001): “Epidemic Spreading in Scale-
Free Networks,” Physical Review Letters, 86, 3200–3203.

139



Petrosillo, N., G. Viceconte, O. Ergonul, G. Ippolito, and E. Petersen

(2020): “COVID-19, SARS and MERS: Are They Closely Related?” Clinical Micro-
biology and Infection: The Official Publication of the European Society of Clinical
Microbiology and Infectious Diseases, 26, 729–734.

Rampini, A. A. (2020): “Sequential Lifting of COVID-19 Interventions with Popula-
tion Heterogeneity,” Working Paper 27063, National Bureau of Economic Research.

Remuzzi, A. and G. Remuzzi (2020): “COVID-19 and Italy: What Next?” The
Lancet, 395, 1225–1228.

Roberts, M., V. Andreasen, A. Lloyd, and L. Pellis (2015): “Nine Challenges
for Deterministic Epidemic Models,” Epidemics, 10, 49–53.

Roberts, M. G. (2013): “Epidemic Models with Uncertainty in the Reproduction
Number,” Journal of Mathematical Biology, 66, 1463–1474.

——— (2017): “An Epidemic Model with Noisy Parameters,” Mathematical Bio-
sciences, 287, 36–41.

Shen, Z., F. Ning, W. Zhou, X. He, C. Lin, D. P. Chin, Z. Zhu, and

A. Schuchat (2004): “Superspreading SARS Events, Beijing, 2003,” Emerging
Infectious Diseases, 10, 256–260.

Simha, A., R. V. Prasad, and S. Narayana (2020): “A Simple Stochastic SIR
Model for COVID 19 Infection Dynamics for Karnataka: Learning from Europe,”
arXiv:2003.11920 [math, q-bio].

Stoyanov, S. V., S. Rachev, B. Racheva-Iotova, and F. J. Fabozzi (2010):
“Fat-Tailed Models for Risk Estimation,” SSRN Scholarly Paper ID 1729040, Social
Science Research Network, Rochester, NY.

Szabó, G. M. (2020): “Propagation and Mitigation of Epidemics in a Scale-Free
Network,” arXiv:2004.00067 [physics, q-bio].

Toda, A. A. and K. Walsh (2015): “The Double Power Law in Consumption
and Implications for Testing Euler Equations,” Journal of Political Economy, 123,
1177–1200.

Wang, H., Z. Wang, Y. Dong, R. Chang, C. Xu, X. Yu, S. Zhang, L. Tsam-

lag, M. Shang, J. Huang, Y. Wang, G. Xu, T. Shen, X. Zhang, and

140



Y. Cai (2020): “Phase-Adjusted Estimation of the Number of Coronavirus Disease
2019 Cases in Wuhan, China,” Cell Discovery, 6, 1–8.

Zhang, H., Z.-H. Guan, T. Li, X.-H. Zhang, and D.-X. Zhang (2013): “A
Stochastic SIR Epidemic on Scale-Free Network with Community Structure,” Phys-
ica A: Statistical Mechanics and its Applications, 392, 974–981.

Zipf, G. K. (1949): Human Behavior and the Principle of Least Effort, Human Be-
havior and the Principle of Least Effort, Oxford, England: Addison-Wesley Press.

141



Appendix

A Empirical Appendix

A.1 Relating empirical distribution of 𝑍 to theoretical distribu-

tion of 𝛽𝑖𝑡

In this paper, we have used the estimates from the data to simulate the evolution
dynamics of the epidemiological model. The key step in our argument is that the
tail distribution of

∑︀
𝑖 𝑧𝑖𝑡 or

∑︀
𝑡 𝑧𝑖𝑡, the cumulative “effective” number of infections, is

equivalent to the tail distribution of 𝛽𝑖𝑡, the individual and per-period “basic” number
of infection. However, in general, this needs not hold: for example, even if 𝛽𝑖𝑡 were
normally distributed (i.e. thin tailed), 𝑍 may follow a 𝑡-distribution (i.e. fat-tailed).
Under what conditions is our interpretation about the relationship between distri-
bution of 𝑍 and distribution of 𝛽𝑖 valid? Are they plausible in the settings of the
coronaviruses?

To clarify this question, let us lay out a model. Formally, 𝑍 is a mixture distribu-
tion of the weighted sum of 𝛽𝑖𝑡. Here, we provide notations for

∑︀
𝑡 𝑧𝑖𝑡 but the identical

argument will also apply to
∑︀

𝑖 𝑧𝑖𝑡. Specifically, suppose 𝑖 stays infected for 𝑡 periods,
and let the probability mass be 𝛿

(︀
𝑡
)︀
. In the case of exponential decay as in the SIR

model, 𝛿
(︀
𝑡
)︀
= 𝛾𝑡. Denoting the countercumulative distribution of 𝑍𝑖 by Φ, and that

of 𝛽𝑖𝑡 by 𝐹 , we have

Φ (𝑍𝑖) =
∞∑︁
𝑡=1

𝛿
(︀
𝑡
)︀
𝐺𝑡

(︃
𝑡∑︁

𝑡=1

𝑆𝑡

𝑁
𝛽𝑖𝑡

)︃
, 𝛽𝑖𝑡 ∼ 𝐹,

where 𝐺𝑡 denotes the distribution of
∑︀𝑡

𝑡=1
𝑆𝑡

𝑁
𝛽𝑖𝑡.

A.1.1 Empirical evidence on causes of SSEs

First, we may be concerned that, even if Φ is a power law distribution, 𝐹 may not
be a power law distribution. A counterexample is that a geometric Brownian motion
with stochastic stopping time that follows exponential distribution can also generate
power law distributions of the tail (Beare and Toda, 2020). That is, the tail property
of Φ needs not be due to tails of 𝐹 : for

∑︀
𝑡 𝑧𝑖𝑡 , it could also due to some individuals
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staying infectious for an extremely long periods. For
∑︀

𝑖 𝑧𝑖𝑡, it could also be due to
some events having extremely high number of infected primary cases.

While we acknowledge such possibilities, we argue that for superspreaders or SSEs
of the coronaviruses, the main mechanism of extremely high number of cumulative
infection is primarily due to some extreme events at particular time 𝑡. Let us be
concrete. If the counterexample’s reasoning were true for

∑︀
𝑡 𝑧𝑖𝑡, then a superspreader

is someone who goes, for example, to a restaurant and infect two other people at time
𝑡, and then goes to a shopping mall and infects three other people at time 𝑡 + 1,
and then goes to meet her two friends and infect them, and so on. However, this
interpretation is inconsistent with numerous anecdotes. Instead, a superspreader
infects many people because he attends a SSE that has infection-prone environment
at a particular time 𝑡. Conferences, parties, religious gatherings, and sports gyms
are a particular place that can infect many at the same time. Moreover, Nishiura
et al. (2020) paper whose data we use has identified particular environment that
has caused SSEs. This interpretation is important because, if the extremely high
cumulative number of infection were due to some staying infectious for a long time
or some events having extremely high number of primary cases, then our model’s
prediction of sudden outbreak due to SSE is no longer a valid prediction.

A1.2 Theoretical analysis on interpretation of exponents

Second, we may be concerned that the exponent of Φ (𝑍𝑖) may be different than the
exponent of 𝐹 (𝛽𝑖𝜏 ), even if both have tails that follow power laws. We use two steps
to show that this is not a concern:

(i) if a random variable has a power law distribution with exponent 𝛼, then its
weighted sum also has a tail distribution that follows a power law with expo-
nent 𝛼 (see e.g. Jessen and Mikosch (2006) or Gabaix (2009)). Thus, neither
summation over multiple periods nor the weights of 𝑆𝜏

𝑁
will change this.

(ii) the tail property of distribution can be examined by considering 𝛼𝐹 (𝑍) =
𝑓(𝑍)
𝑓(𝑐𝑍)

for some 𝑐 ̸= 1 and taking its limit. In particular, if 𝐹 has a power
law distribution, then 𝛼𝐹 (𝑍) = 𝑐𝛼.30 Denoting the probability mass of 𝐺𝑡 (·)
by 𝑔𝑡 (·), and the normalizing constant of each 𝑡 by 𝐴𝑡,

lim
𝑍→∞

𝛼Φ (𝑍) =

∑︀∞
𝑡=1 𝛿

(︀
𝑡
)︀
lim𝑍→∞ 𝑔𝑡 (𝑍)∑︀∞

𝑡=1 𝛿
(︀
𝑡
)︀
lim𝑍→∞ 𝑔𝑡 (𝑐𝑍)

=

∑︀∞
𝑡=1 𝛿

(︀
𝑡
)︀
𝐴𝑡𝑍

−𝛼∑︀∞
𝑡=1 𝛿

(︀
𝑡
)︀
𝐴𝑡 (𝑐𝑍)

−𝛼 = 𝑐𝛼.

30This capture the essence of power laws – that whatever the value of 𝑍, its frequency and
frequency of 𝑐𝑍 has the same ratio.
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Thus, the exponent of Φ (𝑍𝑖) will be identical to the exponent of 𝐹 (𝛽𝑖𝜏 ) asymp-
totically.

This discussion suggests that whenever possible, it is desirable to take the estimates
from the tail end of the distribution instead of using moderate values of 𝑍. For the
COVID-19 from the world, the distributions are estimated from the very extreme
tail. But when the sample size of SSEs is limited, choice of how many observations to
include thus faces a bias-variance trade-off. Nonetheless, as many statistical theories
are based on asymptotic results, these arguments show that it is theoretically founded
to interpret the exponent of Φ (𝑍𝑖) as the exponent of 𝐹 (𝛽𝑖𝜏 ), at least given the data
available.
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A2 Robustness

We present several robustness checks on our empirical results.

Figure 2-1 with a different cut-off

In Figure 2-1, we truncated the size of cluster from below at 40. Figure 2.5.1 instead
show results with a cut-off of 20. The fit is worse at the lower tail of the distribution,
which suggests that the lower tail may not be approximated by power law distribution.
This is a common feature among many examples. However, what matters for the
existence of variance is the upper tail distribution, we do not think this is a concern.
Moreover, given that the data partly come from media reports, the clusters of small
sizes likely suffer from omission due to lack of media coverage.

Robustness of power law exponents estimates

Gabaix and Ibragimov (2011) show that an estimate of 2.2 is biased in a small sample
and propose a simple bias correction method that replace the dependent variable with
ln(𝑟𝑎𝑛𝑘 − 1/2). Panel A of Table 2.5.1 show the results with this bias correction
method. The results are broadly very similar to our baseline results in Table 2.1.

Panel B of Table 2.5.1 conduct another robustness check, where we estimate using
the maximum likelihood. Again, the point estimates are overall similar to the baseline
results, although standard errors are larger.

A.3 Additional Tables and Figures

Table 2.5.2 shows fseveral examples of superspreading events during COVID-19 pan-
demic.
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COVID−19 Cluster Sizes Worldwide
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Source: CMMID COVID−19 Working Group online database (Leclerc et al., 2020)
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log(rank) =  − 1.04 log(num)  + 3.46

R2 = 0.98

Figure 2.5.1: Log size vs log rank for Superspreading Events in SARS 2003
Notes: Figure 2.5.1 plots the number of total cases per cluster (in log) and their ranks (in
log) for COVID-19, last updated on June 3rd. It fits a linear regression for the clusters with
size larger than 30. The data are collected by the Centre for the Mathematical Modelling
of Infectious Diseases COVID-19 Working Group (Leclerc et al., 2020).
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Panel A. Bisas corrected regression estimates

COVID-19 SARS MERS
World Japan India World Singapore Beijing World

(1) (2) (3) (4) (5) (6) (7)

𝛼̂ 1.16 1.45 1.70 1.02 0.86 0.96 1.29
(0.07) (0.16) (0.06) (0.10) (0.12) (0.10) (0.11)

𝑍 40 2 2 8 2 2 2
Obs. 60 11 109 15 19 8 36
R2 0.97 0.93 0.96 0.95 0.89 0.93 0.95
log10 𝐿𝑅 - 11.73 - - 19.92 8.05 41.19

Panel B. Maximum likelihood estimates

COVID-19 SARS MERS
World Japan India World Singapore Beijing World

(1) (2) (3) (4) (5) (6) (7)

𝛼̂ 1.01 1.96 1.71 0.89 1.21 0.87 1.49
(0.13) (0.59) (0.16) (0.23) (0.28) (0.31) (0.25)

𝑍 40 2 2 8 2 2 2
Obs. 60 11 109 15 19 8 36
log10 𝐿𝑅 - 11.93 - - 20.34 8.07 46.93

Table 2.5.1: Estimates of power law exponent: robustness

Notes: Table 2.5.1 summarizes two robustness check exercises of power law exponent
(𝛼̂). Panel A. bias corrected estimates take log(rank− 1

2 ) as the dependent variable.
This is a small sample bias correction proposed by (Gabaix and Ibragimov, 2011).
Heteroskedasticity-robust standard errors are reported in the parenthesis. Panel B.
presents the maximum likelihood estimates. Standard errors are reported in the parenthe-
sis. In both panels, log10(LR) denotes “likelihood ratios”, expressed in the log with base
10, of probability of observing this realized data with power law distributions relative to
that with estimated negative binomial distributions. Columns (1)-(3) report estimates for
COVID-19; columns (4)-(6) for SARS, and column (7) for MERS.
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Major super-spraeding evernts Confirmed cases Date
Choir practice in Washington, the US 52 03/10
Conference in Boston, the US 89 02/26
Religious gathering in Daegu, South Korea 49 02/19
Religious gathering in Frankfurt, Germany 49 02/19
Wedding ceremony in New Zealand 76 03/21
Prison in IL, the US 351 04/23
Food processing plant in Ghana 533 05/11
Dormitory in Singapore 797 04/09

Table 2.5.2: Examples of superspreading events
Noes: Table 2.5.2 summarizes some examples of superspreading events, their dates and
the number of confirmed cases for COVID-19. Source: COVID-19 settings of transmission
- database (accessed, June 4, 2020)
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B. Theory Appendix

Proof that 𝑆∞ is convex in ℛ0 if ℛ0 >
9

8(1−𝑅0)

We show that 𝑆∞ is a concave function in ℛ0. Recall that 𝑆∞ is a solution to

log𝑆∞ = −ℛ0(1− 𝑆∞).

By the implicit function theorem,

𝑑𝑆∞

𝑑ℛ0

= − 1(︁
1

𝑆∞
−ℛ0

)︁(1− 𝑆∞)

< 0.

because 𝑆∞ < 1/ℛ0. Applying the implicit function theorem again,(︂
1

𝑆∞
−ℛ0

)︂
⏟  ⏞  

>0

𝑑2𝑆∞

𝑑ℛ2
0

=
𝑑𝑆∞

𝑑ℛ0⏟ ⏞ 
<0

(︂
2− 1/𝑆∞ − 1

1−ℛ0𝑆∞

)︂
.

It remains to show that
(︁
2− 1/𝑆∞−1−𝑅0

1−ℛ0𝑆∞

)︁
< 0. We can rewrite this as

𝑓(𝑆0) ≡ 2ℛ0𝑆
2
∞ − 3𝑆∞ + 1 > 0.

Note that 𝑓(·) is minimized at 𝑆*
∞ = 3

4ℛ0
. The minimum value is

min
𝑆0

𝑓(𝑆∞) = − 9

8ℛ0

+ 1.

Therefore 𝑓(𝑆∞) > 0 for all 𝑆∞ if and only if ℛ0 >
9
8
. This implies that when ℛ0 >

9
8
,

𝑆∞ is a concave function of ℛ0.

2.5.1 Proof that 𝐼max is concave in ℛ0 if and only if ℛ0 >
1
𝑆0
exp(0.5)

Recall that the peak infection rate is given by

𝐼max/𝑁 = 1− 1

ℛ0

− 1

ℛ0

log(ℛ0𝑆0).
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The derivative is

𝑑𝐼max/𝑁

𝑑ℛ0

=
1

(ℛ0)2
log(ℛ0𝑆0).

The second derivative is

𝑑2(𝐼max/𝑁)

𝑑ℛ2
0

=
1

(ℛ0)3
(1− 2 log(ℛ0𝑆0)) ,

which is negative if and only if ℛ0 >
1
𝑆0

exp(0.5).

Results for targeted lockdown policy experiment

Table 2.5.3 shows the simulation results with lockdown policies targeted at SSEs.
𝛽 is the daily upperbound of infection rates due to policies, and we consider cases
of 𝛽 = 1000, 100, 50. As already discussed in the main text, when the distribution
is fat-tailed, the targeted policy is not only effective in reducing the mean of the
peak infection rate, but also its volatility (the interval between 90 percentile and 10
percentile).
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Power law Negative

𝛼 = 1.08 𝛼 = 1.1 𝛼 = 1.2 𝛼 = 1.5 𝛼 = 2 binomial

1. 𝛽: 1000 cases per day

mean 11% 15% 23% 27% 27% 27%
90th percentile 19% 23% 29% 29% 28% 27%
50th percentile 8% 12% 21% 26% 27% 27%
10th percentile 4% 7% 17% 25% 26% 26%

3. 𝛽: 100 cases per day

mean 9% 12% 20% 26% 27% 27%
90th percentile 17% 20% 26% 27% 28% 27%
50th percentile 5% 8% 18% 26% 27% 27%
10th percentile 3% 5% 16% 24% 26% 26%

3. 𝛽: 50 cases per day

mean 8% 11% 19% 26% 27% 27%
90th percentile 14% 19% 26% 27% 28% 27%
50th percentile 4% 8% 17% 25% 27% 27%
10th percentile 2% 5% 14% 24% 26% 26%

Table 2.5.3: Peak infection under targeted lockdown policy

Note: Table 2.5.3 shows the summary statistics for peak infection rates from 1000 sim-
ulations with various policy parameters 𝛽, where 𝛽 is the upperbound on the infection
imposed by the policy.
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Chapter 3

A Model of Reflection and
Meditation in Experimentation under
Imperfect Recall

3.1 Introduction

Meditation, a process of regulating and focusing attention on the present – is an
ancient practice that has received renewed interest in the modern era. For two thou-
sand years, meditation has been embraced by numerous philosophical and religious
traditions as a means of improving people’s well-being. Given the fast-paced nature
of modern life, many people are now turning to meditation as a means to slow down,
reflect, and restore their psychological health. According to the National Health In-
terview Survey, in the five years from 2012 to 2017, the proportion of American adults
who have meditated increased from 4.1 to 14.2 percent (Tainya et al. 2018). There
is now a nationwide initiative to teach meditation in K-12 schools (Ryan 2012), and
even the US military and Congress have adopted the practice for their members.
This renewed interest has accompanied scientific research, with the number of jour-
nal articles on the topic increaseing from just 50 to over 500 from 1997 to 2017.
However, the actual techniques of meditative practices, such as breathing, physical
exercise and mantras, vary widely across practitioners, and this is reflected in research
studies. Thus, to draw an externally valid inference from the evidence with different
practices and subjects, a precise theory regarding its effects is needed.1

1Since the time of the initial thesis submission, there were some changes made to allow for
completion of the proof. The main change is the change in the signal structure: Self 2 now receives
an additional signal about the Self 1’s information, and the two Selves’ signals are no longer assumed
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Across histories and cultures, teachers of meditation have surmised that the psy-
chological benefits of meditation arise primarily from reducing the effects of negative
thoughts. Jon Kabat-Zinn, the founder of mindfulness meditation, writes that “mind-
fulness is the awareness that arises when we non-judgmentally pay attention in the
present moment” (Kabat-Zinn 2009). A Buddhist scholar writes that Bodhidharma,
the founder of Zen meditation, aspired “to realize wisdom and transparency. While or-
dinary kind of knowledge helps us by informing our comparison of alternatives through
our memories, wisdom is based on clearing our mind to be empty” (Yanagida 1974).
While insightful, these teachings have naturally faced much suspicion. First, they ap-
pear paradoxical because it contradicts expected utility models that any knowledge
will be welfare-enhancing because it can better inform the decisionmaker in their
comparison of alternatives (Blackwell 1953). Second, their theories are ancient and
thus based on introspection, a method of inquiry prone to subjective assessment and
logical vagueness. Meanwhile, as an alternative, some economists rely only on neu-
rological and physiological understanding. While this approach is based on scientific
measurement and provides explanations for pharmaceutical treatments, it remains
incomplete because the focus of meditation is on thoughts and beliefs rather than
neurological reactions in the brain.

To provide logical rigor and derive testable empirical implications, this paper
proposes a formal model of meditation that builds on the insights of the empty mind
hypothesis. Our model is based on a standard two-period model of active learning
(Rothschild 1974; see Sobel 2000 for review) augmented with two kinds of human
memory imperfections. First, when experimenters learn from outcomes, they have an
imperfect recall of past actions and information because the memories fade over time.
Second, despite this imperfect recall, experimenters have persistent prior belief over
one’s type due to “autobiographical memories.” In this setting, meditation is modeled
as increasing the weights experimenters put on current signals rather than prior beliefs
to form expectations about each other. This model shows that meditation improves
experimentation decisions by diffusing the impact of autobiographical memories2.

to be bounded. The additional changes were that the cost of effort is assumed to be constant, and
when there is no effort, no information regarding the underlying types is generated. Due to these
changes, the change in information called ‘meditation” is now referred to as “reflection over past
information” in the main text.

2Some may disagree with the interpretation of “empty mind” as the diffused prior. Instead, one
may interpret this as a removal of negative thoughts, as negative thoughts are the cause of negative
emotions. However, such selective suppression of negative thoughts, or positive illusion, is contraty
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Figure 3.1.1: A rapid increase in evidence and practice of meditation

Notes: Figure 3.1.1 describes the number of articles with “meditation” and percentage of
Americans who answer they have implemented meditation at least once in the past year in
National Health Interview Survey.

Under these memory imperfections, the experimentation decision and belief up-
dating will exhibit biases towards autobiographical memory. Suppose an experimenter
has a autobiographical memory with low confidence. Then, even if she knows it is
worth trying, she may not experiment in equilibrium. On the other hand, an exper-
imenter with high confidence may continue even if she knows it is better to let go.
Given the first-period outcomes, the inference will be expected to yield biases towards
the autobiographical memory on average. Even if the experimenter with low confi-
dence succeeds, she will likely attribute this to luck rather than to her past efforts.
When the experimenter with high confidence experiences a failure, she will likely at-
tribute to efforts instead of luck. In this way, unlike in the standard experimentation
models of perfect memory, the level of confidence of the experimenter will no longer
be a sufficient statistic that determines the behaviors (Gittins 1979).

While these biases emerge in an imperfect recall framework, they are alleviated and

to what many meditation practitioners teach. Others may then interpret this as a removal of any
thoughts. However, taken literally, this will lead to inaction. In contrast, meditation is shown to
make people more actively engaged by observing their conditions more clearly. While a no-mental-
content-at-all state may be advanced by some practitioners, many popular meditations aim at lack
of judgment.
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even asymptotically eliminated by meditation. This effect arises because the memory
imperfection has introduced a coordination problem between decisions over multiple
periods. When attention is unstable across periods, each decision and inference must
rely on long-term memory to achieve coordination. In contrast, when attention is
stable, long-term memory will be uninformative regarding another Self’s action and,
by avoiding its influence, the decisions will converge to the perfect recall optimum.
This result is notable in that it stands in contrast with the ordinary understanding
that coordination requires one to be informed about another’s action; instead, it is
lack of information that leads to unbiasedness.

To sum up the discussions thus far, the proposed model shows that embedding
memories and attention within a formal model of active learning can illuminate the
role of meditation in “emptying” one’s mind. However, there are two limitations to
this approach. First, the model does not include physiological responses. This omis-
sion is a modeling choice, as the model is intended to illustrate the main mechanism
with minimal assumptions, rather than to include all real-world elements3. Second,
the model appears to differ from other models economists have developed regarding
psychological distress. At the bottom line, theories are intended to clarify mappings
from assumptions to testable hypotheses, so their relevance must be examined based
on evidence when introspections vary. However, such disagreements exist and per-
sist in psychology, and difference from dominant models does not necesssarily imply
deficiencies of new models. In the remainder of this section, I contrast the proposed
model against two other approaches.

First, one approach used by other economists have attributed states of psycholog-
ical distress to biased beliefs, that is, the difference between subjective and objective
probability assessments. They then suggest that a lack of experimentation, and a
resulting belief-behavior feedback loop, is the sustaining mechanism of distress (de
Quidt and Haushofer 2017). This conceptualization captures an important aspect
of distress, for in Behavioral Therapy, clients are asked to deliberately experiment
with new actions to overcome this feedback loop4. However, while important, there
are two implications of this approach that are inconsistent. First, if psychological
distress is defined as the difference between internal belief and external reality, then
distress would be eliminated by a worsening external reality that comes to match a
pessimistic internal belief. However, a common sense would suggest otherwise. The

3It is left for future work to incorporate physiological symptoms into the model. For example,
one could assume that the cost of second-period effort is a function of the emotional response to the
first-period outcome, say, because the emotional response affects the sleep one can have.

4Since my model extends the standard experimentation model, this mechanism can be present.
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proposed model, by contrast, attributes a state of distress to one’s relationship with
oneself, avoiding such predictions. Second, this approach suggests that the role of
psychotherapy is to persuade one to think more positively. However, many profes-
sional cognitive therapists argue that this is a misconception of their service. In
contrast, the proposed model is consistent with cognitive therapy practitioners who
suggest that the role of psychotherapy to let go of judgmental thoughts and focus on
the present, rather than merely trying to think more positively.

A second alternative framework is to consider affect as a state that shapes utility
functions and belief updating. For example, when the decisionmaker is in an “angry”
state, she thinks negatively of others. Meditation shrinks her amygdala, which shifts
her state to be “calm,” and thereby changes her thoughts. As discussed in Section
4, the proposed model can also be interpreted similarly, as meditation changes the
non-standard components of the objective function and inference process. However,
one advantage of the proposed model is that this is an implication rather than an as-
sumption, and mechanisms are illustrated through its derivation. Moreover, there is
also a fundamental difference rooted in clinical psychology debates. Like this promi-
nant alternative approach, many psychologists had previously believed that emotional
states precede thoughts (e.g. “I think badly of others because I am angry.”) Since
the 1960s, however, cognitive therapies were developed by Ellias and Beck (e.g. Beck
1967) based on their observation that there are preconscious thoughts that precede
emotional states (e.g. “I feel angry because I, perhaps without awareness, perceive
others to be bad.”) Meditation shares with these cognitive therapies the common ob-
jective of bringing these thoughts into awareness and to scrutinize them, and thereby
improve the emotional states5. Evidence suggests this approach is highly effective.

Relation to the Literature. This paper draws upon and informs the litera-
ture on (i) information economics, (ii) behavioral economics, and (iii) organizational
economics.

First, in information economics, while information acquisition models with perfect
memory suggest that the level of confidence determines experimentation decisions,
this paper extends the analysis to shows that attention and memory structures will
also be key when memory is imperfect. In standard models (Rothschild 1974; see
Sobel 2000 for review), the celebrated result is sufficiency of confidence level (e.g.
Gitten’s index in “multi-armed bandit” models). Here, we extend this model with
imperfect recall of past actions (Kuhn 1953, Harsanyi and Selton 1988, Piccione and

5This stands in contrast with, but can be consistent with, other pharmapseutical and physiological
techniques that directly improve the emotional states.
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Rubinstein 1997, Aumann et al. 1997), noisy signals (Bagwell 1995), and global game
perturbations of preferences (Carlsson and van Damme 1993, Frankel et al. 2003) that
arise due to noisy cognition (See Khaw, Li, and Woodford 2017 for a similar approach).
The key implication is that without perfect recall, confidence no longer uniquely
determines experimentation decisions, and that attention and memory structures will
be critical instead. This is due to externalities of information acquisition (e.g. Bolton
and Harris 1999, Keller et al. 2005; see Hörner and Skyzypacz 2016 for review).
However, rather than incentives, coordination will be the key friction.

Second, this study contributes to behavioral economics, where various papers
have examined the role of information processing imperfections in passive learning
models. For example, biases in learning have been explained by quasi-Bayesian models
(Rabin and Schrag 1999), motivated beliefs, and model mis-specification (Heidius et
al. 20186, He 2019). Wilson (2014) examines the role of coarse memories on the
biases of eventual learning, while de Silveira and Woodford (2019) show that when
the memory capacity of the decision-maker is limited, there will be an over-reaction
to new information in both beliefs and actions. By contrast, this paper examines
information processing imperfections within an active learning model, showing that
biases in higher order beliefs result in biases in the first order belief in later periods,
even under Bayes’ rule.

Finally, this paper also contributes to the theory of “teams” in organizational
economics, providing new results on the role of organizational memory and commu-
nication. Teams are groups of decisionmakers who share a common interest but who
hold private information (Marschak and Radner 1972). More recently, Dessain and
Santos 2006 ask when it is worthwhile to improve communication among workers when
they face a trade-off between adaptation (i.e. responding to private information) and
coordination (i.e. ensuring that decisions are well-coordinated with one another.) As
multiple selves also share a common interest and yet face different information, the
model presented in this paper also addresses this adaptation-coordination trade-off in
the context of information acquisition (e.g. generations of workers deciding whether
to invest in a risky project.) To maximize adaptation, it is optimal to reduce shared
organizational memory, and allow workers to communicate with each other. However,
if the firm’s objective is to induce a high level of output, then it is optimal to instill
positive organizational memory, and restrict communication among workers so that

6Even though their model has agents to choose actions to endogenously generate signals, the
agents choose actions myopically without experimentation motives. In this sense, the strategic
reasoning of this paper is absent in their model.
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they will exert effort even when their private signals suggest the situation is difficult.
By introducing a global game framework (Morris and Shin 2001), this paper analyzes
the new role of shared organizational memory beyond what is captured by existing
models.

3.2 Set-up

This Section introduces the set-up of the model and shows that the unique equilibrium
has a threshold-form. The set-up extends a standard 2-period experimentation model
with imperfect recall over first period action and information. The set-up is thus
formulated as a model of multiple Selves since either decision-maker cannot control
another’s action.

3.2.1 Environment

There are two Selves, Self 1 and Self 2, each making effort decision in respective
period 𝑡 = 1, 2. Self 1 chooses her action in period 1, 𝑎1 ∈ {0, 1} to produce the
output 𝑦1 ∈ {0, 1}. Self 2 has an imperfect recall over action: she observes a noisy
signal, 𝑧 ∈ {0, 1}, of action 𝑎1, that is correct with probability 𝑟𝑎 ∈

[︀
1
2
, 1
]︀
. After

observing 𝑦1 and 𝑧, Self 2 chooses her action in period 2, 𝑎2 ∈ {0, 1} to produce
𝑦2 ∈ {0, 1}. The two Selves share a common underlying payoff:

E [𝑦1 − 𝑐𝑎1 + 𝑦2 − 𝑐𝑎2] , (3.1)

where 𝑐 > 0 is the cost of effort 𝑎𝑡 = 1.
There are also two types that the Selves learn about through noisy signals using

the Bayes’ rule. First, there is a productivity type, 𝜃 ∈ {𝜃𝐻 , 𝜃𝐿}, and the probability of
being a high type is 𝑝 ≡ P (𝜃𝐻) ∈ (0, 1). Effort raises the probability of high outcome
more when the type is high: 𝜋𝐻 > 𝜋𝐿 > 𝜋0, where 𝜋𝜃 = P (𝑦𝑡 = 1|𝑎𝑡 = 1, 𝜃) ∈ (0, 1)

and 𝜋0 = P (𝑦𝑡 = 1|𝑎𝑡 = 0) ∈ (0, 1). The first-period effort, 𝑎1 = 1, is called an
experimentation since its outcome can inform the second-period action about the type
𝜃. The Selves actively learn about 𝜃 by Self 1’s experiments, and Self 2’s inference is
based on her recalled history of the first period. Let 𝜋𝐻 − 𝜋0 > 𝑐 and 𝜋𝐿 − 𝜋0 < 𝑐 so
that their confidence is consequential for their effort decision.

Second, there is a potential type, 𝜔 ∼ 𝒩 (𝜔0, 𝜎
2
𝜔). Let us denote a censoring

function 𝐶𝑛 : R ↦→ [0, 1] that censors the values outside of a unit interval7. The
7That is, 𝐶𝑛 (𝑙) = 𝑙 if 𝑙 ∈ (0, 1), 𝐶𝑛 (𝑙) = 0 if 𝑙 ≤ 0, and 𝐶𝑛 (𝑙) = 1 if 𝑙 ≥ 1
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Figure 3.2.2: Time line

Nature chooses
𝜔 ∈ R, and with
P (𝜃𝐻) = 𝐶𝑛 (𝜔),
𝜃 ∈ {𝜃𝐿, 𝜃𝐻}

Self 1 sees
signal 𝑥1,
updates P (𝜃),
chooses 𝑎1 ∈ {0, 1}

Self 2 sees
output 𝑦1 ∈ {0, 1},
signals 𝑥2, 𝑧, 𝜁,
updates P (𝜃),
chooses 𝑎2 ∈ {0, 1} ,
output 𝑦2 ∈ {0, 1}
realized

Notes: Figure 3.2.2 describes the time line of this model. Here, P (𝜃) denotes the average
belief 𝑝 ≡ P (𝜃𝐻) conditional on signals.

potential type determines the distribution of the distribution of productivity type, 𝑝,
by the censoring function: 𝑝 = 𝐶𝑛 (𝜔). Each Self passively learns about this potential
type, 𝜔, at the beginning of each period 𝑡 through noisy signals, 𝑥𝑡. The second-
period information includes both first-period signal, 𝑥1, and additional information,
𝜉:

𝑥1 = 𝜔 + 𝜀1 and 𝑥2 =
𝑥1 + 𝜉

2
, where 𝜉 = 𝜔 + 𝜀2 (3.2)

and 𝜀𝑡 ∼ 𝒩 (0, 𝜎2
𝜀). However, Self 2 has an imperfect recall over information: while

she observes 𝑥2 perfectly, she cannot distinguish 𝑥1 and 𝜉 and instead observes an
additional signal, 𝜁 = 𝑥1 + 𝜀0, where 𝜀0 ∼ 𝒩

(︀
0, [(1− 𝑟𝜀)𝜎𝜀]

2)︀. That is, while Self 2
remembers what Self 1 knew, she imperfectly recalls what Self 1 did not know. The
parameters and the distributions are common knowledge.

The time line is as follows (Figure 3.2.2): first, Nature chooses the potential type,
𝜔, and chooses the type 𝜃 according to the distribution 𝑝 = 𝐶𝑛 (𝜔); second, the Self
1 observes 𝑥1 and makes the effort decision, 𝑎1 ∈ {0, 1}; third, the Self 2 observes
outcome 𝑦1, signal of distributon type 𝑥2, and signal of first-period action 𝑧 and
information 𝜁, and updates her belief P (𝜃). Then he chooses 𝑎2 ∈ {0, 1} given her
posterior belief; and finally, the output 𝑦2 is realized.

Interpretation. To interpret this set-up concretely, let us consider college stu-
dents who study for a linear algebra class. They choose how much to study, 𝑎𝑡, for the
mid-term exam (𝑡 = 1) and the final exam (𝑡 = 2). The students can pass the exam,
𝑦𝑡, with chances that depends on both their efforts, 𝑎𝑡, and their specific preparedness
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for the exam 𝜃. When mid-terms are returned months after the exam, they have a
noisy memory of how much they had studied for the mid-term (𝑟𝑎 < 1) and what
they were thinking then (𝑟𝜀 < 1). They can engage in reflection practices, such as
journaling of study efforts, to improve these recall precisions.

The students do not know their specific preparedness for the exam, 𝜃, but infer it
from results of past exams and their readiness for the class 𝜔. The students also do
not know 𝜔, either, but infer this from their knowledge of general ability for math,
{𝜔0, 𝜎

2
𝜔}, as well as information, 𝑥𝑡, they have from classes. The signals, 𝑥𝑡, represent,

for example, whether they can do problem sets or they understand lectures easily. The
students know their general ability, {𝜔0, 𝜎

2
𝜔}, from their personal histories such as in

high schools, such as whether their parents or teachers discouraged or pushed them
from pursuing math.

3.2.2 Equilibrium

This sub-Section defines an equilibrium and shows that the equilibrium will take a
threshold form.

Perfect Bayesian Nash Equilibria

This paper will analyze the Perfect Bayesian Nash Equilibrium, the standard equilib-
rium concept to analyze dynamic games of incomplete information, and henceforth
call them as equilibrium. Let the action space be 𝒜𝑡 ≡ {0, 1}; the outcome space be
𝒴𝑡 ≡ {0, 1}; and the interim type space be 𝒳𝑡 ≡ R. The Self 1’s strategy, 𝑠1, is a map-
ping from the interium type space, 𝒳1, to a distribution over action space, 𝒜1; that
is 𝑠1 : 𝒳1 ↦→ Δ(𝒜1). The Self 2’s strategy, 𝑠2, is a mapping from the interium type
space, 𝒳2, the first-period outcome space, 𝒴1, the noisy signal of first-period action in
the space, 𝒵 = 𝒜1, the noisy signal of first-period information in the space, 𝒳1 = 𝒳1.,
to a distribution over own action space, 𝒜2; that is 𝑠2 : 𝒳2 ×𝒴1 ×𝒵 ×𝒳1 ↦→ Δ(𝒜2).
Denote the Self 2’s prior belief over the Self 1’s strategy by 𝜇 ≡ P (𝑠1).

Definition 1 Equilibrium An equilibrium is a tuple of strategies and beliefs {𝑠1, 𝑠2, 𝜇}
such that (i) all strategies maximize the objective ( 3.1) given the strategies of
each other; (ii) beliefs are consistent with the Bayes’ rule; (iii) off-equilibrium
strategies also maximize the objective ( 3.1).

Unlike some other analyses of multiple equilibria, the results herein will not be driven
by “implausible” off-path beliefs and are robust to refinements such as strategic sta-
bility (Kohlberg and Mertens 1986) and intuitive criterion (Kreps and Cho 1987).
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Preliminary Analyses

To provide the benchmark, we first consider the setting with perfect recall over ac-
tions. While there is an imperfect recall over information, the equilibrium is identical
to the standard setting without such imperfection. Henceforth, let us denote the
period-𝑡 interim belief conditional on signal 𝑥𝑡 by 𝑝𝑡 (𝑥𝑡).

Proposition 1. Equilibrium under Perfect Recall over Action and Im-
perfect Recall over Information (𝑟𝑎 = 1, 𝑟𝜀 ≤ 1). Self 1 and Self 2 exert their
effort if and only if they are sufficiently confident:

𝑎**1 =

⎧⎨⎩1 if 𝑝1 (𝑥1) ≥ Π1

0 if o.w.
and 𝑎**2 =

⎧⎨⎩1 if 𝑝2 (𝑥2) ≥ Π2 (𝑧, 𝑦1)

0 if o.w.
,

where the thresholds,
{︀
Π1,Π2 (𝑧, 𝑦1)

}︀
, satisfy

0 < Π2 (1, 1) < Π2 (0, 𝑦) < Π2 (1, 0) < 1. (3.3)

and Π1 < Π2 (0, 𝑦), and are independent of 𝑟𝜀 and 𝜔0.

Sketch of Proof. By the backward induction. The ordering (3.3) suggests, for inter-
mediate levels of interim belief, 𝑝2 (𝑥2) ∈

(︀
Π2 (1, 1) ,Π2 (1, 0)

)︀
, the second-period effort

depends on the histories {𝑎1, 𝑦1} while for the extreme levels, the effort level only de-
pends on the belief. In particular, for the moderately low level of confidence 𝑝2 (𝑥2) ∈(︀
Π2 (1, 1) ,Π2 (0, 𝑦)

)︀
, the Self 2 exerts effort if the Self 1 has experimented and suc-

ceeded; for the moderately high level of confidence 𝑝2 (𝑥2) ∈
(︀
Π2 (0, 𝑦) ,Π2 (1, 0)

)︀
, the

Self 2 exerts effort unless the Self 1 has experimented and failed. In this way, Self
1’s effort has an informational value to improve Self 2’s decision. Thus, the con-
fidence level required to exert the first-period effort, Π1, is less than the “myopic”
level, Π2 (0, 𝑦), required to exert the second-period effort in the absence of additional
information. Appendix A2.1 contains a complete proof. �

The Proposition 1 shows that both Selves exert effort if and only if they are
sufficiently confident given their information. For example, the students with low
confidence will not study for the final unless they have additional confidence from
their experience of studying hard for the mid-term and performing well; on the other
hand, those with high confidence will study for the final unless they have an experience
of trying hard for the mid-term and yet not succeeding. Some students with moderate
level of confidence may thus study hard for the mid-term, not only to perform well
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in the mid-term itself, but also to learn how much to study for the final. This result
that the experimentation decision depends on the confidence level is a fundamental
results in the models of experimentation, and often employed as the Gittins’ index in
the context of multi-armed bandit models.

To characterize the role of imperfect recall, let us first show that the unique
equilibrium will take a threshold-form:

Lemma 1. Equilibrium Thresholds under Imperfect Recall over Action
and Information (𝑟𝑎 < 1, 𝑟𝜀 < 1). There exists some 𝑟𝜀 < 1 such that for any
𝑟𝜀 ∈ [𝑟𝜀, 1), there is a unique equilibrim with the following threshold-form strategies:
Self 1 chooses

𝑎*1 =

⎧⎨⎩1 if 𝑝1 (𝑥1) ≥ Π𝑟
1

0 if o.w.

Self 2’s choice will depend on the histories:

∙ When 𝑦1 = 1: for each 𝑧, for 𝑝2 (𝑥2) ∈
(︀
Π2 (1, 1) ,Π2 (0, 𝑦)

)︀
𝑎*2 =

⎧⎨⎩1 if 𝜁 ≥ 𝜁𝑟𝑧1 (𝑥2)

0 if o.w.;
(3.4)

and 𝑎*2 = 1 if 𝑝2 (𝑥2) > Π2 (0, 𝑦) and 𝑎*2 = 0 if 𝑝2 (𝑥2) ≤ Π2 (1, 1) .

∙ When 𝑦1 = 0: for each 𝑧, for 𝑝2 (𝑥2) ∈
(︀
Π2 (0, 𝑦) ,Π2 (1, 0)

)︀
𝑎*2 =

⎧⎨⎩1 if 𝜁 < 𝜁𝑟𝑧0 (𝑥2)

0 if o.w.;
(3.5)

and 𝑎*2 = 1 if 𝑝2 (𝑥2) > Π2 (1, 1) and 𝑎*2 = 0 if 𝑝2 (𝑥2) ≤ Π2 (0, 𝑦) .

The thresholds,
{︀
Π𝑟

1, 𝜁
𝑟
𝑧𝑦 (𝑥2)

}︀
, depend on 𝑟𝑎, 𝑟𝜀, and 𝜔0.

Sketch of Proof. By the logic of uniqueness of threshold-form equilibrium in “global
games” (Carlsson and van Damme 1993)8. There are two steps in this proof. The
first step shows that any rationalizable strategies must be bounded by some threshold-
form strategies by the iterative elimination of strictly dominated strategies. In the

8Note that, unlike some parts of the global game literature, this paper does not use this technique
as an equilibrium selection criterion. Instead, this paper takes the noisy signals as a characteristic
of imperfect memory, as suggested by psychology and neuroscience literature, and studies the role
of stability of the signals in the cases away from the limit.

-the term “essentially” is added to account for strategies at the cut-off
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extreme levels of confidence such that Self 2’s choices are independent of histories, the
Self 2 has dominant strategies. From these regions, contagion restricts rationalizable
strategies in the intermediate levels of confidence where the choices depend on recalled
history of the Self 1’s action. The second step shows that Self 1’s such concerns of
imperfect recall is small enough when information is recalled sufficiently accurately
so that these bounds contain essentially a unique threshold, constituting the unique
equilibrium. Appendix A3.2.3 provides a complete proof. �

The Lemma 1 shows that the decisions under the imperfect recall remain heuristic
despite the complexity of information structure. Self 1 experiments if she is sufficiently
confident, but this threshold now depends on her expectation of Self 2’s recall. In
turn, Self 2 who experiences a surprising outcome – those with low initial confidence
but with success, and those with high initial confidence but with failure – changes
her second period effort if she is sufficiently sure that Self 1 has experimented. The
subsequent analysis will illustrate how this imperfect recall leads to biases in decisions
and inference.

3.3 Main Analyses

This Section first shows that, under imperfect recall, the threshold of experimentation
will exhibit biases towards the prior belief. Then, reflection is shown to reduce this
bias by alleviating biases in inference. The underlying mechanism of coordination
problem is also illustrated.

3.3.1 Behaviors and Beliefs

Let us begin by considering the implications of imperfect memories on biases in ex-
perimentation and inference. By using the notation similar to the definition, let
𝜇 (𝑥2, 𝜁) ≡ P (𝑎1 = 1|𝑥2, 𝜁) be Self 2’s belief that 𝑎1 = 1 conditional on signals 𝑥2, 𝜁.
Let 𝐻 (𝜇|𝑝1, 𝜔0) denote the distribution of the Self 2’s belief given Self 1 with the
belief belief 𝑝1 and prior 𝜔0.

Proposition 2.1. Equilibrium with Bias to Conform to Prior Beliefs
under Imperfect Recall over Action and Information(𝑟𝑎 < 1, 𝑟𝜀 < 1). Given
𝑟𝜀 ∈ [𝑟𝜀, 1),

𝜕Π𝑟
1 (𝜔0)

𝜕𝜔0

< 0.

There exists a unique prior 𝜔*
0 such that Π𝑟

1 (𝜔
*
0) = Π1 such that the following holds:
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(i) Prior with Low Confidence: when 𝜔0 < 𝜔*
0, there will be an underex-

perimentation (𝑎*1 = 0 while 𝑎**1 = 1) for 𝑝 (𝑥1) ∈
[︀
Π1,Π

𝑟
1

]︀
. At the thresh-

old, the higher order expectation for experimentation is low: 𝐻 (𝜇|Π𝑟
1, 𝜔0) >

𝐻
(︀
𝜇|Π1, 𝜔

*
0

)︀
.

(ii) Prior with High Confidence: when 𝜔 > 𝜔*
0, there will be an overexperimen-

tation (𝑎*1 = 1 while 𝑎**1 = 0) for 𝑝 (𝑥1) ∈
[︀
Π𝑟

1,Π1

]︀
. At the threshold, the higher

order expectation for experimentation is high: 𝐻 (𝜇|Π𝑟
1, 𝜔0) < 𝐻

(︀
𝜇|Π1, 𝜔

*
0

)︀
.

Sketch of Proof. When the Self 2 has an imperfect recall over Self 1’s action, the Self 2
relies on her signal, 𝑥2, to infer Self 1’s action. Since Self 2’s information is uncertain
from the perspective of Self 1, Self 1 will in turn use her signal, 𝑥1, to infer what Self
2 will think about what she thinks. Since their signals are noisy, Self 1 expects Self 2
to expect Self 1 to observe information closer to the prior. We can heuristically focus
on the mean: Self 1 expects Self 2 to observe

E [𝑥2|𝑥1] =
𝑥1

2
+

𝛼𝑥1 + (1− 𝛼)𝜔0

2
, where 𝛼 ≡ 𝜎2

𝜔

𝜎2
𝜀 + 𝜎2

𝜔

.

Further, substituting Self 2’s expectation over Self 1’s signal conditional on the infor-
mation {𝑥2, 𝜁}

E [E [𝑥1|𝑥2, 𝜁] |𝑥1] = 𝛾 (1− 𝛼)𝜔0 + [1− 𝛾 (1− 𝛼)]𝑥1, where 𝛾 ≡ (1− 𝑟𝜀)
2

(1− 𝑟𝜀)
2 + 1

.

More precisely, the distribution of 𝜇, Self 2’s expectation over Self 1’s action, is shifted
towards the prior belief as stated in (i) and (ii).

Recall that the experimentation was a decision to improve future payoff by pro-
viding more information at the cost of today’s payoff. Thus, the experimentation
decision depends critically on the future decision of whether to incorporate the in-
formation from today’s outcome. In this way, experimentation decision exhibits a
coordination problem between Self 1 and Self 2 under the imperfect recall: when Self
1 thinks she is expected not to experiment due to the prior with low confidence, she
does not; when Self 1 thinks she is expected to experiment, she does so. Therefore,
the the minimum level of confidence to experiment in equilibrium, Π𝑟

1, is lower when
the prior level, 𝜔0, is higher conditional on the interim belief. A complete proof is
given in the Appendix A3.3.1. �
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Figure 3.3.3: Experimentation with bias towards prior belief

0

P
[︀
E [𝑝1|𝑝2] |Π1

]︀

1Π1
Π𝑟

1
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Π𝑟
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𝑎*1 = 0 𝑎*1 = 1

𝑎**1 = 0 𝑎**1 = 1

(ii) prior with high confidence

Notes: Figure 3.3.3 show the equilibrium experimentation decision vs compared to the
perfect recall benchmark.

The Figure 3.3.3 visualizes the skewness of higher order beliefs and resulting biases
in experimentation decision. When the prior confidence level is low, at the benchmark
threshold Π1, Self 1 expects Self 2 to expect her to have observed signals with the
downward skewness. To conform towards this expectation, Self 1 chooses 𝑎*1 = 0

more frequently. The opposite bias occurs for the prior with high confidence. Note
that, when the prior level is low, it is more common to have the interim belief,
𝑝2, in the region

(︀
Π2 (1, 1) ,Π2 (0, 𝑦)

)︀
so that the outcome of success, 𝑦1 = 1, is

consequential. In contrast, when the prior level is high, the outcome of failure, 𝑦1 = 0,
becomes consequential. This observation allows us to interpret this proposition with
the following examples:

Let us consider some students from the disadvantaged backgrounds. For example,
female students in the fields of math and sciences are often handicapped relative to
their male peers. In the standard expected utility theory, they do not give a try to
challenging classes either because (i) they are not confident about their ability, or (ii)
rewards to success are low for them. But in this model, one could be just as confident
in her capacity as other male students based on objective assessments, and there may
even be strong rewards from success. However, one merely thinks that the efforts
and success in areas of math and sciences are not what they expect from themselves.
Even if successful in the mid-term exam, they tend to attribute that success to mere
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luck, not to effort, and thus unlikely to keep exerting efforts for the final. Given such
prospect, they never try in the first place.

Consider some other students with an elite background, who were always taught
to work hard in areas they were expected to perform. In the standard theory, they
exert effort either (i) because they are confident about their ability, or (ii) because
their rewards to success are high. But in this model, some could in fact have a low
confidence and think that there is little benefit to performing well in the class, and
yet they keep putting efforts because that is what they expect of themselves. If they
perform poorly, they tend to think of themselves as incompetent, even if the result
may be due to mere lack of efforts. To avoid such judgment towards oneself in the
future, they keep working hard while knowing it is better for themselves to take it
easy.

While there are important works that have explored the implication of conformity
bias, this model differs from them in both mechanisms and implications. Other
models have directly modified the Bayes’ rule to put heavier weights on prior beliefs
relative to the signals (See e.g. Rabin and Schrag 1999), explored their implications in
passive learning models. In contrast, this model maintains the Bayes’ rule but focuses
on the role of higher-order beliefs in the active learning setting. In their model, the
decisionmakers think their decisions are optimal. Here, the decisionmaker knows that
their decision is in some ways biased relative to what the first-order belief suggests is
the optimal action under the perfect recall benchmark.

Note that even though the deviation of the thresholds from the perfect recall
benchmark is called “bias” here, these thresholds are still optimal given the imperfect
recall. This is an immediate consequence of common interests assumption in (3.1)
and the uniqueness result in Lemma 1. In this sense, even though the two Selves are
not acting according to their first-order belief, they are still acting “optimally.”

3.3.2 Role of Reflection and Meditation

While the imperfect recall over actions can introduce biases, changing the recall over
information can eliminate this bias asymptotically, while keeping the imperfect recall
over actions.

Proposition 2.2. Role of Reflection over Information. Given the informa-
tion structure, define

𝑚 ≡ (1− 𝑟𝜀)𝜎𝜀

𝜎𝜔
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Then,

lim
𝑚→0

Π𝑟
1 = Π1

lim
𝑚→0

E [𝜇 (𝑥2, 𝜁)] =
1

2
∀𝑥1, 𝑥2

Sketch of Proof. By turning the Self 1’s expectation over Self 2’s expectation over
Self 1’s action to be agnostic. As the recall over information becomes precise, Self 1
now expects Self 2 to understand his information perfectly: since lim𝑚→0 𝛾 (1− 𝛼) =

0,

lim
𝑟𝜀→1

E [E [𝑥1|𝑥2, 𝜁] |𝑥1] = 𝑥1 ∀𝑥1, 𝑥2

Since the Self 2 no longer relies on her information but instead uses the noisy infor-
mation 𝜁 to make an inference regarding 𝜇, Self 1 expects Self 2 to have an agnostic
expectation over her behaviors. Thus, Self 1 does not have biases in her experimenta-
tion decision and follows her own signal. A proof with the version of 𝑟𝜀 → 1 is given
in the Appendix A3.3.1. �

Formally, this limit optimality result arises because risk dominance (Harsanyi and
Selton 1988) implies the optimality in common interest games. Risk dominance is an
equilibrium selection criteria in 2× 2 games in which each player is assumed to face
the largest uncertainty about another player’s action, that is, she puts probability
1
2

to either actions. Due to miscoordination payoffs, risk dominance will differ from
payoff dominance in general. However, when the players have the common interests,
the miscoordination payoffs cancel exactly with one another.

Such maximum strategic uncertainty arises even when the limit of 𝑟𝜀 → 1 is
considered. As Self 2 has almost perfect recall over Self 1’s action, the strategic risks
vanish to 0 as 𝑟𝜀 → 1 in all information away from the cut-off. However, at the cut-off,
the strategic uncertainty not only remains but also is maximized as it converges to 1

2
.

As we will see in Section x, the equilibrium outcome differs starkly from when 𝑟𝜀 = 1.

The key to interpreting this result is not the decrease in uncertainty, but the
relative weights between the signal 𝜁 and the prior 𝜔0 that Self 2 uses to infer about
Self 1’s information. The key term, 𝑚, denotes how the signal 𝜁 is precise relative
to the prior 𝜔0. When the prior becomes more diffused (𝜎𝜔 increases), therefore, the
bias can decrease even when Self 2 remains just as uncertain about Self 1’s action.
Similarily, even when the prior becomes more precise and thus Self 2 knows Self 1’s
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information better, the bias can become exacerbated. This reflects the key finding of
Weinstein and Yildiz (2007) that it is not vanishing noise but details of perturbation
that determines the equilibrium. In this way, this effect differs substantively from
removing imperfect recall by an increase in 𝑟𝑎.

There are three ways to interpret this result. The primary interpretation is how
reflection practices, such as journaling, can affect the students’ study decisions (in-
crease in 𝑟𝜀). When disadvantaged students perform well, they no longer attribute
the success to luck but remember the encouraging pieces of information they used
to have and thus attribute it to their past efforts; they will keep working hard for
the final because they think they can do well if they exert efforts. When students
with high self-imposed expectations fail, they will no longer think of themselves as
a failure by assuming they have always exerted efforts. Instead, they may recall the
difficulties they were feeling for the mid-term and the resulting lack of effort, and
they stay resilient because they may still be able to perform if they work hard.

The other two ways are to either observe the present condition more (decrease in
𝜎𝜀) or to rely less on the autobiographical memory (increase in 𝜎𝜔). The last case
corresponds to the idea of letting go in meditation, as discussed in the Introduction.
Through meditation, Self 1 thinks that the state of the world is just it is, and follows
her first-order belief to make the decision; since there is no “history” to conform to,
each Self makes the decision that one believes is optimal. Since lim𝑚→0 E [𝜇 (𝑥2, 𝜁)] =
1
2
, there is no self-imposed expectation over behaviors. When the self-dialogue is

based more on observations and less on assumptions, Self 1 can adapt flexibly to the
current information instead of conforming to the self-imposed expectations from the
prior belief.

3.3.3 Coordination Problems between Two Selves

The above results have highlighted the importance of memory and attention on vari-
ous outcomes, such as belief and behaviors, and welfare and psychological outcomes.
Here, we clarify the mechanism by focusing on the ole of strategic interdependence
by assuming perfect recall of information (𝑟𝜀 = 1). While this common knowledge
environment leads to multiple equilibria and thus loses the uniqueness of predictions
in Section 3, it illuminates the basis of the strategic interdependence.

The following proposition shows that the experimentation decisions exhibit strate-
gic complementarities; and with slight imperfection of recall, there will be multiple
equilibria in the settings with common knowledge. We have defined 𝜇𝑧 ≡ P (𝑠1 = 1|𝑧)

169



as the probability the Self 2 assigns to Self 1 for experimenting (𝑎1 = 1) prior
to observing 𝑧 (the key assumption is that 𝜇0 ̸= 𝜇1 is possible). Let us denote
𝑠2 ∈ {0, 1} as Self 2’s strategy to respond to the outcomes. Henceforth, let us denote
𝜈𝑧 ≡ P (𝑠2 = 1|𝑧) as the probability the Self 1 assigns to Self 2 for her strategy.

Proposition 3.1 Multiple Equilibria under Imperfect Recall of Actions
and Perfect Recall of Information (𝑟𝑎 < 1, 𝑟𝜀 = 1). There exists Π1 such that,
for 𝑝1 (𝑥1) ∈

[︀
Π1,Π2 (0, 𝑦)

]︀
, there are two (strict) equilibria:

(i) Equilibrium with experimentation.

𝑎*1 = 1 and 𝑎*2 =

⎧⎨⎩1 if 𝑦1 = 1 and 𝑝2 (𝑥2) ∈
(︀
Π2 (1, 1) ,Π2 (1, 0)

)︀
0 if 𝑦1 = 0 and 𝑝2 (𝑥2) ∈

(︀
Π2 (1, 1) ,Π2 (1, 0)

)︀
and 𝑎*2 = 1 if 𝑝2 (𝑥2) ≥ Π2 (1, 0) and 𝑎*2 = 0 if 𝑝2 (𝑥2) ≤ Π2 (1, 1).

(ii) Equilibrium without experimentation.

𝑎*1 = 0 and 𝑎*2 =

⎧⎨⎩1 if 𝑝2 (𝑥2) ∈
(︀
Π2 (1, 1) ,Π2 (0, 𝑦)

)︀
0 if 𝑝2 (𝑥2) ∈

(︀
Π2 (0, 𝑦) ,Π2 (1, 0)

)︀
and 𝑎*2 = 1 if 𝑝2 (𝑥2) ≥ Π2 (1, 0) and 𝑎*2 = 0 if 𝑝2 (𝑥2) ≤ Π2 (1, 1).

Sketch of proof : By verifying the equilibrium conditions of Definition 1. Suppose Self
2 does not act responsively to any outcome 𝑦1 as she simply assumes that Self 1 has
not experimented (𝑎1 = 0). Then, Self 1 will not experiment even when she believes
the return to learning about 𝜃 is high since Self 2 will not utilize the information
generated. Suppose, in contrast, Self 1 acts responsively to the outcome, 𝑦1, by
assuming that 𝑎1 = 1 to draw her inference. Then it will be valuable, even when the
return may be low, for Self 1 to experiment since Self 2 will use the information. In
both cases, the Self 2’s original assumption about Self 1’s actions will be consistent
in equilibrium. Appendix A2.2 contains a complete proof. �

This result of multiple equilibria suggests that, even with slight recall imperfec-
tion9, the equilibrium experimentation decision may not be adaptive. In some cases,

9Note that the equilibrium multiplicity arises even when the recall error probability is arbitrarily
small (i.e. 𝑟 ≃ 1), following the logic of Bagwell (1995). To see why, let us investigate the Bayes’
rule to consider the Self 2’s belief about Self 1’s action when her prior belief is P (𝑎*1 = 1) = 0.

P (𝑎*1 = 1|𝑧 = 1) =
𝑟P (𝑎*1 = 1)

𝑟P (𝑎*1 = 1) + (1− 𝑟)P (𝑎*1 = 0)
=

𝑟 × 0

𝑟 × 0 + (1− 𝑟)× 1
= 0
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the decisionmaker may “underexperiment”: even if the Self 1 receives high 𝑥1 so that
she knows it is worthwhile to give a try to generate information that improves future
actions, so long as the Self 2 does not harness that information, she would not ex-
periment. In other cases, the decisionmaker may “overexperiment”: even if the Self
1 receives low 𝑥1 so that she knows trying is not worthwhile since it is too costly,
so long as the Self 2 expects Self 1 to have tried, then it would be worthwhile to
conform to such expectations. This illustrates how miscoordination results in welfare
loss. Moreover, being in a sub-optimal equilibrium will be frustrating since each Self
can improve her welfare by jointly shifting the decisions.

Without focusing on the equilibrium outcomes without asymmetric information,
we can ask what conditions on strategies lead to the efficient outcomes. The following
proposition shows that, due to the common interest assumption, it is necessary and
sufficient to have some symmetries in strategic uncertainties to ensure adaptation.
Here, we call the strategies of Self 1 as 𝑠1 instead of 𝑎1. Let us call {𝑠1, 𝑠2} to be
adaptive, if and only if {𝑠1, 𝑠2} ∈ argmax𝑠1,𝑠2 𝑣𝑠1𝑠2 .

Proposition 3.2. Symmetry Conditions for Adaptation under Imperfect
Recall. Under imperfect recall over action (𝑟𝑎 < 1), the set of strategies, {𝑠1, 𝑠2},
is adaptive for any payoff parameters if and only if 𝜇𝑧 + 𝜈𝑧 = 1.

Proof. Let us derive the indifference conditions for each Self, and rearrange them
to show the equivalence.

Given expectations {𝜈0, 𝜈1}, Self 1 chooses 𝑠1 = 1 if and only if E [𝑣|𝑠1 = 1] >

E [𝑣|𝑠1 = 0], where

E [𝑣|𝑠1 = 1] = 𝑟 [𝜈1𝑣11 + (1− 𝜈1) 𝑣10] + (1− 𝑟) [𝜈0𝑣11 + (1− 𝜈0) 𝑣10]

E [𝑣|𝑠1 = 0] = 𝑟 [𝜈0𝑣01 + (1− 𝜈0) 𝑣00] + (1− 𝑟) [𝜈1𝑣01 + (1− 𝜈1) 𝑣00]

Given expectations {𝜇0, 𝜇1}, Self 2 uses the Bayes’ rule to update his belief of the
Self 1’s action:

P (𝑠1 = 1|𝑧 = 1) =
𝜇1𝑟

𝜇1𝑟 + (1− 𝜇1) (1− 𝑟)
, P (𝑠1 = 1|𝑧 = 0) =

𝜇0 (1− 𝑟)

𝜇0 (1− 𝑟) + (1− 𝜇0) 𝑟

As Self 2 chooses 𝑠2 = 1 if and only if E [𝑣|𝑠2 = 1] > E [𝑣|𝑠2 = 0], by applying the

for any 𝑟 < 1. In words, since the Self 2 already knows the Self 1’s action in pure-strategy equilibrium,
there is no information to gain from the signal 𝑧 even when it is arbitrarily accurate. The analyses
in Section 3 had introduced uncertainty in P (𝑎*1 = 1) to smooth this discontinuity, and
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Bayes’ rule,

𝑠2 (𝑧 = 1) = 1 ⇔ 𝜇1𝑟 (𝑣11 − 𝑣10) ≥ (1− 𝜇1) (1− 𝑟) (𝑣00 − 𝑣01)

𝑠2 (𝑧 = 0) = 1 ⇔ 𝜇0 (1− 𝑟) (𝑣11 − 𝑣10) ≥ (1− 𝜇0) 𝑟 (𝑣00 − 𝑣01) (3.6)

By defining Δ𝑧 ≡ 𝜇𝑧 + 𝜈𝑧 −1, we can combine the indifference condition to obtain

𝑠1 = 1 ⇔ 𝑣11 − 𝑣00 ≥ Δ1 [𝑟 (𝑣11 − 𝑣10) + (1− 𝑟) (𝑣00 − 𝑣01)]

+ Δ0 [(1− 𝑟) (𝑣11 − 𝑣10) + 𝑟 (𝑣00 − 𝑣01)]

Note that, for 𝑝 (𝑥1) ∈ Π̃𝜏 ⊂ Π𝜏 , the choice 𝑠1 = 1 is adaptive if and only if 𝑣11 ≥ 𝑣00

since the base strategies {𝑠1, 𝑠2} ∈ {{1, 1} , {0, 0}} are the two strict equilibria. For
this condition to hold regardless of the values of payoff and recall accuracy, it is
necessary and sufficient to have Δ1 = Δ0 = 0. That is, 𝜇𝑧 + 𝜈𝑧 = 1 for both 𝑧. �

This result shows that, when there is an imperfect recall, the degree of strategic
uncertainties necessary to ensure adaptive choice stand in contrast from the bench-
mark case under perfect recall. In the benchmark, it was through backward induction
that involved no strategic uncertainties that ensured an adaptive decision. Under
perfect recall, however, there were multiple equilibria that generated inefficiencies
because there were no strategic uncertainties. As Proposition 4.2 shows, it is an ap-
propriate degree of strategic uncertainty that ensures the adaptation. This condition
includes the risk-dominance criterion that assumes the maximum strategic uncer-
tainty of

{︀
1
2
, 1
2

}︀
. Such maximum strategic uncertainty can satisfy the condition of

symmetry, and thus, lead to adaptive decisions. This is because the risk dominance
is equivalent to payoff dominance in common interest games. Even though the set-up
is modified to be sequential, this equivalence remains.

3.4 Conclusion

Meditation is an ancient contemplative process that has become increasingly popular
in the modern era as a habit to improve psychological well-being. While meditation
is at its essence a thought process, scholars suggest their value does not arise from
the type of rational thought proces well known in economics involving the comparison
of alternatives as formalized by expected utility theories. Daisetsu Suzuki, a scholar
on Zen Buddhism, writes “When we start to feel anxious or depressed, instead of
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asking, what do I need to get to be happy?, the question becomes, what am I doing to
disturb the inner peace that I already have?.” He suggests that, unlike other economics
goods, some elements of psychological health are not things one can obtain through
exchanges. The model in this paper suggests, consistent with writing on meditation,
that letting go of unhelpful thoughts may be an important for becoming calm and
content.
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Appendix Proofs

This Appendix shows the proof of the Propositions and Lemmas in the main text.
It also provides additional characterizations of the equilibrium. A1 examines the
distributional properties; A2 analyzes the model with partially imperfect recall; and
A3 finally analyzes the model with fully imperfect recall.

A1. Preliminaries

This sub-Section characterizes the conditional distributions and derives the mono-
tonicity of interim beliefs that facilitate the main analyses.

Lemma A1.1. Conditional Distributions. Given the signals of the model,
the following conditional distributions hold:

𝜔|𝑥1 ∼ 𝒩
(︀
𝛼𝑥1 + (1− 𝛼)𝜔0, 𝛼𝜎

2
𝜀

)︀
, where 𝛼 ≡ 𝜎2

𝜔

𝜎2
𝜀 + 𝜎2

𝜔

(3.7)

𝜔|𝑥2 ∼ 𝒩
(︀
𝛽𝑥2 + (1− 𝛽)𝜔0, 𝛽𝜎

2
𝜀

)︀
, where 𝛽 ≡ 2𝜎2

𝜔

𝜎2
𝜀 + 2𝜎2

𝜔

(3.8)

𝑥2|𝑥1 ∼ 𝒩
(︂
(1 + 𝛼)𝑥1 + (1− 𝛼)𝜔0

2
,
𝜎2
𝜀

2

)︂
(3.9)

𝑥1|𝑥2, 𝜁 ∼ 𝒩
(︀
𝛾𝑥2 + (1− 𝛾) 𝜁, 𝛾𝜎2

𝜀

)︀
, where 𝛾 ≡ (1− 𝑟𝜀)

2

(1− 𝑟𝜀)
2 + 1

(3.10)

𝜁|𝑥1, 𝑥2 ∼ 𝒩
(︀
𝑥1, (1− 𝑟𝜀)

2 𝜎2
𝜀

)︀
(3.11)

Proof. By the Bayes’ rule. To understand (3.10), note that 𝑥1|𝑥2 ∼ 𝒩 (𝑥2, 𝜎
2
𝜀) because

E𝑥1 = E𝜉 and E𝑥1+E𝜉 = 2𝑥2 by definition. Then, combine this belief with the signal
𝜁. �

Lemma A.1.2. Monotonicity of Interim Belief. Let 𝑝𝑡 (𝜔𝑡) denote the
interim belief over 𝜃 conditional on, 𝜔𝑡, the mean of the interim belief over 𝜔. Let
Ψ(𝑝2|𝑝1) denote the distribution of 𝑝2 conditional on 𝑝1.

(i) 𝑝𝑡 (𝜔𝑡) is strictly increasing, and lim𝜔𝑡→∞ 𝑝𝑡 (𝜔𝑡) = 1 and lim𝜔𝑡→−∞ 𝑝𝑡 (𝜔𝑡) = 0.

(ii) whenever 𝑝′1 > 𝑝′′1, Ψ(𝑝2|𝑝′1) < Ψ(𝑝2|𝑝′′1).

Proof. (i) For all 𝑡 = 0, 1, 2, by the First-Order Stochastic Dominance (FOSD) of
normal distributions, if 𝜔′

𝑡 > 𝜔′′
𝑡

Φ (𝜔|𝜔′
𝑡) < Φ (𝜔|𝜔′′

𝑡 ) .
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Note that 𝑝 = 𝐶𝑛 (𝜔) is an increasing function. Let us write Φ (𝑝|𝜔𝑡) as the conditional
distribution. Then, if 𝜔′

𝑡 > 𝜔′′
𝑡 ,

Φ (𝑝|𝜔′
𝑡) < Φ (𝑝|𝜔′′

𝑡 ) .

Thus, its average, 𝑝𝑡 (𝑥𝑡) ≡
∫︀ 1

0
𝑝𝑑Φ (𝑝|𝜔𝑡), also increases: 𝑝𝑡 (𝜔

′
𝑡) > 𝑝𝑡 (𝜔

′′
𝑡 ).

Note that

lim
𝜔𝑡→∞

Φ (𝑝|𝜔𝑡) =

⎧⎨⎩1 if 𝑝 = 1

0 if 𝑝 < 1
, lim
𝜔𝑡→−∞

Φ (𝑝|𝜔𝑡) =

⎧⎨⎩1 if 𝑝 = 0

0 if 𝑝 > 0
.

Therefore, lim𝜔𝑡→∞ 𝑝𝑡 (𝜔𝑡) = 1 and lim𝜔𝑡→−∞ 𝑝𝑡 (𝜔𝑡) = 0.
(ii) by Lemma A1.1. (3.9) and the FOSD of normal distributions, if 𝜔′

1 > 𝜔′′
1

Φ (𝜔2|𝜔′
1) < Φ (𝜔2|𝜔′′

1) . (3.12)

Let 𝜙𝑡 (𝑝𝑡) denote the inverse of 𝑝𝑡 (𝜔𝑡), which exists by strict monotonicity in (i).
Thus, (3.12) can be written as, 𝑝′1 < 𝑝′′1 with 𝑝′1 ≡ 𝑝1 (𝜔

′
1) and 𝑝′′1 ≡ 𝑝1 (𝜔

′′
1),

Φ (𝜙2 (𝑝2) |𝜙1 (𝑝
′′
1)) < Φ (𝜙2 (𝑝2) |𝜙1 (𝑝

′
1)) . (3.13)

Therefore, Ψ(𝑝2|𝑝′1) < Ψ(𝑝2|𝑝′′1). �
Note that by Lemma A1.1. and Lemma A1.2.(i), 𝑝𝑡 (𝑥𝑡) is increasing for both

𝑡 = 1, 2.

A2. Partially Imperfect Recalls

First, we characterize the unique equilibrium under perfect recall over action and
imperfect recall over information in Proposition 1; then, we characterize the multiple
equilibria under the imperfect recall over action and perfect recall over information.
Henceforth, based on the monotonicity derived in Lemma A1.2., we will abbreviate
the notations of beliefs. In particular, 𝜋1 = 𝑝𝜋𝐻 + (1− 𝑝) 𝜋𝐿 and 𝑞𝑎𝑦 depend on the
interim belief 𝑝𝑡; in turn, 𝑝𝑡 depends on the prior 𝜔0 and signal 𝑥𝑡.

A2.1 Equilibrium under Imperfect Recall over Information (𝑟𝑎 = 1, 𝑟𝜀 ≤ 1).

Proposition 1 states that, under perfect recall over action (𝑟𝑎 = 1), the equilibrium
will take a threshold form with respect to the interim beliefs, and provides the ordering
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for the thresholds.
Proof of Proposition 1. we prove the Proposition 1 in 2 parts by the backward

induction: the Part 1 characterizes Self 2’s strategy, and the Part 2 characterizes Self
1’s strategy given the Self 2’s strategy.

Part 1. Self 2’s threshold. given any Self 1’s strategy, Self 2 chooses

𝑎*2 =

⎧⎨⎩1 if 𝑝2 (𝑥2) ≥ Π2 (𝑧, 𝑦1)

0 if o.w.
,

where

0 < Π2 (1, 1) < Π2 (0, 𝑦) < Π2 (1, 0) < 1. (3.14)

The proof consists of three steps: the first step shows the threshold-form strategy
holds; then, the second step show that the ordering among Π(𝑎, 𝑦) is the reverse
of the ordering among posterior 𝑞𝑎𝑦 due to the indifference condition; and then, we
derive the ordering in terms of posterior belief; finally, we combine these three steps.

Step 1 Monotonicity of action inposterior belief:
Sub-Lemma A2.1.1(i) given any posterior belief 𝑞,

𝑎*2 = 1 ⇔ 𝑞 ≥ 𝑞, where 𝑞 ≡ 𝑐− (𝜋𝐿 − 𝜋0)

𝜋𝐻 − 𝜋𝐿

∈ (0, 1) (3.15)

Proof. By the comparison of expected welfare given each action. Let 𝑣𝑎̃ (𝑝) denote
the per-period welfare conditional on action 𝑎𝑡 = 𝑎̃. In period 2, it is optimal to
choose 𝑎*2 = 1 whenever 𝑣1 (𝑞) ≥ 𝑣0 (𝑞). Reorganizing this condition, we obtain 𝑞 ≥ 𝑞

in (). Note that 𝑞 ∈ (0, 1) due to the assumption that 𝜋𝐻 > 𝜋𝐿 and 𝑐 > 𝜋𝐿 − 𝜋0. �

Step 2 Ordering of prior belief at the indifference condition:
Sub-Lemma A2.1.1(ii) given any histories {𝑎, 𝑦} and {𝑎̃, 𝑦},

𝑞𝑎𝑦 ≥ 𝑞𝑎̃𝑦 ⇒ Π(𝑎, 𝑦) ≤ Π(𝑎̃, 𝑦) . (3.16)

Proof. By the definition of Π(𝑎, 𝑦) as the indifference prior level. Let us write
𝑞𝑎𝑦 (𝑝) as the posterior belief resulting from prior 𝑝 and histories 𝑎, 𝑦. Note that by
the Bayes’ rule, the posterior 𝑞𝑎𝑦 (𝑝) must be strictly increasing in prior 𝑝 for any
histories 𝑎, 𝑦.

Let us consider some histories {𝑎, 𝑦} and {𝑎̃, 𝑦} such that 𝑞𝑎𝑦 (𝑝) ≥ 𝑞𝑎̃𝑦 (𝑝) for any
fixed 𝑝. Suppose we choose 𝑝, 𝑝 such that 𝑞𝑎𝑦 (𝑝) = 𝑞𝑎̃𝑦 (𝑝) = 𝑞 at the indifference level
as in Sub-Lemma A2.1.(i). Then, since 𝑞𝑎𝑦 (𝑝) is strictly increasing in 𝑝, 𝑝 ≤ 𝑝 must
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hold. Since by definition, 𝑝 = Π(𝑎, 𝑦) and 𝑝 = Π(𝑎̃, 𝑦), 𝑞𝑎𝑦 ≥ 𝑞𝑎̃𝑦 ⇒ Π(𝑎, 𝑦) ≤ Π(𝑎̃, 𝑦)

for any 𝑞𝑎𝑦, 𝑞𝑎̃𝑦 ∈ (0, 1). �

Step 3 Ordering of posterior beliefs: using assumption on 𝜋, we can order the
posterior beliefs:

Sub-Lemma A2.1.1(iii) for any 𝑝,

0 <⏟ ⏞ 
(i)

𝑞10 <⏟ ⏞ 
(ii)

𝑝 <⏟ ⏞ 
(iii)

𝑞11 <⏟ ⏞ 
(iv)

1. (3.17)

and (v) 𝑝 = 𝑞00 = 𝑞01

Proof. By the Bayes’ rule. The posterior beliefs conditional on 𝑎1 = 1 are

𝑞10 (𝑝) =
1

1 + 1−𝑝
𝑝

1−𝜋𝐿

1−𝜋𝐻

; 𝑞11 (𝑝) =
1

1 + 1−𝑝
𝑝

𝜋𝐿

𝜋𝐻

(3.18)

Since 𝜋𝐿 < 𝜋𝐻 , 𝑞10 < 𝑝 < 𝑞10 as in (ii) and (iv). Moreover, by 1 − 𝜋𝐻 > 0, (i)
𝑞10 > 0; by 𝜋𝐿 > 0, (iv) 𝑞11 < 1. Finally, (v) holds because 𝑦1 is uninformative about
𝜃 conditional on 𝑎1 = 0. �

By applying Sub-Lemma A2.1.(iii) to the ordering (3.17) in Sub-Lemma A2.1.(ii),
we can derive the ordering (3.14). The results 0 < Π(1, 1) and Π(1, 0) < 1 hold
by the property of degenerate priors. The following argument shows this for 0 <

Π(1, 1), and an analogous argument applies to Π(1, 0) < 1. First, note that for any
histories 𝑎 and 𝑦, 𝑞𝑎𝑦 (0) = 0. Second, since the threshold 𝑞 > 0 by Assumption A2,
𝑞 = 𝑞𝑎𝑦 (𝑝) > 𝑞𝑎𝑦 (0) = 0. Third, since 𝑞𝑎𝑦 (𝑝) is strictly increasing in 𝑝, 0 < Π(𝑎, 𝑦).
Thus, 0 < Π(1, 1). �

Henceforth, let us denote Π̂1
2 ≡

(︀
Π2 (1, 1) ,Π2 (0, 𝑦)

)︀
and Π̂0

2 ≡
(︀
Π2 (0, 𝑦) ,Π2 (1, 0)

)︀
for notational ease.

Part 2. Self 1’s threshold. given any Self 2’s strategy, Self 1 chooses

𝑎*1 =

⎧⎨⎩1 if 𝑝1 (𝑥1) ≥ Π1

0 if o.w.
,

where Π1 < Π2 (0, 𝑦).

The proof consists of four steps: we begin by setting up the indifference condition,
then we show its monotonicity. We apply the Intermediate Value Theorem to show
the existence and uniqueness of the threshold. Finally, we also note that because
of the informational value, the threshold of effort is lower than those in the second
period without additional information.
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Step 1 : Self 1’s indifference condition:

Sub-Lemma A2.1.2(i) given Self 2’s strategy in Proposition 1, Self 1’s indiffer-
ence condition is given by 𝑑𝑤𝑎 (𝑝1) = 0, where 𝑑𝑤𝑎 (𝑝1) = 𝑤1 (𝑝1)− 𝑤0 (𝑝1) satisfies

𝑑𝑤𝑎 (𝑝1) = 𝑣1 (𝑝1)− 𝑣0 (3.19)

+

∫︁
Π̂1

2

𝜋1 [𝑣1 (𝑞11)− 𝑣0]

+

∫︁
Π̂0

2

(1− 𝜋1) [𝑣0 − 𝑣1 (𝑝2)] ,

where the integral is over Ψ(𝑝2|𝑝1) but abbreviated for notational ease.

Proof. Given Self 2’s strategy, the welfare from choosing 𝑎1 = 0 is

𝑤0 (𝑝1) = 𝑣0 (3.20)

+

∫︁ Π2(0,𝑦)

0

𝑣0 +

∫︁ 1

Π2(0,𝑦)

𝑣1 (𝑝2) ,

since the outcome 𝑦1 will not affect 𝑎2; the welfare from choosing 𝑎1 = 1 is

𝑤1 (𝑝1) = 𝑣1 (𝑝1) (3.21)

+

∫︁ Π2(1,1)

0

𝑣0 +

∫︁ Π2(1,0)

Π2(1,1)

{𝜋1𝑣1 (𝑞11) + (1− 𝜋1) 𝑣0}+
∫︁ 1

Π2(1,0)

𝑣1 (𝑝2)

since the outcome 𝑦1 affects 𝑎2 as it provides information about the productivity type.
By taking the difference, we obtain the indifference condition (3.19). �

Step 2 : Monotonicity of Self 1’s indifference condition:

Sub-Lemma A2.1.2(ii) Self 1’s indifference condition, 𝑑𝑤𝑎 (𝑝1), is strictly in-
creasing in 𝑝1.

Proof. To show monotonicity, let us consider the payoff difference in period 𝑡,
𝑑𝑣𝑡 (𝑝), conditional on the confidence level 𝑝 ∈ (0, 1):

𝑑𝑣 (𝑝) = 𝑑𝑣1 (𝑝) + 𝑑𝑣2 (𝑝) ,
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where

𝑑𝑣1 (𝑝) = 𝑣1 (𝑝)− 𝑣0

𝑑𝑣2 (𝑝) = 𝜋1𝑣𝑎* (𝑞11) + (1− 𝜋1) 𝑣𝑎* (𝑞10)− 𝑣𝑎* (𝑝)

where 𝑎* is the optimal action conditional on the posterior beliefs. Note that by the
Law of Iterated Expectations, 𝑑𝑤𝑎 (𝑝1) =

∫︀ 1

0
𝑑𝑣 (𝑝) 𝑑Ψ(𝑝|𝑝1).

Thus, the derivatives of 𝑑𝑣𝑡 (𝑝) with respect to 𝑝 satisfies, denoted as 𝑑𝑣𝑡′ (𝑝),

𝑑𝑣1′ (𝑝) = 𝜋𝐻 − 𝜋𝐿

𝑑𝑣2′ (𝑝) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for 𝑝 ≤ Π2 (1, 1)

(𝜋𝐻 + 𝜋𝐿 − 𝑐− 𝜋0) (𝜋𝐻 − 𝜋𝐿) for 𝑝 ∈ Π̂1
2

− [1− (𝜋𝐻 + 𝜋𝐿 − 𝑐− 𝜋0)] (𝜋𝐻 − 𝜋𝐿) for 𝑝 ∈ Π̂0
2

0 for 𝑝 > Π2 (1, 0)

Note that the 𝑑𝑣2 (𝑝) is increasing for Π̂1
2 because 𝜋𝐻 − 𝑐 > 0, 𝜋𝐿 − 𝜋0 > 0 but

decreasing for Π̂0
2 because 1−𝜋𝐻 > 0, 𝑐−𝜋𝐿 > 0, 𝜋0 > 0. This inverse V-shape arises

because the value of experimentation is the highest when there is large uncertainty,
that is, when the value of 𝑝 takes an intermediate value. By combining the expressions
of 𝑑𝑣1′ (·) and 𝑑𝑣2′ (·) above,

𝑑𝑣′ (𝑝) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜋𝐻 − 𝜋𝐿 for 𝑝 ≤ Π2 (1, 1)

(1 + 𝜋𝐻 + 𝜋𝐿 − 𝑐− 𝜋0) (𝜋𝐻 − 𝜋𝐿) for 𝑝 ∈ Π̂1
2

(𝜋𝐻 + 𝜋𝐿 − 𝑐− 𝜋0) (𝜋𝐻 − 𝜋𝐿) for 𝑝 ∈ Π̂0
2

𝜋𝐻 − 𝜋𝐿 for 𝑝 > Π2 (1, 0) .

Thus, 𝑑𝑣 (𝑝) is strictly increasing everywhere in 𝑝 ∈ (0, 1). That is, the increase in
𝑡 = 1 dominates the decrease in 𝑡 = 2 in 𝑝 ∈ Π̂0

2. By Lemma A1.2.(ii), if 𝑝′1 >

𝑝′′1,Ψ(𝑝2|𝑝′1) < Ψ(𝑝2|𝑝′′1), and thus, 𝑑𝑤𝑎 (𝑝
′
1) > 𝑑𝑤𝑎 (𝑝

′′
1). That is, 𝑑𝑤𝑎 (𝑝1) is strictly

increasing in 𝑝1 by the FOSD. �

Step 3: Existence and uniqueness of Self 1’s threshold:

First, let us consider the extreme values, where there is no uncertainty over 𝑝2:
when 𝑝 = 0 so that 𝜃 = 𝜃𝐿, 𝑑𝑤𝑎 (0) < 0 because 𝜋0 > 𝜋𝐿 − 𝑐, and when 𝑝 = 1 so that
𝜃 = 𝜃𝐻 , 𝑑𝑤𝑎 (1) > 0 because 𝜋0 < 𝜋𝐻 − 𝑐.

Since 𝑑𝑤𝑎 (𝑝1) is continuous and strictly increasing by Sub-Lemma A2.1.2(ii), and
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lim𝑝1→0 𝑑𝑤𝑎 (𝑝1) < 0 and lim𝑝1→1 𝑑𝑤𝑎 (𝑝1) > 0,there exists a unique threshold Π1 such
that 𝑑𝑤𝑎 (𝑥1) = 0 by the Intermediate Value Theorem.

Step 4: Bounds on Self 1’s threshold:
Note that 𝑑𝑤𝑎

(︀
Π2 (0, 𝑦)

)︀
> 0 since 𝑣1

(︀
Π2 (0, 𝑦)

)︀
= 𝑣0 by definition, and there is

an informational gain gain in the second period. Thus, Π1 < Π2 (0, 𝑦).
�

A2.2 Equilibria under Imperfect Recall over Action (𝑟𝑎 < 1, 𝑟𝜀 = 1).

Proposition 3 suggests that, for 𝑝1 (𝑥1) ∈
[︀
Π1,Π2 (0, 𝑦)

]︀
for some Π1, there are two

strict equilibria. Let 𝑎′2 ∈ {0, 1} denote the Self 2’s “actions” conditional on outcome
𝑦1 and belief 𝑝2 (𝑥2) . Let 𝑎′2 = 1 denote the conditional action in (i) equilibrium with
experimentation, and 𝑎′2 = 0 denote the conditional action in (ii) equilibrium without
experimentation so that {𝑎1, 𝑎′2} = {1, 1} , {0, 0} are the equilibria that correspond
with (i) and (ii) in Proposition 3 respectively.

Proof. The proof compares the welfare under the two equilibria against the welfare
under other sets of actions, {𝑎1, 𝑎′2} = {1, 0} , {1, 0}. Henceforth, let 𝑤̂𝑎1𝑎′2

(𝑝1) denote
the welfare attained with actions {𝑎1, 𝑎′2} given belief 𝑝1.

Step 1 welfare under sets of actions: the welfares under each set of actions are

𝑤̂11 (𝑝1) = 𝑣1 (𝑝1)

+

∫︁ Π2(1,1)

0

𝑣0 +

∫︁ Π2(1,0)

Π2(1,1)

{𝜋1𝑣1 (𝑞11) + (1− 𝜋1) 𝑣0}+
∫︁ 1

Π2(1,0)

𝑣1 (𝑝2)

𝑤̂10 (𝑝1) = 𝑣1 (𝑝1)

+

∫︁ Π2(0,𝑦)

0

𝑣0 +

∫︁ 1

Π2(0,𝑦)

𝑣1 (𝑝2)

𝑤̂01 (𝑝1) = 𝑣0

+

∫︁ Π2(1,1)

0

𝑣0 +

∫︁ Π2(1,0)

Π2(1,1)

{𝜋0𝑣1 (𝑝2) + (1− 𝜋0) 𝑣0}+
∫︁ 1

Π2(1,0)

𝑣1 (𝑝2)

𝑤̂00 (𝑝1) = 𝑣0

+

∫︁ Π2(0,𝑦)

0

𝑣0 +

∫︁ 1

Π2(0,𝑦)

𝑣1 (𝑝2)

Step 2 comparison of welfare: we use the expressions in Step 1 to show the strict
equilibria attain higher welfare than when either Self deviates to another action:

∙ for {𝑎1, 𝑎′2} = {1, 1} to be a strict equilibrium: 𝑤̂11 > 𝑤̂10 and 𝑤̂11 > 𝑤̂01 must
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hold at 𝑝1.

𝑤̂11 (𝑝1)− 𝑤̂10 (𝑝1) =

∫︁
Π̂1

2

𝜋1 [𝑣1 (𝑞11)− 𝑣0] +

∫︁
Π̂0

2

(1− 𝜋1) [𝑣0 − 𝑣1 (𝑝2)]

𝑤̂11 (𝑝1)− 𝑤̂01 (𝑝1) = 𝑣1 (𝑝1)− 𝑣0

+

∫︁
Π̂1

2

{𝜋1 [𝑣1 (𝑞11)− 𝑣0]− 𝜋0 [𝑣1 (𝑝2)− 𝑣0]}

– 𝑤̂11 (𝑝1) > 𝑤̂10 (𝑝1) by the optimality of 𝑎′2 = 1 in each range Π̂1
2 and Π̂0

2.

– 𝑤̂11 (𝑝1) > 𝑤̂01 (𝑝1) requires that 𝑝1 ≥ Π1. To see this, note that the first-
period difference, 𝑣1 (𝑝1) − 𝑣0, is negative. However, there is a gain from
experimentation in the second period since 𝑣1 (𝑞11)−𝑣0 and − [𝑣1 (𝑝2)− 𝑣0]

are positive. When 𝑎′2 = 1, this gain from experimentation is also maxi-
mized.

∙ for {𝑎1, 𝑎′2} = {0, 0} to be a strict equilibrium: 𝑤̂00 > 𝑤̂10 and 𝑤̂00 > 𝑤̂01 must
hold at 𝑝1.

𝑤̂00 (𝑝1)− 𝑤̂10 (𝑝1) = 𝑣0 − 𝑣1 (𝑝1)

𝑤̂00 (𝑝1)− 𝑤̂01 (𝑝1) =

∫︁
Π̂1

2

𝜋0 [𝑣0 − 𝑣1 (𝑝2)] +

∫︁
Π̂0

2

(1− 𝜋0) [𝑣1 (𝑝2)− 𝑣0]

– 𝑤̂00 (𝑝1) > 𝑤̂10 (𝑝1) by 𝑝1 (𝑥1) < Π2 (0, 𝑦).

– 𝑤̂00 (𝑝1) > 𝑤̂01 (𝑝1) because for 𝑝1 (𝑥1) < Π2 (0, 𝑦), 𝑣0 > 𝑣1 (𝑝2); for 𝑝1 (𝑥1) >

Π2 (0, 𝑦), 𝑣0 < 𝑣1 (𝑝2).

�

A3. Fully Imperfect Recalls

To characterize the equilibrium under imperfect recall over both action and informa-
tion, we first derive the expressions of thresholds in Lemma 1. After examining their
properties, we prove the Lemma 1 and other Propositions.
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A3.1 Threshold Formulas

Proposition A3.1.1 Self 1’s Equilibrium Thresholds. Given Self 2’s equilibrium
strategies

{︀
𝜁𝑟𝑧𝑦 (𝑥2)

}︀
𝑧,𝑦

, the Self 1’s indifference condition Π𝑟
1 satisfies

𝑑𝑤𝑎 (Π
𝑟
1) + 𝑑𝑤𝑟

𝑎 (Π
𝑟
1) = 0,

where 𝑑𝑤𝑎 (𝑝1) ≡ 𝑤1 (.)−𝑤0 (.) is defined in Proposition 1 (3.19). 𝑑𝑤𝑟
𝑎 (𝑝1) ≡ 𝑤𝑟

1 (.)−
𝑤𝑟

0 (.) is

𝑑𝑤𝑟
𝑎 (𝑝1) =

∫︁
Π̂1

2

{𝜋1 (1− 𝜆11) [𝑣0 − 𝑣1 (𝑞11)]− 𝜋0𝜆01 [𝑣1 (𝑝2)− 𝑣0]} (3.22)

+

∫︁
Π̂0

2

{(1− 𝜋1)𝜆10 [𝑣1 (𝑞10)− 𝑣0]− (1− 𝜋0) (1− 𝜆00) [𝑣0 − 𝑣1 (𝑝2)]} ,

where, for 𝑎̃ ∈ {0, 1},

𝜆𝑎̃𝑦 (𝑥
𝑟
1, 𝑥2) ≡ E [P (𝑎2 = 1|𝑧, 𝑦, 𝑥2) |𝑥𝑟

1, 𝑎1 = 𝑎̃]

is the expected probability that 𝑎2 = 1 from Self 1’s perspective at 𝑥𝑟
1. Here, {𝑥𝑟

1, 𝑥2}
are

𝑥𝑟
1 =

𝜙1 (Π
𝑟
1)− (1− 𝛼)𝜔0

𝛼
, 𝑥2 =

𝜙2 (𝑝2)− (1− 𝛽)𝜔0

𝛽
(3.23)

where 𝛼 ≡ 𝜎2
𝜔

𝜎2
𝜀+𝜎2

𝜔
and 𝛽 ≡ 2𝜎2

𝜔

𝜎2
𝜀+2𝜎2

𝜔
, by the Lemma A1.1 Conditional Distributions.

𝜆𝑎̃𝑦 (.) satisfy

𝜆𝑎̃0 (.) = 𝑟𝑎Φ

(︂
𝜁𝑟𝑎̃0 − 𝑥𝑟

1

(1− 𝑟𝜀)𝜎𝜀

)︂
+ (1− 𝑟𝑎) Φ

(︂
𝜁𝑟(1−𝑎̃)0 − 𝑥𝑟

1

(1− 𝑟𝜀)𝜎𝜀

)︂
(3.24)

𝜆𝑎̃1 (.) = 𝑟𝑎Φ

(︂
𝑥𝑟
1 − 𝜁𝑟𝑎̃1

(1− 𝑟𝜀)𝜎𝜀

)︂
+ (1− 𝑟𝑎) Φ

(︂
𝑥𝑟
1 − 𝜁𝑟(1−𝑎̃)1

(1− 𝑟𝜀)𝜎𝜀

)︂
. (3.25)

Proof. Under imperfect recall over action, there is a positive chance that Self
2’s choice becomes miscoordinated, deviating from the strict equilibria in Appendix
A2.2. By the additive separability of expected utility, the equilibrium welfare can be
written as

𝑤𝑎 (𝑝1) = 𝑤𝑎 (𝑝1) + 𝑤𝑟
𝑎 (𝑝1) ,

where 𝑤𝑟
𝑎 (𝑥1) < 0 indicates the resulting welfare loss.
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∙ When choosing 𝑎1 = 0, the welfare loss occurs when Self 2 (i) chooses 𝑎2 = 1

instead of 𝑎2 = 0 given 𝑦1 = 1 and 𝑝2 ∈ Π̂1
2, and (ii) chooses 𝑎2 = 0 instead of

𝑎2 = 1 given 𝑦1 = 0 and 𝑝2 ∈ Π̂0
2:

𝑤𝑟
0 (𝑝1) =

∫︁
Π̂1

2

𝜋0𝜆01 [𝑣1 (𝑝2)− 𝑣0]

+

∫︁
Π̂0

2

(1− 𝜋0) (1− 𝜆00) [𝑣0 − 𝑣1 (𝑝2)]

∙ When choosing 𝑎1 = 1, the welfare loss occurs when Self 2 (i) chooses 𝑎2 = 0

instead of 𝑎2 = 1 given 𝑦1 = 1 and 𝑝2 ∈ Π̂1
2, and (ii) chooses 𝑎2 = 1 instead of

𝑎2 = 0 given 𝑦1 = 0 and 𝑝2 ∈ Π̂0
2:

𝑤𝑟
1 (𝑝1) =

∫︁
Π̂1

2

𝜋1 (1− 𝜆11) [𝑣0 − 𝑣1 (𝑞11)]

+

∫︁
Π̂0

2

(1− 𝜋1)𝜆10 [𝑣1 (𝑞10)− 𝑣0]

By taking the difference, we obtain the condition (3.22). Using the distribution of
𝜁 conditional on 𝑥1 and 𝑥2 derived in Lemma A1.1. Conditional Distributions and
using 𝜙𝑡 (𝑝𝑡) as the inverse of 𝑝𝑡 (𝜔𝑡) as in Lemma A1.2. Monotonicity of Interim
Belief, we obtain (3.23), (3.24) and (3.25). �

Proposition A3.1.2. Self 2’s Equilibrium Thresholds. Given Self 1’s equi-
librium strategy, 𝑥𝑟

1, and information, {𝑥2, 𝑦1, 𝑧, 𝜁}, Self 2’s thresholds as defined in
Lemma 1 is

𝜁𝑟𝑧𝑦 (𝑥2) ≡
𝑥𝑟
1 − 𝛾𝑥2 +

√
𝛾𝜎𝜀Φ

−1 (𝑀𝑧𝑦 (𝑝2 (𝑥2)))

1− 𝛾
, (3.26)

where
𝑀𝑧𝑦 (𝑝2) ≡

1

1− 𝑃𝑦

(︁
𝑟𝑎

1−𝑟𝑎

)︁2𝑧−1
𝑞1𝑦−𝑞

𝑝2−𝑞

, (3.27)

and

𝑃1 ≡
𝜋1

𝜋0

, 𝑃0 ≡
1− 𝜋1

1− 𝜋0

(3.28)

and 𝜋1 ≡ 𝑝2𝜋𝐻 + (1− 𝑝2) 𝜋𝐿.

Proof. At the threshold, the indifference condition (3.15) must be satisfied: 𝑞 (𝑥2, 𝜁, 𝑧, 𝑦1) =

𝑞, where 𝑞 is defined in Proposition 1. Defining Self 2’s belief over Self 1’s action it-
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eratively as

𝜇̃ (𝑥2, 𝜁) ≡ P (𝑎1 = 1|𝑥2, 𝜁)

𝜇𝑧𝑦 (𝜇̃) ≡ P (𝑎1 = 1|𝜇̃, 𝑧, 𝑦1) ,

the posterior belief satisfies

𝑞 (𝑥2, 𝜇, 𝑧, 𝑦1) = 𝜇𝑧𝑦 (𝜇̃) 𝑞1𝑦 (𝑝2) + [1− 𝜇𝑧𝑦 (𝜇̃)] 𝑝2. (3.29)

The expression of 𝜇̃ (𝑥2, 𝜁) given distributions will be analized next. The expression
of 𝜇𝑧𝑦 (𝜇̃) satisfies, by the Bayes’ rule,

𝜇𝑧𝑦 (𝜇̃) =
1

1 + 1
𝑃𝑦

(︁
𝑟𝑎

1−𝑟𝑎

)︁1−2𝑧
1−𝜇̃
𝜇̃

. (3.30)

Substituting (3.29) and (3.30) into the indifference conditions (3.15), we can re-
arrange the formula:

𝜇̃
(︀
𝑥2, 𝜁

𝑟
𝑧𝑦

)︀
= 𝑀𝑧𝑦 (𝑝2 (𝑥2)) . (3.31)

Note that since focused on interior of Π̂𝑦
2, 𝑝2 − 𝑞 = 0 or 𝑞1𝑦 − 𝑞 = 0 is ruled out in the

formula (3.27).
By the Self 1’s strategy given in Lemma 1, and by Lemma A1.1. Conditional

Distributions, 𝜇̃ (𝑥2, 𝜁) is given by:

𝜇̃ (𝑥2, 𝜁) = P (𝑥1 ≥ 𝑥𝑟
1|𝑥2, 𝜁)

= 1− Φ

(︂
𝑥𝑟
1 − [𝛾𝑥2 + (1− 𝛾) 𝜁]

√
𝛾𝜎𝜀

)︂
Substituting this into (3.31) and using the symmetry of normal distribution’s cumu-
lative distribution around 0, we obtain (3.26). �

A3.2 Properties of Thresholds

Given the expressions of the thresholds, we first characterize their properties that will
be key inputs into the proof of the Lemma 1 and other Propositions in the main text.

Lemma A3.2.1. Monotonicity with Another Self’s Threshold.

(i) Self 1’s Threshold: when Self 2’s thresholds,
{︀
𝜁𝑟𝑧𝑦 (𝑥2)

}︀
, are raised uniformly,

Self 1’s threshold, 𝑥𝑟
1, also increases.
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(ii) Self 2’s Threshold: when Self 1’s thresholds, 𝑥𝑟
1, is raised, every Self 2’s thresh-

olds,
{︀
𝜁𝑟𝑧𝑦 (𝑥2)

}︀
, increases uniformly.

Proof. By taking the derivatives.

(i) Self 1’s Threshold: let us consider a uniform increase of Self 2’s thresholds by

𝜕
[︀
𝜁𝑟𝑧𝑦 (𝑥2) + Δ

]︀
𝜕Δ

.

We take a uniform change because individual changes will be measure zero for Self 1.
Taking the derivatives from the Self 1’s thresholds as in (3.24) and (3.25),

𝜕𝜆𝑎̃0 (𝑥
𝑟
1)

𝜕Δ
=

1

(1− 𝑟𝜀)𝜎𝜀

[︂
𝑟𝑎𝜑

(︂
𝜁𝑟𝑎̃0 − 𝑥𝑟

1

(1− 𝑟𝜀)𝜎𝜀

)︂
+ (1− 𝑟𝑎)𝜑

(︂
𝜁𝑟(1−𝑎̃)0 − 𝑥𝑟

1

(1− 𝑟𝜀)𝜎𝜀

)︂]︂
> 0 (3.32)

𝜕𝜆𝑎̃1 (𝑥
𝑟
1)

𝜕Δ
=

−1

(1− 𝑟𝜀)𝜎𝜀

[︂
𝑟𝑎𝜑

(︂
𝑥𝑟
1 − 𝜁𝑟𝑎̃1

(1− 𝑟𝜀)𝜎𝜀

)︂
+ (1− 𝑟𝑎)𝜑

(︂
𝑥𝑟
1 − 𝜁𝑟(1−𝑎̃)1

(1− 𝑟𝜀)𝜎𝜀

)︂]︂
< 0.

(3.33)

Thus,

𝜕 [𝑑𝑤𝑟
𝑎 (Π

𝑟
1)]

𝜕Δ
|Δ=0 =

∫︁
Π̂1

2

{︂
−𝜋1

𝜕𝜆11

𝜕Δ
[𝑣0 − 𝑣1 (𝑞11)]− 𝜋0

𝜕𝜆01

𝜕Δ
[𝑣1 (𝑝2)− 𝑣0]

}︂
(3.34)

+

∫︁
Π̂0

2

{︂
(1− 𝜋1)

𝜕𝜆10

𝜕Δ
[𝑣1 (𝑞10)− 𝑣0] + (1− 𝜋0)

𝜕𝜆11

𝜕Δ
[𝑣0 − 𝑣1 (𝑝2)]

}︂

Since the utility differences, (𝑣0 − 𝑣1 (·)), are negative in the domains of Π̂1
2 and Π̂0

2,
combined with (3.32) and (3.33),

𝜕 [𝑑𝑤𝑟
𝑎 (Π

𝑟
1)]

𝜕Δ
< 0.

Since the threshold is defined by 𝑑𝑤𝑎 (Π
𝑟
1) + 𝑑𝑤𝑟

𝑎 (Π
𝑟
1) = 0, and 𝑑𝑤𝑎 (.) is strictly

increasing, this implies 𝜕𝑥𝑟
1

𝜕Δ
> 0. �

(ii) Self 2’s Threshold: given Self 2’s threshold (3.26)

𝜕𝜁𝑟𝑧𝑦 (𝑥2)

𝜕𝑥𝑟
1

=
1

1− 𝛾
=
(︀
1 + (1− 𝑟𝜀)

2)︀ > 0

for every Self 2. �

Lemma A3.2.2. Monotonicity in Prior Belief. combining Self 2’s threshold
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(3.26) in Proposition A3.1.2 into Self 1’s indifference (3.22) in Proposition A3.1.1,

𝜕 [𝑑𝑤𝑟
𝑎 (𝑥

𝑟
1)]

𝜕𝜔0

> 0.

and lim𝜔0→∞ 𝑑𝑤𝑟
𝑎 (𝑥

𝑟
1) > 0 and lim𝜔0→−∞ 𝑑𝑤𝑟

𝑎 (𝑥
𝑟
1) < 0.

Proof. The proof takes three steps: first, we substitute the indifference conditions
to express the condition in terms of the prior belief; then, we take its derivative and
consider its limit.

Step 1 substitution. when substituting Self 2’s threshold to Self 1’s indifference,

𝜁𝑟𝑧𝑦 − 𝑥𝑟
1

(1− 𝑟𝜀)𝜎𝜀

=
𝛾 (𝑥𝑟

1 − 𝑥2) +
√
𝛾𝜎𝜀Φ

−1 (𝑀𝑧𝑦 (𝑝2 (𝑥2)))

(1− 𝛾) (1− 𝑟𝜀)𝜎𝜀

Note that,

𝑥𝑟
1 − 𝑥2 =

𝜙1 (Π
𝑟
1)

𝛼
− 𝜙2 (𝑝2)

𝛽
− 𝜎2

𝜀

2𝜎2
𝜔

𝜔0 (3.35)

because 1
𝛼
− 1

𝛽
= 𝜎2

𝜀

2𝜎2
𝜔
. Therefore,

𝜁𝑟𝑧𝑦 − 𝑥𝑟
1

(1− 𝑟𝜀)𝜎𝜀

= −(1− 𝑟𝜀)𝜎𝜀

2𝜎2
𝜔

𝜔0+
1− 𝑟𝜀
𝜎𝜀

(︂
𝜙1 (Π

𝑟
1)

𝛼
− 𝜙2 (𝑝2)

𝛽

)︂
+
Φ−1 (𝑀𝑧𝑦 (𝑥2))

1− 𝛾
(3.36)

Step 2 derivative in threshold formula. For the strategic implications, we can use
(3.36) and

𝜕𝜆𝑎̃0 (·|𝜔0)

𝜕𝜔0

=
(1− 𝑟𝜀)𝜎𝜀

2𝜎2
𝜔

[︂
𝑟𝑎𝜑

(︂
𝜁𝑟𝑎̃0 − 𝑥𝑟

1

(1− 𝑟𝜀)𝜎𝜀

)︂
+ (1− 𝑟𝑎)𝜑

(︂
𝜁𝑟(1−𝑎̃)0 − 𝑥𝑟

1

(1− 𝑟𝜀)𝜎𝜀

)︂]︂
< 0

(3.37)

𝜕𝜆𝑎̃1 (·|𝜔0)

𝜕𝜔0

= −(1− 𝑟𝜀)𝜎𝜀

2𝜎2
𝜔

[︂
𝑟𝑎𝜑

(︂
𝑥𝑟
1 − 𝜁𝑟𝑎̃1

(1− 𝑟𝜀)𝜎𝜀

)︂
+ (1− 𝑟𝑎)𝜑

(︂
𝑥𝑟
1 − 𝜁𝑟(1−𝑎̃)1

(1− 𝑟𝜀)𝜎𝜀

)︂]︂
> 0.

(3.38)
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Thus,

𝜕 [𝑑𝑤𝑟
𝑎 (Π

𝑟
1)]

𝜕𝜔0

=

∫︁
Π̂1

2

{︂
−𝜋1

𝜕𝜆11

𝜕𝜔0

[𝑣0 − 𝑣1 (𝑞11)]− 𝜋0
𝜕𝜆01

𝜕𝜔0

[𝑣1 (𝑝2)− 𝑣0]

}︂
(3.39)

+

∫︁
Π̂0

2

{︂
(1− 𝜋1)

𝜕𝜆10

𝜕𝜔0

[𝑣1 (𝑞10)− 𝑣0] + (1− 𝜋0)
𝜕𝜆11

𝜕𝜔0

[𝑣0 − 𝑣1 (𝑝2)]

}︂
Since the utility differences are negative in the domain, combined with (3.37) and
(3.38),

𝜕 [𝑑𝑤𝑟
𝑎 (𝑥

𝑟
1)]

𝜕𝜔0

> 0.

so long as (1−𝑟𝜀)𝜎𝜀

2𝜎2
𝜔

̸= 0. Note that the distributions remain unchanged because the
indifference condition keeps 𝑝1 and 𝑝2 constant.

Step 3 Limit. Since 𝜁𝑟𝑧𝑦−𝑥𝑟
1

(1−𝑟𝜀)𝜎𝜀
is decreasing linearly in 𝜔0, lim𝜔0→∞

𝜁𝑟𝑧𝑦−𝑥𝑟
1

(1−𝑟𝜀)𝜎𝜀
= −∞

and lim𝜔0→−∞
𝜁𝑟𝑧𝑦−𝑥𝑟

1

(1−𝑟𝜀)𝜎𝜀
= ∞. By the indifference condition, lim𝜔0→∞ 𝜆𝑎̃0 (·|𝜔0) = 1 and

lim𝜔0→∞ 𝜆𝑎̃1 (·|𝜔0) = 0. Thus, lim𝜔0→∞ 𝑑𝑤𝑟
𝑎 (Π

𝑟
1) > 0. Analogously, lim𝜔0→−∞ 𝑑𝑤𝑟

𝑎 (Π
𝑟
1) <

0. �

Lemma A3.2.3. Limit of Almost Perfect Recall over Information (𝑟𝜀 →
1). For all parameters,

lim
𝑟𝜀→1

𝑑𝑤𝑟
𝑎 (𝑝1) = 0

Proof. By combining Self 1 and Self 2’s indifference conditions. By (3.22), (3.24)
and (3.25), this condition is equivalent to the following two conditions satisfied simul-
taneously:

𝜋0

𝜋1

𝜆01

1− 𝜆11

= −𝑣1 (𝑞11)− 𝑣0
𝑣1 (𝑝2)− 𝑣0

for 𝑝2 ∈ Π̂1
2

1− 𝜋1

1− 𝜋0

𝜆10

1− 𝜆00

= − 𝑣1 (𝑝2)− 𝑣0
𝑣1 (𝑞10)− 𝑣0

for 𝑝2 ∈ Π̂0
2

Now we show that the left-hand sides (LHSs) and the right-hand sides (RHSs) of
these two formula will be equal.

LHS. Let us combine the Self 1 and Self 2’s conditions: since

𝜁𝑟𝑧𝑦 − 𝑥𝑟
1

(1− 𝑟𝜀)𝜎𝜀

=
1− 𝑟𝜀
𝜎𝜀

(𝑥𝑟
1 − 𝑥2) +

(︀
1 + (1− 𝑟𝜀)

2)︀Φ−1 (𝑀𝑧𝑦 (𝑝2 (𝑥2)))
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in equilibrium, for any {𝑥𝑟
1, 𝑥2},

lim
𝑟𝜀→1

𝜁𝑟𝑧𝑦 − 𝑥𝑟
1

(1− 𝑟𝜀)𝜎𝜀

= Φ−1 (𝑀𝑧𝑦 (𝑝2 (𝑥2))) .

Since Φ (Φ−1 (𝑀)) = 𝑀 and by continuity of normal distributions, we can plug in
the limit:

lim
𝑟𝜀→1

𝜆𝑎0 (𝑥2) = 𝑟𝑎𝑀𝑎0 + (1− 𝑟𝑎)𝑀(1−𝑎)0

lim
𝑟𝜀→1

𝜆𝑎1 (𝑥2) = 𝑟𝑎 (1−𝑀𝑎0) + (1− 𝑟𝑎)
(︀
1−𝑀(1−𝑎)0

)︀
where 𝑀𝑧𝑦 depends on 𝑝2 (𝑥2). Note that, by the domain restrictions 𝑝2 ∈ Π̂𝑦

2, {𝑀𝑧𝑦}
exists.

Substituting the formula of 𝑀𝑧𝑦 in (3.27),

𝜆01 = 𝑟𝑎 (1− 𝑟𝑎) 𝜋1 (𝑞11 − 𝑞)𝐷1

1− 𝜆11 = −𝑟𝑎 (1− 𝑟𝑎) 𝜋0 (𝑝2 − 𝑞)𝐷1

𝜆10 = 𝑟𝑎 (1− 𝑟𝑎) (1− 𝜋0) (𝑝2 − 𝑞)𝐷0

1− 𝜆00 = −𝑟𝑎 (1− 𝑟𝑎) (1− 𝜋1) (𝑞10 − 𝑞)𝐷0,

where

𝐷1 ≡
1

(1− 𝑟𝑎)𝜋0 (𝑝2 − 𝑞)− 𝑟𝑎𝜋1 (𝑞11 − 𝑞)
+

1

𝑟𝑎𝜋0 (𝑝2 − 𝑞)− (1− 𝑟𝑎) 𝜋1 (𝑞11 − 𝑞)

𝐷0 ≡
1

(1− 𝑟𝑎) (1− 𝜋0) (𝑝2 − 𝑞)− 𝑟𝑎 (1− 𝜋1) (𝑞10 − 𝑞)

+
1

𝑟𝑎 (1− 𝜋0) (𝑝2 − 𝑞)− (1− 𝑟𝑎) (1− 𝜋1) (𝑞10 − 𝑞)

Therefore, the LHS of the conditions can be written as:

𝜋0

𝜋1

𝜆01

1− 𝜆11

= −𝑞11 − 𝑞

𝑝2 − 𝑞
for 𝑝2 ∈ Π̂1

2

1− 𝜋1

1− 𝜋0

𝜆10

1− 𝜆00

= − 𝑝2 − 𝑞

𝑞10 − 𝑞
for 𝑝2 ∈ Π̂0

2

RHS. By the definition of 𝑞 in (3.15), 𝑣1 (𝑝) − 𝑣0 = (𝜋𝐻 − 𝜋𝐿) (𝑝− 𝑞) for any 𝑝.
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Therefore, the RHS of the conditions can be written as:

−𝑣1 (𝑞11)− 𝑣0
𝑣1 (𝑝2)− 𝑣0

= −𝑞11 − 𝑞

𝑝2 − 𝑞
for 𝑝2 ∈ Π̂1

2

− 𝑣1 (𝑝2)− 𝑣0
𝑣1 (𝑞10)− 𝑣0

= − 𝑝2 − 𝑞

𝑞10 − 𝑞
for 𝑝2 ∈ Π̂0

2

Thus, the LHS and RHS equal for all parameters. �

A3.3 Proof of Lemmas and Propositions

Here, we provide the proofs of the Lemma 1 and Propositions 2.1 and 2.2 by employing
the propoerties of indifference conditions so far derived.

Lemma 1. Equilibrium Thresholds under Imperfect Recall over Action
and Information (𝑟𝑎 < 1, 𝑟𝜀 < 1). Lemma 1 states that, for sufficiently precise
signal 𝜁, the unique equilibrium will take a threshold form, and the threshold depends
on the recall parameters and the prior.

Proof of Lemma 1. The proof consists of two steps: first, we show that every
rationalizable strategies must be bounded by highest and lowest strategies. Second,
we show that these bounds must coincide so long as the signal, 𝜁, is sufficiently
precise. This is a multi-dimensional version of the uniqueness proof in Carlsson and
van Damme (1993). The argument is adopted from Morris and Shin (2001)

Sub-Lemma. A3.3(i) Bounds on Rationalizable Strategies by Thresh-
olds. By the Definition 1of equilibrium, let the strategies of Self 1 and Self 2 be
denoted by

𝑠1 (𝑥1) = P (𝑎1 = 1|𝑥1)

𝑠2 (𝜁|𝑧, 𝑦1, 𝑥2) = P (𝑎2 = 1|𝜁, 𝑧, 𝑦1, 𝑥2) .

All rationalizable strategies must satisfy, for some thresholds
{︀
𝜒*, 𝜒*}︀ of Self 1 and{︁

𝜂*𝑧𝑦 (𝑥2) , 𝜂
*
𝑧𝑦 (𝑥2)

}︁
of Self 2, the following:

∙ Self 1’s strategy:

𝑠1 (𝑥1) =

⎧⎨⎩1 if 𝑥1 > 𝜒*

0 if 𝑥1 < 𝜒*
(3.40)

∙ Self 2’s strategy:
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– 𝑦1 = 1, for each 𝑧, for 𝑝2 (𝑥2) ∈ Π̂1
2

𝑠2 (𝜁, 𝑥2) =

⎧⎨⎩1 if 𝜁 > 𝜂*𝑧1 (𝑥2)

0 if 𝜁 < 𝜂*𝑧1 (𝑥2)
(3.41)

and for 𝑝2 (𝑥2) ̸= Π̂1
2

𝑠2 (𝜁, 𝑥2) =

⎧⎨⎩1 if 𝑝2 (𝑥2) ≥ Π2 (0, 𝑦)

0 if 𝑝2 (𝑥2) ≤ Π2 (1, 1)
(3.42)

– 𝑦1 = 0, for each 𝑧, for 𝑝2 (𝑥2) ∈ Π̂0
2

𝑠2 (𝜁, 𝑥2) =

⎧⎨⎩0 if 𝜁 > 𝜂*𝑧0 (𝑥2)

1 if 𝜁 < 𝜂*𝑧0 (𝑥2)
(3.43)

and for 𝑝2 (𝑥2) ̸= Π̂1
2

𝑠2 (𝜁, 𝑥2) =

⎧⎨⎩1 if 𝑝2 (𝑥2) ≥ Π2 (1, 0)

0 if 𝑝2 (𝑥2) ≤ Π2 (0, 𝑦)
(3.44)

Note that 𝜒* ≤ 𝜒* and 𝜂*𝑧𝑦 (𝑥2) ≤ 𝜂*𝑧𝑦 (𝑥2) for both 𝑦 ∈ {0, 1}.
Proof. By the iterative elimination of strictly dominated strategies with contagion

from the “dominance regions” of Self 2. Henceforth, let
{︀
𝜒𝑛, 𝜒𝑛

}︀
and

{︁
𝜂𝑛𝑧𝑦 (𝑥2) , 𝜂

𝑛
𝑧𝑦 (𝑥2)

}︁
denote the thresholds for strategies that have survived the 𝑛th stage of elimination.
The proof consists of four steps: first, we consider Stage 1 elimination of Self 1 and 2
that generate infinite values of the thresholds; second, we observe that their thresh-
olds take finite values in Stage 2; third, we observe that the sequences of thresholds
are monotone, and thus, can apply the Mathematical Induction; finally, we apply the
Monotone Convergence Theorem.

Step 1. elimination in Stage 1. Let us consider Self 2’s rationalizable strategies in
the initial stage.

∙ Highest strategy: Suppose 𝑠1 (𝑥1) = 0 for all 𝑥1. Then,

𝑠2 (𝜁, 𝑥2) =

⎧⎨⎩1 if 𝑝2 (𝑥2) ≥ Π2 (0, 𝑦)

0 if o.w.
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∙ Lowest strategy: Suppose 𝑠1 (𝑥1) = 1 for all 𝑥1. Then,

𝑠2 (𝜁, 𝑥2) =

⎧⎨⎩1 if 𝑦1 = 1 and 𝑝2 (𝑥2) ≥ Π2 (1, 1)

0 if 𝑦1 = 0 and 𝑝2 (𝑥2) ≥ Π2 (1, 0)

Thus, the strategies other than the following are eliminated in this initial stage, for
any 𝑥2 and 𝑧:

𝑠2 (𝜁, 𝑥2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 when 𝑦1 = 1 and 𝑝2 (𝑥2) ≥ Π2 (0, 𝑦) ,

or when 𝑦1 = 0 and 𝑝2 (𝑥2) ≤ Π2 (0, 𝑦)

0 when 𝑦1 = 1 and 𝑝2 (𝑥2) ≤ Π2 (1, 1)

or when 𝑦1 = 0 and 𝑝2 (𝑥2) ≥ Π2 (1, 0)

This proves (3.42) and (3.44) of the Lemma. In the notations of thresholds,

𝜒1 = −∞, 𝜒1 = ∞.

When 𝑦1 = 1, for each 𝑧, for 𝑝2 (𝑥2) ∈ Π̂1
2,

𝜂1𝑧1 (𝑥2) = −∞, 𝜂1𝑧1 (𝑥2) = ∞;

When 𝑦1 = 0, for each 𝑧, for 𝑝2 (𝑥2) ∈ Π̂0
2,

𝜂1𝑧0 (𝑥2) = −∞, 𝜂1𝑧0 (𝑥2) = ∞.

Note that for this Stage, Self 1’s strategy does not depend on 𝑥1 and Self 2’s strategies
do not depend on 𝜁.

Step 2. elimination in Stage 2. Let us consider Self 1’s response to Self 2’s
elimination in Stage 1.

∙ Highest strategy: since Self 2 is never responsive to 𝑦1, there is no informational
gain from experimentation. Thus, the resulting threshold is equivalent to the
myopic threshold:

𝑠1 (𝑥1) =

⎧⎨⎩1 if 𝑝1 (𝑥1) ≥ Π2 (0, 𝑦)

0 if o.w.

Thus, 𝜒2 = 𝜙1

(︀
Π2 (0, 𝑦)

)︀
.
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∙ Lowest strategy: since Self 2 is maximally responsive to 𝑦1, and Self 1 shares
the common interest with Self 2, there is a maximal informational gain from
experimentation. By Proposition 3 proven in A2.2, the resulting threshold
corresponds to Π1:

𝑠1 (𝑥1) =

⎧⎨⎩1 if 𝑝1 (𝑥1) ≥ Π1

0 if o.w.

Thus, 𝜒2 = 𝜙1

(︀
Π1

)︀
.

Together, these show
𝜒2 < 𝜒2. (3.45)

Let us in turn consider Self 2’s response to Self 1’s elimination in Stage 2. The
thresholds are determined by the Self 2’s indifference condition (3.26).

∙ When 𝑦1 = 1, for each 𝑧, for 𝑝2 (𝑥2) ∈ Π̂1
2

𝑠2 (𝜁, 𝑥2) =

⎧⎨⎩1 if 𝑥2 ≥ 𝜂1𝑧1 (𝑥2)

0 if o.w.

and the highest and lowest thresholds satisfy 𝜂2𝑧1 (𝑥2) > 𝜂2𝑧1 (𝑥2) by (3.45).

∙ When 𝑦1 = 0, for each 𝑧, for 𝑝2 (𝑥2) ∈ Π̂0
2

𝑠2 (𝜁, 𝑥2) =

⎧⎨⎩1 if 𝑥2 ≤ 𝜂1𝑧0 (𝑥2)

0 if o.w.

and the highest and lowest thresholds satisfy 𝜂2𝑧0 (𝑥2) > 𝜂2𝑧0 (𝑥2) by (3.45).

Step 3. elimination in Stage 3 and Mathematical Induction.
Let us now consider Self 1’s response to Self 2’s elimination in Stage 2.

∙ Highest strategy: since Self 2 may be responsive to 𝑦1, there is some informa-
tional gain from experimentation. By applying the indifference condition (3.22),
the resulting threshold is lower than the myopic threshold: 𝜒3 < 𝜒2.

∙ Lowest strategy: since Self 2 may be less responsive to 𝑦1 than in Stage 1, the in-
formational gain from experimentation is reduced. By applying the indifference
condition (3.22), the resulting threshold is higher than the myopic threshold:
𝜒3 > 𝜒2.
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By Lemma A3.2.1. Monotonicity with Another Self’s Threshold, the following order-
ing holds for any 𝑛:

(i) if 𝜒𝑛−1 < 𝜒𝑛, 𝜂𝑛𝑧𝑦 (𝑥2) = 𝜂𝑛−1
𝑧𝑦 (𝑥2) + Δ for some Δ for all {𝑧, 𝑦, 𝑥2}

(ii) if 𝜂𝑛𝑧𝑦 (𝑥2) = 𝜂𝑛−1
𝑧𝑦 (𝑥2) + Δ for all {𝑧, 𝑦, 𝑥2}, 𝜒𝑛 < 𝜒𝑛+1.

By (i) and (ii) and the Mathematical Induction, 𝜒𝑛 is a decreasing sequence since
𝜒3 < 𝜒2, and 𝜒𝑛 is an increasing sequence since 𝜒3 > 𝜒2. Analogously, 𝜂𝑛𝑧𝑦 (𝑥2) is
decreasing and 𝜂𝑛𝑧𝑦 (𝑥2) is increasing in 𝑛.

Step 4. Monotone Convergence Theorem. Note that 𝜒𝑛 is bounded below by 𝜒1

and 𝜒𝑛 is bounded above by 𝜒1. Thus, by the Monotone Convergence Theorem, the
sequence of highest and lowest strategies must converge as 𝑛 → ∞:

{︀
𝜒𝑛, 𝜒𝑛

}︀
→{︀

𝜒*, 𝜒*}︀ and
{︁
𝜂𝑛𝑧𝑦 (𝑥2) , 𝜂

𝑛
𝑧𝑦 (𝑥2)

}︁
→
{︁
𝜂*𝑧𝑦 (𝑥2) , 𝜂

*
𝑧𝑦 (𝑥2)

}︁
. By construction, both at

the highest and lowest sets of strategies,
{︀
𝜒*, 𝜂*𝑧𝑦 (𝑥2)

}︀
and

{︁
𝜒*, 𝜂*𝑧𝑦 (𝑥2)

}︁
, the indif-

ference conditions of Self 1 (3.22) and Self 2 (3.26) are satisfied. �

Lemma. A3.3.(ii) Uniqueness of Threshold-form Strategies given 𝑟𝜀 ≥
𝑟𝜀. There exists 𝑟𝜀 < 1 such that for 𝑟𝜀 ≥ 𝑟𝜀, there is a unique value of 𝑝1 that
satisfies the indifference conditions of Self 1 (3.22) and Self 2 (3.26).

Proof. The indifference condition is satisfied when

𝑑𝑤𝑎 (𝑝1) + 𝑑𝑤𝑟
𝑎 (𝑝1) = 0

Note that both 𝑑𝑤𝑎 (·) and 𝑑𝑤𝑟
𝑎 (·) are continuous and differentiable in 𝑝1. Moreover,

𝑑𝑤𝑎 (·) is strictly increasing, and

𝑑𝑤𝑎 (0) + 𝑑𝑤𝑟
𝑎 (0) = 𝑑𝑤𝑎 (0) < 0

𝑑𝑤𝑎 (1) + 𝑑𝑤𝑟
𝑎 (1) = 𝑑𝑤𝑎 (1) > 0

since there is no strategic uncertainty at 𝑝1 ∈ {0, 1}. Thus, by the Intermediate Value
Theorem, there is a unique solution if the derivative

𝑑𝑤′
𝑎 (𝑝1) + 𝑑𝑤𝑟′

𝑎 (𝑝1) > 0

for all 𝑝1.
By the Lemma A3.2.3, lim𝑟𝜀→1 𝑑𝑤

𝑟
𝑎 (𝑝1) = 0. Thus, lim𝑟𝜀→1 𝑑𝑤

𝑟′
𝑎 (𝑝1) = 0. By

continuity with respect to 𝑟𝜀, there exists 𝑟𝜀 < 1 such that for 𝑟𝜀 ≥ 𝑟𝜀, 𝑑𝑤𝑟′
𝑎 (𝑝1) >

−𝑑𝑤′
𝑎 (𝑝1) evaluated at all 𝑝1. Therefore, for 𝑟𝜀 ≥ 𝑟𝜀, the indifference condition is

satisfied at the unique value of 𝑝1. �
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Since all rationalizable strategies must be bounded by the highest and lowest
thresholds, and a threshold form strategy is unique if 𝑟𝜀 ≥ 𝑟𝜀 for some 𝑟𝜀 < 1, there
is a unique rationalizable set of strategies that constitute the unique equilibrium. �

Proposition 2.1. Equilibrium with Bias to Conform to Prior Beliefs
under Imperfect Recall over Action and Information(𝑟𝑎 < 1, 𝑟𝜀 < 1). Propo-
sition 2.1. shows that there is a unique prior level, 𝜔*

0, such that the equilibrium
threshold coincides with the threshold under perfect recall over action: Π𝑟

1 (𝜔
*
0) = Π1.

moreover, the threshold is decreasing in the prior: 𝜕Π𝑟
1(𝜔0)

𝜕𝜔0
< 0. This effect arises

because of the change in distribution of 𝜇.
Proof of Proposition 2.1. By Proposition 1, given the model parameters of {𝜋·, 𝑐, 𝜎·},

there exists a unique threshold Π1 such that 𝑑𝑤𝑎

(︀
Π1

)︀
= 0. Let us call 𝜔*

1 a mean
interim belief that satisfies 𝜔*

1 = 𝜙1

(︀
Π1

)︀
.

By Lemma A3.2.2. Monotonicity and the Intermediate Value Theorem, there
exists a unique 𝜔*

0 such that 𝑑𝑤𝑟
𝑎 (𝜔

*
0) = 0 with the implied 𝑥𝑟

1 =
1
𝛼
[𝜔*

1 − (1− 𝛼)𝜔0].
Given 𝜔*

0, at the threshold 𝑥𝑟
1, both 𝑑𝑤𝑎 (𝑝1) = 0 and 𝑑𝑤𝑟

𝑎 (𝑝1) = 0. Thus, such unique
level of prior exists by construction.

Since the threshold is defined by 𝑑𝑤𝑎 (𝑝1 (𝑥
𝑟
1))+𝑑𝑤𝑟

𝑎 (𝑝1 (𝑥
𝑟
1)) = 0, and 𝑑𝑤𝑎 (𝑝1 (𝑥

𝑟
1))

is strictly increasing, the lemma also implies 𝜕Π𝑟
1(𝜔0)

𝜕𝜔0
< 0. �

∙ the change in distribution of 𝜇 remains to be proven.

Proposition 2.2. Role of Reflection over Information. Proposition 2.2 states
that when 𝑟𝜀 → 1, the bias is eliminated because E𝜇 = 1

2
.

Proof. a sufficient condition that guarantees the optimality for any parameters is
𝑑𝑤𝑟

𝑎 (𝑝1) = 0 for all 𝑝1. By the Lemma A3.2.3, lim𝑟𝜀→1 𝑑𝑤
𝑟
𝑎 (𝑝1) = 0 for any model

parameters. Since 𝑑𝑤𝑎 (𝑝1) is independent of 𝑟𝜀, this ensures optimality in the limit
at all values of 𝑝1, including Π1: 𝑑𝑤𝑎

(︀
Π1

)︀
= 0. �
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