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Abstract 

 

This dissertation studies models of economic behavior under uncertainty. 

In the first chapter, I show that the additive representation of preferences over 

menus of lotteries proven by (Dekel, Lipman and Rustichini 2001) is consistent with 

any preference relation among the deterministic alternatives in their model, 

formally demonstrating that the use of the lottery framework imposes no constraints 

on finite choice behavior. The result also yields an additive representation which 

relaxes the two substantive axioms in (Kreps 1979) flexibility representation 

theorem. 

The second chapter studies systems of (incomplete) preferences over lotteries and 

the conditions under which these preferences are simultaneously consistent with a 

single expected utility representation, a coherence property called “expected utility 

rationalizability”. In particular, I consider preferences which only compare lotteries 

involving a subset of the set of all possible prizes. The main result is a full 

characterization of expected utility rationalizability in terms of the utility indexes 

locally representing the incomplete preferences. Moreover, I identify a class of 

systems for which weaker conditions are sufficient. I apply the analysis to develop a 

revealed preference theory under risk and to extend the model of (Anscombe and 

Aumann 1963) to cases in which the set of available prizes varies with the state. 
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The third and final chapter studies the dynamic problem of a monopolistic seller who 

suddenly finds the dominant market position of her product challenged by the 

appearance of a new substitute of uncertain value for her customers. I study optimal 

pricing when facing a continuum of small consumers who continuously learn about 

their specific valuation as they try out the new product. For the case of two market 

segments and binary valuations, I construct Markov perfect equilibria with and 

without price discrimination. With price discrimination the equilibrium is efficient 

in the sense that consumers switch products at the socially optimal point. Without 

price discrimination consumers experiment too much and dynamic inefficiencies 

arise. However, the asymptotic outcomes are almost surely efficient which means 

that the distortionary effects of market power in this model are at most temporary. 
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Chapter 1.  

Additive Representation for Preferences over 

Menus in Finite Choice Settings 

 

1.1. Introduction 

In a seminal contribution, (Kreps 1979) introduced preferences over menus and 

obtained an additive representation theorem that rationalizes preference for 

flexibility as subjective uncertainty over future tastes. More than two decades later, 

(Gul and Pesendorfer 2001) work on temptation and self-control and (Dekel, Lipman 

and Rustichini 2001) generalization of Kreps’ original model started a prolific 

literature on dynamic choice including phenomena such as contemplation costs 

(Ergin and Sarver 2010), guilt (Dillenberger and Sadowski 2012), perfectionism 

(Kopylov 2012), regret (Sarver 2008) and thinking aversion (Ortoleva 2009). 

While (Kreps 1979) studies a finite choice setting in which a decision maker (DM) 

first chooses a menu with deterministic alternatives and then selects one of the 

alternatives contained in that menu, (Dekel, Lipman and Rustichini 2001) (DLR) 

and (Gul and Pesendorfer 2001) obtain their representations by introducing lotteries 

(i.e. probability distributions over the alternatives) and considering preferences over 

menus of those lotteries. However, as noted by (Olszewski 2011), most of the 

examples (if not all) in this literature refer to finite choice situations in which 

lotteries play no essential role.  
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With this observation in mind, this chapter investigates how the DLR axioms 

constrain finite choice behavior. The main result is that every preference over menus 

of finitely many deterministic alternatives is consistent with the DLR 

representation, which means that no constraint is actually imposed. The result also 

implies a generalization of Kreps’ flexibility representation theorem which relaxes 

his two substantive axioms. 

 

1.2. Model and Main Result 

Let 𝑋 be a non-empty finite set, define 𝒜 to be the set of all non-empty subsets of 𝑋 

and let ≿ be a generic binary relation on 𝒜 (with ≻ and ∼ standing for its 

asymmetric and symmetric parts, respectively). (Kreps 1979) uses this simple 

setting to represent a DM that faces a two-stage decision process. In the first stage, 

she chooses a menu 𝐴𝐴 ∈ 𝒜. In the second stage, she chooses an alternative 𝑥𝑥 ∈ 𝐴𝐴 

from the previously chosen menu.  

The DMs in Kreps’ model choose among finitely many deterministic alternatives. In 

contrast, DLR use a richer setting in which the DM chooses menus of lotteries. 

Formally, let Δ(𝑋) be the set of probability measures on 𝑋 (lotteries) endowed with 

the Euclidean topology. Let 𝒜∗ be the set of closed (hence compact) subsets of Δ(𝑋) 

and let ≿∗ be a generic binary relation on 𝒜∗ (with ≻∗ and ∼∗ standing for its 

asymmetric and symmetric parts, respectively). 

For any deterministic alternative 𝑥𝑥 ∈ 𝑋, denote by 𝛿𝑥 ∈ Δ(𝑋) the degenerate lottery 

that assigns probability 1 to 𝑥𝑥. For any menu of deterministic alternatives 𝐴𝐴 ∈ 𝒜, 

define the lottery menu 𝛿(𝐴𝐴) ≔ {𝛿𝑥|𝑥𝑥 ∈ 𝐴𝐴}. The binary relation ≿∗ over 𝒜∗ is said to 
2 

 



be an extension of the binary relation ≿ over 𝒜 if 𝐴𝐴 ∼ 𝐵𝐵 implies 𝛿(𝐴𝐴) ∼∗ 𝛿(𝐵𝐵) and 

𝐴𝐴 ≻ 𝐵𝐵 implies 𝛿(𝐴𝐴) ≻∗ 𝛿(𝐵𝐵). The binary relation ≿ (resp. ≿∗) is said to be represented 

by 𝑈 ∈ ℝ𝒜 (resp. 𝑈∗ ∈ ℝ𝒜∗) if 𝑥𝑥 ≿ 𝑦𝑦 ⟺ 𝑈(𝑥𝑥) ≥ 𝑈(𝑦𝑦) (resp. 𝑒𝑒 ≿∗ 𝑞 ⟺ 𝑈∗(𝑒𝑒) ≥ 𝑈∗(𝑞)). ≿ 

is called a preference if it is complete and transitive. The binary relation ≿∗ is said to 

be a DLR preference if there are finite sets 𝑆𝑆1, 𝑆𝑆2 and a function 𝑢 ∈ ℝ𝑋×(𝑆1∪𝑆2) such 

that the function 𝑈∗ ∈ ℝ𝒜∗ defined by 

𝑈∗(𝐴𝐴∗) ≔ � max
𝑝∈𝐴𝐴∗

��𝑢(𝑥𝑥, 𝑒𝑒)𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

�
𝑠∈𝑆1

− � max
𝑝∈𝐴𝐴∗

��𝑢(𝑥𝑥, 𝑒𝑒)𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

�
𝑠∈𝑆2

 

for each 𝐴𝐴∗ ∈ 𝒜∗ represents ≿∗. Every DLR preference over 𝒜∗ induces a preference 

over 𝒜 by associating each deterministic alternative with the corresponding 

degenerate lottery. Somewhat more surprisingly, the converse is also true: 

 

Proposition 1.1. Every preference on 𝒜 can be extended to a DLR preference on 𝒜∗. 

 

Note that, whenever ≿∗ is an extension of a preference ≿ on 𝒜, both ≿∗ and ≿ imply 

the same choice behavior among menus of deterministic alternatives (as it follows 

that 𝐴𝐴 ≿ 𝐵𝐵 if and only if 𝛿(𝐴𝐴) ≿∗ 𝛿(𝐵𝐵) for all 𝐴𝐴,𝐵𝐵 ∈ 𝒜).  

Note also that Proposition 1.1 makes no claim of uniqueness. This is to be expected 

since, as observed by DLR among others, it is not possible to identify the states in 

Kreps’ representation result. In the context of Proposition 1.1, this lack of 

identification entails the generic existence of multiple DLR extensions of the same 

deterministic preference. 
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 It should be stressed that, while lack of uniqueness might decrease the appeal of 

using the finite setting for modeling behavior, the central message of this chapter is 

not to argue in favor of doing so, but rather to formally demonstrate the lack of finite 

choice implications of assuming the DLR axioms in the lottery setting. 

 

1.3. Relation to the Literature 

(Kreps 1979) proved that a preference relation ≿ on 𝒜 can be represented by 

𝑈(𝐴𝐴) = �max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆

 

if and only if ≿ satisfies set monotonicity ( 𝐴𝐴 ⊇ 𝐵𝐵 implies 𝐴𝐴 ≿ 𝐵𝐵) and ordinal 

submodularity (𝐴𝐴 ∼ 𝐴𝐴 ∪ 𝐵𝐵 implies 𝐴𝐴 ∪ 𝐶𝐶 ∼ 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶). Proposition 1.1 implies the 

following extension of Kreps’ result: 

 

Corollary 1.1. Every preference on 𝒜 can be represented by some 𝑈 ∈ ℝ𝒜 satisfying: 

𝑈(𝐴𝐴) = � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆1

− � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆2

 

for some finite sets 𝑆𝑆1 and 𝑆𝑆2, and a function 𝑢 ∈ ℝ𝑋×(𝑆1∪𝑆2). 

 

Corollary 1.1 extends Kreps’ representation by allowing for “negative” states and 

relaxing both set monotonicity and ordinal submodularity. It follows that, while 
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Kreps’ axioms effectively identify those preferences which can be represented in an 

additive fashion without resorting to negative states, the additivity per se has no 

behavioral content. 

(Dekel, Lipman and Rustichini 2001) and (Dekel, Lipman, et al. 2007) proved a 

generalization of Kreps’ result in the lottery setting. Specifically, they characterized 

a representation of the form 

𝑈∗(𝐴𝐴∗) = � sup
𝑝∈𝐴𝐴∗

𝑢∗(𝑒𝑒, 𝑒𝑒)𝜇𝜇(𝑎𝑎𝑒𝑒)
𝑆

, 

where 𝑢∗ ∈ ℝΔ(𝑋)×𝑆 has the expected utility form, 𝑆𝑆 might be infinite and 𝜇𝜇 is a 

signed measure. Consistently with Kreps’ result, DLR also prove that, under set 

monotonicity, 𝜇𝜇 is positive. Obviously, restricting 𝑈∗ to degenerate lotteries yields a 

representation on 𝒜. (Dekel, Lipman and Rustichini 2009) refined this 

representation result to make the state space 𝑆𝑆 finite, effectively characterizing the 

class of DLR preferences as defined in the previous section. DLR preferences were 

further studied in the lottery setting by (Kopylov 2009), who identified the number 

of positive and negative states in the representation. 

The results of this chapter also shed some light on the individual role of substantive 

axioms in the literature. For instance, preferences satisfying set monotonicity but 

not ordinal submodularity have been studied by (Ergin 2003) and (Natenzon 2010) 

in the finite setting. Proposition 1.1 shows that every such a preference has an 

extension to the lottery setting. However, this extension cannot satisfy set 
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monotonicity for ordinal submodularity would follow.1 This means that Kreps’ 

ordinal submodularity axiom characterizes the class of preferences which can be 

extended to the lottery setting preserving the desire for flexibility. 

Moreover, the representation in Corollary 1.1 also relates to (Gul and Pesendorfer 

2001). The temptation and self-control representation of that paper has the form 

𝑈∗(𝐴𝐴∗) ≔ max
𝑝∈𝐴𝐴∗

�𝑤∗(𝑒𝑒) − max
𝑞∈𝐴𝐴∗

�𝑣𝑣∗(𝑞) − 𝑣𝑣∗(𝑒𝑒)��, 

where the functions 𝑤∗ and 𝑣𝑣∗ have expected utility form, 𝑤∗ is interpreted as a 

normative utility ranking and the inner maximized term as the cost of self-control. It 

is easy to verify that this is a particular case of DLR’s representation with one 

positive state and possibly one negative state. (Gul and Pesendorfer 2005) 

subsequently explored finite analogues, but the representations they obtained are 

non-additive and rely on axioms which are harder to interpret than those employed 

by (Gul and Pesendorfer 2001) in the lottery setting. 

Finally, in a recent contribution, (Stovall 2010) provided axioms relaxing those of 

(Gul and Pesendorfer 2001) such that a preference on 𝒜∗ can be represented by 

𝑈∗(𝐴𝐴∗) ≔�max
𝑝∈𝐴𝐴∗

�𝑤∗(𝑒𝑒) − max
𝑞∈𝐴𝐴∗

�𝑣𝑣∗(𝑞, 𝑒𝑒) − 𝑣𝑣∗(𝑒𝑒, 𝑒𝑒)�� 𝜋(𝑒𝑒)
𝑠∈𝑆

. 

The interpretation proposed by Stovall is that of uncertain temptations. Similarly to 

the case of DLR, one may wonder how this representation constraints finite choices.  

  

1 Set monotonicity and independence imply ordinal submodularity (see (Dekel, 
Lipman and Rustichini 2001), footnote 21). 
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A partial answer is given by the following: 

 

Corollary 1.2. For every function 𝑈 ∈ ℝ𝒜 there is a finite set 𝑆𝑆, a positive measure 𝜋 

on 𝑆𝑆 and functions 𝑣𝑣,𝑤 ∈ ℝ𝑋×𝑆 such that  

𝑈(𝐴𝐴) = �max
𝑥∈𝐴𝐴

�𝑤(𝑥𝑥, 𝑒𝑒) − max
𝑦∈𝐴𝐴

�𝑣𝑣(𝑦𝑦, 𝑒𝑒) − 𝑣𝑣(𝑥𝑥, 𝑒𝑒)�� 𝜋(𝑒𝑒)
𝑠∈𝑆

. 

 

Corollary 1.2 is a generalized finite analogue of Stovall’s result in which the 

normative utility is also random. The lack of any constraint on preferences means 

that all the substantive restrictions on finite choice behavior in Stovall’s 

representation are embodied in the state-independence of the normative utility. 

 

1.4. Concluding Remarks 

The literature on preferences over menus typically models DMs who care about 

lotteries even though, most often than not, only their deterministic choices are of 

real interest. In these cases, there is a gap between what the axioms talk about and 

the relevant content of the theories. To bridge that gap, Proposition 1.1 characterizes 

the finite deterministic choice behavior associated with DLR’s additive 

representation by showing that every preference relation over the set of all menus of 

a finite set can be extended to the lottery setting ensuring that all DLR axioms are 

satisfied. It follows that DLR’s DMs are not restricted in this respect beyond the 

standard requirements of completeness and transitivity which are necessary for any 

utility representation. 
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As a final comment, I want to stress that the main point of this analysis is to shed 

light on how exactly DLR and related models constrain finite choice behavior, not to 

argue that they are too weak to be useful or that the lottery setting should be 

abandoned. On the contrary, Proposition 1.1 constitutes a formal verification that 

DLR do not surreptitiously forbid choice behavior that would be allowed if lotteries 

were not available to empower their axioms. In this sense, the result allows one to 

conclude that the linear lottery structure used by DLR to identify the state space 

does not sacrifice generality regarding finite deterministic choices. 

 

1.5. Proofs 

The following lemma is used in the proof of Proposition 1.1 below: 

 

Lemma 1.1. Every function 𝑈 ∈ ℝ𝒜 can be written 

𝑈(𝐴𝐴) = � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆1

− � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆2

 

for some finite sets 𝑆𝑆1 and 𝑆𝑆2, and a function 𝑢 ∈ ℝ𝑋×(𝑆1∪𝑆2). 

 

Proof. Fix an arbitrary function 𝑈 ∈ ℝ𝒜. Define 𝜙(∅) ≔ 0 and 𝜙(𝐴𝐴) ≔ 1 for any 

𝐴𝐴 ∈ 𝒜. The conjugate Möbius transform is a bijection on ℝ𝒜 (see Lemma 1 in 

(Nehring 1999)).  
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More specifically, one can write 𝑈 as 𝑈(𝐴𝐴) = ∑ 𝜆(𝑒𝑒)𝜙(𝑒𝑒 ∩ 𝐴𝐴)𝑠∈𝒜 , where 𝜆 ∈ ℝ𝒜 is 

defined by 

𝜆(𝑒𝑒) ≔ �(−1)#(𝑠\𝐵𝐵)+1𝑈(𝑋\𝐵𝐵)
𝐵𝐵⊆𝑠

. 

Define 𝑆𝑆1 ≔ {𝑒𝑒 ∈ 𝒜|𝜆(𝑒𝑒) > 0}, 𝑆𝑆2 ≔ {𝑒𝑒 ∈ 𝒜|𝜆(𝑒𝑒) < 0} and 𝑢 ∈ ℝ𝑋×(𝑆1∪ 𝑆2) by 

𝑢(𝑥𝑥, 𝑒𝑒) ≔ �|𝜆(𝑒𝑒)| 𝑥𝑥 ∈ 𝑒𝑒
0 𝑥𝑥 ∉ 𝑒𝑒. 

Then, one can verify that, for every 𝐴𝐴 ∈ 𝒜, 

𝑈(𝐴𝐴) = � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆1

− � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆2

, 

proving the claim ∎ 

 

Proof of Proposition 1.1 

Let ≿ be a preference relation on 𝒜. It is well known that every preference relation 

is representable. Let 𝑈 ∈ ℝ𝒜 be a representation. By Lemma 1.1, 𝑈 can be written as 

𝑈(𝐴𝐴) = � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆1

− � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆2

            ∀𝐴𝐴 ∈ 𝒜. 

Then, extend 𝑢 ∈ ℝ𝑋×(𝑆1∪ 𝑆2) to 𝑢∗ ∈ ℝΔ(𝑋)×(𝑆1∪ 𝑆2) by defining 

𝑢∗(𝑒𝑒, 𝑒𝑒) ≔ �𝑢(𝑥𝑥, 𝑒𝑒)𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

           ∀𝑒𝑒 ∈ Δ(𝑋),   𝑒𝑒 ∈ 𝑆𝑆1 ∪ 𝑆𝑆2. 

Hence, one can define 𝑈∗ ∈ ℝ𝒜∗ by setting, for every 𝐴𝐴∗ ∈ 𝒜∗, 

𝑈∗(𝐴𝐴∗) ≔ � max
𝑝∈𝐴𝐴∗

𝑢∗(𝑒𝑒, 𝑒𝑒)
𝑠∈𝑆1

− � max
𝑝∈𝐴𝐴∗

𝑢∗(𝑒𝑒, 𝑒𝑒)
𝑠∈𝑆2

. 
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Note that 𝑈∗ is well-defined, since each function 𝑢∗(∙, 𝑒𝑒) is a linear function in a 

finite-dimensional space, hence continuous. Finally, define ≿∗ on 𝒜∗ by 𝐴𝐴∗ ≿∗ 𝐵𝐵∗ ⟺

𝑈∗(𝐴𝐴∗) ≥ 𝑈∗(𝐵𝐵∗). By definition, ≿∗ is a DLR preference. Moreover, for every 𝐴𝐴 ∈ 𝒜, 

𝑈∗�𝛿(𝐴𝐴)� = � max
𝑝∈𝛿(𝐴𝐴)

𝑢∗(𝑒𝑒, 𝑒𝑒)
𝑠∈𝑆1

− � max
𝑝∈𝛿(𝐴𝐴)

𝑢∗(𝑒𝑒, 𝑒𝑒)
𝑠∈𝑆2

 

= � max
𝑥∈𝐴𝐴

𝑢∗(𝛿𝑥 , 𝑒𝑒)
𝑠∈𝑆1

− � max
𝑥∈𝐴𝐴

𝑢∗(𝛿𝑥 , 𝑒𝑒)
𝑠∈𝑆2

 

= � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆1

− � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆2

= 𝑈(𝐴𝐴). 

Therefore, ≿∗ extends ≿ ∎ 

 

Proof of Corollary 1.1 

This is just the first step in the proof of Proposition 1.1 ∎ 

 

Proof of Corollary 1.2 

By Lemma 1.1, it is possible to write 

𝑈(𝐴𝐴) = � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆1

− � max
𝑥∈𝐴𝐴

𝑢(𝑥𝑥, 𝑒𝑒)
𝑠∈𝑆2

, 

where 𝑆𝑆1 and 𝑆𝑆2 are finite and 𝑢 ∈ ℝ𝑋×(𝑆1∪𝑆2). Define the finite set 𝑆𝑆 ≔ 𝑆𝑆1 ∪ 𝑆𝑆2, a 

“uniform” probability measure 𝜋 ∈ Δ(𝑆𝑆) by setting 𝜋(𝑒𝑒) ≔ 1/|𝑆𝑆| for all 𝑒𝑒 ∈ 𝑆𝑆 and 

functions 𝑣𝑣,𝑤� ,𝑤 ∈ ℝ𝑋×𝑆 by setting, for each 𝑥𝑥 ∈ 𝑋 and 𝑒𝑒 ∈ 𝑆𝑆, 

𝑣𝑣(𝑥𝑥, 𝑒𝑒) ≔ �
0 𝑒𝑒 ∈ 𝑆𝑆1

𝑢(𝑥𝑥, 𝑒𝑒)|𝑆𝑆| 𝑒𝑒 ∈ 𝑆𝑆2\𝑆𝑆1, 
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𝑤�(𝑥𝑥, 𝑒𝑒) ≔ �𝑢(𝑥𝑥, 𝑒𝑒)|𝑆𝑆| 𝑒𝑒 ∈ 𝑆𝑆1\𝑆𝑆2
0 𝑒𝑒 ∈ 𝑆𝑆2

 

and 

𝑤(𝑥𝑥, 𝑒𝑒) ≔ 𝑤�(𝑥𝑥, 𝑒𝑒) − 𝑣𝑣(𝑥𝑥, 𝑒𝑒). 

Then, 𝑈 can be written 

𝑈(𝐴𝐴) = � max
𝑥∈𝐴𝐴

𝑤�(𝑥𝑥, 𝑒𝑒)𝜋(𝑒𝑒)
𝑠∈𝑆1

− � max
𝑥∈𝐴𝐴

𝑣𝑣(𝑥𝑥, 𝑒𝑒)𝜋(𝑒𝑒)
𝑠∈𝑆2

 

= ��max
𝑥∈𝐴𝐴

𝑤�(𝑥𝑥, 𝑒𝑒) − max
𝑥∈𝐴𝐴

𝑣𝑣(𝑥𝑥, 𝑒𝑒)� 𝜋(𝑒𝑒)
𝑠∈𝑆

 

= ��max
𝑥∈𝐴𝐴

�𝑤(𝑥𝑥, 𝑒𝑒) + 𝑣𝑣(𝑥𝑥, 𝑒𝑒)� − max
𝑦∈𝐴𝐴

𝑣𝑣(𝑦𝑦, 𝑒𝑒)� 𝜋(𝑒𝑒)
𝑠∈𝑆

 

= �max
𝑥∈𝐴𝐴

�𝑤(𝑥𝑥, 𝑒𝑒) − max
𝑦∈𝐴𝐴

�𝑣𝑣(𝑦𝑦, 𝑒𝑒) − 𝑣𝑣(𝑥𝑥, 𝑒𝑒)�� 𝜋(𝑒𝑒)
𝑠∈𝑆

, 

as claimed ∎ 
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Chapter 2.  

Coherent Expected Utility 

 

2.1. Introduction 

The application of axiomatic theories to predict economic behavior is an implicit 

statement about the set of circumstances under which the analyst believes the 

decision maker (DM) will (at least approximately) conform to the proposed axioms. 

However, these beliefs are often based only on partial evidence. Thus, one might be 

certain that a theory accurately describes choices in a situation which has occurred 

repeatedly while entertaining serious doubts about how well the same theory would 

perform in a novel scenario. At the same time, the behavioral evidence collected in 

different situations might or might not be consistent with the cross restrictions 

implied by a given theory. This means that rational beliefs about the global 

applicability of the theory’s axioms are not entirely unconstrained. 

For example, consider an insurance company which strongly believes that its clients 

maximize expected utility (EU) when choosing among products involving risks 

covered by specific policies in the past. The firm is considering a new policy with 

broader coverage and wonders how its clientele would react. Is the past behavior of 

the clients consistent with the hypothesis that they will evaluate the expanded set of 

risky trade-offs as EU maximizers? 

  

12 
 



The essential issue in situations like the one described above is to determine when it 

is fine to expand the domain of application of the axioms of a particular theory of 

choice. In general, the problem of axiom extrapolation and its limits is important on 

both practical and theoretical grounds. Practically, it is a fundamental matter for 

normative theories meant to provide guidance as to how to make decisions in new 

situations which are only partially linked to existing knowledge. Theoretically, it is 

the inverse to the classic problem of formulating “small worlds”, namely the 

description of the components relevant to isolate a given decision problem.2  

The present chapter addresses the extrapolation of the von Neumann – Morgenstern 

(vNM) axioms underlying EU theory by providing conditions for multiple 

(incomplete) preferences over lotteries to be simultaneously consistent with a single 

EU representation (a condition called “EU rationalizability”). The main result is a 

general characterization of EU rationalizability in terms of local EU 

representations. Moreover, I identify a class of systems of preferences for which 

existence and uniqueness of an EU rationalization can be characterized by simpler 

conditions of local nature. The analysis is then applied to develop a revealed 

preference theory under risk which can be easily compared with the classical theory 

for ordinal preferences. As a second application, the classic model of (Anscombe and 

Aumann 1963) for decisions under uncertainty is extended to cases in which the set 

of available prizes varies with the state. 

 

2 To the best of my knowledge, this issue was originally discussed in (Savage 1972). 
See also chapter 12 in (Kreps 1988) and (Shafer 1986). 
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2.2. Basic Definitions 

This section introduces basic definitions, including three key concepts for the 

analysis in the rest of the chapter: locally vNM preference, local vNM index and EU 

rationalizability. Let 𝑋 be a non-empty finite set of prizes and let Δ(𝑋) be the set of 

lotteries over 𝑋. For any 𝑒𝑒 ∈ Δ(𝑋), define its support as supp𝑒𝑒 ≔ {𝑥𝑥 ∈ 𝑋|𝑒𝑒(𝑥𝑥) > 0}. 

For any 𝐴𝐴 ⊆ Δ(𝑋), define supp𝐴𝐴 ≔ {𝑥𝑥 ∈ supp𝑒𝑒 |𝑒𝑒 ∈ 𝐴𝐴} = ⋃ supp 𝑒𝑒𝑝∈𝐴𝐴  and let |𝐴𝐴| be the 

number of elements in 𝐴𝐴.  

Now, consider a generic binary relation ≿ over Δ(𝑋) (with ≻ and ∼ standing for its 

asymmetric and symmetric parts, respectively). The domain of ≿ is defined as 

dom ≿ ≔ {𝑒𝑒 ∈ Δ(𝑋)|∃𝑞 ∈ Δ(𝑋): 𝑒𝑒 ≿ 𝑞 ∨ 𝑞 ≿ 𝑒𝑒} 

Thus, dom ≿ can be informally interpreted as the set of all lotteries about which the 

binary relation ≿ has something to say. It is useful to complete the domain by 

defining dom∗ ≿ ≔ Δ(supp(dom ≿)), so as to include all lotteries assigning positive 

probability to prizes in the support of some 𝑒𝑒 ∈ dom ≿. I will now present an 

axiomatization of the class of preferences with which this chapter is concerned. 

 

Definition 2.1. A binary relation ≿ is said to be a locally vNM preference if it 

satisfies the following properties for every 𝑒𝑒, 𝑞, 𝑒𝑒 ∈ Δ(𝑋): 

a) Transitivity: 𝑒𝑒 ≿ 𝑞 ≿ 𝑒𝑒 ⟹ 𝑒𝑒 ≿ 𝑒𝑒 

b) vNM continuity: 𝑒𝑒 ≻ 𝑞 ≻ 𝑒𝑒 ⟹ ∃𝛼,𝛽 ∈ [0,1]:𝛼𝑒𝑒 + (1 − 𝛼)𝑒𝑒 ≻ 𝑞 ≻ 𝛽𝑒𝑒 + (1 − 𝛽)𝑒𝑒 

c) Local independence: 𝑒𝑒 ∈ dom ≿ ,𝛼 ∈ [0,1]:𝑒𝑒 ≿ 𝑞 ⟹ 𝛼𝑒𝑒 + (1 − 𝛼)𝑒𝑒 ≿ 𝛼𝑞 + (1 − 𝛼)𝑒𝑒 

d) Local completeness: 𝑒𝑒 ≿ 𝑞 ⟹ dom ≿ ⊇ Δ(supp{𝑒𝑒, 𝑞}) 

e) Non-triviality: ≿≠ ∅ 

14 
 



A vNM preference is a locally vNM preference with dom ≿ = Δ(𝑋). Note that (a) and 

(b) are standard vNM axioms, but (c), (d) and (e) are strictly weaker than their 

standard counterparts. It is now convenient to define a weak notion of 

representation, suitable for a local study of expected utility theory: 

 

Definition 2.2. A function 𝑢 ∈ ℝ𝑋 is called a local vNM index for ≿ if 

∀𝑒𝑒, 𝑞 ∈ dom∗ ≿ : 𝑒𝑒 ≿ 𝑞 ⟺ �𝑢(𝑥𝑥)𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

≥ �𝑢(𝑥𝑥)𝑞(𝑥𝑥)
𝑥∈𝑋

 

When dom ≿ = Δ(𝑋), a local vNM index is called a vNM index. 

 

Note that the use of “local” in the definition above reflects the fact that the 

representation may hold only for lotteries with restricted support. Clearly, any 

binary relation ≿ with a standard EU representation over Δ(𝑋) possesses a local 

vNM index. The converse however does not hold, since ≿ may not be complete. The 

connection between Definition 2.1 and Definition 2.2 is formalized by the following: 

 

Proposition 2.1. For any binary relation ≿ on Δ(𝑋), the following are equivalent: 

I) ≿ is a locally vNM preference 

II) ≿ admits a local vNM index 

III) there exists a non-empty set 𝑌 ⊆ 𝑋 such that dom ≿ = Δ(𝑌) and ≿ satisfies 

the vNM axioms on Δ(𝑌) 
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This result shows that local vNM indices represent locally vNM preferences, while 

at the same time justifies the intuitive interpretation of the latter as preferences of a 

DM who maximizes EU choosing among lotteries which restrict positive probability 

assignments to some subset of prizes. 

In this chapter, a system is a finite collection of binary relations on Δ(𝑋), denoted by 

(≿𝑖)𝑖∈𝐼, where 𝐼 is some non-empty finite index set.3 The interpretation is that, for 

each 𝑒𝑒 ∈ 𝐼, the relation ≿𝑖 encodes choice behavior in the following way: if the 

decision maker is confronted with a decision problem 𝐴𝐴 ⊆ dom ≿𝑖, she will choose 

any lottery in {𝑒𝑒 ∈ 𝐴𝐴|∀𝑞 ∈ 𝐴𝐴: 𝑒𝑒 ≿𝑖 𝑞}. Thus, a system can be thought of as a 

summarized collection of possibly conflicting choice observations. 

Given any class of preferences, it is natural to investigate the restrictions which that 

class places on observable choices. The following definition uses systems of 

incomplete risk preferences to operationalize this idea in the case of EU theory: 

 

Definition 2.3. A system (≿𝑖)𝑖∈𝐼 is said to be EU rationalizable if there exist a 

function 𝑢 ∈ ℝ𝑋 which is a local vNM index for ≿𝑖 for every 𝑒𝑒 ∈ 𝐼. Such a function 𝑢 is 

called a vNM index for (≿𝑖)𝑖∈𝐼. 

 

Thus, an EU rationalizable system can be interpreted as a collection of partial 

observations generated by a single EU maximizer with globally defined preferences.  

3 See Section 0 for a discussion of the extension to countably infinite 𝐼 and infinite 𝑋. 
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Now, call a system of locally vNM preferences a locally vNM system. It is intuitive 

that EU rationalizable systems must be locally vNM. The converse, however, does 

not hold in general. Conditions yielding a converse constitute the theoretical core of 

this chapter and are presented in the next two sections. 

 

2.3. Characterization of Expected Utility Rationalizability 

In this section, EU rationalizability is characterized in terms of relations among the 

affinity constants that relate local expected utility representations of the same vNM 

preference. To state the characterization, two additional definitions are required. 

The first definition is targeted towards encoding the restrictions that EU theory 

places on local preferences with intersecting domains. 

 

Definition 2.4. �𝛼𝑖,𝑗 ,𝛽𝑖,𝑗�𝑖,𝑗∈𝐼 is called a local pasting for the system (≿𝑖)𝑖∈𝐼 if there 

exist a collection (𝑢𝑖)𝑖∈𝐼 such that for every 𝑒𝑒, 𝑗 ∈ 𝐼 and 𝑥𝑥 ∈ supp�dom ≿𝑖 ∩ dom ≿𝑗�: 

a) 𝑢𝑖 is a local vNM index for ≿𝑖 

b) 𝛼𝑖,𝑗 > 0 

c) 𝑢𝑖(𝑥𝑥) = 𝛼𝑖,𝑗𝑢𝑗(𝑥𝑥) + 𝛽𝑖,𝑗 

 

Note that existence of a local pasting already implies that (≿𝑖)𝑖∈𝐼 is locally vNM. 

Moreover, if two local vNM preferences ≿𝑖 and ≿𝑗 have intersecting domains, the 

constants in any local pasting are the affinity constants up to which EU 

17 
 



representations are unique. The second definition aims to identify the additional 

restrictions between disjoint domains which are nevertheless “indirectly connected” 

through sequences of intersecting domains  

 

Definition 2.5. A cycle of the system (≿𝑖)𝑖∈𝐼 is a finite sequence of indexes 

(𝑒𝑒1, … , 𝑒𝑒𝐾 , 𝑒𝑒𝐾+1) such that 𝑒𝑒𝐾+1 = 𝑒𝑒1 and dom ≿𝑖𝑘 ∩ dom ≿𝑖𝑘+1 ≠ ∅ for every 𝑘 ∈ {1, … ,𝐾}. 

A cycle is simple if 𝑒𝑒𝑘 = 𝑒𝑒𝑘′ implies 𝑘, 𝑘′ ∈ {1,𝐾 + 1}. 

 

The following result characterizes EU rationalizable systems in terms of a system of 

equations for local pastings: 

 

Proposition 2.2. A system (≿𝑖)𝑖∈𝐼 is EU rationalizable if and only if it possesses a 

local pasting �𝛼𝑖,𝑗 ,𝛽𝑖,𝑗�𝑖,𝑗∈𝐼 such that the equations 

�𝛼𝑖𝑘,𝑖𝑘+1

𝐾

𝑘=1

= 1                     ���𝛼𝑖𝑠,𝑖𝑠+1

𝑘−1

𝑠=1

�𝛽𝑖𝑘,𝑖𝑘+1

𝐾

𝑘=1

= 0 

hold for every simple cycle (𝑒𝑒1, … , 𝑒𝑒𝐾 , 𝑒𝑒𝐾+1) of (≿𝑖)𝑖∈𝐼. 

 

Through these “cycle equations”, Proposition 2.2 provides a cardinal coherence test 

for checking whether imperfectly overlapping preferences can be attributed to a 

global EU maximizer. More specifically, one can elicit and fix local vNM indexes for 

the system under analysis, compare them pairwise to derive the set of possible local 
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pastings and, finally, use Proposition 2.2 to check if the system is EU rationalizable 

by verifying the equations above for each possible local pasting.  

Note that, since 𝐼 is finite, the system (≿𝑖)𝑖∈𝐼 will have a finite number of simple 

cycles. Moreover, since the “cycle equations” are shift-invariant, only one 

representative of each shift class of cycles needs to be considered. 

The following example illustrates this procedure. 

 

Example 2.1. Let 𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑦𝑦1,𝑦𝑦2, 𝑧𝑧1, 𝑧𝑧2}, 𝐼 = {𝐴𝐴,𝐵𝐵,𝐶𝐶}, 𝐴𝐴 = {𝑥𝑥1, 𝑥𝑥2, 𝑦𝑦1,𝑦𝑦2}, , 𝐵𝐵 =

{𝑦𝑦1,𝑦𝑦2, 𝑧𝑧1, 𝑧𝑧2}, 𝐶𝐶 = {𝑥𝑥1, 𝑥𝑥2, 𝑧𝑧1, 𝑧𝑧2} and (≿𝑖)𝑖∈𝐼 be a system such that each ≿𝑖 satisfies 

dom ≿𝑖 = Δ(𝑒𝑒) and can be represented by the local vNM indices 𝑢𝐴𝐴, 𝑢𝐵𝐵 and 𝑢𝐶. 

Suppose that we know 𝑢𝐴𝐴(𝑥𝑥1) = 1, 𝑢𝐴𝐴(𝑥𝑥2) = 4, 𝑢𝐴𝐴(𝑦𝑦1) = 0, 𝑢𝐴𝐴(𝑦𝑦2) = 3, 𝑢𝐵𝐵(𝑦𝑦1) = 2, 

𝑢𝐵𝐵(𝑦𝑦2) = 3, 𝑢𝐵𝐵(𝑧𝑧1) = 4, 𝑢𝐵𝐵(𝑧𝑧2) = 10, 𝑢𝐶(𝑥𝑥1) = 0 and 𝑢𝐶(𝑧𝑧2) = 10. We don’t know 

neither 𝑢𝐶(𝑥𝑥2) nor 𝑢𝐶(𝑧𝑧1). The following diagram illustrates the structure: 

 

Figure 2.1. EU rationalizable system for  

𝑢𝐶(𝑥𝑥2) = 30/23 and 𝑢𝐶(𝑧𝑧1) = 50/23. 

𝑧𝑧2 

𝑧𝑧1 

𝑥𝑥1 
𝑥𝑥2 

𝑦𝑦1 
𝑦𝑦2 

 𝐴𝐴 

𝐶𝐶 𝐵𝐵 

10 

0 

1 

10 

2 

3 0 

3 

4 

4 

? 

? 
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Now, consider a lottery 𝑒𝑒 which gives 𝑥𝑥1 with probability 4/5 and 𝑧𝑧2 with probability 

1/5. Is there any lottery between 𝑥𝑥2 and 𝑧𝑧1 which is indifferent to 𝑒𝑒 for a (global) EU 

maximizer? Formally speaking, the question is whether there is 𝛼 ∈ [0,1] such that 

𝛼𝛿𝑥2 + (1 − 𝛼)𝛿𝑧1 ∼𝐶 (4/5)𝛿𝑥1 + (1/5)𝛿𝑧2. Questions like these can be answered using 

Proposition 2.2. In order to do that, let �𝛼𝑖,𝑗 ,𝛽𝑖,𝑗�𝑖,𝑗∈𝐼 be a local pasting. It is clear that 

𝛼𝐴𝐴,𝐵𝐵 =
𝑢𝐴𝐴(𝑦𝑦2) − 𝑢𝐴𝐴(𝑦𝑦1)
𝑢𝐵𝐵(𝑦𝑦2) − 𝑢𝐵𝐵(𝑦𝑦1) = 3             𝛽𝐴𝐴,𝐵𝐵 = 𝑢𝐴𝐴(𝑦𝑦1) − 𝛼𝐴𝐴,𝐵𝐵𝑢𝐵𝐵(𝑦𝑦1) = −6 

𝛼𝐵𝐵,𝐶 =
𝑢𝐵𝐵(𝑧𝑧2) − 𝑢𝐵𝐵(𝑧𝑧1)
𝑢𝐶(𝑧𝑧2) − 𝑢𝐶(𝑧𝑧1) =

6
10 − 𝑢𝐶(𝑧𝑧1)             𝛽𝐵𝐵,𝐶 = 𝑢𝐵𝐵(𝑧𝑧2) − 𝛼𝐵𝐵,𝐶𝑢𝐶(𝑧𝑧2) = 10�1 − 𝛼𝐵𝐵,𝐶� 

𝛼𝐶,𝐴𝐴 =
𝑢𝐶(𝑥𝑥2) − 𝑢𝐶(𝑥𝑥1)
𝑢𝐴𝐴(𝑥𝑥2) − 𝑢𝐴𝐴(𝑥𝑥1) =

𝑢𝐶(𝑥𝑥2)
3

             𝛽𝐶,𝐴𝐴 = 𝑢𝐶(𝑥𝑥1) − 𝛼𝐶,𝐴𝐴𝑢𝐴𝐴(𝑥𝑥1) = −
𝑢𝐶(𝑥𝑥2)

3
 

Hence, the cycle equations for 𝐴𝐴 − 𝐵𝐵 − 𝐶𝐶 are: 

6𝑢𝐶(𝑥𝑥2)
10 − 𝑢𝐶(𝑧𝑧1) = 1              − 6 + 30 �1 −

6
10 − 𝑢𝐶(𝑧𝑧1)� −

6𝑢𝐶(𝑥𝑥2)
10 − 𝑢𝐶(𝑧𝑧1) = 0 

These two equations can be easily seen to imply 𝑢𝐶(𝑥𝑥2) = 30/23 and 𝑢𝐶(𝑧𝑧1) = 50/23. 

It follows that 𝛼 = 1/5 is the only choice consistent with (global) EU maximization 

The natural next step is to ask whether one can obtain some form of uniqueness for 

the vNM index providing an EU rationalization. Obviously, in EU settings, 

uniqueness can only be attained up to positive affine transformations. Considering 

this, we say that a system has unique EU rationalization if it is EU rationalizable 

and every two vNM indices for the system are related by a positive affine 

transformation. 
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The study of uniqueness in this context requires a way of measuring the constraints 

imposed by EU maximization. So, for a given system (≿𝑖)𝑖∈𝐼, define 𝑅 ∈ {0,1,2}�2𝑋� by 

𝑅(𝐴𝐴) ≔ �
0 𝐴𝐴 = ∅
1 𝐴𝐴 ≠ ∅,∀𝑒𝑒 ∈ 𝐼:≻𝑖∩ Δ(𝐴𝐴)2 = ∅
2 𝐴𝐴 ≠ ∅,∃𝑒𝑒 ∈ 𝐼:≻𝑖∩ Δ(𝐴𝐴)2 ≠ ∅

 

The function 𝑅 counts the number of restrictions local vNM preferences place over 

each other on a set 𝐴𝐴 if they are to satisfy the requirements of EU theory globally. In 

other words, 2 − 𝑅(𝐴𝐴) represents the degrees of freedom for choosing local pastings 

over 𝐴𝐴. Now, define the set of prize domain intersections as  

ℳ ≔ �supp dom ≿𝑖 ∩ supp dom ≿𝑗 �𝑒𝑒, 𝑗 ∈ 𝐼� 

For every 𝑀 ∈ ℳ, define 𝑁𝑁(𝑀) ≔ |{𝑒𝑒 ∈ 𝐼|𝑀 ⊆ supp dom ≿𝑖}|. Thus, ℳ collects all the 

set of prizes that can be written as the intersection of the support of two domains, 

while 𝑁𝑁(𝑀) counts the number of local preferences which compare the prizes in 𝑀. 

The following result gives a sufficient condition for unique EU rationalizability of a 

vNM which declares no two prizes indifferent: 

 

Proposition 2.3. Let (≿𝑖)𝑖∈𝐼 be a EU rationalizable system with injective vNM index 

𝑢. Then, (≿𝑖)𝑖∈𝐼 is uniquely EU rationalizable if ∑ �𝑁𝑁(𝑀)
2

� 𝑅(𝑀)𝑀∈ℳ = 2 �|𝐼|
2
�. 

 

Essentially, the equality in this result compares the number of independent 

equations to be satisfied and the number of independent constants to be determined 

in any local pasting. If the number coincides, there is exactly one local pasting 
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induced for each choice of local vNM indices (𝑢𝑖)𝑖∈𝐼. Therefore, any vNM for the 

system will have to be a positive affine transformation of 𝑢.  

The following example illustrates the use of Proposition 2.3: 

 

Example 2.2. Let 𝑋 = {𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′}, 𝐼 = {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷}, 𝐴𝐴 ≔ {𝑥𝑥, 𝑦𝑦, 𝑧𝑧}, 𝐵𝐵 ≔ {𝑥𝑥,𝑦𝑦, 𝑧𝑧}, 

𝐶𝐶 ≔ {𝑥𝑥,𝑦𝑦, 𝑧𝑧}, 𝐷𝐷 ≔ {𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′} and (≿𝑖)𝑖∈𝐼 be such that dom ≿𝑖 = Δ(𝑒𝑒). The following 

picture illustrates the structure of this system: 

 

Figure 2.2. A uniquely EU rationalizable system 

 

Now suppose that 𝑢 is an injective vNM index for (≿𝑖)𝑖∈𝐼. Then, ℳ = �{𝑥𝑥}�𝑥𝑥 ∈ 𝑋�, 

𝑁𝑁(𝑀) = 2 and 𝑅(𝑀) = 1 for every 𝑀 ∈ ℳ. Hence, 

� �𝑁𝑁(𝑀)
2

�𝑅(𝑀)
𝑀∈ℳ

= � �2
2�1

𝑀∈ℳ

= |ℳ| = |𝑋| = 6 = 2 �4
2� = 2 �|𝐼|

2
� 

Therefore, by Proposition 2.3, the system (≿𝑖)𝑖∈𝐼 is uniquely EU rationalizable 
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2.4. Recursive Locally von Neumann – Morgenstern Systems 

The characterization in the previous section relies on global comparisons of vNM 

indexes. For some applications, it is convenient to identify classes of systems for 

which, due to its particularly simple structure, EU rationalizability can be verified 

by much weaker local consistency tests. The following condition is a natural 

candidate:  

 

Definition 2.6. A system (≿𝑖)𝑖∈𝐼 is said to be locally coherent if, for every 𝑒𝑒, 𝑗 ∈ 𝐼,  

≿𝑖∩ �dom ≿𝑗�
2 = ≿𝑗∩ (dom ≿𝑖)2 

 

Local coherence says that whenever two local preferences have intersecting 

domains, they should agree on the intersection. It is clear that this is a necessary 

condition for EU rationalizability. In fact, it is a necessary condition for general 

rationalizability (defined as existence of a complete and transitive binary relation on 

Δ(𝑋) which agrees with every local preference over its domain). However, it is also 

clear that it can’t be sufficient in general. The conceptual reason is that vNM indices 

might encode global cardinal information which is irreducible to local conditions. 

This is why the characterization in Proposition 2.2 needs to control what happens 

over cycles of arbitrary length.  

The following example shows that local coherence is not sufficient for EU 

rationalizability. 
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Example 2.3. Let 𝑋, 𝐼, 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 be as in Example 2.1. Let (≿𝑖)𝑖∈𝐼 be a system with 

each ≿𝑖 satisfying the condition dom ≿𝑖 = Δ(𝑒𝑒) and representable by the local vNM 

indices defined by setting 𝑢𝐴𝐴(𝑥𝑥1) = 𝑢𝐶(𝑥𝑥1) = 1, 𝑢𝐴𝐴(𝑥𝑥2) = 𝑢𝐴𝐴(𝑦𝑦1) = 𝑢𝐵𝐵(𝑦𝑦1) = 𝑢𝐶(𝑥𝑥2) =

𝑢𝐶(𝑧𝑧1) = 2, 𝑢𝐴𝐴(𝑦𝑦2) = 𝑢𝐵𝐵(𝑦𝑦2) = 𝑢𝐵𝐵(𝑧𝑧1) = 𝑢𝐶(𝑧𝑧2) = 4 and 𝑢𝐵𝐵(𝑧𝑧2) = 8. 

The structure of this example is described in the following diagram: 

 

Figure 2.3. A locally coherent system which is not EU rationalizable. 

 

Since local vNM indexes are proportional over intersecting domains, it is clear that 

(≿𝑖)𝑖∈𝐼 satisfies local coherence. Let �𝛼𝑖,𝑗 ,𝛽𝑖,𝑗�𝑖,𝑗∈𝐼 be an arbitrary local pasting. 

Clearly, to satisfy Definition 2.4 we must have �𝛼𝐴𝐴,𝐵𝐵 ,𝛽𝐴𝐴,𝐵𝐵� = (1,0), �𝛼𝐵𝐵,𝐶 ,𝛽𝐵𝐵,𝐶� =

(1/2,0) and �𝛼𝐶,𝐴𝐴,𝛽𝐶,𝐴𝐴� = (1,0). Therefore, along the cycle 𝐴𝐴 − 𝐵𝐵 − 𝐶𝐶, the LHS of the 

first cycle equation yields 

𝛼𝐴𝐴,𝐵𝐵𝛼𝐵𝐵,𝐶𝛼𝐶,𝐴𝐴 = 1 ×
1
2

× 1 =
1
2
≠ 1. 

Hence, by Proposition 2.2, (≿𝑖)𝑖∈𝐼 is not EU rationalizable.  
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Note that, in this simple case, it is easy to translate the logic of Proposition 2.2 into 

a direct argument. Suppose (≿𝑖)𝑖∈𝐼 was EU rationalizable with vNM index 𝑢. 

Comparing 𝐴𝐴 and 𝐵𝐵, 𝑢 should satisfy 𝑢(𝑦𝑦1) = 2𝑢(𝑥𝑥1) and 𝑢(𝑧𝑧1) = 2𝑢(𝑦𝑦1), so 𝑢(𝑧𝑧1) =

4𝑢(𝑥𝑥1). But, according to 𝐶𝐶, 𝑢(𝑧𝑧1) = 2𝑢(𝑥𝑥1). These two equations imply 𝑢(𝑧𝑧1) =

𝑢(𝑥𝑥1) = 0, which contradicts the local preference on 𝐶𝐶. The contradiction shows that 

(≿𝑖)𝑖∈𝐼 is not EU rationalizable 

Example 2.3 shows that local coherence cannot characterize EU rationalizability in 

general. However, it may still be possible to isolate a class of systems for which 

sufficiency can be proved and the characterization holds. In this section, this is 

achieved through the following concept: 

 

Definition 2.7. A system (≿𝑖)𝑖∈𝐼 is said to be recursive if 𝐼 can be given an order 

𝑒𝑒1, … , 𝑒𝑒|𝐼| such that for every 𝑘 ∈ {2, … , |𝐼|} there exists 𝑒𝑒 ∈ {1, … , 𝑘 − 1} such that  

𝑅�dom ≿𝑖𝑘 ∩ dom ≿𝑖𝑠� = 𝑅�dom ≿𝑖𝑘 ∩ dom ≿𝑖𝑠 ∩ dom ≿𝑖ℎ� 

for every ℎ ∈ {1, … , 𝑘}. 

 

Recursivity is obviously satisfied when there are no cycles, but the property is more 

general. Intuitively, a recursive system has sufficiently big domains conveniently 

placed to keep cycles in check.  
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The following proposition justifies the definition of recursivity and constitutes the 

main result of this section: 

 

Proposition 2.4. Every EU rationalizable system is locally coherent. A recursive and 

locally coherent system is EU rationalizable. 

 

This means that, for a recursive system, it is enough to verify that local vNM 

preferences are not pairwise contradictory, without having to examine its cycles.  

What about uniqueness? Proposition 2.3 gives a sufficient condition for unique EU 

rationalizability for systems without indifferent prizes. The condition compares the 

number of constraints with the number of constants involved in defining a local 

pasting and is not necessary. In contrast, within the class recursive systems, EU 

rationalizability is much easier to describe. To see this, consider the following: 

 

Definition 2.8. A system (≿𝑖)𝑖∈𝐼  is said to be strongly connected if, for every 𝑒𝑒, 𝑗 ∈ 𝐼 

such that ≻𝑖  ∪ ≻𝑗≠ ∅, there exists a sequence 𝑒𝑒1, … , 𝑒𝑒𝐾 ∈ 𝐼 such that 𝑒𝑒1 = 𝑒𝑒, 𝑒𝑒𝐾 = 𝑗 and 

𝑅�dom ≿𝑖𝑘 ∩ dom ≿𝑖𝑘+1� = 2 for every 𝑘 ∈ {1, … , 𝑘 − 1}.  

 

This condition requires that there is sufficient interaction among preferences to 

uniquely fix the affinity constants between pairs of local vNM indices in any local 

pasting.  
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The following characterization demonstrates its usefulness: 

 

Proposition 2.5. A strongly connected system admits at most one EU 

rationalization. A recursive system with unique EU rationalization must be strongly 

connected. 

 

Therefore, strong connection is sufficient for unique EU rationalizability for any 

system and is also necessary within the class of recursive systems. However, 

Example 2.2 shows that is not necessary in general.  

 

2.5. Revealed Expected Utility 

A fundamental problem in Economics is to test whether observable choices are 

consistent with the implications of a given theory of behavior. The classic theory of 

revealed preference provides definitive results for ordinal utility maximization.4 

Although EU maximization is the most prominent theory of choice under risk, 

results of similar clarity are not known.5 Moreover, the connections between the 

ordinal and the cardinal theory have not been satisfactorily studied. In light of these 

considerations, I will use the analysis in sections 2.3 and 2.4 to investigate the 

4 In the context of consumer theory, (Houthtakker 1950) and (Afriat 1967) give 
necessary and sufficient conditions for choice data to be consistent with utility 
maximization. These results can be easily extended to the general ordinal case. 
5 The issue has been explored by number of authors, but their results appear to 
provide a weaker link to observable behavior than the ordinal counterparts. See, for 
example, (Green and Srivastava 1986), (Border 1992) and (Kim 1996). 
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behavioral implications of the EU maximization hypothesis and study the 

similarities and differences vis-à-vis the case of ordinal utility maximization. 

The classic theory of revealed preference uses “choice correspondences" as primitives 

and casts its most important results in terms of the so called “axioms of revealed 

preference”. To define these concepts formally, let 𝑍 be some arbitrary set and 

consider a family of decision problems ℬ ⊆ 2𝑍\{∅}. A choice correspondence is a 

function 𝑐 ∈ (2𝑍\{∅})ℬ satisfying 𝑐(𝐵𝐵) ⊆ 𝐵𝐵 for every 𝐵𝐵 ∈ ℬ. A pair (ℬ, 𝑐) is called a 

choice structure. A choice structure (ℬ, 𝑐) is said to satisfy the weak axiom of 

revealed preference (WARP) if for every 𝐵𝐵,𝐵𝐵′ ∈ ℬ, 𝑐(𝐵𝐵′) ∩ 𝐵𝐵 ≠ ∅ implies 𝑐(𝐵𝐵) ∩ 𝐵𝐵′ ⊆

𝑐(𝐵𝐵′). (ℬ, 𝑐) is said to satisfy the generalized axiom of revealed preference (GARP) if, 

for every sequence of decision problems 𝐵𝐵1, … ,𝐵𝐵𝐾 ∈ ℬ satisfying 𝑐(𝐵𝐵𝑘+1) ∩ 𝐵𝐵𝑘 ≠ ∅ for 

every 𝑘 ∈ {1, … ,𝐾 − 1} and 𝑐(𝐵𝐵1) ∩ 𝐵𝐵𝐾+1 ≠ ∅, then 𝑐(𝐵𝐵1) ∩ 𝐵𝐵𝐾+1 ⊆ 𝑐(𝐵𝐵𝐾+1). It is clear 

that GARP is strictly stronger than WARP for general choice structures. Finally, 

(ℬ, 𝑐) is said to be rationalizable if there exists a complete and transitive binary 

relation ≿ on 𝑍 satisfying 𝑐(𝐵𝐵) = {𝑧𝑧 ∈ 𝐵𝐵|∀𝑧𝑧′ ∈ 𝐵𝐵: 𝑧𝑧 ≿ 𝑧𝑧′} for every 𝐵𝐵 ∈ ℬ. Given these 

definitions, (ℬ, 𝑐) is rationalizable if and only if satisfies GARP. Moreover, whenever 

ℬ is rich enough (e.g. contains every two and three element subset of 𝑍), (ℬ, 𝑐) is 

rationalizable if and only if satisfies WARP. 6  

The extension of the ordinal theory to the choice of lotteries raises a number of 

issues. On one hand, a direct extension attempting to use axioms on choice 

correspondences requires making strong global richness assumptions on ℬ, which 

significantly limits its domain of application. On the other hand, the development of 

a theory of revealed EU for general ℬ raises additional complications and the 

6 See, for example, (Mas-Collel, Whinston and Green 1995). 
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connection with the ordinal case is blurred. This is because eliciting an EU 

representation from lottery choice data involves two intertwined problems at once. 

The first problem is whether choices among lotteries with overlapping supports are 

consistent with EU locally. The second problem is whether local EU representations 

are consistent with a single global EU representation. Note that a negative answer 

to any of these two problems implies that the choice data is inconsistent with EU.  

In this section, I will show that the isolation of these two problems leads to results 

which clarify the connection between the ordinal and the cardinal theories. The 

difficulties of the first problem will be circumvented by a richness assumption, but 

only of local nature. In other words, I propose a separation of the problems based on 

a combination of assuming extensive knowledge of local choices without presuming 

how these local choices are related globally.  

In what follows, the definitions made above are considered in the case 𝑍 ≔ Δ(𝑋). The 

following richness assumption is the basis for the subsequent analysis: 

 

Definition 2.9. A choice structure (ℬ, 𝑐) is said to be locally rich if, for all 𝐵𝐵 ∈ ℬ: 

1) 𝐵𝐵 is a closed and convex subset of Δ(𝑋). 

2) ℬ contains every closed and convex subset of Δ(supp𝐵𝐵). 

 

We will need two additional definitions. The choice structure (ℬ, c) is said to be 

linear if 𝑐(𝛼𝐵𝐵 + (1 − 𝛼){𝑒𝑒}) = 𝛼𝑐(𝐵𝐵) + (1 − 𝛼){𝑒𝑒} for every 𝐵𝐵 ∈ ℬ and 𝛼 ∈ [0,1] such 

that 𝛼𝐵𝐵 + (1 − 𝛼){𝑒𝑒} ∈ ℬ. Endow ℬ with the Hausdorff metric (denote convergence of 
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decision problems in the induced topology by 𝐵𝐵𝑛
𝐻
→ 𝐵𝐵). Note that, since 𝑋 is finite, ℬ is 

compact. The choice structure (ℬ, c) is said to be continuous if 𝐵𝐵𝑛 ∈ ℬ and 𝐵𝐵𝑛
𝐻
→ 𝐵𝐵 ∈ ℬ 

implies 𝑐(𝐵𝐵𝑛)
𝐻
→ 𝑐(𝐵𝐵). 

In order to highlight the link between the ordinal and the cardinal settings, it is 

convenient to introduce analogues of WARP and GARP defined in terms of local 

preferences. The following definitions are the natural analogues of the standard 

conditions used in ordinal revealed preference theory: 

 

Definition 2.10. The system (≿𝑖)𝑖∈𝐼 satisfies the preference version of the weak 

axiom of revealed preference (P-WARP) if 𝑒𝑒 ≿𝑖 𝑞 implies 𝑞 ⊁𝑗 𝑒𝑒 for every 𝑒𝑒, 𝑗 ∈ 𝐼. The 

system (≿𝑖)𝑖∈𝐼 satisfies the preference version of the generalized axiom of revealed 

preference (P-GARP) if 𝑒𝑒1 ≿𝑖1 𝑒𝑒2 … 𝑒𝑒𝐾−1 ≿𝑖𝐾−1 𝑒𝑒𝐾 implies 𝑒𝑒𝐾 ⊁𝑖𝐾 𝑒𝑒1 for every 𝑒𝑒1, … 𝑒𝑒𝐾 ∈ 𝐼. 

 

The idea of the present approach is to represent the choice structure with a system 

amenable to the analysis of the previous sections. The formal representation concept 

is the following: 

 

Definition 2.11. A choice structure (ℬ, 𝑐) is said to be locally vNM rationalizable if 

there exists a system (≿𝑖)𝑖∈𝐼 such that: 

1) (≿𝑖)𝑖∈𝐼 is locally vNM 

2) 𝑐(𝐵𝐵) = {𝑒𝑒 ∈ 𝐵𝐵|∀𝑞 ∈ 𝐵𝐵: 𝑒𝑒 ≿𝑖 𝑞} whenever 𝐵𝐵 ∈ ℬ and 𝐵𝐵 ⊆ dom ≿𝑖 
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Then, one can prove: 

 

Proposition 2.6. A locally rich choice structure (ℬ, 𝑐) is locally vNM rationalizable 

by a system (≿𝑖)𝑖∈𝐼 satisfying P-WARP if and only if it is linear, continuous and 

satisfies WARP. Moreover, if (ℬ, 𝑐) satisfies GARP, then (≿𝑖)𝑖∈𝐼 satisfies P-GARP. 

 

In ordinal revealed preference theory, GARP characterizes utility maximizing 

behavior, while WARP is only necessary (unless additional assumptions are made). 

In the choice of lotteries, both P-WARP and P-GARP are still necessary but neither 

is strong enough to exhaust all the implications of EU maximization.  

The next result relates P-GARP, P-WARP and local coherence: 

 

Proposition 2.7. If a system satisfies P-GARP, then it satisfies P-WARP. A system 

satisfies P-WARP if and only if it is locally coherent. 

 

Proposition 2.7 implies that the preference version of both axioms remains necessary 

for EU rationalizability (for local coherence is necessary by Proposition 2.4). 

However, while GARP implies rationalizability, P-GARP fails to be sufficient for EU 

rationalizability. To see this, consider the following: 
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Example 2.4. Let 𝑋, 𝐼, 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 be as in Example 2.1. Let (≿𝑖)𝑖∈𝐼 be a system with 

each ≿𝑖 satisfying dom ≿𝑖 = Δ(𝑒𝑒) and representable by the local vNM index defined 

by setting 𝑢𝐴𝐴(𝑥𝑥1) = 𝑢𝐶(𝑥𝑥1) = −1, 𝑢𝐴𝐴(𝑥𝑥2) = 𝑢𝐶(𝑥𝑥2) = 1, 𝑢𝐴𝐴(𝑦𝑦1) = 𝑢𝐵𝐵(𝑦𝑦1) = −2, 𝑢𝐴𝐴(𝑦𝑦2) =

𝑢𝐵𝐵(𝑦𝑦2) = 2, 𝑢𝐵𝐵(𝑧𝑧1) = −4, 𝑢𝐵𝐵(𝑧𝑧2) = 4, 𝑢𝐶(𝑧𝑧1) = −8 and 𝑢𝐵𝐵(𝑧𝑧2) = 8.  

 

 

 

 

 

 

Figure 2.4. P-GARP does not imply EU rationalizability. 

 

To show that this system satisfies P-GARP, suppose 𝑒𝑒1 ≿𝑖1 𝑒𝑒2 …𝑒𝑒𝐾−1 ≿𝑖𝐾−1 𝑒𝑒𝐾. Note 

that there is no loss of generality in assuming that 𝑒𝑒𝑘 ≠ 𝑒𝑒𝑘+1 for all 𝑘 ∈ {1, …𝐾 − 1}. In 

that case, the support of each 𝑒𝑒𝑖𝑘 has at most two elements, a good “prize” and a 

“bad” prize.  

Let 𝜆𝑘 be the probability that 𝑒𝑒𝑖𝑘 assigns to its “good” prize. By construction, we 

must have 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐾. Hence, 𝜆1 ≥ 𝜆𝐾. Now suppose seeking a contradiction 

that 𝑒𝑒𝐾 ≻𝑖𝐾 𝑒𝑒1. Then, 𝜆𝐾 > 𝜆1, which we just showed it cannot happen. This means 

that the system satisfies P-GARP. However, it is straightforward to use Proposition 

2.2 as in Example 2.3 to show that it is not EU rationalizable   
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This example demonstrates that P-GARP cannot generally ensure EU 

rationalizability and also clarifies the conceptual reason for this failure: P-GARP (as 

GARP) does not carry non-local cardinal information and such information is 

necessary to ensure EU rationalizability in general. 

It should be stressed that Proposition 2.4 and Proposition 2.7 together do imply that 

P-WARP is sufficient for EU rationalization within the class of recursive systems. 

This observation is somewhat reminiscent of the already mentioned ordinal result 

stating that, if the domain of a choice correspondence includes all the 2 and 3 

element budget sets, WARP is sufficient for consistency with utility maximization. 

However, the two conditions are conceptually different as recursivity only requires 

richness around cycles and is otherwise consistent with very “sparse” systems. 

 

2.6. Anscombe-Aumann with State-Dependent Constraints 

A limitation often pointed out of the classic models of decisions under uncertainty 

presented in (Savage 1972) and in (Anscombe and Aumann 1963) (AA) is that they 

require DM’s preferences to be defined over a rather vast set of acts. In particular, it 

is typically assumed that every constant act is available and the DM is able to rank 

them. As noted by (Drèze 1990) and (Karni 1992), this is a drawback for both a 

normative and a positive interpretation of the theories. In this section, the results of 

Section 2.4 are used to relax the assumptions of the AA theorem, allowing feasible 

consequences to depend on the state.  
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To formally state the model, let 𝑆𝑆 be a finite set of states of the world, let 𝑋 be a 

finite the set of consequences and let Δ(𝑋) be the set of lotteries over 𝑋. An (AA) act 

is a function 𝑓 ∈ Δ(𝑋)𝑆. Let 𝐹 denote the set of all acts. Now, consider a set-valued 

function 𝐺 ∈ (2𝑋\{∅})𝑆. The interpretation is that 𝐺(𝑒𝑒) represents all the 

consequences which are feasible in state 𝑒𝑒 ∈ 𝑆𝑆. The set of feasible acts is thus  

𝐹∗ ≔ {𝑓 ∈ 𝐹|∀𝑒𝑒 ∈ 𝑆𝑆: supp 𝑓(𝑒𝑒) ⊆ 𝐺(𝑒𝑒)} 

Finally, let ≿ be a binary relation on 𝐹∗.  In the standard version of the AA model, 

𝐺(𝑒𝑒) = 𝑋 for all 𝑒𝑒 ∈ 𝑆𝑆, so 𝐹 = 𝐹∗. The goal of this section is to extend their result to 

cases in which 𝐹∗ ⊂ 𝐹. To do so, it is necessary to impose some structure on the 

feasibility constraints. The following definition plays a major role: 

 

Definition 2.12. A finite collection of sets is called a hypergraph. A hypergraph 

𝐻 ≔ {𝐴𝐴1, … ,𝐴𝐴𝐾} is called recursive if for every 𝑘 ∈ {1 … ,𝐾} there is 𝑗 ∈ {1, … , 𝑘 − 1} 

such that min{|𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖|, 2} = min��𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖 ∩ 𝐴𝐴𝑗�, 2� for all 𝑒𝑒 ∈ {1, … , 𝑘 − 1}. 

 

Intuitively, a recursive hypergraph has enough big sets in “strategic” positions. 

Then, consider the following axioms: 

 

(A1) The binary relation ≿ on 𝐹∗ is complete and transitive. 

 

(A2) 𝑓 ≿ 𝑔 implies 𝛼𝑓 + (1 − 𝛼)ℎ ≿ 𝛼𝑔 + (1 − 𝛼)ℎ  for all 𝑓,𝑔, ℎ ∈ 𝐹∗ and 𝛼 ∈ [0,1]. 
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Define conditional preferences for state 𝑒𝑒 ∈ 𝑆𝑆 as  

≿𝑠≔ �(𝑒𝑒, 𝑞) ∈ Δ�𝐺(𝑒𝑒)�
2�∀𝑓 ∈ 𝐹∗: 𝑒𝑒{𝑒𝑒}𝑓 ≿ 𝑞{𝑒𝑒}𝑓� 

If Axioms A1 and A2 hold, ≿𝑠 is complete and transitive on Δ�𝐺(𝑒𝑒)�. Now, consider 

the following continuity axioms: 

 

(A3) The sets {𝛼 ∈ [0,1]|𝛼𝑓 + (1 − 𝛼)𝑔 ≿ ℎ} and {𝛼 ∈ [0,1]|ℎ ≿ 𝛼𝑓 + (1 − 𝛼)𝑔} are 

closed for every 𝑓,𝑔, ℎ ∈ 𝐹∗. 

 

Axioms A1, A2 and A3 together imply that ≿𝑠 is a locally vNM preference over Δ(𝑋). 

In fact, they are sufficient to yield a state-dependent additive representation. But in 

order to achieve state-independence we need to impose more axioms. A state is said 

to be null if 𝑓 ∼𝑠 𝑔 for all 𝑓,𝑔 ∈ 𝐹∗. A state is non-null if it is not null. Since 

accounting for null states would unnecessarily complicate the analysis, the following 

axiom rules them out. 

 

(A4) Every state is non-null. 

 

The following axioms require that (≿𝑠)𝑠∈𝑆 satisfies P-WARP and strong connection: 

 

(A5) For all 𝑒𝑒, 𝑞 ∈ Δ(𝑋) and 𝑒𝑒, 𝑒𝑒′ ∈ 𝑆𝑆, 𝑒𝑒 ≿𝑠 𝑞 implies 𝑒𝑒 ⊁𝑠′ 𝑞. 

 

(A6) For every 𝑒𝑒, 𝑒𝑒′ ∈ 𝑆𝑆, there exists a sequence 𝑒𝑒1, … , 𝑒𝑒𝑛 ∈ 𝑆𝑆 such that 𝑒𝑒1 = 𝑒𝑒, 𝑒𝑒𝑛 = 𝑒𝑒′ 

and ≻𝑠𝑘∩ �𝐺(𝑒𝑒𝑘) ∩ 𝐺(𝑒𝑒𝑘+1)�2 ≠ ∅ for all 𝑘 ∈ {1, … ,𝐴𝐴 − 1}. 
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Finally, note that if we succeed in obtaining a state-independent representation, any 

two constant acts which yield a prize which is indifferent in one state must be 

indifferent. In this light, consider the following prize-antisymmetry axiom: 

 

(A7) For every 𝑒𝑒 ∈ 𝑆𝑆, 𝑥𝑥,𝑦𝑦 ∈ 𝐺(𝑒𝑒), 𝛿𝑥 ∼𝑠 𝛿𝑦 implies 𝑥𝑥 = 𝑦𝑦. 

 

Then, one can prove the following: 

 

Proposition 2.8. Assume that the hypergraph {𝐺(𝑒𝑒)|𝑒𝑒 ∈ 𝑆𝑆} is recursive. Then, Axioms 

𝐴𝐴1 − 𝐴𝐴7 hold if and only if there exists an injective function 𝑢 ∈ ℝ𝑋 and a strictly 

positive probability measure 𝜇𝜇 ∈ 𝛥(𝑆𝑆) such that the function 𝑈 ∈ ℝ𝐹∗ defined by 

𝑈(𝑓) ≔���𝑢(𝑥𝑥)𝑓𝑠(𝑥𝑥)
𝑥∈𝑋

� 𝜇𝜇(𝑒𝑒)
𝑠∈𝑆

 

represents ≿. The measure 𝜇𝜇 is unique and the vNM index 𝑢 is unique up to affine 

transformations. 

 

This result generalizes Theorem 13.2 in (Fishburn 1970), which assumes that two 

non-indifferent consequences are feasible in every state of nature (an assumption 

which clearly implies that {𝐺(𝑒𝑒)|𝑒𝑒 ∈ 𝑆𝑆} is recursive). 
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2.7. Extensions to infinite systems 

 

2.7.1. Infinite prize space 

In the preceding sections, it was assumed that 𝑋 was finite. However, the 

consideration of infinite 𝑋 is important for some applications. For example, many 

standard models consider monetary gambles with 𝑋 = ℝ+ or 𝑋 = ℝ. The results in 

sections 2.3 and 2.4 can be adapted to the case in which 𝑋 is allowed to be any 

separable metric space7. The first step is to amend the following: 

 

Definition 2.2’. A function 𝑢 ∈ ℝ𝑋 is called a local vNM index for ≿ if it is 

continuous, bounded and satisfies 

∀𝑒𝑒, 𝑞 ∈ dom ≿ : 𝑒𝑒 ≿ 𝑞 ⟺ �𝑢𝑎𝑎𝑒𝑒 ≥ �𝑢𝑎𝑎𝑞. 

When dom ≿ = Δ(𝑋), a local vNM index is called a vNM index. 

 

The addition of the continuity and boundedness requirement is intended to preserve 

the possibility of defining 𝑈 ∈ ℝΔ(𝑋) by 𝑈(𝑒𝑒) ≔ ∫𝑢𝑎𝑎𝑒𝑒 and having the binary relation 

{(𝑒𝑒, 𝑞) ∈ Δ(𝑋)2|𝑈(𝑒𝑒) ≥ 𝑈(𝑞)} satisfy the vNM axioms globally. In this way, one can 

still interpret an EU rationalizable system as a collection of fragmentary behavioral 

data produced by a single EU maximizer. 

7 Formally, Δ(𝑋) is now the set of all (countably additive) probability measures on 
�𝑋,ℬ(𝑋)�, where ℬ(𝑋) is the 𝜎 −algebra generated by the open sets of 𝑋. Moreover, 
one has to endow Δ(𝑋) with an appropriate topology. The standard choice is the 
topology of weak convergence, which is metrizable and makes Δ(𝑋) itself separable. 
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If 𝑋 is infinite, it is easy to construct examples of preferences satisfying Definition 

2.1 but failing to have a local vNM index. The reason is that the continuity notion 

adopted in Definition 2.1 is not strong enough when Δ(𝑋) is an infinite-dimensional 

space. It nevertheless possible to generalize Proposition 2.1, Proposition 2.2 and 

Proposition 2.4, by strengthening the vNM continuity in Definition 2.1.b to closed 

section, namely the requirement that the sets {𝑞 ∈ Δ(𝑋)|𝑒𝑒 ≿ 𝑞} and {𝑞 ∈ Δ(𝑋)|𝑞 ≿ 𝑒𝑒} 

are closed in dom ≿ for every 𝑒𝑒 ∈ Δ(𝑋). This condition cannot be weakened, for the 

equivalence between 𝐼 and 𝐼𝐼 in  Proposition 2.1 would fail. The following result is 

well-known, but is included here since it makes a decisive statement on the 

necessity of closed sections: 

 

Proposition 2.9. Let 𝑋 be a separable metric space and endow Δ(𝑋) with the 

topology of weak convergence. Then, a binary relation on Δ(𝑋) satisfies completeness, 

transitivity, independence and has closed sections if and only if there is a continuous 

and bounded function 𝑢:𝑋 → ℝ such that, for every 𝑒𝑒, 𝑞 ∈ Δ(𝑋) 

𝑒𝑒 ≿ 𝑞 ⟺ �𝑢𝑎𝑎𝑒𝑒 ≥ �𝑢𝑎𝑎𝑞 

 

Note that the additional power of closed sections only buys something in the case of 

infinite 𝑋. In fact, Proposition 2.1 can be used to show that, when 𝑋 is finite, closed 

sections is implied by the axioms in Definition 2.1. 
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2.7.2. Countably Many Local Preferences 

In some particular applications, in addition to infinite 𝑋, it is also important to deal 

with a countably infinite collection of observations or behavioral restrictions (e.g. 

consider infinite horizon discrete time models). Proposition 2.4 can be generalized to 

the case of 𝐼 = ℕ (with 𝑋 being arbitrary), if attention is restricted to simple lotteries 

(i.e. lotteries with finite support). Moreover, if one insists in having all lotteries 

available and 𝑋 is an arbitrary separable metric space, it is still possible to find a 

binary relation ≿ satisfying the vNM axioms such that ≿ extends ≿𝑖 for every 𝑒𝑒 ∈ ℕ. 

However, in this case, the extension ≿ might fail to have closed sections even if all 

the ≿𝑖 do. In such a case, Proposition 2.9 tells us that ≿ will not possess an expected 

utility representation, as the following example illustrates: 

 

Example 2.5. Let 𝑋 = 𝐼 = ℕ and consider the system (≿𝑖)𝑖∈𝐼 defined by assuming 

that, for every 𝑒𝑒 ∈ 𝐼, dom ≿𝑖 = Δ({𝑒𝑒, 𝑒𝑒 + 1, 𝑒𝑒 + 2}) and that 𝑢𝑖 ∈ ℝ𝑋 defined by 

𝑢𝑖(𝑥𝑥) ≔ �2
𝑥 𝑥𝑥 ∈ dom ≿𝑖

0 𝑥𝑥 ∈ Δ(𝑋)\ dom ≿𝑖
 

is a local vNM index for ≿𝑖. The prize space is endowed with the discrete topology. I 

will now show that there is no vNM index for (≿𝑖)𝑖∈𝐼. Define 𝑢 ∈ ℝ𝑋 by setting 

𝑢(𝑥𝑥) ≔ 2𝑥. It is easy to see that any vNM index should be an affine transformation of 

𝑢. However, 𝑢 is not bounded and, therefore, neither 𝑢 or any affine transformation 

of it can be a vNM index. Note that if we insist in defining an utility function 

𝑈 ∈ ℝΔ(𝑋) by setting 𝑈(𝑒𝑒) ≔ ∫𝑢𝑎𝑎𝑒𝑒 = ∑ 2𝑥𝑒𝑒(𝑥𝑥)𝑥∈ℕ , we would have 𝑈(𝑒𝑒) = +∞ for some 

lotteries 𝑒𝑒 ∈ Δ(𝑋). Therefore, the induced preference relation could not possibly 

satisfy the vNM axioms 
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2.8. Proofs 

 

Proof of Proposition 2.1 

First, I will show the equivalence of 𝐼 and 𝐼𝐼𝐼. Suppose there is 𝑌 non-empty such 

that ≿ satisfies the vNM axioms on Δ(𝑌) = dom ≿. Since 𝑌 is non-empty and is 

complete on Δ(𝑌), ≿ is non-trivial. Note that suppΔ(𝑌) = 𝑌. Then, if 𝑒𝑒, 𝑞 ∈ Δ(𝑋) and 

𝑒𝑒 ≿ 𝑞, it follows that  

𝑒𝑒, 𝑞 ∈ dom ≿ = Δ(𝑌) = Δ�supp�Δ(𝑌)�� ⊇ Δ(supp{𝑒𝑒, 𝑞}) 

This establishes that ≿ is locally complete. Local independence, transitivity and 

vNM continuity follow directly from the facts that dom ≿ = Δ(𝑌) and 𝑒𝑒 ≿ 𝑞 ≿ 𝑒𝑒 imply 

𝑒𝑒, 𝑞, 𝑒𝑒 ∈ Δ(𝑌) and that ≿ satisfies the vNM axioms on Δ(𝑌). 

For sufficiency, let ≿ be locally vNM. Then, let 𝑌 ≔ supp(dom ≿). I claim that 𝑌 

satisfies the properties required. Clearly, 𝑌 ⊆ 𝑋. Moreover, Δ(𝑌) ⊆ dom ≿ follows 

from local completeness: 

Δ(𝑌) = Δ(supp(dom ≿)) = Δ�supp�� {𝑒𝑒, 𝑞}
𝑝,𝑞∈Δ(𝑋):𝑝≿𝑞

�� 

= Δ�� supp({𝑒𝑒, 𝑞})
𝑝,𝑞∈Δ(𝑋):𝑝≿𝑞

� ⊆ Δ�� dom ≿
𝑝,𝑞∈Δ(𝑋):𝑝≿𝑞

� 

= Δ(dom ≿) ⊆ dom ≿. 

On the other hand, if 𝑒𝑒 ∈ dom ≿, then supp(𝑒𝑒) ⊆ supp(dom ≿) = 𝑌. Hence, 𝑒𝑒 ∈ Δ(𝑌). 

This shows that Δ(𝑌) = dom ≿. Finally, the vNM axioms on Δ(𝑌) follow from their 

local counterparts. 

It is obvious that if ≿ admits a locally vNM index, it is locally vNM, so 𝐼𝐼 implies 𝐼.  
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It remains to prove that 𝐼𝐼𝐼 implies 𝐼𝐼. So, suppose there is  a set 𝑌 ⊆ 𝑋 such that ≿ 

satisfies the vNM axioms on Δ(𝑌). Therefore, by the vNM there exist a function 

𝑢𝑌:𝑌 → ℝ such that 

𝑒𝑒 ≿ 𝑞 ⟺�𝑢𝑌(𝑥𝑥)𝑒𝑒(𝑥𝑥)
𝑥∈𝑌

≥ �𝑢𝑌(𝑥𝑥)𝑞(𝑥𝑥)
𝑥∈𝑌

. 

Extend 𝑢𝑌 to 𝑢:𝑋 → ℝ by setting 

𝑢(𝑥𝑥) ≔ �𝑢𝑌
(𝑥𝑥) 𝑥𝑥 ∈ 𝑌
0 𝑥𝑥 ∈ 𝑋\𝑌. 

It is easy to verify that 𝑢 is the desired local vNM index ∎ 

 

Proof of Proposition 2.2 

Necessity is easy. If (≿𝑖)𝑖∈𝐼 is EU rationalizable, then there exists 𝑢 ∈ ℝ𝑋 that is a 

local vNM index for ≿𝑖 for every i ∈ I. Then, setting 𝑢𝑖 ≔ 𝑢, 𝛼𝑖,𝑗 ≔ 1 and 𝛽𝑖,𝑗 = 0 for 

every 𝑒𝑒, 𝑗 ∈ 𝐼 provides a local pasting that will trivially satisfy the cycle equations. 

For sufficiency, assume that �𝛼𝑖,𝑗 ,𝛽𝑖,𝑗�𝑖,𝑗∈𝐼 is a local pasting which satisfies the “cycle 

equations” for every simple cycle. For a sequence of indexes (𝑒𝑒1, … , 𝑒𝑒𝐾+1), let 𝜙 denote 

the composite (positive affine) transformation: 

𝜙(𝑒𝑒1, … , 𝑒𝑒𝐾+1) ≔ ��𝛼𝑖𝑘,𝑖𝑘+1

𝐾

𝑘=1

,���𝛼𝑖𝑠,𝑖𝑠+1

𝑘−1

𝑠=1

�𝛽𝑖𝑘,𝑖𝑘+1

𝐾

𝑘=1

�. 

The cycle equations thus require that 𝜙(𝑒𝑒1, … , 𝑒𝑒𝐾+1) = (1,0) ≡ 𝑒𝑒𝑎𝑎 (i.e. the identity in 

the group of positive affine transformations) whenever (𝑒𝑒1, … , 𝑒𝑒𝐾+1) is a simple cycle.  
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Note that 

𝜙(𝑒𝑒1, … , 𝑒𝑒𝐻 , … 𝑒𝑒𝐾+1) = 𝜙(𝑒𝑒𝐻 , … 𝑒𝑒𝐾+1) ∘ 𝜙(𝑒𝑒1, … , 𝑒𝑒𝐻). 

I will now prove that the equations are satisfied for every cycle, simple or not. This 

can be shown by induction. The result is obviously true for cycles with 1 or 2 

elements. Assume that the claim is true for cycles with 𝐾 − 1 ≥ 2 elements or less 

and let 𝑐 = (𝑒𝑒1, … , 𝑒𝑒𝐾+1) be a cycle of 𝐾 elements. Note that there is no loss of 

generality in assuming that 𝑐 starts with a simple cycle. Then, 𝑐 can be written 

𝑐 = 𝑒𝑒1𝐵𝐵1𝑒𝑒2𝐵𝐵2 … 𝑒𝑒𝑁𝐵𝐵𝑁, where, for every 𝐴𝐴 ∈ {1, …𝑁𝑁}, each 𝑒𝑒𝑛 is a simple cycle and 𝐵𝐵𝑛 is a 

sequence of indexes which do not repeat and starts with the last element of 𝑒𝑒𝑛. Then, 

𝜙(𝑐) = 𝜙(𝑒𝑒1𝐵𝐵1𝑒𝑒2𝐵𝐵2 … 𝑒𝑒𝑁𝐵𝐵𝑁) 

= 𝜙(𝐵𝐵𝑁) ∘ 𝜙(𝑒𝑒𝑁) ∘ 𝜙(𝐵𝐵𝑁−1) ∘ 𝜙(𝑒𝑒𝑁−1) ∘ … ∘ 𝜙(𝐵𝐵1) ∘ 𝜙(𝑒𝑒1) 

= 𝜙(𝐵𝐵𝑁) ∘ 𝑒𝑒𝑎𝑎 ∘ 𝜙(𝐵𝐵𝑁−1) ∘ 𝑒𝑒𝑎𝑎 ∘ … ∘ 𝜙(𝐵𝐵1) ∘ 𝑒𝑒𝑎𝑎 

= 𝜙(𝐵𝐵𝑁) ∘ 𝜙(𝐵𝐵𝑁−1) ∘ … ∘ 𝜙(𝐵𝐵1) 

= 𝜙(𝐵𝐵1𝐵𝐵2 … 𝐵𝐵𝑁). 

Then, 𝑐′ ≔ 𝐵𝐵1𝐵𝐵2 … 𝐵𝐵𝑁 is also a cycle and has strictly less elements than 𝑐. Hence, 

𝜙(𝑐′) = 𝑒𝑒𝑎𝑎 by the inductive hypothesis. This implies that also 𝜙(𝑐) = 𝑒𝑒𝑎𝑎. It follows by 

mathematical induction that every cycle satisfies the cycle equations. 

For every 𝑒𝑒 ∈ 𝐼, let 𝑌𝑖 ≔ supp(dom ≿𝑖). The indices 𝑒𝑒, 𝑗 ∈ 𝐼 are said to connected if 

there is a sequence 𝑒𝑒1, … , 𝑒𝑒𝐾 ∈ 𝐼 such that 𝑒𝑒1 = 𝑒𝑒, 𝑒𝑒𝐾 = 𝑗 and 𝑌𝑖𝑘 ∩ 𝑌𝑖𝑘+1 ≠ ∅ for all 

𝑘 ∈ {1, … ,𝐾 − 1} (in what follows such a sequence is called a path). Fix some index 

𝑒𝑒∗ ∈ 𝐼. Without loss of generality assume that 𝑒𝑒∗ is connected to 𝑒𝑒 for all 𝑒𝑒 ∈ 𝐼 (if not 

repeat this procedure in each connected component of 𝐼).  
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Define 𝑢 ∈ ℝ𝑋 by setting 

𝑢(𝑥𝑥) ≔ �𝜙(𝑒𝑒𝑖)�𝑢𝑖(𝑥𝑥)� 𝑒𝑒𝑓 ∃𝑒𝑒 ∈ 𝐼: 𝑥𝑥 ∈ 𝑌𝑖
0 𝑒𝑒𝑓 ∀𝑒𝑒 ∈ 𝐼: 𝑥𝑥 ∉ 𝑌𝑖 .

 

where 𝑒𝑒𝑖 is a path from 𝑒𝑒 to 𝑒𝑒∗.This is well defined because there is such a path and 

the value of 𝜙(𝑒𝑒𝑖)�𝑢𝑖(𝑥𝑥)� is independent of 𝑒𝑒𝑖. The first claim follows from the fact 

that 𝑒𝑒 and 𝑒𝑒∗ are connected. To prove the second claim, it will be shown that, for 

every path 𝑒𝑒𝑖 from 𝑒𝑒 to 𝑒𝑒∗, every path 𝑒𝑒𝑗 from 𝑗 to 𝑒𝑒∗, indices 𝑒𝑒, 𝑗 ∈ 𝐼 and 𝑥𝑥 ∈ 𝑌𝑖 ∩ 𝑌𝑗, the 

following equality holds: 

𝜙(𝑒𝑒𝑖)�𝑢𝑖(𝑥𝑥)� = 𝜙�𝑒𝑒𝑗� �𝑢𝑗(𝑥𝑥)�. 

To see this, note that there is no loss of generality in assuming 𝑌𝑖 ∩ 𝑌𝑗 ≠ ∅. Then, 

construct the path 𝑐 ≔ 𝑒𝑒𝑖−1𝑒𝑒𝑗. Note that 𝑐 is a cycle since 𝑒𝑒𝑖−1 is a path from 𝑒𝑒∗ to 𝑒𝑒, 𝑒𝑒𝑗 

is a path from 𝑗 to 𝑒𝑒∗ and 𝑌𝑖 ∩ 𝑌𝑗 ≠ ∅. Hence,  

𝑒𝑒𝑎𝑎 = 𝜙(𝑐) = 𝜙�𝑒𝑒𝑖−1𝑒𝑒𝑗� = 𝜙�𝑒𝑒𝑗� ∘ 𝜙(𝑗, 𝑒𝑒) ∘ 𝜙(𝑒𝑒𝑖)−1. 

 Therefore, 

𝜙(𝑒𝑒𝑖)�𝑢𝑖(𝑥𝑥)� = �𝜙�𝑒𝑒𝑗� ∘ 𝜙(𝑗, 𝑒𝑒)� �𝑢𝑖(𝑥𝑥)� = 𝜙�𝑒𝑒𝑗� �𝜙(𝑗, 𝑒𝑒)�𝑢𝑖(𝑥𝑥)�� = 𝜙�𝑒𝑒𝑗� �𝑢𝑗(𝑥𝑥)�. 

Note, in particular, that this means that the choice of the path 𝑒𝑒 is irrelevant. To 

finish the proof, it suffices to take (𝑎𝑎𝑖 , 𝐵𝐵𝑖) ≔ 𝜙(𝑒𝑒𝑖) for every 𝑒𝑒 ∈ 𝐼 ∎ 
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Proof of Proposition 2.3 

For each 𝑒𝑒 ∈ 𝐼, 𝑢𝑖 ≔ 𝑢 is a local vNM index for ≿𝑖. Note that �𝛼𝑖,𝑗∗ ,𝛽𝑖,𝑗∗ �𝑖,𝑗∈𝐼 = (1,0)𝑖,𝑗∈𝐼 

provides a (trivial) local pasting. It is clear that, if this is the unique local pasting for 

this collection of local vNM indices, the claim will be proved 

On one hand, the number �𝑁𝑁(𝑀)
2

�𝑅(𝑀) counts the number of independent equations 

restricting the local pastings generated by the domain intersections in 𝑀 (note that 

the symmetric equations 𝑢𝑖 = 𝛼𝑖,𝑗𝑢𝑗 + 𝛽𝑖,𝑗 and 𝑢𝑗 = 𝛼𝑗,𝑖𝑢𝑖 + 𝛽𝑗,𝑖   are counted as one). 

Hence, the LHS of the equality is the total number of equations restricting local 

pastings. On the other hand, �|𝐼|
2
� is the number of potential domain intersections, 

so 2 �|𝐼|
2
� counts the number of (independent) constants in any local pasting.  

Hence, if the equality is satisfied, the affine system which a local pasting must solve 

given (𝑢𝑖)𝑖∈𝐼 must have at most one solution. Since we already know that the system 

has a solution, it has a unique solution. Therefore, �𝛼𝑖,𝑗∗ ,𝛽𝑖,𝑗∗ �𝑖,𝑗∈𝐼 is the unique local 

pasting consistent with (𝑢𝑖)𝑖∈𝐼. It follows that any vNM index for (≿𝑖)𝑖∈𝐼 must be an 

affine transformation of 𝑢 ∎ 
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Proof of Proposition 2.4 

Necessity of local coherence does not require the recursivity condition and is 

straightforward, so I shall only prove sufficiency. For simplicity, denote 𝐴𝐴𝑖 ≔ dom ≿𝑖 

for every 𝑒𝑒 ∈ 𝐼. By recursivity and local coherence, one can list the preferences 

conforming the system as ≿1, … ,≿𝑖 , … with domains 𝐴𝐴1, … ,𝐴𝐴𝑖 , … ordered to satisfy the 

property in the definition of recursivity. 

For every 𝑒𝑒 ∈ 𝐼, define 𝐵𝐵𝑖 ≔ ⋃ 𝐴𝐴𝑗𝑖
𝑗=1 . Because each ≿𝑖 is a locally vNM preference, it 

possesses a local vNM index 𝑢𝑖. So, define a function 𝑢1 ∈ ℝ𝑋 by 

𝑢1(𝑥𝑥) ≔ �𝑢1
(𝑥𝑥) 𝑥𝑥 ∈ 𝐵𝐵1
0 𝑥𝑥 ∈ 𝑋\𝐵𝐵1. 

Now, suppose that, for some 𝑘 ∈ {2,3, … }, 𝑢𝑘−1 is well-defined and provides and EU 

rationalization for (≿1, … ,≿𝑘−1). Since the system is recursive, there exists 𝑗 ∈

{1, … , 𝑘 − 1} such that 𝑅(𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖) = 𝑅�𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖 ∩ 𝐴𝐴𝑗� for all 𝑒𝑒 ∈ {1, … , 𝑘 − 1}. Moreover, 

by local coherence and the uniqueness part of the vNM theorem, there are vNM 

constants 𝑎𝑎 ∈ ℝ++ and 𝐵𝐵 ∈ ℝ such that 𝑢𝑗(𝑥𝑥) = 𝑎𝑎𝑢𝑘(𝑥𝑥) + 𝐵𝐵 for every 𝑥𝑥 ∈ 𝐴𝐴𝑘 ∩ 𝐴𝐴𝑗 (if 

𝐴𝐴𝑘 ∩ 𝐴𝐴𝑗 = ∅, one could choose any pair of constants in ℝ++ × ℝ, but to be definite 

choose 𝑎𝑎 = 1 and 𝐵𝐵 = 0 in such a case). Moreover, since 𝑢𝑘−1 provides an EU 

rationalization for (≿1, … ,≿𝑘−1), it must be a local vNM index for ≿𝑗. Hence, again by 

the uniqueness part of the vNM theorem, there must be constants 𝑎𝑎′ ∈ ℝ++ and 

𝐵𝐵′ ∈ ℝ such that 

𝑢𝑘−1(𝑥𝑥) = 𝑎𝑎′𝑢𝑗(𝑥𝑥) + 𝐵𝐵′       ∀𝑥𝑥 ∈ 𝐴𝐴𝑗 . 
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Then, one can define 𝑢𝑘 ∈ ℝ𝑋 by setting 

𝑢𝑘(𝑥𝑥) ≔ �
𝑎𝑎′(𝑎𝑎𝑢𝑘(𝑥𝑥) + 𝐵𝐵) + 𝐵𝐵′ 𝑥𝑥 ∈ 𝐴𝐴𝑘

𝑢𝑘−1(𝑥𝑥) 𝑥𝑥 ∈ 𝐵𝐵𝑘−1
0 𝑥𝑥 ∈ 𝑋\𝐵𝐵𝑘 .

 

I claim that 𝑢𝑘 is well-defined. That is, for every 𝑥𝑥 ∈ 𝐴𝐴𝑘 ∩ 𝐵𝐵𝑘−1,  

𝑎𝑎′(𝑎𝑎𝑢𝑘(𝑥𝑥) + 𝐵𝐵) + 𝐵𝐵′ = 𝑢𝑘−1(𝑥𝑥). 

If 𝑥𝑥 ∈ 𝐴𝐴𝑗, the equality holds trivially. Now, suppose that 𝑥𝑥 ∈ 𝐴𝐴𝑘 ∩ 𝐵𝐵𝑘−1\𝐴𝐴𝑗. Then, 

there must be 𝑒𝑒 ∈ {1, … , 𝑘 − 1}\{𝑗} such that 𝑥𝑥 ∈ 𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖. There are three cases to deal 

with, depending on the value of 𝑅�𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖 ∩ 𝐴𝐴𝑗�.  

If 𝑅�𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖 ∩ 𝐴𝐴𝑗� = 0, then 𝑅(𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖) = 0, so 𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖 = ∅, a contradiction. 

If 𝑅�𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖 ∩ 𝐴𝐴𝑗� = 1, then 𝑅(𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖) = 1, so there is 𝑥𝑥′ ∈ 𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖 ∩ 𝐴𝐴𝑗 such that 

𝑥𝑥 ∼𝑘 𝑥𝑥′ ∼𝑖 𝑥𝑥. This means that 𝑎𝑎′(𝑎𝑎𝑢𝑘(𝑥𝑥) + 𝐵𝐵) + 𝐵𝐵′ = 𝑎𝑎′(𝑎𝑎𝑢𝑘(𝑥𝑥′) + 𝐵𝐵) + 𝐵𝐵′ = 𝑢𝑘−1(𝑥𝑥′) =

𝑢𝑘−1(𝑥𝑥). 

Finally, suppose 𝑅�𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖 ∩ 𝐴𝐴𝑗� = 2. Then, there are 𝑥𝑥, 𝑥𝑥 ∈ 𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖 ∩ 𝐴𝐴𝑗 such that 

𝑥𝑥 ≻ℎ 𝑥𝑥 for ℎ ∈ {𝑒𝑒, 𝑗, 𝑘}. These prizes can be used to explicitly solve the vNM constants. 

First, solve 𝑢𝑗(𝑥𝑥) = 𝑎𝑎𝑢𝑘(𝑥𝑥) + 𝐵𝐵 and 𝑢𝑗�𝑥𝑥� = 𝑎𝑎𝑢𝑘�𝑥𝑥� + 𝐵𝐵 for 𝑎𝑎, 𝐵𝐵. This yields. 

𝑎𝑎 =
𝑢𝑗(𝑥𝑥) − 𝑢𝑗�𝑥𝑥�
𝑢𝑘(𝑥𝑥) − 𝑢𝑘�𝑥𝑥�

> 0                   𝐵𝐵 =
𝑢𝑘(𝑥𝑥)𝑢𝑗�𝑥𝑥� − 𝑢𝑘�𝑥𝑥�𝑢𝑗(𝑥𝑥)

𝑢𝑘(𝑥𝑥) − 𝑢𝑘�𝑥𝑥�
. 

Then, solve 𝑢𝑘−1(𝑥𝑥) = 𝑎𝑎′𝑢𝑗(𝑥𝑥) + 𝐵𝐵′ and 𝑢𝑘−1�𝑥𝑥� = 𝑎𝑎′𝑢𝑗�𝑥𝑥� + 𝐵𝐵′  for 𝑎𝑎′, 𝐵𝐵′. This yields  

𝑎𝑎′ =
𝑢𝑘−1(𝑥𝑥) − 𝑢𝑘−1�𝑥𝑥�
𝑢𝑗(𝑥𝑥) − 𝑢𝑗�𝑥𝑥�

> 0                   𝐵𝐵′ =
𝑢𝑗(𝑥𝑥)𝑢𝑘−1�𝑥𝑥� − 𝑢𝑗�𝑥𝑥�𝑢𝑘−1(𝑥𝑥)

𝑢𝑗(𝑥𝑥) − 𝑢𝑗�𝑥𝑥�
. 
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Recall that we are proving that 𝑎𝑎′(𝑎𝑎𝑢𝑘(𝑥𝑥) + 𝐵𝐵) + 𝐵𝐵′ = 𝑢𝑘−1(𝑥𝑥). For this to hold, it 

suffices that, for every 𝑥𝑥′ ∈ 𝐴𝐴𝑘 ∩ 𝐴𝐴𝑖, 𝑎𝑎′′𝑢𝑘(𝑥𝑥′) + 𝐵𝐵′′ = 𝑢𝑘−1(𝑥𝑥′) with 𝑎𝑎′′ = 𝑎𝑎′𝑎𝑎 and 

𝐵𝐵′′ = 𝑎𝑎′𝐵𝐵 + 𝐵𝐵′. But, on one hand, 𝑎𝑎′′ and 𝐵𝐵′′ are uniquely determined by: 

𝑎𝑎′′ =
𝑢𝑘−1(𝑥𝑥) − 𝑢𝑘−1�𝑥𝑥�
𝑢𝑘(𝑥𝑥) − 𝑢𝑘�𝑥𝑥�

> 0                   𝐵𝐵′′ =
𝑢𝑘(𝑥𝑥)𝑢𝑘−1�𝑥𝑥� − 𝑢𝑘�𝑥𝑥�𝑢𝑘−1(𝑥𝑥)

𝑢𝑘(𝑥𝑥) − 𝑢𝑘�𝑥𝑥�
. 

On the other hand, the computations above yield 

𝑎𝑎′𝑎𝑎 = �
𝑢𝑘−1(𝑥𝑥) − 𝑢𝑘−1�𝑥𝑥�
𝑢𝑗(𝑥𝑥) − 𝑢𝑗�𝑥𝑥�

� �
𝑢𝑗(𝑥𝑥) − 𝑢𝑗�𝑥𝑥�
𝑢𝑘(𝑥𝑥) − 𝑢𝑘�𝑥𝑥�

� = 𝑎𝑎′′ 

and 

𝑎𝑎′𝐵𝐵 + 𝐵𝐵′ = �
𝑢𝑗(𝑥𝑥) − 𝑢𝑗�𝑥𝑥�
𝑢𝑗(𝑥𝑥) − 𝑢𝑗�𝑥𝑥�

� �
𝑢𝑘−1(𝑥𝑥)𝑢𝑘(𝑥𝑥) − 𝑢𝑘�𝑥𝑥�𝑢𝑘−1�𝑥𝑥�

𝑢𝑘(𝑥𝑥) − 𝑢𝑘�𝑥𝑥�
� = 𝐵𝐵′′. 

Hence, I conclude that 𝑎𝑎′(𝑎𝑎𝑢𝑘(𝑥𝑥) + 𝐵𝐵) + 𝐵𝐵′ = 𝑢𝑘−1(𝑥𝑥), as claimed. 

Once proven that the definition of 𝑢𝑘 given above is sound, it is obvious that 𝑢𝑘 

provides an EU rationalization for (≿1, … ,≿𝑘).  

It follows by induction that 𝑢𝑘 is well-defined and provides and EU rationalization 

for �≿𝑖𝑘 , … ,≿𝑖𝑘� for every 𝑘 ∈ {1, … , |𝐼|}. Note also that 𝑢𝑘(𝑥𝑥) = 𝑢𝑘+1(𝑥𝑥) for every 

𝑥𝑥 ∈ 𝐵𝐵𝑘. So take 𝑢 = 𝑢|𝐼|. Since, for every 𝑒𝑒 ∈ 𝐼, 𝑢(𝑥𝑥) = 𝑢𝑖(𝑥𝑥) = 𝑎𝑎𝑢𝑖(𝑥𝑥) + 𝐵𝐵 for all 𝑥𝑥 ∈ 𝐴𝐴𝑖 

and some constants 𝑎𝑎 ∈ ℝ++, 𝐵𝐵 ∈ ℝ, it follows that 𝑢 is a local vNM index for ≿𝑖. It 

follows that (≿𝑖)𝑖∈𝐼 is EU rationalizable ∎ 
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Proof of Proposition 2.5 

Consider sufficiency first. Fix a system (≿𝑖)𝑖∈𝐼 with two vNM indices 𝑢 and 𝑢′. 

Consider first the case in which ≻𝑖= ∅ for all 𝑒𝑒 ∈ 𝐼. Then, by strong connection, it 

must be the case that 𝑢 and 𝑢′ are constant on 𝑋. It follows that (≿𝑖)𝑖∈𝐼 is uniquely 

EU rationalizable. 

Now consider the main case in which there exists 𝑒𝑒 ∈ 𝐼 such that ≻𝑖≠ ∅. Then, it is 

possible to normalize 𝑢 and 𝑢′ to coincide over dom ≿𝑖. Pick an arbitrary 𝑗 ∈ 𝐼 and an 

arbitrary point 𝑥𝑥 ∈ dom ≿𝑗. By strong connection, there is a sequence 𝑒𝑒1, … , 𝑒𝑒𝐾 ∈ 𝐼 

such that 𝑒𝑒1 = 𝑒𝑒, 𝑒𝑒𝐾 = 𝑗 and dom ≿𝑖𝑘 ∩ dom ≿𝑖𝑘+1 ≠ ∅ for all 𝑘 ∈ {1, … ,𝐾 − 1}. Let 

𝑘∗ ≔ max�𝑘 ∈ {1, … ,𝐾}�≻|𝑖𝑘 ≠ ∅�. Then, there is 𝑥𝑥∗ ∈ dom ≿𝑖𝑘∗  such that 𝑥𝑥 ∼ 𝑥𝑥∗ ∼′ 𝑥𝑥. 

Hence, 𝑢(𝑥𝑥) = 𝑢(𝑥𝑥∗) and 𝑢′(𝑥𝑥) = 𝑢′(𝑥𝑥∗). Moreover, by rich connection, there is a 

sequence 𝑒𝑒1′ , … , 𝑒𝑒𝐾′
′ ∈ 𝐼 such that 𝑒𝑒1′ = 𝑒𝑒, 𝑒𝑒𝐾′

′ = 𝑒𝑒𝑘∗ and ≻𝑖𝑘
′ ∩ �dom ≿𝑖𝑘

′ ∩ dom ≿𝑖𝑘+1
′ �

2
≠ ∅ 

for all 𝑘 ∈ {1, … ,𝐾′ − 1}. It follows that the vNM constants relating utilities between 

sets dom ≿𝑖𝑘
′  and dom ≿𝑖𝑘+1

′  are uniquely determined. This fact combined with the 

coincidence of 𝑢 and 𝑢′ over dom ≿𝑖1′  implies that 𝑢(𝑥𝑥∗) = 𝑢′(𝑥𝑥∗). Hence, 𝑢(𝑥𝑥) = 𝑢′(𝑥𝑥). 

Since the choice of 𝑥𝑥 was arbitrary, it must be that 𝑢 = 𝑢′, proving that the system is 

uniquely EU rationalizable. 

Now consider sufficiency. Given an EU rationalizable system (≿𝑖)𝑖∈𝐼, simplify 

notation by defining 𝐴𝐴𝑖 ≔ dom(≿𝑖). Note that, since the system is assumed to be EU 

rationalizable, we can identify preferences over identical domains.  
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By recursivity the indices can be ordered 𝑒𝑒1, … , 𝑒𝑒𝐾 in such a way that for every 𝑘 ∈ ℕ 

there exists 𝑒𝑒 ∈ {1, … , 𝑘 − 1} so that 𝑆𝑆�𝐴𝐴𝑖𝑘 ∩ 𝐴𝐴𝑖𝑠� = 𝑆𝑆�𝐴𝐴𝑖𝑘 ∩ 𝐴𝐴𝑖𝑠 ∩ 𝐴𝐴𝑖ℎ� for all ℎ ∈

{1, … , 𝑘 − 1}. For each 𝑒𝑒𝑘, denote its predecessors by 𝒫(𝑒𝑒𝑘) ≔ {𝑒𝑒1, … , 𝑒𝑒𝑘−1}. 

Note that there is no loss of generality in assuming that the set of domains is 

connected (i.e. that for every 𝑒𝑒, 𝑗 ∈ 𝐼 there is a sequence 𝑒𝑒1, … , 𝑒𝑒𝐾 ∈ 𝐼 such that 𝑒𝑒1 = 𝑒𝑒, 

𝑒𝑒𝐾 = 𝑗 and 𝐴𝐴𝑖𝑘 ∩ 𝐴𝐴𝑖𝑘+1 ≠ ∅ for 𝑘 ∈ {1, … ,𝐾 − 1}), otherwise uniqueness can never hold.  

Define a binary relation ∼𝑅𝐶 on 𝐼 by setting 𝑒𝑒 ∼𝑅𝐶 𝑗 if and only if ≻|𝐴𝐴𝑖∩𝐴𝐴𝑗 ≠ ∅. 

Now, suppose the system is not strongly connected. Then, there must exist 𝑒𝑒 ∈ 𝐼 such 

that, for every 𝑗 ∈ 𝒫(𝑒𝑒), 𝑒𝑒 ≁𝑅𝐶 𝑗. To see this, suppose on the contrary that 𝑒𝑒 ∼𝑅𝐶 𝑗 for 

every 𝑗 ∈ 𝒫(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐼. Then, for every 𝑒𝑒, 𝑗 ∈ 𝐼, it is possible to construct sequences 

𝑒𝑒1′ , … , 𝑒𝑒𝐾′ ∈ 𝐼 and 𝑗1′ , … , 𝑗𝐾′
′ ∈ 𝐼 where 𝑒𝑒1′ = 𝑗1′ = 𝑒𝑒1, 𝑒𝑒𝐾′ = 𝑒𝑒, 𝑗𝐾′

′ = 𝑗, 𝑒𝑒𝑘′ ∈ 𝒫(𝑒𝑒𝑘+1′ ) for all 

𝑘 ∈ {1, … ,𝐾 − 1} and 𝑗𝑘′ ∈ 𝒫(𝑗𝑘+1′ ) for all 𝑘 ∈ {1, … ,𝐾′ − 1}. But then the sequence 

𝑒𝑒, 𝑒𝑒𝐾′ , … , 𝑒𝑒2′ , 𝑒𝑒1, 𝑗2′ , … , 𝑗𝐾′−1
′ , 𝑗 contradicts the assumption that the system is not strongly 

connected. 

From this observation and the construction in Proposition 2.4, it is clear that when 

the index 𝑒𝑒 that is not richly connected to any of its predecessors is reached, the vNM 

constants to be chosen are not unique and multiple vNM indices that are not 

positive affine transformations of each other can be easily constructed ∎ 
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Proof of Proposition 2.6 

Necessity is easy, so it won’t be proved. Note that continuity is necessary because, 

since 𝑋 is finite, every locally vNM preference will have closed sections (in the 

relative topology).  

For sufficiency, let 𝐼 be the collection of maximal simplexes contained in ℬ. Note 

that, since ℬ is locally rich, for each 𝐵𝐵 ∈ ℬ, there exists at least one 𝑒𝑒 ∈ 𝐼 such that 

𝐵𝐵 ⊆ 𝑒𝑒. Moreover, 𝑒𝑒, 𝑞 ∈ 𝑒𝑒 implies that Δ(supp{𝑒𝑒, 𝑞}) = Δ(supp 𝑒𝑒 ∪ supp 𝑞) ∈ ℬ and that 

Δ(supp{𝑒𝑒, 𝑞}) ⊆ 𝑒𝑒 (although Δ(supp{𝑒𝑒, 𝑞}) is not necessarily equal to 𝑒𝑒 unless it is 

maximal). For each 𝑒𝑒 ∈ 𝐼, define ≿𝑖 as 

≿𝑖≔� (𝑐([𝑒𝑒, 𝑞]) × [𝑒𝑒, 𝑞])
𝑝,𝑞∈𝑖

, 

where [𝑒𝑒, 𝑞] denote the convex hull of {𝑒𝑒, 𝑞}. Note that WARP implies that 

≿𝑖  = � (𝑐(𝐵𝐵) × 𝐵𝐵)
𝐵𝐵∈ℬ:𝐵𝐵⊆𝑖

. 

To see this, note that one inclusion is trivial for 𝑒𝑒, 𝑞 ∈ 𝑒𝑒 implies [𝑒𝑒, 𝑞] ⊆ 𝑒𝑒 and 

[𝑒𝑒, 𝑞] ∈ ℬ. For the opposite inclusion, pick 𝐵𝐵 ∈ ℬ such that 𝐵𝐵 ⊆ 𝑒𝑒. Then, consider any 

𝑒𝑒 ∈ 𝑐(𝐵𝐵) and 𝑞 ∈ 𝐵𝐵. Since [𝑒𝑒, 𝑞] ⊆ 𝐵𝐵 by convexity, WARP implies that 𝑒𝑒 ∈ 𝑐(𝐵𝐵) ∩

[𝑒𝑒, 𝑞] = 𝑐([𝑒𝑒, 𝑞]). Therefore, 𝑒𝑒 ≿𝑖 𝑞 as needed. 

I now claim that ≿𝑖 is a locally vNM preference. Clearly, ≿𝑖 satisfies non-triviality 

because 𝑐(𝑒𝑒) ≠ ∅ and every 𝑒𝑒 ∈ 𝑐(𝑒𝑒) satisfies 𝑒𝑒 ≿𝑖 𝑒𝑒. To show local completeness, pick 

𝑒𝑒, 𝑞 ∈ Δ(𝑋) such that 𝑒𝑒 ≿𝑖 𝑞. Then, (𝑒𝑒, 𝑞) ∈ 𝑐(𝐵𝐵) × 𝐵𝐵 for some 𝐵𝐵 ∈ ℬ. Clearly, 𝐵𝐵 ⊆ 𝑒𝑒. 

Moreover, Δ(supp{𝑒𝑒, 𝑞}) ∈ ℬ and Δ(supp{𝑒𝑒, 𝑞}) ⊆ 𝑒𝑒 since ℬ is locally rich and 𝑒𝑒 is a 

maximal simplex. By the equality proven above, 𝑐�Δ(supp{𝑒𝑒, 𝑞})� × Δ(supp{𝑒𝑒, 𝑞}) ⊆ ≿𝑖. 

This implies that Δ(supp{𝑒𝑒, 𝑞}) ⊆ dom ≿𝑖, showing that ≿𝑖 is locally complete. 
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To show local independence, pick 𝑒𝑒, 𝑞, 𝑒𝑒 ∈ dom ≿𝑖 such that 𝑒𝑒 ≿𝑖 𝑞 and 𝛼 ∈ [0,1]. 

Then, 𝑒𝑒 ∈ 𝑐([𝑒𝑒, 𝑞]). By linearity, 𝑐(𝛼[𝑒𝑒, 𝑞] + (1 − 𝛼)𝑒𝑒) = 𝛼𝑐([𝑒𝑒, 𝑞]) + (1 − 𝛼)𝑒𝑒. But this 

means that  

𝛼𝑒𝑒 + (1 − 𝛼)𝑒𝑒 ∈ 𝑐(𝛼[𝑒𝑒, 𝑞] + (1 − 𝛼)𝑒𝑒) = 𝑐([𝛼𝑒𝑒 + (1 − 𝛼)𝑒𝑒,𝛼𝑞 + (1 − 𝛼)𝑒𝑒]). 

It follows that 𝛼𝑒𝑒 + (1 − 𝛼)𝑒𝑒 ≿𝑖 𝛼𝑞 + (1 − 𝛼)𝑒𝑒. 

To prove transitivity, let 𝑒𝑒, 𝑞, 𝑒𝑒 ∈ Δ(𝑋) such that 𝑒𝑒 ≿𝑖 𝑞 ≿𝑖 𝑒𝑒. Then, 𝑒𝑒 ∈ 𝑐([𝑒𝑒, 𝑞]) and 

𝑞 ∈ 𝑐([𝑞, 𝑒𝑒]) by construction. Let 𝐵𝐵 ∈ ℬ be the convex hull of {𝑒𝑒, 𝑞, 𝑒𝑒} and consider 

𝑐(𝐵𝐵). Local independence implies that {𝑒𝑒, 𝑞, 𝑒𝑒} ∩ 𝑐(𝐵𝐵) ≠ ∅. But 𝑒𝑒 ∈ 𝑐(𝐵𝐵) implies 

𝑞 ∈ 𝑐(𝐵𝐵), and 𝑞 ∈ 𝑐(𝐵𝐵) implies 𝑒𝑒 ∈ 𝑐(𝐵𝐵) by WARP. Therefore, 𝑒𝑒 ∈ 𝑐(𝐵𝐵) and, since 

𝑒𝑒 ∈ 𝐵𝐵, we have 𝑒𝑒 ≿𝑖 𝑒𝑒. 

It remains to prove that ≿𝑖 satisfies vNM continuity. It suffices to show that ≿𝑖 has 

closed sections (see Proposition 2.9). So, pick a sequence 𝑒𝑒𝑛 → 𝑒𝑒 such that 𝑒𝑒𝑛 ≿𝑖 𝑞 for 

all 𝐴𝐴. This means that 𝑒𝑒𝑛 ∈ 𝑐([𝑒𝑒𝑛, 𝑞]). Clearly, [𝑒𝑒𝑛, 𝑞]
𝐻
→ [𝑒𝑒, 𝑞]. Since 𝑐 is continuous,  

𝑒𝑒 = lim
𝑛→∞

𝑒𝑒𝑛 ∈ 𝑐 � lim
𝑛→∞

[𝑒𝑒𝑛, 𝑞]� = 𝑐([𝑒𝑒, 𝑞]). 

Since each ≿𝑖 is non-trivial, locally complete, locally independent, transitive and 

vNM continuous, (≿𝑖)𝑖∈𝐼 is locally vNM. Moreover, if 𝐵𝐵 ∈ ℬ and 𝐵𝐵 ⊆ dom ≿𝑖, we have 

𝐵𝐵 ⊆ 𝑒𝑒. Hence, ≿𝑖⊇ 𝑐(𝐵𝐵) × 𝐵𝐵. Thus, 𝑐(𝐵𝐵) ⊆ {𝑒𝑒 ∈ 𝐵𝐵|∀𝑞 ∈ 𝐵𝐵: 𝑒𝑒 ≿𝑖 𝑞}. On the other hand, if 

𝑒𝑒 ∈ 𝐵𝐵 and 𝑒𝑒 ≿𝑖 𝑞 for every 𝑞 ∈ 𝐵𝐵, 𝑒𝑒 ∈ 𝑐(𝐵𝐵) by WARP.  It follows that  

𝑐(𝐵𝐵) = {𝑒𝑒 ∈ 𝐵𝐵|∀𝑞 ∈ 𝐵𝐵: 𝑒𝑒 ≿𝑖 𝑞}. 

This shows that (ℬ, 𝑐) is locally vNM rationalizable by (≿𝑖)𝑖∈𝐼. Note that (≿𝑖)𝑖∈𝐼 

satisfies P-WARP by construction. Finally, the proof that if (ℬ, 𝑐) satisfies GARP, 

then (≿𝑖)𝑖∈𝐼 satisfies P-GARP is a trivial exercise ∎ 
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Proof of Proposition 2.7 

The first claim follows from the definition of P-GARP with 𝐾 = 1.  

The second claim is also a matter of definition. To see that P-WARP implies local 

coherence, take any pair 𝑒𝑒, 𝑗 ∈ 𝐼 such that 𝑒𝑒 ≿𝑖 𝑞. Then, P-WARP implies 𝑞 ⊁𝑗 𝑒𝑒. Since 

𝑒𝑒, 𝑞 ∈ dom ≿𝑖 and either 𝑒𝑒 ≿𝑗 𝑞 or 𝑒𝑒, 𝑞 ∈ Δ(𝑋)\ dom ≿𝑗, it follows that 

≿𝑖∩ �dom ≿𝑗�
2 ⊆ ≿𝑗∩ (dom ≿𝑖)2. 

By a symmetric argument, one can establish the equality. The opposite direction is 

even more trivial ∎ 

 

The following lemma is used in the proof of Proposition 2.8 below: 

 

Lemma 2.1. Axioms 𝐴𝐴1 − 𝐴𝐴3 hold if and only if there are functions 𝑢𝑠 ∈ ℝ𝑋 𝑒𝑒 ∈ 𝑆𝑆 

such that the function 𝑈 ∈ ℝ𝐹 defined by 

𝑈(𝑓) = ��𝑢𝑠(𝑥𝑥)𝑓𝑠(𝑥𝑥)
𝑥∈𝑋𝑠∈𝑆

  

represents ≿. 

 

Proof. The argument is a straightforward generalization of the one given in Kreps 

(1988). I omit the details for sake of brevity ∎ 
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Proof of Proposition 2.8 

For sufficiency, note that, by Lemma 2.1, ≿ can be represented by 

𝑈�(𝑓) = ��𝑢𝑠(𝑥𝑥)𝑓𝑠(𝑥𝑥)
𝑥∈𝑋𝑠∈𝑆

. 

Because 𝒜 ≔ {𝐺(𝑒𝑒)|𝑒𝑒 ∈ 𝑆𝑆} is a recursive hypergraph and {≿𝑠}𝑠∈𝑆  is a strongly 

connected locally coherent vNM system, Proposition 2.4 and Proposition 2.5 imply 

that {≿𝑠}𝑠∈𝑆 is uniquely EU rationalizable. This means that there exists a vNM 

index for {≿𝑠}𝑠∈𝑆, say 𝑢 ∈ ℝ𝑋. Since 𝑢𝑠 is a local vNM indices for ≿𝑠 and ≻𝑠≠ ∅ by 

Axiom 4, there must be unique numbers 𝑎𝑎𝑠 > 0 and 𝐵𝐵𝑠 such that 𝑢𝑠(𝑥𝑥) = 𝑎𝑎𝑠𝑢(𝑥𝑥) + 𝐵𝐵𝑠 

for every 𝑥𝑥 ∈ 𝐺(𝑒𝑒). Therefore, one can write: 

𝑈�(𝑓) = ��(𝑎𝑎𝑠𝑢(𝑥𝑥) + 𝐵𝐵𝑠)𝑓𝑠(𝑥𝑥)
𝑥∈𝑋𝑠∈𝑆

= �𝑎𝑎𝑠 �𝑢(𝑥𝑥)𝑓𝑠(𝑥𝑥)
𝑥∈𝑋𝑠∈𝑆

+ �𝐵𝐵𝑠
𝑠∈𝑆

. 

Defining 𝜇𝜇(𝑒𝑒) ≔ 𝑎𝑎𝑠 > 0 and normalizing 𝑈 ≔ 𝑈� − ∑ 𝐵𝐵𝑠𝑠∈𝑆 , one can arrive at the 

desired expression. 

Necessity of Axioms 1 – 5 is a trivial exercise. Necessity of Axiom 6 follows from the 

fact that its negation implies the existence of multiple vNM indices for {≿𝑠}𝑠∈𝑆 that 

are not related by any affine transformation (by Proposition 2.5). This, in turn, 

allows the construction of multiple probability measures satisfying the 

representation, contradicting the uniqueness claim. Necessity of Axiom 7 follows 

from requiring that 𝑢 be injective ∎ 
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Proof of Proposition 2.9 

This is a well-known result, although I’ve found no reference for this particular 

statement. To prove this proposition, I will require four lemmas, which are stated 

and proved after the main proof. The proof of the “only if” direction is 

straightforward, so I prove only the converse. By Lemma 2.2, closed sections implies 

the Archimedean axiom. Hence, the assumptions of the vNM theorem hold and there 

is a linear function 𝑈 ∈ ℝℳ that represents ≿. Since ≿ has closed sections, the 

function 𝑈 that comes out from this theorem is also continuous (in the topology of 

weak convergence). Moreover, it is bounded. To see this, pick a countable dense set 

of 𝑋, say 𝑌, and consider Δ(𝑌) the set of probability measures on 𝑌. Then, for every 

bounded and continuous function 𝑓 ∈ ℝ𝑋, sequence of measures (𝜇𝜇𝑛)𝑛∈ℕ in Δ(𝑌) and 

𝜇𝜇 ∈ Δ(𝑌): 

�𝑓(𝑥𝑥)𝜇𝜇𝑛(𝑎𝑎𝑥𝑥)
𝑋

− �𝑓(𝑥𝑥)𝜇𝜇(𝑎𝑎𝑥𝑥)
𝑋

= �𝑓(𝑦𝑦)�𝜇𝜇𝑛({𝑦𝑦}) − 𝜇𝜇({𝑦𝑦})�
𝑦∈𝑌

. 

Hence, (𝜇𝜇𝑛)𝑛∈ℕ converges to 𝜇𝜇 in the relative topology if and only if 𝜇𝜇𝑛({𝑦𝑦}) → 𝜇𝜇({𝑦𝑦}) 

for every 𝑦𝑦 ∈ 𝑌. This means that the relative topology is the discrete topology. Hence, 

Lemma 2 implies that any continuous linear representation of ≿ on 𝑌 must be 

bounded. Therefore, 𝑈(𝑌) must be bounded. But then, 𝑈(𝑋) = 𝑈(cl𝑌) ⊆ cl𝑈(𝑌) must 

also be bounded. 

Define 𝑢 ∈ ℝ𝑋 by 𝑢(𝑥𝑥) ≔ 𝑈(𝛿𝑥). Since 𝑢(𝑋) = {𝑈(𝛿𝑥)|𝑥𝑥 ∈ 𝑋} ⊆ 𝑈(𝑋), 𝑢 is bounded and, 

by Lemma 2.4, also inherits the continuity of 𝑈. Use this index to define a new 

function 𝑉 ∈ ℝΔ(𝑋) by setting  

𝑉(𝜇𝜇) ≔ �𝑢(𝑥𝑥)𝜇𝜇(𝑎𝑎𝑥𝑥)
𝑋

. 
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Note that 𝑉 is bounded (since 𝑢 is), linear and, by definition, continuous in the 

topology of weak convergence. Note also that 𝑉(𝜇𝜇) = 𝑈(𝜇𝜇) for every 𝜇𝜇 ∈ Δ(𝑋)𝑆. I will 

show that this is indeed true for every 𝜇𝜇 ∈ Δ(𝑋). For that, pick an arbitrary 𝜇𝜇 ∈ Δ(𝑋). 

Since Δ(𝑋)𝑆 is dense in Δ(𝑋) by Lemma 2.5, there is a sequence (𝜇𝜇𝑛) with 𝜇𝜇𝑛 ∈ Δ(𝑋)𝑆 

and 𝜇𝜇𝑛 → 𝜇𝜇. Since 𝑈 and 𝑉 are both continuous, 𝑈(𝜇𝜇𝑛) → 𝑈(𝜇𝜇) and 𝑉(𝜇𝜇𝑛) → 𝑉(𝜇𝜇). 

Since 𝑈(𝜇𝜇𝑛) = 𝑉(𝜇𝜇𝑛) for every 𝐴𝐴 ∈ ℕ and limits of real valued functions are unique, 

𝑈(𝜇𝜇) = 𝑉(𝜇𝜇) ∎ 

 

Lemma 2.2. Let ≿ be a binary relation on 𝛥(𝑋) with closed sections in the relative 

topology. Then, ≿ satisfies the Archimedean axiom. 

 

Proof. Note that Δ(𝑋) is a convex subset of a topological vector space. Let 𝜇𝜇, 𝜇𝜇′, 𝜇𝜇′′ ∈

Δ(𝑋) be such that 𝜇𝜇 ≻ 𝜇𝜇′ ≻ 𝜇𝜇′′. Define the sets 𝐴𝐴+ ≔ {𝜆 ∈ [0,1]|𝜆𝜇𝜇 + (1 − 𝜆)𝜇𝜇′′ ≻ 𝜇𝜇′} 

and 𝐴𝐴− ≔ {𝜆 ∈ [0,1]|𝜇𝜇 ≻ 𝜆𝜇𝜇 + (1 − 𝜆)𝜇𝜇′′}. Since ≿ is complete with closed sections and 

the operation of taking convex combinations is continuous, 𝐴𝐴+ and 𝐴𝐴− are open. They 

are also non-empty and different, since 1 ∈ 𝐴𝐴+\𝐴𝐴− and 0 ∈ 𝐴𝐴−\𝐴𝐴+. Moreover, because 

≿ is complete, 𝐴𝐴+ ∪ 𝐴𝐴− = [0,1].  

Since the interval [0,1] is connected, it must be the case that 𝐴𝐴+ ∩ 𝐴𝐴− ≠ ∅ and there 

exists 𝛼 ∈ (0,1) such that 𝜇𝜇 ≻ 𝛼𝜇𝜇 + (1 − 𝛼)𝜇𝜇′′ ≻ 𝜇𝜇′. A symmetric argument shows that 

there exists 𝛽 ∈ (0,1) such that 𝜇𝜇′ ≻ 𝛽𝜇𝜇 + (1 − 𝛽)𝜇𝜇′′ ≻ 𝜇𝜇′′ ∎ 

 

  

55 
 



Lemma 2.3. Let 𝑋 be a countable set of prizes endowed with the discrete topology and 

give Δ(𝑋) the topology of weak convergence. Then, for every linear function 𝑈 ∈ ℝΔ(𝑋), 

the following conditions are equivalent: 

1) 𝑈 is bounded 

2) 𝑈 is continuous 

3) 𝑈 has the expected utility form 

Moreover, if 𝑋 is finite, every linear 𝑈 has the three properties. 

 

Proof. I will prove equivalence by proving 1 ⟹ 2 ⟹ 3 ⟹ 2 and 2 + 3 ⟹ 1.  

As a preliminary step, identify Δ(𝑋) with  

𝑀 ≔ �𝑒𝑒 ∈ ℝ𝑋�𝑒𝑒(𝑋) ⊆ ℝ+,�𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

= 1�, 

the space of non-negative functions in ℝ𝑋 adding to 1 component-wise. Hence, in 

what follows, 𝑈 will be considered to be defined over 𝑀 and 𝛿𝑥 ∈ 𝑀 will be the 

function defined by 𝛿𝑥(𝑥𝑥′) = 1{𝑥𝑥 = 𝑥𝑥′}. The topology on 𝑀 is obviously the one 

induced by the metric 𝑎𝑎′(𝑒𝑒,𝑒𝑒′) ≔ ∑ |𝑒𝑒(𝑥𝑥) −𝑒𝑒′(𝑥𝑥)|𝑥∈𝑋 . Finally, note that every 

𝑒𝑒 ∈ 𝑀 can be written as 𝑒𝑒 = ∑ 𝑒𝑒(𝑥𝑥)𝛿𝑥𝑥∈𝑋 . Note that 𝑈 can be extended linearly to 

the normed linear space 𝐿 ≔ {𝑣𝑣 ∈ ℝ𝑋|∑ |𝑣𝑣(𝑥𝑥)|𝑥∈𝑋 < +∞} (with the norm defined by 

‖𝑣𝑣‖ ≔ ∑ |𝑣𝑣(𝑥𝑥)|𝑥∈𝑋 ). To see this, first extend 𝑈 to the convex cone 

𝐶𝐶 ≔ {𝛼𝑒𝑒|𝑒𝑒 ∈ 𝑀,𝛼 ∈ ℝ+} ⊂ 𝐿 by defining 𝑈∗ ∈ ℝ𝐶 by the formula 

𝑈∗(𝑣𝑣) ≔ ‖𝑣𝑣‖𝑈(‖𝑣𝑣‖−1𝑣𝑣). Then, note that every 𝑣𝑣 ∈ 𝐿 can be written 𝑣𝑣 = 𝑣𝑣+ − 𝑣𝑣−, 

where 𝑣𝑣+,𝑣𝑣− ∈ 𝐶𝐶. Finally, define 𝑈∗∗(𝑣𝑣) ≔ 𝑈∗(𝑣𝑣+) − 𝑈∗(𝑣𝑣−) and note that the 

linearity of 𝑈∗ implies that this value is independent of the choice of 𝑣𝑣+ and 𝑣𝑣−. 
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Obviously, the function 𝑈∗∗ linearly extends 𝑈 to 𝐿. Clearly, the topology of 𝑀 

relative to 𝐿 coincides with the topology induced by the metric 𝑎𝑎′. 

1 ⟹ 2) Suppose that 𝑈 is continuous. Then, 𝑈∗∗ is continuous and, in particular, is 

continuous at 0 ∈ 𝐿. This means that for every 𝜖 > 0, there is 𝛿𝜖 > 0 such that 

‖𝑣𝑣‖ ≤ 𝛿𝜖 implies |𝑈∗∗(𝑣𝑣)| < 𝜖. Now, pick an arbitrary lottery 𝑒𝑒 ∈ 𝑀. Letting 𝑣𝑣 = 𝛿𝜖𝑒𝑒, 

note that |𝑈∗∗(𝑣𝑣)| = |𝑈∗∗(𝛿𝜖𝑒𝑒)| = 𝛿𝜖|𝑈∗∗(𝑒𝑒)| < 𝜖. Hence, |𝑈(𝑒𝑒)| = |𝑈∗∗(𝑒𝑒)| ≤ 𝐾 ≔

inf𝜖>0 𝜖/𝛿𝜖, showing that 𝑈 is bounded. 

2 ⟹ 3) Suppose 𝑈 is bounded and let {𝑥𝑥1, … , 𝑥𝑥𝑛, … } be an enumeration of 𝑋 (finite or 

infinite). By induction, for every 𝐴𝐴one can always write 

𝑈(𝑒𝑒) = 𝑈��𝑒𝑒(𝑥𝑥)𝛿𝑥
𝑥∈𝑋

� = 𝑈∗ ��𝑒𝑒(𝑥𝑥)𝛿𝑥
𝑥∈𝑋

� = �𝑒𝑒(𝑥𝑥𝑖)𝑈∗�𝛿𝑥𝑖�
𝑛

𝑖=1

+ 𝑈∗ � � 𝑒𝑒(𝑥𝑥𝑖)𝛿𝑥𝑖

+∞

𝑖=𝑛+1

�. 

If 𝑋 is finite, the process can be carried on until 𝐴𝐴 = #𝑋 and the proof can be finished 

without using 2. If 𝑋 is infinite, since 𝑈 is bounded, it is possible to write: 

𝑈∗ � � 𝑒𝑒(𝑥𝑥𝑖)𝛿𝑥𝑖

+∞

𝑖=𝑛+1

� = � � 𝑒𝑒(𝑥𝑥𝑖)𝛿𝑥𝑖

+∞

𝑖=𝑛+1

�𝑈�� � 𝑒𝑒(𝑥𝑥𝑖)𝛿𝑥𝑖

+∞

𝑖=𝑛+1

�

−1

� 𝑒𝑒(𝑥𝑥𝑖)𝛿𝑥𝑖

+∞

𝑖=𝑛+1

� 

≤ � � 𝑒𝑒(𝑥𝑥𝑖)𝛿𝑥𝑖

+∞

𝑖=𝑛+1

�𝐾 = 𝐾 � 𝑒𝑒(𝑥𝑥𝑖)
+∞

𝑖=𝑛+1

. 

Since ∑ 𝑒𝑒(𝑥𝑥𝑖)+∞
𝑖=𝑛+1  necessarily decreases to zero, 𝑈∗�∑ 𝑒𝑒(𝑥𝑥𝑖)𝛿𝑥𝑖

+∞
𝑖=𝑛+1 � → 0 as 𝐴𝐴 → ∞. 

Defining 𝑢 ∈ ℝ𝑋 by 𝑢(𝑥𝑥) ≔ 𝑈(𝛿𝑥), it follows that, in both cases, 𝑈 satisfies: 

𝑈(𝑒𝑒) = �𝑒𝑒(𝑥𝑥)𝑈∗(𝛿𝑥)
𝑥∈𝑋

= �𝑒𝑒(𝑥𝑥)𝑈(𝛿𝑥)
𝑥∈𝑋

= �𝑢(𝑥𝑥)𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

. 

Hence, 𝑈 has the expected utility form. 
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3 ⟹ 2) Let 𝑈 satisfy 3. I will start proving that sup𝑥∈𝑋|𝑢(𝑥𝑥)| < +∞. Looking for a 

contradiction, assume also that sup𝑥∈𝑋|𝑢(𝑥𝑥)| = +∞. Then, either sup𝑥∈𝑋 𝑢(𝑥𝑥) = +∞ or 

inf𝑥∈𝑋 𝑢(𝑥𝑥) = −∞. If sup𝑥∈𝑋 𝑢(𝑥𝑥) = +∞, there is a sequence of distinct prizes 

𝑥𝑥1, … , 𝑥𝑥𝑛, … such that 𝑢(𝑥𝑥𝑛) ≥ 2𝑛. Then, define 𝑒𝑒 ∈ 𝑀 by 𝑒𝑒(𝑥𝑥𝑛) ≔ 2−𝑛 (and 𝑒𝑒(𝑥𝑥) ≔ 0 

for 𝑥𝑥 not in the sequence). Clearly, 

𝑈(𝑒𝑒) = �𝑢(𝑥𝑥𝑛)𝑒𝑒(𝑥𝑥𝑛)
+∞

𝑛=1

≥ � 2𝑛𝑒𝑒(𝑥𝑥𝑛)
+∞

𝑛=1

= � 2𝑛2−𝑛
+∞

𝑛=1

= � 1
+∞

𝑛=1

= +∞, 

contradicting the hypothesis that 𝑈 ∈ ℝ𝑋. A symmetric argument shows that 

inf𝑥∈𝑋 𝑢(𝑥𝑥) = −∞ implies that there is a 𝑒𝑒 ∈ 𝑀 such that 𝑈(𝑒𝑒) = −∞. Hence, 

sup𝑥∈𝑋|𝑢(𝑥𝑥)| < +∞. Finally, this combined with 3 implies that 

|𝑈(𝑒𝑒)| = �� 𝑢(𝑥𝑥)𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

� ≤ �� sup
𝑥∈𝑋

|𝑢(𝑥𝑥)|𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

� = sup
𝑥∈𝑋

|𝑢(𝑥𝑥)|�𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

= sup
𝑥∈𝑋

|𝑢(𝑥𝑥)| < +∞. 

2 + 3 ⟹ 1) Clearly, 𝑢(𝑥𝑥) = 𝑈(𝛿𝑥), so 2 implies that 𝑢 is bounded. Defining a constant 

𝐾 ≔ sup𝑥∈𝑋|𝑢(𝑥𝑥)|, note that 

|𝑈(𝑒𝑒) − 𝑈(𝑒𝑒′)| = �� 𝑢(𝑥𝑥)𝑒𝑒(𝑥𝑥)
𝑥∈𝑋

−�𝑢(𝑥𝑥)𝑒𝑒′(𝑥𝑥)
𝑥∈𝑋

� = �� 𝑢(𝑥𝑥)�𝑒𝑒(𝑥𝑥) −𝑒𝑒′(𝑥𝑥)�
𝑥∈𝑋

� 

≤ �|𝑢(𝑥𝑥)||𝑒𝑒(𝑥𝑥) −𝑒𝑒′(𝑥𝑥)|
𝑥∈𝑋

≤ �𝐾|𝑒𝑒(𝑥𝑥) −𝑒𝑒′(𝑥𝑥)|
𝑥∈𝑋

= 𝐾𝑎𝑎′(𝑒𝑒,𝑒𝑒′). 

This implies that for every 𝑒𝑒,𝑒𝑒′ ∈ 𝑀 such that 𝑎𝑎′(𝑒𝑒,𝑒𝑒′) ≤ 𝛿𝜖 ≔ 𝜖/2𝐾, |𝑈(𝑒𝑒) −

𝑈(𝑒𝑒′)| ≤ 𝜖/2 < 𝜖. Therefore, 𝑈 is continuous (and Lipschitz!). 

Having shown 1 ⟹ 2 ⟹ 3 ⟹ 2 and 2 + 3 ⟹ 1, I conclude that 1 ⟺ 2 ⟺ 3. Finally, 

note that, if 𝑋 is finite, 3 was proved without using neither 1 nor 2. It follows that, in 

this case, 𝑈 is always continuous, bounded and has the expected utility form ∎ 
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The following two results are Lemma 6.1 and Theorem 6.3 in (Parthasarathy 1967). 

 

Lemma 2.4. 𝑋 is homeomorphic to the space {𝛿𝑥|𝑥𝑥 ∈ 𝑋} ⊆ Δ(𝑋) with the relative 

topology. 

 

Proof. Suppose 𝑥𝑥𝑛 → 𝑥𝑥∗. For every point 𝑥𝑥0 ∈ 𝑋 and continuous function 𝑓 ∈ ℝ𝑋, 

∫ 𝑓(𝑥𝑥)𝛿𝑥0(𝑎𝑎𝑥𝑥)𝑋 = 𝑓(𝑥𝑥0). Clearly, 𝑓(𝑥𝑥𝑛) → 𝑓(𝑥𝑥∗). Therefore, �𝛿𝑥𝑛�𝑛∈ℕ converges to 𝛿𝑥∗. 

In the other direction, suppose �𝛿𝑥𝑛�𝑛∈ℕ converges to 𝛿𝑥∗ but 𝑥𝑥𝑛 ↛ 𝑥𝑥∗. Then, there is a 

subsequence �𝑥𝑥𝑛𝑘�𝑘∈ℕ and a neighborhood 𝑁𝑁 of 𝑥𝑥∗ such that 𝑥𝑥𝑛𝑘 ∈ 𝑋\𝑁𝑁 for every 𝑘 ∈

ℕ. Let 𝑓 be a continuous function such that 𝑓(𝑥𝑥∗) = 0 and 𝑓(𝑥𝑥) = 1 for 𝑥𝑥 ∈ 𝑋\𝑁𝑁. Then, 

∫ 𝑓(𝑥𝑥)𝛿𝑥𝑛𝑘(𝑎𝑎𝑥𝑥)𝑋 = 𝑓�𝑥𝑥𝑛𝑘� = 1 for every 𝑘 ∈ ℕ while ∫ 𝑓(𝑥𝑥)𝛿𝑥∗(𝑎𝑎𝑥𝑥)𝑋 = 𝑓(𝑥𝑥∗) = 0, a 

contradiction ∎   

 

Lemma 2.5. Δ(𝑋)𝑆 is dense in Δ(𝑋). 

 

Proof. I need to show that for every 𝜇𝜇 ∈ Δ(𝑋), there exists a sequence in Δ(𝑋)𝑆 that 

converges weakly to 𝜇𝜇. Clearly, every measure with countable support is the weak 

limit of a sequence in Δ(𝑋)𝑆. Hence, it suffices to prove that every 𝜇𝜇 ∈ Δ(𝑋) is the 

weak limit of a sequence of measures with countable support. Since 𝑋 is separable, 

for every 𝐴𝐴 ∈ ℕ, there exists a measurable countable partition {𝑌𝑛𝑘|𝑘 ∈ 𝐾} such that 

the diameter of 𝑌𝑛𝑘 is less than 1/𝐴𝐴 (just take a countable dense subset of 𝑋 and 

iteratively define the 𝑌𝑛𝑘 as an open ball of radius 1/𝐴𝐴 around the 𝑘 −point minus 

⋃ 𝑌𝑛𝑘′𝑘′<𝑘 ). For each 𝑌𝑛𝑘, pick an arbitrary point 𝑥𝑥𝑛𝑘 and define 𝜇𝜇𝑛 ≔ ∑ 𝜇𝜇(𝑌𝑛𝑘)𝛿𝑥𝑛𝑘𝑘∈𝐾 .  
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For every continuous and bounded 𝑓 ∈ ℝ𝑋, let 𝑓𝑛𝑘 ≔ sup𝑥∈𝑌𝑛𝑘 𝑓(𝑥𝑥) and 𝑓𝑛𝑘 ≔

inf𝑥∈𝑌𝑛𝑘 𝑓(𝑥𝑥). Since 𝑓 is continuous and bounded, and the radius of the 𝑌𝑛𝑘 goes to 

zero when 𝐴𝐴 grows without bound, it follows that sup𝑘∈𝐾 �𝑓𝑛𝑘 − 𝑓𝑛𝑘� → 0 as 𝐴𝐴 → +∞.  

Finally, note that 

��𝑓(𝑥𝑥)𝜇𝜇𝑛(𝑎𝑎𝑥𝑥)
𝑋

− �𝑓(𝑥𝑥)𝜇𝜇(𝑎𝑎𝑥𝑥)
𝑋

� = ��� �𝑓(𝑥𝑥𝑛𝑘) − 𝑓(𝑥𝑥)�𝜇𝜇(𝑎𝑎𝑥𝑥)
𝑌𝑛𝑘𝑘∈𝐾

� 

≤ �� �𝑓𝑛𝑘 − 𝑓𝑛𝑘� 𝜇𝜇(𝑎𝑎𝑥𝑥)
𝑌𝑛𝑘𝑘∈𝐾

 

≤ � �𝑓𝑛𝑘 − 𝑓𝑛𝑘� 𝜇𝜇(𝑌𝑛𝑘)
𝑘∈𝐾

≤ sup
𝑘∈𝐾

�𝑓𝑛𝑘 − 𝑓𝑛𝑘�� 𝜇𝜇(𝑌𝑛𝑘)
𝑘∈𝐾

 

= sup
𝑘∈𝐾

�𝑓𝑛𝑘 − 𝑓𝑛𝑘� → 0 

Therefore, the sequence (𝜇𝜇𝑛)𝑛∈ℕ thus constructed converges weakly to 𝜇𝜇 ∎ 
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Chapter 3.  

Dynamic Monopoly Pricing when Competing 

with New Experience Substitutes 

 

3.1. Introduction 

In this chapter, I study the market dynamics triggered by the introduction of a new 

product. For example, consider the market for operating systems in the late 1990’s 

or the market for mobile devices in the late 2000’s. In each case a monopoly supplier 

of an established product – Microsoft Windows in one case and Apple iPhone in the 

other – confronts the introduction of a new product (Linux distributions or Android 

phones). The new products are based on open source software and, as a result, are 

supplied by a large number of competing firms. Thus, to a first approximation, the 

new product is supplied by a competitive industry.  

Similar scenarios take place with the development of other technologies. For 

example, the market power of traditional phone companies has been weakened by 

the advent of Skype and other “Voice over IP” (VoIP) protocols. Any computer with 

internet access can connect to standard phones through one of the many VoIP 

services available, providing users with a cheaper alternative for making calls. 

In these examples the level of penetration of the new product varies across different 

market segments. For instance, Linux was highly successful in the server and 

technical computing segments, where it became the leading system, but did not fare 
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as well with home users. In the VoIP example, computer savvy and frequent long-

distance callers are more likely to adopt the new technology than the average client.  

In general, we can expect heterogeneous diffusion patterns when the new product is 

relatively better suited to fulfill the needs of particular classes of consumers. 

However, the new product’s ability to satisfy different consumers is typically not 

clear at the outset. Expectations may change over time as technology evolves, new 

possibilities become available and consumers learn more about the strengths and 

weaknesses of the new product for their purported uses. As a result, consumers’ 

experiences with the new product play an important role in shaping their 

preferences and product choices. Note that the incentives to experiment also depend 

critically on the price path that the established product is expected to follow. Since 

this price is strategically controlled by the seller, she could deter consumer 

experimentation by charging lower prices, if she so wished. 

Comparable market interactions may also take place after the expiration of a patent 

or the passage of legislation softening barriers to entry in an industry. For example, 

in 2002 the Congress of Argentina passed a law promoting generic drugs which 

forbids doctors to prescribe pharmaceuticals by its brand name.8 This abruptly 

increased the competition faced by traditional laboratories at multiple points in 

their product lines, as patients massively became aware of a choice between original 

brand name drugs and cheaper but less familiar generic alternatives.  

8 Generics are usually required to be statistically as safe and effective as the 
originals, but they do not need to be identical. This can raise efficacy concerns 
among patients. Moreover, the use of generics might entail different legal rights. For 
instance, the Supreme Court of the United States ruled in 2011 that generic 
manufacturers cannot be held responsible for failing to alert patients to problems 
with their drug. 
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All these situations share a common structure. A monopolistic seller is suddenly 

exposed to increased competition and might react strategically by changing prices. 

On the demand side, consumer choices are affected by the seller’s actions and this 

determines the amount of experimentation. To study this class of interactions, I 

consider a simple dynamic stochastic game in continuous time. At every date, the 

seller sets a price for her product. After seeing this price, consumers can freely 

choose between two alternatives. They can either buy the established product from 

the seller or try the new product, which is supplied competitively. When consumers 

choose the new product, their experiences provide a continuous flow of information, 

which affects their willingness to pay for the new product.  

Consumers are grouped in different market segment. I assume that the average 

experience of each segment is public information and is independent of the 

experience of other segments. Although these are admittedly bold assumptions, they 

seem a reasonable approximation to some real-world situations. For instance, 

segment-specific product reviews, ratings and market share figures are easily 

available and frequently updated in many cases. In those cases, they are likely to 

influence average individual decisions within the corresponding segment. Moreover, 

when segments are very different in nature, information about how the substitute 

performed for other segments should have little relevance beyond forecasting future 

market conditions.  

For simplicity, I limit the analysis to two market segments populated by continua of 

small identical consumers. As a benchmark case, I solve the problem of a benevolent 

planner. The efficient product choice strategies depend only on individual consumer 

beliefs and have a cutoff form. That is, it is efficient for consumers to adopt the new 
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product if and only if they believe is superior to the established product with 

sufficiently high probability. 

Then, I turn to equilibrium analysis. In general, when consumers experiment with 

the new product, they obtain an option value because they might choose to switch 

back to the established product in the future, if their interim experience is 

unsatisfactory. Not surprisingly, when the seller can charge different prices to 

different consumers, she is able to extract all this option value by adjusting prices 

appropriately. As a consequence, the incentives of the seller mimic those of the 

planner and the resulting product switching strategies are efficient. 

In contrast, dynamic inefficiencies arise when price discrimination is not allowed 

and expected valuations across market segments differ appropriately. In 

equilibrium, the seller is reluctant to reduce prices, distorting the incentives of those 

consumers who are more optimistic about the new product. As a consequence, these 

relatively optimistic consumers may refuse to buy from the seller, even when the 

planner would prescribe it. This dynamic inefficiency might be very significant and 

persistent, depending on parameter values. Nevertheless, I show that, if ex-ante the 

new product can be better than the established one, consumers end up choosing 

products efficiently after sufficiently long time with probability 1. 

The analysis in this chapter is performed under the assumption that the seller 

cannot commit to a pricing strategy. Because consumers are small and lack the 

ability to individually affect the aggregate outcome, allowing commitment does not 

make any difference. Moreover, even if we allowed non-negligible consumers, 

commitment would not affect the equilibrium when price discrimination is feasible 
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because the non-commitment equilibrium would still reward the seller with the 

maximum possible payoff in any mechanism in which consumers participate 

voluntary. Without price discrimination, the seller might benefit from commitment. 

However, she would still be forced to leave rents to inframarginal consumers. It 

follows that even the best equilibrium payoff with commitment but without price 

discrimination must be inferior to the equilibrium payoff obtained when the seller 

has the ability to charge different prices. 

 

3.1.1.  Related literature 

The material in this chapter is related to (Bergemann and Välimäki 1997), who 

study product diffusion in a duopoly with differentiated products. In their model, the 

value of the new product is the same for all consumers, but there is horizontal 

differentiation to accommodate duopolistic competition. Because my focus is on 

defensive pricing rather than product diffusion, I extend their model by allowing 

idiosyncratic valuations and simplify it by assuming a competitive supply of the new 

product. On one hand, allowing heterogeneity in the object of uncertainty is 

important in markets with clearly distinct segments served by the same supplier. 

On the other hand, simplifying the market structure allows me to solve the 

equilibrium in closed form. 

The analytics of my model traces back to (Bolton and Harris 1999), who were the 

first to study strategic experimentation in a continuous time model. However, their 

focus is quite different, as their model abstracts from strategic pricing and features 
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symmetric players individually choosing whether or not to experiment in order to 

collectively learn about a common uncertain valuation.  

Finally, the model is also connected with the traditional statistical literature on 

bandit problems, which was introduced to economic analysis by (Rothschild 1974) 

who studied the problem of choosing prices when the demand curve is unknown and 

can only be learned through experience. 

 

3.2. Model 

There are three kinds of players: two groups of consumers, represented by Ann and 

Bob, and a seller offering a non-storable good. The players interact in continuous 

time with an infinite horizon and are risk neutral expected discounted utility 

maximizers with common discount rate 𝑒𝑒 > 0.  

At each date 𝑒𝑒 ≥ 0, the seller offers a unit of her product to each market segment 

𝑒𝑒 ∈ {𝐴𝐴,𝐵𝐵} at a price 𝑒𝑒𝑡𝑖 ≥ 0. After seeing the corresponding price, each consumer 

decides whether to buy from the seller or try a new substitute which is competitively 

supplied at a zero price. Ann and Bob know the seller’s product, but are uncertain 

about their valuation of the new product. The seller bears no costs. 

Let 𝑍𝐴𝐴 = {𝑍𝑡𝐴𝐴}, 𝑍𝐵𝐵 = {𝑍𝑡𝐵𝐵} be two independent standard Brownian motions. Let 

𝑞𝑡𝐴𝐴 ∈ [0,1] indicate the fraction of consumers in Ann’s segment buying the seller’s 

product. Her utility is a stochastic process 𝑋𝐴𝐴 = {𝑋𝑡𝐴𝐴} which evolves according to the 

following stochastic differential equation (SDE): 

𝑎𝑎𝑋𝑡𝐴𝐴 = [𝑞𝑡𝐴𝐴(𝜇𝜇∗ − 𝑒𝑒𝑡𝐴𝐴) + (1 − 𝑞𝑡𝐴𝐴)𝜇𝜇𝐴𝐴]𝑎𝑎𝑒𝑒 + �1 − 𝑞𝑡𝐴𝐴𝜎𝑎𝑎𝑍𝑡𝐴𝐴, 
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where 𝜇𝜇∗ represents the known flow value of the seller’s product and 𝜇𝜇𝐴𝐴 is an 

unknown parameter representing Ann’s idiosyncratic flow value of the new product. 

The parameter 𝜎 > 0 is known and measures the level of noise associated with the 

new product. Without loss of generality, assume that 𝜇𝜇𝐴𝐴 ∈ {0,1}. Moreover, suppose 

that 𝜇𝜇∗ ∈ (0,1), so there is an actual efficiency trade-off between the two products. 

The case 𝜇𝜇∗ ≥ 1 is simpler, as the seller’s product dominates the new product 

irrespective of beliefs (for a brief analysis, see Section 3.6.4).  

I assume that the processes 𝑋𝐴𝐴 and 𝑋𝐵𝐵 are publicly observable. Let {ℱ𝑡𝐴𝐴} be the 

filtration generated by 𝑋𝐴𝐴 and 𝜃𝜃𝑡𝐴𝐴 the probability Ann assigns to 𝜇𝜇𝐴𝐴 = 1 given the 

information she has up to time 𝑒𝑒. From standard filtering theory we know that 

 𝑎𝑎𝜃𝜃𝑡𝐴𝐴 = (1 − 𝑞𝑡𝐴𝐴)�𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)�
𝜇𝜇𝐴𝐴 − 𝜃𝜃𝑡𝐴𝐴

𝜎
�𝑎𝑎𝑒𝑒 + �(1 − 𝑞𝑡𝐴𝐴)𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑍𝑡𝐴𝐴, (1) 

where 𝑣𝑣(𝜃𝜃) ≔ 𝜃𝜃2(1 − 𝜃𝜃)2/𝜎2. Hence, if 𝜇𝜇𝐴𝐴 = 1 and Ann tries the new product, the 

process 𝜃𝜃𝐴𝐴 will have positive drift and she will tend to become more optimistic about 

𝜇𝜇𝐴𝐴 over time. The magnitude of this drift is decreasing in 𝜎. Note that 𝑍𝐴𝐴 cannot be 

adapted to ℱ𝑡𝐴𝐴. If it was, equation (1) would allow Ann to infer 𝜇𝜇𝐴𝐴. Instead, equation 

(1) represents the evolution of 𝜃𝜃𝐴𝐴 from the perspective of an outsider who knew 𝜇𝜇𝐴𝐴. 

From Ann’s perspective, 𝜃𝜃𝐴𝐴 evolves according to  

𝑎𝑎𝜃𝜃𝑡𝐴𝐴 = �(1 − 𝑞𝑡𝐴𝐴)𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑍�𝑡𝐴𝐴, 

where 𝑍�𝐴𝐴 is Ann’s “innovation process”. This is the evolution of beliefs that players 

take into account to compute the value of different strategies. Note that 𝜃𝜃𝐴𝐴 is a 

{ℱ𝑡𝐴𝐴} −martingale. As for Bob, we define 𝑞𝐵𝐵, 𝑋𝐵𝐵, {ℱ𝑡𝐵𝐵}, {𝜃𝜃𝑡𝐵𝐵} and 𝜇𝜇𝐵𝐵 similarly. In what 
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follows, whenever I define a quantity for Ann, consider an analogous quantity 

automatically defined for Bob. For simplicity, I will focus on the symmetric case and 

assume that 𝜇𝜇∗ and 𝜎 are the same for both market segments. 

Since I am mostly interested in the case in which price discrimination is not feasible, 

all the following definitions correspond to that case. Adapting the definitions to the 

case with price discriminations is straightforward.  

At each point in time 𝑒𝑒 ≥ 0, the seller sets a price for her product. She does so 

knowing exactly the beliefs held by Ann and Bob. Formally, let {ℱ𝑡} denote the 

filtration generated by 𝑋 ≡ (𝑋𝐴𝐴,𝑋𝐵𝐵) and let 𝒫� be the set of stochastic processes 

taking values in ℝ+ which are progressively measurable w.r.t. {ℱ𝑡}. A pricing 

strategy for the seller is an element 𝑒𝑒 ∈ 𝒫�.  

Simultaneously, consumers choose which product to buy considering both their 

experience and the current price offered to them. Since the decision is binary and 

Ann’s experienced utility decreases with the price paid, we can represent her 

strategies with the maximum price she is willing to pay for the established good. 

Formally, a purchasing strategy for Ann is a stochastic process 𝑒̌𝑒𝐴𝐴 ∈ 𝒫�, just as in the 

case of the seller. The interpretation is that Ann buys from the seller if and only if 

𝑒𝑒𝑡𝐴𝐴 ≤ 𝑒̌𝑒𝑡𝐴𝐴 and experiments otherwise. We are now in position to define payoffs. Given 

a strategy profile (𝑒𝑒�, 𝑒̌𝑒𝐴𝐴, 𝑒̌𝑒𝐵𝐵) ∈ 𝒫� × 𝒫� × 𝒫�, the expected discounted revenue of the 

seller at time 𝑒𝑒 is given by 

𝑅�𝑡(𝑒𝑒�, 𝑒̌𝑒𝐴𝐴, 𝑒̌𝑒𝐵𝐵) ≔ 𝔼�� 𝕖−𝑟(𝜏−𝑡)(1{𝑒𝑒�𝜏 ≤ 𝑒̌𝑒𝜏𝐴𝐴}𝑒𝑒�𝜏𝐴𝐴 + 1{𝑒𝑒�𝜏 ≤ 𝑒̌𝑒𝜏𝐵𝐵}𝑒𝑒�𝜏𝐵𝐵)𝑎𝑎𝜏
∞

𝑡
�ℱ𝑡�. 
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The expected discounted utility of Ann is 

𝑈�𝑡𝐴𝐴(𝑒𝑒�, 𝑒̌𝑒𝐴𝐴, 𝑒̌𝑒𝐵𝐵) ≔ 𝔼�� 𝕖−𝑟(𝜏−𝑡)(1{𝑒𝑒�𝜏 ≤ 𝑒̌𝑒𝜏𝐴𝐴}(𝜇𝜇∗ − 𝑒𝑒�𝜏𝐴𝐴) + 1{𝑒𝑒�𝜏 > 𝑒̌𝑒𝜏𝐴𝐴}𝜇𝜇𝐴𝐴)𝑎𝑎𝜏
∞

𝑡
�ℱ𝑡�. 

Note that, by definition, we have 𝔼{𝜇𝜇𝐴𝐴|ℱ𝜏, 𝑒𝑒�𝜏} = 𝔼{𝜇𝜇𝐴𝐴|ℱ𝜏} = 𝜃𝜃𝜏𝐴𝐴. Hence, by the law of 

iterated expectations, we can write 

𝑈�𝑡𝐴𝐴(𝑒𝑒�, 𝑒̌𝑒𝐴𝐴, 𝑒̌𝑒𝐵𝐵) = 𝔼�� 𝕖−𝑟(𝜏−𝑡)(1{𝑒𝑒�𝜏 ≤ 𝑒̌𝑒𝜏𝐴𝐴}(𝜇𝜇∗ − 𝑒𝑒�𝜏𝐴𝐴) + 1{𝑒𝑒�𝜏 > 𝑒̌𝑒𝜏𝐴𝐴}𝜃𝜃𝜏𝐴𝐴)𝑎𝑎𝜏
∞

𝑡
�ℱ𝑡�. 

It follows that all the payoff-relevant non-strategic elements are encoded in the 

beliefs described by the Markov process (𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = {(𝜃𝜃𝑡𝐴𝐴,𝜃𝜃𝑡𝐵𝐵)}. This suggests defining 

Markov strategies taking (𝜃𝜃𝑡𝐴𝐴,𝜃𝜃𝑡𝐵𝐵) as the state. In this way, a Markov pricing 

strategy is a measurable function 𝑒𝑒: [0,1]2 → ℝ+ such that 𝑒𝑒�𝑡 ≔ 𝑒𝑒(𝜃𝜃𝑡) defines a 

pricing strategy. A Markov purchasing strategy for Ann is a measurable function 

𝑒𝑒�𝐴𝐴: [0,1]2 → ℝ+  such that 𝑒̌𝑒𝑡𝐴𝐴 ≔ 𝑒𝑒�𝐴𝐴(𝜃𝜃𝑡) defines a purchasing strategy. Let 𝒫 denote 

the set of all Markov strategies for the seller, Ann and/or Bob.  

We can now write payoffs as time-invariant functions of Markov strategies and the 

state. Thus, the revenue of the seller in state 𝜃𝜃 is 

𝑅(𝜃𝜃,𝑒𝑒,𝑒𝑒�𝐴𝐴, 𝑒𝑒�𝐵𝐵) ≔ 𝔼�� 𝕖−𝑟𝑡(1{𝑒𝑒(𝜃𝜃𝑡) ≤ 𝑒𝑒�𝐴𝐴(𝜃𝜃𝑡)} + 1{𝑒𝑒(𝜃𝜃𝑡) ≤ 𝑒𝑒�𝐵𝐵(𝜃𝜃𝑡)})𝑒𝑒(𝜃𝜃𝑡)𝑎𝑎𝑒𝑒
∞

0
�𝜃𝜃0 = 𝜃𝜃�. 

The expected utility of Ann in state 𝜃𝜃  can be written 

𝑈𝐴𝐴(𝜃𝜃,𝑒𝑒,𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵) = 𝔼�� 𝕖−𝑟𝑡(1{𝑒𝑒(𝜃𝜃𝑡) ≤ 𝑒𝑒�𝐴𝐴(𝜃𝜃𝑡)}(𝜇𝜇∗ − 𝑒𝑒(𝜃𝜃𝑡) − 𝜃𝜃𝑡𝐴𝐴) + 𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑒𝑒
∞

0
�𝜃𝜃0 = 𝜃𝜃�. 

Note that 𝑈𝐴𝐴(𝜃𝜃,𝑒𝑒,𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵) in principle depends on 𝜃𝜃𝐵𝐵, since Bob’s beliefs influence 

present and future prices, therefore affecting Ann’s current payoff.  
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An equilibrium is a strategy profile (𝑒𝑒�, 𝑒̌𝑒𝐴𝐴, 𝑒̌𝑒𝐵𝐵) ∈ 𝒫� × 𝒫� × 𝒫� such that, for every 𝑒𝑒, the 

following equalities hold almost surely: 

𝑅�𝑡(𝑒𝑒�, 𝑒̌𝑒𝐴𝐴, 𝑒̌𝑒𝐵𝐵) = sup�𝑅�𝑡(𝑒́𝑒, 𝑒̌𝑒𝐴𝐴, 𝑒̌𝑒𝐵𝐵)�𝑒́𝑒 ∈ 𝒫�� 

𝑈�𝑡𝐴𝐴(𝑒𝑒�, 𝑒̌𝑒𝐴𝐴, 𝑒̌𝑒𝐵𝐵) = sup�𝑈�𝑡𝐴𝐴(𝑒𝑒�, 𝑒́𝑒, 𝑒̌𝑒𝐵𝐵)�𝑒́𝑒 ∈ 𝒫�� 

𝑈�𝑡𝐵𝐵(𝑒𝑒�, 𝑒̌𝑒𝐴𝐴, 𝑒̌𝑒𝐵𝐵) = sup�𝑈�𝑡𝐵𝐵(𝑒𝑒�, 𝑒̌𝑒𝐵𝐵 , 𝑒́𝑒)�𝑒́𝑒 ∈ 𝒫��. 

A Markov perfect equilibrium (MPE) is a Markov strategy profile (𝑒𝑒,𝑒𝑒�𝐴𝐴, 𝑒𝑒�𝐵𝐵) ∈ 𝒫 ×

𝒫 × 𝒫 such that the induced strategies on 𝒫� × 𝒫� × 𝒫� form an equilibrium. 

 

3.3. Efficiency Benchmark 

In this section, I analyze the problem of a benevolent planner who possesses the 

same information as the players and tries to maximize total social surplus. Since 

there is no loss of generality in restricting attention to Markov strategies, we can 

define maximal total surplus at state 𝜃𝜃 by 

𝑆𝑆(𝜃𝜃) ≔ sup{𝑅(𝜃𝜃,𝑒𝑒,𝑒𝑒�𝐴𝐴, 𝑒𝑒�𝐵𝐵) + 𝑈𝐴𝐴(𝜃𝜃,𝑒𝑒,𝑒𝑒�𝐴𝐴, 𝑒𝑒�𝐵𝐵) + 𝑈𝐵𝐵(𝜃𝜃,𝑒𝑒,𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵)|𝑒𝑒,𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵 ∈ 𝒫} 

Note that, since production has zero cost, it involves no efficiency issue, that prices 

paid are only transfers from consumers to the firm and that the planner can tailor 

the purchasing strategy of each consumer to its individual belief state. Hence, 

𝑆𝑆(𝜃𝜃) = 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴) + 𝑆𝑆𝐵𝐵(𝜃𝜃𝐵𝐵), where, for each 𝑒𝑒 ∈ {𝐴𝐴,𝐵𝐵}, we define the individual surplus: 

 𝑆𝑆𝑖�𝜃𝜃𝑖� ≔ sup
𝑝�𝑖∈𝒫

�𝔼 �� 𝕖−𝑟𝑡�1�𝑒𝑒�𝑖(𝜃𝜃𝑡) = 0�𝜇𝜇∗ + 1�𝑒𝑒�𝑖(𝜃𝜃𝑡) > 0�𝜃𝜃𝑡𝑖�𝑎𝑎𝑒𝑒
∞

0
�𝜃𝜃0𝑖 = 𝜃𝜃𝑖��. (2) 
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The fact that total surplus is separable allows us to study each allocation problem 

individually. For the rest of this section, I will focus on Ann’s problem. The RHS of 

(2) defines a stochastic control problem where the essential issue is to determine 

which product is optimal to consume at each state. To solve it, we can turn to 

dynamic programming and seek a recursive expression for the value function 𝑆𝑆𝑖 by 

writing down the associated Hamilton-Jacobi-Bellman (HJB) equation: 

 𝑒𝑒𝑆𝑆𝐴𝐴 = max �𝜇𝜇∗,𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)�

𝑎𝑎2𝑆𝑆𝐴𝐴

𝑎𝑎𝜃𝜃𝐴𝐴2
��, (3) 

where we accept to substitute 𝑎𝑎2𝑆𝑆𝐴𝐴/𝑎𝑎𝜃𝜃𝐴𝐴2 for the side-derivative at switching points. 

Note that, even with this proviso, equation (3) only makes sense if the value function 

𝑆𝑆 is smooth enough and I still haven’t shown that. However, we can use the HJB 

equation to find a sufficiently smooth candidate and later verify that the candidate 

actually solves the planner’s problem. Under the assumption that 𝑆𝑆𝐴𝐴 satisfies 

equation (3), Ann should experiment the new product if  

𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)�

𝑎𝑎2𝑆𝑆𝐴𝐴

𝑎𝑎𝜃𝜃𝐴𝐴2
� > 𝜇𝜇∗. 

If this condition does not hold, Ann should keep consuming the seller’s product. That 

is, we expect the experimentation region to be an interval of the form (𝜃𝜃∗, 1] for some 

belief cutoff 𝜃𝜃∗ ∈ (0,1). In that region, the HJB equation reads 

 𝑒𝑒𝑆𝑆𝐴𝐴 = 𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)�

𝑎𝑎2𝑆𝑆𝐴𝐴

𝑎𝑎𝜃𝜃𝐴𝐴2
�. (4) 
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This is a second-order linear ordinary differential equation (ODE) with variable 

coefficients. We solve it subject to the following boundary conditions: 

1) Absorption at the top:   𝑆𝑆𝐴𝐴(1) = 1/𝑒𝑒 

2) Value matching:   𝑆𝑆𝐴𝐴(𝜃𝜃∗) = 𝜇𝜇∗/𝑒𝑒  

3) Smooth pasting:   (𝑆𝑆𝐴𝐴)′(𝜃𝜃∗) = 0. 

(5) 

Note that, since the cutoff 𝜃𝜃∗ is not known, the equations in (4) and (5) define a free-

boundary problem. Condition 1 states the intuitive fact that, when Ann is (almost) 

sure that 𝜇𝜇𝐴𝐴 = 1 > 𝜇𝜇∗ (i.e. if 𝜃𝜃𝐴𝐴 = 1), then she should consume the new product to 

maximize social surplus. Condition 2 says that, at 𝜃𝜃∗, Ann must be indifferent 

between the two products, taking into account the total expected value of 

experimentation (i.e. including the option of switching back to the seller’s product in 

the future). Finally, condition 3 requires 𝑆𝑆𝐴𝐴 to be continuously differentiable at the 

cutoff and is a standard condition in optimal stopping problems of economic interest.  

To formally state the solution to this problem, define 𝐻: [0,1] → ℝ by setting 

𝐻(𝑧𝑧) ≔ 𝑧𝑧𝛼(1 − 𝑧𝑧)𝛽 , 

where 𝛼 and 𝛽 are given by 

𝛼 ≔
1 − √1 + 8𝑒𝑒𝜎2

2
< 0                           𝛽 ≔

1 + √1 + 8𝑒𝑒𝜎2

2
> 1 

Note that α + β = 1 and that H(𝜃𝜃𝐴𝐴) solves the homogeneous version of equation (4).  
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Using these definitions, the next result solves the free-boundary problem above and 

establishes that the solution provided characterizes the efficient allocation: 

 

Proposition 3.1. The efficient allocation is to have consumer 𝑒𝑒 ∈ {𝐴𝐴,𝐵𝐵} experimenting 

if and only if 𝜃𝜃𝑖 > 𝜃𝜃∗, where the cutoff is given by: 

 𝜃𝜃∗ ≔
𝛼𝜇𝜇∗

𝜇𝜇∗ − 𝛽
∈ (0, 𝜇𝜇∗). (6) 

The maximal social surplus on consumer 𝑒𝑒 satisfies: 

 𝑒𝑒𝑆𝑆𝑖�𝜃𝜃𝑖� = �
𝜇𝜇∗ 𝜃𝜃 ≤ 𝜃𝜃∗

𝜃𝜃𝑖 − (𝜃𝜃∗ − 𝜇𝜇∗)�
𝐻�𝜃𝜃𝑖�
𝐻(𝜃𝜃∗)� 𝜃𝜃 > 𝜃𝜃∗. (7) 

Equations (6) and (7) give an explicit formula for the efficient cutoff and for maximal 

total social surplus, respectively. Differentiating, we can obtain definite comparative 

statics on 𝜃𝜃∗ with respect to 𝜇𝜇∗, 𝑒𝑒 and 𝜎: 

𝜕𝜃𝜃∗

𝜕𝜇𝜇∗
> 0                       

𝜕𝜃𝜃∗

𝜕𝑒𝑒
> 0                         

𝜕𝜃𝜃∗

𝜕𝜎
> 0. 

Hence, we get the intuitive result that a higher valuation for the seller’s product 

implies a higher experimentation cutoff. Moreover, the cutoff is also increasing in 𝑒𝑒 

and 𝜎. This is also intuitive since, as the discount rate or the level of noise increases, 

efficiency requires better expectations about the new product in order to experiment 

(in the first case because time is more valuable, in the second because experience is 

less informative). 
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We can also show that 𝑆𝑆𝑖′(𝜃𝜃) > 0 for all 𝜃𝜃 > 𝜃𝜃∗, so 𝑆𝑆𝑖 is non-decreasing in 𝜃𝜃. The 

following figures plot the maximal social surplus as a function of beliefs: 

 

Figure 3.1. Maximal total surplus for Ann. 

Figure 3.2. Maximal total surplus for Ann and Bob. 
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The following figure illustrates the separability of the planner’s problem and the 

stochastic dynamics implied by efficiency. 

Figure 3.3. Efficient experimentation regions 

(thick black lines and dots indicate rest points). 

 

When both Ann and Bob are pessimistic about the new product, experimentation is 

inefficient and beliefs remain at rest. If Ann’s belief exceeds 𝜃𝜃∗, then the planner will 

have her consuming the new product and the dynamic system can move in the 

horizontal direction. If 𝜇𝜇𝐴𝐴 = 1, as Ann experiments, she might asymptotically learn 

her valuation or she might end up switching back to the seller when 𝜃𝜃𝑡𝐴𝐴 = 𝜃𝜃∗. The 

latter will happen almost surely if 𝜇𝜇𝐴𝐴 = 0. Symmetric considerations apply to Bob. 

𝜃𝜃𝐴𝐴 1 0 

1 
𝜃𝜃𝐵𝐵 

𝜃𝜃∗ 

𝜃𝜃∗ 

𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝐵𝐵𝐵𝐵𝐵𝐵 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝐵𝐵 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑁𝑁𝑁𝑁 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝜃𝜃∗ 

𝜃𝜃∗ 
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3.4. Equilibrium with price discrimination 

In this section, I construct a MPE for the case in which the seller can offer Ann and 

Bob different prices. Suppose the strategy profile (𝑒̂𝑒,𝑒𝑒�) = (𝑒̂𝑒𝐴𝐴, 𝑒̂𝑒𝐵𝐵 ,𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵) is an MPE 

and define equilibrium value functions Π, 𝑉𝐴𝐴 and 𝑉𝐵𝐵 as follows: 

Π(𝜃𝜃) ≔ 𝑅(𝜃𝜃, 𝑒̂𝑒, 𝑒𝑒�)        𝑉𝐴𝐴(𝜃𝜃) ≔ 𝑈𝐴𝐴(𝜃𝜃, 𝑒̂𝑒,𝑒𝑒�)         𝑉𝐵𝐵(𝜃𝜃) ≔ 𝑈𝐵𝐵(𝜃𝜃, 𝑒̂𝑒,𝑒𝑒�). 

If we allow for price discrimination, the problem of the seller becomes separable 

because both Ann and Bob are marginal buyers. In order to maximize profits, the 

seller will have to set prices which make each consumer indifferent whenever they 

choose to buy from her. Because no individual consumer can affect the aggregate 

level of experimentation in its segment, 𝑒̂𝑒𝐴𝐴(𝜃𝜃) ≤ 𝑒𝑒�𝐴𝐴(𝜃𝜃) implies 

𝑒̂𝑒𝐴𝐴(𝜃𝜃) = 𝑒𝑒�𝐴𝐴(𝜃𝜃) = 𝜇𝜇∗ − 𝜃𝜃𝐴𝐴. 

As a result, Ann’s equilibrium value satisfies the following HJB equation: 

𝑒𝑒𝑉𝐴𝐴(𝜃𝜃) = 𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝜕2𝑉𝐴𝐴(𝜃𝜃)

𝜕𝜃𝜃𝐴𝐴2
1{𝑒̂𝑒𝐴𝐴(𝜃𝜃) > 𝑒𝑒�𝐴𝐴(𝜃𝜃)} +

1
2
𝑣𝑣(𝜃𝜃𝐵𝐵)

𝜕2𝑉𝐴𝐴(𝜃𝜃)

𝜕𝜃𝜃𝐵𝐵2
1{𝑒̂𝑒𝐵𝐵(𝜃𝜃) > 𝑒𝑒�𝐵𝐵(𝜃𝜃)}. 

I am seeking a MPE in which Ann’s value depends upon Bob’s belief only through its 

effect on prices. Since we are allowing price discrimination, we can expect the price 

offered to Ann to be independent of Bob’s belief. Thus, I will assume that 𝑉𝐴𝐴(𝜃𝜃) does 

not depend on 𝜃𝜃𝐵𝐵 and construct a MPE satisfying this assumption. Then, the HJB 

equation for Ann simplifies to 

 𝑒𝑒𝑉𝐴𝐴(𝜃𝜃) = 𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝜕2𝑉𝐴𝐴(𝜃𝜃)

𝜕𝜃𝜃𝐴𝐴2
1{𝑒̂𝑒𝐴𝐴(𝜃𝜃) > 𝑒𝑒�𝐴𝐴(𝜃𝜃)}. (8) 
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Equation (8) holds for all 𝜃𝜃𝐴𝐴 ∈ [0,1] since, when Ann purchases the seller’s product, 

she is a marginal buyer and therefore gets exactly what she would get had she been 

experimenting. In particular, when 𝜃𝜃𝐴𝐴 = 0, Ann must get zero in any equilibrium. 

The unique solution to equation (8) which satisfies 𝑉𝐴𝐴(0,𝜃𝜃𝐵𝐵) = 0 is 

𝑉𝐴𝐴(𝜃𝜃) =
𝜃𝜃𝐴𝐴

𝑒𝑒
. 

Note that this solution is independent of the value of 𝜃𝜃𝐵𝐵. Moreover, the seller 

appropriates all of Ann’s option value by tailoring prices to Ann’s experience with 

the new product.  

Let 𝜃𝜃�𝐴𝐴 be the maximal value of 𝜃𝜃𝐴𝐴 at which Ann buys from the seller in equilibrium. 

We expect Ann to buy from the seller for every 𝜃𝜃𝐴𝐴 ∈ �0,𝜃𝜃�𝐴𝐴� at price 𝑒̂𝑒𝐴𝐴(𝜃𝜃) = 𝜇𝜇∗ − 𝜃𝜃𝐴𝐴. 

For 𝜃𝜃𝐴𝐴 > 𝜃𝜃�𝐴𝐴, we can have the seller offering any price 𝑒̂𝑒𝐴𝐴(𝜃𝜃) ≥ 𝑒̂𝑒𝐴𝐴�𝜃𝜃�𝐴𝐴� = 𝜇𝜇∗ − 𝜃𝜃�𝐴𝐴 

since the seller is not interested in having her price accepted.  

It remains to determine the cutoff 𝜃𝜃�𝐴𝐴 and the seller’s equilibrium profits. These are 

determined by the seller, who chooses when to stop offering Ann a deal which 

renders her indifferent between products. Formally, the seller’s profit from doing 

business with Ann satisfies 

 𝑒𝑒Π𝐴𝐴(𝜃𝜃𝐴𝐴) = max �𝜇𝜇∗ − 𝜃𝜃𝐴𝐴,
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝑎𝑎2Π𝐴𝐴(𝜃𝜃𝐴𝐴)

𝑎𝑎𝜃𝜃𝐴𝐴2
�. (9) 

Note that, defining 𝑌𝐴𝐴(𝜃𝜃𝐴𝐴) ≔ Π𝐴𝐴(𝜃𝜃𝐴𝐴) + 𝜃𝜃𝐴𝐴/𝑒𝑒, we can write 

𝑒𝑒𝑌𝐴𝐴 = max �𝜇𝜇∗,𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝑎𝑎2𝑌𝐴𝐴

𝑎𝑎𝜃𝜃𝐴𝐴2
�. 
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By inspection, it is clear that this problem is exactly the problem of the planner 

represented in equation (3). It follows from the analysis in the previous section that 

𝜃𝜃�𝐴𝐴 = 𝜃𝜃∗. Hence, the Markov strategy profile we are constructing is efficient.  

Solving equation (9) on the region 𝜃𝜃𝐴𝐴 > 𝜃𝜃∗ and using the boundary condition 

Π𝐴𝐴(𝜃𝜃∗) = 𝜇𝜇∗ − 𝜃𝜃∗, we can see that the profit the seller extracts from Ann is: 

𝑒𝑒Π𝐴𝐴(𝜃𝜃𝐴𝐴) = �
(𝜇𝜇∗ − 𝜃𝜃∗)�

𝐻(𝜃𝜃𝐴𝐴)
𝐻(𝜃𝜃∗)� 𝜃𝜃𝐴𝐴 > 𝜃𝜃∗

𝜇𝜇∗ − 𝜃𝜃𝐴𝐴 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃∗.
 

The following result summarizes the previous analysis: 

 

Proposition 3.2. The Markov strategy profile (𝑒̂𝑒𝐴𝐴, 𝑒̂𝑒𝐵𝐵 ,𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵) defined by 

𝑒̂𝑒𝑖(𝜃𝜃) ≔ 𝜇𝜇∗ − min�𝜃𝜃𝑖 ,𝜃𝜃∗�                 𝑒𝑒�𝑖(𝜃𝜃) ≔ 𝜇𝜇∗ − 𝜃𝜃𝑖 

is a MPE and prescribes an efficient product choice in every state. 

 

The choices induced by (𝑒̂𝑒𝐴𝐴, 𝑒̂𝑒𝐵𝐵 ,𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵) are easily seen to be efficient since 

1�𝑒̂𝑒𝑖(𝜃𝜃) ≤ 𝑒𝑒�𝑖(𝜃𝜃)� = 1�𝜃𝜃𝑖 ≤ min�𝜃𝜃𝑖 ,𝜃𝜃∗�� = 1�𝜃𝜃𝑖 ≤ 𝜃𝜃∗�. 

The logic behind the efficiency of this equilibrium can be summarized as follows. If 

price discrimination is feasible, the seller can deal with consumers separately. This 

separation allows the seller to fully appropriate the option value each group of 

consumers would have if the established product was also supplied competitively. 

Finally, since the seller appropriates all the option value, she chooses when to sell 

exactly as if she were maximizing total surplus.  
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The following figure illustrates the efficiency of the equilibrium by displaying Ann’s 

value and the profit the seller extracts from her. 

 

Figure 3.4. Seller’s profits and equilibrium value for Ann. 

 

The following figure plots the seller’s total profit as a function of the state. 

 

 

Figure 3.5. Seller’s total profits obtained from Ann and Bob. 
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3.5. Equilibrium without price discrimination 

In this section, I consider the case in which the seller is constrained to offer Ann and 

Bob exactly the same price. This assumption is quite natural if we think of Ann and 

Bob as representations of two different market segments composed of many 

anonymous consumers, who identify themselves with the mean public opinions 𝜃𝜃𝐴𝐴 

and 𝜃𝜃𝐵𝐵 about the new product, but cannot be individualized by the seller. 

Note that the rationale behind the MPE constructed in the previous section suggests 

that, if the seller cannot engage in price discrimination, she will be forced to concede 

some rents to inframarginal consumers. As we will see shortly, this generates 

dynamic inefficiency in the form of over-experimentation. More precisely, I will 

construct a MPE without price discrimination and show that there are some initial 

states for which the equilibrium prescribes efficient stochastic paths of product 

choices, but there are others in which consumers stop using the new product “too 

late” (for a value of 𝜃𝜃𝑖 lower than 𝜃𝜃∗). However, for sufficiently large 𝑒𝑒, consumers 

choose their purchases efficiently with probability 1. 

The claims in the previous paragraph are formalized through four propositions later 

on this section. However, before proceeding to the analysis leading to these results, 

it seems convenient to informally discuss the nature of the MPE we are seeking. The 

seller will serve both Ann and Bob when they are sufficiently pessimistic about the 

new product (i.e. 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝐵𝐵 low enough), since in such situation they have fewer 

incentives to experiment and is cheap to attract them. In this case, the marginal 

buyer (the one who determines the equilibrium price) will be the consumer with 

higher 𝜃𝜃𝑖. For example, if 𝜃𝜃𝐴𝐴 > 𝜃𝜃𝐵𝐵, the marginal buyer would be Ann. Now, suppose 
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we increase the value of 𝜃𝜃𝐴𝐴 so that Ann becomes more optimistic. Then, the seller 

would have to reduce the price in order to keep her buying. At some point, the seller 

would cease to find the price reduction strategy optimal and, as she raises the price, 

Ann will switch to the new product and Bob will become the seller’s marginal buyer. 

In contrast, if both Ann and Bob are very optimistic about the new product, the 

seller will not be interested in serving them at all. The reason is that, in order to 

attract Ann and/or Bob in this circumstance, the seller would have to set very low 

prices. Instead, she prefers to let Ann and Bob experiment. If they find out that they 

don’t like the new product so much, the seller will offer them a price low enough to 

attract them and, at the same time, high enough to be profit maximizing (taking into 

account what the seller could achieve by letting the most pessimistic consumer 

experiment a little more). 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Experimentation regions and belief dynamics. 
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1 
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To begin the analysis, note that if 𝜃𝜃𝐵𝐵 = 1, Bob will never buy from the seller and we 

are back to the case of the previous section. On the other hand, if 𝜃𝜃𝐵𝐵 = 0, Bob is a 

captive client for the seller. The corresponding equilibrium analysis is similar to the 

case 𝜃𝜃𝐵𝐵 = 1, except that now the problem of the seller in equation (9) includes the 

profit obtained from Bob, who can be expected to buy at any price not exceeding 𝜇𝜇∗. 

The equilibrium value for Ann is still given by 

𝑉𝐴𝐴(𝜃𝜃𝐴𝐴, 0) =
𝜃𝜃𝐴𝐴

𝑒𝑒
. 

However, the total profit of the seller now satisfies the following HJB equation:  

𝑒𝑒Π(𝜃𝜃𝐴𝐴, 0) = max �2(𝜇𝜇∗ − 𝜃𝜃𝐴𝐴), 𝜇𝜇∗ +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝑎𝑎2Π(𝜃𝜃𝐴𝐴, 0)

𝑎𝑎𝜃𝜃𝐴𝐴2
�. 

In this equation, 𝜇𝜇∗ − 𝜃𝜃𝐴𝐴 is the price the seller has to charge to keep Ann as her 

customer (therefore selling two units of her product), while 𝜇𝜇∗ is the price the seller 

can charge if she decides to forget about Ann, raise the price and concentrate in Bob. 

Formally, this equation represents the value of an optimal stopping problem of the 

same kind than the one we solved for the planner in Section 0. The unique solution 

of the associated free-boundary problem is a cutoff-value pair �𝜃𝜃�(0),Π�, with the 

cutoff defined by 

𝜃𝜃�(0) ≔ �
𝛼𝜇𝜇∗

𝜇𝜇∗ − 2𝛽
� ∈ (0,𝜃𝜃∗) 

and the profits satisfying 

𝑒𝑒Π(𝜃𝜃𝐴𝐴, 0) =

⎩
⎪
⎨

⎪
⎧ 2(𝜇𝜇∗ − 𝜃𝜃𝐴𝐴) 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃�(0)

𝜇𝜇∗ + �𝜇𝜇∗ − 2𝜃𝜃�(0)��
𝐻(𝜃𝜃𝐴𝐴)

𝐻 �𝜃𝜃�(0)�
� 𝜃𝜃𝐴𝐴 > 𝜃𝜃�(0).
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Note that 𝜃𝜃�(0) is the maximal value of 𝜃𝜃𝐴𝐴 at which the seller is willing to charge 

Ann’s indifference price (which is lower than Bob’s) in order to sell two units instead 

of one. The value for Bob is given by 

𝑒𝑒𝑉𝐵𝐵(𝜃𝜃𝐴𝐴, 0) = �𝜃𝜃
𝐴𝐴 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃�(0)

0 𝜃𝜃𝐴𝐴 > 𝜃𝜃�(0).
 

Note that, when 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃�(0), the seller is targeting Ann, so Bob becomes 

inframarginal. As a consequence, he gets the positive rent 𝑉𝐵𝐵(𝜃𝜃𝐴𝐴, 0) − 0/𝑒𝑒 > 0 in 

excess of the expected value of unconditional continuation. On the other hand, Ann 

never becomes inframarginal when 𝜃𝜃𝐵𝐵 = 0 and so she gets no such a rent. We can 

see this by noting that 𝑉𝐴𝐴(𝜃𝜃𝐴𝐴, 0) − 𝜃𝜃𝐴𝐴/𝑒𝑒 = 0. 

The analysis when 𝜃𝜃𝐵𝐵 is positive but small is similar. For 𝜃𝜃𝐴𝐴 ≥ 𝜃𝜃𝐵𝐵 the seller will 

consider whether is convenient to attract Ann by setting the price at 𝑒̂𝑒(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = 𝜇𝜇∗ −

𝜃𝜃𝐴𝐴 or sell only to Bob. Note that 𝜇𝜇∗ − 𝜃𝜃𝐴𝐴 is the price which renders Ann indifferent 

between buying from the seller and experimenting with the new product. If the 

seller sets the price at 𝑒𝑒�𝐴𝐴(𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵), Ann’s value will satisfy 

𝑒𝑒𝑉𝐴𝐴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = 𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝜕2𝑉𝐴𝐴(𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵)

𝜕𝜃𝜃𝐴𝐴2
       𝜃𝜃𝐴𝐴 ∈ �𝜃𝜃�(𝜃𝜃𝐵𝐵), 1�, 

where 𝜃𝜃�(𝜃𝜃𝐵𝐵) be the maximal value of 𝜃𝜃𝐴𝐴 at which the seller wants to sell to both 

consumers when Bob’s belief is 𝜃𝜃𝐵𝐵 ≤ 𝜃𝜃𝐴𝐴. Note that 𝑒𝑒𝑉𝐴𝐴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = 𝜃𝜃𝐴𝐴 for 𝜃𝜃𝐴𝐴 ∈

�𝜃𝜃𝐵𝐵 ,𝜃𝜃�(𝜃𝜃𝐵𝐵)�. The unique solution to this initial value problem is given by 

 𝑒𝑒𝑉𝐴𝐴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = 𝜃𝜃𝐴𝐴. (10) 
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Note that we have not yet determined the equilibrium cutoff 𝜃𝜃�(𝜃𝜃𝐴𝐴). Before doing 

that, we need to complete the analysis of equilibrium prices for low 𝜃𝜃𝐵𝐵. So what is 

the seller’s pricing policy for 𝜃𝜃𝐴𝐴 ∈ �𝜃𝜃�(𝜃𝜃𝐵𝐵), 1�? Since the seller no longer wants to 

serve Ann, she goes after Bob’s segment and offers him his indifference price 

𝑒𝑒�𝐵𝐵(𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵) = 𝜇𝜇∗ − 𝜃𝜃𝐵𝐵. As a consequence, for 𝜃𝜃𝐴𝐴 > 𝜃𝜃�(𝜃𝜃𝐵𝐵), we have  

𝑒𝑒𝑉𝐵𝐵(𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵) = 𝜇𝜇∗ − 𝑒𝑒�𝐵𝐵(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝜕2𝑉𝐵𝐵(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵)

𝜕𝜃𝜃𝐴𝐴2
. 

Then, Bob’s value satisfies the ODE 

 𝑒𝑒𝑉𝐵𝐵(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = 𝜃𝜃𝐵𝐵 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝜕2𝑉𝐵𝐵(𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵)

𝜕𝜃𝜃𝐴𝐴2
. (11) 

Since 𝑉𝐵𝐵 should be continuous, we can solve (11) subject to the initial condition 

𝑒𝑒𝑉𝐵𝐵�𝜃𝜃�(𝜃𝜃𝐵𝐵),𝜃𝜃𝐵𝐵� = 𝜇𝜇∗ − 𝑒̂𝑒�𝜃𝜃�(𝜃𝜃𝐵𝐵),𝜃𝜃𝐵𝐵� = 𝜃𝜃�(𝜃𝜃𝐵𝐵). The solution is 

 𝑒𝑒𝑉𝐵𝐵(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) =

⎩
⎪
⎨

⎪
⎧
𝜃𝜃𝐵𝐵 + �𝜃𝜃�(𝜃𝜃𝐵𝐵) − 𝜃𝜃𝐵𝐵��

𝐻(𝜃𝜃𝐴𝐴)

𝐻 �𝜃𝜃�(𝜃𝜃𝐵𝐵)�
� 𝜃𝜃𝐵𝐵 ≤ 𝜃𝜃�(𝜃𝜃𝐵𝐵) < 𝜃𝜃𝐴𝐴

𝜃𝜃𝐴𝐴 𝜃𝜃𝐵𝐵 ≤ 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃�(𝜃𝜃𝐵𝐵).

 (12) 

We now determine the optimal cutoff for the seller from the HJB equation for her 

profits: 

𝑒𝑒Π(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = max �2𝑒𝑒�𝐴𝐴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵),𝑒𝑒�𝐵𝐵(𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵) +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝑎𝑎2Π(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵)

𝑎𝑎𝜃𝜃𝐴𝐴2
� 

= max �2(𝜇𝜇∗ − 𝜃𝜃𝐴𝐴), 𝜇𝜇∗ − 𝜃𝜃𝐵𝐵 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝑎𝑎2Π(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵)

𝑎𝑎𝜃𝜃𝐴𝐴2
�. 
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The associated free-boundary problem is solved by 

 𝑒𝑒Π(𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵) =

⎩
⎪
⎨

⎪
⎧ 2(𝜇𝜇∗ − 𝜃𝜃𝐴𝐴) 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃�(𝜃𝜃𝐵𝐵)

𝜇𝜇∗ − 𝜃𝜃𝐵𝐵 + �𝜇𝜇∗ − 𝜃𝜃�(𝜃𝜃𝐵𝐵) + 𝜃𝜃𝐵𝐵 − 𝜃𝜃�(𝜃𝜃𝐵𝐵)��
𝐻(𝜃𝜃𝐴𝐴)

𝐻 �𝜃𝜃�(𝜃𝜃𝐵𝐵)�
� 𝜃𝜃𝐴𝐴 > 𝜃𝜃�(𝜃𝜃𝐵𝐵) (13) 

with the cutoff 𝜃𝜃�(𝜃𝜃𝐵𝐵) defined for low 𝜃𝜃𝐵𝐵 by 

 𝜃𝜃�(𝜃𝜃𝐵𝐵) =
𝛼(𝜇𝜇∗ + 𝜃𝜃𝐵𝐵)
𝜇𝜇∗ + 𝜃𝜃𝐵𝐵 − 2𝛽

. (14) 

Note that 𝜃𝜃�(𝜃𝜃𝐵𝐵) is increasing in 𝜃𝜃𝐵𝐵 and that 𝜃𝜃�(1) ∈ (0,1). Using this cutoff, we can 

give a precise meaning to what we meant by “low 𝜃𝜃𝐵𝐵”. That is, the previous analysis 

is valid in the region 𝜃𝜃�(𝜃𝜃𝐵𝐵) ≤ 𝜃𝜃𝐵𝐵. This region can be easily verified to have the form 

[0,𝜃𝜃𝑐𝑐], where the critical point 𝜃𝜃𝑐𝑐 is given by 

𝜃𝜃𝑐𝑐 ≔
1
2

(1 + 𝛽 − 𝜇𝜇∗ − �4𝛼𝜇𝜇∗ + (1 + 𝛽 − 𝜇𝜇∗)2 ∈ (0,𝜃𝜃∗). 

Up to now, we have constructed 𝑒̂𝑒, 𝑉𝐴𝐴, 𝑉𝐵𝐵 and Π in the strips [0,1] × [0,𝜃𝜃𝑐𝑐] and 

[0,1] × {1}. The construction for the strips [0, 𝜃𝜃𝑐𝑐] × [0,1] and {1} × [0,1] is symmetric. 

It remains to describe the equilibrium in the box [𝜃𝜃𝑐𝑐 , 1) × [𝜃𝜃𝑐𝑐 , 1).  

Along the diagonal {(𝜃𝜃, 𝜃𝜃)|𝜃𝜃 ∈ [𝜃𝜃𝑐𝑐 ,𝜃𝜃∗]}, the equilibrium price is 𝑒̂𝑒(𝜃𝜃,𝜃𝜃) = 𝜇𝜇∗ − 𝜃𝜃 and it 

is optimal to serve both market segments. It follows that we can extend the 

definition of 𝜃𝜃� in equation (14) beyond 𝜃𝜃𝑐𝑐: 

𝜃𝜃�(𝜃𝜃𝐵𝐵) ≔ �
𝛼(𝜇𝜇∗ + 𝜃𝜃𝐵𝐵)
𝜇𝜇∗ + 𝜃𝜃𝐵𝐵 − 2𝛽

𝜃𝜃𝐵𝐵 ∈ [0,𝜃𝜃𝑐𝑐]

𝜃𝜃𝐵𝐵 𝜃𝜃𝐵𝐵 ∈ [𝜃𝜃𝑐𝑐 ,𝜃𝜃∗].
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With this extended definition, the value functions for Ann and Bob are again given 

by equations (10) and (12), respectively. As an instance of equation (13), profits are 

given in this region by: 

𝑒𝑒Π(𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵) = �
2(𝜇𝜇∗ − 𝜃𝜃𝐴𝐴) 𝜃𝜃𝐴𝐴 = 𝜃𝜃𝐵𝐵

(𝜇𝜇∗ − 𝜃𝜃𝐵𝐵)�1 +
𝐻(𝜃𝜃𝐴𝐴)
𝐻(𝜃𝜃𝐵𝐵)� 𝜃𝜃𝐴𝐴 > 𝜃𝜃𝐵𝐵

 

I shall finish the equilibrium construction by describing behavior in the upper box 

(𝜃𝜃∗, 1) × (𝜃𝜃∗, 1), where consumers are most optimistic about the new product. It is 

intuitive that the equilibrium should prescribe experimentation until they escape 

the region, since not even the planner would suggest them to consume the seller’s 

product. The seller can induce this behavior by setting 𝑒̂𝑒(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) ≥ 𝜇𝜇∗ − 𝜃𝜃∗ for all 

(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) ∈ (𝜃𝜃∗, 1) × (𝜃𝜃∗, 1). Note that we know the value functions in all the four 

boundaries of (𝜃𝜃∗, 1) × (𝜃𝜃∗, 1). To describe the value functions, define the first-exit 

time of (𝜃𝜃∗, 1) × (𝜃𝜃∗, 1) as 𝜏∗ ≔ inf{𝑒𝑒 > 0�(𝜃𝜃𝑡𝐴𝐴,𝜃𝜃𝑡𝐵𝐵) ∉ (𝜃𝜃∗, 1) × (𝜃𝜃∗, 1)}. The value function 

of Ann satisfies 

𝑉𝐴𝐴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = 𝔼 �� 𝕖−𝑟𝑡𝜃𝜃𝑡𝐴𝐴𝑎𝑎𝑒𝑒
𝜏∗

0
+ 𝕖−𝑟𝜏∗𝑉𝐴𝐴�𝜃𝜃𝜏∗

𝐴𝐴 ,𝜃𝜃𝜏∗
𝐵𝐵 ���𝜃𝜃0𝐴𝐴,𝜃𝜃0𝐵𝐵� = (𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵)�. 

The value function for Bob satisfies 𝑉𝐵𝐵(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = 𝑉𝐴𝐴(𝜃𝜃𝐵𝐵 ,𝜃𝜃𝐴𝐴). The profit function of 

the seller can be represented through the following expectation: 

Π(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = 𝔼�𝕖−𝑟𝜏∗Π�𝜃𝜃𝜏∗
𝐴𝐴 ,𝜃𝜃𝜏∗

𝐵𝐵 ���𝜃𝜃0𝐴𝐴,𝜃𝜃0𝐵𝐵� = (𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵)�. 

Product choices in this region are fully efficient, so 

𝑉𝐴𝐴(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) =
𝜃𝜃𝐴𝐴

𝑒𝑒
               𝑉𝐵𝐵(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) =

𝜃𝜃𝐵𝐵

𝑒𝑒
              Π(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = 𝑆𝑆(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) −

𝜃𝜃𝐴𝐴 + 𝜃𝜃𝐵𝐵

𝑒𝑒
. 
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It follows that the switching cutoff for Ann is finally extended to: 

 𝜃𝜃�(𝜃𝜃𝐵𝐵) ≔

⎩
⎪
⎨

⎪
⎧ 𝛼(𝜇𝜇∗ + 𝜃𝜃𝐵𝐵)
𝜇𝜇∗ + 𝜃𝜃𝐵𝐵 − 2𝛽

𝜃𝜃𝐵𝐵 ∈ [0,𝜃𝜃𝑐𝑐]

𝜃𝜃𝐵𝐵 𝜃𝜃𝐵𝐵 ∈ [𝜃𝜃𝑐𝑐 ,𝜃𝜃∗]
𝜃𝜃∗ 𝜃𝜃𝐵𝐵 ∈ [𝜃𝜃∗, 1].

 (15) 

The cutoff for Bob is defined symmetrically. 

Region Conditions 
Seller’s 

clientele 
𝒓𝑽𝑨(𝜽𝑨,𝜽𝑩) 𝒓𝚷(𝜽𝑨,𝜽𝑩) 

𝑅1 
𝜃𝜃𝐴𝐴 = 𝜃𝜃𝐵𝐵 = 𝜃𝜃 

0 ≤ 𝜃𝜃 ≤ 𝜃𝜃∗ 
Ann (mg) 
Bob (mg) 

𝜃𝜃 2(𝜇𝜇∗ − 𝜃𝜃) 

𝑅2 
0 ≤ 𝜃𝜃𝐵𝐵 < 𝜃𝜃𝐴𝐴

≤ 𝜃𝜃�(𝜃𝜃𝐵𝐵) < 𝜃𝜃𝑐𝑐 
Ann (mg) 

Bob 
𝜃𝜃𝐴𝐴 2(𝜇𝜇∗ − 𝜃𝜃𝐴𝐴) 

𝑅2′  
0 ≤ 𝜃𝜃𝐴𝐴 < 𝜃𝜃𝐵𝐵

≤ 𝜃𝜃�(𝜃𝜃𝐴𝐴) < 𝜃𝜃𝑐𝑐 
Ann 

Bob (mg) 
𝜃𝜃𝐵𝐵 2(𝜇𝜇∗ − 𝜃𝜃𝐵𝐵) 

𝑅3 
0 ≤ 𝜃𝜃𝐵𝐵 ≤ 𝜃𝜃∗ 

𝜃𝜃�(𝜃𝜃𝐵𝐵) < 𝜃𝜃𝐴𝐴 
Bob (mg) 𝜃𝜃𝐴𝐴 

𝜇𝜇∗ − 𝜃𝜃𝐵𝐵 + 

�𝜇𝜇∗ + 𝜃𝜃𝐵𝐵 − 2𝜃𝜃�(𝜃𝜃𝐵𝐵)�𝐻(𝜃𝜃𝐴𝐴)

𝐻 �𝜃𝜃�(𝜃𝜃𝐵𝐵)�
 

𝑅3′  
0 ≤ 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃∗ 

𝜃𝜃�(𝜃𝜃𝐴𝐴) < 𝜃𝜃𝐵𝐵 
Ann (mg) 

𝜃𝜃𝐴𝐴 + 

�𝜃𝜃�(𝜃𝜃𝐴𝐴) − 𝜃𝜃𝐴𝐴�𝐻(𝜃𝜃𝐵𝐵)

𝐻 �𝜃𝜃�(𝜃𝜃𝐴𝐴)�
 

𝜇𝜇∗ − 𝜃𝜃𝐴𝐴 + 

�𝜇𝜇∗ + 𝜃𝜃𝐴𝐴 − 2𝜃𝜃�(𝜃𝜃𝐴𝐴)�𝐻(𝜃𝜃𝐵𝐵)

𝐻 �𝜃𝜃�(𝜃𝜃𝐴𝐴)�
 

𝑅4 𝜃𝜃∗ < 𝜃𝜃𝐴𝐴,𝜃𝜃∗ < 𝜃𝜃𝐵𝐵 – 𝜃𝜃𝐴𝐴 𝑒𝑒𝑆𝑆(𝜃𝜃) − 𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐵𝐵 

 

Table 3.1. Equilibrium regions, product choices and value functions. 
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The following is the main result of this section:  

 

Proposition 3.3. The Markov strategy profile (𝑒̂𝑒,𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵) is a MPE. 

 

Comparing with the socially efficient dynamic product choices, this MPE features 

over-experimentation in some regions of the state space. The following result 

describes the efficiency properties of this equilibrium and shows exactly when it 

induces dynamically inefficient outcomes. 

 

Proposition 3.4. The random path of product choices induced by (𝑒̂𝑒, 𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵) starting 

from beliefs 𝜃𝜃0 = �𝜃𝜃0𝐴𝐴,𝜃𝜃0𝐵𝐵� is inefficient with positive probability if and only if 

 �0 ≤ 𝜃𝜃0𝐴𝐴 < 𝜃𝜃∗ ∧ 𝜃𝜃��𝜃𝜃0𝐴𝐴� < 𝜃𝜃0𝐵𝐵 < 1� ∨ �0 ≤ 𝜃𝜃0𝐵𝐵 < 𝜃𝜃∗ ∧ 𝜃𝜃�(𝜃𝜃0𝐵𝐵) < 𝜃𝜃0𝐴𝐴 < 1�. (16) 

Condition (16) corresponds to a region 𝐼 ≔ (int𝑅3 \{1} × [0,1]) ∪ (int𝑅3′ \[0,1] × {1}). In 

intuitive terms, if both players start with a symmetric enough prior, the outcome is 

efficient because the seller’s incentives to sell to both consumers are relatively 

similar. Note that Proposition 3.4 implies 

Π(𝜃𝜃) + 𝑉𝐴𝐴(𝜃𝜃) + 𝑉𝐵𝐵(𝜃𝜃) = 𝑆𝑆(𝜃𝜃) 

whenever condition (16) is violated. In contrast, if the prior is sufficiently 

asymmetric, the outcome might be inefficient because the seller may prefer to bet on 

the event in which the more optimistic consumer experiences a bad history by 

waiting to reduce the price beyond what is required by efficiency. 
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The stochastic dynamics implied by this MPE is depicted in Figure 3.7 below. 

Figure 3.7. Dynamics: inefficient product choice  

(textured area) and rest points (thick black). 

 

The arrows in Figure 3.7 represent the directions in which the state can move. The 

thick black lines and black dots correspond to absorbing states where beliefs don’t 

change and the stochastic dynamics is at rest. Note that the equilibrium implements 

the efficient action in all these absorbing states. Moreover, beliefs are martingales 

under the equilibrium strategies and therefore converge.  

𝜃𝜃𝐴𝐴 1 0 

1 

𝜃𝜃𝐵𝐵 

𝜃𝜃𝑐𝑐 𝜃𝜃∗ 

𝜃𝜃∗ 

𝜃𝜃𝑐𝑐 

Ann 

experiments 

Bob 

experiments 

Ann & Bob 
experiment 

No 
experimentation 

𝜃𝜃�(0) 

𝜃𝜃�(0) 

𝜃𝜃�(1) 

𝜃𝜃�(1) 
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The next result exploits these two observations to show that inefficiency is a 

transient phenomenon. 

 

Proposition 3.5. For every 𝜃𝜃0, the MPE (𝑒̂𝑒,𝑒𝑒�𝐴𝐴,𝑒𝑒�𝐵𝐵) prescribes an efficient product 

choice in finite time with probability 1. 

 

This means that almost every path induced by (𝑒̂𝑒,𝑒𝑒�𝐴𝐴, 𝑒𝑒�𝐵𝐵) eventually leads to the 

planner’s allocation independently of the prior. For example, when 𝜃𝜃0 ∈ 𝑅3, we have 

Pr � lim
𝑡→∞

𝜃𝜃𝑡𝐴𝐴 = 𝜃𝜃�(𝜃𝜃𝐵𝐵)�𝜃𝜃0𝐴𝐴 ∈ �𝜃𝜃�(𝜃𝜃0𝐵𝐵), 1�� =
1 − 𝜃𝜃0𝐴𝐴

1 − 𝜃𝜃�(𝜃𝜃𝐵𝐵)
 

Given this result, it is natural to wonder how much inefficiency can actually take 

place. One way of answering this question is to measure the size of region of the 

state space in which equilibrium product choices are not efficient. So, let 𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) 

denote the Lebesgue measure of the textured area in Figure 3.7. Then, we have 

 

Proposition 3.6. The size of the inefficient area in the MPE (𝑒̂𝑒,𝑒𝑒�𝐴𝐴, 𝑒𝑒�𝐵𝐵) is 

𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) = (𝜃𝜃∗)2 + (𝜃𝜃𝑐𝑐)2 − 4𝛼𝛽 ln�1 +
𝜃𝜃𝑐𝑐

𝜇𝜇∗ − 2𝛽
� − 2𝛼𝜃𝜃𝑐𝑐 . 

Moreover, 

lim
𝜎→∞

𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) = lim
𝑟→∞

𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) =
(𝜇𝜇∗)2

2
. 
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It follows that 𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) can get arbitrarily close to 1/2, which means that almost 

half of the state space can induce an initial inefficient equilibrium product choice 

when the signal noise and/or the discount rate are sufficiently high. Moreover, if we 

let 𝜎 → ∞ belief dynamics becomes arbitrarily slow. This means that there is no 

bound on the persistence of the inefficient product choices. The following figure plots 

the difference between the maximal total surplus and the total surplus obtained in 

equilibrium: 

 

Figure 3.8. Loss due to inefficiency across states. 

 

As illustrated by Figure 3.7, dynamic inefficiency may only arise if the prior lies in 

𝐼 ⊂ 𝑅3 ∪ 𝑅3′ . Conversely, if the prior lies in [0,1]2\𝐼 ⊃ 𝑅1 ∪ 𝑅2 ∪ 𝑅2′ ∪ 𝑅4, consumers 

will choose products just as the planner with probability 1. This means that in those 

regions, the equilibrium achieves maximal total surplus, as shown in Figure 3.8. 
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A noteworthy feature of this MPE is that prices are discontinuous along the 

boundaries 𝜃𝜃𝐴𝐴 = 𝜃𝜃�(𝜃𝜃𝐵𝐵) and 𝜃𝜃𝐵𝐵 = 𝜃𝜃�(𝜃𝜃𝐴𝐴). For 𝜃𝜃𝐴𝐴, 𝜃𝜃𝐵𝐵 < 𝜃𝜃𝑐𝑐, this discontinuity arises 

from the fact that, at the switching boundaries, the seller raises the price to focus on 

her new marginal consumer, which is less optimistic about the new product than the 

consumer who starts experimenting. The following figure shows the price jumps 

along the cutoffs described in (15) for both Ann and Bob: 

 

 

Figure 3.9. The equilibrium price is discontinuous at switching boundaries. 

 

Note that, for fixed 𝜃𝜃𝐵𝐵 < 𝜃𝜃𝑐𝑐, the equilibrium price is locally non-increasing in 𝜃𝜃𝐴𝐴 at 

every point of continuity. However, due to the jump at 𝜃𝜃�(𝜃𝜃𝐵𝐵), the price is not 

monotonic in a global sense. Intuitively, prices are lower when consumers have 

sufficiently symmetric beliefs and the seller wants to attract them both.  
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The following figure illustrates the lack of monotonicity of 𝑒̂𝑒(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) fixing the belief 

of Bob at 𝜃𝜃𝐵𝐵 ∈ (𝜃𝜃𝑐𝑐 ,𝜃𝜃∗): 

 

 

Figure 3.10. The equilibrium price is non-monotonic. 

 

Note that, while prices are discontinuous, the value functions of all players are 

continuous functions of the state. However, they are not differentiable in all regions. 

For instance, the seller’s profit function has a kink along the diagonal if 𝜃𝜃𝐴𝐴 = 𝜃𝜃𝐵𝐵 ∈

[0,𝜃𝜃∗). The reason is that, if beliefs start at 𝜃𝜃0𝐴𝐴 > 𝜃𝜃0𝐵𝐵 ∈ (𝜃𝜃𝑐𝑐 , 𝜃𝜃∗] and 𝜃𝜃𝐴𝐴 decreases, Bob 

drops out of the market just after crossing 𝜃𝜃𝐴𝐴 = 𝜃𝜃𝐵𝐵. At that point, further reductions 

in 𝜃𝜃𝐴𝐴 increase profits at a higher rate because Ann becomes the only consumer in 

the market. 
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The following contour plot illustrates this phenomenon: 

 

 

Figure 3.11. Equilibrium isoprofit lines. 

 

Similarly, Ann’s value function has kinks in the boundary between 𝑅3′  and 𝑅2′ , when 

her customer status passively changes from marginal to inframarginal. The reason 

is that she suddenly gets a rent without switching her actions, as the seller’s pricing 

strategy starts targeting Bob who is more optimistic about the new product and 

therefore requires a lower price in order to buy. 
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How much can the seller gain from price discrimination? Combining the analysis of 

the previous section with that of this one, we can plot the difference between the 

profit with and without price discrimination over the state space. 

 

 

Figure 3.12. Gains from price discrimination. 

 

On one hand, as we can see in Figure 3.12, the most significant gains occur when 

expected valuations are moderately asymmetric. On the other hand, there is nothing 

to gain from price discrimination if there is no asymmetry, if the asymmetry is 

extreme or if full experimentation is efficient. 
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3.6. Extensions 

This section briefly explores some natural extensions of the basic model: allowing 

commitment, more market segments, asymmetries, dominated new product, more 

possible valuations, strategic pricing of the new product instead of the known one 

and positive switching costs. 

 

3.6.1. Commitment 

As mentioned in the present chapter’s introduction, the equilibrium analysis of the 

basic model was performed under the assumption that the seller cannot commit. 

However, commitment is not important for the anatomy of the equilibrium and 

allowing the seller to commit to a price path at 𝑒𝑒 = 0 does not change the outcome. 

If price discrimination is feasible, it is clear that the seller would find optimal to 

commit to the MPE strategy described in Section 3.4. The reason is that, in this 

case, consumers obtain exactly the value of their outside options at every state. 

Thus, the seller’s payoff is the best payoff she can obtain through any mechanism in 

which consumers participate voluntarily. This would be true even if individual 

consumers could affect the aggregate amount of experimentation in their segment. 

If price discrimination is not feasible, the seller will be forced to give some rents to 

inframarginal consumers, but commitment will not mitigate this loss. Since 

individual consumers are “informationally small”, they behave as if they were 

myopic. Thus committing to price in a particular way in the future does not allow 

the seller to affect consumer’s present choices.   
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3.6.2. More Market Segments 

This subsection discusses the extension of the basic model presented in the previous 

sections to the case of more than two market segments. On one hand, the 

equilibrium analysis with price discrimination allows any number of segments 

without any essential modification. On the other hand, if price discrimination is not 

feasible, constructing a MPE becomes more cumbersome. However, I believe it 

should still be possible to construct a monotonic equilibrium by ordering beliefs and 

letting the seller switch at optimal cutoffs. To be more specific, suppose N ≥ 3 and let 

the state θ satisfy 𝜃𝜃1 < ⋯ < 𝜃𝜃𝑁. At that state, there will be 𝐴𝐴 ∈ {1, … ,𝑁𝑁} such that 

consumers {1, … ,𝐴𝐴} are buying from the seller in a neighborhood of 𝜃𝜃, but consumers 

{𝑒𝑒|𝑒𝑒 > 𝐴𝐴} are not. If 𝐴𝐴 < 𝑁𝑁 and 𝑒𝑒�𝑖 denotes the indifference price for consumer 𝑒𝑒 ∈

{1, …𝑁𝑁}, the seller’s equilibrium profits will solve the following HJB equation: 

𝑒𝑒Π(𝜃𝜃) = max �(𝐴𝐴 + 1)𝑒𝑒�𝑛+1,𝐴𝐴𝑒𝑒�𝑛 +
1
2
𝑣𝑣(𝜃𝜃𝑛+1)

𝜕2Π(𝜃𝜃)
𝜕𝜃𝜃𝑛+12

� + �
1
2
𝑣𝑣�𝜃𝜃𝑖�

𝜕2Π(𝜃𝜃)

𝜕𝜃𝜃𝑖2

𝑁

𝑖=𝑛+2

. 

Solving for the equilibrium is now more complex because value functions are 

determined by partial differential equations. However, we can still get some 

intuition about the efficiency properties of the equilibrium analyzing what happens 

with the equilibrium cutoffs in some regions of the state space. For example, 

consider the extreme set of states in which 𝜃𝜃1 = 𝜃𝜃2 = ⋯ = 𝜃𝜃𝑁−1 = 0 < 𝜃𝜃𝑁. In that 

region, the seller will face the problem 

𝑒𝑒Π(𝜃𝜃) = max �𝑁𝑁𝑒𝑒�𝑁 , (𝑁𝑁 − 1)𝜇𝜇∗ +
1
2
𝑣𝑣(𝜃𝜃𝑛+1)

𝜕2Π(𝜃𝜃)

𝜕𝜃𝜃𝑁2
� 

in any MPE.  
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The solution is 

𝑒𝑒Π(𝜃𝜃) = �
𝑁𝑁(𝜇𝜇∗ − 𝜃𝜃𝑁) 𝜃𝜃𝑁 ≤ 𝜃𝜃�𝑁

(𝑁𝑁 − 1)𝜇𝜇∗ + �𝜇𝜇∗ − 𝑁𝑁𝜃𝜃�𝑁� �
𝐻(𝜃𝜃𝑁)
𝐻�𝜃𝜃�𝑁�

� 𝜃𝜃𝑁 > 𝜃𝜃�𝑁 , 

where the cutoff 𝜃𝜃�𝑁 is given by 

𝜃𝜃�𝑁 ≔
𝛼𝜇𝜇∗

𝜇𝜇∗ + (𝛼 − 1)𝑁𝑁
. 

It follows that 

lim
𝑁→∞

𝜃𝜃�𝑁 = 0. 

The interpretation is very simple. As the seller has more captive consumers, she has 

less incentives to attract consumer 𝑁𝑁. This implies that the equilibrium cutoff when 

all the other 𝑁𝑁 − 1 consumers are captive deviates more and more from efficiency 

and, in the limit, converges to zero. 

 

3.6.3. Asymmetric Consumers 

It is also important to consider what happens when consumers are asymmetric. 

Allowing heterogeneity in 𝜇𝜇∗, 𝜎 and different segment sizes seem the most 

interesting form of asymmetries to analyze.  

Again, the equilibrium analysis with price discrimination goes through, although the 

efficient cutoffs for Ann and Bob will be determined by their idiosyncratic 

parameters 𝜇𝜇∗ and 𝜎. Due to the full separability of the problem, having different 

segment sizes does not change the equilibrium nor the solution of the planner’s 

problem. 
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Without price discrimination, allowing for different valuations for the established 

product shifts the locus in which the identity of the buyer who is most willing to pay 

for the seller’s product switches. The switching boundaries 𝜃𝜃�𝐴𝐴(𝜃𝜃𝐵𝐵) and 𝜃𝜃�𝐵𝐵(𝜃𝜃𝐴𝐴) will 

also be different. As a result, the equilibrium pricing function changes. Similarly, 

allowing different market segment sizes changes the switching boundaries and the 

pricing function, but not the efficient allocation. 

 

3.6.4. Dominated New Product 

In this subsection, I briefly analyze the case 𝜇𝜇∗ ≥ 1. This is the right assumption if 

we are modeling a situation in which the new product is at most as good as the 

original and the key difference is that consumers can get it for free (or at a lower 

price). One example of this situation is original software versus pirated copies 

(which may work just as the original or malfunction at some point). 

In this case, it is always efficient to have consumers using the seller’s product. As a 

consequence, we have 𝜃𝜃∗ = 1 and the MPE with price discrimination is given by 

𝑒̂𝑒𝑖(𝜃𝜃) = 𝑒𝑒�𝑖(𝜃𝜃) = 𝜇𝜇∗ − 𝜃𝜃𝑖. Without price discrimination, we will still have 

𝜃𝜃�(𝜃𝜃𝐵𝐵) =
𝛼(𝜇𝜇∗ + 𝜃𝜃𝐵𝐵)
𝜇𝜇∗ + 𝜃𝜃𝐵𝐵 − 2𝛽

. 

For 𝜇𝜇∗ = 1, we find 𝜃𝜃𝑐𝑐 = 1 so the switching boundaries of Ann and Bob meet at 

(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) = (1,1). For 𝜇𝜇∗ ∈ (1,2), the boundaries do not meet but 𝜃𝜃�(0) < 1, so there are 

partial experimentation regions in which only one segment buys the new product. Of 

course, in both cases, the region 𝑅4 no longer exists. For 𝜇𝜇∗ ≥ 2, the seller’s product 

is too good and consumers will prefer to pay its price in every state. 
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Interestingly, the asymptotic efficiency result in Proposition 3.5 does not hold for 

𝜇𝜇∗ ∈ [1,2). The reason is that if, for example, 𝜇𝜇𝐴𝐴 = 1, 𝜃𝜃0𝐵𝐵 < 𝜃𝜃∗ and 𝜃𝜃0𝐴𝐴 > 𝜃𝜃�(𝜃𝜃0𝐵𝐵), there is 

positive probability that 𝜃𝜃𝑡 → (𝜃𝜃0𝐵𝐵 , 1). But, in this event, 𝜃𝜃𝑡 remains trapped in the 

inefficient portion of 𝑅3 forever.  

 

3.6.5. Continuum of Valuations 

The analysis presented in the previous sections was restricted to binary valuations. 

In applications, it is sometimes important to allow for many or even a continuum of 

possible valuations. For example, there might be no a priori bound on the valuation 

for the new product. In this subsection, I explore an extension in this direction by 

focusing on the case in which 𝜇𝜇 ∈ ℝ and prior beliefs are Gaussian. 

In this case, the beliefs dynamics becomes non-stationary. This is because 

experimentation reduces belief dispersion over time independently of what happens 

with the posterior mean (something impossible if the prior has a two-point support). 

Consider the following Gaussian belief parametrization for Ann 

𝜇𝜇𝐴𝐴|ℱ𝑡𝐴𝐴 ∼ 𝑁𝑁(𝑒𝑒𝑡
𝐴𝐴, 𝑣𝑣𝑡𝐴𝐴), 

where 𝑒𝑒𝑡
𝐴𝐴 is her posterior mean and 𝑣𝑣𝑡𝐴𝐴 her posterior variance. More specifically, we 

can define the conditional moments 

𝑒𝑒𝑡
𝐴𝐴 ≔ 𝔼{𝜇𝜇𝑡𝐴𝐴�ℱ𝑡𝐴𝐴} =

𝑒𝑒0
𝐴𝐴 + 𝑣𝑣0𝐴𝐴𝑋𝑡𝐴𝐴

1 + 𝑣𝑣0𝐴𝐴𝑒𝑒
                  𝑣𝑣𝑡𝐴𝐴 ≔ 𝕍{𝜇𝜇𝑡𝐴𝐴�ℱ𝑡𝐴𝐴} =

𝑣𝑣0𝐴𝐴

1 + 𝑣𝑣0𝐴𝐴𝑒𝑒
. 

Then, her individual state can be described by the pair (𝑒𝑒𝑡
𝐴𝐴, 𝑣𝑣𝑡𝐴𝐴) which follows 

𝑎𝑎𝑒𝑒𝑡
𝐴𝐴 = (1 − 𝑞𝑡𝐴𝐴)𝑣𝑣𝑡𝐴𝐴𝑎𝑎𝑍�𝑡𝐴𝐴                               𝑎𝑎𝑣𝑣𝑡𝐴𝐴 = −(1 − 𝑞𝑡𝐴𝐴)𝑎𝑎𝑒𝑒, 
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where {𝑍�𝑡𝐴𝐴} is Ann’s innovation process defined as before and 𝑞𝑡𝐴𝐴 is her purchasing 

strategy. Note that {𝑒𝑒𝑡
𝐴𝐴} is a martingale and {𝑣𝑣𝑡𝐴𝐴} is non-increasing (and, conditional 

on 𝑞𝑡𝐴𝐴 = 1, decreases deterministically). The planner problem is still separable but 

more complex. It can be shown that the maximal surplus from Ann 𝑆𝑆𝐴𝐴(𝑒𝑒𝐴𝐴, 𝑣𝑣𝐴𝐴) is a 

non-decreasing convex function which equals 𝜇𝜇∗/𝑒𝑒 below a threshold 𝑒𝑒(𝑣𝑣𝐴𝐴) and is 

increasing above 𝑒𝑒(𝑣𝑣𝐴𝐴). The following figure illustrates the shape of 𝑆𝑆𝐴𝐴 for fixed 𝑣𝑣𝐴𝐴: 

Figure 3.13. Maximal surplus from Ann for fixed 𝑣𝑣𝐴𝐴. 

 

I will now sketch a method to find 𝑒𝑒(𝑣𝑣𝐴𝐴). If the function 𝑆𝑆𝐴𝐴 is smooth enough, it will 

satisfy the following HJB equation 

 𝑒𝑒𝑆𝑆𝐴𝐴(𝑒𝑒𝐴𝐴, 𝑣𝑣𝐴𝐴) = max �𝜇𝜇∗,𝑒𝑒𝐴𝐴 + (𝑣𝑣𝐴𝐴)2 �
1
2
𝜕2𝑆𝑆𝐴𝐴(𝑒𝑒𝐴𝐴, 𝑣𝑣𝐴𝐴)

(𝜕𝑒𝑒𝐴𝐴)2 −
𝜕𝑆𝑆𝐴𝐴(𝑒𝑒𝐴𝐴, 𝑣𝑣𝐴𝐴)

𝜕𝑣𝑣𝐴𝐴
��, (17) 

By extending the verification argument in the proof of Proposition 3.1, any solution 

to this equation with a 𝐶𝐶1 free-boundary can be shown to be the maximal total 

surplus the planner can obtain through Ann.  

𝑚𝑚𝐴𝐴 
𝑠𝑠(𝑣𝑣𝐴𝐴) 

𝑚𝑚𝐴𝐴

𝑟𝑟
 

𝜇𝜇∗ 

𝑆𝑆𝐴𝐴(𝑚𝑚𝐴𝐴, 𝑣𝑣𝐴𝐴) 

Ann experiments Ann buys 
from seller 
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It is possible to reduce the HJB equation (17) to an homogeneous heat equation and 

adapt the arguments in (Kolodner 1956) to prove that any solution corresponding to 

a 𝐶𝐶1 boundary will be of the form 

𝑒𝑒𝑆𝑆𝐴𝐴(𝑒𝑒𝐴𝐴, 𝑣𝑣𝐴𝐴) = �𝑒𝑒
𝐴𝐴 +

1
2
� 𝑓(𝑒𝑒𝐴𝐴, 𝑣𝑣𝐴𝐴,𝑢, 𝑒𝑒)𝑎𝑎𝑢
𝑣𝐴

0
𝑒𝑒𝐴𝐴 > 𝑒𝑒(𝑣𝑣𝐴𝐴)

𝜇𝜇∗ 𝑒𝑒𝐴𝐴 ≤ 𝑒𝑒(𝑣𝑣𝐴𝐴),
 

where 𝑓 is defined by 

𝑓(𝑒𝑒𝐴𝐴, 𝑣𝑣𝐴𝐴,𝑢, 𝑒𝑒) ≔ �
𝕖−𝑟�

1
𝑢−

1
𝑣�

√𝑣𝑣 − 𝑢
�𝜙 �

𝑒𝑒𝐴𝐴 − 𝑒𝑒(𝑢)
√𝑣𝑣 − 𝑢

� �1 − ��
𝑒𝑒𝐴𝐴 − 𝑒𝑒(𝑢)
𝑣𝑣 − 𝑢

� − 2𝑒𝑒′(𝑢)� 𝑒𝑒(𝑢)� 

and 𝑒𝑒: [0,∞) → ℝ represents the free-boundary. It turns out that 𝑒𝑒 is characterized by 

the following functional equation 

 𝑒𝑒(𝑣𝑣𝐴𝐴) = 𝜇𝜇∗ − � 𝑓(𝑒𝑒(𝑣𝑣𝐴𝐴), 𝑣𝑣𝐴𝐴,𝑢, 𝑒𝑒)𝑎𝑎𝑢
𝑣𝐴

0
 (18) 

Equation (18) is a non-linear Volterra integro-differential equation of the 2nd kind. 

While the question of existence of a solution is left for future research, if such 

solution exists, it must be unique and provides the planner’s efficient threshold. 

Assuming that we can solve (18), the function 𝑆𝑆𝐴𝐴 will be smooth enough for the HJB 

equation (17) to be valid. Then, it would be possible to construct an efficient MPE 

with price discrimination, just as we did in the binary case. The equilibrium analysis 

without price discrimination can also be pursued along similar lines, but it will be 

technically more challenging. For instance, profit maximization will involve a higher 

dimensional switching boundary (for example, if 𝑒𝑒𝐵𝐵 is sufficiently low, the seller will 

serve the whole market when 𝑒𝑒𝐴𝐴 ≤ 𝑒𝑒�𝐴𝐴(𝑣𝑣𝐴𝐴,𝑒𝑒𝐵𝐵 , 𝑣𝑣𝐵𝐵)). 
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3.6.6.  Strategic Pricing of the New Product 

Now suppose that the seller controls the price of the new product and tries to 

penetrate an established competitive market. This assumption fits the situation 

arising after the seller innovates and obtains a patent and corresponds to an 

opposite location of market power relative to the basic model.  

It terms of efficiency, it doesn’t matter whether the seller is pushing the new product 

or defending her previous monopoly. The allocation problem of the planner is exactly 

the same as that of the previous case, so Proposition 3.1 applies. The HJB equations 

for MPE are 

𝑒𝑒Π = sup
𝑝≥0

�1{𝑒𝑒𝐴𝐴 ≤ 𝑒𝑒�𝐴𝐴}�𝑒𝑒𝐴𝐴 +
𝑣𝑣(𝜃𝜃𝐴𝐴)

2
𝜕2Π
𝜕𝜃𝜃𝐴𝐴2

� + 1{𝑒𝑒𝐵𝐵 ≤ 𝑒𝑒�𝐵𝐵}�𝑒𝑒𝐵𝐵 +
𝑣𝑣(𝜃𝜃𝐵𝐵)

2
𝜕2Π
𝜕𝜃𝜃𝐵𝐵2

�� 

𝑒𝑒𝑉𝐴𝐴 = max{𝜇𝜇∗,𝜃𝜃𝐴𝐴 − 𝑒̂𝑒𝐴𝐴(𝜃𝜃)} +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝜕2𝑉𝐴𝐴

𝜕𝜃𝜃𝐴𝐴2
1{𝑒̂𝑒𝐴𝐴 > 𝑒𝑒�𝐴𝐴} +

1
2
𝑣𝑣(𝜃𝜃𝐵𝐵)

𝜕2𝑉𝐴𝐴

𝜕𝜃𝜃𝐵𝐵2
1{𝑒̂𝑒𝐵𝐵 > 𝑒𝑒�𝐵𝐵} 

𝑒𝑒𝑉𝐵𝐵 = max{𝜇𝜇∗,𝜃𝜃𝐵𝐵 − 𝑒̂𝑒𝐵𝐵(𝜃𝜃)} +
1
2
𝑣𝑣(𝜃𝜃𝐵𝐵)

𝜕2𝑉𝐵𝐵

𝜕𝜃𝜃𝐵𝐵2
1{𝑒̂𝑒𝐵𝐵 > 𝑒𝑒�𝐵𝐵} +

1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝜕2𝑉𝐵𝐵

𝜕𝜃𝜃𝐴𝐴2
1{𝑒̂𝑒𝐴𝐴 > 𝑒𝑒�𝐴𝐴}. 

We can construct a MPE using these equations along the lines of the previous 

analysis. If price discrimination is feasible, the MPE will be efficient. The price 

charged to Ann when 𝑒̂𝑒𝐴𝐴(𝜃𝜃) ≤ 𝑒𝑒�𝐴𝐴(𝜃𝜃) will be 𝑒̂𝑒𝐴𝐴(𝜃𝜃) = 𝑒𝑒�𝐴𝐴(𝜃𝜃) = 𝜃𝜃𝐴𝐴 − 𝜇𝜇∗. Hence, 

assuming that 𝑉𝐴𝐴(𝜃𝜃) does not depend on 𝜃𝜃𝐵𝐵, we have 𝑉𝐴𝐴(𝜃𝜃) = 𝜇𝜇∗/𝑒𝑒. The seller sells 

to Ann at price 𝑒̂𝑒𝐴𝐴(𝜃𝜃) = max{𝜃𝜃𝐴𝐴,𝜃𝜃∗} − 𝜇𝜇∗ and collects from her the following profit: 

𝑒𝑒Π𝐴𝐴(𝜃𝜃𝐴𝐴) = �𝜃𝜃
𝐴𝐴 − 𝜇𝜇∗ + (𝜇𝜇∗ − 𝜃𝜃∗)�

𝐻(𝜃𝜃𝐴𝐴)
𝐻(𝜃𝜃∗)� 𝜃𝜃𝐴𝐴 > 𝜃𝜃∗

0 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃∗.
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Without price discrimination, the MPE will feature under-experimentation in some 

states. The reason is that, since the seller can target her more optimistic customers, 

she does not want to sell the new product at a price low enough to achieve the 

efficient level of market penetration. We can check this claim by computing 𝜃𝜃�𝐴𝐴(1), 

the maximal value of 𝜃𝜃𝐴𝐴 such that Ann buys the established product when 𝜃𝜃𝐵𝐵 = 1. 

Note that Ann is the marginal consumer for the seller. Thus, she is priced to 

indifference in equilibrium and her value function becomes 𝑉𝐴𝐴(𝜃𝜃𝐴𝐴, 1) = 𝜇𝜇∗/𝑒𝑒 as the 

seller appropriates all her option value. The equilibrium price will be 

𝑒̂𝑒(𝜃𝜃𝐴𝐴, 1) = �𝜃𝜃
𝐴𝐴 − 𝜇𝜇∗ 𝜃𝜃𝐴𝐴 > 𝜃𝜃�𝐴𝐴(1)

1 − 𝜇𝜇∗ 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃�𝐴𝐴(1).
 

The problem of the seller is now 

𝑒𝑒Π(𝜃𝜃𝐴𝐴, 1) = max �1 − 𝜇𝜇∗, 2(𝜃𝜃𝐴𝐴 − 𝜇𝜇∗) +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)

𝜕2Π(𝜃𝜃𝐴𝐴, 1)

𝜕𝜃𝜃𝐴𝐴2
�. 

The solution satisfies: 

𝑒𝑒Π(𝜃𝜃𝐴𝐴, 1) =

⎩
⎪
⎨

⎪
⎧

2(𝜃𝜃𝐴𝐴 − 𝜇𝜇∗) + �1 + 𝜇𝜇∗ − 2𝜃𝜃�𝐴𝐴(1)� �
𝐻(𝜃𝜃𝐴𝐴)

𝐻 �𝜃𝜃�𝐴𝐴(1)�
� 𝜃𝜃𝐴𝐴 > 𝜃𝜃�𝐴𝐴

1 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃�𝐴𝐴,

 

where 

𝜃𝜃�𝐴𝐴(1) =
𝜇𝜇∗ + 1

2
+ �

𝐻�𝜃𝜃�𝐴𝐴�
𝐻′�𝜃𝜃�𝐴𝐴�

�. 

It follows that 𝜃𝜃�𝐴𝐴(1) > 𝜃𝜃∗ and Ann stops consuming the new product too soon. 
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3.6.7. Positive Switching Costs 

If switching between products is costly, the nature of the efficient allocation will 

change. The reason is that the state space itself must grow to include current 

product choices. In this way, Ann will have a switching cutoff 𝜃𝜃𝑛𝑒𝑤∗  when she is 

consuming the new product and a different (higher) switching cutoff 𝜃𝜃𝑜𝑙𝑑∗  when she is 

consuming the old product. The gap between 𝜃𝜃𝑛𝑒𝑤∗  and 𝜃𝜃𝑜𝑙𝑑∗  is due to the fact that, 

since switching is costly, Ann will wait until the expected benefit of switching 

compensates the cost. 

The maximal surplus for Ann when experimenting still satisfies 

𝑒𝑒𝑆𝑆𝑛𝑒𝑤𝐴𝐴 = 𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)�

𝑎𝑎2𝑆𝑆𝑛𝑒𝑤𝐴𝐴

𝑎𝑎𝜃𝜃𝐴𝐴2
�        𝜃𝜃𝐴𝐴 > 𝜃𝜃𝑛𝑒𝑤∗ . 

However, now we will have 𝑆𝑆𝑛𝑒𝑤𝐴𝐴 (𝜃𝜃𝑛𝑒𝑤∗ ) + 𝑘 = 𝜇𝜇∗, where 𝑘 > 0 is the switching cost. 

By inspection, we realize that having 𝑘 > 0 is equivalent to a decrease in 𝜇𝜇∗. Hence, 

it follows from Proposition 3.1 that the efficient cutoff is 

𝜃𝜃𝑛𝑒𝑤∗ ≔
𝛼(𝜇𝜇∗ − 𝑘)

(𝜇𝜇∗ − 𝑘) − 𝛽
. 

Note that lim𝑘→∞ 𝜃𝜃𝑛𝑒𝑤∗ = 𝛼 < 0. This is natural, since, if the cost of switching is too 

large, Ann will never want to stop experimenting. On the other hand, the maximal 

surplus for Ann when consuming the old product satisfies 𝑆𝑆𝑜𝑙𝑑𝐴𝐴 (𝜃𝜃𝑜𝑙𝑑∗ ) + 𝑘 = 𝑆𝑆𝑛𝑒𝑤𝐴𝐴 (𝜃𝜃𝑜𝑙𝑑∗ ). 

It follows that 

𝜃𝜃𝑜𝑙𝑑∗ ≔
𝛼(𝜇𝜇∗ + 𝑘)

(𝜇𝜇∗ + 𝑘) − 𝛽
> 𝜃𝜃𝑛𝑒𝑤∗ . 

We thus see our previous claim confirmed. Of course, if Ann were consuming the old 

product at 𝜃𝜃𝐴𝐴 > 𝜃𝜃𝑜𝑙𝑑∗ , efficiency would require an immediate switch. 
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3.7. Final Remarks 

The analysis in this chapter sheds light on the dynamic pricing problem of a 

monopolistic seller who sees her dominant position challenged by a competitive 

experience substitute. I used a simple model in continuous time to study the 

dynamic efficiency effects of price discrimination across different market segments. I 

constructed MPE and showed that, when the seller can charge different prices, she 

chooses to maximize total surplus. In contrast, when the seller is constrained to 

charge the same price to all consumers, they may experiment too much with the new 

product relative to the efficient allocation. This dynamic inefficiency can be very 

persistent, especially if learning is slow. However, the inefficiency turns out to be 

transient, since I show that equilibrium strategies end up prescribing an efficient 

product choice in finite time with probability 1. 

Although the equilibria constructed seem natural, the question of uniqueness is 

currently unresolved. Clearly multiple equilibrium prices are possible in the states 

in which no consumer buys the seller’s product, but this multiplicity is harmless 

since it does not affect payoffs. I believe that, leaving this multiplicity aside, the 

equilibrium is unique. However, this assertion requires proof. 

Finally, I would like to mention two additional extensions. First, although I focused 

on the case of public learning, it would be interesting to consider the case in which 

the consumption experience provides some private information. Second, one could 

allow for correlated learning (either in the prior or through the noise). This seems an 

important extension, but even the efficiency analysis becomes more involved as the 

planner’s problem becomes non-separable. 

106 
 



3.8. Proofs 

 

Proof of Proposition 3.1 

It is enough to prove the result for Ann. Define an allocation strategy for Ann as a 

stochastic process taking values on [0,1] which is progressively measurable w.r.t. the 

filtration generated by {𝜃𝜃𝑡𝐴𝐴}. For any allocation strategy 𝜆, define 

𝑀(𝜆,𝜃𝜃𝐴𝐴) ≔ 𝔼�� 𝕖−𝑟𝑡(𝜆𝑡𝜇𝜇∗ + (1 − 𝜆𝑡)𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑒𝑒
∞

0
�𝜃𝜃0𝐴𝐴 = 𝜃𝜃𝐴𝐴�, 

where {𝜃𝜃𝑡𝐴𝐴} is understood to be the controlled process starting at 𝜃𝜃0𝐴𝐴 = 𝜃𝜃𝐴𝐴 and 

satisfying the stochastic differential equation 𝑎𝑎𝜃𝜃𝑡𝐴𝐴 = �(1 − 𝜆𝑡)𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑍�𝑡𝐴𝐴. This SDE 

has a unique strong solution for every allocation strategy. It follows from the 

definitions that 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴) = sup𝜆 𝑀(𝜆,𝜃𝜃𝐴𝐴). Now let 𝜃𝜃∗ be as in the statement and define 

the solution candidate 𝐽 ∈ 𝐶𝐶1([0,1],ℝ) ∩ 𝐶𝐶2([0,𝜃𝜃∗) ∪ (𝜃𝜃∗, 1],ℝ) by setting 

𝐽(𝜃𝜃𝐴𝐴) ≔

⎩
⎪
⎨

⎪
⎧ 𝜇𝜇∗

𝑒𝑒
𝜃𝜃 ≤ 𝜃𝜃∗

𝜃𝜃𝐴𝐴

𝑒𝑒
− �

𝜃𝜃∗ − 𝜇𝜇∗

𝑒𝑒
� �

𝐻(𝜃𝜃)
𝐻(𝜃𝜃∗)� 𝜃𝜃 > 𝜃𝜃∗.

 

First note that, for every 𝜃𝜃𝐴𝐴 ∈ (𝜃𝜃∗, 1], we have 

 𝑒𝑒𝐽(𝜃𝜃𝐴𝐴) = 𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)𝐽′′(𝜃𝜃𝐴𝐴) ≥ 𝜇𝜇∗. (19) 

Moreover, for all 𝜃𝜃𝐴𝐴 ∈ [0, 𝜃𝜃∗), we have 

 𝑒𝑒𝐽(𝜃𝜃𝐴𝐴) = 𝜇𝜇∗ ≥ 𝜃𝜃𝐴𝐴 = 𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)𝐽′′(𝜃𝜃𝐴𝐴). (20) 
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I will adapt a standard verification argument to prove that 𝐽(𝜃𝜃𝐴𝐴) = 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴) by 

showing 𝐽(𝜃𝜃𝐴𝐴) ≤ 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴) and 𝐽(𝜃𝜃𝐴𝐴) ≥ 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴). Although these ideas are well known 

(see, for instance, (Brekke and Øksendal 1991) or (Strulovici and Szydlowski 2012)), 

I include the argument because the general results I know assume that the variance 

of the state process is uniformly bounded away from zero, an assumption which is 

violated in my model without invalidating the argument.  

To show 𝐽(𝜃𝜃𝐴𝐴) ≤ 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴), note that the process stops whenever {𝜃𝜃𝑡𝐴𝐴} hits [0,𝜃𝜃∗]. It is 

then natural to define the stopping time  

𝜏∗ ≔ inf{𝑒𝑒 > 0�𝜃𝜃𝑡𝐴𝐴 ≤ 𝜃𝜃∗}. 

Since 𝐽 is 𝐶𝐶2 on (𝜃𝜃∗, 1], we can use Ito’s formula for any fixed 𝑇 > 0 to get 

𝕖−𝑟(𝑇∧𝜏∗)𝐽�𝜃𝜃𝑇∧𝜏∗
𝐴𝐴 � = 𝐽�𝜃𝜃0𝐴𝐴� + � 𝕖−𝑟𝑡 �

1
2
𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝐽′′(𝜃𝜃𝑡𝐴𝐴) − 𝑒𝑒𝐽(𝜃𝜃𝑡𝐴𝐴)�𝑎𝑎𝑒𝑒

𝑇∧𝜏∗

0
 

                                                   +� 𝕖−𝑟𝑡�𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝐽′(𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑍𝑡𝐴𝐴
𝑇∧𝜏∗

0
+ 𝕖−𝑟(𝑇∧𝜏∗) �

𝜇𝜇∗

𝑒𝑒
�. 

Using equation (19) which is valid for all 𝑒𝑒 < 𝜏∗, we get 

𝕖−𝑟(𝑇∧𝜏∗)𝐽�𝜃𝜃𝑇∧𝜏∗
𝐴𝐴 � = 𝐽�𝜃𝜃0𝐴𝐴� − � 𝕖−𝑟𝑡𝜃𝜃𝑡𝐴𝐴𝑎𝑎𝑒𝑒

𝑇∧𝜏∗

0
 

                                                   +� 𝕖−𝑟𝑡�𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝐽′(𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑍𝑡𝐴𝐴
𝑇∧𝜏∗

0
+ 𝕖−𝑟(𝑇∧𝜏∗) �

𝜇𝜇∗

𝑒𝑒
�. 

Rearranging terms and taking expectations conditional on 𝜃𝜃0𝐴𝐴 = 𝜃𝜃𝐴𝐴, we have 

𝐽(𝜃𝜃𝐴𝐴) = 𝔼�� 𝕖−𝑟𝑡𝜃𝜃𝑡𝐴𝐴𝑎𝑎𝑒𝑒
𝑇∧𝜏∗

0
+ 𝕖−𝑟(𝑇∧𝜏∗) �

𝜇𝜇∗

𝑒𝑒
� − 𝕖−𝑟(𝑇∧𝜏∗)𝐽�𝜃𝜃𝑇∧𝜏∗

𝐴𝐴 ��𝜃𝜃𝑡𝐴𝐴 = 𝜃𝜃𝐴𝐴�, 
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where we used  

𝔼�� 𝕖−𝑟𝑡�𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝐽′(𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑍𝑡𝐴𝐴
𝑇∧𝜏∗

0
�𝜃𝜃𝑡𝐴𝐴 = 𝜃𝜃𝐴𝐴� = 0. 

Taking limits as 𝑇 → ∞, we obtain 

𝐽(𝜃𝜃𝐴𝐴) = 𝔼�� 𝕖−𝑟𝑡𝜃𝜃𝑡𝐴𝐴𝑎𝑎𝑒𝑒
𝜏∗

0
+ 𝕖−𝑟𝜏∗ �

𝜇𝜇∗

𝑒𝑒
� − 𝕖−𝑟𝜏∗𝐽�𝜃𝜃𝜏∗

𝐴𝐴 ��𝜃𝜃𝑡𝐴𝐴 = 𝜃𝜃𝐴𝐴�. 

Hence, it suffices to define 𝜆𝑡∗ ≔ 1{𝑒𝑒 ≤ 𝜏∗} to get  

𝐽(𝜃𝜃𝐴𝐴) = 𝑀(𝜆∗,𝜃𝜃𝐴𝐴) ≤ 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴). 

I will now show that 𝐽(𝜃𝜃𝐴𝐴) ≥ 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴). Properties (19) and (20) and 𝐽 ∈ 𝐶𝐶1([0,1],ℝ) 

imply that, for every 𝜖 > 0, it is possible approximate the candidate 𝐽 with a function 

𝐽𝜖 ∈ 𝐶𝐶2([0,1],ℝ) satisfying sup��𝐽𝜖(𝜃𝜃𝐴𝐴) − 𝐽(𝜃𝜃𝐴𝐴)��𝜃𝜃𝐴𝐴 ∈ [0,1]� < 𝜖 ,  𝜇𝜇∗ ≤ 𝑒𝑒𝐽𝜖(𝜃𝜃𝐴𝐴) + 𝜖 for all 

𝜃𝜃𝐴𝐴 ∈ [0,𝜃𝜃∗] and  𝜃𝜃𝐴𝐴 + 1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)𝐽𝜖′′(𝜃𝜃𝐴𝐴) ≤ 𝑒𝑒𝐽𝜖(𝜃𝜃𝐴𝐴) + 𝜖 for all 𝜃𝜃𝐴𝐴 ∈ [𝜃𝜃∗, 1]. It follows that, 

for every 𝛾 ∈ [0,1], 

 𝛾𝜇𝜇∗ + (1 − 𝛾)�𝜃𝜃𝐴𝐴 +
1
2
𝑣𝑣(𝜃𝜃𝐴𝐴)𝐽𝜖′′(𝜃𝜃𝐴𝐴)� ≤ 𝑒𝑒𝐽𝜖(𝜃𝜃𝐴𝐴) + 𝜖. (21) 

Pick an arbitrary allocation strategy 𝜆. Applying Ito’s formula to 𝕖−𝑟𝑇𝐽𝜖�𝜃𝜃𝑇𝐴𝐴� yields 

𝕖−𝑟𝑇𝐽𝜖�𝜃𝜃𝑇𝐴𝐴� = 𝐽𝜖�𝜃𝜃0𝐴𝐴� + � 𝕖−𝑟𝑡 �
1
2

(1 − 𝜆𝑡)𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝐽𝜖′′(𝜃𝜃𝑡𝐴𝐴) − 𝑒𝑒𝐽𝜖(𝜃𝜃𝑡𝐴𝐴)�𝑎𝑎𝑒𝑒
𝑇

0
 

                                         +� 𝕖−𝑟𝑡�(1 − 𝜆𝑡)𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝐽𝜖′(𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑒𝑒
𝑇

0
. 
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Using (21), we get 

𝕖−𝑟𝑇𝐽𝜖�𝜃𝜃𝑇𝐴𝐴� ≤ 𝐽𝜖�𝜃𝜃0𝐴𝐴� + � 𝕖−𝑟𝑡(𝜖 − 𝜆𝑡𝜇𝜇∗ − (1 − 𝜆𝑡)𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑒𝑒
𝑇

0
 

                                         +� 𝕖−𝑟𝑡�(1 − 𝜆𝑡)𝑣𝑣(𝜃𝜃𝑡𝐴𝐴)𝐽𝜖′(𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑒𝑒
𝑇

0
. 

Integrating, rearranging terms and taking expectations conditional on 𝜃𝜃0𝐴𝐴 = 𝜃𝜃𝐴𝐴: 

𝐽𝜖(𝜃𝜃𝐴𝐴) + �
1 − 𝕖−𝑟𝑇

𝑒𝑒
� 𝜖 ≥ 𝔼 �𝕖−𝑟𝑇𝐽𝜖�𝜃𝜃𝑇𝐴𝐴� + � 𝕖−𝑟𝑡(𝜆𝑡𝜇𝜇∗ + (1 − 𝜆𝑡)𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑒𝑒

𝑇

0
�𝜃𝜃0𝐴𝐴 = 𝜃𝜃𝐴𝐴�. 

Taking limits as 𝑇 → ∞, we get 

𝐽𝜖(𝜃𝜃𝐴𝐴) +
𝜖
𝑒𝑒
≥ 𝔼�� 𝕖−𝑟𝑡(𝜆𝑡𝜇𝜇∗ + (1 − 𝜆𝑡)𝜃𝜃𝑡𝐴𝐴)𝑎𝑎𝑒𝑒

∞

0
�𝜃𝜃0𝐴𝐴 = 𝜃𝜃𝐴𝐴�. 

It follows that, for every 𝜖 > 0, we have  

𝐽𝜖(𝜃𝜃𝐴𝐴) +
𝜖
𝑒𝑒
≥ 𝑀(𝜆,𝜃𝜃𝐴𝐴). 

Taking limits as 𝜖 → 0, we get  

𝐽(𝜃𝜃𝐴𝐴) ≥ 𝑀(𝜆,𝜃𝜃𝐴𝐴). 

Since 𝜆 was arbitrarily chosen,  

𝐽(𝜃𝜃𝐴𝐴) ≥ sup
λ
𝑀(𝜆,𝜃𝜃𝐴𝐴) = 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴). 

Having shown that 𝐽(𝜃𝜃𝐴𝐴) = 𝑆𝑆𝐴𝐴(𝜃𝜃𝐴𝐴), the proof is complete ∎ 
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Proof of Proposition 3.2 

Consider Ann first (the analysis for Bob is symmetric). Given the equilibrium pricing 

strategy 𝑒̂𝑒, Ann is indifferent between her stage actions whenever she sees a price 

𝑒𝑒𝐴𝐴 = 𝜇𝜇∗ − 𝜃𝜃𝐴𝐴. Therefore, buying from the seller is optimal whenever 𝑒𝑒𝐴𝐴 ≤ 𝜇𝜇∗ − 𝜃𝜃𝐴𝐴. 

Along the equilibrium path, she will buy from the seller for every 𝜃𝜃𝐴𝐴 ≤ 𝜃𝜃∗ (i.e. when 

the seller sets 𝑒𝑒𝐴𝐴 = 𝜇𝜇∗ − 𝜃𝜃𝐴𝐴) and will not buy for 𝜃𝜃𝐴𝐴 > 𝜃𝜃∗ (i.e. when the price set by 

the seller is 𝑒𝑒𝐴𝐴 = 𝜇𝜇∗ − 𝜃𝜃∗ > 𝜇𝜇∗ − 𝜃𝜃𝐴𝐴). This means that the equilibrium implements 

the efficient allocation. 

Note that if, at 𝑒𝑒 = 0 in state 𝜃𝜃0𝐴𝐴, Ann observed 𝑒𝑒0𝐴𝐴 > 𝜇𝜇∗ − 𝜃𝜃0𝐴𝐴 and expected the 

inequality 𝑒𝑒𝑡𝐴𝐴 > 𝜇𝜇∗ − 𝜃𝜃𝑡𝐴𝐴 to hold for a non-negligible (possibly random) period of time 

[0, 𝜏), she would get a strictly higher profit by experimenting with the new product. 

For instantaneous deviations, Ann would be indifferent in terms of total utility, a 

feature typical of continuous time models. 

Now consider the optimality of the seller’s pricing strategy. It is clear that in no 

equilibrium Ann can get less than 𝜃𝜃𝐴𝐴/𝑒𝑒 (what she would expect to get by 

unconditional continuation). Since that is exactly what she is getting when sold, the 

pricing strategy for 𝜃𝜃 ≤ 𝜃𝜃∗ must be optimal. On the other hand, selling for 𝜃𝜃 > 𝜃𝜃∗ is 

not optimal since if it was, it would also be optimal for the planner to have Ann 

consuming the seller’s product. In other words, the solution to the planner’s problem 

shows that the seller’s expected discounted value of waiting for Ann to reach 𝜃𝜃∗ and 

start buying at price 𝑒𝑒𝑡𝐴𝐴 = 𝑒̂𝑒𝐴𝐴(𝜃𝜃∗) = 𝜇𝜇∗ − 𝜃𝜃∗ exceeds the value of attempting to attract 

Ann at her current optimistic state ∎ 
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Proof of Proposition 3.3 

Given that consumers are informationally small, the cutoff price  

𝑒𝑒�𝑖 = 𝜇𝜇∗ − 𝜃𝜃𝑖 

is obviously an optimal purchasing strategy for consumers. 

To verify optimality for the seller, we note that the marginal buyer is always 

indifferent. Hence, the question reduces to whether the marginal buyer is optimally 

chosen across the state space.  

In the region, 𝑅2 ∪ 𝑅2′ ∪ 𝑅3 ∪ 𝑅3′  with min{𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵} ≤ 𝜃𝜃𝑐𝑐, the seller is always choosing 

the switching cutoffs optimally by solving her optimal stopping problem. Moreover, 

along the diagonal, there is no need for price discrimination, so it is optimal to target 

both consumers, as long as it is optimal to target any. Note that, in fact, if 𝜃𝜃𝐴𝐴 ≥ 𝜃𝜃𝐵𝐵 ∈

[𝜃𝜃𝑐𝑐 , 𝜃𝜃∗] or 𝜃𝜃𝐵𝐵 ≥ 𝜃𝜃𝐴𝐴 ∈ [𝜃𝜃𝑐𝑐 ,𝜃𝜃∗], both Ann and Bob are too optimistic about the new 

product and the only situation in which the seller can profitably target both 

simultaneously is when beliefs are symmetric (otherwise it is better to target only 

the less optimistic of the two).  

Moreover, given the expectations of consumers (encoded in their equilibrium value 

functions), increasing the price cannot increase the seller’s profits because it will 

always ensure the loss of the marginal consumer she is optimally choosing to serve. 

Reducing the price can do the seller no good either (even if it attracts a consumer 

that was experimenting, this cannot be optimal under optimally chosen cutoffs). 

Finally, it is intuitive that selling the product in 𝑅4 cannot be profit maximizing 

since it requires the seller to reduce its prices while simultaneously decreasing total 

social surplus. To see this more formally, suppose that 𝜃𝜃𝐵𝐵 ≥ 𝜃𝜃𝐴𝐴. Since Bob is going to 
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experiment anyway, the seller’s incentives are not changed compared to what 

happens when 𝜃𝜃𝐵𝐵 = 1. Hence, the solution to her optimal stopping problem does not 

change and is given by 𝜃𝜃�(𝜃𝜃𝐵𝐵) = 𝜃𝜃∗ for all 𝜃𝜃𝐵𝐵 ∈ (𝜃𝜃∗, 1]. A symmetric argument covers 

the case 𝜃𝜃𝐵𝐵 ≤ 𝜃𝜃𝐴𝐴 and hence every 𝜃𝜃 ∈ 𝑅4. 

Since the pricing strategy of the seller is optimal in every region of the state space, 

we conclude that (𝑒̂𝑒,𝑒𝑒�) is a MPE as claimed ∎ 

 

Proof of Proposition 3.4 

Suppose that the condition is violated. Note that if 𝜃𝜃0 ∈ 𝑅1 ∪ 𝑅2 ∪ 𝑅2′ , the equilibrium 

strategies induce beliefs to remain at the initial state forever. Moreover, if 𝜃𝜃0 ∈ 𝑅4, 

beliefs cannot exit 𝑅4 since, at the boundary, the consumer with lower 𝜃𝜃𝑖 never 

experiments. Finally, when 𝜃𝜃𝐴𝐴 = 1 or 𝜃𝜃𝐵𝐵 = 1, we are essentially in the price 

discrimination case. Since the equilibrium prescribes efficient product choices in all 

these regions, one direction is proved. 

For the other direction, suppose that the condition is satisfied. Note that, if 𝜃𝜃0 ∈ 𝑅3 

and 𝜃𝜃0𝐴𝐴 < 1, there is positive probability of 𝜃𝜃𝑡 crossing through the state (𝜃𝜃∗,𝜃𝜃0𝐵𝐵). 

Similarly, if 𝜃𝜃0 ∈ 𝑅3′  and 𝜃𝜃0𝐵𝐵 < 1, there is positive probability of crossing through 

�𝜃𝜃0𝐴𝐴,𝜃𝜃∗�. Hence, either the equilibrium already prescribes an inefficient action on 𝜃𝜃0 

or there is positive probability of 𝜃𝜃𝑡 entering a region in which an inefficient action is 

prescribed ∎ 
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Proof of Proposition 3.5 

Let 𝜃𝜃0 be any initial state. Consider the set of rest points for the dynamics of the 

belief process {(𝜃𝜃𝑡𝐴𝐴,𝜃𝜃𝑡𝐵𝐵)}: 

Λ ≔ {(𝜃𝜃𝐴𝐴,𝜃𝜃𝐵𝐵) ∈ [0,1]2|1{𝑒̂𝑒(𝜃𝜃) ≤ 𝑒𝑒�𝐴𝐴(𝜃𝜃)}𝑣𝑣(𝜃𝜃𝐴𝐴) + 1{𝑒̂𝑒(𝜃𝜃) ≤ 𝑒𝑒�𝐵𝐵(𝜃𝜃)}𝑣𝑣(𝜃𝜃𝐵𝐵) = 0} 

= 𝑅0 ∪ 𝑅1 ∪ 𝑅1′ ∪ 𝑅3 ∪ {(0,1), (1,0), (𝜃𝜃𝑐𝑐 , 1), (1, 𝜃𝜃𝑐𝑐), (1,1)}. 

Note that Λ is closed in [0,1]2. Hence, the hitting time 𝜏 ≔ inf{𝑒𝑒 > 0|𝜃𝜃𝑡 ∈ Λ} is a 

stopping time w.r.t. {ℱ𝑡}. Since {𝜃𝜃𝑡} is a {ℱ𝑡} −martingale, the stopped process {𝜃𝜃𝑡∧𝜏} 

is also a {ℱ𝑡} −martingale (see Theorem 3.22 in (Karatzas and Shreve 1991)). 

Therefore, {𝜃𝜃𝑡∧𝜏} converges almost surely to some random variable 𝜃𝜃∞ as 𝑒𝑒 → +∞ by 

the martingale convergence theorem (see Theorem 3.15 in (Karatzas and Shreve 

1991)). Clearly, 𝜃𝜃∞ ∈ Λ almost surely. 

Note that the equilibrium prescribes an efficient outcome for every point in Λ. 

Hence, it only remains to show that Λ is reached in finite time almost surely 

whenever the initial state lies in the inefficient region int𝑅3 ∪ int𝑅3′ . By symmetry, it 

suffices to consider the case 𝜃𝜃0 ∈ int𝑅3 (that is 𝜃𝜃0𝐴𝐴 ≥ 𝜃𝜃�(𝜃𝜃0𝐵𝐵) and 𝜃𝜃0𝐵𝐵 < 𝜃𝜃∗). Note that 

𝜃𝜃𝑡𝐵𝐵 = 𝜃𝜃0𝐵𝐵 for all 𝑒𝑒, since 𝑞�𝐵𝐵(𝜃𝜃𝑡) = 1 whenever 𝜃𝜃𝑡 ∈ 𝑅2 ∪ 𝑅1. If 𝜇𝜇𝐴𝐴 = 0, then 𝜃𝜃𝑡𝐴𝐴 will have 

negative drift bounded away from zero in 𝑅2. As a consequence, the probability that 

𝜃𝜃𝑡𝐴𝐴 = 𝜃𝜃�(𝜃𝜃0𝐵𝐵) in finite time is 1. If, on the contrary, 𝜇𝜇𝐴𝐴 = 1, then the drift will be 

positive and, with probability 1, either 𝜃𝜃𝑡𝐴𝐴 = 𝜃𝜃�(𝜃𝜃0𝐵𝐵) in finite time or 𝜃𝜃𝑡𝐴𝐴 → 1. Moreover, 

since 𝜃𝜃∗ < 1, 𝜃𝜃𝑡𝐴𝐴 → 1 implies that 𝜃𝜃𝑡𝐴𝐴 ∈ [𝜃𝜃∗, 1] for all sufficiently large 𝑒𝑒. Since 

𝜇𝜇𝐴𝐴 ∈ {0,1} with probability 1 and the claim is true conditional on 𝜇𝜇𝐴𝐴 = 0 and 𝜇𝜇𝐴𝐴 = 1, 

the theorem is proved ∎ 
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Proof of Proposition 3.6 

The Lebesgue measure of the inefficient area is given by 

𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) ≔ 2� �𝜃𝜃∗ − 𝜃𝜃�(𝜃𝜃)� 𝑎𝑎𝜃𝜃
𝜃𝑐

0
+ (𝜃𝜃∗ − 𝜃𝜃𝑐𝑐)2 = 2𝜃𝜃∗𝜃𝜃𝑐𝑐 − 2� 𝜃𝜃�(𝜃𝜃)𝑎𝑎𝜃𝜃

𝜃𝑐

0
+ (𝜃𝜃∗ − 𝜃𝜃𝑐𝑐)2. 

Note that, defining 𝑎𝑎 ≔ 𝛼𝜇𝜇∗, 𝐵𝐵 ≔ 𝛼 and 𝑐 ≔ 𝜇𝜇∗ − 2𝛽 

𝜃𝜃�(𝜃𝜃) =
𝛼(𝜇𝜇∗ + 𝜃𝜃)
𝜇𝜇∗ + 𝜃𝜃 − 2𝛽

≡
𝑎𝑎 + 𝐵𝐵𝜃𝜃
𝑐 + 𝜃𝜃

 

and 

� �
𝑎𝑎 + 𝐵𝐵𝜃𝜃
𝑐 + 𝜃𝜃

� 𝑎𝑎𝜃𝜃
𝜃𝑐

0
= (𝐵𝐵𝑐 − 𝑎𝑎)(ln 𝑐 − ln(𝑐 + 𝜃𝜃𝑐𝑐)) + 𝐵𝐵𝜃𝜃𝑐𝑐 = 2𝛼𝛽 ln�1 +

𝜃𝜃𝑐𝑐

𝜇𝜇∗ − 2𝛽
� + 𝛼𝜃𝜃𝑐𝑐 . 

Hence, 

𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) = (𝜃𝜃∗)2 + (𝜃𝜃𝑐𝑐)2 − 4𝛼𝛽 ln�1 +
𝜃𝜃𝑐𝑐

𝜇𝜇∗ − 2𝛽
� − 2𝛼𝜃𝜃𝑐𝑐 . 

Note that lim𝜎→∞ 𝜃𝜃∗ = lim𝜎→∞ 𝜃𝜃𝑐𝑐 = 𝜇𝜇∗ and 

lim
𝜎→∞

�4𝛼𝛽 ln�1 +
𝜃𝜃𝑐𝑐

𝜇𝜇∗ − 2𝛽
� + 2𝛼𝜃𝜃𝑐𝑐� =

3
2

(𝜇𝜇∗)2. 

It follows that 

lim
𝜎→∞

𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) =
(𝜇𝜇∗)2

2
. 

Since 𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) depends on 𝑒𝑒 and 𝜎 only through 𝑒𝑒𝜎2, we have  

lim
𝜎→∞

𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎) = lim
𝑟→∞

𝐿(𝜇𝜇∗, 𝑒𝑒,𝜎). 

This completes the proof ∎ 
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