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Abstract

Chapter 1 addresses the role of self-set, non-binding goals as a source of internal

motivation to attenuate the self-control problem of a hyperbolic discounter. Agents

have linear reference-dependent preferences and endogenously set a goal that serves

as the reference point. They face an infinite horizon, optimal stopping problem in

continuous time. I show that goal-setting attenuates the hyperbolic agent’s tendency

to stop too early, but too much reference dependence leads an agent to wait longer

than the first-best. Extending the model to social comparisons, I find that comparison

to increasingly patient peers induces increasingly patient behavior. Nonetheless, every

agent prefers to compare himself to a peer with the lowest degree of self-control

possible.

Chapter 2 extends the framework developed in Chapter 1 to address the role of

goal bracketing to improve a hyperbolic discounter’s self-control. When setting non-

binding goals in a sequential stopping problem, he also decides how and when to

evaluate himself against such goals. He can bracket broadly by setting an aggregate

goal for the entire project, or narrowly by setting incremental goals for individual

stages. If the agent is sufficiently loss averse and ex-ante uncertainty is high, he will

choose to bracket broadly; otherwise, he brackets narrowly despite the disutility from

frequent goal evaluation. Whether he stops earlier or later than the first-best depends

on the level of ex-ante uncertainty.

Chapter 3 offers an information-based account of the existence of lifestyle brands

and analyzes firms’ brand investment and pricing choices in a duopoly setting. If

agents have uncertainty over their preferences but are aware that these are correlated

with those of others, there exists an incentive to communicate and learn from others

with similar tastes. When firms can offer branded goods as coordination mechanisms

for their customers, they become associated with specific subgroups, forming lifestyle

brands. In a duopoly setting, only one firm chooses to invest in a brand. Surpris-
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ingly, although total surplus increases as a result of the provision of this mechanism,

consumer surplus decreases. Consumers benefit from learning from one another, but

all of this surplus (and more) is extracted by the firms through pricing.
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Chapter 1

Goal-Setting, Social Comparison,

and Self-Control
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1.1 Introduction

Personal development is a burgeoning, multi-billion dollar industry that focuses on

self-improvement on a variety of levels, from career aspirations to lifestyle choices

to spiritual well-being. In response to consumer demand, this market offers books,

motivational speakers, workshops, and personal coaching, as well as innumerable

weight-loss programs. In addition, institutional demand has resulted in consulting,

employee training, and employee development programs whose purpose is to raise

productivity in both individual and group settings at the workplace. A central tenet

of the personal development industry is that goal-setting is a vital instrument for

improving one’s life in any aspect, including career, health, or lifestyle. For example,

the “S.M.A.R.T. Goals” mnemonic is ubiquitous in project management, education,

and self-help programs:1

1. Specific

2. Measurable

3. Attainable

4. Relevant

5. Timely.

This prescription is supported by extensive empirical evidence in psychology that non-

binding goals tend to increase effort, attention, persistence (Klein, 1991; Latham and

Locke, 1991; Locke and Latham, 2002), and that satisfaction is tied to achievement

relative to such a goal, not just final outcomes (Mento et al., 1992).

Although much attention has been paid to the problem of present-biased prefer-

ences and intrapersonal conflict by individual decision makers, the role of self-set goals

1There exist many variations on this theme, which is generally attributed to
Drucker (1954), a project management book.
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in attenuating the self-control problem has been relatively unexplored by economists

thus far.2 In standard economic models, only binding goals can affect motivation

and behavior. That is, motivation can be achieved through an explicit reward or

punishment mechanism with external enforcement. For example, in a principle-agent

model, the principal can motivate the agent’s effort exertion by prescribing goals if

the agent is evaluated according to those goals and compensated accordingly. In indi-

vidual decision making, present-biased agents can enforce motivation on themselves

by using binding precommitments or externally enforced contracts. Examples include

alcoholics who take Antabuse to preclude drinking, gamblers who place themselves

on casino “do not enter” lists, and shoppers who freeze their credit cards in blocks of

ice.

However, the prevalence of non-binding goal-setting, and the success of the per-

sonal development industry, strongly suggests that less drastic measures may also

serve as successful regulatory mechanisms. For example, individuals who wish to

lose weight often set a specific target weight for themselves, and students motivate

themselves to write research papers through self-imposed page targets and deadlines.3

Individuals may also set goals for themselves in situations where there exists an option

value of waiting due to the presence of uncertainty. A student will thus continue his

education in order to achieve a target level of human capital or starting salary upon

graduation. A person saving for retirement may set a target level of accumulated

wealth upon retirement. In the marriage market, an individual may set a specified

standard of quality for a prospective spouse in order to avoid settling too soon for an

inadequate one.

2Bénabou and Tirole (2004) develop a theory of self-enforcing personal rules, op-
erating through self-reputation. Because agents have imperfect information about
their own willpower and imperfect recall, they can achieve internal commitment out
of fear of creating precedents and losing faith in themselves.

3Ariely and Wertenbroch (2002) conduct an experiment in which students set dead-
lines for themselves. However, these deadlines are a form of binding pre-commitment,
since students were externally penalized when these deadlines were not met.
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In this paper, I propose that a goal provides internal motivation by acting as the

reference point for an agent who possesses reference-dependent preferences. I consider

agents who derive utility from both standard consumption, arising from outcomes,

and comparison utility, derived from the comparison of these outcomes to a self-set

goal. At each point in time, the agent sets a goal based on his expectations about

the outcome of future behavior, which his next “self” will inherit as a reference point

in his utility function. In this way, the agent provides a degree of internal motivation

that is desirable if he exhibits time inconsistency due to present-biased time pref-

erences. Because expectations enter directly into utility through the goal choice, I

consider the polar cases of sophistication and naivete about one’s self-control prob-

lem in the manner of O’Donoghue and Rabin (1999), to study the impact of differing

expectations on behavior and welfare. If agents are sophisticated, they can set only

realistic objectives for himself, implying that the goal must ultimately coincide with

the rational expectation of what he will actually do. If they are naive, they must set

objectives that they perceive to be realistic.

The economic setting that I consider is the standard optimal stopping, or irre-

versible investment, problem in continuous time with an infinite horizon, in which

there exists an option value of waiting due to uncertainty.4 Present-biasedness then

leads the agent to stop too early because he undervalues this option relative to his

time-consistent counterpart. In the preceding examples, this means accumulating too

little human capital, retiring with too little wealth, or settling for a mediocre spouse.

However, I show that if the agent has reference dependent preferences, even of the

simplest, linear kind, he can induce more patient behavior by setting a goal to be

achieved at the stopping time, regardless of whether he is sophisticated or naive. For-

mally, I solve for the unique stationary Markov equilibrium of the intrapersonal game

and show that greater reference dependence leads to later exercise of the option. The

4Dixit and Pindyck (1994) provide a thorough treatment of the irreversible invest-
ment problem in a variety of settings.
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presence of a goal increases the agent’s incentive to wait because he wishes to avoid

incurring comparative disutility from falling short of his goal. In fact, for any degree

of present-biasedness, there exists a level of reference dependence such that it allows

a sophisticated agent to achieve the first best from an ex ante perspective. On the

other hand, this implies that too much reference dependence causes the agent to wait

longer than the first best. In particular, reference dependence always decreases the

welfare of a time consistent agent because it causes him to wait longer than the first

best, by distorting his incentives at the margin. In other words, goal setting per se

can itself be a source of intrapersonal conflict. Another key result, which stands in

contrast to previous literature and conjectures, is that goal-setting does not require

any form of loss aversion or curvature in the comparison utility function to regulate

behavior. Moreover, neither loss aversion nor ex-ante uncertainty over outcomes is

required for goals to be detrimental to ex-ante welfare. Finally, in contrast to the

“sophistication effect” (O’Donoghue and Rabin, 2001) that occurs in the absence

of reference dependence, whereby the sophisticate’s realistic pessimism makes him

worse off than his naive counterpart, the naif can never achieve his first best, which

is strictly worse than that of the sophisticate. Because the naif underestimates his

present-biasedness, he persistently sets overly ambitious goals for himself and incurs

disutility from falling short.

Next, I examine the optimal goal choice when it represents an individual’s aspira-

tion, rather than an expectation about what he can or will attain. When the goal is

divorced from expectations, there exists a trade-off between consumption and com-

parison utility. I find that the agent must be sufficiently present-biased and exhibit

diminishing sensitivity to gains in order to set a non-degenerate aspirational goal.

In this case, an agent with a more severe self-control problem sets a higher aspira-

tional goal. Otherwise, the incentive to maximize comparison utility dominates and

he prefers to set the lowest aspirational goal possible.
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Finally, I extend the model to social comparisons. In addition to, or instead of,

engaging in individual goal-setting, an agent may also look to a peer or role model as

a source of comparison. It has long been recognized that people derive utility from

comparing their own outcomes, such as wealth, education, and consumption, against

those of their peers (Veblen, 1953; Duesenberry, 1949; Frank, 1985). Furthermore,

Bandura and Jourden (1991) find that social comparisons affect both individual goal-

setting and the interpretation of personal outcomes. I assume that agents are fully

aware of their own personal characteristics, but care about “keeping up with the Jone-

ses.” Since they are rational and fully informed about one another’s characteristics,

they must again hold correct expectations regarding everyone’s outcomes. Consider-

ing first homogeneous peer groups, I show that measuring oneself against a peer with

identical characteristics is no different from purely individual goal-setting. Turning

next to a heterogeneous group where agents have differing amounts of self-control, I

show that comparing oneself with any peer improves patience over having no goal at

all, even if the peer has an even more severe self-control problem. An agent’s patience

increases with his peer’s degree of self-control; it effectively sets a higher standard to

be met, generating a stronger incentive to wait for a higher stopping value. At the

same time, the agent with more self-control always exhibits strictly more patience

than his more impulsive peer. Nonetheless, every agent prefers to compare himself to

a peer with the lowest degree of self-control possible, regardless of the severity of his

own self-control problem.

The paper proceeds as follows. Section 1.2 links this paper to related lines of

research. Section 1.3 describes the model. Section 1.4 derives and characterizes the

stationary Markov equilibrium and discusses the welfare implications of goal-setting

when the agent is sophisticated. Section 1.5 derives the equilibrium when the agent

is naive and discusses the welfare implications in comparison to the sophisticate.

Section 1.6 considers the optimal choice of aspirational goals, when goals do not
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necessarily coincide with expectations. Section 1.7 extends the model to include

social comparisons. Section 1.8 summarizes the results and discusses avenues for

future research. Proofs are gathered in the Appendix.

1.2 Related Literature

This paper lies at the intersection of several lines of research. First, it links the work

on reference dependence with that on self-control, which have each been studied quite

separately, by considering the role of reference dependence preferences as a instru-

ment to countervail a self-control problem arising from quasi-hyperbolic discounting.

Secondly, it relates to the literatures on peer effects and social comparisons. Lastly, it

analyzes behavior and welfare in the context of optimal stopping under uncertainty,

where there exists an option value of waiting.

Goal-setting theory postulates that goals serve as a reference standard in a cogni-

tive comparison process of self-evaluation and satisfaction (Latham and Locke, 1991;

Locke and Latham, 2002; Bandura, 1989), while Latham and Locke (1991) argue that

goal choice is a combination of what is desired and what is believed to be attainable.

Heath et al. (1999) explicitly argue that a goal acts as the reference point in the value

function of prospect theory (Kahneman and Tversky, 1979), while Loewenstein (2007)

discusses goal-setting as a mechanism for self-control in the context of mountaineer-

ing, none of them provide a formal model with endogenous goals. In this paper,

I assume that the value function is linear and show that, somewhat surprisingly,

goal-setting can be effective without the assumptions of loss aversion or diminishing

sensitivity. In parallel and independent work, Suvorov and van de Ven (2008) and

Koch and Nafziger (2008) have also recently proposed a model of goals as reference

points that serve to remedy self-control. While sharing a similar concept, the papers

are quite complementary. Suvorov and van de Ven (2008) consider a three-period

7



problem where costly effort on a task is required to receive a delayed benefit. They

assume that a sophisticated, quasi-hyperbolic agent with loss aversion sets a goal re-

garding both effort and the task benefit, and they focus on the effects of uncertainty

over effort and contingent self-rewards on self-control. They find that loss aversion

is necessary to affect behavior, and that uncertainty over the cost of effort can lead

to situations in which the optimal goals appear dysfunctional if reference dependence

is not accounted for. The latter result regarding dysfunctional goals requires both

loss aversion and uncertainty over outcomes. Likewise, Koch and Nafziger (2008)

consider a three-period problem involving a task with immediate costly effort and

a delayed benefit, with an extension to self-rewards in Koch and Nafziger (2009a).

Their finding that only an agent with intermediate self-control problems will set a

goal regarding the task outcome requires both loss aversion and outcome uncertainty.

In contrast, I consider a continuous-time, optimal stopping problem with an infinite

horizon, where the self-control problem arises purely from the tension between waiting

and stopping now, since there is no intertemporal separation between realized costs

and benefits. Assuming that the goal pertains to the final value and is evaluated

only upon stopping, I find that goals attenuate impatience even in the absence of

loss aversion, and can even cause an agent to wait too long. In contrast to related

work on reference-dependent preferences, including Koch and Nafziger (2008, 2009),

Suvorov and van de Ven (2008), and Kőszegi and Rabin (2006, 2009), neither loss

aversion nor uncertainty over final payoffs are required for any results. I also study

social comparisons, where agents evaluate themselves against others, and find that

although the presence of any peer attenuates the self-control problem, every agent

prefers to compare himself against the most impulsive peer possible.

Kőszegi and Rabin (2006) develop a model of reference dependent preferences that

combines the neoclassical assumption of utility over final outcomes with comparative

utility that exhibits the features of prospect theory (Kahneman and Tversky, 1979),
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where expectations determine the reference point. This framework has also been

extended to a dynamic setting, where agents derive utility from the revision of beliefs

as well as the comparison of outcomes to beliefs (Kőszegi and Rabin, 2009; Matthey

and Dwenger, 2007; Matthey, 2008). In an experiment regarding the choice of effort

exertion on a task, Abeler et al. (2009) find support for the theory that individuals are

reference dependent and that rational expectations serve as the reference point. There

also exists empirical evidence, though somewhat debated, that people use reference

points in the form of income targets in their decisions to trade off labor and leisure

(Camerer et al., 1997; Farber, 2005, 2008; Crawford and Meng, 2008; Fehr and Goette,

2007; Goette and Huffman, 2005).

The concept of intrapersonal conflict due to intertemporal differences in prefer-

ences within the self was first studied by Strotz (1956) and Schelling (1984), and more

broadly developed by Ainslie (1992) and Laibson (1997). Subsequently, much atten-

tion has been devoted to exploring the circumstances under which present-biasedness

can be attenuated or exacerbated. For example, O’Donoghue and Rabin (1999) con-

sider how an individual’s knowledge of his present-biasedness affects behavior, while

Brocas and Carrillo (2001) examine the effects of competition versus complemen-

tarity in different agents’ projects on their tendencies to rush or procrastinate. An

individual can improve self-control through various self-imposed, binding commit-

ments, including restricted information (Brocas and Carrillo, 2005; Carrillo, 2005),

restricted choice sets (Gul and Pesendorfer, 2001), and externally enforced devices

(Bisin and Hyndman, 2009). In contrast, Bénabou and Tirole (2004) develop a theory

of internal regulation through self-enforcing personal rules based on a mechanism of

self-reputation. The intrapersonal problem with time inconsistent preferences, which

can be framed as a conflict among successive selves, certainly shares clear parallels

with a principal-agent problem with moral hazard, a setting in which optimal com-

pensation schemes have been studied (Ou-Yang, 2003; Kadan and Swinkels, 2008).
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However, belief constraints and welfare interpretations can differ markedly between

the two settings.

There also exists an extensive economics literature on social comparison and peer

effects. When individuals care about their perceived status in the eyes of others, this

desire can lead to conformity (Bernheim, 1994) or conspicuous consumption (Bagwell

and Bernheim, 1996). Similarly, Austen-Smith and Fryer (2005) study the influence

of cultural norms and expectations on racial differences in school performance. In

finance, DeMarzo et al. (2008) consider the role of relative wealth concerns in the

formation of financial bubbles. Battaglini et al. (2005) extend the framework devel-

oped by Bénabou and Tirole (2004) to endogenize peer group effects when individuals

have incomplete information about the manageability of their self-control problem,

but can learn more about it from observing others. Falk and Knell (2004) consider

endogenous reference standards in a static, reduced-form social comparison model.

Rayo and Becker (2007) propose an evolutionary model of how reference dependence

and social comparison can arise as optimal mechanisms to maximize fitness.

Finally, the real options approach to investment under uncertainty was pioneered

by Brennan and Schwartz (1985) and McDonald and Siegel (1986), and has been

built upon extensively in economics and finance (Dixit, 1993; Dixit and Pindyck,

1994). More recently, Grenadier and Wang (2007) extend this framework to model

the investment decisions of hyperbolic entrepreneurs, while Miao (2008) studies agents

who possess Gul and Pesendorfer’s (2001) temptation utility.

1.3 The Model

I first describe the economic environment, followed by the agent’s preferences, which

may include both hyperbolic discounting and reference dependence. I focus on an

optimal stopping problem, where the self-control problem arises purely from the ten-
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sion between waiting and stopping today. This framework applies directly to many

economic situations, such as those described above - the student pursuing his edu-

cation, the person saving a nest egg for retirement, and the person searching for a

spouse. For example, a student who is deciding how long to remain in school will

incur job search costs when he stops, and will generally obtain a better job outcome

from staying in school longer.

1.3.1 Optimal Stopping

I consider the standard, continuous-time optimal stopping problem, in which an in-

finitely lived agent has a non-tradeable option to invest in a project.5 The problem

can also be interpreted as a project termination decision - the agent currently holds

a project that has a fixed cost of disinvesting and an uncertain payoff or resale value.

At any time t, the agent knows the current value of the project’s payoff xt ∈ [0,∞)

and decides whether to stop or to wait. In the latter case, the project’s payoff evolves

as a geometric Brownian motion:

dxt = µxtdt+ σxtdz, (1.1)

where z is a standard Wiener process, µ the average growth rate of xt, and σ its

standard deviation per unit time. At the stopping time t, the project yields the

lump-sum terminal payoff xt. The cost of stopping at any time is I > 0, and is

incurred only at the stopping time.6 Without loss of generality, there is no interim

5Thus, it has the same structure as an American stock option, where an investor
holds an option that does not expire and decides when to strike.

6Here, there is no intertemporal separation of the costs and benefit. The agent’s
self-control problem arises purely from the tension between the option value of waiting
for an uncertain period of time and stopping today at a known project value. In
contrast, Brocas and Carrillo (2005) and Miao (2008) study irreversible consumption
in discrete time models where costs are delayed until after consumption. Separating
the costs and benefits of stopping in such a manner certainly exacerbates the self-
control problem, but is not necessary to produce intrapersonal conflict.
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flow payoff, nor any direct cost incurred prior to stopping.7 Due to the stochastic

nature of the payoff process, there exists an option value of waiting, in the hope that

a higher project value will be realized at a later date.

1.3.2 Time Preferences

The agent may have present-biased preferences, creating a self-control problem. I

model this present-biasedness by following Harris and Laibson (2004), who formulate

a continuous-time version of quasi-hyperbolic preferences. At any time s, an agent’s

preferences are divided into a “present,” which lasts from time s to time s+ τs, and a

“future,” which arrives at time s+ τs and persists forever. The length of the present,

τs, is stochastic and distributed exponentially with parameter λ ∈ [0,∞). While the

agent knows the distribution governing the length of the present, he is unaware of

when the future will arrive ex ante.8 When the future for this self s arrives at time

s + τs, he is replaced by a new self who takes control of decision-making. Likewise,

the preferences of this self s + τs are divided into a “present” of length τs+τs
and a

“future” that arrives at time (s+ τs) + τs+τs
and persists forever. Hence, when each

self’s “future” arrives, it “dies” and is replaced by a new self.

7A more realistic setting might include a constant flow payoff y ∈ (y,∞), where
y < 0 is the minimal flow payoff such that the agent stops immediately for any xt ≥ 0.
For example, a student might incur some small positive or negative flow payoff from
going to school. Given the other assumptions, the inclusion of a constant flow payoff
has no qualitative effect on the results, so I assume y = 0 for simplicity of exposition.
Likewise, incorporating a stochastic flow payoff that follows a known process with
known current value leads to the same qualitative results.

8The assumption of a stochastic arrival time of the future allows us to obtain a
stationary solution to the stopping problem, but is not necessary to obtain qualitative
results. One can obtain stationarity by imposing a deterministic arrival time instead,
though comparative statics with respect to differing time preferences would be less
general.
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Each self s has a stochastic discount function Ds(t):

Ds(t) =











e−ρ(t−s) if t ∈ [s, s+ τs)

βe−ρ(t−s) if t ∈ [s+ τs,∞).
(1.2)

where β ∈ [0, 1] and ρ > 0.9 To ensure that the agent never finds it optimal to

wait forever in the optimal stopping problem, let ρ > µ. The function Ds(t) decays

exponentially at the rate ρ throughout, but drops discontinuously at time s + τs to

a fraction β of its prior level. Note that in this continuous time version of quasi-

hyperbolic preferences, there are two parameters that determine the degree to which

an agent’s behavior deviates from that of a time-consistent individual. First, the

parameter β retains the same role it plays in the discrete-time version, measuring

how much the future is valued relative to the present. Second, the parameter λ

determines the arrival rate of the future, and thus how often preferences change. In

particular, when λ → ∞ and β < 1, the agent discretely discounts all moments

beyond the current instant. Harris and Laibson (2004) describe this limit case as

“instantaneous gratification.” When β = 1 or λ = 0, conversely, the preferences

described by Equation (1.2) are equivalent to those of an exponential discounter with

discount rate ρ.

1.3.3 Goals

The agent’s preferences are assumed to be reference-dependent: his utility is com-

posed of both standard consumption utility, which is based on absolute levels, and

9To see how the stochastic discount function Ds(t) described by (1.2) is analogous
to the discrete-time, quasi-hyperbolic version, note that it can be rewritten in the the
following form, where ρ = − ln δ and δ ∈ (0, 1]:

Ds(t) =

{

δt−s if t ∈ [s, s+ τs)
βδt−s if t ∈ [s+ τs,∞).
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of comparison utility, which is concerned with gains and losses relative to a reference

point, which here corresponds to his goal. In the optimal-stopping context with zero

flow payoffs, the agent’s consumption utility upon stopping at time t is simply his net

terminal payoff, xt − I. As in Kőszegi and Rabin (2006; 2009), the agent’s compari-

son utility is closely related to his consumption utility, and is derived by comparing

his net terminal payoff at time t against his goal at that time, rt. A key difference,

however, is that comparison utility here is simply a linear function, given by

η(xt − I − rt), (1.3)

where η ≥ 0.10 Linear comparison utility implies that the agent exhibits neither loss

aversion nor diminishing sensitivity to gains and losses. Although the absence of

these two features deviates from Kahneman and Tversky’s (1979) value function, it

demonstrates that neither of these features is necessary in order for goals to affect

behavior in a meaningful way. Indeed, one of the main points of the paper is that goal-

setting and its effects can be understood completely independently of loss aversion.

The parameter η can be interpreted as the degree to which the agent cares about,

or pays attention to, the difference between his outcome and his goal. It can also

be seen as a measure of salience or “goal commitment,” which is broadly defined in

psychology as the degree to which a person is determined to achieve a goal, since

concern for and attention to a goal clearly contribute to this trait. A central concept

of goal-setting theory is that goal commitment is a necessary condition for a high

goal to lead to high performance; that is, goal difficulty has little effect on behavior if

commitment is not present (Locke and Latham, 2002). The absence of goal commit-

ment corresponds to the absence of reference dependent preferences (η = 0), when the

10Alternatively, he could compare his gross terminal payoff xt against his goal for
the gross terminal payoff at that time, or separately compare the terminal payoff and
cost using this comparison utility function, and the results would be unchanged.
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existence of a goal has no effect on utility, and consequently, his behavior.11 Here, I

treat η as a fixed parameter and analyze the agent’s subsequent behavior and welfare.

The demand for personal development services and products can be interpreted as an

attempt by individuals to improve self-regulation and welfare by changing η. For ex-

ample, one such self-help book is suggestively titled “The Magic Lamp: Goal Setting

for People Who Hate Setting Goals” (Ellis, 1998) and purports to help individuals

improve their degree of goal commitment.12 This interpretation is not inconsistent

with this assumption, insofar as an agent must determine how he would fare for any

given η, and thus the value of attempting to change his initial η. In this vein, I later

consider the agent’s preferences over η from an ex-ante perspective, given his degree

of present-biasedness.

I assume that the agent only incurs comparison utility at the time at which he

stops and receives the net terminal payoff. That is, although he is always aware

that he will incur comparison utility at the moment of stopping, he does not directly

experience it while waiting. This assumption accords with the notion from mental

accounting that individuals do not necessarily “feel” gains and losses until they have

been realized (Thaler, 1999).13

11Alternatively, we can interpret η = 0 as the case in which the agent has no goal
or an ill-defined goal. If there is no basis against which to make a comparison, it
seems natural to believe that an agent cannot incur comparison utility in this case.
Likewise, if the point of comparison is poorly defined, then deriving comparison utility
is a difficult exercise to accomplish. Such an interpretation accords with results in
the psychology literature regarding the ineffectiveness of vague goals on motivation
and effort (Latham and Locke, 1991; Mento et al., 1992).

12The inside flap declares, “The Magic Lamp is the first goal-setting guide for
people who hate setting goals. Goals can take you anywhere you want to go, but
they rarely give you the inspiration you need to get there . . .The Magic Lamp
transforms the process of setting goals from a dull routine into an exciting adventure
because it’s the first book to combine the methods of goal setting with the magic of
making your wishes come true.” Despite the extravagance of the claim, it suggests
both that goal commitment is necessary in conjunction with expectations and that
individuals may be able to change their existing degree of goal commitment with
some effort.

13For example, the disposition effect, where stockholders are reluctant to sell losing
stocks, and hence realize losses relative to their original buying prices, is consistent
with this idea (Odean, 1998; Barberis and Xiong, 2008).
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For simplicity, overall utility is taken to be additively separable in its two compo-

nents. The agent’s total utility at the stopping time is thus

xt − I + η(xt − I − rt). (1.4)

At any time s, the goal rs is taken as given by self s and cannot be changed during

his entire “lifetime,” having been set by his previous self. Similarly, the goal that

self s + τs inherits, denoted rs+τs
, is set by self s, where τs, the lifespan of self s, is

stochastically determined and a priori unknown to self s.

The assumption that the agent cannot change an inherited goal implies that such

a goal can provide a degree of internal motivation to his (present-biased) future selves.

Such “goal stickiness” is in fact necessary for it to matter at all: if the agent could

simultaneously make the stopping decision and set a goal for himself for the current

period, this goal would have no effect on his current behavior, since his present bias

implies that he has no desire to behave more patiently in the current period. He

would also have no means by which to influence future behavior. Thus, a goal would

have no power to attenuate present-biased behavior, since the agent would have no

way to impose ex-ante preferences for time-consistent behavior on himself.14

1.3.4 Expectations

In setting the goal, each self forms an expectation of his immediate “descendant”’s net

terminal payoff if he does not stop himself. His descendant inherits this expectation

as a given and compares his own net terminal payoff against this inherited goal if he

14Alternatively, we could assume that the agent can change an inherited goal at
some cost. Thus imposing zero or infinite costs corresponds to no or maximal “goal
stickiness,” respectively. While relaxing “goal stickiness” would certainly weaken the
effects of a goal, clearly the qualitative findings and comparative statics would still
hold as long as it exists, without offering additional insights.
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stops.15 I will consider the two polar cases of sophistication and naivete, in the man-

ner of O’Donoghue and Rabin (1999), to study the impact of differing expectations

on behavior and welfare. In contrast to the case of hyperbolic discounting without

reference dependent preferences, holding incorrect expectations directly affects the

agent’s comparison utility through his goal choice. However, I assume that his goals

must be consistent with the outcome he expects to achieve. Because he observes the

current project payoff perfectly, he holds no uncertainty over the anticipated outcome

upon stopping ex ante, though such beliefs may or may not be correct. If the agent

is sophisticated and correctly anticipates his actions, each self must have rational

expectations about goal achievement. That is, the agent cannot consistently fool

himself about what he can or cannot achieve - he must set goals that are realistic.16

Likewise, if he is naive, so his beliefs regarding future behavior are incorrect, he must

set objectives that he perceives to be realistic. Note, however, that these assumptions

do not necessarily imply that each self must have the same goal. Each self cannot

change the goal that he inherits, but is free to choose a different one for his future

self if he so desires, as long as that he perceives, whether accurately or not, that it is

realistic.

Because each self inherits his goal from a previous one, it is necessary to specify

the source of the agent’s goal when he is first able to stop the project. I assume

that there exists a “self 0,” an ex-ante self, who learns that the stopping opportunity

will present itself in future and forms an expectation of how he will behave once the

15This formulation is consistent with Bandura’s (1989) theory that goals serve as
both targets to strive for and standards by which outcomes are evaluated, as well
as empirical evidence that the degree of self-satisfaction varies depending on goal
level. That is, two individuals who attain the same outcome will be unsatisfied or
satisfied depending on whether their goals were higher or lower than that outcome,
respectively (Mento et al., 1992).

16Based on the results of lab and field experiments, Latham and Locke (1991)
conclude that goal choice is an integration of what one wants and what one believes
is possible, suggesting that goals must be, and are, realistic to the agent. Carrillo and
Dewatripont (2008) also discuss the tension between foresight and the credibility of
promises in intrapersonal games, arguing that agents cannot simultaneously anticipate
future behavior and fool future selves.
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option becomes available for exercise.

Given the above time preferences and utility, at any time s the agent chooses the

stopping rule that determines a (random) stopping time t to maximize the expected

present value of his overall utility:

max
t
Es{Ds(t)[xt − I + η(xt − I − rt)]}, (1.5)

where Es denotes the conditional expectation at time s andDs(t) is given by Equation

(1.2). Because the project value is uncertain, there exists a benefit to waiting, in

the hopes of realizing a higher project value. When the agent has hyperbolic time

preferences, he is prone to stopping too early (Grenadier and Wang, 2007) because he

undervalues the future, and thus the option value of waiting. The question of interest

is to what extent reference dependent preferences and setting goals can attenuate this

problem.

1.4 Sophistication

When the agent is quasi-hyperbolic and sophisticated, in that he is fully aware of

his present-biasedness, the problem takes on the nature of a dynamic game between

successive selves, and there could exist equilibria in which each self chooses a different

stopping strategy. Here, I will focus on the most natural equilibrium, namely a

stationary Markov equilibrium in which each self employs the same threshold strategy.

Since the geometric Brownian motion is continuous, the project value cannot

jump discontinuously from one moment in time to the next. This implies that the

sophisticated agent has no uncertainty over the net terminal payoff from stopping: if

every self uses the same threshold x, then xt = x, so the expected net terminal payoff

is x − I. The source of ex ante uncertainty is the timing of this stopping - that is,

when (and if) he will choose to stop. Furthermore, if a self-set goal must be realistic
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because the agent is sophisticated, every self will inherit, set, and meet the same goal

in a stationary equilibrium, so that rt = x− I.

In order to construct the stationary Markov equilibrium, I solve the intrapersonal

game backwards in the same manner as Grenadier and Wang (2007), but with the

inclusion of a final goal-dependent payoff. Each self anticipates that his descendants

will act according to a threshold that maximizes their own current benefit of waiting,

so they will face a problem that is identical to his own. Constructing the stationary

solution thus involves searching for a fixed point such that current and future selves

stop at a common threshold.

Because each self controls the stopping decision in the present, and cares about -

but cannot directly control - those of the future, two value functions are required to

describe the intrapersonal problem. Suppose that all descendants inherit the goal r̂.

Then the Bellman equation for the continuation value function v(x, r̂) is

v(x, r̂) = max{x− I + η(x− I − r̂), e−ρdtE[v(x+ dx, r̂)]}. (1.6)

This continuation value function describes each self s’s consideration (or internal-

ization) of his future selves, following the random arrival of the future at time τs.

That is, beyond time τs, he discounts any future utility flows exponentially. Hence,

the continuation value function also describes how the current self would prefer his

future selves to evaluate payoff streams - by discounting exponentially. That is, v de-

scribes the agent’s preferences over the future from an ex ante perspective, including

those of self 0. If the agent were time consistent (β = 1 or λ = 0), then all selves’

preferences would coincide and he would choose the optimal strategy by maximizing

v. Given the current project value x and his inherited goal r̂, he would thus choose,

as in (1.6), the maximum of the current net terminal payoff and the expected present

discounted value of waiting for a higher realization of x, where this discounting occurs
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exponentially. In Section (1.4.1), I will describe the behavior of a special case, namely

that of the “standard” agent who is neither present-biased nor reference-dependent,

as a benchmark.

However, if the agent is present-biased (β < 1), he maximizes a different value

function that overweights the present relative to the future. Denoting the goal inher-

ited by the current self by r, the Bellman equation that describes this current value

function w(x, r) is

w(x, r) = max{x− I + η(x− I − r),

(1 − e−λdt)e−ρdtβE[v(x+ dx, r̂)] + (e−λdt)e−ρdtE[w(x+ dx, r)]}. (1.7)

Given the current x and an inherited goal r, and anticipating that his future selves

will inherit r̂ (with the knowledge that he sets r̂ for his immediate descendant), the

current self chooses the maximum of the current total utility from stopping and the

expected present discounted value of waiting for a higher realization of x, where this

discounting discontinuously drops by the factor β upon the random arrival of the

future. A future self arrives in the next instant dt with probability 1 − e−λdt, while

the current self remains in control with probability e−λdt.17

17In an alternative analogy, consider a parent who derives utility from the payoff
stream of his possible descendants. The continuation value v describes the parent’s
evaluation of the stream of his descendants’ utilities - he discounts them exponentially.
Thus he also prefers that every descendant evaluate the payoff streams from his entire
family line, including his own, exponentially. When his child becomes the decision-
maker, he discounts his own descendants’ utilities exponentially, just as his parent did.
But he also disproportionately underweights the stream of his descendants’ utilities
relative to his own by the factor β, in disagreement with his parent’s wishes. Thus,
w describes the child’s evaluation of the payoff stream from his entire family line,
including his own. Each parent sets a goal r̂ for his child according to his beliefs
about his child’s preferences. While a sophisticated parent knows that his child will
care less about his descendants than the parent prefers, a naive parent incorrectly
believes that his child’s preferences will be in complete agreement with his own.
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1.4.1 Ex Ante Preferences

To construct the continuation value function v(x, r̂), I first suppose that all future

selves inherit goal r̂ and employ a threshold x̂ such that they wait if x < x̂ and stop

if x ≥ x̂. By continuity of the geometric Brownian motion, there is zero probability

that the project value xt can jump discontinuously from the “wait” region (x < x̂) to

the “stop” region (x ≥ x̂) from one moment to the next. Therefore, I can construct

v(x, r̂) by considering its behavior in the “wait” and “stop” regions separately, then

joining them using appropriate boundary conditions.

By definition of the threshold strategy, the value of Equation (1.6) in the stop

region (x ≥ x̂) is simply given by x− I + η(x− I − r̂). In the wait region, standard

results imply that v(x, r̂) must obey the following linear differential equation:

ρv(x, r̂) = µx(
∂v

∂x
) +

1

2
σ2x2(

∂2v

∂x2
) if x < x̂. (1.8)

By definition of the geometric Brownian x, x = 0 is an absorbing barrier. The

continuation value function must also be continuous at the threshold x̂ between the

waiting and stopping regions. Therefore, the relevant boundary conditions for v are:18

Boundary: v(0, r̂) = 0, (1.9)

Value Matching: v(x̂, r̂) = x̂− I + η(x̂− I − r̂). (1.10)

Because there is no optimal decision embodied in the continuation value function

v(x, r̂), the smooth pasting condition does not apply to v(x, r̂) if the agent is present-

biased. The stopping decision is never made by future selves, only by current selves.

Combining Equation (1.8) with conditions (1.9) and (1.10), the solution for the

18The first boundary condition is obtained by noting that given any r̂ ≥ 0, the
agent never stops if x = 0, since he incurs negative overall utility. The fact that r̂ ≥ 0
can be verified in equilibrium - thus, the boundary condition is v(0, r̂) = 0. More
generally, it would be sufficient that v(0, r̂) is finite for any r̂.
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continuation value function is

v(x, r̂) =











[(x̂− I) + η(x̂− I − r̂)](x
x̂
)γ1 if x < x̂

x− I + η(x− I − r̂) if x ≥ x̂,
(1.11)

where γ1 > 1 is the positive root19 of the quadratic equation

1

2
σ2γ2

1 + (µ− 1

2
σ2)γ1 − ρ = 0, (1.12)

reflecting the fact that from an ex ante perspective, the agent discounts the future

exponentially at the rate ρ.

Benchmark: The Standard Case

In the standard optimal-stopping problem, the agent is time-consistent (β = 1 or

λ = 0) and is not reference dependent (η = 0). His optimal strategy is to use the

fixed stopping threshold x∗: at any time s, he waits if xs < x∗ and stops if xs ≥ x∗,

where x∗ is chosen to maximize the option value of waiting. Time consistency implies

that the agent’s preferences are fully described by the single value function v, so he

chooses x∗ to maximize v. Thus, the smooth pasting condition with respect to x

must apply to the continuation value function v, so the marginal values of waiting

and stopping must be equal at the optimal threshold. Since η = 0 here, the smooth

pasting condition is given by:

Smooth Pasting:
dv

dx
(x∗) = 1. (1.13)

19The negative root is ruled out by the boundary condition for x = 0. Writing out

γ1 explicitly, we have γ1 = − µ
σ2 + 1

2
+
√

( µ
σ2 − 1

2
)2 + 2ρ

σ2 . To see that γ1 > 1, note that

σ2 > 0 and the left-hand side of the quadratic is negative when evaluated at γ1 = 0
and γ1 = 1, implying that the negative root is strictly negative and the positive root
is strictly greater than 1 if µ < ρ.
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Solving Equation (1.8) subject to (1.13) and the barrier absorption and value match-

ing conditions given by (1.9) and (1.10) when η = 0 allows us to determine the optimal

threshold x∗:

x∗ = (
γ1

γ1 − 1
)I, (1.14)

where γ1 > 1 is again the positive root of the quadratic equation 1
2
σ2γ2

1 +(µ− 1
2
σ2)γ1−

ρ = 0. Unsurprisingly, this γ1 is the same parameter value as that obtained in (1.12),

because the continuation value is derived by exponentially discounting the future at

the rate ρ in both cases.

The expression for x∗ implies that the standard agent always waits for a project

value that exceeds its direct cost (x∗ > I). Due to the forgone possibility of higher

realizations of x in the future, there exists an opportunity cost of stopping today. In

equilibrium, the standard agent’s value of the option to stop, denoted v∗(x), is given

by

v∗(x) =











(x∗ − I)( x
x∗

)γ1 if x < x∗

x− I if x ≥ x∗.
(1.15)

1.4.2 Present-Biased Preferences

In contrast to the time-consistent case, the present-biased agent maximizes the current

value function w, rather than the continuation value v. Proceeding with the derivation

of w(x, r) analogously, I first suppose that all current selves inherit goal r and employ

a threshold x such that they wait if x < x and stop if x ≥ x. Again, I can construct

w(x, r) by characterizing it in the “wait” and “stop” regions separately, then joining

the two regions through appropriate boundary conditions.

By definition of the threshold strategy, the value of w in the stop region (x ≥ x)

is simply given by x − I + η(x − I − r). In the wait region, standard results imply
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that w(x, r) must obey the following linear differential equation:

ρw(x, r) = λ(βv(x, r̂) − w(x, r)) + µx(
∂w

∂x
) +

1

2
σ2x2(

∂2w

∂x2
) if x < x. (1.16)

Comparing Equation (1.16) to Equation (1.8), the additional term λ(βv(x, r̂) −

w(x, r)) is the expected value of the change in the current value w that occurs through

the stochastic arrival of a transition from the present to the future.

As with v, x = 0 is an absorbing barrier and w must clearly be continuous at the

threshold x between the wait and stop regions. Finally, the smooth pasting condition

must apply to w with respect to x, because the optimal threshold is chosen by the

current self to maximize his current value function w. At this threshold x, the current

self must be unwilling to deviate from stopping, so the marginal value of waiting must

equal that of stopping.20 Thus, the relevant boundary conditions for w are

Boundary: w(0, r) = 0, (1.17)

Value Matching: w(x, r) = x− I + η(x− I − r), (1.18)

Smooth Pasting:
∂w

∂x
(x, r) = 1 + η. (1.19)

Because the current self fully anticipates that his future selves will use threshold x̂

given goal r̂, we can substitute the continuation value function, given by Equation

(1.11) into the differential Equation (1.16). Under the assumption that x ≤ x̂, which

the fixed point condition will satisfy in a stationary equilibrium, it is the value of v

in its wait region that applies to (1.16). Combining Equation (1.16) with (1.11) and

conditions (1.17), (1.18), (1.19), we obtain the solution to the optimal threshold x as

a function of current goal r and the conjectured future goals r̂ and thresholds x̂.

20Dixit (1993) provides a detailed treatment of the smooth pasting technique.
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1.4.3 Stationary Equilibrium

In a stationary equilibrium, the sophisticated agent knows that all current and future

selves employ the same threshold, which requires that x = x̂. To make clear the effect

of goal-setting on the optimal stopping rule, I will first consider the sophisticate’s

stopping threshold given any fixed goal level (i.e., r = r = r̂), denoted xSE, provided

that this goal is set ex ante and does not change during the stopping decision. Thus,

this also describes a sophisticate’s response to any externally set goal, which can differ

from the agent’s actual final payoff. Next, I derive the sophisticate’s stopping rule

when his goals are set internally, denoted xSI , and therefore are required to be met

in equilibrium.

Exogenous Goals

Given that r = r = r̂ and imposing the fixed point condition that x = x̂ ≡ xSE, the

optimal threshold in response to an externally set goal r ≥ 0, denoted xSE, is

xSE = (
γ

γ − 1
)I + r(

η

1 + η
)(

γ

γ − 1
), with γ ≡ βγ1 + (1 − β)γ2, (1.20)

where γ2 is the positive root21 of the quadratic equation

1

2
σ2γ2

2 + (µ− 1

2
σ2)γ2 − (ρ+ λ) = 0. (1.21)

Note that the only difference between the quadratic equation for γ2 and that of γ1

is the presence of the parameter λ, which is the hazard rate for the arrival of the

future. It is apparent that γ2 ≥ γ ≥ γ1, with equality only if the future never arrives

(λ = 0), i.e. preferences never change. That is, the parameter γ2 reflects the fact

that each self’s expected “lifetime” shortens with λ, while the degree to which this

21As before, the negative root is ruled out by the boundary condition for x = 0.

Writing out γ2 explicitly, we have γ2 = − µ
σ2 + 1

2
+
√

( µ
σ2 − 1

2
)2 + 2(ρ+λ

σ2 ).
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feature affects the stopping decision is determined by the degree of present-biasedness,

measured by 1 − β.

Equation (1.20) makes clear the effect of goal-setting on the optimal stopping

rule. The first term is the agent’s stopping threshold in the absence of reference

dependence or a goal: if η = 0, then xSE = ( γ
γ−1

)I < x∗.22 A hyperbolic discounter

without reference dependent preferences stops earlier than the standard agent, and

this impatience is exacerbated as the present is more overweighted, i.e. as β decreases,

and as preferences change more frequently, i.e. as λ increases. Recall that it is the

combination of parameters β and λ that determines the degree of the self-control

problem. In fact, (1.20) reveals that γ ≡ βγ1 + (1 − β)γ2 is a sufficient statistic for

measuring the sophisticated agent’s degree of impulsiveness, rather than β alone.23

The second term in (1.20) is the effect of the goal on the stopping threshold. Because

an agent is motivated to avoid settling for a lower project only if there exists a

potential comparative penalty from falling short, the goal r only induces more patient

behavior as long as r > 0, even in the case of instantaneous gratification. When β < 1

and λ→ ∞, the second term in (1.20) is strictly positive and is given by r( η
1+η

). No

potential penalty is imposed when r = 0, so behavior is unchanged by this goal and

it is equivalent to having no goal.24

Proposition 1. In a stationary equilibrium with exogenous goal r, the sophisticate’s

stopping threshold exhibits the following properties:

1. The threshold decreases with impulsiveness: ∂xSE

∂γ
< 0.

2. The threshold increases with goal level: ∂xSE

∂r
> 0.

22If the agent is not reference dependent (η = 0), then Equation (1.20) is identical
to the sophisticate’s threshold obtained by Grenadier and Wang (2007), who study
irreversible investment with naive and sophisticated hyperbolic agents.

23Clearly, γ is decreasing in β and increasing in λ, so comparative statics on each
parameter separately yield the same qualitative results.

24This feature makes clear that η in itself does not simply act as a subsidy to
reaching a higher net x.
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3. Responsiveness to a goal increases with goal commitment: ∂2xSE

∂r∂η
> 0.

4. Responsiveness to a goal decreases with goal commitment: ∂2xSE

∂r∂γ
< 0.

It is intuitive that the agent’s threshold should decrease with his degree of impul-

siveness irrespective of his degree of reference dependence, for two reasons. First, he

undervalues the future himself. Second, being sophisticated, he anticipates that his

future selves will undervalue their own futures as well, which decreases the value of

waiting even further.

A second intuitive result is that, regardless of his degree of impulsiveness (includ-

ing when β = 1 or λ = 0), the agent’s threshold increases with the level of the goal if

he is reference dependent (η > 0). Raising r increases the potential cost of settling for

a lower project value. Thus, the goal induces more patient behavior by providing an

additional incentive to wait for a higher realization of the project value. This result is

consistent with experimental evidence that task performance increases with the goal

difficulty, whether externally- or self-set.25

Consistent with empirical evidence on goal commitment (Klein et al., 1999), re-

sponsiveness to a goal is increasing in the agent’s degree of reference dependence. An

agent who cares more about falling short of his goal is more motivated to change his

behavior to avoid such an outcome than one who cares less about this comparison.

Finally, an agent’s responsiveness to a goal is decreasing in his degree of impul-

siveness, illustrating the interaction between present-biasedness and reference depen-

dence. A less present-biased agent values the future more than a more impulsive

counterpart, so he has a stronger incentive to avoid incurring a comparative penalty

assessed in the future. Because a more present-biased agent undervalues the future

more, he not only exhibits more impatience in the absence of a goal, but is also less

responsive to a given goal than a less impulsive counterpart.

25Locke and Latham (2002) even find a positive linear relationship between goal
difficulty and performance.
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Endogenous Goals

When the goal is internally set, rational expectations implies that each self correctly

anticipates his descendant’s threshold strategy, so that r = x− I and r̂ = x̂− I. But

since x = x̂, this implies that r = r = r̂ = x − I. Each self correctly expects his

descendants to use the same stopping rule as he does currently, so every self inherits

and meets the same goal in equilibrium. That is, whether goals are externally or

internally set, sophistication implies that x = x̂ and r = r̂. Moreover, a self-set goal

must satisfy the additional condition that it coincides with the expected net terminal

payoff, so that r = x − I. Thus, the optimal threshold in a stationary equilibrium

with internally set goals, denoted xSI , must satisfy r = xSI − I and can be derived

by imposing this additional condition on Equation (1.20), yielding

xSI = (
γ

γ − 1 − η
)I,

with γ ≡ βγ1 + (1 − β)γ2

and η < γ − 1,
(1.22)

and the equilibrium value functions wSI and vSI :

wSI(x, r = xSI − I) =











β(xSI − I)( x
xSI )γ1 + (1 − β)(xSI − I)( x

xSI )γ2 if x < xSI

x− I + η(x− xSI) if x ≥ xSI ,

(1.23)

vSI(x, r = xSI − I) =











(xSI − I)( x
xSI )γ1 if x < xSI

x− I + η(x− xSI) if x ≥ xSI .
(1.24)

The value of Equation (1.23) in its wait region is the expected present value of the

option to stop, given the current value of the project’s payoff, x < xSI , and the optimal

threshold xSI . This is essentially the weighted average of two time-consistent option

values, where the first, weighted by β, uses the discount rate ρ, which is reflected in

γ1. The second, weighted by 1− β, uses the discount rate ρ+ λ, which is reflected in
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x
0

wSI(η > 0)

wSI(η = 0)

vSI(η > 0)

xSI(η > 0)
xSI(η = 0)

slope=1 + η

slope=1

Figure 1.1: Option values with endogenous goals when β < 1 for varying degrees
of η. The black lines represent the value functions when η > 0. The blue lines
represent the value functions when η = 0. The solid lines depict the current value
functions w, which are smooth and continuous everywhere. The dashed lines depict
the continuation values v, which are kinked at the equilibrium thresholds xSI and
coincide with their respective current value functions w thereafter.

γ2. The value of Equation (1.24) in its wait region is the expected present value of the

option to stop, using only the discount rate ρ, reflected in γ1. Thus, the equilibrium

v also represents the option value that each current self would prefer his future selves

to use from an ex ante perspective (or would like to commit them to), though he is

resigned to the knowledge that they will maximize w rather than v.

Figure 1.1 depicts the equilibrium value functions when goals are self-set. Refer-

ence dependence increases the marginal value of waiting, increasing the slope of both

the continuation and current value functions upon stopping, and thus the incentive

to wait longer. The fact that v lies above its respective w reflects the fact that an

exponential discounter values the option more than a present-biased agent. Finally,

independently of the value of η, the slope of v is flatter than that of w at the equilib-

rium stopping threshold, reflecting the fact that the exponential discounter prefers to

wait longer than the present-biased agent. Thus, it implies that the present-biased

agent prefers that his future selves wait longer than they do in equilibrium.
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Proposition 2. By inducing more patient behavior, reference dependence attenuates

impulsiveness in a stationary equilibrium with endogenous goals: ∂xSI

∂η
> 0.

From Equation (1.22), it is clear that the equilibrium threshold increases with the

degree of reference dependence for any given degree of impulsiveness if λ is finite. An

agent with a high degree of reference dependence has a stronger incentive to meet his

goal, since he puts more weight on the comparative disutility from falling short. It is

only in the instantaneous gratification case that the agent, with infinite impatience

and finite reference dependence, is unaffected by goal-setting. As noted in Equation

(1.20), the agent is responsive to a goal even in the instantaneous gratification case,

as long as r > 0. However, when the goal is self-set, his anticipation of extreme

impatience makes him unable to set a realistic penalty to improve his patience, so he

sets r = 0 in equilibrium and his behavior is unchanged by reference dependence. As

shown in the following sections, this will not be the case when he is naive or when

he is placed in a heterogeneous peer group. Note also that if β = 1 and η = 0, the

threshold is equivalent to the equilibrium solution to the standard optimal stopping

problem, where the agent is neither dynamically inconsistent nor reference-dependent.

1.4.4 Welfare

From an ex-ante perspective, the agent, no matter how severe his degree of present-

biasedness or reference dependence, prefers that his future selves behave according to

a time-consistent, optimal strategy. Therefore, I use the preferences of self 0, which

determine the ex ante optimum, to evaluate the agent’s welfare. Such an analysis

allows us to evaluate the welfare consequences for a heterogeneous population of

individuals, with varying degrees of present-biasedness and goal commitment. It also

allows self 0 to determine the value of adjusting his degree of goal commitment η to

improve future behavior, since this choice may be costly.

Sophistication implies that the agent always anticipates that he will meet his
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self-set goal exactly in equilibrium. He is thus aware that once he actually stops at

some point in the future, his comparative utility will equal zero in equilibrium, so

his overall utility will consist only of the net terminal payoff, just as in the η = 0

case. Therefore, even if he knows that he will be reference dependent, the ex ante self

wants to maximize the expected present discounted value of his overall utility, which

exactly equals the net terminal payoff alone, as if he were time consistent. That is,

he wants to choose the stopping threshold that maximizes vSI(x). This problem is

identical to that of an agent who is dynamically consistent (β = 1) and not reference

dependent (η = 0). Thus, the first-best threshold for any sophisticated agent, no

matter his degree of present-biasedness or reference dependence, coincides with the

threshold that a standard agent chooses: x∗ = ( γ1

γ1−1
)I. This implies that for any

degree of impulsiveness, there exists a degree of countervailing reference dependence

that enables the agent to employ the first-best threshold strategy (i.e., xSI(η∗) = x∗).

Unsurprisingly, this optimal reference dependence η∗ is increasing in γ - as the degree

of impulsiveness increases, the degree of reference dependence required to attenuate

it increases.

Proposition 3. For every γ ∈ (1,∞), there exists an η∗ such that the reference-

dependent agent with η = η∗ achieves the first best, given by

η∗ =
γ − γ1

γ1

.

This analysis makes clear the differential effect of increasing the degree of goal

commitment η versus increasing the stopping cost I. While both have the same

qualitative effect of increasing the equilibrium stopping threshold xSI , only the former

improves welfare by closing the gap between equilibrium and first-best behavior if

η < η∗. In contrast, increasing the stopping cost has no effect on the self-control

problem, since both the equilibrium and first-best thresholds increase with I.
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On the other hand, the degree of reference dependence can also be sufficiently

high that the agent waits longer than is first-best. Consider now an agent who is

dynamically consistent (γ = γ1, i.e. β = 1 or λ = 0) and reference dependent (η > 0).

Although reference dependence does not distort final overall utility directly, it changes

the marginal value of stopping. Because the agent has an incentive to avoid incurring

comparative disutility, the marginal value of waiting at the first best threshold x∗

exceeds the marginal value of stopping, so the agent waits longer. Although he

achieves a payoff that exceeds x∗, its ex-ante discounted value is lower than the first

best. Hence, reference dependence distorts his behavior away from the first best and

causes him to be overly patient.26 Since a time-consistent agent has no self-control

problem, reference dependence offers no beneficial value, so η∗ = 0 if γ = γ1. The same

argument can clearly be applied to present-biased agents with reference dependence,

if η overcompensates for the conflict in time preferences between current and future

selves. Moreover, reference dependence can be so high that even an impulsive agent

would be better off in the absence of goal-setting. That is, when η > η, he would

wait so long under goal-setting that he is actually better off if he cannot set goals for

himself (i.e., η = 0) and behaves impatiently. Thus, goal-setting can itself be a source

of intrapersonal conflict, since it can cause an agent to wait longer than is optimal from

an ex ante perspective. Unsurprisingly, the level of reference dependence required to

be detrimental to the agent’s welfare is increasing in his degree of impulsiveness.

Corollary 1. For every γ ∈ (1,∞), there exists a range of η such that the sophisti-

cated agent waits longer than the first best: η∗ < η < γ − 1. Moreover, he is strictly

worse off under goal-setting if η < η < γ − 1, where η ≥ η∗ is increasing in γ and is

26In contrast, Kőszegi and Rabin (2009) find that in the absence of uncertainty
over final payoffs, reference dependence can lead to apparently impatient behavior,
even without present-biased preferences. There, the reference point is a vector of
plans (beliefs) over time, and the agent derives comparison utility in each period
of a consumption-savings problem. If he values contemporaneous comparison utility
more than future comparison utility, then he may overconsume relative to the ex-ante
optimum.
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defined by the following condition:

(
γ − 1

γ − 1 − η
)γ1−1(

1

1 + η
) − 1 = 0.

In particular, a time-consistent agent stops at xSI = ( γ1

γ1−1−η
)I and is strictly worse

off if he is reference-dependent (η > 0).

Although the sophisticate’s self-set goal level is pinned down by rational expec-

tations, he may further regulate his behavior by adjusting his degree of goal salience

or commitment. Under the interpretation that demand for personal development

products and services, such as self-help books and executive coaching, is akin to indi-

viduals’ (costly) attempts to change η from some initial level, these welfare findings

suggest that such behavior is quite rational and can, indeed, improve the sophisti-

cate’s welfare unambiguously if successful. Prescriptively, they imply that welfare

improvement can be achieved purely through programs or services that educate indi-

viduals about goal-setting and the appropriate level of goal commitment. While much

of this industry focuses on improving welfare by increasing goal commitment, there

is evidence suggesting that the converse problem is recognized as well. In psychology,

dysfunctional perfectionism is defined as “overdependence of self-evaluation on the

determined pursuit of personally demanding, self-imposed, standards in at least one

highly salient domain, despite adverse consequences” (Shafran et al., 2002). Consis-

tent with the idea that η can be detrimentally high, Goldsmith (2008) discusses the

prevalence of “goal obsession” among successful executives, many of whom sacrifice

health or family life in the pursuit of their careers to their own regret.

1.5 Naivete

To highlight the impact of expectations on behavior and welfare, I now consider

the case of naivete, where the agent mistakenly believes that he will be dynamically
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consistent in the future. Given the framework developed to study the sophisticate,

the naive agent’s strategy is straightforward to derive.

Because the naif holds incorrect beliefs about his future behavior, it is the per-

ceived, rather than actual, behavior of future selves that influences his stopping de-

cision. Here, let x̂ be the threshold that the naif perceives future selves will employ,

such that they wait if x < x̂ and stop otherwise, and let r̂ be their goal. Both the

sophisticate and naif have identical evaluations of their future behavior, discounting

it exponentially. Thus, the naif’s (perceived) continuation value v is still given by

Equation (1.11). However, the sophisticate and naif differ drastically in their beliefs

over their future behavior. The key difference is that the naive agent believes that

given a goal r̂, future selves will choose x̂ such that

x̂ = (
γ1

γ1 − 1
)I + r̂(

η

1 + η
)(

γ1

γ1 − 1
). (1.25)

The naive agent believes that future selves will be exponential discounters, so he

thinks they will choose a stopping rule that maximizes v, rather than w. Thus, the

naif derives (1.25) by combining the smooth pasting condition with respect to x with

Equation (1.11), in addition to the absorbing barrier (1.9) and value matching (1.10)

conditions.27

Let x be the threshold used by the current self and r be the goal that he inherits.

Again, because the naif’s preferences are identical to those of the sophisticate, the

wait region of his current value function w is still given by Equation (1.16).

1.5.1 Equilibrium

Since the naif’s beliefs about future selves’ behavior are incorrect, current and per-

ceived future selves employ different stopping thresholds, so a fixed point condition

27Equivalently, Equation (1.25) can be derived from Equation (1.20) by evaluating
xSE when β = 1 and the goal is some r̂.
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does not apply, in contrast with the sophisticate’s case. Rather, x̂ is given by Equa-

tion (1.25). As before, I will first consider the naif’s response to any fixed goal level

(i.e., r = r = r̂), denoted xNE, before describing his stopping threshold when goals

are self-set, denoted xNI .

Exogenous Goals

Let the naif’s goal be set ex ante and unchanged during the stopping decision, so

r = r = r̂. Assuming that xNE ≡ x ≤ x̂ (and verifying that this holds in equilibrium),

we can combine (1.16) with the (perceived) continuation value function (1.15) in its

wait region and perceived stopping rule (1.25), and boundary conditions (1.17), (1.18),

(1.19) to obtain an implicit function for the naive agent’s threshold xNE when the

goal is exogenous and fixed:

xNE =
1

(γ2 − 1)(1 + η)
[β(γ2−γ1)(x̂

NE−I+η(x̂NE−I−r))(x
NE

x̂NE
)γ1+γ2(1+η)I+γ2ηr],

(1.26)

where x̂NE = ( γ1

γ1−1
)I + r( η

1+η
)( γ1

γ1−1
). Unsurprisingly, the comparative statics with

respect to xNE are analogous to those described in Proposition (1). Since the intuition

is virtually identical, the details are provided in Appendix A.3.

Endogenous Goals

If the naive agent sets goals for himself, I assume that he must believe they are

realistic, implying that r̂ = x̂ − I. But since each self, including self 0, persistently

misperceives future preferences, the current self inherits the same goal that he will pass

on to his descendant (i.e., r = r̂). Thus, whether goals are externally or internally

set, the condition that r = r̂ must hold. Moreover, a self-set goal must satisfy

the additional condition that it is perceived to be realistic, r̂ = x̂ − I. Imposing

this condition on Equation (1.25) and letting r = r̂ yields the perceived threshold
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employed by future selves when the goal is endogenous, denoted x̂NI :

x̂NI = (
γ1

γ1 − 1 − η
)I. (1.27)

Thus, x̂NI is precisely the threshold employed by a time-consistent agent whose goals

are endogenously set and who is both time-consistent (β = 1 or λ = 0).28 Likewise,

the naif’s equilibrium threshold when the goal is endogenous, denoted xNI , is derived

by imposing r = x̂NI − I on Equation (1.26):

xNI =
1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(x̂

NI − I)(
xNI

x̂NI
)γ1 + γ2(ηx̂

NI + I)]. (1.28)

His current value function wNI is given by

wNI(x, r = x̂NI − I) =























β(x̂NI − I)( x
x̂NI )γ1+

(1 + η)( γ1−1
γ2−γ1

)(x̂NI − xNI)( x
xNI )γ2 if x < xNI

x− I + η(x− x̂NI) if x ≥ xNI .

Proposition 4. The naive agent stops after the sophisticated agent, but falls short

of his goal29: xSI < xNI < x̂NI .

The naive agent incorrectly believes that he will be more patient in the future,

so he sets higher goals accordingly. But when faced with the stopping decision in

the present, he undervalues the future more than he had expected, and stops earlier.

Thus, he falls short of his overly ambitious goal. The fact that the naive agent

stops after his sophisticated counterpart can be attributed to two factors. The first

effect, the “sophistication effect” (O’Donoghue and Rabin, 1999), occurs irrespective

28Note that it also corresponds to (1.22) when β = 1 or λ = 0.
29As shown in Appendix (A.3), this result also holds for exogenous r ≥ 0: xSE <

xNE < x̂, where x̂ is given by (1.25). The intuition is essentially identical. When r =
x̂−I, the naif’s over-optimism leads him to set his goal higher than the sophisticate’s,
making the gap between their stopping thresholds even larger.
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of reference dependence. Both the sophisticate and the naif overweight the present

in the same manner. But because the sophisticate correctly foresees that he will also

undervalue the option to wait in the future, he undervalues the present option to

wait even further. In contrast, the naif is more optimistic about his future behavior,

so he values the present option relatively more than the sophisticate.30 The second

effect is caused by the interaction of reference dependence and expectations. The

naif’s optimism leads him to set higher goals for himself than the sophisticate, who

realistically tempers his expectations. Since he incurs a higher potential penalty upon

stopping, the naif has a larger incentive to wait for a higher project value.

1.5.2 Welfare

In the absence of reference dependence, the naive agent is clearly better off than

his sophisticated counterpart from an ex-ante perspective. When η = 0, there is

no comparison utility and the ex ante self wants to maximize the expected present

discounted value of his net terminal payoff alone. Therefore, the first best is to employ

the threshold x∗ = ( γ1

γ1−1
)I. Since xSI(η = 0) < xNI(η = 0) < x∗, the naive agent is

unambiguously better off due to the “sophistication effect,” whereby the sophisticate’s

realistic pessimism leads to a relatively detrimental outcome (O’Donoghue and Rabin,

1999).

However, the naif’s welfare is less rosy when he has reference dependent prefer-

ences, because he incurs direct comparative disutility from falling short of his opti-

mistic expectations. From an ex ante perspective, the naif’s true continuation value

when goals are self-set is given by ṽNI(x):

ṽNI(x, r = x̂NI − I) =











[xNI − I + η(xNI − x̂NI)]( x
xNI )γ1 if x < xNI

x− I + η(x− x̂NI) if x ≥ xNI ,
(1.29)

30This is the same result obtained by Grenadier and Wang (2007), whose model
corresponds to η = 0 here.
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where x̂NI and xNI are defined by Equations (1.27) and (1.28), respectively. Since

his unanticipated impulsiveness leads him to fall short of his overly optimistic goal

at any point in time, he incurs disutility η(xNI − x̂NI) upon stopping, in addition to

receiving the net terminal payoff xNI − I.

Because the naive agent incurs comparative disutility that his sophisticated coun-

terpart does not, the welfare comparison between naivete and sophistication is not as

clear-cut as in the absence of reference-dependence, and there are circumstances in

which the naif is unambiguously worse off than the sophisticate. For example, con-

sider the case when reference dependence is quite high: let η ≥ η∗, so xSI ≥ x∗. Since

the naif always waits longer than his sophisticated counterpart, the ex-ante expected

present discounted value of his net terminal payoff is strictly less than that of the

sophisticate. Furthermore, the naif incurs comparative disutility from falling short

of his overly optimistic goal while the sophisticate incurs no comparative disutility.

Thus, the naif is worse off than the sophisticate in both components of overall utility

when η ≥ η∗.

Proposition 5. When goals are endogenous, let ṽN∗

(x) denote the (true) first-best

option value that the naif can attain, and let vS∗

(x) denote the first-best option value

that the sophisticate can attain. When η > 0, the first best that the naif can achieve

is strictly lower than that of the sophisticate: ṽN∗

(x) < vS∗

(x).

In the previous section, I have shown that the sophisticate’s maximum attainable

option value is achieved when η = η∗, since he maximizes the expected present dis-

counted value of his consumption utility (i.e., the net terminal payoff) and incurs zero

comparison utility by stopping at xSI = x∗. In contrast, the naif persistently sets his

goal to be x̂NI − I, and incurs comparative disutility from falling short. Given that

he sets this goal, the threshold that would maximize his overall utility, but which

no value of η can attain due to his over-optimism, is the one that allows him to

meet that goal. If this were possible, he would incur no comparative disutility and
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the option value would only consist of the discounted value of consumption utility

from stopping at x̂NI . But since x̂NI > x∗, the expected present discounted value of

stopping at x̂NI is strictly less than that of stopping at x∗ for any η > 0. Thus, in

contrast to O’Donoghue and Rabin’s (1999) finding that the “sophistication effect”

makes sophisticates worse off than naifs in the absence of reference-dependence, the

first-best that the naif can achieve is strictly lower than that of the sophisticate when

goals are self-set.

In contrast to the welfare findings regarding the sophisticate, larger intervention

would be required to make naifs as well off as sophisticates. In essence, Proposition 5

implies that the naif’s ignorance regarding his limitations is a handicap that cannot

be overcome by changing η alone. Beyond education about goal-setting and goal

commitment, the naif would need to recognize his limitations in some way, which

is arguably more difficult to achieve. In the absence of such learning, more direct

intervention through externally set goals is one possible solution to this problem if

an outside party is aware of the naif’s impulsiveness. Clinical psychologists have

long recognized that individuals may persistently fall short of self-set goals while

simultaneously maintaining the belief that they can attain them. Hamacheck (1978)

describes neurotic perfectionists as individuals “whose efforts - even their best ones -

never seem quite good enough, at least in their own eyes. It always seems to these

persons that they could - and should - do better . . . ” In reality, individuals are likely

to lie in between the two extremes of sophistication and naivete. That is, they may

be aware of their impulsiveness but underestimate its magnitude, as in O’Donoghue

and Rabin’s (2001) concept of “partial naivete.” The prescription that a “S.M.A.R.T.

Goal” should be attainable, and associated advice about how to determine whether a

goal is attainable, such as examining past achievement experience, is consistent with

recognition that individuals may misperceive their limitations to some degree.
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1.6 Aspirational Goals

Thus far, I have made the assumption that the agent’s goal must coincide with the

outcome he expects to achieve. Because there is no uncertainty over the realized

outcome, regardless of whether beliefs are correct or not, it is unclear how the agent

could simultaneously anticipate a particular outcome with certainty, knowingly set

a goal that differs from that expectation, and also derive utility, whether positive

or negative, from comparing the realized outcome to a goal that he knew to be

unrealistic.

An alternative interpretation is that the goal represents an individual’s aspiration,

rather than an expectation about what he can or will attain. In this case, the goal

may arguably be divorced from expectations without logical conflict. Under this

interpretation, he can strategically set goals for future selves, even if he is aware

that they are unrealistic ex ante. I assume that the feasible set of goals is given

by r ∈ [−I,∞).31 Since a goal can only be set for a future self, it is clear that

he seeks to maximize his total utility, i.e. the sum of consumption and comparison

utility, from an ex-ante perspective. Thus, the optimal aspirational goal r∗ is chosen

to maximize the continuation value function v(x, r̂) described by Equation (1.11) in

its wait region, where the agent anticipates future selves’ behavior in response to

r∗. In this intrapersonal problem, the agent’s optimal goal choice involves a trade-off

between the expected present values of consumption and comparison utility. Choosing

a more ambitious goal increases his material payoff by providing a stronger incentive

to wait for a higher project payoff, but reduces his comparison utility, while choosing

a less ambitious goal leads to the opposite effect. Here, the agent does have an

incentive to choose goals that may be unrealistic in order to improve his material

outcome, and pessimistic goals may be beneficial.32 The question of interest is what

31Since the project payoff process is bounded below by zero, the lowest net terminal
payoff the agent can receive is −I, if he stops the process when it is zero.

32In a somewhat similar vein, Brunnermeier and Parker (2005) consider the optimal
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goal optimizes ex-ante welfare when both consumption and comparison utility are

accounted for, and under what circumstances the optimal goal is realistic. I focus on

the case of sophistication, where the agent is aware of and would like to attenuate

his self-control problem.33 Thus, he anticipates that future selves employ threshold

xSE(r∗), described by Equation (1.20).

Consider an agent who has no self-control problem (i.e., γ = γ1). Then any

positive goal induces him to wait longer than is first-best to maximize expected con-

sumption utility. Thus, he is clearly better off setting a goal which is lower than the

outcome he will actually achieve. Even in the more interesting case when the agent

has a self-control problem (γ > γ1) and can benefit from additional motivation, how-

ever, choosing the lowest possible goal is optimal from an ex ante perspective for any

degree of present-biasedness, γ ∈ (γ1,∞). For each of the two additively separable

components of v, namely the expected discounted values of consumption and com-

parison utility, the two forces affecting each are the utility incurred upon stopping

and the time value of waiting for it. As the agent’s goal decreases, the decrease in

consumption utility reduces the value function, but time discounting counteracts this

reduction, since achieving a lower terminal payoff does not require waiting as long,

on average. On the other hand, as the goal decreases, both the increase in compari-

son utility and time discounting positively affect the value function, since he realizes

higher comparison utility and stops earlier due to the weaker force on self-discipline.

Consequently, a decrease in the goal raises (expected) discounted comparison util-

ity more than it reduces discounted consumption utility, so that choosing the lowest

possible goal is globally optimal when his comparison utility function is linear.

choice of subjective beliefs when the agent faces a trade-off between material outcomes
and belief-based utility. However, in their setting, there is no incentive to distort
beliefs in order to change actions. Rather, the only motivation for belief distortion
is the benefit for anticipatory utility flows, so any belief distortion decreases material
benefits and pessimistic beliefs can only hurt.

33Since the naif believes that he has no self-control problem, he sees no instrumental
benefit to setting a positive goal.
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Proposition 6. When the agent’s comparison function is linear, his ex-ante welfare is

monotonically decreasing in his goal r. Thus, the aspirational goal r∗ that maximizes

ex-ante welfare is the lowest possible.

The finding that no matter how severe his self-control problem, an agent prefers to

set the lowest possible goal is reliant on both the asymmetric effect of time discounting,

which is due to the trade-off between consumption and comparison utility, and the

linearity of comparison utility, which implies that the marginal benefit from exceeding

a given goal is invariant to the gap between goal and outcome. However, it is arguably

more realistic to assume that the agent exhibits diminishing sensitivity to gains, so

that the marginal benefit from exceeding his goal is decreasing as the gap between low

aspirations and realized outcomes increases. Consider a comparison utility function

given by ψ(x− I − r), where ψ(·) exhibits the following properties:

A1. ψ(y) is continuous and thrice differentiable for all y.

A2. ψ(0) = 0.

A3. ψ(y) is increasing everywhere: ψ′(y) ≥ 0, ∀y ∈ R.

A4. ψ(y) is concave: ψ′′(y) ≤ 0, ∀y ∈ R.

A5. ψ(y)′′′ ≥ 0, ∀y ∈ R.

Clearly, the case studied thus far, in which the comparison utility function is linear,

corresponds to the case in which ψ′(y) = η and ψ′′(y) = 0 for all y ∈ R. The first three

assumptions are standard and intuitive features of comparison utility. The fourth

implies that when ψ′′(y) < 0 everywhere, the agent is diminishingly sensitive to gains

and increasingly sensitive to losses. While the former is a feature of Kahneman and

Tversky’s (1979) value function, the latter property is less commonly assumed. Given

that the effects of time discounting in the optimal stopping problem bias the agent
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toward setting goals that are lower than anticipated (and realized) outcomes, the key

region of interest is that of gains, and its feature is consistent with previous work.34

When ψ′′(y) < 0 everywhere, comparison utility is asymmetric across gains and losses,

and the agent exhibits loss aversion. We also can obtain an exact mapping to the

above comparison utility function ψ(·) through an alternative model. A formally

equivalent specification is that the comparison utility function is linear, but the agent

faces convex costs, incurred upon stopping, of setting a goal that deviates from his

actual net terminal payoff, whether that goal is below or above his realized outcome.35

The fifth assumption is a regularity condition.

When ψ(·) is non-linear, we must derive the optimal stopping threshold given a

goal r. As in the linear case, the optimal threshold is determined by joining the

waiting and stopping regions of the value function. It is only the stopping region that

now changes, since the comparison of an outcome against the goal upon stopping

differs. Then the optimal stopping threshold xNL is given by the following implicit

function:

0 = (γ − 1)xNL − γI + γψ(xNL − I − r) − xNLψ′(xNL − I − r), (1.30)

where we can verify that, unsurprisingly, xNL is increasing in r and decreasing in γ

given assumptions A1-A4. As in the linear case, the optimal aspirational goal r∗ is

chosen to maximize the continuation value function v(x, r̂) in its wait region, where

the comparison utility is now evaluated non-linearly according to ψ(·) and xNL(r̂) is

34Moreover, the assumption of increasing sensitivity to losses can be interpreted as
a regularity condition, to ensure that the continuation value function can be single-
peaked, but is not strictly necessary to obtain a positive optimal goal.

35Costs that rise more quickly with the gap between the goal and the expected
payoff thus correspond to a ψ(·) that is more concave.
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given by Equation (1.30):

r∗ = argmax
r̂

v(x, r̂) = argmax
r̂

[xNL − I + ψ(xNL − I − r̂)](
x

xNL
)γ1 . (1.31)

An optimal,non-degenerate aspirational goal (i.e., r∗ > −I) must satisfy the first-

order condition, which is equivalent to finding the r∗ such that

xNLψ′′(xNL − I − r∗)[−γ + γ1(1 + ψ′(xNL − I − r∗)]

− γ(γ1 − 1)ψ′(xNL − I − r∗)(1 + ψ′(xNL − I − r∗)) = 0, (1.32)

where xNL(r∗) is given by (1.30). The second term of (1.32) is non-positive for all

values of r∗ by property A3. Since ψ(·) is concave, the first term is only positive if γ >

γ1(1+ψ′(xNL−I−r∗)), where the right-hand side is greater than γ1. Unsurprisingly,

setting a non-generate goal is only desirable if it is needed to correct impulsiveness,

which must be sufficiently high to counteract the marginal benefit of setting a lower

goal.36 Moreover, the first term of (1.32) must be sufficiently positive for the equality

to hold, which implies that ψ′′(·) must be sufficiently negative. The incentive to

set a very low goal diminishes when the marginal benefit of exceeding it decreases

sufficiently quickly.37 Thus, comparison utility must diminish sufficiently quickly in

gains for the agent to prefer setting a non-degenerate aspirational goal. If either of

these conditions is not satisfied at a given goal r, then the left-hand side of (1.32) and

the optimal aspirational goal is the lowest possible. Note that when ψ(·) is linear,

Equation (1.32) cannot hold and left-hand side is negative, implying that the optimal

aspirational goal is the lowest possible, as stated in Proposition (6).

36Note that this condition has a clear analog to the case in which goals are ex-
pectations over outcomes. As described in Proposition 3, a given degree of reference
dependence is only welfare improving if impulsiveness is sufficiently severe relative to
marginal comparison utility.

37As shown in the proof in the Appendix, the second-order condition is satisfied as
long as an (positive) upper bound on ψ′′′(·) is satisfied at r∗.
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Proposition 7. For any r∗ > −I, the following two conditions must be satisfied for

r∗ to be an optimal aspirational goal:

1. The agent is sufficiently impulsive: γ > γ1[1 + ψ′(xNL − I − r∗)].

2. Sensitivity to gains is diminishing sufficiently fast: ψ′′(xNL − I − r∗) is suffi-

ciently negative that Equation (1.32) holds,

where xNL is the stopping threshold given r∗ and ψ(·).

Given these findings, it is evident that setting an optimal aspirational goal that

is realistic (r∗ = xNL − I) is simply a special case in which the agent sets an aspira-

tion goal that coincides with his outcome. But it is only ex-ante optimal when the

conditions described in Proposition (7) at the r∗ such that xNL(r∗) − I − r∗ = 0. In

particular, the marginal benefit of setting a goal slightly lower than is achievable must

be diminishing sufficiently quickly at the origin, implying that he must be sufficiently

loss averse over small stakes in order to set a realistic goal.

Corollary 2. Given any degree of impulsiveness, there exists a unique aspirational

goal r̃ that is realistic. That is, for any γ and ψ(·), there exists a unique r̃ such that

r̃ = xNL − I, given by

r̃ = (
1 + ψ(0)

γ − 1 − ψ(0)
)I. (1.33)

However, r̃ is only ex-ante optimal if the conditions of Proposition (7) are satisfied.

As an agent’s impulsiveness becomes more severe, the motivational benefit of set-

ting a more ambitious aspirational goal increases. On the other hand, undervaluing

the future implies that his responsiveness to a given goal declines as well, weaken-

ing the benefits of setting a higher goal relative to the loss in comparison utility.

Nonetheless, the former effect dominates the latter when the comparison utility func-

tion satisfies A1 and A3-A5. Thus, more impulsive agents set higher aspiration goals
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for themselves in order to improve their patience, despite the ensuing loss in compar-

ison utility. Although their aspirational goals are higher than those of less impulsive

agents, they still stop earlier.

Proposition 8. More impulsive agents set higher aspirational goals: ∂r∗

∂γ
> 0. Nonethe-

less, more impulsive agents stop earlier: if γi < γj, then xNL
i > xNL

j .

If the agent can set an aspirational goal that differs from his expectations regarding

his material outcome, then the question of interest is what his optimal goal choice

is, given the trade-off between improving his material outcome and decreasing his

expected comparison utility. I find that when his comparison utility function is linear,

he prefers to set the lowest goal possible. He will only choose a non-degenerate goal if

he is sufficiently impulsive and his sensitivity to gains diminishes sufficiently quickly.

Because the motivational benefit of setting a more ambitious goal increases with

impulsiveness, more impulsive agents set higher aspirational goals, though they still

stop earlier than their less impulsive counterparts.

1.7 Social Comparison

Thus far, I have assumed that an agent is solely engaged in self-comparison; his point

of reference is his own expected net terminal payoff. But in addition to, or rather

than, engaging in self-comparison, he may look to a role model or peer(s) as the

basis of comparison. Many previous theories of social comparison have considered

their costly and wasteful effects. For example, Frank (1985) argues that the pursuit

of status results in a positional arms race that decreases societal welfare, because

individuals are engaged in costly signaling, most notably through conspicuous con-

sumption, in a zero-sum game. Here, I explore whether social comparison can serve

the functional purpose of attenuating the self-control problem by providing individu-

als with reference points that allow them to set goals. More generally, I examine the
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differences in behavior and welfare when an agent engages in self versus social com-

parisons, focusing on the case of sophistication. Previously, Battaglini et al. (2005)

have shown how the presence of a peer can ameliorate or exacerbate one’s impulsive

behavior, since his behavior can act as either “good news” or “bad news” about one’s

own ability to resist temptation. In their model, because agents have incomplete in-

formation about their own and their peers’ vulnerability to temptation but are aware

that they are correlated, observing a peer’s behavior affects one’s decisions by offering

information about one’s own degree of self-control. On the other hand, I consider the

effects of social comparison under full information and instead emphasize how they

can be motivated to exercise patience because they derive utility from comparing

their own outcomes to others’.

Consider two agents, i and j, who compare themselves against one another. When

the agent’s goal is no longer a matter of pure self-comparison, the natural extension

of sophistication is that the agent’s goal must be derived from correct expectations

about his own and his peer’s outcomes, given full information about one another’s

characteristics.38 Suppose that each agent’s goal, or reference point, is a convex

combination of his own expected net terminal payoff and his peer’s39:

ri = αi(xi − I) + (1 − αi)(xj − I), where ai ∈ [0, 1]

rj = αj(xj − I) + (1 − αj)(xi − I), where aj ∈ [0, 1].

If αi = 1, agent i evaluates himself exclusively against his own expected net terminal

payoff, so this case is equivalent to the preceding analysis of an individual agent. If

38As in the case of self-comparison, the model could also be extended to the case in
which the agent persistently misperceives his peer’s “ability,” with similar insights.

39Due to linearity of the reference point and of the comparison utility function,
this formulation is equivalent to assuming that an agent separately compares his net
terminal payoff against its own expectation and against the expectation of his peer’s
net terminal payoff, and that his overall comparison utility is formed by taking a
convex combination, dictated by his parameter α, of these two comparisons.
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αi = 0, agent i evaluates himself exclusively against his expectation of his peer’s (i.e.,

agent j’s) net terminal payoff.40 I also allow for differences in agents’ degrees of impul-

siveness (βk, λk), reference dependence (ηk), and the characteristics of their projects

(µk, σk), where k = i, j. Note that if the agents in a peer group have differing net ter-

minal payoffs in equilibrium, they will incur non-zero comparative utility. Contrary

to the individual case, an agent k can thus fall short of or exceed his goal if that goal

is influenced by the behavior of another (αk > 0). For this reason, a welfare analysis

of social comparison from the ex ante perspective must include both consumption

and comparison utility. In this context, I explore the effects of homogeneous and

heterogeneous peer groups on stopping thresholds and welfare.

1.7.1 Homogeneous Agents

Consider first the simplest case, in which agents i and j are identical in all respects:

µi = µj, σi = σj, λi = λj, βi = βj, ηi = ηj, and αi = αj. For clarity of exposition, I

drop the subscripts on all matching parameters.

Recall that Equation (1.20) describes an agent’s optimal threshold in a stationary

equilibrium with an arbitrary goal level. Therefore, I can immediately derive the

optimal thresholds in a homogeneous peer group by substituting the appropriate

goals. Since each agent has complete information about both his own and his peer’s

preferences, the optimal thresholds must satisfy the following system of equations

40Although the expectation of a peer’s net terminal payoff and that peer’s actual
material outcome coincide, I assume that an agent’s goal is the expectation, so that
his comparison utility is incurred when he himself stops. If the comparison were made
once both agents had stopped, then comparison utility could be incurred after one’s
stopping time. For example, if two identical agents face separate payoff processes with
identical parameters, they will use the same thresholds but stop at different times.
Since the stopping is irreversible and the expectation of his peer’s outcome coincides
with its realization, the assumption that the comparison is assessed upon stopping
against an expectation seems reasonable.
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simultaneously in equilibrium:

xi = (
γ

γ − 1
)I + ri(

η

1 + η
)(

γ

γ − 1
) (1.34)

xj = (
γ

γ − 1
)I + rj(

η

1 + η
)(

γ

γ − 1
), (1.35)

where ri = α(xi − I) + (1 − α)(xj − I) and rj = α(xj − I) + (1 − α)(xi − I).

Proposition 9. For the sophisticated agent, belonging to a homogeneous peer group

is equivalent to pure self-comparison. In equilibrium,

xi = xj = (
γ

γ − 1 − η
)I, where η < γ − 1.

Unsurprisingly, the degree to which agents in a homogeneous group uses a peer’s

net terminal payoff rather than his own as a component of his own goal is irrelevant:

∂xi

∂α
= 0. Intuitively, there is no difference between comparing oneself against one’s

own expected outcome and comparing oneself against the expected outcome of an

identical twin. Hence, all of the preceding welfare analysis for the individual case

applies for agents in a homogeneous peer group. Nonetheless, having an identical

peer certainly induces patience relative to having no goal at all (η = 0), and is

welfare improving for both parties if the degree of reference dependence is not too

high.

1.7.2 Heterogeneous Agents

A more interesting environment arises when agents are heterogeneous, since compar-

ative utility may be non-zero in equilibrium. In particular, I focus on the case in

which the agents differ in their degrees of impulsiveness, (βi, λi) 6= (βj, λj), but are

identical in all other characteristics (α, η, µ, σ).41 When peers have different degrees

41Allowing the other parameters to differ leads to similar comparative statics in the
expected directions. I focus on heterogeneity in self-control alone in order to highlight
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of self-control, how does the degree of equilibrium patience vary between them? If

there is a difference in their threshold strategies, then both agents incur comparative

utility, so an evaluation of ex ante welfare must include any utility or disutility in-

curred from the falling short of or exceeding a goal. Thus, the choice of a peer who

will maximize ex ante welfare includes a trade-off between the expected discounted

value of the two components of his overall utility, the material payoff and comparison

utility.

For simplicity, suppose that each agent derives comparison utility exclusively from

the expected outcome of his peer, αi = αj = 0, implying that ri = xj − I and

rj = xi − I in equilibrium.42 As before, I use γ as the measure of impulsiveness,

where γk = βkγ1 + (1 − βk)γ2k for k = i, j. Without loss of generality, let agent i

have more patience than agent j: γi < γj. As above, we can use Equation (1.20) and

substitute the relevant goals to obtain the optimal thresholds:

xi = (
γi

γi − 1
)I + (xj − I)(

η

1 + η
)(

γi

γi − 1
) (1.36)

xj = (
γj

γj − 1
)I + (xi − I)(

η

1 + η
)(

γj

γj − 1
). (1.37)

The key features of such an interpersonal equilibrium are illustrated in Figure 1.2,

where the equilibrium thresholds lie at the intersection of the agents’ optimal thresh-

old functions and η < min{γi − 1, γj − 1}.43

Proposition 10. In a heterogeneous peer group:

1. Relative to having no goal (η = 0), having any peer increases an agent’s stopping

threshold, even if the peer is more impulsive: ∂xi

∂η
> 0 for all γj ∈ (1,∞).

the effect of heterogeneity in a situation that has a more conceptually interesting
interpretation.

42The results can easily be extended the case when αi 6= 0 and αj 6= 0.
43This is a technical assumption to ensure that the equilibrium thresholds are

bounded. It implies that if each agent were to engage in self-comparison (or were
part of a homogeneous peer group), his threshold would be positive and well-defined.
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b

Figure 1.2: Interpersonal equilibrium with heterogeneous agents: γi < γj. The solid
line depicts agent i’s optimal threshold as a function of j’s threshold. The dashed
line depicts agent j’s optimal threshold as a function of i’s threshold. The dotted line
represents the 45◦ line, where the agents’ thresholds are equal.

2. Each agent’s stopping threshold is decreasing in his peer’s degree of impulsive-

ness: ∂xi

∂γj
< 0 and

∂xj

∂γi
< 0.

3. The more patient agent always has a higher stopping threshold than his more

impulsive peer: If γi < γj, then xi > xj.

In the absence of a goal or peer, an agent k stops too early, choosing the stopping

threshold ( γk

γk−1
)I. A peer provides the agent with a goal that increases the potential

cost of settling for a lower project value, since he incurs a comparative penalty if he

falls short of his peer. The fact that the peer is relatively more impulsive merely

implies that the goal will not be as high as it would be with a less impatient peer.

Hence, the potential penalty and consequently, the agent’s incentive to wait, increase

with his peer’s degree of self-control. This result is consistent with Bandura and

Jourden’s (1991) finding that individuals adjust their goals in response to their peers’

performance. When their peers’ performance is lower than their own, individuals
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adjust their goals downward and are content with a lower performance level because

they are still outperforming their peers. In particular, as long as at least one member

of the group exhibits some self-control (e.g., γi is finite), both members exhibit more

patient behavior than they would in the absence of goal, even if the other has a pref-

erence for instantaneous gratification (i.e., γj → ∞). Note that the mitigation of j’s

preference for instantaneous gratification stands in contrast to the purely individual

and homogeneous cases, when goal-setting could not improve his patience. When

agent i has some self-control, however limited, he stops at xi > I even in the absence

of a goal. This sets a potential penalty that j wishes to avoid, mitigating his extreme

impulsiveness; in turn, j’s more patient behavior has a positive feedback effect on

i’s own behavior.44 It is only when both agents have a preference for instantaneous

gratification that social comparison does not improve patience, just as in the homo-

geneous peer group or in the individual setting, when j is unable to provide such a

penalty for himself. Because the agent with more self-control is able to wait longer

even in the absence of a goal and is more responsive to goals, he sets a higher stopping

threshold than his more impulsive counterpart.

1.7.3 Optimal Peers

I now consider the choice of peer that maximizes ex ante welfare, maintaining the

assumption that ri = xj − I and rj = xi − I.45 This decision involves a trade-off

between the expected present values of consumption and comparison utility. Choosing

a relatively less impulsive peer increases the material payoff but induces negative

44This feedback effect between heterogeneous peers certainly does not rely on ηi =
ηj, and is proportional to the product ηiηj.

45The optimal choice of peer groups for agents with self-control problems was also
studied in Battaglini et al. (2005). As explained earlier, however, the observation of a
peer’s behavior affects an agent’s behavior purely through its informational content.
Thus, the optimal peer is determined by the quality of information inferred from
his behavior. Here, the choice of peer weighs the instrumental effect on self-control
against the value of relative performance or achievement.
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comparison utility and increases the expected wait, while choosing a more impulsive

peer leads to the opposite effect.

Proposition 11. In a heterogeneous peer group, an agent’s ex ante welfare vi is

monotonically increasing in his peer’s degree of impulsiveness: ∂vi

∂γj
> 0. Thus, the

partner j∗ who maximizes agent i’s ex ante welfare is the most impulsive possible:

γ∗j → ∞ for all γi ∈ (γ1,∞).

The finding that any agent, no matter his degree of impulsiveness, prefers to

choose the most impulsive peer possible mirrors the result stated in Proposition 6,

in which every agent with a linear comparison utility function sets the lowest aspi-

rational goal possible.46 This similarity is unsurprising, since choosing a peer whose

expected outcome can differ from one’s own is akin to choosing an aspirational goal

that can differ from one’s expected outcome. Both the agent who chooses a peer for

comparison and the agent who chooses an aspirational goal face the same trade-off

between consumption and comparison utility, and the same forces that affect an as-

pirational goal-setter, described in Section 1.6, apply to the agent who selects the

optimal peer.

As in the case of intrapersonal comparison, there is the question of whether the

marginal utility of a social comparison remains the same between any pair of peers. It

seems reasonable that two peers with similar characteristics might choose to compare

themselves against one another. But at some point, the gap between two agents

may be too large to merit credible comparison. For example, it seems unlikely that

an honors student derives significant utility from comparing himself to a remedial

student. Diminishing sensitivity to comparative gains would be consistent with this

phenomenon and would lead to a less extreme choice of the optimal peer, just as in

46In contrast, Battaglini et al. (2005) find that the optimal peer is always slightly
weaker, 0 < βj < βi, when agents infer information about their own degree of self-
control by observing the behavior of others. There, having a much weaker partner
is undesirable because it is “bad news” about one’s own willpower, while a stronger
partner provides relatively less information.
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the case of aspirational goal-setting with diminishing sensitivity to gains, described

in Proposition 7.

1.8 Conclusion

This paper addresses the role of self-set, non-binding goals as a source of internal moti-

vation in an optimal stopping problem. When agents have linear reference-dependent

preferences and endogenously set a goal regarding the expected outcome that serves

as the reference point, they can attenuate the self-control problem, and sophisticates

can even achieve the first best from an ex ante perspective. Too much reference de-

pendence, on the other hand, leads an agent to wait longer than the first best, and

is always detrimental in the absence of present-biased time preferences. In contrast

to the “sophistication effect” that occurs in the absence of reference dependence, the

first best that naifs can achieve is strictly worse than that of their sophisticated coun-

terparts. The naif’s over-optimism is detrimental because it leads him to set overly

ambitious goals that he cannot achieve. Notably, none of the effects of goal-setting

require any form of loss aversion or curvature in the comparison utility function, nor

do they rely on ex-ante uncertainty over outcomes. These findings suggest that the

demand for goods and services aimed at educating individuals about goal-setting and

changing their goal commitment is, to some degree, a rational response to impulsive-

ness, and that the need for stringent external enforcement may be overestimated. But

while sophisticated individuals may be able to improve their welfare purely through

these means, naive individuals may require more extensive measures to correct for

over-optimism.

When the goal represents an aspiration and can be divorced from expectations,

there exists a trade-off between consumption and comparison utility. I find that the

agent must be sufficiently present-biased and exhibit diminishing sensitivity to gains
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in order to set a non-degenerate aspirational goal. In this case,more impulsive agents

set higher aspirational goals to counteract impatience. Otherwise, the incentive to

maximize comparison utility dominates and he prefers to set the lowest aspirational

goal possible.

I also extend the model to include social comparisons, where each agent compares

his material outcome against the expectation of his peer’s. When a peer group is ho-

mogeneous, engaging in social comparison is identical to purely self-centered compar-

ison. In a heterogeneous group where agents have differing degrees of impulsiveness,

comparison to any peer induces more patient behavior relative to the absence of a

goal. Comparison to increasingly patient peers naturally induces increasingly patient

behavior. Nonetheless, every agent prefers to compare himself to a peer with the

lowest degree of self-control possible, regardless of the severity of his impulsiveness.

The current model limits attention to a single stopping decision. A natural exten-

sion, which is the subject of current work, is to consider the problem of goal-setting

when the agent faces a multi-stage project. In this richer setting, the agent may also

be able to “break down” or aggregate goals to improve his welfare. This decision

corresponds to Read et al.’s (1999) discussion of “motivated bracketing,” where an

agent with a self-control problem chooses to frame a problem narrowly or broadly

to accomplish a goal. I pursue this idea in Hsiaw (2009a) and show that in the

presence of uncertainty over outcomes and loss aversion, the decision to engage in

narrow or broad framing involves a trade-off between greater motivation and more

expected comparative disutility due to outcome variance when goal evaluation is fre-

quent. Similarly, the agent could perform the same exercise when he faces multiple

projects. There, an important consideration will be the timing of the comparative

evaluation if a goal pertains to multiple outcomes that are realized at different times.

While this paper considers situations in which goals are evaluated upon the en-

dogenous stopping time, one can imagine situations in which the relevant goals are
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time-dependent. For example, a dieter might set a target weight to achieve by the end

of the year, and feel bad about herself on December 31 if she has not reached it. In

social comparisons, attaining a favorable outcome before a peer or rival can provide

positive utility as well. In such settings, an agent might explicitly set time-contingent

goals or engage in continual evaluation, relative to expectations about himself or to

his peer.

Finally, the interaction of hyperbolic discounting and reference-dependent pref-

erences has implications for a number of contexts beyond intrapersonal motivation.

For example, contracting between a principal and agent may be underestimating the

effect of external incentive schemes if they are reinforced by goal-setting. Likewise,

the existence of peer effects through social comparison suggests that group or team

settings may be beneficial to managers or educators who are interested in improving

productivity. Further pursuit of these or related lines of inquiry would enrich our

understanding of such effects and their interactions with standard mechanisms.
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Chapter 2

Goal Bracketing and Self-Control
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2.1 Introduction

When contemplating a series of potentially difficult choices to achieve a desired out-

come, individuals often realize that they will face the temptation to abandon their

efforts, despite the foreknowledge that persistence is beneficial. One commonly sug-

gested method of improving perseverance is to take such choices “one step at a time.”

Most literally, an individual training for a marathon may mentally break down a

planned 10,000 meter run into 1,000 meter increments, then focus on achieving each

segment sequentially in order to avoid the temptation to give up early. Likewise,

dieters often break down an overall weight target into intermediate targets, and long-

term projects, like writing a book, can be segmented into intermediate components.

Neoclassical theory assumes that when making many choices, an agent maximizes

utility by considering one choice in conjunction with the consequences of other choices.

However, there exists extensive evidence that individuals generally do not make de-

cisions on such a global basis. Rather than considering choices broadly, they tend to

consider each choice in isolation - that is, they bracket narrowly - in the domains of

both consumption (Heath and Soll, 1996) and risk (Tversky and Kahneman, 1981;

Gneezy and Potters, 1997; Rabin and Weiszacker, 2009). Similarly, the concept of

mental accounting posits that individuals allocate expenses into various categories,

so that they essentially engage in narrow bracketing within each category (Thaler,

1999; Heath and Soll, 1996). Both literatures have suggested, but not formalized, the

idea that these practices may be employed as a means of self-control.

In this paper, I therefore study the optimal level, frequency, and grouping of

outcome-based goals, which act as milestones or targets. In the language of mental

accounting, I study how an individual improves motivation by creating categories,

where he places decisions into separate categories and evaluates himself against goals

for each category. Since frequent goal evaluation can be expected to increase motiva-

tion, a natural question is why an individual might choose to set broader, aggregate
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goals that are evaluated less frequently and more holistically. Intuitively, the agent

may dislike frequent evaluation if there is ex-ante uncertainty regarding how he will

fare relative to his goal, since there is a greater likelihood that he incurs disutility from

falling short at each milestone. Setting broader goals allows the agent to pool the

risk from uncertain endeavors, minimizing the expected comparative disutility from

evaluation.1 For example, consider a writer who is completing a book. He enforces

stronger motivation if he evaluates each chapter or section individually against his

expectation of its quality upon its completion. But given ex-ante uncertainty about

the quality of each chapter, he is more likely to disappoint himself at one of these

stages, so he might instead choose to evaluate himself less frequently in order to avoid

this. That is, he could instead evaluate the entire book against his expectation of

overall quality, which he does only once it is completely written.

Formally, I consider the optimal bracketing of self-set goals, which I model as

reference points for an agent with reference-dependent preferences. Such an agent

derives utility from both standard consumption, arising from outcomes, and com-

parison utility, arising from the comparison of these outcomes to a self-set goal. At

each point in time, his goal is based on his expectations about the outcome of future

behavior, which his next “self” will inherit as a reference point in his utility function.

In this way, he provides a degree of internal motivation that is desirable if he exhibits

time inconsistency due to present-biased time preferences. I assume that the agent

is loss averse, which leads him to prefer one-shot rather than gradual resolution of

ex-ante uncertainty over outcomes. In addition, the agent determines whether to set

incremental goals, evaluating “one step at a time,” or to set aggregate goals, evalu-

ating less frequently and more holistically. Finally, I assume that he is sophisticated,

1This intuition has been previously been explored in psychology, where more imme-
diate goals are “proximal” and temporally distant goals are “distal.” Kirschenbaum
(1985, p. 503) states “Using very specific and proximal plans may lead to many
failures to reach short-term subgoals. Failures to achieve such subgoals will occur
frequently because people often fail to predict accurately fluctuations in situational
demands . . . ”
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implying that his goals must ultimately coincide with the rational expectation of what

he will actually do.

The economic setting I consider is a sequential stopping problem in continuous

time with an infinite horizon, in which there exists an option value of waiting due

to uncertainty. In the context of completing a book, a writer must complete the

first chapter before continuing on to a second. Just as in a single optimal stopping

problem, present-biasedness leads the agent to stop too early because he undervalues

this option relative to his time-consistent counterpart.

I show that the extent to which an agent with a self-control problem chooses to

bracket his decisions intertemporally is determined by a tradeoff between motivational

power and expected disutility from ex-ante uncertainty over outcomes. Formally, I

solve for the unique stationary Markov equilibrium of the intrapersonal game when

the agent sets either incremental or aggregate goals, then determine the conditions un-

der which each form of goal bracketing maximizes the value of the sequential stopping

option ex-ante. Either form of goal bracketing attenuates the self-control problem,

relative to having no goal. But setting an aggregate goal is less effective at improving

patience than setting an incremental goal because aggregating outcome uncertainty

across stages decreases the anticipated disutility incurred upon stopping. Thus the

incentive to wait longer in order to compensate for such disutility is weaker. However,

when the agent is sufficiently reference-dependent and loss averse and when ex-ante

outcome uncertainty is sufficiently high, an aggregate goal is preferable to incremental

goals for precisely this reason. Moreover, when the agent is present-biased, whether

he stops earlier or later than the first-best is dependent on the level of ex-ante un-

certainty. In particular, he stops earlier than is first-best when ex-ante uncertainty is

sufficiently low, and later than is first-best when it is sufficiently high.

The paper proceeds as follows. Section 2.2 links this paper to related lines of

research. Section 2.3 describes the model. Section 2.4 describes the general method
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of equilibrium construction. Section 2.5 characterizes the stationary Markov equilib-

rium when the agent sets incremental goals, while Section 2.6 considers the case of

aggregate goals. Section 2.7 derives the conditions under which each form of goal

bracketing maximizes the ex-ante value of the sequential stopping option. Section 2.8

summarizes the results and discusses avenues for future research. Proofs are gathered

in the Appendix.

2.2 Related Literature

This paper connects several lines of research. First, it links the work on reference

dependence with that on self-control, particularly due to hyperbolic discounting,

through the concept of self-imposed, non-binding goals. Second, it relates to the

literature on choice bracketing.

Psychologists have long posited that goals serve as a reference standard in a cogni-

tive comparison process of self-evaluation and satisfaction (Latham and Locke, 1991;

Locke and Latham, 2002; Bandura, 1989), while Heath et al. (1999) explicitly argue

that a goal acts as the reference point in the prospect theory value function formu-

lated by Kahneman and Tversky (1979). Goal-setting as a mechanism for self-control

is discussed by Loewenstein (2007) with respect to mountaineering, and has been the

subject of recent interest by economists. Hsiaw (2009b) addresses the role of self-set,

non-binding goals to attenuate the self-control problem of a hyperbolic discounter in

the context of an optimal stopping problem in continuous time. I show that even

in the absence of loss aversion or diminishing sensitivity, outcome-based goal-setting

can attenuate the hyperbolic agent’s tendency to undervalue the option and stop too

early, regardless of whether he is sophisticated or naive. However, too much reference

dependence can itself be a source of intrapersonal conflict, causing an agent to wait

longer than the first best. Suvorov and van de Ven (2008) and Koch and Nafziger
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(2008) study a three-period problem where costly effort on a task is required to re-

ceive a delayed benefit, and a sophisticated agent sets a goal regarding both effort

and task benefit. They study the interaction between uncertainty and loss aversion

and find that the latter is necessary for goals, formulated as plans much like those

specified by Kőszegi and Rabin (2009), to affect behavior.

Kőszegi and Rabin (2006) develop a model of reference dependent preferences in

which an individual derives utility from both final outcomes and comparison to a

reference point, which is endogenously determined by rational expectations. This

framework has also been extended to a dynamic setting, where agents derive com-

parison utility from the revision of beliefs (Kőszegi and Rabin, 2009; Matthey and

Dwenger, 2007; Matthey, 2008). Abeler et al. (2009) find support for the theory that

expectations serve as the reference point in a task experiment. There also exists em-

pirical evidence, though somewhat debated, that people use reference points in the

form of income targets in their decisions to trade off labor and leisure (Camerer et al.,

1997; Goette and Huffman, 2005; Farber, 2005, 2008; Crawford and Meng, 2008).

Much attention has been devoted to the means through which individuals can

attenuate self-control problems that arise from intrapersonal conflict, particularly

through external commitments. Binding restrictions that individuals can effectively

self-impose include those on choice sets (Gul and Pesendorfer, 2001), information

(Brocas and Carrillo, 2005; Carrillo, 2005), and asset liquidity (Laibson, 1997). In

contrast, the study of internal regulation is less extensive, though growing. Bénabou

and Tirole (2004) develop a theory of internal regulation through self-enforcing per-

sonal rules based on a mechanism of self-reputation, while the aforementioned papers

study the use of non-binding goals (Hsiaw, 2009b; Suvorov and van de Ven, 2008;

Koch and Nafziger, 2008). Suvorov and van de Ven (2008) and Koch and Nafziger

(2009a) also extend the goal-setting framework to contingent self-rewards.

There exists extensive evidence that individuals generally do not make decisions on
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the global basis assumed in neoclassical theory. Rather, they tend to consider choices

in isolation - that is, they bracket narrowly - in the domains of both consumption

(Heath and Soll, 1996) and risk (Tversky and Kahneman, 1981; Gneezy and Potters,

1997; Rabin and Weiszacker, 2009). The concept of narrow bracketing, in conjunction

with loss aversion, has been applied in behavioral finance to explain a variety of

empirical puzzles, such as the equity premium puzzle (Benartzi and Thaler, 1995), low

stock market participation (Barberis et al., 2006), and individual investors’ portfolio

choices (Odean, 1998). The concept of mental accounting posits that individuals

create budgets by earmarking expenses into categories, so that they essentially engage

in narrow bracketing within each category (Thaler, 1999; Heath and Soll, 1996).

While it is evident that individuals engage in narrow bracketing, the question of

when and why they choose to do so has been relatively unexplored and has rarely been

formalized. Consistent with the interpretation of bracketing as a result of cognitive

limitations rather than an optimization problem (Read et al., 1999), most empirical

work has inferred the degree of bracketing necessary to explain observed phenomena

(Benartzi and Thaler, 1995; Odean, 1998), while existing theoretical work has studied

behavior under the assumption of some form of narrow bracketing (Barberis et al.,

2001, 2006). In contrast, Read et al. (1999) suggest the motivated use of narrow

versus broad bracketing intertemporally, such as recovering alcoholics taking things

“one day at a time” or dieters viewing a single candy as part of a larger health

plan, as a means of self-control. Similarly, Thaler (1999) discusses how people may

deliberately engage in mental accounting across purchase categories, by assigning

“tempting” goods to categories with small budgets. The psychological literature

includes studies of intertemporal bracketing in the form of short-term versus long-

term goals, referred to as proximal versus distal goals, respectively, for repeated or

lengthy tasks. These studies usually involve the comparison of subjects’ performance

when proximal versus distal goals are assigned by the experimenter, and tend to
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find a larger response to goals when they are proximal (Bandura and Simon, 1977;

Locke and Latham, 2002). Recognizing that the terms “proximal” and “distal” are

inherently relative, Kirschenbaum (1985) considers the circumstances under which

proximal versus distal goals are preferable and pinpoints the central factor as a trade-

off between motivation and uncertainty. In parallel and independent work, Koch

and Nafziger (2009b) extend the three-period model developed in Koch and Nafziger

(2008), involving a task with immediate costs and delayed benefits, to study the

trade-off between risk pooling and motivation in an agent’s bracketing decision as

the probability of incurring a loss relative to the self-set goal varies. They find that

when tasks are conducted sequentially, narrow bracketing is always optimal because

the motivation provided by a broad goal is too weak to be preferable ex ante. When

tasks are completed simultaneously, narrow bracketing is only optimal when the ex-

ante probability of falling short of the goal and incurring a loss is sufficiently small. In

contrast, I consider a continuous-time, sequential stopping problem with an infinite

horizon, where the self-control problem arises purely from the tension between waiting

and stopping now. Moreover, I consider the effect of mean-preserving spreads over the

agent’s expected outcome, in order to isolate the effect of uncertainty alone. That

is, the ex-ante probability of falling short of the goal is fixed, but the magnitude

of expected comparative utility varies with the degree of uncertainty. While goal

evaluation can only occur at fixed points in time in the model constructed in Koch and

Nafziger (2008), the sequential stopping problem studied here endogenizes the timing

of goal evaluation given the bracketing choice, leading to a different intuition for the

agent’s behavior under broad bracketing. Consequently, I find that broad bracketing

can be optimal if the agent’s aversion to ex-ante uncertainty is sufficiently strong. In

a different conception of proximal and distal goals, Suvorov and van de Ven (2008)

find that the optimal use of proximal goals, which are modeled as non-contingent

goals, versus distal goals, which are formulated as contingent goals, depends on the

64



correlation of cost shocks involved in a task that takes place over two periods.

2.3 The Model

I first describe the economic environment, followed by the agent’s preferences, which

may include both hyperbolic discounting and reference dependence. I focus on a

sequential optimal stopping problem, where the self-control problem arises purely

from the tension between stopping today and waiting for a better outcome. A number

of stopping problems can naturally and more realistically be reframed as sequential

stages. For example, completing a book can involve writing one chapter after another,

or completing a preliminary draft before submitting a polished manuscript. Other

problems usually studied in the self-control literature, such as smoking, dieting, or

exercising, can also involve multiple stages of (dis)investment.2

2.3.1 Sequential Stopping

I consider a sequential continuous-time stopping problem, in which an infinitely lived

agent is engaged in a two-stage project. For example, consider an individual who is

writing a book. First, he must complete the first chapter at some cost I1. Completing

it buys himself another option to write a second chapter at cost I2. Thus he must

complete the first stage in order to continue to the second.

Formally, the agent decides whether to stop or to wait, based on an observation

of the current value of the first-stage payoff. In the latter case, the payoff of the first

stage, x1t ∈ [0,∞), evolves as a geometric Brownian motion:

dx1t = µ1x1tdt+ σ1x1tdz1, (2.1)

2For example, training for a marathon can be broken up into stages of a training
regimen. Many individuals who are trying to recover from an addiction participate
in n-step programs.
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where z1 is a standard Wiener process, µ1 the average growth rate of x1t, and σ1 its

standard deviation per unit time. Completion of the first stage of the project at time

t1 yields the lump-sum terminal payoff x1t1 . For the writer, x1t can be interpreted

as a measure of the chapter’s quality. In addition, it yields the option to complete

a second stage. The cost of completing the first stage at any time is I1 > 0, and is

incurred only at the stopping time.3 In the case of writing a book, this terminal cost

may be the cost of finalizing and printing the manuscript and sending or shopping it

around to an editor. Without loss of generality, there is no interim flow payoff, nor

any direct cost incurred prior to stopping.4

Conditional on completion of the first stage, the agent again decides whether to

stop or to wait, based on an observation of the current value of the second-stage

payoff. In the latter case, the payoff of the second stage, x2t ∈ [0,∞), evolves as a

geometric Brownian motion:

dx2t = µ2x2tdt+ σ2x2tdz2, (2.2)

where z2 is a standard Wiener process, µ2 the average growth rate of x2t, and σ2

its standard deviation per unit time. The second-stage payoff process x2t only starts

upon completion of the first stage, at time t1, and evolves thereafter independently

of x1t, which terminates at time t1. The processes x1t and x2t are only linked at

3Here, there is no intertemporal separation of the costs and benefit. The agent’s
self-control problem arises purely from the tension between the option value of waiting
for an uncertain period of time and stopping today at a known project value. In
contrast, Brocas and Carrillo (2005) and Miao (2008) study irreversible consumption
in discrete time models where costs are delayed until after consumption. Separating
the costs and benefits of stopping in such a manner certainly exacerbates the self-
control problem, but is not necessary to produce intrapersonal conflict.

4A more realistic setting might include a constant flow payoff y ∈ (y,∞), where
y < 0 is the minimal flow payoff such that the agent stops immediately for any x1t ≥ 0.
For example, a writer might incur some small positive or negative flow payoff from
writing. Given the other assumptions, the inclusion of a constant flow payoff has
no qualitative effect on the results, so I assume y = 0 for simplicity of exposition.
Likewise, incorporating a stochastic flow payoff that follows a known process with
known current value leads to the same qualitative results.
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one point in time, t1. In particular, the initial value of x2t is some proportion of

the payoff value of the first stage process upon its termination, x1t. In a number of

settings, including the one described above, it seems natural that the initial value of

a payoff process depends on the payoff from the preceding stage. For example, the

initial value of the second chapter’s expected quality may be lower if the writer was

not diligent on the first; equivalently, he expects to wait longer for the quality of the

second chapter to reach a certain level if he has devoted less time to his first chapter

than if he had meticulously honed his writing skills on it.

Completion of the second stage of the project at time t2 yields the lump-sum

terminal payoff x2t2 . The cost of stopping the second stage at any time is I2 > I1 > 0,

and is incurred only at the second-stage stopping time.5 Thus, each stage of the

project is a standard optimal stopping problem, where the agent can only complete

the second stage by completing the first.6 Note, however, that there is nothing to

preclude the agent from completing both stages simultaneously if it is optimal to do

so.

I assume that µ1 = µ2 ≡ µ and σ1 = σ2 ≡ σ, for simplicity. However, note that

the processes x1t and x2t still evolve independently. None of the results rely on or

require this simplification, which is made for ease of exposition.

2.3.2 Uncertainty

In each stage i where i = 1, 2, the agent observes the project payoff values imperfectly,

and does not learn the true realizations of xit until after he has made the stopping

decision. In the context of the above example, the writer decides when to stop working

on the first chapter without knowing exactly what its quality is, and only learns once

5The assumption that I2 > I1 is made for simplicity but is not necessary. If
I2 < I1, all qualitative results hold with slightly different parameter restrictions.

6Of course, the two-stage problem can naturally be extended into several more
stages, but all intuitions remain the same.
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he has received information from his editor.

Let x̃it be the observed payoff value in stage i. I assume a discrete, two-point dis-

tribution over the noise regarding the payoff processes for tractability. In particular,

x̃it = (1 + ζi)xit for i = 1, 2, where ζi is a discrete random variable with the following

known distribution:

ζi =











ǫ with probability 1
2

− ǫ
1+2ǫ

with probability 1
2
,

where ǫ ∈ [0,∞) and i = 1, 2. Uncertainty over the true payoff values x1t and x2t

increases in ǫ, and perfect observation occurs for ǫ = 0. Given an observed x̃it, the true

value of xit is either ( 1
1+ǫ

)x̃it or (1+2ǫ
1+ǫ

)x̃it with equal probability. Thus, E(xit|x̃it) = x̃it,

so the agent expects to receive x̃iti − Ii if he stops at time ti, for i = 1, 2.7 I construct

the noise as a mean-preserving spread over the expected outcome in order to isolate

the effect of uncertainty alone. Ex ante, nature chooses the realizations of ζ1 and ζ2,

which are i.i.d. and fixed throughout the problem, but unknown to the agent.8

Because the initial value of x2t is some proportion of the payoff value of the first

stage process upon its termination, x1t, the observed processes x̃1t and x̃2t are also

linked at only one point in time, t1. In particular, I assume that x̃2t1 = kx̃1t1 where

k > 0.

2.3.3 Time Preferences

The agent may have present-biased preferences, creating a self-control problem. I

model this present-biasedness by following Harris and Laibson (2004), who formulate

7More generally, any distribution of ζi such that E( 1
1+ζi

) = 1 yields E(xit|x̃it) = x̃it.

I can also allow the parameter ǫ to differ in each stage, but do not vary it across stages
for simplicity.

8The assumption that uncertainty is fixed ex ante is a technical necessity, to pre-
vent the observed payoff processes x̃1t and x̃2t from jumping discontinuously from one
instant to the next.
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a continuous time version of quasi-hyperbolic preferences. At any time s, an agent’s

preferences are divided into a “present,” which lasts from time s to time s+ τs, and a

“future,” which arrives at time s+ τs and persists forever. The length of the present,

τs, is stochastic and distributed exponentially with parameter λ ∈ [0,∞). When the

future for this self s arrives at time s + τs, he is replaced by a new self who takes

control of decision-making. Likewise, the preferences of this self s + τs are divided

into a “present” of length τs+τs
and a “future” that arrives at time (s+τs)+τs+τs

and

persists forever. Hence, when each self’s “future” arrives, it “dies” and is replaced by

a new self.

Each self s has a stochastic discount function Ds(t):

Ds(t) =











e−ρ(t−s) if t ∈ [s, s+ τs)

βe−ρ(t−s) if t ∈ [s+ τs,∞).
(2.3)

where β ∈ [0, 1] and ρ > 0. To ensure that the agent never finds it optimal to

wait forever in the optimal stopping problem, let ρ > µ. The function Ds(t) decays

exponentially at the rate ρ throughout, but drops discontinuously at time s + τs to

a fraction β of its prior level. Note that in this continuous time version of quasi-

hyperbolic preferences, there are two parameters that determine the degree to which

an agent’s behavior deviates from that of a time-consistent individual. First, the

parameter β retains the same role it plays in the discrete-time version, measuring

how much the future is valued relative to the present. Second, the parameter λ

determines the arrival rate of the future, and thus how often preferences change. In

particular, when λ → ∞ and β < 1, the agent discretely discounts all moments

beyond the current instant. Harris and Laibson (2004) describe this limit case as

“instantaneous gratification.” When β = 1 or λ = 0, conversely, the preferences

described by Equation (2.3) are equivalent to those of an exponential discounter with

discount rate ρ.

69



I assume that the agent is sophisticated, so he is fully aware of his dynamic

inconsistency. Therefore, he would like to employ some regulatory device in order to

bring his future selves’ behavior in line with his own preferences.

2.3.4 Goals

The agent’s preferences are reference-dependent: his utility is composed of both stan-

dard consumption utility, which is based on absolute levels, and of comparison utility,

which is concerned with gains and losses relative to a reference point, which here cor-

responds to a goal. In the optimal-stopping context with zero flow payoffs, the agent’s

expected consumption utility upon completing stage i at time ti is simply his expected

net terminal payoff: E(xiti − Ii|x̃iti) = x̃iti − Ii.

The agent’s comparison utility is closely related to his consumption utility. It is

derived by comparing his actual net terminal payoff at time ti against his goal at that

time, rti , and is governed by a piece-wise linear function ψ(·), given by

ψ(y) =











αηy if y < 0

ηy if y ≥ 0,

where α ≥ 1 and η ≥ 0. The parameter η measures the agent’s degree of reference

dependence, and can be interpreted as the degree to which he cares about, or pays

attention to, the difference between his outcome and his goal. The parameter α

captures his degree of loss aversion, where α = 1 when loss aversion is absent. If the

agent’s goal for the completion of stage i at time ti is rti , then the argument y is given

by xiti−Ii−rti and his expected comparison utility is given by Eti [ψ(xiti−Ii−rti)|x̃iti ].

Thus, given an observed x̃it, his expected comparison utility upon stopping at time

ti is derived by applying the comparison function ψ(·) to the difference between

each possible realization of xiti against this goal and weighting these comparisons

linearly by their respective probabilities. However, possible losses relative to the
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goal are additionally weighted by α. In the absence of loss aversion, mean-zero ex-

ante uncertainty over x1t and x2t clearly will have no effect on behavior, since the

consumption-utility component of the agent’s preferences is linear. Moreover, it is

the presence of loss aversion that leads him to prefer aggregated rather than gradual

resolution of ex-ante uncertainty over outcomes.9

I assume that the agent can only incur comparison utility at the time at which

he stops and receives the net terminal payoff. That is, although he is always aware

that he will incur comparison utility at the moment of stopping, he does not directly

experience it while waiting. This assumption accords with the notion from mental

accounting that individuals do not necessarily “feel” gains and losses until they have

been realized (Thaler, 1999).10

For simplicity, overall utility is taken to be additively separable in its two compo-

nents. Thus, given a goal riti to be evaluated upon completion of stage i, the agent’s

expected total utility upon completing stage i is

Eti(xiti|x̃iti) − Ii + Eti [ψ(xiti − Ii − rti)|x̃iti ]. (2.4)

In the absence of such a goal for stage i, the agent does not make any comparison

upon completion of stage i and the second term of Equation (2.4) is omitted.

At any time s, the goal rs is taken as given by self s and cannot be changed during

his entire “lifetime,” having been set by his previous self. Similarly, the goal that self

s + τs inherits, denoted rs+τs
, is set by self s, where τs, the lifespan of self s, was

9Similarly, Kőszegi and Rabin (2009) find that loss aversion leads agents to pre-
fer information to be received in clumps rather than spread apart. Palacios-Huerta
(1999) demonstrates that an agent with Gul’s (1991) disappointment aversion is also
averse to the sequential resolution of uncertainty. Dillenberger (2009) finds that an in-
dividual who has recursive, non-expected utility preferences over compound lotteries
also exhibits this preferences.

10For example, the disposition effect, where stockholders are reluctant to sell losing
stocks, and hence realize losses relative to their original buying prices, is consistent
with this idea (Odean, 1998; Barberis and Xiong, 2008).
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stochastically determined and a priori unknown to self s. The assumption that the

agent cannot change an inherited goal implies that such a goal can provide a degree

of internal motivation to his (present-biased) future selves. In setting a goal, each self

forms an expectation of his immediate “descendant”’s net terminal payoff if he does

not stop himself. His descendant inherits this expectation as a given and compares his

own net terminal payoff against this inherited goal if he stops.11 Note, however, that

these assumptions do not necessarily imply that each self must have the same goal.

Each self cannot change the goal that he inherits, but is free to choose a different one

for his future self if he so desires, as long as that he perceives, whether accurately or

not, that it is realistic.

Because the agent is sophisticated and correctly anticipates his actions, I assume

that each self has rational expectations about goal achievement. That is, he cannot

consistently fool himself about what he can or cannot achieve - he sets goals that

are realistic.12 Because he has ex-ante uncertainty over the realized terminal payoff

when setting a goal, I assume that his goal is the expectation of his net terminal

payoff, given the observed payoff upon stopping. For example, if the agent has a goal

regarding his stage i payoff and stops at ti, then rational expectations require that

rti = E(xiti |x̃iti) − Ii. The particular formulation of reference point as a degenerate

distribution that is the expectation of his payoff is not essential to the intuitions that

drive the main results. Although the formulation of the reference point determines

the magnitude of distaste over ex-ante uncertainty, it does not affect the relevant

comparative statics. The key requirements are that the agent has distaste over ex-ante

11This formulation is consistent with Bandura’s (1989) theory that goals serve as
both targets to strive for and standards by which outcomes are evaluated, as well
as empirical evidence that the degree of self-satisfaction varies depending on goal
level. That is, two individuals who attain the same outcome will be unsatisfied or
satisfied depending on whether their goals were higher or lower than that outcome,
respectively (Mento et al., 1992).

12Based on the results of lab and field experiments, Latham and Locke (1991)
conclude that goal choice is an integration of what one wants and what one believes
is possible, suggesting that goals must be, and are, realistic to the agent.
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uncertainty, which arises from loss aversion, and that he holds rational (endogenous)

expectations, comparing possible realizations against his reference point.13

Because each self inherits his goal from a previous one, it is necessary to specify

the source of the agent’s goal when he is first able to stop the project. I assume

that there exists a “self 0,” an ex-ante self, who learns that the sequential investment

opportunity will present itself in future and forms an expectation of how he will

behave once the option becomes available for exercise.

2.3.5 Goal Bracketing

In addition to setting the level of his goals, the agent can choose when and how

he evaluates them. In the two-stage, his options for framing and setting goals are

intuitive. First, he can specify incremental goals for each stage of the project, framing

the problem narrowly. That is, he can set goals for the net terminal payoffs of stages

i, denoted rinc
i for i = 1, 2, and evaluate himself against rinc

i upon completion of each

stage i. In the context of the writer, he can set goals for each chapter of his book,

evaluating himself against individual goals for each. Alternatively, he can specify an

aggregate goal for the entire project, framing the problem broadly. That is, he can

set a goal regarding the total net payoff from the entire project, denoted ragg, and

evaluate the sum of net payoffs from both stages against ragg upon completion of the

entire project. When the agent sets an aggregate goal, he only derives comparison

utility at the end of the second stage. However, when making the stopping decision

in the first stage, he is aware that he will make a comparison at the end of the entire

13There are a number of other proposed formulations of the reference point. Al-
though there is some evidence supporting the theory of expectations as a reference
point (Abeler et al., 2009; Crawford and Meng, 2008), the precise formulation that in-
dividuals actually use is an unresolved empirical question. Kőszegi and Rabin (2006)
assume that an agent holds a stochastic reference point when there is ex-ante uncer-
tainty, where rational (endogenous) expectations imply that it must be the probability
measure over realized outcomes. Gul’s (1991) model implies that the reference point
is the certainty equivalent of a chosen lottery.
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project. For example, the writer can instead set a goal for the overall quality of the

book, determined by summing the quality of individual chapters, which he evaluates

only upon its completion. But though he does not have an individual goal for each

individual chapter, he is aware that each contributes to his overall evaluation.

Just as each self sets the level of his goal(s) for his immediate descendant, who

takes this as given, he also determines how and when such a set of goals is evaluated.

Because goals are always chosen by predecessors for their descendants, they are chosen

to maximize ex-ante welfare at every point in time. Thus, the form of goal bracketing

(and its corresponding goals) chosen by a self s for his descendant, self s+ τs, will be

identical to those chosen by self s+ τs for his descendant in a stationary equilibrium.

2.4 Equilibrium Construction

To determine the conditions under which setting incremental versus aggregate goals is

optimal, I analyze the agent’s behavior under each form of bracketing, then consider

the intertemporal bracketing choice from an ex-ante perspective. Because the agent

is quasi-hyperbolic and sophisticated, the problem takes on the nature of a dynamic

game between successive selves. I focus on the most natural equilibrium, namely

stationary Markov equilibrium in which each self employs the same threshold strategy

in each stage.

In order to construct such an equilibrium, I solve the intrapersonal game back-

wards in the manner delineated in Grenadier and Wang (2007) and Hsiaw (2009b),

which study a single optimal stopping problem.14 I apply backwards induction to

determine the agent’s behavior in the second stage upon completion of the first stage,

then consider his behavior in the first stage. Each self anticipates that his descendants

14Grenadier and Wang (2007) solve for the stationary Markov equilibrium when
the agent has quasi-hyperbolic time preferences, which is equivalent to the η = 0
case, in both this paper and Hsiaw (2009b).
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will act according to a threshold that maximizes their own current benefit of waiting,

so they will face a problem that is identical to his own. Constructing the stationary

solution thus involves, within each stage of the sequential stopping problem, searching

for a fixed point such that current and future selves stop at a common threshold.

Since the agent incurs no flow utility while waiting, the Bellman equations describ-

ing his decision problem only differ in his total utility upon stopping, given his brack-

eting and goal choices and the stage he is in. Therefore, I let the function Φb
i(xi, r

b
i )

describe the current self’s utility upon stopping, given his bracketing choice b, which

is setting incremental goals (inc) or an aggregate goal (agg), his corresponding goal

rb
i , and the stage i = 1, 2 he is in. Likewise, I let φb

i(xi, r
b
i ) denote his consideration of

future selves’ utility from stopping. Using these general stopping values, I will solve

for his optimal threshold, then obtain specific expressions for each bracketing choice b

and stage i by substituting for Φb
i(xi, r

b
i ) and φb

i(xi, r
b
i ) appropriately in the following

sections.

Because each self controls the stopping decision in the present, and cares about -

but cannot directly control - those of the future, two value functions are required to

describe the intrapersonal problem in a given stage. The continuation value function,

denoted vb
i (·) where i = {1, 2} and b = {inc, agg}, describes each self s’s consideration

(or internalization) of his future selves, following the random arrival of the future at

time τs. Denoting the goal inherited by future selves as r̂i, the Bellman equation for

the continuation value function in stage i is

vb
i (xi, r̂i) = max{E[φb

i(xi, r̂
b
i )|x̃i], e

−ρdtE[vb
i (xi + dxi, r̂

b
i )|x̃i]} (2.5)

Beyond time τs, he discounts any future utility flows exponentially at rate ρ. For

this reason, it also describes his preference for future selves to behave as exponential

discounters. That is, he prefers that future selves choose the maximum of the current
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total utility from stopping stage i, described by φb
i(xi, r̂

b
i ), and the expected present

discounted value of waiting for a higher realization of x̃i, where this discounting is

exponential. If the agent were time consistent (β = 1 or λ = 0), then all selves’

preferences would coincide and he would choose the optimal strategy by maximizing

vb
i .

To construct the continuation value function vb
i , I suppose that all future selves

inherit the goal r̂b
i and employ the threshold x̂b

i such that they wait if x̃i < x̂b
i and

stop if x̃i ≥ x̂b
i . Because the geometric Brownian motion xi, and thus x̃i, changes

continuously, I construct vb
i by considering its behavior in the “wait” and “stop”

regions separately, then joining them using the appropriate boundary conditions.

The threshold strategy implies that the value of Equation (2.5) in its stop region

(x̃i ≥ x̂b
i) is given by E[φb

i(xi, r̂
b
i )|x̃i]. In its wait region (x̃i < x̂b

i), standard results

imply that vb
i obeys the following linear differential equation:

ρvb
i (xi, r̂

b
i ) = µxi(

∂vb
i

∂xi

) +
1

2
σ2x2

i (
∂2vb

i

∂x2
i

). (2.6)

Because xi is a geometric Brownian motion, xi = 0 is an absorbing barrier. Clearly,

the agent should never stop the process if xi = 0. Moreover, the continuation value

must be continuous everywhere, including at the threshold between waiting and stop-

ping. Because there is no optimal decision embodied in the continuation value func-

tion, the smooth pasting condition does not apply to vb
i (xi, r̂

b
i ) if the agent is present-

biased. The stopping decision is never made by future selves, only by current selves.

Thus, there are two relevant boundary conditions for vb
i :

Boundary: E[vb
i (xi, r̂

b
i )|x̃i = 0] = 0, (2.7)

Value Matching: E[vb
i (xi, r̂

b
i )|x̃i = x̂b

i ] = E[φb
i(xi, r̂

b
i )|x̃i = x̂b

i ]. (2.8)

However, if the agent is present-biased (β < 1 and λ > 0), he maximizes the
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current value function, denoted wb
i (·) where i = 1, 2, which overweights the present

relative to the future. Denoting the goal inherited by the current self as rb
i , the

Bellman equation for the current value function is

wb
i (xi, r

b
i ) = max{E[Φi(xi, r

b
i )|x̃i], (1 − e−λdt)e−ρdtβE[vb

i (xi + dxi, r̂
b
i )|x̃i]

+ (e−λdt)e−ρdtE[wb
i (xi + dxi, r

b
i )|x̃i]}. (2.9)

Given the observed x̃i and an inherited goal rb
i , and anticipating that his future selves

will inherit r̂b
i (with the knowledge that he sets r̂b

i for his immediate descendant),

the current self chooses the maximum of the current total utility from stopping,

described by Φb
i(xi, r

b
i ), and the expected present discounted value of waiting for a

higher realization of x̃i, where this discounting discontinuously drops by the factor β

upon the random arrival of the future. A future self arrives in the next instant dt

with probability 1 − e−λdt, while the current self remains in control with probability

e−λdt.

To construct the current value function wb
i , I suppose that all current selves inherit

the goal rb
i and employ the threshold xb

i such that they wait if x̃i < xb
i and stop if

x̃i ≥ xb
i . The threshold strategy implies that the value of wb

i in its “stop” region

(x̃i ≥ xb
i) is given by E[Φb

i(xi, r
b
i )|x̃i]. In its wait region (x̃i < xb

i), standard results

imply that wb
i obeys the following linear differential equation:

ρwb
i (xi, r

b
i ) = λ(βvb

i (xi, r̂
b
i ) − wb

i (xi, r
b
i )) + µxi(

∂wb
i

∂xi

) +
1

2
σ2x2

i (
∂2wb

i

∂x2
i

). (2.10)

Comparing Equation (2.10) to Equation (2.6), the additional term λ(βvb
i (xi, r̂

b
i ) −

wb
i (xi, r

b
i )) is the expected value of the change in the current value wb

i that occurs

through the stochastic arrival of a transition from the present to the future.

As with vb
i , xi = 0 is an absorbing barrier and wb

i must be continuous everywhere.

Since the optimal threshold is chosen to maximize the current value function by the
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current self, the smooth pasting condition, that the marginal value of waiting equals

that of stopping, must apply to wb
i with respect to xi. This yields the boundary

conditions for wb
i :

Boundary: E[wb
i (xi, r

b
i )|x̃i = 0] = 0, (2.11)

Value Matching: E[wb
i (xi, r

b
i )|x̃i = xb

i ] = E[Φb
i(xi, r

b
i )|x̃i = xb

i ], (2.12)

Smooth Pasting: E[
∂wb

i

∂xi

(xi, r
b
i )|x̃i = xb

i ] = E[
∂Φb

i

∂xi

(xi, r
b
i )|x̃i = xb

i ]. (2.13)

Applying conditions (2.7) and (2.8) to Equation (2.6) yields the solution to the

continuation value function vb
i . Under the assumption that xi ≤ x̂b

i , which the fixed

point condition will satisfy, it is the value of vb
i in its wait region that applies to

Equation (2.10). Combining vb
i in its wait region with Equation (2.10), along with

conditions (2.11), (2.12), (2.13), we obtain the solution to the optimal threshold xb
i as

a function of goal rb
i and the conjectured future goals r̂b

i and threshold x̂b
i . Moreover,

stationarity implies that xb
i = x̂b

i and rb
i = r̂b

i , allowing us to obtain xb
i as a function

of the goal rb
i .

In the following sections, I derive the optimal threshold xb
i for each bracketing

choice b and stage i by substituting the appropriate expressions for the total utility

upon stopping, φb
i(xi, r

b
i ) and Φb

i(xi, r
b
i ).

2.5 Incremental Goals

First, consider the case in which the agent sets incremental goals for the net terminal

payoffs of stages i, denoted rinc
i for i = 1, 2. He evaluates himself against a goal rinc

i

only upon completion of stage i. Given that he sets incremental goals for himself, let

xinc
i be the stopping threshold that the agent employs to complete stage i = 1, 2. I

apply backwards induction to obtain the optimal thresholds employed in each stage.
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2.5.1 Stage 2

In the second stage, the agent’s problem is identical to a standard, single-stage optimal

stopping problem. Because his goal in this stage only pertains to the outcome of stage

2, his behavior in the first stage is irrelevant at this point.15 Since he evaluates himself

against the goal rinc
2 upon completion of stage 2, the current self’s total utility upon

stopping stage 2 is given by Φinc
2 (x2, r

inc
2 ):

Φinc
2 (x2, r

inc
2 ) = x2 − I2 + ψ(x2 − I2 − rinc

2 ), (2.14)

which is simply the sum of his net terminal payoff and his expected comparison

utility, and enters into Equations (2.9) and its corresponding boundary conditions

(2.11) - (2.13). Likewise, he anticipates that future selves obtain the same utility

from stopping:

φinc
2 (x2, r

inc
2 ) = x2 − I2 + ψ(x2 − I2 − rinc

2 ), (2.15)

which enters into Equations (2.5) and its corresponding boundary conditions (2.7)

and (2.8).

Because the comparison utility function is kinked at the origin, I derive xinc
2 under

the assumption that rinc
2 is such that

(
1

1 + ǫ
)xinc

2 − I2 ≤ rinc
2 ≤ (

1 + 2ǫ

1 + ǫ
)xinc

2 − I2, (2.16)

which will be satisfied in equilibrium when expectations are rational. Under this as-

sumption and given the presence of unresolved uncertainty when the stopping decision

15In the standard problem without reference dependent preferences, it is also the
case that stage 1 behavior is irrelevant to the stage 2 decision. However, stage 1
behavior will not be irrelevant when the agent sets an aggregate goal.

79



is made, his expected comparison utility upon stopping at xinc
2 is given by

E[ψ(x2 − I2 − r2)|x̃2 = xinc
2 ] =

1

2
αη[(

1

1 + ǫ
)xinc

2 − I2 − r2] +
1

2
η[(

1 + 2ǫ

1 + ǫ
)xinc

2 − I2 − r2].

(2.17)

Given this assumption, the agent employs the stopping threshold xinc
2 in the second

stage:16

xinc
2 =

γ[I2 + 1
2
η(α+ 1)(rinc

2 + I2)]

(γ − 1)[1 + 1
2
η(1+α+2ǫ

1+ǫ
)]

, (2.18)

where γ ≡ βγ1 +(1−β)γ2, and γ1 > 1 is the positive root17 of the quadratic equation

1

2
σ2γ2

1 + (µ− 1

2
σ2)γ1 − ρ = 0, (2.19)

and γ2 ≥ γ1 is the positive root18 of the quadratic equation

1

2
σ2γ2

2 + (µ− 1

2
σ2)γ2 − (ρ+ λ) = 0. (2.20)

As in Hsiaw (2009b), the parameter γ1 reflects the fact that the agent discounts the

future exponentially at the rate ρ, while the parameter γ2 reflects the fact that each

self’s expected “lifetime” ends with hazard rate λ. The degree to which this feature

affects behavior is determined by his degree of present-biasedness, measured by 1−β.

Thus, the parameter γ = βγ1 + (1− β)γ2 serves as a sufficient statistic for measuring

the agent’s self-control problem, which is determined by both β and λ.

16Unsurprisingly, in the absence of loss aversion (α = 1), the threshold xinc
2 reduces

to the threshold xSE found in Hsiaw (2009b), which describes the sophisticate agent’s
optimal stopping threshold in a single-stage stopping problem in the absence of loss
aversion.

17The negative root is ruled out by the boundary condition for x = 0. Writing out

γ1 explicitly, we have γ1 = − µ
σ2 + 1

2
+
√

( µ
σ2 − 1

2
)2 + 2ρ

σ2 . To see that γ1 > 1, note that

σ2 > 0 and the left-hand side of the quadratic is negative when evaluated at γ1 = 0
and γ1 = 1, implying that the negative root is strictly negative and the positive root
is strictly greater than 1 if µ < ρ.

18Again, the negative root is ruled out by the boundary condition for x = 0. It
follows that γ2 ≥ γ1 because λ ≥ 0, with equality only if λ = 0.
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Because the goal represents a penalty that the agent wants to avoid, he waits

for a higher expected value of the second-stage payoff process when the goal rinc
2 is

higher. In the absence of reference dependence, the agent’s behavior is unaffected

by any goal: if η = 0, then xinc
2 = ( γ

γ−1
)I2. His present-biasedness leads him to

undervalue the option to wait, so he stops earlier than he would in its absence:

( γ
γ−1

)I2 < ( γ1

γ1−1
)I2 ≡ x∗2, where x∗2 is the stopping threshold he employs if he is

neither reference dependent nor present-biased (β = 1, η = 0). Consequently, his

stopping threshold decreases as the degree of impulsiveness increases.

If the agent is reference-dependent (η > 0), the goal does mitigate his impatience

because it presents a potential penalty, assessed upon stopping, that provides an

additional incentive to wait for a higher realization of the project value. His incentive

to wait increases with his degree of reference dependence, since he puts more weight

on the comparative disutility from falling short.

It is only in the presence of loss aversion (α > 1) that the agent dislikes ex-ante,

mean-zero uncertainty over outcomes, since it leads him to overweight the possibility

of a loss. In this case, this expected comparative disutility, given by Equation (2.17),

increases with the degree of uncertainty, measured by ǫ, leading the agent to wait for

a higher realization of the project value in order to compensate for the anticipated

loss. Similarly, the expected comparative disutility arising from any given amount of

ex-ante uncertainty increases with the degree of loss aversion, leading the agent to

wait longer on average.

Proposition 12. In a stationary equilibrium with any given incremental goal for the

second stage, the agent’s stopping threshold in the second stage exhibits the following

properties:

1. The threshold increases with the goal level:
∂xinc

2

∂rinc
2

> 0.

2. The threshold decreases with impulsiveness:
∂xinc

2

∂γ
< 0.
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3. The threshold increases with reference dependence:
∂xinc

2

∂η
> 0.

4. The threshold increases with ex-ante uncertainty if the agent is loss averse:

∂xinc
2

∂ǫ
≥ 0, with equality only if α = 0.

5. The threshold increases with the degree of loss aversion:
∂xinc

2

∂α
> 0.

The agent’s expectation of his terminal payoff, and hence his goal, is dependent

on whether he completes the second stage simultaneously with or strictly after the

first. In this paper, I assume that he completes stages sequentially, then impose the

conditions required for such a strategy to be optimal. Because the results in the

case of simultaneous completion rely on the same intuitions and offer no additional

insights, I omit that analysis and focus on the more natural scenario.

If the agent completes the second stage strictly after the first, he expects to receive

a terminal payoff that is determined by his stopping threshold in this case. Thus, his

incremental goal rinc
2 is given by rinc

2 = xinc
2 − I2 when he holds rational expectations.

Substituting this condition into Equation (2.18) yields the second-stage threshold xinc
2

when he sets incremental goals and stops sequentially:19

xinc
2 =

γI2
(γ − 1)[1 − 1

2
η(α− 1)( ǫ

1+ǫ
)] − 1

2
η(α+ 1)

, (2.21)

with γ ≡ βγ1 + (1− β)γ2 and 1
2
η(α+ 1) < (γ − 1)[1− 1

2
η(α− 1)( ǫ

1+ǫ
)]. With rational

expectations, the equilibrium value functions for the second stage, winc
2 and vinc

2 , are

19Clearly, condition (2.16) is satisfied here.
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given by

E[winc
2 (x2, r

inc
2 )|x̃2] =























β[xinc
2 (1 − 1

2
η(α− 1)( ǫ

1+ǫ
)) − I2](

x̃2

xinc
2

)γ1+

(1 − β)[xinc
2 (1 − 1

2
η(α− 1)( ǫ

1+ǫ
)) − I2](

x̃2

xinc
2

)γ2 if x̃2 < xinc
2

x̃2 − I2 + E[ψ(x2 − rinc
2 )|x̃2] if x̃2 ≥ xinc

2

(2.22)

E[vinc
2 (x2, r

inc
2 )|x̃2] =











[xinc
2 (1 − 1

2
η(α− 1)( ǫ

1+ǫ
)) − I2](

x̃2

xinc
2

)γ1 if x̃2 < xinc
2

x̃2 − I2 + E[ψ(x2 − I2 − rinc
2 )|x̃2] if x̃2 ≥ xinc

2 .

(2.23)

The value of Equation (2.22) in its wait region is the expected present value of

the option to stop, given the current value of the projects payoff, x < xinc
2 . This is

essentially the weighted average of two time-consistent option values, where the first,

weighted by β, uses the discount rate ρ, and the second, weighted by 1 − β, uses

the discount rate ρ+ λ. Moreover, the expected present value of the stopping option

reflects the comparative disutility that the agent expects to incur upon stopping and

evaluating himself against his goal. Because it reflects his preferences from an ex-ante

perspective, the value of Equation (2.23) in its wait region is the expected present

value of the option to stop, using only the discount rate ρ.

2.5.2 Stage 1

In the first stage, the agent faces a problem that is very similar to that of the second,

since his goal pertains only to the outcome of stage 1 and he evaluates himself upon

its completion. The only difference is that in addition to receiving the project payoff

x1t1 upon completing stage 1 at time t1, he obtains the option to complete the second

stage of the project. Thus, the current self’s total utility upon stopping stage 1 is
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given by Φinc
1 (x1, r

inc
1 ), where

Φinc
1 (x1, r

inc
1 ) = x1 − I1 + ψ(x1 − I1 − rinc

1 ) + winc
2 (kx1, r

inc
2 ), (2.24)

which enters into Equation (2.9) and its corresponding boundary conditions (2.11),

(2.12), and (2.13). Equation (2.24) only differs from the second-stage stopping utility,

given by (2.14), in its last term, the option to complete stage 2. When evaluating

the possibility that a future self will complete the first stage, the agent considers the

option to complete stage 2 by discounting it exponentially. Thus, his consideration

of future selves’ stopping utility for stage 1 is given by φinc
1 (x1, r

inc
1 ), where

φinc
1 (x1, r

inc
1 ) = x1 − I1 + ψ(x1 − I1 − rinc

1 ) + vinc
2 (kx1, r

inc
2 ), (2.25)

which enters into Equation (2.5) and its respective boundary conditions (2.7) and

(2.8). The stopping values Φinc
1 (x1, r

inc
1 ) and φinc

1 (x1, r
inc
1 ) differ only in their last

terms, since the agent considers the option to complete stage 2 differently depending

on whether it is obtained in the present or the future.

The value of the option to complete stage 2 depends on whether it is optimal for

him to stop it immediately upon completion of stage 1. If he stops immediately, it is

the stop region of winc
2 that applies to Equation (2.24). Likewise, it is the stop region

vinc
2 that applies to (2.25) when considering future behavior. If he does not, it is the

wait region of the stage 2 option value that is applicable. Here, I assume that it is

optimal for him to wait and construct the stage 1 strategy accordingly, then analyze

the conditions necessary for this to be optimal in equilibrium.

Finally, imposing the requirement that rinc
1 = xinc

1 −I1, gives the optimal threshold

when the goal is self-set and expectations are rational:

xinc
1 =

γI1
(γ − 1)[1 − 1

2
η(α− 1)( ǫ

1+ǫ
)] − 1

2
η(α+ 1)

, (2.26)
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with γ ≡ βγ1 + (1− β)γ2 and 1
2
η(α+ 1) < (γ − 1)[1− 1

2
η(α− 1)( ǫ

1+ǫ
)], where γ1 and

γ2 are defined by Equations (2.19) and (2.20), respectively.

When the agent sets incremental goals for each stage, he employs thresholds in

each as if they were separate stopping decisions, just as in a standard setting without

goals. The incremental goals induce more patience in their respective stages, but do

not affect behavior in other stages. Thus, the stopping decision in stage 2 is completely

independent of the first stage, once its option has been acquired. Since the second

stage value functions are determined independent of the first stage stopping threshold

xinc
1 , and his stage 1 goal only pertains to the outcome of stage 1, they have no effect

on the decision in the first stage. For this reason, xinc
2 and xinc

1 differ only in the fixed

stopping cost Ii where i = 1, 2, and all properties described in Proposition (12) apply

to the stopping threshold in the first stage, xinc
1 .

The expected equilibrium value functions, winc
1 and vinc

1 in the first stage are

provided in Appendix B.1. Because the agent completes the second stage strictly

after the first, the stop regions of the current and continuation value functions, winc
1

and vinc
1 , are composed of two regions. When the observed first-stage payoff x̃1 is such

that kx̃1 < xinc
2 , the option value of stage 2 is determined by the value of waiting to

stop the process x2t. When x̃1 is sufficiently high that kx̃1 ≥ xinc
2 , the option value

of stage 2 is simply the value of stopping x2t immediately. Since the agent evaluates

himself against a goal at the end of each stage when he sets incremental goals, he

expects to incur comparative disutility at the end of each.

We can easily verify that the agent stops the second-stage process x2t strictly after

completing the first stage when xinc
2 > kxinc

1 , which reduces to the following upper

bound on k:

k <
I2
I1
. (2.27)

Unsurprisingly, the second-stage process must start at a sufficiently low value for

the agent not to stop it immediately. The factor k must compensate for the cost of
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stopping the second stage, I2. The upper bound on the initial value of the second-

stage process is increasing in I2 because he waits longer to compensate for the cost

of stopping the second stage. Moreover, the agent’s stopping rule for completing the

first stage is proportional to its cost I1 and to the start value of x2t, so the upper

bound for k is inversely proportional to I1.

2.5.3 Welfare

From an ex-ante perspective, no matter how severe his degree of present-biasedness

or reference dependence and regardless of how he brackets his goals, the agent prefers

that his future selves behave according to a time-consistent, optimal strategy. There-

fore, I use the preferences of self 0, which determine the ex-ante optimum, to evaluate

the agents welfare.

Given that the agent decides to set incremental goals for each stage, the knowledge

of his loss aversion leads him to expect, ex ante, to incur some comparative disutility

upon stopping. For this reason, a welfare analysis of his behavior given incremental

goals must include both comparison and consumption utility. The ex-ante self wants

to maximize the expected present discounted value of his overall utility, as if he were

time consistent. That is, he wants to choose the stopping thresholds for each stage

that maximize vinc
1 in its wait region.20

Proposition 13. Let the agent set incremental goals. Given his preferences, de-

scribed by (η, α, β, λ), he stops earlier than is first-best when ex-ante uncertainty is

sufficiently low, and later than is first-best when ex-ante uncertainty is sufficiently

high. In particular, the agent stops earlier the ex-ante first-best in each stage i = 1, 2

if F (·) > 0 and waits longer than the first-best if F (·) < 0, where the function F (·) is

20Because each self shares the same ex-ante preferences over future selves’ behavior,
this is equivalent to working backward and having the ex-ante self choose a second-
stage threshold to maximize vinc

2 in the second stage, then a first-stage threshold to
maximize vinc

1 .
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given by

F = (
γ − γ1

γ1

)[1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)] − 1

2
ηγ1(α+ 1). (2.28)

At the appropriate combinations of reference dependence and loss aversion, the

agent can stop at the first-best threshold in each stage when he sets incremental

goals. Clearly, F is decreasing in η and α. That is, his reference dependence and

loss aversion can overcompensate for the conflict in time preferences between present

and future selves.21 If the agent is not present-biased (γ = γ1), he behaves in a

time-consistent manner, so reference dependence and loss aversion offer no beneficial

value, and F < 0 whenever η > 0. Despite the realization that he should not wait

too long, his reference dependence and loss aversion distort the marginal value of

waiting and stopping at the first-best threshold. Because he has an incentive to

avoid incurring comparative disutility, the marginal value of waiting at the first best

threshold exceeds the marginal value of stopping, so the agent waits longer ex post.

Moreover, F is also decreasing in ǫ whenever γ > γ1. This implies that whenever he is

present-biased whether the agent stops too early or too late relative to the first-best,

which is defined given characteristics (η, α) and uncertainty ǫ, depends on the degree

of uncertainty present in his environment. As uncertainty increases, loss aversion

becomes less beneficial for the agent by generating so much comparative disutility

that it leads him to wait longer than is optimal.22 That is, an impulsive agent

may stop too early when uncertainty is low, but stop too late when uncertainty is

sufficiently high. If he is not present-biased (γ = γ1), he always stops too late relative

to the first-best if he is reference-dependent, regardless of the degree of uncertainty.

Proposition 14. Let the agent set incremental goals. Given a degree of reference

dependence η < η∗ and environmental uncertainty ǫ, some degree of loss aversion

21This result accords with that of Hsiaw (2009b), which is essentially the case of
α = 1 and ǫ = 0.

22Although the first-best thresholds are also increasing as a function of uncertainty,
loss aversion overcompensates when uncertainty is sufficiently high.
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is optimal (α > 1) when uncertainty is sufficiently small; but when uncertainty is

sufficiently large, having no loss aversion (α = 1) is optimal. In particular, there

exists an interior constrained optimum α > 1 if η < η∗ and

ǫ <
γ − γ1(1 + η)

γ(γ1 − 1)(1 + η)
,

where η∗ = γ−γ1

γ1

. Otherwise, the constrained optimal level of loss aversion is α = 1.

Although loss aversion is costly because it leads the agent to incur comparative

disutility upon stopping, it also contributes to patient behavior for precisely this rea-

son, as he waits longer in order to compensate for such expected disutility. Thus,

if his degree of reference dependence is at or beyond the level necessary to achieve

the (global) ex-ante optimum, given by η∗, any amount of loss aversion is unambigu-

ously detrimental relative to its absence. That is, when η ≥ η∗, there is no need

for additional patience, so additional loss aversion is detrimental in terms of both

self-regulation, contributing to excessive patience, and expectations, contributing to

comparative disutility. However, if η is fixed at some level below the global optimum

η∗, some amount of loss aversion may be beneficial, even in the presence of uncer-

tainty. When η < η∗, the additional regulatory power derived from loss aversion can

bring the agent closer to a constrained first-best, which is defined relative to fixed η

and ǫ. But when uncertainty is sufficiently high, any degree of loss aversion makes

the agent strictly worse off relative to its absence, even when η < η∗. In this case, the

benefits of increased self-regulation are sufficiently offset by the additional expected

comparative disutility from uncertainty that any loss aversion is detrimental. Unsur-

prisingly, the threshold of uncertainty for which an interior constrained optimal level

of loss aversion can exist increases with γ, which reflects the need for self-regulation,

and decreases with the level of reference dependence η, which amplifies the effects of

loss aversion.
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2.6 Aggregate Goals

Now, consider the case in which the agent specifies an aggregate goal for the entire

project, framing the problem broadly. He sets a goal regarding the total net payoff

from the entire project, denoted ragg, and evaluates the sum of net payoffs from both

stages against ragg upon completion of the entire project. When the agent sets an

aggregate goal, he has no goal against which to evaluate himself in the first stage and

derives no comparison utility upon its completion. Given that he sets an aggregate

goal for himself, let xagg
i be the stopping threshold that the agent employs to complete

stage i = 1, 2.

In the standard case without reference dependent preferences (i.e., η = 0), the

outcome of stage 1 is irrelevant to the decision in stage 2. Likewise, when the agent

sets incremental goals for each stage, he employs thresholds in each as if they were

separate stopping decisions. The incremental goals induce more patience in their

respective stages, but do not affect behavior in other stages. But when the agent

sets an aggregate goal, information about the stage 1 outcome becomes relevant to

his behavior in stage 2, because it enters into his evaluation relative to ragg. Thus,

there are two key differences between incremental and aggregate goals: the first is the

timing of goal evaluation, and the second is the relevance of information regarding

the outcome of the completed first stage. In order to isolate the effect of the former,

I assume that the agent does not learn the true realization of x1 until he completes

the project in its entirety, upon completion of stage 2.

2.6.1 Stage 2

In the second stage, the agent’s problem differs in that he compares the sum of his net

payoffs in each stage against his goal for it, rather than making a comparison regarding

the outcome of stage 2 alone. At this point, he is aware that he has employed the
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threshold xagg
1 to complete the first stage. Therefore, the current self’s total utility

upon stopping stage 2 is given by Φagg
2 (x2, r

agg):

Φagg
2 (x2, r

agg) = x2 − I2 + ψ(x1t − I1 + x2 − I2 − ragg), (2.29)

which enters into Equations (2.9) and its corresponding boundary conditions (2.11)-

(2.13). Likewise, he anticipates that future selves obtain the same utility from stop-

ping:

φagg
2 (x2, r

agg) = x2 − I2 + ψ(x1t − I1 + x2 − I2 − ragg), (2.30)

which enters into Equations (2.5) and its corresponding boundary conditions (2.7)

and (2.8). In comparison to Equations (2.14) and (2.15), which describe the utility

upon stopping stage 2 when he sets incremental goals, Equations (2.29) and (2.30)

differ only in the goal evaluation that occurs upon completion of the project. Upon

completing the project, it is the sum of the payoffs that the agent expects from both

stages that he compares against his aggregate goal.

Because the comparison utility function is kinked at the origin, I derive xagg
2 under

the assumption that ragg is such that

(
1 + 2ǫ

1 + ǫ
)xagg

1 −I1+(
1

1 + ǫ
)xagg

2 −I2 ≤ ragg ≤ (
1

1 + ǫ
)xagg

1 −I1+(
1 + 2ǫ

1 + ǫ
)xagg

2 −I2, (2.31)

which will be satisfied in equilibrium under rational expectations. Under this assump-

tion, the threshold employed in stage 2 is

xagg
2 =

γ[I2 − 1
2
η(α+ 1)xagg

1 + 1
2
η(α+ 1)(ragg + I1 + I2)]

(γ − 1)[1 + 1
2
η(1+α+2ǫ

1+ǫ
)]

. (2.32)

Because the agent compares the sum of net project payoffs from both stages against

a given goal, the threshold xagg
2 is decreasing in xagg

1 . Expecting to receive a larger

payoff from the first stage brings the agent closer to his aggregate goal and decreases
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the potential penalty from falling short of it for any x2t2 , weakening the agent’s

motivation to wait longer in the second stage. Since both xagg
2 and xagg

1 contribute to

his comparison against a given goal ragg, they act as motivational substitutes in the

agent’s stopping behavior across stages.

The equilibrium value functions for the second stage, wagg
2 and vagg

2 , are provided in

Appendix B.1. They differ from those of incremental goals only in the goal comparison

that is being made.

2.6.2 Stage 1

In the first stage, the agent has no goal against which to compare himself upon its

completion. However, he is aware that he will be comparing the sum of net payoffs

from both stages to the aggregate goal ragg upon completion of the second stage. This

knowledge is reflected in the option value of stage 2 that he obtains upon completion

of the first stage. Thus, the current self’s total utility upon stopping stage 2 is given

by Φagg
1 (x1, r

agg), where

Φagg
1 (x1, r

agg) = x1 − I1 + wagg
1 (kx1, r

agg), (2.33)

which enters into Equation (2.9) and its corresponding boundary conditions (2.11),

(2.12), and (2.13). In contrast to the case of incremental goals described by Equation

(2.24), the agent makes no direct evaluation against a goal upon completing the first

stage. His consideration of future selves’ stopping utility for stage 1 is given by

φagg
1 (x1, r

agg), where

φagg
1 (x1, r

agg) = x1 − I1 + wagg
1 (kx1, r

agg), (2.34)

which enters into Equation (2.5) and its respective boundary conditions (2.7) and

(2.8). Again, the stopping values Φagg
1 (x1, r

agg) and φagg
1 (x1, r

agg) differ only in their
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last terms, since the agent considers the option to complete stage 2 differently de-

pending on whether it is obtained in the present or the future.

The key difference between aggregate and incremental goals is that the second

stage threshold xagg
2 is now a function of xagg

1 , a fact that the agent takes into account

when making the stopping decision in the first stage. Just as with incremental goals,

the agent’s stopping threshold in the first stage is dependent on whether or not he

stops the second stage immediately upon the completion of stage 1, since he must

consider the option value of the second stage.

Assuming that the agent completes the second stage strictly after the first, he

expects to receive a terminal payoff that is determined by his stopping threshold,

denoted xagg
2 , so his aggregate goal ragg is given by ragg = xagg

1 − I1 + xagg
2 − I2 when

expectations are rational. Applying this condition yields the second-stage threshold

xagg
2 when he sets an aggregate goal and stops sequentially:23

xagg
2 =

γI2
(γ − 1)[1 − 1

2
η(α− 1)( ǫ

1+ǫ
)] − 1

2
η(α+ 1)

, (2.35)

with γ ≡ βγ1 + (1 − β)γ2 and 1
2
η(α+ 1) < (γ − 1)[1 − 1

2
η(α− 1)( ǫ

1+ǫ
)].

When goal-setting is bound by rational expectations, the stopping threshold em-

ployed in stage 2 is identical regardless of the bracketing he employs: xagg
2 = xinc

2 .

Given that he will not know the true outcome of stage 1 when he is making the stop-

ping decision in stage 2 and he (correctly) expects to have neither fallen short of nor

exceeded his expectation of the outcome of stage 1, this component of his goal exerts

no influence on his decision in stage 2. As a result, he behaves as though the outcome

of stage 1 is irrelevant to his decision, just as he does when he sets incremental goals

for each stage.24

23Clearly, condition (2.31) is satisfied here.
24Note that this result is reliant on the imposition of rational expectations, but does

not require that ǫ be the same across stages. Denoting ǫi as the degree of the ex-ante
uncertainty in stage i, this result holds whenever ǫ1 ≤ ǫ2 or as long as ǫ1 − ǫ2 > 0 is
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Imposing the requirement that ragg = xagg
1 − I1 + xagg

2 − I2 also yields the follow-

ing nonlinear equation to describe the optimal stationary threshold that the agent

employs in stage 1, xagg
1 , given an aggregate goal and rational expectations:

xagg
1 = (

γ

γ − 1
)I1 +

1

2
η(α+ 1)(

1

(γ − 1)2
)[βkγ1(γ1 − 1)(

1

xagg
2

)γ1(xagg
1 )γ1+1

+ (1 − β)kγ2(γ2 − 1)(
1

xagg
2

)γ2(xagg
1 )γ2+1]. (2.36)

Proposition 15. Setting an aggregate goal is less effective at curbing impatience than

setting incremental goals: xagg
1 < xinc

1 and xagg
2 = xinc

2 . However, the aggregate goal

does induce patience even in the first stage, relative to having no goals.

Although the agent does not directly evaluate himself upon completion of the first

stage, he anticipates that he will evaluate the sum of both stages’ payoffs at the end of

stage 2 when he sets an aggregate goal. Because being too impatient in the first stage

and settling for a lower stage 1 payoff detrimentally affects his comparison utility in

the future, the aggregate goal provides motivation for him to be more patient in the

first stage as well. Recall that when he sets incremental goals, he expects to incur

some comparative disutility, arising from evaluation of the goal rinc
1 , upon completing

stage 1. Consequently, he waits for a higher payoff to compensate for this disutility.

But when he sets an aggregate goal, this disutility is absent from the first stage,

so he does have this immediate motivation to wait longer. Moreover, because it is

evaluated at the end of stage 2, the potential disutility from evaluating the aggregate

goal is incurred in the relatively distant future, so it is discounted more heavily in the

first stage. In contrast, an incremental goal for the first stage is a source of expected

comparative disutility and is evaluated sooner on average, so it provides a stronger

incentive to practice patience. Thus, the aggregate goal is less effective at curbing

impatience than incremental goals.

not too large.
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The agent stops the second-stage process strictly after completing the first stage

when xagg
2 > kxagg

1 . Since xagg
1 < xinc

1 by Proposition (15) and xagg
2 = xinc

2 , he stops

sequentially given an aggregate goal whenever k satisfies Equation (2.27).

Proposition 16. In a stationary equilibrium with an endogenous, aggregate goal, the

agent’s stopping threshold in the first stage decreases with ex-ante uncertainty if the

agent is loss averse:
∂xagg

1b

∂ǫ
≤ 0, with equality only if α = 1 or η = 0.

When the agent sets an aggregate goal and stops sequentially, his reaction to

ex-ante uncertainty differs markedly from that of incremental goals depending upon

which stage he is in. While his behavior in the second stage is identical under both

forms of bracketing, his stopping threshold in the first stage decreases, rather than

increases, as uncertainty increases. Knowing that he will evaluate the aggregate goal

upon completion of the second stage, he waits longer to complete stage 2 in order to

realize a higher project value as compensation for anticipated comparative disutility.

In the first stage, when there is no direct goal evaluation, then, he anticipates that

the potential disutility from evaluating the aggregate goal is incurred even farther in

the future, and thus discounts it more heavily. For this reason, the agent chooses a

lower stopping threshold in the first stage in reaction to more uncertainty.

In equilibrium, his current and continuation value functions, denoted wagg
1 and

vagg
1 respectively, are provided in Appendix B.1. The first two terms of the expected

current value function, given by Equation (B.6), in its wait region reflect the option

value of stopping in the first stage, while the second two reflect that of stopping in

the second. In contrast to the case of incremental goals, the disutility from ex-ante

uncertainty is absent from the first two terms, as the agent does not directly evaluate

himself against a goal in the first stage. Likewise, the first term of the expected

continuation value function, given by Equation (B.7), in its wait region reflects the

option value of the first stage from an ex ante perspective, while the second term

reflects that of the second.
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2.6.3 Welfare

Because the second-stage threshold that the agent employs is identical regardless

of whether he sets incremental or aggregate goals, all of the analysis described in

Section (2.5.3) applies to the agent’s behavior in the second stage when he sets an

aggregate goal. However, comparing his behavior across both stages to an ex-ante

first-best becomes more complex because the agent’s behavior in the first stage is

quite different when he sets an aggregate goal. In contrast to the case of incremental

goals, he stops earlier as uncertainty increases because the effect of the aggregate

goal weakens. Moreover, it is quite intuitive that he stops too early in both the

first and second stages, relative to their respective first-best thresholds, whenever

he stops too early the second stage. The aggregate goal has the strongest effect on

improving patience in the second stage, when it is evaluated. Thus, if it is insufficient

to overcome impulsiveness in the second stage, then it will certainly be insufficient to

do so in the first stage, when its effect is weaker.

Proposition 17. Let the agent set aggregate goals. Given his preferences, described

by (η, α, β, λ) and environmental uncertainty ǫ, he stops earlier than the ex-ante first-

best in the first stage whenever F (·) ≥ 0, where F is given by Equation (2.28). His

second-stage behavior is described in Proposition 13. Thus, he stops earlier than the

ex-ante first-best in both stages whenever F (·) ≥ 0.

Unsurprisingly, given some degree of reference dependence, the welfare effects of

loss aversion when the agent sets an aggregate goal are analogous to those described

in Proposition (14) with respect to incremental goals. Since the intuition is identical,

the details are provided in the Appendix.

95



2.7 Optimal Bracketing

Having separately considered the agent’s behavior given that he sets incremental and

aggregate goals, I now determine the conditions under which each type of bracketing

is optimal from an ex-ante perspective. Because he prefers that future selves behave

in a time consistent manner, he chooses to bracket such that the continuation value

of the option is maximized.

First, consider the case in which, in addition to his bracketing and goal choices,

the agent’s reference-dependent preferences (η, α) may be chosen ex-ante to optimize

his welfare. Is loss aversion ever optimal in this case, and what type of bracketing

should he employ?

Regardless of how he brackets his goals, the agent expects to incur some com-

parative disutility once he completes the project, if he is loss averse and there exists

ex-ante uncertainty over outcomes. Since both η and α contribute to patient behavior,

reference dependence and loss aversion essentially act as substitutes in self-regulation.

Thus, appropriately increasing his level of reference dependence while decreasing his

degree of loss aversion enables him to maintain the same stopping thresholds in each

stage in which he directly evaluates a goal. But in the absence of loss aversion, he

expects to incur no comparative disutility from mean-zero uncertainty. Since he thus

receives the same material payoff, but expects to incur no comparative disutility when

he is not loss averse, he is better off in this case. Recall that the aggregate goal is

always weaker source of motivation than a set of incremental goals, because he does

not evaluate a goal directly upon completion of the first stage. Because the agent

incurs no comparative disutility if he is not loss averse, then setting incremental goals

is strictly better than setting an aggregate goals in this case. Thus, his ex-ante wel-

fare is maximized when he sets incremental goals, is not loss averse, and his level of

reference dependence is given by η∗.
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Proposition 18. In the presence of uncertainty (ǫ > 0), the agent’s ex-ante welfare

is maximized when

1. he sets incremental goals,

2. he is not loss averse (α = 1), and

3. his level of reference dependence is given by η∗, where η∗ = γ−γ1

γ1

.

However, the more relevant situation occurs when the agent’s reference-dependent

preferences (η, α) are not necessarily globally optimal and cannot be changed. In this

case, he can only choose how to bracket his goals and his goal level(s), and he may face

a trade-off between the benefits of additional motivation and the costs of additional

comparative disutility from frequent goal evaluation. That is, the use of an aggregate

goal, rather than incremental goals, arises as a way to compensate for the presence

of loss aversion or excessive reference dependence.

In the absence of outcome uncertainty (ǫ = 0), the agent’s only relevant consid-

eration is how much motivation he needs to counteract his impulsiveness. Thus, a

necessary, but not sufficient25, condition for choosing an aggregate goal in this case

is that his degree of reference dependence is so high relative to his self-control prob-

lem that he waits longer than is ex-ante optimal when he sets incremental goals.26

Here, incremental goals become increasingly undesirable relative to an aggregate goal

as outcome uncertainty increases - aggregate goals are already preferable in terms

of motivation alone, and more frequent evaluation leads to more expected disutility

from uncertainty. This case is rather extreme, insofar as the agent is so reference-

dependent that the degree of outcome uncertainty is irrelevant to his choice of goal

bracketing.

25Clearly, this is not sufficient because he must also be better off under aggregate
goals, which provide a weaker source of motivation.

26This intuition is explained in more detail in Hsiaw (2009b).
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Therefore, I consider the more interesting, and arguably more realistic, situation

in which the agent’s choice of goal bracketing depends on the interaction between

motivation and outcome uncertainty. That is, the agent’s self-control is sufficiently

poor (i.e., β is sufficiently low and λ > 0) relative to his reference dependence and

loss aversion that incremental goals are preferred to the aggregate goal in the absence

of outcome uncertainty: E[vagg
1 (x1, r

agg)|x̃1] ≤ E[vinc
1 (x1, r

inc
1 )|x̃1] when ǫ = 0. Since

the second-stage stopping threshold is the same regardless of how he brackets, this

condition is certainly satisfied whenever limǫ→0 x
inc
1 ≤ x∗1, which is equivalent to the

following condition:

1

2
η(α+ 1) ≤ γ − γ1

γ1

. (2.37)

In accordance with intuition, condition (2.37) requires that (η, α) must be sufficiently

low relative to some self-control problem described by (β, λ), so that the agent does

not wait longer than the ex-ante optimum x∗1 = ( γ1

γ1−1
)I1 in the absence of uncertainty.

When the self-control problem is exacerbated (i.e., γ − γ1 increases), a larger degree

of reference dependence and loss aversion can be welfare-improving.

When Equation (2.37) is satisfied, incremental goals provide desired motivation

that is stronger than that of the aggregate goal.27 However, as outcome uncertainty

increases, the expected disutility incurred upon evaluation of a goal increases, making

more frequent goal evaluation less desirable. On the other hand, increasing outcome

uncertainty also indirectly weakens the motivational power of the aggregate goal.

Because the agent expects more disutility from evaluation of the aggregate goal upon

stopping, he requires a higher project value in the second stage in order to compensate

27Note that Equation (2.37) is a more stringent condition than is strictly necessary.
Since xinc

1 > xagg
1 , there is clearly a range of (η, α) such that the agent waits strictly

longer than the ex-ante optimum when he sets incremental goals (i.e., xinc
1 > x∗1), but

may still be better off than under the aggregate goal. The exact condition can be
obtained by equating the value functions under each form of bracketing when ǫ→ 0,
but requires an implicit function, since xagg

1 is only implicitly defined. Equation (2.37)
illustrates the same intuition, and all cases in which it is satisfied must satisfy the
exact condition.

98



for this expected loss. This implies that on average, he waits longer to invest in the

second stage, and consequently evaluates his aggregate goal later. Thus, the power

of the aggregate goal to induce more patient behavior in the first stage is weakened,

because he anticipates that it will be evaluated even farther in the future (that is, only

upon completion of the second stage). Because the former, direct effect of incremental

goals is stronger than the latter, indirect effect of the aggregate goal, the difference

in option values under each form of bracketing changes monotonically in the degree

of outcome uncertainty.

Proposition 19. Given that the agent is sufficiently reference dependent and loss

averse, he will set incremental goals whenever uncertainty is sufficiently low, and an

aggregate goal when it is sufficiently high. That is, for (η, α) sufficiently high, there

exists a unique threshold ǫ̃ such that E[vinc
1 (x1)|x̃1] > E[vagg

1 (x1)|x̃1] when ǫ < ǫ̃, and

E[vagg
1 (x1)|x̃1] > E[vinc

1 (x1)|x̃1] when ǫ > ǫ̃.

Since outcome uncertainty is proportional to the observed payoff, the expected

disutility from goal evaluation is finite even as ǫ→ ∞. For this reason, the disutility

arising from outcome uncertainty may not be large enough to make setting an aggre-

gate goal more desirable, if the agent’s degree of loss aversion, in combination with

his reference dependence, is sufficiently small. Thus, setting an aggregate goal is more

likely to occur among more loss averse agents in the face of outcome uncertainty.

2.8 Conclusion

This paper addresses the role of goal bracketing as a source of internal motivation to

attenuate the self-control problem of a hyperbolic discounter with reference-dependent

preferences. When setting non-binding goals in a sequential stopping problem, an

individual must decide how and when to evaluate himself against such goals. In

particular, he can bracket broadly by setting an aggregate goal for the entire project,
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or he can bracket narrowly by setting incremental goals for individual stages. In the

presence of loss aversion and uncertainty over outcomes, the intertemporal bracketing

decision involves a trade-off between motivation and comparative disutility due to

ex ante uncertainty. I find that if the agent is sufficiently loss averse and ex-ante

uncertainty is high, he will choose to bracket broadly; otherwise, he brackets narrowly

despite the disutility from frequent goal evaluation.

The model makes predictions regarding the instrumental use of bracketing that

could be tested in a controlled environment. In particular, the comparative statics

regarding the agent’s response to environmental uncertainty in the first stage differ

with his bracketing choice. This implies that an observer can distinguish when and

whether the bracketing choice changes by varying the degree of ex-ante outcome

uncertainty in the environment. Moreover, the model can be distinguished from an

alternative specification, in which the agent’s consumption utility is concave rather

than linear and his comparison utility is either linear or non-existent. In this case, risk

aversion in consumption utility implies that the agent dislikes mean-zero uncertainty,

so he waits longer as uncertainty increases, just as if he has linear consumption utility

but is loss averse and sets incremental goals. However, this alternative specification

predicts that the bracketing choice does not vary in response to ex-ante uncertainty

over outcomes, since there is no benefit from aggregating anticipated comparative

disutility. Thus, the agent’s response to environmental uncertainty does not change

in this case.

The study of instrumental bracketing in intertemporal choice has been relatively

unexplored by economists thus far. This paper offers several testable implications

regarding the interaction between bracketing and uncertainty when the agent has a

self-control problem due to present-biased preferences. Empirical tests of the theory

would greatly contribute to our understanding of how, why, and when individuals

bracket decisions and set goals for themselves.
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Chapter 3

Lifestyle Brands
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3.1 Introduction

In its narrowest definition, a brand is a good or class of goods that can be attributed

to a specific firm. In recent years, the popular press has championed the redefini-

tion of a brand as a device through which to “foster a sense of shared experience

and of belonging” (Brady et al., 2004). Likewise, marketing researchers claim that

“brands facilitate the community-forming process by making the identification of like-

minded others visible and vivid . . . The why of consumption here lies in recognizing

that brands say much about the groups that use them. Brands demonstrate shared

beliefs, beliefs consumers like to recognize” (O’Guinn and Muñiz, 2005). In this era

of mass consumption, “[consumers are] beginning to act like and feel like owners or

members of a community . . . Newly empowered consumers can appropriate and ma-

nipulate the brand in whatever way they want” (Brady et al., 2004). While brands

have traditionally been considered tools for identification of firms, these statements

emphasize that branded goods can become consumer -oriented objects.

There are many horizontally differentiated goods for which there exist numerous

varieties of comparable quality, yet some are branded and some are not. Many of

these brands are known as “lifestyle brands,” whereby the identification of a firm and

its products centers on the characteristics of its customers rather than the product

itself - they are “brand communities” whose members share a clear common identity

and communicate with one another through their consumption choices. For example,

Harley Davidson is known as a cult brand for motorcyclists who consider themselves

rugged individualists; Crumpler sells assorted bags that appeal to non-conformist

hipsters.1 Furthermore, an increasing number of goods and services are bundled

with social networking services that enable a firm’s customers to share information

amongst themselves in some capacity. For example, wine retailer WineStyles creates

1Crumpler’s offbeat product names and descriptions clearly align with this segment
of the population, with the “Salary Sacrifice” laptop bag and “The Manchild” wallet,
as well as a logo that is a dread-locked stick figure.
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clubs and organizes events for its customers to meet in person, while Harley Davidson

organizes events and operates a members-only Internet forum for Harley Davidson

owners. Netflix, an online DVD rental service, has a “Friends and Community”

feature that allows its customers to share movie ratings and interests with friends

and strangers with similar tastes. In addition, pure social networking services, such

as Facebook, have grown increasingly popular because they serve as a platform for

sharing interests with friends. There exist numerous applications, called widgets,

that users can download and use through the Facebook platform, ranging from travel

maps to online bookshelves to virtual fashion shows. Some of these widgets also

enable users to connect to others whom they do not already know, but who may

ostensibly share some common interests given their common use of the widget.2 More

recently, Facebook instituted an application called Beacon, which allows users to see

their “friends’” online purchase activities with various third party vendors. Despite

controversy regarding privacy issues, Beacon illustrates that social networking sites

have begun to realize that they are offering a valuable information service and can

attempt to capitalize on it.

While the rise of lifestyle brands and social networking services may appear dis-

parate, this paper provides a common motivation for both phenomena and also con-

siders firms’ strategic brand investment and pricing choices. I propose a model in

which agents wish to “meet” with similar types in order to obtain information. They

each have imperfect information about certain dimensions of their own tastes, but

are aware that their preferences are correlated with those of others in the population.

I assume that agents can only (or, more easily) communicate with those who chose

common actions. This constraint could be technological or physical.3 For example,

2For example, the Scrabulous widget allows “friends” who both have the applica-
tion to play online Scrabble together, and also allows access to the entire community of
Scrabulous users, who might otherwise only be accessible to their existing “friends.”
Hence, the Scrabulous widget is one channel through which a user can find more
potential “friends.”

3More generally, I could assume that agents can communicate more easily with
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only customers of Netflix can view information about the movie ratings of other users.

When agents meet at a physical location, such as at Winestyles tasting event, they

can only communicate with others who are present. Alternatively, a firm’s logo or

style, like Crumpler’s dread-locked stick figure, may be more likely to be remembered

and recognized by “insiders,” i.e. consumers of that firm’s goods, than by outsiders.

More generally, this assumption captures the aforementioned observation that the

buying and displaying of brands facilitates the exchange of information among con-

sumers, insofar as it enables easier identification of like-minded individuals. Given

that actions, not preferences, are publicly observable to others, agents can correctly

infer that others are more likely to be similar to themselves if they share common

actions. Thus, the desire to “meet” others with similar preferences results in an en-

dogeous value of matching and the formation of reference groups. As a result, in

equilibrium peers exhibit conformity of behavior in one dimension in order to identify

one another and learn about their tastes along other dimensions.

Given the demand for coordination to expedite information exchange, firms have

an obvious opportunity to supply some coordination service for their customers by

increasing the recognizability of their consumption decisions. I assume that firms can

invest in branding their goods in a way that facilitates their customers’ “meeting”

with one another and sharing information. Thus, I model the brand as a “meeting”

or “recognition” technology that is accessible only to the firm’s customers. In essence,

this coordination service is bundled with the good or service itself, as in the preceding

examples. I assume that this brand investment is an initial, one-period fixed cost that

has no effect on the future marginal costs of production: designing a logo or style for

a brand, or setting up the physical or virtual infrastructure of the meeting technology.

I analyze equilibrium branding in a duopoly and, surprisingly, find that all consumers

are worse off when a brand exists than when it does not. In contrast to Economides

those who chose common actions than those who did not. In this case, the qualitative
results would be unchanged.
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(1993), I also find that firms differentiate maximally in both vertical (i.e., brand

strength) and horizontal attributes (i.e., product variety). Only one of the two firms

chooses to brand its product, and yet both firms are able to charge sufficiently high

prices that consumers are actually worse off than if brands could not exist.

Consider the following concrete example. A person who considers himself a rugged

individualist wants to buy a motorcycle, and among other things, he is interested in

taking road trips and does not know much about them. Although he can discover

this for himself by making his best guess about what itinerary he would most enjoy,

he might also be able to communicate with someone who has similar tastes to reduce

the risk of going on a terrible road trip. He can buy a motorcycle that fits his

ideal, but is generally non-descript and offers no external benefits, or he can buy a

motorcycle somewhat farther from his ideal from Harley-Davidson, which organizes

owners’ events and operates a members-only Internet forum.4 Thus, if he buys the

Harley, he will be more likely to meet other Harley owners who recognize him as

a fellow Harley owner and wish to discuss common interests, including road trips.

Like him, the other Harley owners wish to talk to others who have similar tastes in

order to learn more about their own tastes. Perhaps some of them have been on

many good road trips but are not sure what local bars they should go to, and would

like recommendations from someone knowledgeable like him. When he and others

buy Harley-Davidsons for this reason, they endogenously become riders with similar

tastes in other dimensions, like road trips and bar hangouts, and they all benefit from

sharing this information amongst themselves. However, I show that Harley-Davidson

is able to extract this surplus from its customers through pricing, so consumers are

actually worse off than if they had been unable to recognize and meet one another in

this way.

4The Harley-Davidson website proclaims, “The Harley Owners Group R© is much
more than a motorcycle organization. It’s one million people around the world united
by a common passion: making the Harley Davidson R© dream a way of life.” (Harley-
Davidson, 2010)
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The paper is organized as follows. Section 3.2 links this paper to related lines

of research. Section 3.3 describes the basic model. Section 3.4 solves for a pooling

equilibrium, where groups of agents choose identical actions that may diverge from

their known tastes in order to learn from one another. Section 3.5 extends the model

to include supply of the information-sharing mechanism through branding. In a

duopoly setting, I examine the effects of agents’ taste uncertainty on firms’ profit-

maximizing behavior and consumer welfare. Section 3.6 discusses the model’s results

and limitations and suggests avenues for future research. Proofs are gathered in the

Appendix.

3.2 Literature Review

This paper connects several lines of research. First, it contributes to the economics

literature on branding. Second, it relates to the body of work on consumption and

identity. Thirdly, much of this literature is closely tied to the influence of peer effects

as a source of consumption externalities. Lastly, this paper relates to the study of

word-of-mouth and social networks.

The economics literature has traditionally placed the practice of branding (and

similarly, of brand extension) in the context of a signaling game for “experience

goods,” goods whose value cannot be observed until they are actually consumed.

Because consumers cannot observe the objective quality of a firm’s product before

purchase, a brand name attached to the product serves as a signal of quality. One

interpretation is that the brand name is equivalent to the posting of a bond - if

the branded product is of poor quality, then the firm is reneging on its bond and

suffers a loss of reputation (Telser, 1980; Wernerfelt, 1988). Another, imported from

the advertising literature, is that expenditures on a brand name credibly signal high

quality because only the high quality firm can afford to “burn money” (Milgrom
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and Roberts, 1986). However, these theories are better suited to describe markets

with vertically differentiated goods than horizontally differentiated goods. There are

many goods for which there exist numerous varieties of comparable quality, yet some

are branded and some are not, even if consumers do not have uncertainty about the

goods’ characteristics. Furthermore, they are hard-pressed to address the growth of

brand communities and “lifestyle brands.”

Marketing research discusses consumption as a medium of expression (Kleine, III

et al., 1993) or an instrument for construction of identity (Elliott and Wattanasuwan,

1998). In this vein, Muller and Shachar (2008) consider firms’ optimal choice of

functional and self-expressive attributes when consumers use products as a means of

self-expression. More recently, much attention has been devoted to consumption in a

social context. Muñiz and O’Guinn (2001; 2005) discuss the role of brands as a channel

for community formation because they serve as visual identification of others with

similar tastes or beliefs. A recent series of papers in marketing discusses conformity

and divergence of consumption choices to signal similarity to peers and dissimilarity

from other groups, respectively (Berger et al., 2005; Heath et al., 2006; Berger and

Heath, 2007). Kuksov (2007) considers the value of brands as a signaling device

when agents engage in costly search for partnerships. In economics, consumption

has been interpreted as a form of status signaling when identity is known and social

preferences are a primitive of the model (Pesendorfer, 1995; Bagwell and Bernheim,

1996). Though factors such as status may also play an important role, I propose

an alternative motivation for the existence of branded, horizontally differentiated

goods that endogenizes the costs and benefits of matching with others, leading to the

formation of reference groups and linking them to peer groups and subcultures.

This paper is also closely tied to the literature on peer effects as a source of

consumption externalities. Bernheim (1994) finds that conformity can arise when

individuals are concerned with others’ views of them, as inferred by their actions.
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Austen-Smith and Fryer (2005) study the influence of cultural norms and expectations

on racial differences in school performance. Rather than entering preferences directly,

peer effects can be endogenized when individuals have imperfect information about

themselves, but can learn more about themselves from observing others (Banerjee

and Besley, 1990; Battaglini et al., 2005). They can also arise from a technological

innovation, such as a recommender system that improves information about product

quality by aggregating individual signals (Bergemann and Ozmen, 2004). Here, I

consider how a brand, or meeting technology, enables individuals with imperfect self-

knowledge to observe and learn from others, and how firms make branding and pricing

decisions accordingly.

Finally, this paper relates to the study of word-of-mouth and social networks by

studying endogenous reference group formation in order to expedite communication

about tastes. The study of word of mouth has primarily examined the role of sequen-

tial social learning in the creation of herding and information cascades (Bikhchandani

et al., 1998). One line of research studies the effect of communication structure on

information aggregation and efficiency when agents are boundedly rational (Ellison

and Fudenberg, 1995; Bala and Goyal, 1998, 2001). Another studies firms’ deci-

sions and consumer welfare when fully rational consumers can communicate amongst

themselves about the quality of goods through word of mouth (Vettas, 1997; Alcalá

et al., 2006; Navarro, 2006). While the aforementioned work has studied the effects

of given social structures, social network theory studies the stability and efficiency

of high structured social networks when link formation is endogenous. Jackson and

Wolinsky (1996) determine the structure of stable networks when bilateral agreement

is required for link formation, while Galeotti et al. (2006) account for heterogeneity

among agents.
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3.3 The Model

Let the agents in a society choose a vector of actions x from a set X. For simplicity,

I assume that this vector has only three components, x = (x1, x2, x3), where the full

action set is the Cartesian product of three action spaces, X = X1 ×X2 ×X3. The

set of actions in each action space is Xj = {S1 ∪ ∅} for j = 1, 2, 3, where numerical

actions lie on a circle with unit circumference (S1 = {x ∈ R
2 : ‖x‖ = 1

2π
}) and the

empty set denotes the action of not choosing a number. Each of these action spaces

can be interpreted quite broadly, where there exists no vertical differentiation within

them. In the context of the previous example, we can imagine that agents choose

a motorcycle, a road trip itinerary, and a bar hangout. Within each of these action

spaces, the variety of choices of xj emcompasses scooters to off-road bikes, touring

California wine country to touring Louisiana backcountry, and patronizing nightclubs

to sportsbars, respectively, or refraining from any of the respective activities. The

circular model implies that there are no extremes and no “middle” in the realm of

agents’ preferences.

An agent receives utility vj from choosing any action xj ∈ [0, 1], and utility 0 if

xj = ∅. I assume that this utility is the same across individuals, vi
j = vj ∀i. This

utility can be interpreted as the baseline utility from taking the action - having a

motorcycle, enjoying a road trip, or going to a bar. In addition, each agent i has an

ideal variety over each of these sets Xj, j = 1, 2, 3, so he can be described by a vector

of tastes θ
i = (θi

1, θ
i
2, θ

i
3), where θi

j ∈ S1 ∀i, j, which will denote his type. Then the

full type space Θ is the Cartesian product of the taste spaces, Θ = Θ1 × Θ2 × Θ3,

where Θj = S1 for all j = 1, 2, 3. Hence, I assume that no agent’s ideal is to refrain

from an activity. An agent incurs disutility from choosing a numerical action that

differs from his ideal, where the disutility is, without loss of generality, a quadratic

function of the distance z from his ideal taste. To guarantee that individuals never

abstain from an activity entirely, let vj ≥ 1
4
∀j.
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Assumption 1. An individual’s period utility is additively separable and decreases

quadratically in the distance between his action and his taste:

Ui(x
i
1, x

i
2, x

i
3) =

∑3
j=1 [vj − (θi

j − xi
j)

2].

There are two periods in which an agent i takes actions in X, but each agent only

has unit demand in each action space over the two period span. For a given j, if

he chooses xj ∈ [0, 1] in the first period, then he must choose xi
j = ∅ in the second

period. If he chooses xi
j = ∅ in the first period, then he can choose xi

j ∈ {[0, 1] ∪ ∅}

in the second period. There is the usual discount factor δ ∈ [0, 1].

Furthermore, I assume that agents have imperfect information about their types.

Specifically, each agent only knows two components of his type.

Assumption 2. Imperfect information: Each agent knows only two components of

his type, and his information set is drawn from {(θ1, θ2), (θ1, θ3)}. Each of these

information types is equally likely.

Clearly, there is no reason that all agents should know their tastes in Θ1 rather

than Θ2 or Θ3. The general point is that there must exist at least one taste space,

and corresponding action space, in which agents who have mutually beneficial infor-

mation can identify one another through their choices.5 In the X1 action space, both

information types might be able to infer one another’s tastes through their choices of

x1. When both types have information that is useful to the other, there is an incen-

tive for both parties to take actions that facilitate this possibility. Beyond having a

common taste space over actions that can coincide, each agent must have information

about another taste space that the other does not, so that communication is mutally

desirable. Thus, a minimum of three taste spaces, with corresponding action spaces,

is required for differing information types to pool in an action space.

5Alternatively, we could suppose that there are three information types, drawn
from the set {(θ1, θ2), (θ1, θ3), (θ2, θ3)}. This specification leads to the same qualitative
results when we have the perfect correlation structure stated below, but is technically
incompatible with imperfect correlation.
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Assumption 3. Agents’ preferences are perfectly correlated, but agents do not know

the direction of the correlation. Suppose that an agent knows θj. A priori, P(θk = θj)

= P(θk = θj + 1
2
) = 1

2
for any unknown θk, where j 6= k.

I assume that agents’ preferences are correlated, but that they do not know the

exact realization of this correlation in the population, though they are aware that it

exists and that it is either +1 or −1. The assumption of perfect correlation is made

for simplicity and without loss of generality. We can obtain the same qualitative

results with imperfect correlation, as shown in Appendix C.1.6 Suppose an agent

knows that his ideal variety in action space j is θj but he does not know his ideal

variety θk in action space k 6= j. Ex ante, it is equally likely that θk = θj or that

θk = θj + 1
2
, for all agents.7 More formally, there are equally likely states of the world,

and no agent knows the true state. A state ω ∈ Ω is composed of three correlations,

ω = (ρ12, ρ13, ρ23), where we define ρjk, where j 6= k, as the true P (θj = θk). Perfect

correlation implies that ρjk ∈ {0, 1} for j 6= k.8 Clearly, knowing two correlations

pins down the third (e.g., ρ12 = ρ13 = 1 implies ρ23 = 1), so not every permutation

is possible. In fact, there are four possible states when there is perfect correlation:

Ω = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Assumption 4. The distribution of agents’ tastes is uniform in each taste space

Θj, j = 1, 2, 3 over the unit circle, normalized to the interval [0, 1].

Because the agents’ incentives to pool on an action is clearly influenced by the

underlying distribution of the population, I assume uniformity in order to ensure that

such an equilibrium is not driven trivially by the nature of the distribution. The same

6In particular, changing the absolute value of ρ is equivalent to decreasing the ease
of communication (i.e., rescaling the parameter α downward), as expected.

7This assumption does not need to be interpreted literally. It is clearly equivalent
to supposing that either θk = θj + aj or θk = θj + 1

2
+ aj, where the aj’s are known

constants with appropriate restrictions on aj, j = 1, 2, 3.
8Since ρjk ≡ P (θj = θk), then ρjk = P (θj = θk) = 1 − P (θj = θk + 1

2
), ∀j 6= k.
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motivation underlies the assumption that each information type is equally likely to

occur in the population.

If agent i chooses an xi
j 6= ∅ in period 1, then he might be able to receive useful

information about the behavior of others in the population, which can inform him

about his own preferences along other dimensions. Figure 3.1 depicts the information

mechanism for any action xj 6= ∅.

ηj(xj)1 − ηj(xj)

∅

xj 6= ∅

1 − µj(xj)

θ
m

µj(xj)

xm

Figure 3.1: The Information Mechanism

Let ηj(xj) = min{αµj(xj), 1}, where α ≥ 0 is a constant, and let µj(xj) be the

proportion of agents who chose xj. The parameter α reflects the ease of communica-

tion within the community. The agent is more likely to encounter others who chose

the same action xj if their numbers in the population are relatively large. We can

interpret this probability as the result of search success. Specifically, he meets with

another agent m who has chosen the same action xj with probability ηj.
9 However, he

is unsuccessful in meeting another agent with probability 1− ηj. In this case, choos-

ing action xj does not produce new information about his unknown tastes. Denoting

the signal he receives from choosing action xj by sj(xj), acquiring no information is

equivalent to sj(xj) = ∅. Likewise, if agent i chooses no action (xi
j = ∅) in period 1,

then he observes nothing, i.e. sj(xj) = ∅ with certainty.

9Strictly speaking, we could suppose that there are n agents in the population and
m ≤ n agents who chose action xj. If each individual agent’s probability of being
found or available is 1

n
, then an agent’s probability of meeting another agent who

chose xj is 1 − (1 − 1
n
)m. As n and m become infinitely large, then this probability

converges to 1 − e−n/m = 1 − e−µj(xj). We can take µj(xj) as a linear approximation
of this probability, for tractability.
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If he chooses action xj and does meet another agent m, then agent i learns ei-

ther m’s ideal tastes (sj(xj) = θ
m) with probability 1 − µj(xj), or m’s first-period

actions (sj(xj) = xm) with probability µj(xj).
10 While information about tastes is

fully revealing, actions are less informative since they can deviate from ideal tastes.

For example, if i is able to talk to m, they can exchange information about their

preferences; if i can only observe m, he can only see his actions, such as hairstyle and

clothing choices, but not how much he likes or dislikes them. Thus, the likelihood

of successful information acquisition increases in community size, but its expected

quality coarsens. I interpret this structure as a feature of congestion. This may be

due to a technological limitation, like a server space constraint such that there is a

trade-off between allowing higher volume of less detailed information, such as a list

of other products an agent has purchased, or a lower volume of richer information,

such as a detailed review of each purchase. A more psychological explanation is that

if there is a potentially vast quantity of information to parse through, an individual

might reduce search costs by looking for coarser information, which requires less effort

to acquire. I assume this particular information structure for tractability.11 Hence,

the probability of obtaining information increases with the proportion of others who

chose the same action, but the value of information decreases if this proportion be-

comes too large. In the most extreme case, an agent obtains no information if all

agents of the same information type choose the same action.12

Although I have assumed the constraint, whether technological or physical, that

10I assume that when two consumers meet and exchange information about tastes,
they always report these tastes truthfully. Given that neither agent has any incentive
to lie about either his actions or his tastes, truthful disclosure is the informative
equilibrium in a game where agents can choose whether and what to disclose private
information costlessly upon meeting.

11This particular information structure enables us to obtain an explicit analytical
solution in the duopoly setting that follows, but is not necessary for qualitative results
to hold. More generally, a necessary condition is that agent i cannot always learn m’s
tastes, which are fully revealing.

12If all agents of the same information types choose the same action xj, i is just as
likely to draw the wrong inference about his true θi

k as he is to draw the correct one
if he does not account for this fact when interpreting observation xm.

113



agents can only communicate with others who share a common action, I could more

generally assume that agents can communicate more easily with those who chose com-

mon actions than those who did not. Since it is the relative benefit of coordination

that is relevant to an agent’s action decision, increasing the ease of communication

among agents who did not choose common actions is qualitatively equivalent to de-

creasing α, the ease of communication among agents who chose a common action,

in the current model. Thus the qualitative results are unchanged as long as such

a relative benefit of coordination exists, though they weaken as this relative benefit

decreases. If agents communicate freely (and honestly) with anybody, regardless of

their actions, then there is no additional informational benefit to coordination over

actions, which is equivalent to the standard case of α = 0.

Figure 3.2 describes the series of events.

b b

Agent Identity:
θ = (θ1, θ2, θ3)

Imperfect information
e.g., (θ1, θ2)

Date 0 Date 1

b b b

Date 2

Action Choice:
(x1, x2, x3)

Observation:
(s1, s2, s3)

Action Choice:
(x1, x2, x3)

Figure 3.2: Timeline of Events

3.4 Equilibria

Because of the expected information benefit of learning the true correlation structure

(i.e., the true state), an agent might decide to postpone his action xk and choose an

xj 6= θj in order to learn his unknown θk. Then he will be able to select the xk in the

second period that is exactly his ideal. In other words, he (and others) might decide

to pool on an action that is not necessarily their known ideal, so that they can gain

information about their tastes in another taste space.

Clearly, no agent has an incentive to pool in the second period, since there is no
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information gain from pooling at that time. Hence, I look for pooling in a “symmetric-

by-types” equilibrium in the first period in the following sense: The two information

types act identically and pool in a single action space. For example, suppose that

(θ1, θ2) and (θ1, θ3) types pool on the X1 action space by acting symmetrically. These

two types clearly will not pool in either the X2 or X3 spaces. The (θ1, θ2) types

will only pool in X2 if there is a benefit from doing so, by obtaining information

about θ3 from (θ1, θ3) types. But since the (θ1, θ3) types want to learn about θ2, they

have no incentive to pool in X2. Hence, the (θ1, θ2) types will not pool in X2 either.

A similar argument holds for pooling in X3. Since we are assuming that (θ1, θ2)

and (θ1, θ3) types act symmetrically, we will solve the (θ1, θ2) type’s maximization

problem without loss of generality. In fact, I show that any equilibrium must be

“symmetric-by-types” (see Appendix).

Moreover, pools can also be classified through symmetry or asymmetry in variety

choice within a given dimenson. A pool at the point x1 is symmetric if |θ1 − x1| =

|θ1 − x1|, where θ1 and θ1 are the marginal agents at the endpoints of the pool, and

asymmetric otherwise. I characterize the former case in detail by constructing an

individual pool, then considering the complete set of pools in an action space.

3.4.1 Symmetric Equilibria

If an agent i does not pool at a given point x1, then he can either choose not pool at

all or pool at some other point x′1. To characterize the full set of symmetric equilibria,

I first consider the case in which an agent’s best alternative to pooling at a given point

x1 is the former option, then analyze the latter case.

If agent i’s best alternative is not to pool, then he should instead follow his ideal

tastes and choose x1 = θ1, x2 = θ2 in period 1. Since he will acquire no additional

information about θ3, then he chooses x3 in period 1 as well. In order to choose x3,
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he solves the following decision problem,

max
x3

− 1

2
(θ1 − x3)

2 − 1

2
(θ1 +

1

2
− x3)

2,

for which the solution is x3 = θ1 + 1
4

and his expected payoff is v1 + v2 + v3 − (1
4
)2.13

If the agent pools, with probability η1 he observes the actions or learn the tastes

of another agent. The correlation structure implies that i can perfectly infer θi
k given

any xm when up to half of the population of information types pools monotonically at

xj. When a majority of information types pools monotonically at xj, signal dilution

arises from the presence of those whose tastes diverge too much from the rest of the

pool and the fact that the agent cannot always learn others’ tastes. If he observes

another’s actions instead, then it is possible that he may draw the wrong inference

about his own tastes because the other’s (unobserved) tastes differ too much.

Suppose that µ1 ≤ 1
2
, so that any xm from a different information type is fully

informative. Then he is equally likely to meet another (θ1, θ2) agent, from whom

he learns nothing about θ3, or a (θ1, θ3) agent, from whom he will learn his own θ3

perfectly. But there is still a chance (1 − η1

2
) that he learns nothing from pooling, so

his payoff is v1− (θ1−x1)
2 +v2 +δ[v3− (1− η1

2
)(1

4
)2]. Therefore, in order to be willing

to pool, his expected utility from pooling must exceed his utility from deviating:

v1 − (θ1 − x1)
2 + v2 + δ[v3 − (1 − η1

2
)(

1

4
)2] ≥ v1 + v2 + v3 − (

1

4
)2

δ ≥ v3 − (1
4
)2 + (θ1 − x1)

2

v3 − (1 − η1

2
)(1

4
)2

.

For an agent to pool at a particular action x1, we must have that
v3−( 1

4
)2+(θ1−x1)2

v3−(1−
η1

2
)( 1

4
)2

≤ 1.

This implies that

(
η1

2
)(

1

4
)2 ≥ (θ1 − x1)

2. (3.1)

13Alternatively, he could select x3 = θ2 + 1
4

and his expected payoff would be
identical.
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Equation (3.1) states that in order to be willing to pool, the net expected information

gain from pooling must exceed the loss from choosing an action that differs from one’s

own ideal.

Let δ = 1 and α be sufficiently low that αµ1 ≤ 1.14 Then we can use the above

equation to solve for pooling equilibria by finding the indifference conditions at the

edges of the pool at any point x1 ∈ [0, 1], assuming that the marginal types on both

ends of the pool are indifferent between pooling at x1 and not pooling anywhere. Let

θ1(x1) be the highest type in the pool and θ1(x1) be the lowest type in the pool. Then

µ1(x1) = θ1(x1)− θ1(x1). The following conditions must hold for an interior solution

with µ1(x1) ≤ 1
2
:

α(θ1 − θ1)

2
(

1

16
) = (θ1 − x1)

2 (3.2)

α(θ1 − θ1)

2
(

1

16
) = (θ1 − x1)

2, (3.3)

where θ1 ≤ x1 ≤ θ. There is obviously a multiplicity of equilibria, since we have two

equations and three unknowns. Since agents need to coordinate on an action, this is

not surprising. However, for any given x1, we can solve for the endpoints θ1 and θ1 to

obtain pooling solutions. There are two pooling solutions for this system. The first

14For now, I am fixing this exogenous parameter so that I can work directly with
αµj(xj) without worrying about a non-linear probability function, since I am suppos-
ing that µ1(x1) ≤ 1

2
in this equilibrium. When α is an endogenous variable in a later

application, this assumption will no longer be necessary, since it is clearly suboptimal
to choose an α such that αµ1 > 1 if α is costly.
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is the pooling solution,

θ1 = x1 −
α

16
(3.4)

θ1 = x1 +
α

16
(3.5)

µ1(x1) =
α

8
. (3.6)

The second is the separating equilibrium, x1 = θ1 = θ1. However, it can be shown that

only the pooling solution is stable (proof provided in the Appendix). Therefore, when

the best alternative to pooling at x1 is not to pool at all, the unique equilibrium is a

pool of size µ1(x1) = α
8
, where the pool is also symmetric in the x1 action space about

the point x1. Since αµ1 ≤ 1, we can verify that µ1(x1) ≤ 1
2

in equilibrium, as surmised.

This implies that any pool is composed only of sufficiently similar types, who observe

one another’s actions to learn about their own tastes. Based on the common action

x1, they correctly infer that all agents who chose this action have similar tastes to

their own, and they benefit from sharing information with one another. Hence, peers

exhibit conformity of behavior in order to identify one another and form reference

groups to learn their tastes. Figure 3.3 illustrates the symmetric pooling equilibria

characterized by Equations (3.2) and (3.3), since the marginal agents’ problems are

symmetric about the pooling point.

Note that it is entirely possible that more than one pool of this form exists in a

given action space, as long as the pools do not overlap. Moreover, the fact that only

the pooling equilibrium is stable implies that all agents in the Θ1 taste space will

pool on the action space X1. If every pool is exactly of size α
8
, then this presents

an n-integer problem, if the parameter α is a value such that the number of pools

required to “fill” the space completely is not an integer. In this event, the remaining

space in X1 can neither stably exist as a set of points at which the agents are not

pooling, nor as a pool of size smaller than α
8

(proof provided in Appendix), so this

118



0 distance = |θ − x|

benefit = αµ
32

cost = (θ − x)2

b

b

stable

unstable

Figure 3.3: Symmetric Equilibria

pooling equilibrium is not sustainable if α
8

is not an integer.

In the preceding construction, I have characterized the set of possible equilibria

based on the assumption that marginal agents’ best alternative to pooling at a point

x1 was not to pool anywhere. Suppose, instead, that the best alternative to pooling

at x1 is to pool at some other point x′1. Since pooling at x′1 must also be better than

not pooling anywhere in order to be the best alternative to x1, this implies that x′1

must be sufficiently close to x1 in order to be the best alternative. Restricting our

attention to symmetric equilibria (i.e., equilibria of the form |θ1 − x1| = |x1 − θ1|), it

follows that the maximum pool size is µ1 = α
8
, but pools of size µ1 ∈ (0, α

8
] can stably

exist if the n-integer condition is satisfied.

Clearly, Equation (3.1) implies that any configuration in which the X1 space is

completely filled with pools of identical size, where µ1 ∈ (0, α
8
] and the value of α

allows for the number of pools of size µ1 to be an integer, is a stable equilibrium. Any

marginal agent between two adjacent pooling points is indifferent between joining the

two pools, and is weakly better off joining a pool than not pooling anywhere (and is

strictly better off if µ1 <
α
8
). This implies that for any α > 0, there exists at least one

equilibrium where all pools are symmetric and identical in size. Furthermore, there

also exist equilibria in which adjacent symmetric pools can be of different size, but
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must satisfy certain conditions. In particular, the complete set of symmetric pooling

equilibria is characterized in the following proposition, where the proof is provided in

the Appendix.

Proposition 20. 1. For all α > 0, there exists a unique type of pooling equilib-

rium, which is characterized by the following behavior:

(a) No agent pools in more than one action space.

(b) In period 1, the two information types pool on an action xj ∈ Xj where θj

is known and choose xk = ∅ for unknown θk.

(c) In any action space where an agent knows his taste and does not pool, he

chooses his known ideal.

2. For any value of α such that αµ(xj) ≤ 1, there exists at least one equilibrium

in which the action space Xj is completely filled with symmetric pools. Further-

more, only two configurations are possible when all pools are symmetric:

(a) All pools in Xj are identical in size µ, where µ ∈ (0, α
8
].

(b) Exactly two differing pool sizes, µ and µ′, coexist in an action space Xj,

where µ ∈ (0, α
8
) and µ′ = α

8
− µ.

The above statement implies that at most, two differing pool sizes can simultane-

ously exist in an action space when all pools are symmetric across a pooling point.

Clearly, this allows for a configuration in which adjacent pools are always different,

which implies that adjacent pools alternate in size between µj(xj) and µj(x
′

j) subject

to |xj − x′j| = α
16

. There can also exist equilibria in which some adjacent pools are

differing in size, while other adjacent pools are identical in size in Xj. However, as

long as there are adjacent pools of differing size somewhere along X1, it must be that

they are bounded in size on the interval (0, α
8
) and that the distance between their

pooling points is exactly α
16

.
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The comparative statics of an individual symmetric pool can be summarized in

the following proposition:

Proposition 21. In any action space Xj, a symmetric pool µj(xj) about the action

xj exhibits the following properties:

1. Pool size µj(xj) is invariant to location xj.

2. Pool size increases with α, attaining a maximum of α
8
.

Thus, agents with similar tastes may endogenously exhibit conformity of behavior

in order to identify one another and learn about their tastes in other dimensions.

3.4.2 Asymmetric Equilibria

Thus far, I have only characterized equilibria in which pools are symmetric about the

point x1. However, there is also the possibility that |θ1−x1| 6= |θ1−x1|, where θ1 and

θ1 are the marginal agents at the endpoints of the pool. Clearly, any asymmetric pool

is also a continuous interval. Moreover, it follows from Equation (3.1) that the size

of any asymmetric pool is bounded above by α
8
. However, the range of asymmetric

configurations that can occur is far less restricted than in the symmetric case. In

the ensuing application to brand investment, asymmetric equilibria will not occur in

equilibrium, so I do not characterize the entire set of asymmetric equilibria.

3.5 Duopoly with Brand Investment

A natural extension of this framework is to consider consumption of a good as a

specific type of action, so that an action space Xj becomes the variety space of an

“experience good” j, over which there is a uniform distribution of consumers with

ideal varieties θj. Books, music, clothing, and automobiles are among typical expe-

rience goods for which consumers have ideal tastes, even holding objective quality
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constant. In this context, firms can serve as the suppliers of the information mecha-

nism that allows consumers to meet one another more easily.

Suppose that one action space (say, X1) is actually a goods space in which agents

must choose from the set of varieties that firms have chosen to offer. This restriction

reasonably reflects the limited availability of varieties for most goods in the real

world. More specifically, I assume that there are only two varieties of the good

available, each of which is offered by a different firm at some price. All consumers

have the same reservation price v1 for the good, v1 > 0. Because it is arguably

more difficult for agents to coordinate on common actions when there is an infinite

spectrum of possible actions, the limited variety of a consumption good can serve as

a coordinating constraint for consumers to try to meet one another, an opportunity

that firms offering these varieties can try to exploit.

There are two firms, each offering a variety of the good, denoted by x1 and x2, at

prices p1 and p2. Firms simultaneously choose the locations of the varieties, then set

prices. However, before choosing price, they have the option of investing in a coordi-

nation service, whose efficacy is measured by the parameter α, that enables their own

customers to learn about each other’s preferences over other goods. This coordination

service is a “meeting” or “recognition” technology, such as a physical club, an Inter-

net community, a logo, or a style. For example, the wine retailer WineStyles creates

clubs and organizes events for customers to meet in person, while Harley Davidson

operates an Internet forum for Harley Davidson owners and also sells its own clothing

line. Each firm n simultaneously chooses an investment level αn ≥ 0, n = 1, 2, in

the first stage, according to a quadratic cost function. The information mechanism

for the brand is as I described in the basic model. The parameter α measures the

“effectiveness” of the brand. If the firm does not invest in a brand, then its customers

cannot “meet” or “recognize” each other and exchange information, so choosing α = 0

is equivalent to choosing not to invest in the brand. The marginal cost of producing
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one unit of any variety is identical for both firms, denoted c where c ≥ 0, and is

independent of the level of brand investment. This assumption is plausible in the

preceding examples, and allows us to isolate the effect of brand investment. Firms

cannot price discriminate.

Although we are only studying the market in one goods space, the information

benefits from learning about others’ preferences will be realized in other action spaces,

so the presence of the brand will certainly affect behavior in this market. To simplify

the exposition, I assume that the firms’ varieties xn where n = 1, 2 are exogenously

given and equidistant (x1 − x2 = 1
2
). Endogenizing location leads to equidistant

location choices and the same results (proof provided in Appendix).

Timeline

1. Firms n simultaneously choose a variety xn (i.e., location), where xn ∈ [0, 1] for

n = 1, 2.

2. Firms n simultaneously choose αn, where n = 1, 2 and incur investment costs

cαα
2
n ≥ 0 where cα ≥ 0.

3. Firms simultaneously choose prices pn, n = 1, 2.

4. Consumers choose whether or not to buy variety x1 or x2. Before making a

decision, consumers know whether a firm has the brand or not, and how effective

this brand is.

5. (Consumers choose to buy goods in other markets/dimensions.)

I proceed by solving the model backwards in pure strategies, considering each pair

of strategies in turn. I assume that the market is always covered, so marginal cost c

is sufficiently low and the reservation price v is sufficiently high. Because I assume

that firms’ locations are equidistant, consumers’ behavior will be symmetric. I denote
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d1 = θ1 − x1 = x1 − θ1, d2 = θ1 − x2 = x2 − θ2, where θ2 ≤ x2 ≤ θ1 ≤ x1 ≤ θ1 and

2d1 + 2d2 = 1. Since firms’ locations are equidistant, then x1 − x2 = 1
2
. This can be

described graphically by Figure 3.4.

x1

x2

θ1

θ
1

d1

d2

d1

d2

Figure 3.4: Duopoly

Let µn denote firm n’s market share. Without loss of generality, let α1 ≥ α2. I

assume that µ1 ≥ 1
2

and later verify that this holds in equilibrium. I also assume

that firms’ locations are equidistant (x1 − x2 = 1
2
) to simplify the exposition, but it

can be shown that equidistant locations is the unique equilibrium in this game (see

Appendix).

3.5.1 Demand

Suppose that the firm with a stronger brand captures the majority of the market:

µ1 ≥ 1
2
. With probability 1 − η1

2
, a customer of firm 1 acquires no new information

about his own tastes, because he either meets no one or he meets another (θ1, θ2)

agent, from whom he learns nothing about θ3. In this case, he chooses action θ1 + 1
4

and his expected payoff is −(1
4
)2. With probability η1

2
, he meets an agent m of type

(θ1, θ3) who chose x1. If he observes m’s tastes (θm), which occurs with conditional

probability 1 − µ1, then he can infer his own tastes perfectly, so his expected payoff
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will be zero. But if he observes m’s actions (xm), which occurs with conditional

probability µ1, then he may draw the wrong inference about his own tastes because

m’s (unobserved) tastes differ too much. Since µ1 ≥ 1
2
, there is a proportion, 1− 1

2µ1

, of

firm 1’s customers whose tastes differ sufficiently from the others that the observation

of actions xm can lead to the wrong inference. To account for this possibility, he

chooses action x1 by solving the maximization problem

max
x1

{− 1

2µ1

(θ1 − x1)
2 − (1 − 1

2µ1

)(θ1 +
1

2
− x1)

2},

where the first term is the expected utility from observing an action that leads to

the correct inference about θ3 and the second is the expected utility from observing

an action that leads to the wrong inference about θ3.
15 Due to this signal dilution,

he hedges by choosing action x1 = θ1 + 1
2
(1 − 1

2µ1

) when he observes m’s actions xm.

Therefore, his expected information value from patronizing firm 1 is

−(1 − α1µ1

2
)[

1

16
] − (

α1µ1

2
)

{

µ1[
1

2µ1

((
1

2
− 1

4µ1

))2 + (1 − 1

2µ1

)(
1

4µ1

)2] + (1 − µ1)(0)

}

= − 1

16
+
α1

32
(1 − µ1),

where the first term is the expected benefit if he does not meet another agent m, the

next two terms are the expected benefit if he observes m’s actions (xm), and the last

term is the expected benefit if he observes m’s tastes (θm).

Since µ2 = 1 − µ1 ≤ 1
2
, a customer of firm 2 knows that any observation of a

differing information type is fully informative, so his expected information value from

15This formulation assumes that the true state is that θ1 = θ3 without loss of
generality. If we assume instead that θ1 = θ3 + 1

2
, the optimal action changes, but

its expected payoff and the expected information benefit from patronizing firm 1 are
identical.

125



market share (µ)

information value

1
2 10

- 1
16

− 1
16

+ α
64

Figure 3.5: Expected Information Value

patronizing firm 2 is

−(1 − α2µ2

2
)[

1

16
] − (

α2µ2

2
)[µ2(0) + (1 − µ2)(0)]

= − 1

16
+
α2

32
(µ2).

Thus, there is a non-monotonic relationship between the equilibrium information

value from patronizing a firm and its market share µ, depicted in Figure 3.5. This

hump-shaped relationship arises endogenously due to the trade-off between search

cost, since having a larger community increases the ease of communication, and sig-

nal dilution, since agents cannot always observe others’ preferences perfectly. The

assumption that an agent observes another’s actions with probability µ or another’s

preferences with probability 1−µ upon meeting is not necessary to obtain a decreasing

relationship between information value and market share when µ > 1
2
; this will occur

whenever the information structure allows signal dilution to occur sufficiently quickly.

Rather, this particular assumption generates the linear decreasing relationship when

µ > 1
2
, allowing for an explicit analytic solution for firm 1’s demand.

The marginal consumers’ indifference conditions can be described by the following
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equation:

p1 + d2
1 −

α1

32
(1 − µ1) = p2 + d2

2 −
α2

32
(µ2), (3.7)

where d2 = 1
2
− d1 and µ1 + µ2 = 1. Then we can obtain firm 1’s demand when the

investment level is endogeneous, µEI
1 , as

µEI
1 =

α1 − α2 + 8

α1 − α2 + 16
+

32(p2 − p1)

α1 − α2 + 16
. (3.8)

The first term of Equation (3.8) indicates that firm 1 would have a larger market

share if prices were equal. The second indicates that demand is less sensitive to the

price differential than it is in the standard case when brands do not exist, which is

equivalent to no investment by either firm (α1 = α2 = 0). Neither of these features

is surprising, since firm 1 has the technological advantage. But the fact that the

information benefit of a brand is determined by consumers’ equilibrium behavior,

rather than exogenous, is the reason that price competition is directly weakened

by the difference in brand effectiveness. Firm 1 can raise its prices to some extent

without decreasing the total value of its good, because the information benefit from

patronizing firm 1 actually increases when market share decreases at the margin.16

That is, firm 1’s product is so popular that its customer base contains a subset whose

taste is too divergent from the others’. Increasing the price of its product decreases

the size of this fringe so that the remaining customer base is more homogeneous in

taste. For this reason, the information value of the brand increases for these customers

and they are willing to pay a higher price for it. Hence, firm 1’s price elasticity of

16The information value of firm 1’s good decreases in market share at the margin
due to the combination of two factors. First, the specified correlation structure implies
that signal dilution occurs whenever a firm’s market share is greater than 1

2
. Second,

the duopoly setting implies that the investing firm should will have a market share
that exceeds 1

2
. When either of these conditions does not hold, then the information

benefit will not decrease with market share at the margin. More generally, however, we
can obtain this phenomenon whenever alternative correlation and market structures
are specified such that signal dilution increases with market share and occurs at the
margin.
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demand, ǫEI
11 decreases as the technology gap (α1−α2) between the two firms widens,

so firm 1’s markup will be higher:

ǫEI
11 =

4p1

4(p2 − p1) + 1 + 1
8
(α1 − α2)

.

3.5.2 Prices

Given demand, firm 1 chooses price to maximize profit, taking p2 as given:

max
p1

(p1 − c)(
α1 − α2 + 8

α1 − α2 + 16
+

32(p2 − p1)

α1 − α2 + 16
) − kα2

1.

Verifying the second order condition, we obtain

p1 =
1

2
[p2 + c+

1

4
+

1

32
(α1 − α2)].

Likewise, firm 2 maximizes profit, where µEI
2 = 1 − µEI

1 , to obtain

p2 =
1

2
[p1 + c+

1

4
].

Hence, the Nash equilibrium in prices is pEI
1 = c + 1

4
+ 1

48
(α1 − α2) and pEI

2 =

c+1
4
+ 1

96
(α1−α2). Firms’ market shares are µEI

1 = 2
3
(α1−α2+12

α1−α2+16
) and µEI

2 = 1
3
(α1−α2+24

α1−α2+16
),

where we can easily verify that µEI
1 > 1

2
> µEI

2 when α1 > α2, as we supposed.

3.5.3 Brand Investment

Given equilibrium prices and demand, the firms’ total profits ΠEI
n as functions of

brand investment are as follows:
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ΠEI
1 =

1

72
(
(α1 − α2 + 12)2

α1 − α2 + 16
) − cαα

2
1

ΠEI
2 =

1

288
(
(α1 − α2 + 24)2

α1 − α2 + 16
) − cαα

2
2.

When α1 > α2, it is clear that the first terms of both ΠEI
1 and ΠEI

2 are strictly

increasing in α1 and strictly decreasing in α2. Given that increasing α2 is also costly

(and even if it is costless!), firm 2 optimizes by choosing α∗

2 = 0. We can see why firm

2 makes this somewhat counterintuitive choice by decomposing its profit:

dΠEI
2

dα2

= (pEI
2 − c)(

∂µEI
2

∂α2

+
∂µEI

2

∂p1

dpEI
1

dα2

) − 2cαα2.

Using our equilibrium demand and prices, I obtain

∂µEI
2

∂α2

=
α1 − α2 + 24

3(α1 − α2 + 16)2
> 0 (3.9)

and

∂µEI
2

∂p1

dpEI
1

dα2

= − 2

3(α1 − α2 + 16)
< 0. (3.10)

Equation (3.9) is the demand effect, where increasing α2 directly increases firm

2’s demand by increasing its expected informational benefits. Equation (3.10) is the

strategic effect, where increasing α2 indirectly decreases firm 2’s demand by causing

its competitor to lower its price. When α2 increases, then firm 1’s brand advantage

diminishes, so demand is relatively more responsive to prices and price competition

intensifies. Summing equations (3.9) and (3.10), I find that the strategic effect dom-

inates, so
dΠEI

2

dα2

< 0. The incentive to weaken price competition is stronger than the

incentive to increase demand. The relaxation of price competition through increased

brand differentiation is also the reason that
dΠEI

2

dα1

> 0.
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Since the second term of ΠEI
1 is decreasing in α1, then firm 1’s optimal α1 depends

on k, the degree to which brand improvements are costly.

Proposition 22. When brand investment is a continuous choice, only one firm in-

vests in a brand, and its optimal investment is weakly decreasing in the cost of brand

improvements. In particular, there exist a cost cα and an upper bound α1 such that

the investing firm chooses α∗

1 = α1 if cα ≤ cα and a unique α∗

1(cα) ∈ (0, α1) if cα > cα,

where α∗

1(cα) is strictly decreasing with cα.

Unsurprisingly, the firm’s investment in a brand is inversely related to its cost.

Since investment is increasingly costly and ηn = min{αnµn(xn), 1}, firm 1 never

invests such that α1µ1 > 1. Thus, there exists an upper bound on equilibrium brand

strength, α1, even if the cost of investment is low. But since it is never an equilibrium

for neither firm to invest, it is clear that firm 1 chooses some α∗

1 > 0 for any finite k,

no matter how large (see Appendix).

Hence, there exists no equilibrium in which both firms choose to invest in a brand,

even if investment is costless. The investing firm possesses a “lifestyle” brand whose

consumers possess a common set of preferences and communicate with one another,

while the other firm sells a good without the added benefit of a brand community.

3.5.4 Welfare

When only one firm invests, both firms charge higher prices than in the no-investment

case. Firm 1 is better off, since it can charge a higher price and claim a larger share

of the market. Since investing in a brand is optimal given that firm 2 does not invest,

firm 1’s profit must be strictly greater than in the no-investment case. Customers

of firm 2 are definitely worse off, since they pay a higher price for the same good.

However, it is not obvious how firm 2 and customers of firm 1 are affected.

Proposition 23. In the duopoly setting, all consumers are strictly worse off and both
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firms are strictly better off when only one firm invests in a brand.

Firm 2’s profit is

ΠEI
2 =

1

4
(1 +

α1

24
)(

α1 + 24

3(α1 + 16)
)

=
1

288
(
(α1 + 24)2

α1 + 16
),

which exceeds its profit of 1
8

in the no-investment case whenever α1 > 0. Hence, the

benefits from softened price competition outweigh the loss of market share.

I define consumer surplus as the aggregate benefits derived from good 1 minus

the aggregate costs. Here, the aggregate benefit is the sum of the utility derived

from good 1 and the information value derived from patronizing a firm that offers the

coordination service. The aggregate cost is the sum of the price paid by consumers

and the transportation cost incurred by consumers. In the no-investment case, there

is no information value, so total consumer surplus is simply CSNI = v−(c+ 1
4
)− 1

48
=

v − c− 13
48

.17

Consumer surplus for customers of firm 1, denoted CSEI
1 , is

CSEI
1 = µEI

I [v − pEI
I +

α1

32
(1 − µEI

1 )] − 2

∫

µEI
I
2

0

y2dy

= µEI
I [v − (c+

1

4
(1 +

α1

12
)) +

α1

32
(1 − µEI

I )] − (µEI
I )3

12
.

In contrast, the surplus of these consumers in the no-investment case, denoted CSNI
1 ,

17The two agents who lie at the midpoint between the two firms’ locations must
travel the maximal distance of 1

4
to buy the good. Hence, the aggregate transportation

cost is given by 4
∫ 1

4

0
x2dx = 1

48
.
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is

CSNI
1 = µEI

1 (v − pNI) − 2

∫ 1

4

0

y2dy − 2

∫ 1

4

µEI
2

2

y2dy

= µEI
1 (v − (

1

4
+ c)) − 1

48
+

(µEI
2 )3

12
,

where µEI
2 < 1

2
< µEI

1 . Comparing the two, we find that CSEI
1 < CSNI

1 for all α1 > 0.

Firm 1 is actually able to extract more than the information value from its customers,

because it is the monopolist over a pure bundle (the good and the information) whose

information value is decreasing in market share at the margin. Although customers

of firm 1 have lost surplus, they are still better off patronizing firm 1 than switching

to firm 2. The information benefit from buying variety x1 rather than x2 is

α1

32
(1 − µEI

I ),

while firm 1’s additional markup is α1

48
. Comparing the two terms, we can see that

the markup exceeds the information benefit. Due to the weakened price competition,

firm 2 can charge a markup of α1

96
. Comparing the net loss from x1 to that of x2, we

obtain that

0 >
α1

32
(1 − µEI

I ) − α1

48
> −α1

96
.

Absent transportation costs, variety x1 is more appealing than x2, and consumers of

firm 1 are better off than consumers of firm 2, but they are both worse off than in the

no- and dual-investment cases. We can also compare the average consumer surplus

of firm 1 customers, CS
EI

1 , who pay a higher price but reap information benefits,

against the average consumer surplus of firm 2 customers, CS
EI

2 , who pay a lower
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price than firm 1 customers but reap no information benefits:

CS
EI

1 = CSEI
1 /µEI

1

CS
EI

2 = [µEI
2 (v − pEI

2 ) − (µEI
2 )3

12
]/µEI

2 .

Using the equilibrium prices and demands, I find that CS
EI

1 > CS
EI

2 for α1 > 0.

Customers of firm 1 are, on average, better off than customers of firm 2.

Hence, summing together consumer surplus and firms’ profits, total surplus is

higher when brands can invest in brands than when they cannot, but total consumer

surplus is lower. Maximal differentiation in brand investment weakens price compe-

tition to such an extent that the investing firm is able to extract all of its consumers’

information surplus through pricing. In addition, the weakened price competition

allows the non-investing firm can charge a sufficiently high markup to compensate for

its lower market share.

3.5.5 Endogenizing Location

When both firms simultaneously choose location before choosing brand investment

levels and setting prices, they differentiate maximally in location. The full proof with

both endogenous location and brand investment is provided in the Appendix.

Proposition 24. In a duopoly where firms choose variety before level of brand invest-

ment α, the unique pure strategy equilibrium is such that they differentiate maximally

in both location and brand investment.

• Firms choose equidistant locations in the product space (x1 − x2 = 1
2
).

• For any cα ≥ 0, one firm chooses some α > 0 and the other firm chooses α = 0.

• The investing firm has a larger market share and charges a higher price than

the other firm.
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• Both firms are strictly better off than when brand investment is not possible,

while all consumers are strictly worse off.

There exists no equilibrium in which both firms choose to invest in brands, even

if investment is costless. Similar to the standard two-stage location-then-price game,

firms’ incentives to weaken price competition are stronger than the incentive to in-

crease demand, so maximal differentiation in brand strength occurs. However, con-

sumers are worse off and firms are better off than if brands could not exist. Thus,

when location, brand investment, and price are endogenous in the duopoly setting, I

find that firms differentiate maximally in both location and brand strength.

Here, investment in brand strength is a form of vertical product differentiation,

but its properties differ in two key respects from the classic conception. While vertical

differentiation has usually been considered a feature fixed by firms alone (Shaked and

Sutton, 1982), here a brand’s quality is also a function of consumer behavior. More-

over, there is a non-monotonic relationship between a branded good’s information

quality and its market share. Because the information benefit is determined by equi-

librium consumer behavior, a brand difference directly weakens price competition.

The information benefit from patronizing the investing firm actually increases when

market share decreases in the relevant region, so the investing firm can raise its prices

to some extent without decreasing the information quality of its good. The incen-

tive to weaken price competition is sufficiently strong that firms engage in maximal

differentiation in brand choice, just as in the case of “pure” vertical differentiation

(Shaked and Sutton, 1982). In contrast, if there were no consumption externality,

then it would have no direct effect on price competition and firms would differenti-

ate minimally in brand choice, as in Economides (1993), who studies firms’ decisions

when both vertical and horizontal product differentiation are possible.

In a duopoly setting, due to the combination of population correlation in tastes and

market structures, the model makes a strong prediction of maximal differentiation in
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brand strength that is detrimental to consumer welfare, compared to an environment

where brands cannot exist. It predicts that consumers should gravitate, for example,

to firms that offer bundled social networking services, and that those firms should

consequently have larger market shares and higher prices than counterparts without

such services.18

The prediction of maximal differentiation in brand strength stems from the fact

that the information value of a brand is declining in market share at the margin,

allowing the branding firm to simultaneously raise its price and increase its brand’s

information value at the expense of consumers. Here, this occurs due to two assump-

tions, namely the structure of correlated tastes in the population and the presence

of a duopoly in the product space. Given the specific population correlation struc-

ture posited, where the brand’s information value is maximized when it captures half

of the market, the brand’s information value is strictly decreasing at the margin in

the duopoly setting, since the branding firm covers the majority of the market in

equilibrium.

Thus, a relevant question is whether and how this prediction generalizes to other

settings. In reality, a market can certainly contain n > 2 firms, and the correla-

tion in tastes among individuals in the population is almost certainly more localized.

While the model’s predictions may not hold when there are n > 2 firms given the

specific population correlation structure posited, the key requirement that a brand’s

information value be declining in market share at the margin can certainly apply if

correlation among agents’ tastes is sufficiently localized. The market share threshold

at which there is signal dilution from observing a common action lowers as the degree

18Anecdotally, it appears that Netflix and Blockbuster Online, competing online
DVD rental services, roughly fit this description a few years ago. Part of the appeal of
Netflix was the quality of its user review service, and it tended to attract cinephiles. It
had a larger market share and charged higher prices than Blockbuster Online, whose
review service was significantly less developed. The recent addition of streaming
services to Netflix, but not Blockbuster, makes the comparison of market shares and
prices less straightforward now.
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of similarity required for agents to learn from one another increases. If the necessary

degree of similarity is sufficiently high, then a brand’s information value can be de-

clining in market share at the margin when there are n > 2 firms. Of course, as the

number of firms increases, the necessary degree of localization also increases. Though

it is unlikely that the model would predict a single brand in such a market, the pre-

dictions that firms differentiate in brand strength to the detriment of consumers and

that branded firms should have larger market shares as well as higher prices than

their un-branded counterparts are likely to hold.

3.6 Conclusion

This paper has offered an information-based explanation for lifestyle brands and so-

cial networking services and considers firms’ optimal brand investment and pricing

choices in a duopoly setting. If agents have uncertainty over their tastes but are

aware that their tastes are correlated with others in the population, there exists an

incentive to communicate with others in order to learn what is best for oneself. When

communication is tied to action, similar agents may choose common actions in order

to learn from each other. Hence, peer groups endogenously form reference groups by

exhibiting conformity of behavior. Because agents have this desire for information,

firms have an opportunity to provide mechanisms that facilitate this coordination. I

argue that one natural channel for providing this service is bundling it with the goods

themselves, since they present an obvious sorting mechanism for heterogeneous tastes.

In this way, goods (and firms) can be associated with specific subsets of the popula-

tion who wish to and can communicate with one another, leading to the formation of

brand communities and lifestyle brands. I show that in a duopoly setting, only one

firm chooses to provide this service, because the incentive to weaken price competi-

tion is stronger than the incentive to increase demand. Surprisingly, although total

136



surplus increases with the provision of this mechanism, consumer surplus decreases.

Although consumers benefit from learning from one another, all of this surplus is

extracted by the firms through pricing.

Two alternative explanations for desired coordination among agents are confor-

mity, a preference to behave like others, perhaps out of status concerns (Bernheim,

1994), and homophily, a inherent preference for like-minded others. While homophily

may be another component of people’s preferences, the prevalence of services like

Facebook Beacon suggests that learning about others’ tastes in other dimensions is

also important. The need or desire to do so due to homophily is arguably less obvious.

While conformity in the presence of subcultures (Bernheim, 1994) can also generate

similar results, this paper offers an information-based, rather than preference-based,

explanation for the same phenomenon. Conformity and learning motives could be dis-

tinguished by examining whether behavior differs when actions in other dimensions

are public or private information. The former predicts a disinterest in information

about others in other dimensions when one’s own actions in such dimensions are

private, while the latter predicts that such information is valued in both cases.

Here, the coordination service provided by brands is similar to certain features of

social networking services, such as Facebook. However, the reality is that Facebook

users rarely pay for the use of these widgets; Facebook widgets aim instead to earn

revenue through advertisers, who may pay to have exposure to specific groups of users

through the widgets. Extending the model to a two-sided market structure, such that

the widget creator acts as an intermediary to link advertisers to specific groups of

users and prices accordingly, is an interesting direction for further research.
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Appendix A

Appendix for Chapter 1

A.1 Proof of Proposition 3

First, I show that the first best threshold x∗ is identical to the optimal threshold
chosen by a standard agent (β = 1, η = 0): x∗ = ( γ1

γ1−1
)I.

Proof. Each self wants his future selves to behave as a time-consistent agent. Equiv-
alently, each self prefers that his future selves choose their thresholds in order to
maximize the continuation value v rather than the current value w. Therefore, we
can look for the optimal threshold such that the option value of waiting according to
v is maximized. This is equivalent to looking for the threshold x that maximizes the
wait region of Equation (1.24), the equilibrium continuation value function. The first

order condition ∂vSI

∂x
= 0 gives us x = ( γ1

γ1−1
)I, which is identical to the solution for a

time-consistent agent without reference dependence (β = 1, η = 0). Hence, the first
best threshold x∗ is identical to the optimal threshold chosen by a standard agent
(β = 1, η = 0): x∗ = ( γ1

γ1−1
)I. We can also see this feature by inspecting the wait

region of the Equation (1.24), which is the same function of the threshold as the usual
value function for a standard agent. This is because utility incurred upon stopping
is not directly distorted, so the option value of waiting, given a stopping threshold,
is not distorted by η directly.

However, the presence of η > 0 affects the equilibrium threshold by changing
the marginal value of stopping. Given that every current self actually chooses the
threshold by maximizing w rather than v, the current self’s optimal threshold is xSI =
( γ

γ−1−η
)I. Hence, the first best can only be achieved for η∗ such that γ

γ−1−η∗
= γ1

γ1−1
.

Given that x∗ = ( γ1

γ1−1
)I, the lower bound for waiting too long follows directly from

the comparison between the actual threshold x and the first best, such that xSI > x∗:

γ

γ − 1 − η
>

γ1

γ1 − 1
,

where γ = βγ1 + (1 − β)γ2. This condition holds if η > γ−γ1

γ1

. Finally, we can verify
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that
γ − γ1

γ1

< γ − 1

by noting that γ−γ1

γ1

= γ
γ1

− 1. Since γ1 > 1, then this inequality is satisfied for any

β ∈ [0, 1].

A.2 Proof of Corollary 1

The first part follows from the above proof of Proposition 3. The second statement
follows by comparing the value functions when η > 0 versus η = 0. When η = 0, the
agent stops at threshold ( γ

γ−1
)I. When η > 0, the agent stops at threshold ( γ

γ−1−η
)I.

Thus, goal-setting is detrimental when

[(
γ

γ − 1 − η
)I − I](

1

( γ
γ−1−η

)I
)γ1 < [(

γ

γ − 1
)I − I](

1

( γ
γ−1

)I
)γ1

[(
1 + η

γ − 1 − η
)I](

1

( γ
γ−1−η

)I
)γ1 < [(

1

γ − 1
)I](

1

( γ
γ−1

)I
)γ1

0 < (
γ − 1

γ − 1 − η
)γ1−1(

1

1 + η
) − 1,

and the lower bound η satisfies the above condition with equality. Define the function
H(η) such that

H(η) = (
γ − 1

γ − 1 − η
)γ1−1(

1

1 + η
) − 1.

We can verify that η exists and is unique by noting that H(0) = 0, H(γ − 1) → ∞,
and H(η) strictly decreases for η < η∗ and strictly increases for η > η∗. Thus, we
have shown existence and uniqueness of η for any γ ∈ (1,∞), as well as the fact that
η∗ < η < γ − 1. Finally, the implicit function theorem yields

∂η

∂γ
= −

−( η
1+η

)( γ1−1
(γ−1−η)2

)( γ−1
(γ−1−η)γ1−2 )

( 1
1+η

)( γ−1
(γ−1−η)γ1−1 )[− 1

1+η
+ ( γ1−1

γ−1−η
)]
> 0,

which is positive since the numerator is always negative and the denominator is
positive since η > η∗.
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A.3 Naivete

A.3.1 Existence and Uniqueness of xNE

First, I prove the existence and uniqueness of xNE for any given r ≥ 0. Define the
following function G(x):

G(x) =
1

(γ2 − 1)(1 + η)
[β(γ2 −γ1)(x̂− I + η(x̂− I− r))(

x

x̂
)γ1 +γ2(1+ η)I+γ2ηr]−x,

(A.1)
where x̂ = ( γ1

γ1−1
)I + r( η

1+η
)( γ1

γ1−1
). Note that when r = x̂− I, then x̂ = x̂NI .

Proof. Consider the function G(x), given by Equation (A.1). Clearly, xNE must
satisfy G(xNE) = 0, where I have assumed that xNE ≤ x̂ by construction. Since
G(0) = γ2[(1 + η)I + ηr] > 0 and

G(x̂) = −(1 − β)(γ2 − γ1)(rη + (1 + η)I)

(1 + η)(γ1 − 1)(γ2 − 1)
< 0,

then xNE exists for any r ≥ 0. Next, note that

G′(x) =
1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(x̂− I + η(x̂− I − r))(

1

x̂
)γ1(γ1)(x)

γ1−1] − 1

G′′(x) =
1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(x̂− I + η(x̂− I − r))(

1

x̂
)γ1(γ1)(γ1 − 1)(x)γ1−2],

so G′′(x) > 0 for all x > 0. Then G′(x) < 0 for any x such that G(x) = 0. Thus,
there exists a unique xNE ≤ x̂ such that G(xNE) = 0.

The expression for xNE, which is given by Equation 1.26, was constructed by
assuming that xNE ≤ x̂. To ensure uniqueness of xNE, we must rule out the case
where xNE > x̂. Suppose that there exists another threshold x̃ such that it is optimal
for the naif to stop when x ≥ x̃ and wait otherwise, where x̃ > x̂. To construct the
value function, note that the naif still believes that all future selves will employ the
threshold x̂ = ( γ1

γ1−1
)I + r( η

1+η
)( γ1

γ1−1
), and the continuation value v is still given by

Equation (1.11). When x ∈ [0, x̂), then v(x, r̂) = [x̂−I+η(x̂−I− r̂)](x
x̂
)γ1 ≡ v1(x, r̂).

When x ∈ [x̂,∞), then v(x, r̂) = x − I + η(x − I − r̂). When x ∈ [0, x̃), then w
satisfies the differential equation given by Equation (1.7). When x ∈ [x̃,∞), then
w(x, r) = x − I + η(x − I − r). Since 0 ≤ x̂ < x̃, the continuation value function
w now has three regions. Let w1 describe w when x ∈ [0, x̂), w2 describe w when
x ∈ [x̂, x̃), and w3 describe w when x ∈ [x̃,∞). Let r = r̂.

When x ∈ [0, x̂), then v(x, r) = v1(x, r) = A1x
γ1 , where A1 ≡ [x̂− I + η(x̂− I −

r̂)](x
x̂
)γ1 , and w satisfies the differential equation given by Equation (1.7). Substituting

v(x, r) = A1x
γ1 into (1.7) yields the solution

w1(x, r) = βA1x
γ1 + A2x

γ3 , (A.2)

where γ1 and γ3 are the positive and negative roots of the quadratic equation 1
2
σ2γ+
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(µ− 1
2
σ2)γ − ρ = 0, as before, where γ1 > 1 and γ3 < 0.

When x ∈ [x̂, x̃), then v(x, r) = x−I+η(x−I−r) and w again satisfies Equation
(1.7). Substituting v(x, r) = x− I + η(x− I − r) into (1.7) yields the solution

w2(x, r) = βA3x
γ2 + A2x

γ4 + β(1 + η)(
λ

ρ+ λ− µ
)x− β[(1 + η)I + ηr], (A.3)

where γ2 and γ4 are the positive and negative roots of the quadratic equation 1
2
σ2γ2 +

(µ− 1
2
σ2)γ − (ρ+ λ) = 0, as before, where γ2 ≥ γ1 > 1 and γ4 < 0.

The agent stops for any x ∈ [x̃,∞), so

w3(x, r) = x− I + η(x− I − r). (A.4)

By definition of the geometric Brownian motion x, x = 0 is an absorbing barrier
of the project value process. Furthermore, the continuation value function v must
be continuous, while the current value function w must be continuous and smooth
everywhere. Since the naif believes that future selves will behave in the optimal
manner, v is smooth as well. This gives the following boundary conditions:

Boundary: v1(0, r) = 0, (A.5)

w1(0, r) = 0, (A.6)

Value Matching: v1(x̂, r) = x− I + η(x̂− I − r), (A.7)

w1(x̂, r) = w2(x̂, r), (A.8)

w2(x̃, r) = w3(x̃, r), (A.9)

Smooth Pasting:
∂v1

∂x
(x̂, r) = 1 + η, (A.10)

∂w1

∂x
(x̂, r) =

∂w2

∂x
(x̂, r), (A.11)

∂w2

∂x
(x̃, r) = 1 + η. (A.12)

Using the above boundary conditions in conjunction with v1(x, r) = A1x
γ1 and Equa-

tions (A.2), (A.3), and (A.4), we obtain the following non-linear equation for x̃:

x̃ =
γ2(1 + β)[(1 + η)I + ηr]

(γ2 − 1)(1 + η)(1 − λβ
ρ+λ−µ

)
+ (

x̃

x̂
)γ4

(

β(ρ− µ)x̂

ρ+ (1 − β)λ− µ

)

, (A.13)

where x̂ = (γ1

γ1

)I + r( γ1

γ1−1
)( η

1+η
). Now, define the function F (x) as follows:

F (x) =
γ2(1 + β)[(1 + η)I + ηr]

(γ2 − 1)(1 + η)(1 − λβ
ρ+λ−µ

)
+ (

x

x̂
)γ4(x̂)

(

β − λβ
ρ+λ−µ

1 − λβ
ρ+λ−µ

)

− x, (A.14)

where the first term and second terms are positive since γ2 > 1, β < 1, µ < ρ, and
r ≥ 0. Clearly, x̃ satisfies F (x̃) = 0. Since γ4 < 0, then limx→0 F (x) → ∞ and
limx→∞ F (x) → −∞. Thus, x̃ exists. Moreover, γ4 < 0 implies that F ′(x) < 0 and
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F ′′(x) < 0, so x̃ is unique. Evaluating F (·) at x̂, we obtain

F (x̂) =
γ2(1 + β)[(1 + η)I + ηr]

(γ2 − 1)(1 + η)(1 − λβ
ρ+λ−µ

)
+

(

β − λβ
ρ+λ−µ

1 − λβ
ρ+λ−µ

)

(x̂) − x̂

=
−(1 − β)(γ2 − γ1)[(1 + η)I + ηr]

(γ1 − 1)(γ2 − 1)(1 + η)(1 − λβ
ρ+λ−µ

)
,

which is negative since γ2 > γ1. Since G(x̂) < 0, then x̃ < x̂, which violates the
assumption used to construct x̃, that x̃ > x̂. Thus, there does not exist an optimal
threshold x̃ such that x̃ > x̂ and the naif stops when x ≥ x̃ and waits otherwise.

A.3.2 Comparative Statics for xNE

Having shown existence and uniqueness of xNE, we can use the implicit function
theorem to derive the relevant comparative statics.

Proof. By the implicit function theorem,

∂x

∂β
= −

∂G
∂β

∂G
∂x

.

From the preceding proof of uniqueness, it is clear that G′(x) < 0 for all x ∈ [0, x̂].
Turning to the numerator,

∂G

∂β
=

1

(γ2 − 1)(1 + η)
(γ2 − γ1)(x̂− I + η(x̂− I − r))(

x

x̂
)γ1 > 0.

Therefore, ∂xNE

∂β
> 0. The implicit function theorem also gives us

∂x

∂r
= −

∂G
∂r
∂G
∂x

,

Turning to the numerator,

∂G

∂r
=

1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(

x

x̂
)γ1(

1

x̂
)[x̂(1 + η)(

∂x̂

∂r
) − ηx̂

− γ1(x̂− I + η(x− I − r))(
∂x̂

∂r
)] + γ2η]

=
1

(γ2 − 1)(1 + η)

(

β(γ2 − γ1)(
x

x̂
)γ1(−η) + γ2η

)

.

Since x ≤ x̂, then ∂G
∂r
> 0, since β(γ2 − γ1)(

x
x̂
)γ1 < γ2. Thus, ∂xNE

∂r
> 0.

Consider the effect of increasing β on ∂xNE

∂r
. It is clear that ∂G

∂r
is decreasing in β,

while ∂G
∂x

is increasing in β. Therefore, ∂2xNE

∂r∂β
> 0.
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Now, consider the effect of increasing η in equilibrium. Let r̂ = x̂− I. Since it is
shown in the following proof that ∂xNE

∂x̂
> 0 and clearly ∂x̂

∂η
> 0, it is sufficient to show

that ∂G
∂η
> 0 holding x̂ fixed. By the implicit function theorem,

∂x

∂η
= −

∂G
∂η

∂G
∂x

,

where ∂G
∂x
< 0. Turning to the numerator,

∂G

∂η
=

1

(γ2 − 1)

(

−(
1

1 + η
)2[β(γ2 − γ1)(x̂− I)(

x

x̂
)γ1 + γ2I + γ2ηx̂] + (

1

1 + η
)(γ2x̂)

)

= (
1

(γ2 − 1)
)(

1

1 + η
)2(x̂− I)[−β(γ2 − γ1)(

x

x̂
)γ1 + γ2] > 0,

since xNE < x̂. Thus, ∂xNE

∂η
> 0.

A.3.3 Proof of Proposition 4

Since the result that xSE < xNE < x̂NE is slightly more general and implies that
xSI < xNI < x̂NI , I will show the former. Note that in “rational expectations”
equilibrium (r = x̂ − I), the naif’s goal is the same as that of the time-consistent
agent due to his mistaken beliefs, and is higher than that of the sophisticate.

Proof. In the preceding proof of uniqueness of xNE, I already showed that xNE < x̂NE

when β < 1 for any r ≥ 0. Since r = x̂ − I > 0, then it follows that xNI < x̂NI as
well. Thus, the naif falls short of his reference point.

Now, consider the function G(x) as defined by Equation (A.1) and reproduced
here:

G(x) =
1

(γ2 − 1)(1 + η)
[β(γ2 −γ1)(x̂− I + η(x− I− r))(

x

x̂
)γ1 +γ2(1+ η)I+γ2ηr]−x,

The sophisticate’s threshold solves G(x) = 0 when x̂ = ( γ
γ−1

)I + r( η
1+η

)( γ
γ−1

) ≡ x̂SE,

while the naif’s threshold solves G(x) = 0 when x̂ = ( γ1

γ1−1
)I + r( η

1+η
)( γ1

γ1−1
) ≡ x̂NE.

Thus, x̂SE < x̂NE and it is sufficient to show that ∂x
∂x̂
|x̂=x̂SE > 0. By the implicit

function theorem,

∂x

∂x̂
= −

∂G
∂x̂
∂G
∂x

.
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From the preceding proof, we have that ∂G
∂x
< 0. Turning to the numerator,

∂G

∂x̂
=

1

(γ2 − 1)(1 + η)

(

β(γ2 − γ1)(
x

x̂
)γ1+1(

1

x̂
)[(1 + η)x̂− γ1(x̂− I + η(x̂− I − r))]

)

which is strictly positive for any x̂ < x̂NE. Thus, ∂x
∂x̂
> 0, so xNE > xSE for any fixed

r. Moreover, when the goal is endogenous, the naif’s goal is greater than the sophis-
ticate’s (rNI > rSI). Since we have already shown that the threshold is increasing in
r, then xNI > xSI when r = x̂− I for each type of agent.

A.3.4 Proof of Proposition 5

Proof. In Proposition 3, I showed that the sophisticate’s first-best is achieved by
stopping at the threshold x∗ = ( γ1

γ1−1
)I. When he stops at x∗, the first-best ex ante

value of the option (vS∗

) is given by

vS∗

(x) = (x∗ − I)(
x

x∗
)γ1 .

Given that the naif sets the goal x̂NI − I where x̂NI = ( γ1

γ1−1−η
)I, his true ex-ante

option value of waiting is given by Equation (1.29), reproduced below:

ṽN(x, r = x̂NI − I) = [xN − I + η(xN − x̂NI)](
x

xN
)γ1 .

To find the threshold xN that would maximize ṽN , we have the first order condition:

∂ṽN

∂xN
= 0 = (x)γ1

(

(1 + η)(
1

xN
)γ1 − γ1(

1

xN
)γ1+1[xN − I + η(xN − x̂NI)]

)

= (x)γ1(
1

xN
)γ1+1[xN(1 + η) − γ1(x

N − I) − γ1η(x
N − x̂NI)]

= (x)γ1(
1

xN
)γ1+1(1 + η)(γ1 − 1)(x̂NI − xN),

which is satisfied when x̂N = xNI (and clearly, second order conditions are satisfied
as well). Thus, the upper bound on the naif’s option value of waiting is given by

ṽN(x) = (x̂NI − I)(
x

x̂NI
)γ1 .

But we have already shown previously that the option value of waiting when there
is zero comparative utility is maximized at x∗. Since x̂NI > x∗, then ṽN∗

(x) <
vS∗

(x).
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A.4 Proof of Proposition 6

Since the linear comparison utility function is a special case of the general comparison
utility function ψ(·), I address this case in the following proof of Proposition 7.

A.5 Proof of Proposition 7

Because the agent always sets a goal for future selves, and he anticipates future
behavior in response to any given goal, choosing a goal to maximize total utility
from an ex-ante perspective is equivalent to self 0’s problem of setting the goal r̂
that maximizes the value of the wait region of the continuation value function v(x, r̂)
described by Equation (1.11), where the anticipated threshold employed by future
selves is the optimal threshold given an exogenous goal, x̂. When the comparison
utility function is linear, then x̂ = xSE and it is described by Equation (1.20).

When ψ(·) is non-linear, we must derive the optimal stopping threshold given a
goal r. As in the linear case, the optimal threshold is determined by joining the
waiting and stopping regions of the value function. It is only the stopping region
that now changes. The the optimal threshold xNL is given by the implicit function
described by Equation (1.30) and replicated here:

0 = (γ − 1)xNL − γI + γψ(xNL − I − r) − xNLψ′(xNL − I − r). (A.15)

An alternative way to express this is:

xNL =
γ[I − ψ(xNL − I − r)]

γ − 1 − ψ′(xNL − I − r)
.

For x to be defined and positive, I will assume that ψ′(x− I − r) < γ − 1 for all
x− I − r ∈ [−I,∞). To see that I −ψ(xNL − I − r) > 0, suppose that it is negative,
implying that xNL < 0. But if xNL < 0, then ψ(xNL − I − r) < 0 becaues ψ(0) = 0
and ψ′(y) ≥ 0 for all y. This implies that I−ψ(xNL−I−r) > 0, since I > 0, which is
a contradiction. Note that when the comparison utility function is linear with slope
η ≥ 0 and η < γ − 1, then xNL is equivalent to Equation (1.20).

Using the implicit function theorem and suppressing the argument for ψ for
brevity, we have that ∂x

∂r
is:

∂x

∂r
=

γψ′(x− I − r) − xψ′′(x− I − r)

(γ − 1)[1 + ψ′(x− I − r)] − xψ′′(x− I − r)
, (A.16)

which is positive whenever ψ′′(y) ≤ 0, so ∂x
∂r
> 0 for all r ∈ [−I,∞). We can also

verify that ∂x
∂r
< 1. The implicit function theorem also yields ∂x

∂γ
:

∂x

∂γ
= − x− I + ψ(x− I − r)

(γ − 1)[1 + ψ′(x− I − r)] − xψ′′(x− I − r)
, (A.17)
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which is clearly negative since x− I + ψ(x− I − r) ≥ 0 (otherwise, the agent would
be better off never stopping).

Differentiating the continuation value function v, given by Equation (1.11), with
respect to r, and suppressing the argument for ψ(·) for brevity we obtain:

∂v

∂r
=[

1

(γ − 1)(1 + ψ′) − xψ′′
][

I − ψ

γ − 1 − ψ′
](
x

x
)γ1 (xψ′′[−γ + γ1(1 + ψ′)]

−γ(γ1 − 1)ψ′(1 + ψ′)) .

The first third terms are positive given that our regularity conditions are satisfied.
Therefore, the sign of ∂v

∂r
is determined by the sign of the last term. Note that if ψ(y)

is linear, i.e. ψ′′(y) = 0 for all y ∈ R, then ∂v
∂r
< 0 so the optimal r∗ is the lowest

value of r possible.
Rewriting the last term, we have the condition given in Equation (1.32):

xψ′′[−γ + γ1(1 + ψ′)] − γ(γ1 − 1)ψ′(1 + ψ′),

which must equal zero at r∗ in order to obtain some r∗ > −I. The second term of
(1.32) is negative, so the first term must be positive to satisfy the first-order condition.
Since ψ′′(x − I − r) < 0, then the first term is only positive if −γ + γ1(1 + ψ′) > 0.
That is, a necessary condition for a non-degenerate r∗ > −I is that

γ > γ1[1 + ψ′(xNL − I − r∗)], (A.18)

where the right-hand side is greater than γ1. That is, the agent must have a self-
control problem and it must be sufficiently severe to counteract the marginal benefit
of setting very low goals. Note that the left-hand side of Equation (A.18) is increasing
in r for x− I − r > 0, since we can show that x− I − r is decreasing in r. So γ must
be even higher to choose some positive optimal goal r∗ > 0.

Suppose that Equation (A.18) holds at r∗. In order for Equation (1.32) to be
non-negative, we also require that the first term of (1.32) be sufficiently positive to
counteract the second. This is equivalent to the requirement that ψ′′ be sufficiently
negative at r∗ such that Equation (1.32) holds:

ψ′′ =

(

(γ1 − 1)ψ′(1 + ψ′)

−γ + γ1(1 + ψ′)

)(

γ − 1 − ψ′

I − ψ

)

.

To verify that r∗ is a maximum, we need to verify that the second-order condition
is satisfied. The first derivative can be written as

∂v

∂r
= (

x

xNL
)γ1

(

xNL[
∂xNL

∂r
(1 + ψ′) − ψ′] − γ1(

∂xNL

∂r
)(xNL − I + ψ)

)

. (A.19)

Evaluated at r∗, the sign of ∂v2

∂2r
is given by the sign of the second term of (A.19).
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Given that Equation (1.32) must hold at r∗, the following must hold at r∗ if it exists:

∂xNL

∂r
|r=r∗ = (

∂ψ′(xNL − I − r∗)

1 + ψ′(xNL − I − r∗)
)(

γ

γ − γ1

) (A.20)

xNL(1 + ψ′(xNL − I − r∗)) = γ[xNL − I + ψ(xNL − I − r∗)]. (A.21)

Note that γ > γ1 at r∗. Using these two facts and Equation (1.32), we need ∂v2

∂2r
(r∗) <

0, where I suppress the argument for ψ(·) for brevity:

∂v2

∂2r
|r=r∗ = − γ(γ1 − 1)ψ′

(γ − γ1)(1 + ψ′)
+
∂2xNL

∂r2
|r=r∗ [(γ − γ1)(x

NL − I + ψ)] < 0,

where the first term is negative and the second is positive. Evaluating ∂2xNL

∂r2 |r=r∗ , the
second-order condition is satisfied when the following upper bound on ψ′′′(xNL−I−r∗)
holds:

ψ′′′(xNL − I − r∗)K(r∗) < L(r∗)M(r∗), (A.22)

where

K(r∗) = xNL(
xNL − I − ψ

γ − 1 − ψ′
)

(

[γ − γ1(1 + ψ′)]3

(γ − γ1)2(1 + ψ′)3

)

,

L(r∗) =
γ(γ1 − 1)ψ′

(γ − γ1)2(1 + ψ′)(γ − 1 − ψ′)
,

M(r∗) = (γ − γ1)(γ − 1 − ψ′) − [γ − γ1(1 + ψ′)[2ψ′ + γ − γ1(1 + ψ′)].

We can verify that K(r∗), L(r∗), and M(r∗) are positive, so the upper bound on
ψ′′′(xNL − I − r∗) is positive. Given properties A3, A4, and A5, a ψ(·) satisfying the
second-order condition exists. Thus, an optimal r∗ > −I exists when the Equations
(1.32) and (A.22) are satisfied.

A.6 Proof of Corollary 2

Evaluating xNL at r̃ such that r̃ = xNL
I yields

xNL(r̃) = (
γ

γ − 1 − ψ′(0)
)I,

which is clearly unique for any γ. Therefore, r̃ is given by

r̃ = (
1 + φ′(0)

γ − 1 − ψ′(0)
)I,

which is unique for any γ. The second part of Corollary 2 follows from verifying
whether Equations (A.18) and (1.32) are satisfied at r̃.
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A.7 Proof of Proposition 8

To show the first part of Proposition 8, we can apply the implicit function theorem
to Equation (1.32). Since the second-order condition must be satisfied at the optimal
r∗, it is sufficient to sign the partial derivative of (1.32) with respect to γ at r∗, which

is positive only if ∂2xNL

∂r∂γ
is sufficiently high.1 This implies that ψ′′′(xNL − I− r∗) must

be sufficiently high:

ψ′′′(xNL − I − r∗)P (r∗) > Q(r∗) + S(r∗) + U(r∗), (A.23)

where

P (r∗) =
[xNL(γ − γ1(1 + ψ′))]3

γ2(γ − γ1)2(1 + ψ′)(γ − 1 − ψ′)2
> 0,

Q(r∗) =
xNL(γ1 − 1)[−γψ′ − γ1(1 + f ′)]ψ′

γ(γ − γ1)(γ − 1 − ψ′)
< 0,

S(r∗) = −x
NL(γ − 1)(γ1 − 1)[γ − γ1(1 + ψ′)]2ψ′

γ(γ − γ1)2(γ − 1 − ψ′)2
< 0,

U(r∗) = − γ2(γ1 − 1)(ψ′)2

(γ − γ1)[γ − γ1(1 + ψ′)]
< 0.

Thus, given that r∗ exists, ∂xNL

∂γ
> 0 if ψ′′′(xNL−I−r∗) exceeds a negative lower bound.

Given that ψ(·) must satisfy A5, such a ψ(·) exists that satisfies both Equations (A.22)
and (A.23).

To show the second part of Proposition 8, recall from the preceding proof that
xNL(r∗) must satisfy Equation (A.21). Applying the implicit function, we have

∂xNL

∂γ
= − −[xNL − I + ψ(xNL − I − r∗)]

−(γ − 1)(1 + ψ′(xNL − I − r∗)) + xNLψ′′(xNL − I − r∗)
.

The numerator is strictly negative by the optimality of xNL. The denominator is
strictly negative since γ > 1 and ψ′(y) ≥ 0 and ψ′′(y) ≤ 0 for all y ∈ R. Thus,
∂xNL

∂γ
< 0.

A.8 Verification

To verify that the constructed current value function w is optimal for any given
r ≥ 0, note that Equation (1.7) implies that any solution must satisfy the following

1Algebraic details are omitted for brevity.
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two conditions for all x ∈ (0,∞), whether the agent is sophisticated or naive:

w(x, r) ≥ x− I + η(x− I − r) (A.24)

0 ≥ −ρw(x, r) + λ(βv(x, r̂) − w(x, r)) + µx(
∂w

∂x
) +

1

2
σ2x2(

∂2w

∂x2
). (A.25)

Let x denote current self’s stopping threshold and x̂ denote the (perceived) future
self’s stopping threshold. By construction, w(x, r) = x − I + η(x − I − r) when
x ≥ x so equation (A.24) holds with equality. When x < x, w(x, r) is of the form
w(x, r) = A1x

γ1 + A2x
γ2 , where γ2 ≥ γ1 > 1, A1 > 0, and A2 > 0. Since w(x, r) is

convex and increasing, it must lie above the line x− I + η(x− I − r) for all x < x.
Whether the agent is sophisticated or naive, Equation (A.25) holds with equality

when x < x by construction. Define the function J(x) as follows:

J(x) = −ρw(x, r) + λ(βv(x, r̂) − w(x, r)) + µx(
∂w

∂x
) +

1

2
σ2x2(

∂2w

∂x2
)

When x ≥ x, we have w(x, r) = x− I+η(x− I− r). Since we have shown that x ≤ x̂
(with equality only if the individual is sophisticated), then v(x, r) = x−I+η(x−I−r)
if x ≥ x. Then we have

J(x) = − ρ[x− I + η(x− I − r)] + λ (β[x− I + η(x− I − r)]

−[x− I + η(x− I − r)]) + µx(1 + η)

=(1 + η)[µ− ρ− λ(1 − β)]x+ [ρ+ λ(1 − β)][(1 + η)I + ηr],

which is strictly decreasing in x since µ < ρ. We have previously shown that ∂x
∂x̂
> 0,

and recall that x̂SE < x̂NE and x = x̂SE when x̂ = x̂SE. So it is sufficient to show
that J(x̂SE) < 0 to satisfy Equation (A.25).

J(x) ≤ J(x̂S)

= [(1 + η)I + rη](
1

γ − 1
)[γµ− ρ− λ(1 − β)]

= [(1 + η)I + rη](
1

γ − 1
)[β(µγ1 − ρ) + (1 − β)(µγ2 − ρ− λ)].

Recall that γ1 > 1 satisfies 0 = −ρ+µγ1+ 1
2
σ2γ1(γ1−1). Then µγ1−ρ = −1

2
σ2γ1(γ1−

1) < 0. Likewise, γ2 > 1 satisfies 0 = −(ρ+λ)+µγ2 + 1
2
σ2γ2(γ2−1), so µγ2−ρ−λ =

−1
2
σ2γ2(γ2 − 1) < 0. Thus, J(x) ≤ J(x̂S) < 0. Since xSE < xNE, then Equation

(A.25) is also satisfied when the agent is naive. Therefore, the constructed value
function w is at least as good as the value function generated by any alternative
Markov strategy.
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A.9 Proof of Proposition 10

The equilibrium defined by agents i and j’s optimal threshold functions, given by
Equations (1.36) and (1.37), is

xi =
γiI[ηγj + (1 + η)(γj − 1)]

(1 + η)2(γi − 1)(γj − 1) − η2γiγj

(A.26)

xj =
γjI[ηγi + (1 + η)(γi − 1)]

(1 + η)2(γi − 1)(γj − 1) − η2γiγj

, (A.27)

where γk = βkγ1 + (1− βk)γ2 for k = i, j. Note that when γi = γj, the agents exhibit
identical behavior in the absence of a peer, so the equilibrium thresholds are identical
to those shown in Proposition 9. The first two parts of Proposition 10 are obtained by
differentiating the equilibrium thresholds (A.26) and (A.27) directly. In particular,
note that

lim
γj→∞

xi = (
(1 + 2η)γi

(1 + 2η)γi − (1 + η)2
)I ≥ (

γi

γi − 1
)I

lim
γj→∞

xj = (
(1 + 2η)γi − (1 + η)2

(1 + 2η)γi − (1 + η)
)I ≥ I,

with inequality only if γi → ∞ as well. This implies that as long as γi is finite, both
agents behave more patiently than they would in the absence of a goal.

The third part of the proposition follows by noting that

xi − xj =
(γj − γi)(1 + η)I

(1 + η)2(γi − 1)(γj − 1) − η2γiγj

,

so xi − xj > 0 whenever γj − γi > 0.

A.10 Proof of Proposition 11

In an interpersonal equilibrium, agent i’s continuation value function is given by

vi(x, ri = xj − I) =

{

[xi − I + η(xi − xj)](
x
xi

)γ1 if x < xi

x− I + η(x− xj) if x ≥ xi,

where xi and xj are given by (A.26) and (A.27), respectively. To find the peer j∗ who
maximizes ex ante welfare, we can find the γ∗j such that the value of vi in its wait
region is maximized given equilibrium behavior. The first order condition is

∂vi

∂γj

= (
x

xi

)γ1

(∂xi

∂γj

+ η(
∂xi

∂γj

− ∂xj

∂γj

) − (
γ1

xi

)(
∂xi

∂γj

)[xi − I + η(xi − xj)]
)

.

150



After making the appropriate substitutions and simplifying, the first order condition
is of the following form:

∂vi

∂γj

= (
x

xi

)γ1
A

B(γj)
[C + γjD],

where

A = η(1 + η)2(γ1 − 1)[(γi − 1)(1 + η) + ηγi]I

B(γj) =
( 1

(γj − 1)(1 + η) + ηγj

)( 1

(1 + η)2(γi − 1)(γj − 1) − η2γiγj

)2

C = −(1 + η)

D = (1 + 2η).

Since A > 0, B(δ) > 0, C < 0, and D > 0, it is clear that vi is an asymmetric function
of γj , with a unique minimum at γ̂j < 0 such that ∂vi

∂γj
(γ̂j) = 0. Since γ̂j = 1+η

1+2η < 1, then

vi is monotonically increasing for all γj ∈ (1,∞). Hence, the value function is maximized
as γj → ∞. Since γj = βjγ1 + (1 − βj)γ2, this is equivalent to desiring a peer such that
β∗j < 1 and λ∗j → ∞.
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Appendix B

Appendix for Chapter 2

B.1 Equilibrium Value Functions

This section collects the equilibrium current and continuation value functions that arise for
each bracketing choice, with its corresponding goals, and each stage. Because the case of
incremental goals in stage 2 is provided in the text, it is not repeated here. For ease of
reference, it reiterates the key features of each.

B.1.1 Incremental Goals: Stage 1

In the first stage, the equilibrium current and future value functions when the agent sets
incremental goals are given by winc

1 and vinc
1 , described by Equations (B.1) and (B.2) re-

spectively.
Because the agent completes the second stage strictly after the first, the stop regions of

the current and continuation value functions, winc
1 and vinc

1 , are composed of two regions.
When the observed first-stage payoff x̃1 is such that kx̃1 < xinc

2 , the option value of stage 2
is determined by the value of waiting to stop the process x2t. When x̃1 is sufficiently high
that kx̃1 ≥ xinc

2 , the option value of stage 2 is simply the value of stopping x2t immediately.
Since the agent evaluates himself against a goal at the end of each stage when he sets
incremental goals, he expects to incur comparative disutility at the end of each.
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E[winc
1 (x̃1, r

inc
1 )|x̃1] =















































β[xinc
1 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I1](

x̃1

xinc
1

)γ1 + (1 − β)[xinc
1 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I1](

x̃1

xinc
1

)γ2

+kγ1β[xinc
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I1](

x̃1

xinc
2

)γ1

+kγ1(1 − β)[xinc
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I1](

x̃1

xinc
2

)γ2 if x̃1 < xinc
1

x̃1 − I1 + E[ψ(x1 − xinc
1 )|x̃1] + kγ1β[xinc

2 (1 − 1
2η(α− 1)( ǫ

1+ǫ)) − I1](
x̃1

xinc
2

)γ1

+kγ1(1 − β)[xinc
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I1](

x̃1

xinc
2

)γ2 if xinc
1 ≤ x̃1 <

xinc
2

k

(1 + k)x̃1 − I1 − I2 + E[ψ(x1 − xinc
1 )|x̃1] + E[ψ(x2 − xinc

2 )|x̃1] if x̃1 ≥ xinc
2

k

(B.1)

E[vinc
1 (x̃1, r

inc
1 )|x̃1] =















[xinc
1 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I1](

x̃1

xinc
1

)γ1 + kγ1 [xinc
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I1](

x̃1

xinc
2

)γ1 if x̃1 < xinc
1 ,

x̃1 − I1 + E[ψ(x1 − xinc
1 )|x̃1] + kγ1 [xinc

2 (1 − 1
2η(α− 1)( ǫ

1+ǫ)) − I1](
x̃1

xinc
2

)γ1 if xinc
1 ≤ x̃1 <

xinc
2

k ,

(1 + k)x̃1 − I1 − I2 + E[ψ(x1 − xinc
1 )|x̃1] + E[ψ(x2 − xinc

2 )|x̃1] if x̃1 ≥ xinc
2

k .

(B.2)

(B.3)
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B.1.2 Aggregate Goals: Stage 2

In the second stage, the equilibrium current and future value functions when the agent
sets aggregate goals are given by w

agg
2 and v

agg
2 , described by Equations (B.4) and (B.5)

respectively. They differ from those of incremental goals only in the goal comparison that
is being made.

B.1.3 Aggregate Goals: Stage 1

The first two terms of the expected current value function, given by Equation (B.6), in its
wait region reflect the option value of stopping in the first stage, while the second two reflect
that of stopping in the second. In contrast to the case of incremental goals, the disutility
from ex-ante uncertainty is absent from the first two terms, as the agent does not directly
evaluate himself against a goal in the first stage. Likewise, the first term of the expected
continuation value function, given by Equation (B.7), in its wait region reflects the option
value of the first stage from an ex ante perspective, while the second term reflects that of
the second.
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E[wagg
2 (x̃2, r

agg
2 )|x̃2] =



















β[xagg
2 − I2 + 1

2η(
1+2ǫ+α

1+ǫ )(xagg
2 + x

agg
1 ) − 1

2η(α+ 1)(ragg
2 + I1 + I2)](

x̃2

xagg
2

)γ1

+(1 − β)[xagg
2 − I2 + 1

2η(
1+2ǫ+α

1+ǫ )(xagg
2 + x

agg
1 )

−1
2η(α+ 1)(ragg

2 + I1 + I2)](
x̃2

xagg
2

)γ2 if x̃2 < x
agg
2

x̃2 − I2 + E[ψ(x1t1
− I1 + x2 − I2 − r

agg
2 )|x̃2] if x̃2 ≥ x

agg
2

(B.4)

E[vagg
2 (x̃2, r

agg
2 )|x̃2] =

{

[xagg
2 − I2 + 1

2η(
1+2ǫ+α

1+ǫ )(xagg
2 + x

agg
1 ) − 1

2η(α+ 1)(ragg
2 + +I1 + I2)](

x̃2

xagg
2

)γ1 if x̃2 < x
agg
2

x̃2 − I2 + E[ψ(x1t1
− I1 + x2 − I2 − r

agg
2 )|x̃2] if x̃2 ≥ x

agg
2 .

(B.5)

E[wagg
1 (x̃1, r

agg
1 )|x̃1] =











































β[xagg
1 − I1](

x̃1

xagg
1

)γ1 + (1 − β)[xagg
1 − I2](

x̃1

xagg
1

)γ2

+kγ1β[xagg
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I2](

x̃1

xagg
2

)γ1

+kγ1(1 − β)[xagg
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I2](

x̃1

xagg
2

)γ2 if x̃1 < x
agg
1

x̃1 − I1 + kγ1β[xagg
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I2](

x̃1

xagg
2

)γ1

+kγ1(1 − β)[xagg
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I2](

x̃1

xagg
2

)γ2 if x
agg
1 ≤ x̃1 <

xagg
2

k

(1 + k)x̃1 − I1 − I2 + E[ψ(x1 + x2 − x
agg
1 − x

agg
2 )|x̃1] if x̃1 ≥ xagg

2

k ,

(B.6)

E[vagg
1 (x̃1, r

agg)|x̃1] =















[xagg
1 − I1](

x̃1

xagg
1

)γ1 + kγ1 [xagg
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I2](

x̃1

xagg
2

)γ1 if x̃1 < x
agg
1

x̃1 − I1 + kγ1 [xagg
2 (1 − 1

2η(α− 1)( ǫ
1+ǫ)) − I2](

x̃1

xagg
2

)γ1 if x
agg
1 ≤ x̃1 <

xagg
2

k

(1 + k)x̃1 − I1 − I2 + E[ψ(x1 + x2 − x
agg
1 − x

agg
2 )|x̃1] if x̃1 ≥ xagg

2

k .

(B.7)
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B.2 Proof of Proposition 13

Given parameters (η, α, β, λ, ǫ), the stopping thresholds that maximize vinc
1 in its wait region

solve the following problem:

max
x1,x2

[x1(1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I1](

x̃1

x1
)γ1 + kγ1 [x2(1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I2](

x̃1

x2
)γ1 .

For each stage, the first order conditions
∂vinc

1

∂x1
= 0 and

∂vinc
1

∂x2
= 0 yield the following two

first-best thresholds, x∗1 and x∗2:

x∗1 =
γ1I1

(γ1 − 1)[1 − 1
2η(α− 1)( ǫ

1+ǫ)]
,

x∗2 =
γ1I2

(γ1 − 1)[1 − 1
2η(α− 1)( ǫ

1+ǫ)]
.

When xinc
i = x∗i , the agent achieves the first-best; when xinc

i > x∗i he waits longer than the
first-best. Solving for the condition such that xinc

i ≥ x∗i for i = 1, 2 yields:

(
γ − γ1

γ1
)[1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)] − 1

2
ηγ1(α+ 1) ≤ 0.

B.3 Proof of Proposition 14

To show Proposition 14, I will find the ǫ such that ∂
∂α(E[vinc

1 (x1)|x̃1])|α=1 ≤ 0. Since the
two components of E[vinc

1 (x1)|x̃1] regarding the first and second stages differ only by Ii
and the constant kγ1 , I differentiate only the first stage E[vinc

1 (x1)|x̃1] with respect to α for
brevity. This yields,

∂

∂α
(E[vinc

1 (x1)|x̃1]) =
∂

∂α

(

[xinc
1 (1 − 1

2
η(α̂− 1)(

ǫ

1 + ǫ
)) − I1](

x̃1

xinc
1

)γ1

)

=(
1

xinc
1

)γ1

(

(
∂xinc

1

∂α
)[−(γ1 − 1)(1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
) +

γ1I1

xinc
1

)]

−1

2
η(

ǫ

1 + ǫ
)xinc

1

)

=(
1

xinc
1

)γ1(
ηI1

2
)(

1

(γ − 1)[1 − 1
2η(α− 1)( ǫ

1+ǫ)] − 1
2η(α+ 1)

)2

{[1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)][−γ1(γ − 1)(

ǫ

1 + ǫ
) + γ − γ1]

− 1

2
η(α+ 1)[(γ1(γ − 1) − γ)(

ǫ

1 + ǫ
) + γ1]}.

Since the first three terms of the above expression are positive for all feasible (η, α), I
consider only the fourth term, which is clearly monotonic in α, when evaluating the partial
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derivative at α = 1 for brevity. This yields,

∂

∂α
(E[vinc

1 (x1)|x̃1])|α=1 = −γ1(γ − 1)(1 + η)(
ǫ

1 + ǫ
) + γ − γ1 + ηγ(

ǫ

1 + ǫ
) − ηγ1

= ǫ[γ(γ1 − 1)(1 + η)] − γ + (1 + η)γ1.

Thus, ∂
∂α(E[vinc

1 (x1)|x̃1])|α=1 > 0 (i.e., there exists an interior constrained optimum for α)

when η < η∗ = γ−γ1

γ1
and

ǫ <
γ − γ1(1 + η)

γ(γ1 − 1)(1 + η)
.

Otherwise, ∂
∂α(E[vinc

1 (x1)|x̃1])|α=1 ≤ 0, so the constrained optimum is α = 1.
When the agent sets an aggregate goal, the analogous result holds. Recall that

E[vagg
1 (x1)|x̃1] is given by

E[vagg
1 (x1)|x̃1] = [xagg

1 − I1](
x̃1

x
agg
1

)γ1 + kγ1 [xagg
2 (1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I2](

x̃1

x
agg
2

)γ1 .

Since xagg
2 = xinc

2 , then the preceding analysis with respect to incremental goals applies
to the expected option value of the second stage, i.e. the second term of the expected
option value of the entire project, E[vagg

1 (x1)|x̃1]. Consider the η′ such that E[vagg
1 (x1)|x̃1]

is maximized when η = η′ and α = 1. In the proof of Proposition 18, I show that η′ > η∗

and that xagg
1 ≤ x∗1 in this case. Let η < η∗ and ǫ be sufficiently small that

ǫ <
γ − γ1(1 + η)

γ(γ1 − 1)(1 + η)
.

Then our previous result on incremental goals implies that the second term of E[vagg
1 (x1)|x̃1]

is increasing in α when α = 1. To show that the first term of E[vagg
1 (x1)|x̃1] is increasing,

note that xagg
1 < x∗1 when η < η∗, so the first term is increasing as long as

∂xagg
1

∂η > 0.

Differentiating xagg
1 , this is guaranteed whenever

η ≤ γ − 1

γ2(γ − 1)( ǫ
1+ǫ) + γ2 + 1

.

Thus, ∂
∂α(E[vagg

1 (x1)|x̃1])|α=1 > 0 whenever η and ǫ are sufficiently small, and an interior
optimum α > 1 exists. Otherwise, the optimal level of loss aversion is α = 1.

B.4 Proof of Proposition 15

Proof. First, I show existence and uniqueness of xagg
1 .

Proof. Define the following function, G(x):

G(x) =γI1 +
1

2
η(α+ 1)(

1

γ − 1
)[βkγ1(γ1 − 1)(

1

x
agg
2

)γ1(x)γ1+1

+ (1 − β)kγ2(γ2 − 1)(
1

x
agg
2

)γ2(x)γ2+1] − (γ − 1)x. (B.8)
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Clearly, G(xagg
1 ) = 0, so it is sufficient to verify that G(x) has a unique root in the range

0 < x
agg
1 < xinc

1 . First, G(0) = γI1 > 0. Second, G is clearly increasing in k, where k < I2
I1

.
Therefore,

G(xinc
1 ) = γI1 +

1

2
η(α+ 1)

1

(γ − 1)
[βkγ1(γ1 − 1)(

xinc
1

x
agg
2

)γ1(xinc
1 )

+ (1 − β)kγ2(γ2 − 1)(
xinc

1

x
agg
2

)γ2(xinc
1 )] − (γ − 1)(xinc

1 )

= γI1 +
1

2
η(α+ 1)

1

(γ − 1)
[βkγ1(γ1 − 1)(

I1

I2
)γ1(xinc

1 )

+ (1 − β)kγ2(γ2 − 1)(
I1

I2
)γ2(xinc

1 )] − (γ − 1)(xinc
1 )

≤ γI1 +
1

2
η(α+ 1)

1

(γ − 1)
[β(

I2

I1
)γ1(γ1 − 1)(

I1

I2
)γ1(xinc

1 )

+ (1 − β)(
I2

I1
)γ2(γ2 − 1)(

I1

I2
)γ2(xinc

1 )] − (γ − 1)(xinc
1 )

≤ γI1 +
1

2
η(α+ 1)xagg

2 − (γ − 1)xinc
2

< γI1 +
1

2
η(α+ 1)xagg

2 − (γ − 1)xinc
2 +

1

2
η(α− 1)(γ − 1)(

ǫ

1 + ǫ
)xinc

2

= γ(I1 − II) = 0,

where the second line follows from the fact that xagg
2 = xinc

2 and xinc
1 = ( I1

I2
)xinc

2 , and the

third from the fact that G is increasing in k, where k < I2
I1

.

Since G(0) > 0 and G(xinc
1 ) < 0, then there exists at least one root in this range.

Suppose that there exists more than one root in [0, xinc
1b ]. Since G(0) > 0 and G(xinc

1 ) < 0,
then there must exist a local maximum x′ such that G′(x′) = 0 and G′′(x′) < 0. However,

we can verify that d2G(x)
dx2 > 0 for all x > 0. Therefore, no local maximum exists in the

interval [0, xinc
1 ], so G(x) has a unique root in the range 0 < x < xinc

1 . To rule out any roots

x′′ where x′′ > xinc
1 , note that it must be that G′(x′′) > 0 since d2G(x)

dx2 > 0 for all x > 0.

However, this implies that
∂xagg

1

∂xagg
2

> 0, which is nonsensical. If the agent never completes

the second stage, then he will never evaluate himself against the aggregate goal, so it is
essentially ineffectual. Given this, his stopping threshold in the first stage cannot increase
as xagg

2 increases.

Thus, xagg
1 exists and is unique, and xagg

1 < xinc
1 . The fact that xagg

1 > ( γ
γ−1)I1, where the

right-hand side of the inequality is the agent’s stopping threshold in the absence of reference
dependence (η = 0), is obvious by inspection of Equation (2.36). Since xagg

2 = xinc
2 , we have

proven the proposition.
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B.5 Proof of Proposition 16

To find
∂xagg

1

∂ǫ , we apply the implicit function theorem to Equation (B.8). First,

∂G

∂ǫ
= −1

2
η(α+ 1)(

1

γ − 1
)[βkγ1(γ1 − 1)(x)γ1+1(γ1)(

1

x
agg
2

)γ1+1(
∂x

agg
2

∂ǫ
)

− (1 − β)kγ2(γ2 − 1)(x)γ2+1(γ2)(
1

x
agg
2

)γ2+1(
∂x

agg
2

∂ǫ
)].

Since
∂xagg

2

∂ǫ > 0, then ∂G
∂ǫ ≤ 0, with equality only when η = 0 or α = 1. The latter condition

arises from the fact that
∂xagg

2

∂ǫ = 0 if α = 1. In the preceding proof of the existence of xagg
1 ,

I have shown that ∂G
∂x < 0 when 0 < x < xinc

1 . By the implicit function theorem,

∂x
agg
1

∂ǫ
= −

∂G
∂ǫ
∂G
∂x

.

Thus,
∂xagg

1

∂ǫ ≤ 0, with equality only when η = 0 or α = 1.

B.6 Proof of Proposition 17

Since xagg
2 = xinc

2 , the expected option value of the second stage is the same regardless of
whether the agent sets incremental or aggregate goals. Therefore, the results from Propo-
sition 13 apply to the second stage. Since he incurs no comparison utility in the first stage,
the first-stage first-best is given by x∗1 = ( γ1

γ1−1)I1, the stopping threshold he would employ
in the absence of reference dependence (η = 0) and present-biasedness (β = 1 or λ = 0).
When F ≥ 0, then it must be true that

(
γ − γ1

γ1
) − 1

2
ηγ1(α+ 1) ≥ 0, (B.9)

with equality only if ǫ = 0, since F is decreasing in ǫ. Note that when ǫ = 0, xinc
1 ≤ x∗1

whenever (B.9) is true. But since xagg
1 < xinc

1 and
∂xagg

1

∂ǫ < 0, then x
agg
1 < x∗1 whenever

F > 0.

B.7 Proof of Proposition 18

To show the proposition, I find the optimal combinations of (η, α) given that the agent sets
incremental and aggregate goals separately, then compare the two value functions under
each form of bracketing.
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Incremental Goals

I show that arg maxη,αE[vinc
1 (x1)|x̃1] = (η∗, 1). First, E[vinc

1 (x1)|x̃1] is given by

E[vinc
1 (x1)|x̃1] =[xinc

1 (1 − 1

2
η(α̂− 1)(

ǫ

1 + ǫ
)) − I1](

x̃1

xinc
1

)γ1

+ kγ1 [xinc
2 (1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I2](

x̃1

xinc
2

)γ1 .

Suppose that arg maxη,αE[vinc
1 (x1)|x̃1] = (η̂, α̂), where η̂ 6= η∗ and α̂ > 1. Let x̂inc

i be the
threshold that the agent uses when η = η̂ and α = α̂, where i = 1, 2. Clearly, x̂inc

i is a
function of η̂ and α̂. We can construct a threshold x∗inc

i such that α = 1 and η = η∗, and
x̂inc

i = x∗inc
i :

x̂inc
i = x∗inc

i

γIi

(γ − 1)[1 − 1
2 η̂(α̂− 1)( ǫ

1+ǫ)] − 1
2 η̂(α̂+ 1)

=
γIi

(γ − 1)[1 − 1
2η

∗(1 − 1)( ǫ
1+ǫ)] − 1

2η
∗(2)

1

(γ − 1)[1 − 1
2 η̂(α̂− 1)( ǫ

1+ǫ)] − 1
2 η̂(α̂+ 1)

=
1

γ − 1 − η∗

η∗ =
1

2
η̂[(γ − 1)(α̂− 1)(

ǫ

1 + ǫ
) + α̂+ 1].

Thus, there exists (η∗, 1), where η∗ is clearly non-negative, such that x̂inc
i = x∗inc

i . Unsur-
prisingly, inspection of the equation describing η∗ yields that η∗ is increasing in η̂ and α̂,
as well as ǫ. Let v̂inc

1 be the option value of the project with (η̂, α̂) and v∗inc
1 be the option

value of the project with (η∗, 1). Since x̂inc
i = x∗inc

i , then

E[v̂inc
1 (x1)|x̃1] =[x̂inc

1 (1 − 1

2
η̂(α̂− 1)(

ǫ

1 + ǫ
)) − I1](

x̃1

x̂inc
1

)γ1

+ kγ1 [x̂inc
2 (1 − 1

2
η̂(α̂− 1)(

ǫ

1 + ǫ
)) − I2](

x̃1

x̂inc
2

)γ1

=[x∗inc
1 (1 − 1

2
η̂(α̂− 1)(

ǫ

1 + ǫ
)) − I1](

x̃1

x∗inc
1

)γ1

+ kγ1 [x∗inc
2 (1 − 1

2
η̂(α̂− 1)(

ǫ

1 + ǫ
)) − I2](

x̃1

x∗inc
2

)γ1

< [x∗inc
1 − I1](

x̃1

x∗inc
1

)γ1 + kγ1 [x∗inc
2 − I2](

x̃1

x∗inc
2

)γ1

=E[v∗inc
1 (x1)|x̃1].

Thus, we have shown that arg maxη,αE[vinc
1 (x1)|x̃1] = (η∗, 1) when the agent sets

incremental goals.

Aggregate Goals

I show that arg maxη,αE[vagg
1 (x1)|x̃1] = (η′, 1) where η′ > η∗. First, E[vagg

1 (x1)|x̃1]
is given by

E[vagg
1 (x1)|x̃1] = [xagg

1 − I1](
x̃1

xagg
1

)γ1 + kγ1 [xagg
2 (1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I2](

x̃1

xagg
2

)γ1 .
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Suppose that arg maxη,αE[vagg
1 (x1)|x̃1] = (η̂, α̂), where η̂ 6= η′ and α̂ > 1. Let x̂agg

i

be the threshold that the agent uses when η = η̂ and α = α̂, where i = 1, 2. As in
the case of incremental goals, we can construct a threshold x′agg

2 such that α = 1 and
η = η∗, and x̂agg

2 = x′agg
2 . Since xagg

2 = xinc
2 , the same procedure yields

η′ =
1

2
η̂[(γ − 1)(α̂− 1)(

ǫ

1 + ǫ
) + α̂+ 1].

Thus, there exists (η′, 1), where η′ is clearly non-negative, such that x̂agg
2 = x′agg

2 .
Unsurprisingly, inspection of the equation describing η′ yields that η′ is increasing in
η̂ and α̂, as well as ǫ. Let v̂agg

1 be the option value of the project with (η̂, α̂) and v′agg
1

be the option value of the project with (η′, 1). Since x̂agg
2 = x′agg

2 , then

E[v̂agg
1 (x1)|x̃1] = [x̂agg

1 − I1](
x̃1

x̂agg
1

)γ1 + kγ1 [x̂agg
2 (1 − 1

2
η̂(α̂− 1)(

ǫ

1 + ǫ
)) − I2](

x̃1

x̂agg
2

)γ1

= [x̂agg
1 − I1](

x̃1

x̂agg
1

)γ1 + kγ1 [x′agg
2 (1 − 1

2
η̂(α̂− 1)(

ǫ

1 + ǫ
)) − I2](

x̃1

x′agg
2

)γ1

< [x̂agg
1 − I1](

x̃1

x̂agg
1

)γ1 + kγ1 [x′agg
2 − I2](

x̃1

x′agg
2

)γ1

< [x′agg
1 − I1](

x̃1

x′agg
1

)γ1 + kγ1 [x′agg
2 − I2](

x̃1

x′agg
2

)γ1

= E[v′agg
1 (x1)|x̃1].

The second inequality follows from the fact that x̂agg
1 < x′agg

1 , since x̂agg
2 = x′agg

2

and clearly η′ > 1
2
η̂(α̂ + 1). Note that the first term of E[v̂agg

1 (x1)|x̃1] is maximized

when xagg
1 = ( γ1

γ1−1
)I1 ≡ x∗1. Since we know that x′agg

1 < ( γ
γ−1−η′

)I1, then the second

inequality follows as long as η′ is sufficiently low that x′agg
1 ≤ x∗1. If η′ is so high that

x′agg
1 > x∗1, then we must have η′ > η∗. But since the second term of E[vagg

1 (x1)|x̃1]
is maximized when η = η∗ and α = 1, then both the first and second terms of his
option value can be increased by decreasing his degree of reference dependence if η′ is
so high that x′agg

1 > x∗1. Thus, we must have that the optimal η′ is sufficiently low that
x′agg

1 ≤ x∗1, so the second inequality follows. Thus, arg maxη,αE[vagg
1 (x1)|x̃1] = (η′, 1).

It follows that η′ > η∗ by noting that given that α = 1, ∂
∂η

(E[vagg
1 (x1)|x̃1]) > 0 for all

η ≤ η∗.

I have shown that given either form of goal bracketing, the agent’s option value
is maximized when α = 1. When he sets incremental goals, then the optimal degree
of reference dependence is given by η∗. When he sets an aggregate goal, the optimal
degree of reference dependence is given by η′ > η∗. Then the optimized value functions
are given by

E[v′agg
1 (x1)|x̃1] = [x′agg

1 − I1](
x̃1

x′agg
1

)γ1 + kγ1 [x′agg
2 − I2](

x̃1

x′agg
2

)γ1

E[v∗inc
1 (x1)|x̃1] = [x∗inc

1 − I1](
x̃1

x∗inc
1

)γ1 + kγ1 [x∗inc
2 − I2](

x̃1

x∗inc
2

)γ1 .
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I have already shown that each term of E[v∗inc
1 (x1)|x̃1] is maximized when η = η∗.

Since η′ > η∗, then this implies that E[v′agg
1 (x1)|x̃1] < E[v∗inc

1 (x1)|x̃1], so the option
value is globally maximized when the agent sets incremental goals, α = 1, and η = η∗.

B.8 Proof of Proposition 19

If k < I2
I1

, then the agent completes each stage sequentially regardless of how he

brackets. So we need to compare the expectations of vagg
1 and vinc

1 .

Proof. Existence

I assume that E[vagg
1 (x1, r

agg)|x̃1] < E[vinc
1 (x1, r

inc
1 )|x̃1] when ǫ = 0, and in partic-

ular that condition (2.37) is satisfied: 1
2
η(α+ 1) ≤ γ−γ1

γ1

. To demonstrate existence, I

consider conditions such that E[vagg
1 (x1, r

agg)|x̃1] > E[vinc
1 (x1, r

inc
1 )|x̃1] when ǫ→ ∞:

lim
ǫ→∞

E[vinc
1 (x1, r

inc
1 ) − vagg

1 (x1, r
agg)|x̃1] =[xinc

1 (1 − 1

2
η(α− 1)) − I1](

x̃1

xinc
1

)γ
1

− [xagg
1 − I1](

x̃1

xagg
1

)γ1 . (B.10)

Since xagg
1 (ǫ = 0) < xinc

1 (ǫ = 0) < x∗1(ǫ = 0), and
∂xagg

1

∂ǫ
< 0, then the second term is

positive. Although we do not have an explicit expression for xagg
1 , we know that it is

bounded below: xagg
1 > ( γ

γ−1
)I1 ≡ xh. Then the second term in Equation (B.10) is

bounded below by

[xh − I1](
x̃1

xh

)γ1 .

Thus, any (η, α) such that

0 ≥ [xinc
1 (1 − 1

2
η(α− 1)) − I1](

x̃1

xinc
1

)γ
1 − [xh − I1](

x̃1

xh

)γ1

will also satisfy the condition that Equation (B.10) is negative. Since the left-hand
term is strictly decreasing in α and η, then Equation (B.10) will be negative for any
(η, α) sufficiently high that this inequality is satisfied. This inequality can be reduced
to the following:

M(η, α) ≡ (γ − 1)γ1−1 − (1 + η)

(

(γ − 1)[1 − 1

2
η(α− 1)] − 1

2
η(α+ 1)

)γ1−1

≥ 0,

where M(0, 1) = 0. Also, consider the maximum permissible combination(s) (η, α),
which satisfies

(γ − 1)[1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)] − 1

2
η(α+ 1) = 0,

and where η ≤ γ − 1. Evaluating M at such a point, we must have that M(η, α) > 0
since ǫ ≥ 0. Furthermore, ∂M

∂α
> 0 for η > 0. Differentiating M with respect to η, we
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have that M is increasing if

γ(α+ 1) − 2γ1(1 + η) − γ1γ(α− 1)(1 + η) ≤ 0, (B.11)

and decreasing otherwise. Since the left-hand side of Equation (B.11) is decreasing in
both η and α, we require (η, α) sufficiently large so that Equation (B.11) is satisfied
in order for Equation (B.10) to be negative. Since M(0, 1) = 0, M(η, α) > 0, ∂M

∂α
> 0

when η > 0, and M is initially decreasing (and therefore negative) before increasing
thereafter in η, then there exist some combinations (η′, α′) such that M(η′, α′) = 0
and M(η, α) > 0 for all η′ ≤ η ≤ η and α′ ≤ α ≤ α, where η′ > 0 and α′ > 1.

To verify that there exist values of (η, α) that satisfy both (2.37) and M(η, α) > 0,
let us consider whether (B.11) can be satisfied when (2.37) holds with equality. If not,
then such values (η, α) do not exist and such a threshold ǫ does not exist. Suppose
that α is sufficiently high (denoted α̂), given some η, that 1

2
η(α̂+1) = γ−γ1

γ1

. Does there

exist some range of η such that M(η, α) > 0 is still satisfied? When 1
2
η(α̂+1) = γ−γ1

γ1

,

then 1
2
η(α̂− 1) = γ−γ1

γ1

− η and M becomes

M(η, α̂) = (γ − 1)γ1−1 − (1 + η)[(γ − 1)(1 + η) − γ(
γ − γ1

γ1

)]γ1 . (B.12)

Since the second term is strictly positive and less than γ − 1 when η = 0, then
M(0, α̂) is strictly positive whenever η = 0. We can also verify that ∂M

∂η
|(0,α̂) < 0

and ∂M
∂α

> 0 for η > 0. Therefore, there exists some range of η such that M(η, α̂)
is satisfied when (2.37) holds with equality. Thus, for (η, α) sufficiently large, there
exists some threshold ǫ̃ such that E[vagg

1 (x1, r
agg)|x̃1] < E[vinc

1 (x1, r
inc
1 )|x̃1] when ǫ < ǫ̃,

and E[vagg
1 (x1, r

agg)|x̃1] > E[vinc
1 (x1, r

inc
1 )|x̃1] when ǫ > ǫ̃. In particular, (η, α) must

satisfy both (2.37) and M(η, α) > 0.

Uniqueness

I have shown that there exists an ǫ̃ such that E[vagg
1 (x1, r

agg)−vinc
1 (x1, r

inc
1 )|x̃1] = 0

if (η, α) is sufficiently large. Since we know that E[vagg
1 (x1, r

agg)−vinc
1 (x1, r

inc
1 )|x̃1] < 0

when ǫ = 0 and E[vagg
1 (x1, r

agg)− vinc
1 (x1, r

inc
1 )|x̃1] > 0 when ǫ→ ∞, it is sufficient to

show that ∂
∂ǫ

(E[vagg
1 (x1, r

agg) − vinc
1 (x1, r

inc
1 )|x̃1]) is monotonic in ǫ. It must be true

that at ǫ̃, the following condition must hold:

[xinc
1 (1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I1](

x̃1

xinc
1

)γ1 = [xagg
1 − I1](

x̃1

xagg
1

)γ1 . (B.13)

Since x̃1 simply carries through, I suppress the x̃1 term in the following derivations.
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Direct differentiation of E[vinc
1 |x̃1] yields

∂

∂ǫ
(E[vinc

1 |x̃1]) =(
1

xinc
1

)γ1+1[−(xinc
1 )2(

1

2
η(α− 1))(

1

(1 + ǫ)2
)

+
∂xinc

1

∂ǫ
[−(γ1 − 1)xinc

1 (1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) + γ1I1]]

= − (
1

xinc
1

)γ1(
1

2
η(α− 1))[

1

(γ − 1)(1 + 1
2
η(2ǫ+α+1

1+ǫ
)) − γ

2
η(α+ 1)

]2

(
I1

(1 + ǫ)2
)[γ(1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) + (1 +

1

2
η(
α+ 2ǫ+ 1

1 + ǫ
))]

= − (
1

xinc
1

)γ1−1(
1

2
η(α− 1))[

1

(γ − 1)(1 + 1
2
η(2ǫ+α+1

1+ǫ
)) − γ

2
η(α+ 1)

]

(
1

γ(1 + ǫ)2
)[γ(1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) + (1 +

1

2
η(
α+ 2ǫ+ 1

1 + ǫ
))]

Differentiation of E[vagg
1 |x̃1] yields

∂

∂ǫ
(E[vagg

1 |x̃1]) = (
1

xagg
1

)γ1+1(
∂xagg

1

∂ǫ
)[xagg

1 − γ1(x
agg
1 − I1)]

= (
∂xagg

1

∂ǫ
)[(

1

xagg
1

)γ1 − γ1(
1

xagg
1

)γ1+1(xagg
1 − I1)],

where
∂xagg

1

∂ǫ
< 0 and the last term is positive, since xagg

1 < ( γ1

γ1−1
)I1 = x∗1(ǫ = 0).

Using Equation (B.13), we can rewrite this as

∂

∂ǫ
(E[vagg

1 |x̃1]) =(
∂xagg

1

∂ǫ
)(

1

xinc
1

)γ1 [xinc
1 (1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I1]

[
xagg

1 − γ1(x
agg
1 − I1)

xagg
1 (xagg

1 − I1)
],

For brevity, let us define

H(ǫ) =

1
2η(α+ 1)[βkγ1(γ1−1

γ−1 )γ1(
xagg
1

xagg
2

)γ1+1 + (1 − β)kγ2(γ2−1
γ−1 )γ2(

xagg
1

xagg
2

)γ2+1]

γ − 1 − 1
2η(α+ 1)[βkγ1(γ1−1

γ−1 )(γ1 + 1)(
xagg
1

xagg
2

)γ1 + (1 − β)kγ2(γ2−1
γ−1 )(γ2 + 1)(

xagg
1

xagg
2

)γ2 ]
.

We can write out
∂xagg

1

∂ǫ
as

∂xagg
1

∂ǫ
= −(

∂xagg
2

∂ǫ
)H(ǫ),

where the last term must be positive because we have already shown that
∂xagg

1

∂ǫ
< 0.
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Since xagg
2 = xinc

2 , then
∂xagg

1

∂ǫ
= −(

∂xinc
1

∂ǫ
)( I2

I1
)H(ǫ). Then we have

∂

∂ǫ
(E[vagg

1 |x̃1]) = − (
∂xinc

1

∂ǫ
)(
I2
I1

)H(ǫ)(
1

xinc
1

)(
1

xinc
1

)γ1−1[xinc
1 (1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I1]

[
xagg

1 − γ1(x
agg
1 − I1)

xagg
1 (xagg

1 − I1)
]

= − (γ − 1)
1

2
η(α− 1)(

1

1 + ǫ
)2[

1

(γ − 1)(1 + 1
2
η(2ǫ+α+1

1+ǫ
)) − γ

2
η(α+ 1)

]

(
I2
I1

)H(ǫ)(
1

xinc
1

)γ1−1[xinc
1 (1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I1]

[
xagg

1 − γ1(x
agg
1 − I1)

xagg
1 (xagg

1 − I1)
].

Thus,

∂vinc
1

∂ǫ
− ∂vagg

1

∂ǫ
= A(ǫ)[B(ǫ) + (

I2
I1

)(γ − 1)H(ǫ)C(ǫ)D(ǫ)],

where

A(ǫ) = −(
1

xinc
1

)γ1−1(
1

2
η(α− 1))(

1

1 + ǫ
)2[

1

(γ − 1)(1 + 1
2
η(2ǫ+α+1

1+ǫ
)) − γ

2
η(α+ 1)

]

B(ǫ) = γ(1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) + (1 +

1

2
η(
α+ 2ǫ+ 1

1 + ǫ
))

C(ǫ) = xinc
1 (1 − 1

2
η(α− 1)(

ǫ

1 + ǫ
)) − I1

D(ǫ) = −x
agg
1 − γ1(x

agg
1 − I1)

xagg
1 (xagg

1 − I1)

Since A(ǫ) is always negative, we need only consider how the second term,
[B(ǫ) + ( I2

I1
)(γ− 1)H(ǫ)C(ǫ)D(ǫ)], varies with ǫ. By direct differentiation, B(ǫ), H(ǫ)

and D(ǫ) are monotonically decreasing in ǫ. Although C(ǫ) is monotonically in-
creasing in ǫ, its rate of increase is not sufficient to counteract H(ǫ) and D(ǫ), and
H(ǫ)C(ǫ)D(ǫ) is also monotonically decreasing in ǫ. Since ∂

∂ǫ
(vinc

1 −vagg
1 ) is monotonic

in ǫ, then any threshold ǫ̃ such that E[vagg
1 (x1, r

agg)|x̃1] < E[vinc
1 (x1, r

inc
1 )|x̃1] when

ǫ < ǫ̃, and E[vagg
1 (x1, r

agg)|x̃1] > E[vinc
1 (x1, r

inc
1 )|x̃1] when ǫ > ǫ̃ is unique.
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Appendix C

Appendix for Chapter 3

C.1 Imperfect Correlation

Suppose that the correlation among agents’ tastes is not necessarily perfect. I will
show that noisier information (i.e., increasing ρjk(1 − ρjk)) has the same qualitative
effect as decreasing parameter α.

For example, suppose that ρ13 ∈ {ρ, 1 − ρ}, where 0 ≤ ρ ≤ 1. A priori, P (ρ13 =
ρ) = P (ρ13 = 1 − ρ) = 1

2
. If a (θ1, θ2) agent i observes the tastes of a (θ1, θ3) agent j

such that θj
3 = θj

1 = θi
1, then his posterior is that P (ρ13 = ρ) = ρ. Agent i makes the

same inference if µ1 ≤ 1
2

and he only observes the actions of agent j, since he knows
that everyone in the pool is like-minded. Suppose that µ ≤ 1

2
. Then agent i chooses

x3 to solve the following problem,

max
x3

−ρ[ρ(θ1−x3)
2 +(1−ρ)(θ1−

1

2
−x3)

2]−(1−ρ)[(1−ρ)(θ1−x3)
2 +ρ(θ1−

1

2
−x3)

2],

for which the solution is x3 = θ1−ρ(1−ρ) and the payoff is b1 = −ρ(1−ρ)(1
2
−ρ(1−ρ)).

Therefore, his expected benefit from pooling is

(1 − αµ1

2
)(− 1

16
) +

αµ

2
(−ρ(1 − ρ)(

1

2
− ρ(1 − ρ)))

= − 1

16
+
αµ

2
[
1

16
− ρ(1 − ρ)(

1

2
− ρ(1 − ρ))].

Clearly, as ρ → 1
2

from the right or the left (or equivalently, as ρ(1 − ρ) increases),
the second term decreases. This is the same qualitative effect as decreasing α.

Suppose that µ > 1
2
. Then there is the possibility that agent i will only observe the

actions of an “unlike” type. Because he cannot distinguish a “like” from an “unlike”
type based on actions, then his posterior P (ρ13 = ρ) = 1

2µ1

ρ+(1− 1
2µ1

)(1−ρ). Solving
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the problem

max
x3

− [
1

2µ1

ρ+ (1 − 1

2µ1

)(1 − ρ)][ρ(θ1 − x3)
2 + (1 − ρ)(θ1 −

1

2
− x3)

2]

− [(1 − 1

2µ1

)ρ+
1

2µ1

(1 − ρ)][(1 − ρ)(θ1 − x3)
2 + ρ(θ1 −

1

2
− x3)

2],

he chooses x3 = θ1 − 1
4µ1

[4(1 − µ)ρ(1 − ρ) + 2µ1 − 1], which yields a payoff of b2 =
1

16µ2

1

[1 − 4(1 − µ1)ρ(1 − ρ)][4(1 − µ1)ρ(1 − ρ) + 2µ1 − 1]. Hence, his expected benefit

from pooling is

(1 − αµ1

2
)(− 1

16
) +

αµ1

2
[(µ1)(b1) + (1 − µ1)(b2)]

= − 1

16
+
α

32
(1 − µ1)(2ρ− 1)2(4µ1ρ

2 − 4µ1ρ+ 1).

As ρ → 1
2

from the right or the left (or equivalently, as ρ(1 − ρ) increases), the
second term decreases. This is the same qualitative effect as decreasing α. Hence,
increasing the noisiness of the information is equivalent to decreasing α.

C.2 Stability of Pooling Equilibria

A stable solution for pooling at any given x1 must be robust to slight perturbations.
In particular, we can convert our static equilibrium into a dynamic system to check
the stability of our equilibria, where location x1 is taken as given:

θ̇1(x1) = x1 +

√

α(
1

32
)(θ1 − θ1) − θ1 (C.1)

θ̇1(x1) = x1 −
√

α(
1

32
)(θ1 − θ1) − θ1. (C.2)

The Jacobian for this system is

J =

(

α
2
( 1

32
)[α( 1

32
)(θ1 − θ1)]

−
1

2 − 1 −α
2
( 1

32
)[α( 1

32
)(θ1 − θ1)]

−
1

2

−α
2
( 1

32
)[α( 1

32
)(θ1 − θ1)]

−
1

2
α
2
( 1

32
)[α( 1

32
)(θ1 − θ1)]

−
1

2 − 1

)

Evaluating the Jacobian at the pooling solution from (3.4) and (3.5), I obtain
eigenvalues that are strictly negative, so the solution is stable. Evaluating the Jaco-
bian at the separating solution θ1 = x1 = θ2, I obtain one eigenvalue that is strictly
positive and another that is strictly negative, so the solution is unstable.
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C.3 Proof of Proposition 20

I eliminate all other pooling equilibria by proving a series of claims to rule out various
classes of equilibria, and then consider the remaining type of pooling configuration.

Claim 1. In a given action space, the point at which an interval of agents pool must
be lie inside that interval. No pool can be composed of disjoint intervals, and no pools
overlap.

Proof. Without loss of generality, consider an interval of agents [θ1, θ1], where 0 <
θ1 < θ1 ≤ 1, that pool at some x1. Suppose x1 lies outside this interval, e.g. 0 <
x1 < θ1. Then there exists some θ′1 ∈ [x1, θ1) such that the θ′1 agent prefers not to
join the pool, even though his travel costs to pool are strictly lower than that of the
θ1 agent and the information benefits are the same. This cannot hold simultaneously
in equilibrium. Thus, an interval of agents [θ1, θ1] must be pooling at an x1 ∈ [θ1, θ1].

Suppose that the set of agents that pool at x1 is the union of two disjoint intervals,
[θ1, θ1]∪ [θ′1, θ

′

1], where 0 ≤ θ1 < θ1 < θ′1 < θ
′

1 < 1. Without loss of generality, suppose

x1 ∈ [θ1, θ1]. Since x1 lies outside [θ′1, θ
′

1], then we can apply the same argument as
above to rule out this possibility.

Suppose that two pools overlap. For example, let agents in the interval [θ1, θ1]

pool at x1 ∈ [θ1, θ1] and agents in the interval [θ′1, θ
′

1] pool at x′1 ∈ [θ′1, θ
′

1], where

x1 < θ′1 < θ1 < x′1. Any agent whose type lies the interval (θ′1, θ
′

1) would incur
strictly lower travel costs to pool at x′1 and enjoy the same benefits as the θ′1 type,
but prefers to pool at x1 rather than x′1, which is not possible. Thus, no pools can
overlap.

Second, no pool exists such that µj(xj) >
1
2
.

Claim 2. When g(θj − xj) = −(θj − xj)
2, µj ≤ 1

2
when αµj ≤ 1.

Proof. Obviously, there exists no pool such that µ1 = 1, since this would be com-
pletely uninformative yet costly. If 1 > µ1 >

1
2
, then we have to worry about signal

dilution, since an agent cannot be certain that the signal he receives will give him
correct information about his preferences. If µ1 >

1
2
, then the probability that the

signal θ
m is informative is 1, so the agent learns his own θ3 with certainty. But the

signal xm is not guaranteed to be correct, so the agent’s posterior probability that
his true taste is θ3 rather than θ3 + 1

2
is 1

4µ1

. In the event that the agent receives the
signal xm, he chooses x3 to solve the following problem

max
x3

− 1

2µ1

(θ1 − x3)
2 − (1 − 1

2µ1

)(θ1 +
1

2
− x3)

2,

to which the solution is x3 = θ1 + 1
2
(1 − 1

2µ1

). Then pooling surplus relative to not

pooling is

−(θ1−x1)
2−{(1− η1

2
)(

1

4
)2+

η1

2
[µ1[(

µ1 − 1
2

µ1
)(

1

4µ1
)2+

1

2µ1
(
1

2
(
µ1 − 1

2

µ1
))2]+(1−µ1)(0)]}+(

1

4
)2.
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As before, I require that η1 = αµ1 ≤ 1. Pooling surplus must be non-negative for all
agents in the pool in equilibrium, which reduces to the following condition:

(θ1 − x1)
2 ≤ α

32
(1 − µ1). (C.3)

When µ1 >
1
2
, then there exists some θ1 in the pool such that |x1 − θ1| = 1

4
and

surplus is non-negative. From (C.3), this implies that for such an agent,

α

32
(1 − µ1) > (θ1 − x1)

2 =
1

16
.

Since µ1 >
1
2

and αµ1 ≤ 1, then this requires that µ1 < 1− µ1, which cannot be true
when µ1 >

1
2
. Hence, µ1 ≥ 1

2
when g(·) is a symmetric quadratic loss function with

αµ1 ≥ 1.

Third, the composition of a pool is always “symmetric-by-types” in the following
sense.

Claim 3. For any pool at a given point in an action space Xj, agents of differing
information types pool symmetrically. For example, suppose that θ

a

1(x1) and θa
1(x1)

are the marginal agents with information (θ1, θ2) who pool at x1, and θ
b

1(x1) and θb
1(x1)

are the marginal agents with information (θ1, θ3) who pool at x1. Then θ
a

1(x1) = θ
b

1(x1)
and θa

1(x1) = θb
1(x1).

Proof. In order to prove this claim, I will show that µa
1(x1) = µb

1(x1). Due to the
symmetry of the circular model, there is clearly a unique solution (θj(xj), θj(xj)) for
any µj(xj), so showing that µa

1(x1) = µb
1(x1) is sufficient to establish the claim.

Suppose that µa
1(x1) 6= µb

1(x1). Without loss of generality, let µa
1(x1) < µb

1(x1).
This implies that for the same location, there are (θ1, θ3) agents who are willing to
incur a larger cost to pool for a relatively lower expected benefit from information,
while there are (θ1, θ2) agents who are unwilling to incur a smaller cost to pool for a
relatively higher expected benefit from information. Given that (θ1, θ2) and (θ1, θ3)
agents face an identical optimization problem, this cannot hold in equilibrium. There-
fore, µa

1(x1) = µb
1(x1) at x1.

The following claim demonstrates the n-integer problem.

Claim 4. Let n be the number of pools that exist in the action space X1. Suppose
that the parameter α is a value such that n is not an integer when it satisfies the
condition n(α

8
) = 1. Then there does not exist a stable equilibrium in which all pools

have size α
8

except the remaining space, where either the remaining agents do not pool
anywhere or they form a pool of size less than α

8
.

Proof. Suppose that there exists some open interval of length l < α
8

on X1 such
that any agent with θ1 ∈ l does not pool anywhere. Let agents at the endpoints
of interval l be denoted θl and θl. Because the separating equilibrium is not stable,
this interval of non-pooling agents is not robust to small perturbations. Without loss
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of generality, suppose that the agents in this interval pool at some xl
1 ∈ l. Since

l < α
8
, the requirement that the information benefits of pooling outweigh the costs is

clearly satisfied, that is the inequality in Equation (3.1) is satisfied for all agents in
the interval l. Furthermore, Equation (3.1) must hold with inequality for both for the
marginal agents θl and θl, regardless of whether the pool at xl

1 is symmetric on either
side of the point xl

1. Let x1 be the center of a symmetric pool of size α
8

adjacent to
xl

1, such that x1 < θl < xl
1. Then the θl agent is also the marginal agent for the pool

at the point x1. By construction, Equation (3.1) must hold with equality for the θl

agent with respect to pooling at x1 rather than not pooling, so there is zero surplus
from pooling at x1. Likewise, this situation applies to the θl agent. But since we
have just argued that Equation (3.1) holds with inequality for this agent with respect
to pooling at xl

1, then he cannot be the marginal agent for both pools, since pooling
at the point xl

1 yields strictly positive surplus. Hence, the proposed configuration
unravels and cannot exist.

Furthermore, there can exist equilibria in which adjacent symmetric pools are of
alternating size, where the distance between any two pooling points is exactly α

16
.

Claim 5. There can exist an equilibrium in which any two adjacent pooling points
xj and x′j, with pools of size µj(xj) and µj(x

′

j) respectively, are symmetric and either
|xj − x′j| = α

16
or the two adjacent pools are identical in size. Furthermore, this is

the only configuration for which more than one size of symmetric pool can coexist in
equilibrium.

Proof. Let x1 and x′1 be two adjacent pooling points on the X1 space with pool sizes
µ1(x1) and µ1(x

′

1) respectively, and let the marginal agent between the two points be

denoted θ
′

, so that x1 < θ
′

< x′1. Let d1 = |θ′ − x1| and d′1 = |θ′ − x′1|. Without loss
of generality, let d1 ≥ d′1. Since each pool is symmetric across its pooling point, then

µ1(x1) = 2d1 and µ1(x
′

1) = 2d′1. Combining this with Equation (3.1), the marginal θ
′

agent must be indifferent between pooling at x1 and x′1:

αµ1

32
− (θ

′ − x1)
2 =

αµ′

1

32
− (θ

′ − x′1)
2

α

16
(2d1) − (d1)

2 =
α

16
(2d′1) − (d′1)

2

(d1 − d′1)[d1 + d′1 −
α

16
] = 0.

Therefore, the marginal agent is only indifferent if d1 = d′1 or d1 + d′1 = α
16

. This
implies that two adjacent symmetric pools of unequal size can only exist if their
pooling points are spaced exactly α

16
apart; otherwise, the adjacent pools must be

identical in size. Because this condition must hold for every marginal agent in the X1

space, this means that exactly two differing pool sizes can coexist in an action space
Xj, and they are bounded above by α

16
.
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C.4 Proof of Proposition 22

Because ηn = min{αnµn(xn), 1}, firm 1 will never invest in α1 > α1 where α1(µ
EI
1 ) =

1. Since α∗

2 = 0 in equilibrium, I obtain an upper bound on equilibrium brand
strength, α1:

α1(µ
EI
1 ) = 1

α1

(

2

3
(
α1 + 12

α1 + 16
)

)

= 1

α1 = −21

4
+

5

4

√
33 (< 2).

Because ΠEI
1 is concave for α1 ∈ (0, α1], there may exist 0 < cα < cα such that the

optimal choice is α1 = α1 if k ≤ cα and α1 = 0 if cα > cα. Then for cα < cα < cα,
there is a unique interior solution α∗

1(cα) ∈ (0, α1), where α∗

1(cα) is the value of α1

such that firm 1’s first order condition equals zero, given that α∗

2 = 0. The first order
condition for firm 1 is

∂ΠEI
1

∂α1

=
1

72
[
(α1 − α2 + 12)(α1 − α2 + 20)

(α1 − α2 + 16)2
] − 2kα1.

The lower bound cα is the maximum cα such that the first order condition is positive
for all α1 ∈ [0, α1]. This holds for all cα such that

cα <
1

144
[
(α1 − α2 + 12)(α1 − α2 + 20)

α1(α1 − α2 + 16)2
].

Since α∗

2 = 0 in equilibrium and the right-hand side is strictly decreasing in α1, I
evaluate the right-hand side of this expression at α1 = α1, α2 = 0 to obtain cα:

cα =
8401

4718592
+

1345

4718592
(
√

33).

The upper bound cα is the minimum cα such that the first order condition is negative
for all α1 ∈ [0, α1]. This holds for all cα such that

cα >
1

144
[
(α1 − α2 + 12)(α1 − α2 + 20)

α1(α1 − α2 + 16)2
].

But since the right-hand side is unbounded as α1 → 0, then this cα does not exist.
That is, no matter how finitely large cα is, there always exists an interior solution
α1 > 0 (though as cα increases, the optimal α1 asymptotically approaches zero).
Thus, firm 1 chooses α∗

1 = α1 if cα ≤ cα and a unique α∗

1(cα) ∈ (0, α1) if cα > cα,
where α∗

1(cα) strictly decreases with cα in this region.
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C.5 Endogenizing Location and Brand Investment

In the previous section, I assumed that firms’ locations were equidistant, so that
x1 − x2 = 1

2
. Here, I will demonstrate that the configuration of locations and tech-

nologies that exhibits maximal differentiation in both of those dimensions is the
unique equilibrium when location is also endogenous. The game becomes a three-
stage game in which firms simultaneously choose locations, then brand strengths,
and lastly prices.

C.5.1 Timeline

1. Firms simultaneously choose a variety xn (i.e., location), where xn ∈ [0, 1] for
n = 1, 2.

2. Firms simultaneously choose αn, where n = 1, 2 and they incur investment costs
cαα

2
n ≥ 0 where cα ≥ 0.

3. Firms simultaneously choose prices pn, n = 1, 2.

4. Consumers choose whether or not to buy x1 or x2. Note that before making a
decision, consumers know whether a firm has a branded product or not.

5. (Consumers choose to buy goods in other markets/dimensions.)

In reference to the previous graph, we no longer assume that d1 = d1 and d1 = d1.

C.5.2 Demand

Without loss of generality, suppose that α1 ≥ α2 and let d = x1−x2, where d ∈ [0, 1].
The marginal consumers’ indifference conditions can be described by the following
equations:

p1 + (θ1 − x1)
2 − α1

16
(1 − µ1) = p2 + (1 + x2 − θ1)

2 − α2

16
(µ2) (C.4)

p1 + (x1 − θ1)
2 − α1

16
(1 − µ1) = p2 + (θ1 − x2)

2 − α2

16
(µ2), (C.5)

where µ1 = θ1 − θ1 and µ1 + µ2 = 1. Then we can obtain firm 1’s demand as

µ1 =
α1 − α2 + 32(p2 − p1) + 32d(1 − d)

α1 − α2 + 64d(1 − d)
. (C.6)

C.5.3 Prices

Given demand, firm 1 chooses price to maximize profit, taking p2 as given:

max
p1

(p1 − c)(
α1 − α2 + 32(p2 − p1) + 32d(1 − d)

α1 − α2 + 64d(1 − d)
) − kα2

1.
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Verifying the second order condition, we obtain

p1 =
1

2
[p2 + c+ d(1 − d) +

1

32
(α1 − α2)].

Likewise, firm 2 maximizes profit, where µ2 = 1 − µ1, to obtain

p2 =
1

2
[p1 + c+ d(1 − d)].

Hence, the Nash equilibrium in prices is p1 = c + d(1 − d) + 1
48

(α1 − α2) and p2 =
c+ d(1 − d) + 1

96
(α1 − α2). Firms’ market shares are

µ1 =
2

3
(
α1 − α2 + 48d(1 − d)

α1 − α2 + 64d(1 − d)
)

µ2 =
1

3
(
α1 − α2 + 96d(1 − d)

α1 − α2 + 64d(1 − d)
).

C.5.4 Brand Choice

Given equilibrium prices and demand, firms’ total profits are as follows:

Π1 =
1

72
[
(α1 − α2 + 48d(1 − d))2

α1 − α2 + 64d(1 − d)
] − cαα

2
1

Π2 =
1

288
[
(α1 − α2 + 96d(1 − d))2

α1 − α2 + 64d(1 − d)
] − cαα

2
2.

Firm 2

When α1 > α2, it is clear that the first terms of both ΠEI
1 and ΠEI

2 are strictly
increasing in α1 and strictly decreasing in α2. Given that increasing α2 is also costly
(and even if it is costless!), firm 2 optimizes by choosing α∗

2 = 0.

We can see why firm 2 makes this choice by decomposing its profit. Note that

dΠ2

dα2

= (p2 − c)(
∂µ2

∂α2

+
∂µ2

∂p1

dp1

dα2

) − 2cαα2.

Using our equilibrium demand and prices, we obtain

∂µ2

∂α2

=
1

3
[
α1 − α2 + 96d(1 − d)

(α1 − α2 + 64d(1 − d))2
] > 0 (C.7)

and
∂µ2

∂p1

dp1

dα2

= −2

3
[

1

α1 − α2 + 64d(1 − d)
] < 0. (C.8)

The first term is the demand effect, where increasing α2 directly increases firm
2’s demand by increasing its expected informational benefits. The second term is the
strategic effect, where increasing α2 indirectly decreases firm 2’s demand by causing
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its competitor to lower its price. When α2 increases, then firm 1’s brand advantage
diminishes, so demand is relatively more responsive to prices and price competition
intensifies. Summing equations (C.7) and (C.8), we find that the strategic effect

dominates, so
dΠEI

2

dα2

< 0. The incentive to weaken price competition is stronger
than the incentive to increase demand. Likewise, the relaxation of price competition

through increased brand differentiation is the reason that
dΠEI

2

dα1

> 0, and firm 2 was
better off in the single investment case than in the dual investment case, previously.

Firm 1

Since the second term of ΠEI
1 is decreasing in α1, then firm 1’s optimal α1 depends

on cα, the degree to which brand improvements are costly. By the same argument
from the previous section, in which location was exogenous, firm 1 will choose an
α1 > 0 for any cα ≥ 0. Since the expression for the equilibrium α1 is algebraically
messy when equilibrium location has not been pinned down, I will simply denote it
as α∗

1 for now, where we know that α∗

1 > 0.

C.5.5 Location

Given equilibrium brand investments α1 = α∗

1 and α2 = 0, firms simultaneously
maximize profit with respect to location:

max
x1

{ 1

72
[
(α∗

1 + 48d(1 − d))2

α∗

1 + 64d(1 − d)
] − cαα

∗2
1 }

max
x2

{ 1

288
[
(α∗

1 + 96d(1 − d))2

α∗

1 + 64d(1 − d)
]}.

, where d = x1−x2. The unique solution for which d ∈ [0, 1] is that d∗ = 1
2
. Therefore,

we obtain that firms differentiate maximally in location. Since d∗ = 1
2
, then we can

refer the results from the previous section, where we had assumed that d = 1
2
, to

obtain the equilibrium demands, prices, and brand investments.
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Kőszegi, B. and M. Rabin (2006): “A Model of Reference-Dependent Prefer-
ences,” Quarterly Journal of Economics, 121, 1133–1165.

——— (2009): “Reference-Dependent Consumption Plans,” American Economic Re-
view, 99, 909–936.

Kirschenbaum, D. (1985): “Proximity and specificity of planning: A position pa-
per,” Cognitive Therapy and Research, 9, 486–506.

Klein, H. J. (1991): “Further evidence on the relationship between goal setting and
expectancy theories,” Organizational Behavior and Human Decision Processes, 49,
230–257.

Klein, H. J., M. J. Wesson, J. R. Hollenbeck, and B. J. Alge (1999):
“Goal Commitment and the Goal-Setting Process: Conceptual Clarification and
Empirical Synthesis,” Journal of Applied Psychology, 84, 885–896.

Kleine, III, R. E., S. S. Kleine, and J. B. Kernan (1993): “Mundane Con-
sumption and the Self: A Social-Identity Perspective,” Journal of Consumer Psy-
chology, 2, 209–235.

Koch, A. K. and J. Nafziger (2008): “Self-Regulation through Goal Setting,”
IZA Discussion Paper Series 3893, IZA.

——— (2009a): “Commitment to Self-Rewards,” IZA Discussion Paper Series 4049,
IZA.

——— (2009b): “Goal Bracketing,” Working paper.

179



Kuksov, D. (2007): “Brand Value in Social Interaction,” Management Science, 53,
1634–1644.

Laibson, D. (1997): “Golden Eggs and Hyperbolic Discounting,” Quarterly Journal
of Economics, 112, 443–477.

Latham, G. P. and E. A. Locke (1991): “Self-Regulation through Goal Setting,”
Organizational Behavior and Human Decision Processes, 50, 212–247.

Locke, E. A. and G. P. Latham (2002): “Building a practically useful theory of
goal setting and task motivation: A 35-year odyssey.” American Psychologist, 57,
705–717.

Loewenstein, G. (2007): “Because It Is There: The Challenge of Mountaineering
. . . for Utility Theory,” Kyklos, 52, 315–343.

Matthey, A. (2008): “Yesterday’s Expectation of Tomorrow Determines What You
Do Today: The Role of Reference-Dependent Utility from Expectations,” Jena
Economic Research Papers 2008-003.

Matthey, A. and N. Dwenger (2007): “Don’t Aim Too High: The Potential
Costs of High Aspirations,” Jena Economic Research Papers 2007-097.

McDonald, R. and D. Siegel (1986): “The Value of Waiting to Invest,” The
Quarterly Journal of Economics, 101, 707–728.

Mento, A. J., E. A. Locke, and H. J. Klein (1992): “Relationship of Goal Level
to Valence and Instrumentality,” Journal of Applied Psychology, 77, 395–405.

Miao, J. (2008): “Option exercise with temptation,” Economic Theory, 34, 473–501.

Milgrom, P. and J. Roberts (1986): “Price and Advertising Signals of Product
Quality,” The Journal of Political Economy, 94, 796–821.
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