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Section A: Induced Innovation Effects

In this Appendix, we present a simple model to illustrate why, given an income elasticity
of health expenditure less than one, any induced innovation effects in the health care sector
due to rising income are unlikely to be large. We first present a simple model incorporating
endogenous technology responses to changes in market size. To economize on space, the reader
is referred to Acemoglu (2002, 2007, 2009) or Acemoglu and Linn (2004) for the details (and
microfoundations for various assumptions imposed here for simplicity).

Consider an infinite-horizon, continuous-time economy with g = 1, ..., G goods. To commu-
nicate the basic ideas, we take expenditures on these goods as given, represented by [Eg (t)]

∞
t=0

for good g (in terms of some numeraire). We also assume that all of these goods have unit price
elasticity (otherwise, we could not take these expenditures as given). We then ask how changes
in these expenditure levels affect the types of technologies developed by profit-maximizing firms.
These assumptions imply that at time t the demand for good g will be

Dg (pg (t) , t) =
Eg (t)

pg (t)
,

where pg (t). Suppose, in particular, that each good can be supplied in different qualities,
denoted by qg (t) ∈ R+, and consumers will purchase whichever variety of the good has the
highest price-adjusted quality. That is, among varieties of good g, g1,..., gV , available in the
market, they will choose the one with highest qgv (t) /pgv (t). This implies that whichever firm
has the highest quality variety for good g at time t will generate revenues equal to Eg (t).
Suppose also that all goods, regardless of quality, can be produced at marginal cost equal to 1
(in terms of the numeraire). This implies that the firm with the highest price-adjusted quality
for good g at time t (presuming that there is a single such firm) will make profits equal to

πg (t) = (pg (t)− 1)
Eg (t)

pg (t)
. (14)

Innovation and technological progress are modeled as in the quality ladder models of Aghion
and Howitt (1992) and Grossman and Helpman (1991) (see also Acemoglu, 2009, for a textbook
treatment). Suppose that starting from leading-edge quality qg (t) at time t, R&D directed to
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good g generates (stochastic) innovations for this good. An innovation creates a new leading-
edge quality λq (t), where λ > 1. There is free entry into R&D and each firm has access to an
R&D technology that generates a flow rate δg of innovation for every dollar spent for research
on good g. So if R&D expenditure at time t for good g is zg (t), the flow rate of innovation is

δgzg (t) .

Differences in δg’s introduce the possibility that technological progress is scientifically more
diffi cult for some goods than for others. A firm that makes an innovation has a perpetual
patent on the good that it invents, and will be able to sell it until a better good comes to the
market.

Consider good g, where current quality is qg (t). Consumers will purchase from the highest
price-adjusted quality and, by definition, the next best firm must have quality qg (t) /λ and
can price as low as its marginal cost, 1. This implies that the leading-edge producer must set
a limit price

pg (t) = λ for all g and t. (15)

Then (14) gives the time t profits of the firm with the leading-edge variety of good g, with
quality qg (t) as

πg (qg (t)) =
λ− 1
λ

Eg (t) . (16)

Firms are forward-looking, and discount future profits at the interest rate r. We assume
that this interest rate is constant. The discounted value of profits for firms can be expressed
by a standard dynamic programming recursion. Vg (t | qg), the value of a firm that owns the
most advanced variety of good g with quality qg at time t, is

rVg (t | qg) − V̇g (t | qg) = πg (qg (t))− δgzg (t)Vg (t | qg) , (17)

where πg (qg (t)) is the flow profits given by (16), and zg (t) is R&D effort at time t on this
line by other firms. Throughout, we assume that the relevant transversality conditions hold
and discounted values are finite. Moreover, because of the standard replacement effect first
emphasized by Arrow (1962), the firm with the best technology does not undertake any R&D
itself (see, for example, Aghion and Howitt, 1992, Acemoglu, 2009). Intuitively, the value of
owning the best technology for good g, rVg (t | qg), is equal to the flow profits, πg (qg (t)), plus
the potential appreciation of the value, V̇g (t | qg), and takes into account that at the flow rate
δgzg (t) there will be a new innovation, causing the current firm to lose its leading position and
to make zero profits thereafter.

Free entry into R&D for developing new technologies for each good implies that there will
be entry as long as additional R&D is profitable. Therefore, free entry requires the following
complementary slackness condition to hold:

if zg (t) > 0, then δgVg (t | qg) = 1 for all g and t (18)

(and if zg (t) = 0, δgVg (t | qg) ≤ 1 and there will be no innovation for this good at time t).
An equilibrium in this economy is given by sequences of prices pg (t)|g=1,..G that satisfy

(15), and R&D levels zg (t)|g=1,..g that satisfy (18) with Vg (·) given by (17).
An equilibrium is straightforward to characterize. The free entry condition must hold at

all t. Supposing that it holds as equality in some interval [t′, t′′], we can differentiate this
equation with respect to time, which yields V̇g (t | qg) = 0 for all g and t (as long as zg (t) > 0).
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Substituting this equation and (18) into (17) yields the levels of R&D effort in the unique
equilibrium as

zg (t) = max

{
δg (λ− 1)λ−1Eg (t)− r

δg
; 0

}
for all g and t. (19)

Equation (19) highlights the market size effect in innovation: the greater is expenditures
on good g, Eg (t), the more profitable it is to be a supplier of that good, and consequently,
there will be greater research effort to acquire this position. In addition, a higher productivity
of R&D as captured by δg also increases R&D, and a higher interest rate reduces R&D since
current R&D expenditures are rewarded by future revenues.

Given equation (19), we can now ask how a rise in overall income in the economy will
affect the direction of technological change. Such a change will shift the expenditures from{
[Eg (t)]

∞
t=0

}
g=1,...,G

to
{[
Ẽg (t)

]∞
t=0

}
g=1,...,G

. However, expenditures on some good will in-

crease by more, in particular, those that are “luxury goods”will see their expenditures increase
by more. Equation (19) then implies that innovations will be tend to be directed towards those
goods.

To highlight the implications of this type of induced technological change for our pur-
poses, suppose that the economy consists of two goods, health care and the “rest”. Suppose
also that equation (19) leads to positive R&D for both groups of goods. Moreover, let us
parameterize expenditures on these two groups of goods as Ehealth (t) = ahealth (t)Y (t) and
Erest (t) = arest (t)Y (t), where Y (t) is total income (GDP). Our ESR-level estimates imply
that, without the induced technology responses, arest (t) > ahealth (t), so that with the rising
incomes Erest (t) increases more than Ehealth (t). Equation (19) then implies that zrest (t) will
increase (proportionately) by more than zhealth (t), or that zrest (t) /zhealth (t) will increase.
Importantly, this conclusion is independent of the values of the δg’s as long as they are such
that both zrest (t) > 0 and zhealth (t) > 0. This result is the basis of our argument that, given
the relationship between health care expenditures and income we observe at the ESR level,
national-level directed technological change is unlikely to significantly increase the responsive-
ness of health care expenditures to aggregate income changes.

Equation (19) also highlights the conditions under which this conclusion needs to be mod-
ified. If it happens to be the case that zhealth (t) = 0 and zrest (t) > 0 to start with, then an
increase in Ehealth (t) that is proportionately less than that in Erest (t) may still have a dispro-
portionate effect on innovation in the health care sector by making zhealth (t) > 0. Intuitively,
before the changes in expenditures, technological change in the health care sector would have
been unprofitable, and as the market size passes a certain threshold (in this case equal to
δ−1g (λ− 1)−1 λr), innovation jumps up from zero to a positive level. While this is theoretically
possible, we believe that it is unlikely to be important in the context of the health care sector,
since as discussed earlier in the main text, throughout the 20th century technological change
in the health care sector was positive and in fact quite rapid (Cutler and Meara, 2003).

3



Section B: Robustness

In this Appendix, we provide several robustness checks of our baseline estimates, particularly
focusing on whether our causal estimates of the effect of income on health care expenditures
might be spurious and whether they may be underestimating the income elasticity of health
care expenditures. In the interest of brevity, we focus our discussion on the robustness of
our main dependent variable: hospital expenditures. Appendix Table A13 summarizes results
from the alternative specifications shown in the previous tables as well as results from the main
alternative specifications pursued below, for each of the components of hospital expenditures
analyzed in Table 5.

B.1 Exclusion Restriction

The exclusion restriction of our IV strategy is that absent oil price changes, ESRs with dif-
ferent levels of oil reserves would have experienced the same proportional changes in hospital
expenditures. In Table A3 we explore a variety of alternative specifications designed to inves-
tigate the validity of this identifying assumption. As usual, Panel A shows the IV estimates,
while Panel B shows the corresponding first-stage results. Column 1 replicates our baseline
estimates.

Column 2 shows the results of a natural falsification test: we repeat the baseline analysis
of equation (11) (corresponding to column 1), but also include a 5-year lead of the instrument,
that is, log pt+5 × Ij (where Ij again denotes oil reserves in ESR j). To the extent that our
instrument captures the impact of rising oil prices on the area’s income rather than differential
trends across areas with different levels of oil reserves, future oil prices should not predict
current income changes. Column 2 in Panel B shows that the first-stage relationship is robust
to including the lead of the instrument. The coeffi cient on the lead of the instrument is positive
and large (about 60 percent of that on the instrument), though statistically insignificant. The
magnitude of this coeffi cient raises some concerns about potential serial correlation. We explore
issues of serial correlation in greater detail in the subsection B.3. To preview, even if there is
serial correlation in the first stage, this does not necessarily create a bias in the IV estimates. In
addition, our robustness checks in the next subsection show that the statistical and quantitative
properties of our estimates are reasonably robust in alternative specifications that explicitly
recognize the possibility of serial correlation.

The results from the IV estimates that include the five-year lead of the instrument (both in
the first and second stages) are shown in Panel A column 2. The estimate of income elasticity in
this specification remains statistically significant and increases somewhat in magnitude relative
to the baseline in column 1. The negative (and statistically insignificant) coeffi cient on the
five-year lead of the instrument indicates that our IV estimates are unlikely to be capturing
pre-existing trends.

Column 3 shows the results from an alternative check on our identification strategy, in
which we additionally control for interactions between oil prices (log pt−1) and fixed ESR
characteristics. In particular, we control for separate interactions between log oil prices in year
t-1 and each of log hospital expenditures in 1969, log hospital beds in 1969, log population in
1970, log area income in 1970 and log area employment in 1970. This “horse race”between
our instrument and other interactions of oil prices and baseline area characteristics is useful
for two complementary reasons. First, it provides additional evidence that it is the interaction
between oil price shocks and availability of oil reserves leading to the source of income variation
that we are exploiting. Second, it indirectly controls for differential pre-existing trends in
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health expenditures (and income) across ESRs, which are the main threat to our identification
strategy. Consistent with the limited differences in various ESR characteristics shown in Table
2, the results of this horse race show that both our first-stage and second-stage estimates are
robust in magnitude and precision to the (simultaneous) inclusion of all of these interaction
terms. Very similar estimates are obtained when we include each interaction term one by one
(not shown).

Column 4 shows the results of adding region-specific linear trends for the three Census
regions within the South. Column 5 shows the results of adding state-specific linear trends.
These two specifications allow different regions (respectively, different states) within the South
to be on different linear time trends. The first stage is reasonably robust. The IV estimates
decline considerably in magnitude, and in the case of state specific linear trends, they are
no longer statistically significant. Although this last result raises some concerns about the
magnitude and precision of our estimates of the income elasticity, if anything, it suggests that
our baseline model which does not control for state-specific trends might lead to over-estimates
(rather than under-estimates) of this elasticity.

Finally, as another natural and important falsification exercise, we checked the implications
of estimating our models on health expenditures data from 1955 through 1969 while assuming
that the oil price changes took place 15-years prior (more precisely, the year 1955 is assigned
the oil price for 1970, the year 1956 is assigned to the oil price in 1971, and so on through the
year 1969 which is assigned to the oil price of 1984).1 The period before 1970 shows virtually
constant oil prices before 1970 (see Figure 2). Therefore, if our identifying assumption is valid,
we should not see any differential changes in health expenditures across areas with different
oil reserves prior to 1970, and in particular, we should not see more rapid increases in health
expenditures in areas with greater oil reserves. Column 6 shows the first-stage and reduced-
form results for our baseline specification if we limit it to the 1970 to 1984 period. The
first-stage remains as does the reduced form, though the implied IV estimate is about one half
the size of our baseline estimate (which uses the entire 1970-1990 period). Column 7 shows the
result for the falsification exercise. Reassuringly, this falsification exercise shows no evidence
of a significant reduced-form relationship between our instruments and health expenditures;
the point estimate is negative (opposite sign from the "actual" estimate in column 6) and not
statistically significant. This finding supports the validity of the identifying assumption that,
absent changes in oil prices, areas of the South with different levels of oil intensity would have
experienced similar trends in their hospital expenditures.

Overall, we read the results in Table A3 as broadly supportive of our identifying assumption.

B.2 Alternative Specifications of the Instrument

We also explored the robustness of our results to alternative specifications of the instrument.
Table A4 shows the results. Panel A again shows the IV estimates and Panel B shows the
corresponding first-stage estimates. Column 1 replicates our baseline first-stage specification,
in which the instrument is the interaction of the total oil reserves and the log of the (lagged) oil
price, i.e., log pt−1 × Ij, with again Ij measured as oil reserves. The remainder of the columns

1The AHA data do not contain information on hospital expenditures prior to 1955, which is why we could
not extend this analysis even further back in time. We report only reduced-form results for this falsification
exercise because we do not have income data for the entire period from 1955 to 1969. Our primary source of
income data, CBP, extends back annually to 1964 and is available irregularly dating back to 1946. However,
before 1970 only first quarter payroll and employment data are available from CBP.
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show results for alternative (plausible) specifications of the instrument; they tend to produce
smaller income elasticities than our baseline specification.

Columns 2 and 3 report results using different functional forms for oil prices. Column 2
reports results in which the instrument is constructed as the interaction between the level of
(lagged) oil prices and oil reserves (i.e., pt−1 × Ij instead of log pt−1 × Ij as in our baseline
specification). Column 3 reports results when we use the log oil price at time t rather than its
one year lag (i.e., log pt × Ij instead of log pt−1 × Ij). With both alternative functional forms
for oil prices we continue to estimate strong first stages and statistically significant income
elasticities in the second stage that are similar to, though slightly smaller than, our baseline
estimate (the income elasticity estimates are 0.49 and 0.64 in columns 2 and 3 respectively,
compared to 0.72 in our baseline).

Columns 4 through 6 report results using different ways of measuring the oil intensity of
the area. Recall that in our baseline specification we proxied oil intensity of area j by its total
(cumulative) oil reserves. Figure 3b shows that the oil reserve distribution is highly skewed and
one may be concerned that using the level of oil reserves might give disproportionate weight
to the ESRs with the highest oil reserves. Moreover, the effect of oil reserves on the demand
for labor, and thus on income, may be nonlinear, with large and very large oil reserves leading
to similar effects on income when oil prices rise. Motivated by these considerations, in column
4 we report results with an alternative measure of Ij , where oil reserves are censored at the
95th percentile of oil reserve distribution (the instrument is then constructed by interacting
this measure with log pt−1). The results are very similar to the baseline. We continue to
estimate a strong first stage, and a statistically significant income elasticity; the estimated
income elasticity of 0.632 (standard error = 0.205) is only slightly smaller than the baseline
estimate. We also obtain similar estimates if instead we censor oil reserves at the 90th or the
99th percentiles (not shown).

As another check on possible nonlinearities, column 5 measures oil intensity by an indicator
variable for whether there are any large oil wells in the ESR (i.e., the instrument is now
1(Ij > 0)). The first stage is now slightly weaker (F -statistic of about 8), and the estimated
income elasticity rises to 1.10 (standard error = 0.67), but is no longer statistically significantly
at the 5 percent level.

Finally, in column 6 we measure oil intensity as the (de-meaned) mining share of employ-
ment in the ESR in 1970, interacted with an indicator variable for whether there are any large
oil wells in the ESR.2 Our first stage is now marginally stronger than in the preceding specifi-
cation (F -statistic of about 11), and we estimate a statistically insignificant income elasticity
of 0.860 (standard error = 0.870).

B.3 Serial Correlation and Standard Errors

In our baseline model we cluster our standard errors at the state level; the standard errors are
therefore computed from a variance-covariance matrix that allows both for arbitrary correlation
in residuals across ESRs within a state and for serial correlation at the state or ESR level.
However, because we only have 16 states in our baseline (South only) sample, these standard
errors may be downward biased due to the relatively small number of clusters (Cameron,

2Mining share of employment is defined based on the 1970 Census of Population (Volume 1: Characteristics
of the Population, Table 123, Parts 2-9 & 11-52). The mining share includes all workers in oil mining, natural
gas and coal mining (it is not available separately for oil mining). We therefore include the indicator variable
for whether there are any large oil wells to separate out high mining share non-oil areas (such as coal mining
areas of West Virginia).
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Gelbach and Miller, 2008). As a simple robustness check, we computed the standard errors
allowing for an arbitrary variance-covariance matrix at the ESR level (rather than the state
level). A possible disadvantage of these standard errors is that they do not allow for correlation
across ESRs within the same state, which may be important in practice.3 Clustering at the
ESR level increases the standard errors substantially, so that the first-stage F -statistic is now
5.50 (instead of 16.58 with clustering at the state level). The standard errors for the second
stage are also larger, but our IV estimate is still statistically significant at the 6 percent level
(results available upon request).

Another strategy to correct for potential biases in the standard errors resulting from the
small number of clusters at the state level is the wild bootstrap procedure suggested by
Cameron, Gelbach and Miller (2008).4 We performed wild bootstraps resampling states with
replacement. In this case, we find reassuringly similar (indeed somewhat smaller) p-values to
our baseline specification with state-level clustering.5 In particular, using wild bootstraps we
find that both the first stage and the second-stage estimates are statistically significant at the
less than 1 percent level (results available upon request).

An alternative strategy to address concerns about potential serial correlation is to directly
model the dynamics of the error term in our structural equation (10) and then estimate this
extended model using instrumental-variables Generalized Least Squares (IV-GLS). In all of our
IV-GLS specifications we allow for heteroscedasticity in the second-stage error term; we also
experiment with various assumptions regarding the nature of any autocorrelation. The details
of the implementation of IV-GLS and the procedure for the computation of the standard errors
are discussed in Section C. Table A5 reports the results. Column 1 shows estimates from our
baseline specification, but using a subsample of our original data; we limit the sample to the 96
(out of 99) ESRs that have data in the full 21 years from 1970 to 1990. Column 1 verifies that
this has no notable effect on our baseline results. Column 2 reports IV-GLS results assuming a
common AR(1) autocorrelation coeffi cient across all ESRs. Column 3 reports results assuming
an AR(2) specification of the residuals with common autocorrelation coeffi cients. In both
specifications the point estimate rises relative to the baseline, but is also considerably less
precise. Columns 4 and 5 report results assuming state-specific AR(1) and AR(2) errors
respectively. Here the point estimates are very similar to the baseline specification both in
magnitude and in precision. Overall we interpret these results as supportive of the robustness
of the baseline specification.

As a final strategy to control for serial correlation, columns 6 and 7 include a lagged
dependent variable on the right-hand side. In column 6, this model is estimated with ordinary
least squares and leads to a long-run elasticity of 0.859 (standard error = 0.213), which is
slightly higher than our baseline estimate. However, the least squares estimator in column 6 is
inconsistent because of the presence of the lagged dependent variable on the right-hand side.
Column 7 estimates the same model using the Arellano-Bond GMM dynamic panel estimator.
This GMM procedure estimates the same model in first differences using further lags of the
dependent variable as instruments. This leads to a considerably smaller long-run elasticity (=
0.142, standard error = 0.080) than in our baseline. Such smaller long-run elasticities make it

3For example, a boom in an oil-rich ESR may attract in-migration from other ESRs within the same state,
reducing total payroll income in these ESRs and also potentially affecting health care expenditures through this
and other channels. The result would be a negative correlation in ESR-level residuals within a state.

4We thank Doug Miller for suggestions and for providing us with a sample code.
5 In their Monte Carlo study, Cameron et al find it is important to calculate p-values based on t-statistics

rather than parameter estimates. We also computed p-values using parameter estimates, and found these to
be even lower (thus leading to more precise results) than the results reported here based on t-statistics.
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even less likely that rising incomes over the past half a century could be the primary driver of
the increase in the health share of GDP in the United States.6

6 If we estimate our baseline model in first differences (and thus without further lagged dependent variables
on the right-hand side), the results are similar to those reported in column 7 from the GMM procedure. In
particular, the point estimate is 0.078 (standard error = 0.106). As we discuss in Section D, heterogeneous
adjustment dynamics can introduce significant downward bias in first-difference estimates, and we thus put less
weight on this estimate.
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Section C: Additional results

C.1 Hospital entry and technology adoptoin

As discussed in Section 4.2, if an induced inovation response to rising income is present and
economically signfiicant, it should also manifest iteself at the ESR level in the form of entry
of new hospitals (which presumably embody new technologies) and/or the adoption of new
technologies at existing hospitals. However, we find no evidence that rising income is associated
with an increase in hospital entry or technology adoption. These results are summarized in
columns 8 through 11 of Table 5. Column 8 of this table shows a negative and statistically
insignificant impact of income on the number of hospitals (so that the number of hospitals
appears to have grown relatively more in areas experiencing slower income growth).

The rest of Table 5 turns to technology adoption. The AHA data contain binary indicators
for whether the hospital has various “facilities”, such as a blood bank, open heart surgery
facilities, CT scanner, occupational therapy services, dental services, and genetic counseling
services. These data have been previously used to study technology adoption decisions in
hospitals, and in particular hospital responsiveness to economic incentives including the insur-
ance regime and relative factor prices (see, e.g., Cutler and Sheiner, 1998, Baker and Phibbs,
2002, Finkelstein, 2007, Acemoglu and Finkelstein, 2008). Since they contain only indicator
variables for the presence of various facilities, we cannot investigate the potential upgrading of
existing technology or the intensity of technology use, but we can study the impact of changes
in income on the total number of facilities, proxying for technology adoption decisions on the
extensive margin.

During the time period we study, the AHA collects information on the presence of 172
different “facilities”. These are listed, together with their sample means (the fraction of ESRs
each technology is in) and the years in which they are available in Appendix Table A1. On
average, a given facility is reported in the data for 7 out of the possible 21 years; only nine of
the technologies are in the data for all years. Moreover, as is readily apparent from Appendix
Table A1, the list encompasses a range of very different types of facilities. Given these two
features of the data, we pursue two complementary approaches to analyzing the relationship
between income and technology adoption with the AHA data.

Our first approach to investigating the impact of income on technology adoption, which
is shown in column 9, treats all facilities equally and measures technology as the log of the
number of distinct technologies in a given ESR in a given year. The year fixed effects in our IV
estimate of equation (10) adjust for the fact that the set of technologies reported in each year
differs. The results show no substantively or statistically significant evidence of an increase
in the number of distinct technologies in the area in response to the increase in income. The
point estimate on income is negative and statistically insignificant. It is also substantively
small, suggesting that a 10 percent increase in area income is associated with a statistically
insignificant decrease in the number of technologies in the area of 1.3 percent.7

A drawback of this approach is that it treats all technologies as perfect substitutes. As
an alternative, we estimated hazard models of the time to adoption for specific technologies
that are in the data for at least 15 years of our 21 year sample period. As in Acemoglu and
Finkelstein (2008), we limit our analysis to technologies that were identified as “high tech”by

7To provide some context for comparison, using the same technology measure (but at the hospital level rather
than at the ESR level) Acemoglu and Finkelstein (2008) show that, in its first three years, the introduction of
Medicare PPS was associated with, on average, the adoption of one new technology at the hospital level (about
a 4 percent increase in the average number of distinct technologies that the hospital has).
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previous researchers (Cutler and Sheiner, 1998, Baker, 2001, and Baker and Phibbs, 2002).
Unfortunately, there are only two technologies that meet these criteria in our sample: open
heart surgery and diagnostic radioisotope facility. Both have been found in other work to be
responsive to economic incentives (Finkelstein, 2007, Acemoglu and Finkelstein, 2008). Both
of these technologies were diffusing over our sample period, though open heart surgery started
from a lower prevalence and diffused more rapidly.8 To investigate the impact of ESR income
on local technology adoption decisions, we estimate semi-parametric Cox hazard models for
these two technologies as functions of income. In particular, the conditional probability that
ESR j adopts the technology in question at time t (meaning that at least one hospital in
the ESR adopts the technology conditional on there being no hospital in the area that had
previously adopted this technology) is modeled as

λjt = λ0t exp(β log ỹjt +XT
j φ), (20)

where λ0t is a fully flexible, non-parametric baseline hazard, ỹjt is our baseline measure of
(HUWP-adjusted) income, and Xj is a vector of (time-invariant) covariates. Since we have
at most a single transition (adoption) for each ESR, we cannot include ESR fixed effects in
the hazard model. Instead, we include time-invariant ESR characteristics in the vector Xj ,
in particular, region fixed effects for the three census regions within the South, total hospital
expenditures in 1970, and total hospital beds in 1970. The fully flexible baseline hazard in the
Cox model is specified with respect to calendar time and thus controls for time effects. As in our
baseline specification, income is an endogenous right-hand side variable, which we instrument
with log pt−1×Ij . We implement our instrumental variables estimator using a control function
approach (Newey, Powell, and Vella, 1999). Specifically, we include the residual (ûjt) from the
first-stage regression in equation (11) as an additional covariate in equation (20). We report
bootstrapped standard errors and p-values for this two-step estimator. The results reported in
columns 10 and 11 in Table 5 show no evidence of a significant increase in technology adoption
associated with an increase in income. The point estimates suggest a negative relationship
between log income and adoption of open-heart surgery, and a positive relationship between
log income and adoption of the diagnostic radioisotope facility. However, both estimates are
imprecise and not statistically different from zero.9

C.2 The income elasticity of total health expenditures

We bring several complementary data sources to bear to try to shed some light on whether
overall health expenditures may be more responsive to changes in income than hospital ex-
penidtures, which are the focus of our main analysis. To preview, although estimates from the
other available data sources are often quite imprecise (motivating our preference for the AHA
data set), we do not find any evidence that overall health expenditures are more income elastic
than hospital expenditures.

We have state-level data on total health expenditures and its components from the Health
Care Financing Administration (HCFA) for 1972, 1976-1978 and 1980-1990 (instead of our

8Open heart surgery is in our data for all 21 years (1970-1990) and diagnostic radioisotope therapy for 19
years (1972-1990). Only 43 percent of ESRs had open heart surgery technology in 1970, whereas about three
quarters of ESRs did so by 1990. About three quarters of ESRs had diagnostic radioisotope faciltiies in 1972
and 92 percent had it by 1990.

9By contrast, Acemoglu and Finkelstein (2008) find statistically significant increases in the adoption of both
of these technologies in response to a change in Medicare’s hospital reimbursement policy for labor inputs. This
suggests that the adoption of these technologies is generally responsive to economic incentives.
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baseline sample 1970-1990).10 The HCFA estimates are based on a combination of adminis-
trative and survey data. An important problem with these data is that each component is
interpolated whenever data are missing between years (Levit, 1982, 1985). Such interpolation
may bias the estimated coeffi cients, so the results from this data set have to be interpreted
with caution.

Table A6 presents estimates from the HCFA data. Since we lose some variation by aggre-
gating from the ESR level to the state level, we report results both for our baseline sample of
the 16 the Southern states (Panel A) and for the entire United States (Panel B). Column 1
shows that our first stage is robust to state-level analysis for the subset of years for which we
have HCFA data. Columns 2 and 3 show our estimated income elasticity from the HCFA data
for total health expenditures and the hospital subcomponent, respectively. Both estimated
income elasticities are positive but quantitatively small and imprecise, and thus statistically
insignificant. The income elasticity of hospital spending using the HCFA data is also noticeably
smaller than that estimated using the AHA data.11

However, most importantly for our purposes, the point estimates in columns 2 and 3 of Table
A6 suggest similar income elasticities for hospital expenditures and total health expenditures.
Columns 4 through 9 present results for the other components of health expenditures, and
provide some intuition for why hospital and total health expenditure income elasticities may
be similar. The point estimates suggest that the income elasticities of spending on physician
services, on dental services, on drugs and other medical non-durables, and on vision products
are greater than the income elasticity of hospital spending, while nursing home care and other
health services have large negative income elasticities.12 Overall, the results in Table A6 are
generally imprecisely estimated, but the point estimates are uniformly consistent with similar
income elasticities for total health expenditures and for hospital expenditures.

Results from several other data sources are also consistent with this conclusion, though
again are similarly imprecise. We examined the income elasticity of state-level Health Services
Gross State Product (GSP) from 1970-1990. Health services GSP account for roughly 26%
of total health expenditures. Our estimates using health services GSP show no evidence of
a greater income elasticity than that for hospital spending; indeed the point estimates are

10Data from 1972 and 1976-1978 were obtained from Levit (1982, 1985). Data for 1980-1990 were
obtained from the Centers of Medicare & Medicaid Services on-line at http://www.cms.hhs.gov/
NationalHealthExpendData/05_NationalHealthAccountsStateHealthAccountsResidence.asp#TopOfPage.
The data include total health expenditures and expenditures on the following components (which sum to
the total): Hospital Care, Physicians’ Services, Dentists’ Services, Drugs and Other Medical Nondurables,
Eyeglasses and Appliances, Nursing Home Care, and Other Health Services (which include Home Health Care,
Other Professional Services, and Other Personal Services).
11The hospital expenditure data in the HCFA series are estimated using the AHA data for non-federal hos-

pitals, but use unpublished Federal agency data for federal hospital expenditures (Levit, 1982). There are also
several differences between how we use the AHA data and how they are used in creating the HCFA data. Most
importantly, the HCFA estimates interpolate missing data (Levit, 1982, 1985). Average state-year hospital
expenditures are similar in the two data sets ($2,641 million from the HCFA data compared to $2,333 million
for the same state-years in the AHA data). Log hospital expenditures are also highly correlated across the two
data sets at the state-year level (correlation = 0.98). However, conditional on state and year fixed effects, the
correlation in the residual log hospital expenditures is only 0.67. This presumably helps explain why the income
elasticity estimates differ. Using our AHA hospital data at the state level for the full United States and limiting
the sample to the years for which the HCFA data are available (i.e., the analog of Table A6 column 3 panel B),
we estimate a statistically significant income elasticity of 0.509 (standard error = 0.225). This is statistically
indistinguishable from the HCFA estimate of 0.139 (standard error = 0.151).
12The large negative income elasticity for nursing home care strikes us as intuitive. Wealthier individuals can

more easily pay for assistance at home to substitue for nursing home care (which Medicaid will cover) than can
poor individuals.
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considerably smaller than our estimates for hospital expenditures, although they are quite
imprecise.13

We also examined the impact of area income on the income of different groups of health care
providers (results available on request). If non-hospital components of health care expenditures–
such as physician expenditures– are substantially more income elastic than hospital expendi-
tures, we would expect to find that the earnings of the non-hospital based health care providers
are also substantially more income elastic than hospital expenditures and than the earnings of
health care providers that contribute to hospital expenditures, such as nurses and health care
technicians. Using decadal Census data aggregated to the state level, we estimated the income
elasticity of the earnings of the following groups of health care providers: physicians, nurses,
health care technicians (including clinical laboratory technicians and therapy assistants), and
other health services workers (including health aids, nursing aids and attendants).14 Our IV
point estimates show no evidence that physician earnings are more responses to area income
than hospital expenditures or than the earnings of other health care providers. However, the
estimates using the Census income data– particularly those for physician income– are notice-
ably less precise than those from comparable specifications using the AHA data on hospital
expenditures, so that one should not place too much emphasis on these results.15

Overall, while there are important limitations to each data source, a number of comple-
mentary data sets with information on state-level health expenditures suggest that the income
elasticity of overall health expenditures is unlikely to be significantly higher than the income
elasticity of hospital spending.

C.3 Incorporating a broader measure of income

Our baseline income measure captures only the effect of our instrument on labor income. If
capital income and labor income do not respond proportionately to our instrument, we may
be under-stating (or over-stating) the first-stage relationship, and consequently, over-stating
(or under-stating) the income elasticity in the second stage. Unfortunately, annual data on
labor and capital income do not exist for our time period at a level of disaggregation below
the state. However, we were able to investigate how our estimates at the state level change
when we use Gross State Product (GSP) as our measure of income, rather than our baseline

13The results for state-level Health Services GSP are shown in Table 8, column 6, Panels A and B). The rest
of that table is discussed in subsection C.4 below. Comparable state-level estimates for hospital expenditures
are show in Table A7, Panel A, columns 1 and 3. The Gross State Product (State GDP) estimates are produced
annually by the Bureau of Economic Analysis. The specific industries within health services (SIC code 80) are
listed at http://www.census.gov/epcd/naics/NSIC8B.HTM#S80. The major source of state data for the health
services GSP estimates are sales and payrolls from the (quinquennial) census of service industries; intercensal
years are interpolated and extrapolated using wages and salaries reported annually to the BEA (see http:
//www.bea.gov/regional/pdf/gsp/GDPState.pdf).
14Our first stage is robust to aggregation to the state level and to decadal (vs annual) analysis; the IV estimate

of AHA hospital expenditures in this specification is generally similar in magnitude although somewhat less
precise than that in our baseline specification.
15We also examined the elasticity of various components of state-level health care utilization from the NHIS.

The NHIS data cover 1973-1990 (data before 1973 do not have state identifiers) and are not interpolated, which
is a clear advantage relative to the HCFA data. On the other hand, the NHIS only measures utilization on
the extensive margin. This implies that NHIS data will not be informative about increases in expenditure on
the intensive margin. As in the AHA data, we find no evidence in the NHIS of a positive income elasticity of
hospital utilization. We also find no evidence of a positive income elasticity of doctor visits (indeed, the point
estimates are negative, though not statistically significant). Results available on request.
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payroll measure; unlike payroll, GSP includes both labor and capital income. 16

Table A7 shows the results of this exercise. Panel A shows the IV estimates, and Panel
B shows the first-stage estimates. Columns 1 and 2 compare results at the state level when
labor (payroll) income and GSP are used, respectively, as our income measure. The first stage
suggests that, in response to our instrument, non-labor income appears to rise by the same
proportion, or by slightly more, then our primary measure of labor income (compare columns
1 and 2 of Panel B). If anything, therefore, the results suggest that the estimates using labor
income only may be slightly over-stating the income elasticity of health expenditures (compare
columns 1 and 2 of Panel A).

Since, as discussed, we lose variation by aggregating to the state level, we also report results
at the state level when we include the entire US in the sample rather than just the 16 states
in the South. Column 3 shows the results when we use labor income (from the CBP payroll
data) as our measure of income and column 4 shows the results when we use the GSP measure,
which incorporates capital income. Once again the results suggest that non-labor income may
rise slightly more than proportionately with labor income, so that our income elasticities in
our baseline estimates may be slightly overstated.17

C.4 Exploring potential heterogeneity in income elasticities

Our IV estimates are based on a specific type of income variation as well as a specific area of the
country and time period. If there is substantial heterogeneity in the income elasticity of health
expenditures across any of these dimensions, out-of-sample extrapolations may be particularly
unreliable. We therefore explored whether there appears to be substantial heterogeneity in
our estimated income elasticity. All in all, we read the available evidence as suggesting that
the quantitative estimates are reasonably similar across different sources of income variation,
geographic samples, time periods, and time horizons; we therefore do not see any reason to
suspect that heterogeneous elasticities are likely to lead to a serious underestimation of the
effect of rising incomes on health care expenditures.

Source and extent of income variation At a general level, one might be concerned
that the source and range of the variation in income that we are exploiting may be insuffi cient
to estimate (or detect) income elasticities significantly greater than one. To alleviate this
concern, we estimated similar IV regressions with spending on goods that can be classified as a
luxury on a priori grounds (e.g., recreation). Since we do not have data on spending on other
goods at the ESR level, we pursued this strategy at the state level using data on industry-
specific Gross State Products (GSP) for other service industries. Specifically, we used our
instrument at the state level to examine the income elasticity of four potential luxury goods:
“amusement and recreation services,”“hotels and other lodging places,”“legal services”and
“other services,”which includes (among other things) record production, actuarial consulting,
music publishing, and other consulting.18 We also estimated the income elasticity of “food and
kindred products,”which we expect to be a necessity. The results are shown in Table A8.19

16GSP data are from the Bureau of Economic Analysis (http://www.bea.gov/regional/gsp/).
17The results in column 3 also suggest that our estimates are not sensitive to using the entire United States.

In later robustness analysis we show this is true at the ESR level as well (see Table A10 below).
18A complete definition of “other services”can be found here: http://www.osha.gov/pls/imis/sic_manual.

display?id=1014&tab=description.
19An estimate for health services GSP, which was already discussed in subsection C.2, is also included in this

table.
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The results suggest that our source of variation in income is strong enough to uncover
elasticities greater than one at the state level.20 Legal services and “other services" both
appear to be strong luxuries. Amusement services and hotels also show an income elasticity of
close to or above 1. By contrast, food stores appear to be a necessity, with an income elasticity
that is virtually the same as what we estimate for health services (see column 6).

A more specific concern is that, as discussed in Section 3.1, we cannot reject that our
income variation at the ESR level comes entirely from changes in employment at roughly
constant wages (see Table 3), while about half of income growth in the United States over
the last half century comes from increased wages per employed individual (US Census Bureau,
2008).21 This raises the potential concern that, if the elasticity of health spending with respect
to income is increasing in income, the elasticity of health care spending with respect to increases
in wages may be larger than the elasticity with respect to increases in employment.

Table A9 investigates whether there is any evidence of this type of convexity in Engel
curves for health expenditures. Column 1 reports results from the baseline IV specification,
while column 2 adds an interaction of the ESR’s (log) income with its (log) income in 1970.
This strategy allows the effect of changes in income to vary based on initial income levels and
provides a simple check against the possibility that the income elasticity of health expenditures
may vary systematically with the level of income of the area. We instrument for log income
and the interaction of log income with 1970 ESR log income with our standard instrument
(oil reserves times log oil prices) and the interaction of this instrument with 1970 ESR log
income. The results show no evidence that the Engel curve for health expenditures is convex;
if anything the point estimates suggest a (statistically insignificant) concave Engel curve.

As another check on the potential convexity of the relationship between income and hospital
spending, we looked for nonlinearities in the reduced-form relationship. Column 3 reproduces
the baseline reduced-form results for comparison and column 4 reports the results of a modified
reduced-form specification, which also includes the square of the baseline instrument (i.e.,
(log pt−1 × Ij)2 as well as log pt−1× Ij). The estimates in column 4 also show no evidence of a
convex relationship between income and health expenditures. The lack of any convexity in the
relationship between income and health spending further suggests that the income elasticity
of health expenditures is unlikely to be significantly greater at higher levels of income or for
larger income changes.

Finally, we note that because oil prices both rise and fall over our time period, our instru-
ment predicts both increases and decreases in income. From a purely estimation standpoint,
this is a strength of our instrument, since it makes it less likely that it simply captures differ-
ential (monotonic) trends across different areas of the country. Nevertheless, since much of the
motivation of our paper is related to the effects of rising incomes on health care expenditures,
we also investigated whether the effects of rises and declines in income are asymmetric. In par-
ticular, we re-estimated our baseline models allowing positive and negative changes (between
t and t − 1) in income to have different effects (and we instrumented these income variables
with our baseline instrument interacted with an indicator for whether oil prices rose between
dates t and t − 1). We found no evidence of such asymmetric effects (results available upon
request).

20More information on each of these categories can be found here: http://www.bea.gov/regional/gsp/
default.cfm?series=SIC. First-stage results for this same specification are shown in Table A7, Panel B,
columns 1 and 3. Second stage results for this same specification using the AHA hospital expenditure data as
the dependent variable can be found in Table A7, Panel A, columns 1 and 3.
21At the state level we estimate that our instrument is associated with a statistically significant increase in

wages, although the increase in income is still predominantly due to an increase in employment (not shown).
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Different areas and time period Table A10 explores the sensitivity of our estimates
to defining the sample based on different geographic regions and different time periods. Panel
A shows the IV estimates and Panel B shows the corresponding first-stage results. Column 1
reproduces our baseline estimates, which are for the 16 Southern states focusing on the time
period 1970-1990.

As discussed above, we chose to limit our baseline sample to the Southern United States
both because the oil reserves are concentrated in the South and because the ESRs in this region
are more comparable, thus less likely to experience differential trends in hospital spending
owing to other reasons. In column 2 we further limit the sample to the 7 Southern states that
have oil reserves in our data. The results are quite similar. In column 3 we go in the opposite
direction, and look at the entire United States. The results in this column show that expanding
the sample to the entire United States (not including Alaska and Virginia) results in a very
similar point estimate of the income elasticity (0.804 vs. 0.723 in the baseline), though the
estimate is less precise (standard error = 0.631 compared to 0.214 in the baseline).22

We also explored whether within the South our estimates were sensitive to excluding a
particular state. Appendix Table A2 shows the results from estimating our baseline specifi-
cation (from column 1) dropping each one of the 16 states at a time. The results indicate
that the estimates are generally quite robust both in terms of magnitude and precision to the
omission of a single state. The exception occurs when we exclude Texas. In this case, the point
estimate falls by about 40 percent; combined with the increase in standard error, this makes
the estimate of the income elasticity of hospital expenditure no longer significant at the 5%
level. This is not surprising since much of the variation in oil intensity in our sample is within
Texas (see Figure 3).

Our baseline time period is for 1970-1990 and covers the original oil boom and bust. In
column 4 of Table A10, we return to our baseline Southern states sample, but now expand the
time period 1970-2005 (thus including all available years with data). Figure 2 shows that oil
prices experienced a second boom starting in 1999. Nevertheless, we lose the first stage when
we include the post 1990 years (and therefore do not report the corresponding IV estimate).
This weaker first-stage relationship appears to reflect the inadequacy of imposing constant ESR
fixed effects over a 36 year period. Indeed, when this assumption is relaxed in column 5 by
including state-specific time trends, the first-stage relationship is again statistically significant
and leads to an IV estimate of similar magnitude to the baseline.

Permanent versus transitory elasticities The interpretation of our estimates depend
on whether oil price changes are permanent or transitory. This is investigated in Table A11
using the time-series data shown in Figure 2. Column 1 shows that a regression of the log oil
price at time t on its one year lag produces a coeffi cient of 1.009 (standard error = 0.043). The
augmented Dickey-Fuller unit-root test reported at the bottom comfortably fails to reject the
null hypothesis that log oil prices follow a unit root. The remaining columns of this table show
several different specifications, all indicating that we cannot reject that changes in oil prices are
permanent. These findings are consistent with those of previous researchers.23 The available
evidence therefore suggests that our empirical strategy speaks to the effects of permanent

22We do not include Alaska because of the Alaska Permanent Fund (established in 1976), as well as the
diffi culty in forming consistent data by ESR between 1970 and 1990. We do not include Virginia because of
the diffi culty in forming consistent data by ESR between 1970 and 1990.
23Kline (2008) conducts a more detailed analysis of the time-series behavior of oil prices and concludes that

oil prices are “well approximated by a pure random walk”. See also Hamilton (2008) for a similar conclusion.
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(rather than transitory) changes in income on health care expenditures.

Short-run versus long-run income elasticities Since we focus on annual variation,
our empirical strategy estimates the short-run response of health expenditures to (permanent
changes in) income. This may naturally be different from the long-run response of health
expenditures. For example, increased demand may result in the short run in higher prices,
with the response of quantities emerging with a delay as capacity expands. However, there are
no strong theoretical reasons to expect the long-run income elasticity to be greater than the
short-run elasticity. For example, if health care demand is inelastic (with price elasticity less
than one, which is plausible, for example, because of insurance), as capacity expands in the
long run in the face of rising incomes, overall health expenditures will increase less than in the
short run. In addition, if long-run increases in income also improve overall health, the long-run
increase in health expenditures may again be less than in the short run. Nevertheless, even
though there are no a priori reasons to expect long-run effects to be greater than short-run
effects, it is important to understand whether our empirical strategy is estimating the former
or the latter.

To investigate this issue, we re-estimated our regressions using decadal observations, thus
removing the source of variation due to short-run changes in our instrument. Table A12
compares our baseline results– which use annual observations from 1970-1990 in columns 1
through 3– with the estimates using only decadal observations (1970, 1980, 1990) in columns
4 through 6. With only the decadal observations, the first stage is only slightly weaker (compare
columns 4 and 1). The IV elasticity estimate from the decadal estimate is similar to the baseline
annual estimate (0.794 compared to 0.723) although the standard error of the decadal estimate
is roughly double what we obtain with annual data. We read these results as suggestive of a
long-run income elasticity that is similar to the short-run elasticity.

This conclusion also receives support from the lack of capacity responses. If long-run effects
were significantly larger than short-run effects, we would expect to see hospitals expanding
capacity (either simultaneously with the increase in health expenditures or gradually as they
reach their capacity constraints). However, Table 5 showed no evidence of an increase in
hospital capacity or utilization (in particular, there was no increase in admissions, patient
days, hospital beds, and hospital entry in response to the rise in local income).

A related issue is that there might be heterogeneity in the adjustment dynamics of hospital
spending in response to increases in income. For example, suppose that some of the ESRs
respond immediately to increases in income, while other ESRs take one or two years to respond.
In this case, results using the annual panel and assuming immediate and complete adjustment
would underestimate the true long-run income elasticity. We show in the Section D below that
specifications using 3-year averages typically perform better when there are heterogeneous
adjustment dynamics by ESR. Thus in column 7 we report results based on 3-year averages.
The estimated elasticity increases slightly (from 0.723 to 0.826).
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Section D: Econometric Issues

In this Appendix, we discuss a number of econometric issues related to the correction for serial
correlation and dynamics.

D.1 Implementation of IV GLS

We now provided details of the implementation of the IV-GLS estimator used in subsection B.3.
In particular, we use the following procedure for this estimation. First, we recover estimates of
the residuals (ε̂jt) from the baseline IV specification. Then we use these residuals to estimate
the autocorrelation coeffi cients. For example, when we estimate state-specific autocorrelation
coeffi cients, we run the following regression of ε̂jt on its lag (ε̂j,t−1) for each state to recover
an estimate of the state-specific autocorrelation coeffi cient, ρ̂s:

ε̂jt = ρsε̂j,t−1 + ξjt

These autocorrelation coeffi cients are used to create adjusted (LHS and RHS) variables as
follows:

x̃jt = xjt − ρ̂sxj,t−1
ỹjt = yjt − ρ̂syj,t−1

Finally, to adjust for ESR-level heteroskedasticity, we run IV again using the adjusted
variables above to recover a new set of residuals (ε̂′jt) and then we create a weighting matrix

Ω̂ using these residuals:

Ω̂ = I (NT )⊗ diag

(
1

T

T∑
t=1

(ε̂′1,t),
1

T

T∑
t=1

(ε̂′1,t), . . . ,
1

T

T∑
t=1

(ε̂′J,t)

)

where I(·) creates an identity matrix and diag(·) creates a diagonal matrix from a vector.
Using this weighting matrix, the IV-GLS estimator is given as follows:

β̂IV−GLS = (X
′Ω̂−1Z(Z′Ω̂−1Z)−1Z′Ω̂−1X)−1X′Ω̂−1Z(Z′Ω̂−1Z)−1Z′Ω̂−1y

D.2 Performance of different estimators with heterogeneous adjustment dy-
namics

We now describe results from a simple Monte Carlo study to investigate the performance
of various estimators under heterogeneous long-run adjustment dynamics. Our Monte Carlo
results suggest that heterogeneous adjustment dynamics may lead traditional fixed effects
instrumental variables (FE-IV) estimators to underestimate the true long-run effect. We show
that using 3-year averages can reduce this bias. Reassuringly, our 3-year average results are
similar to our baseline results (see Table A12, column 7). The remainder of this section
describes the set of our Monte Carlo study and our results.
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We define the following variables for our simulation:

zjt = N(0, 1)

ajt = N(0, 1)

xjt = N(0, 1) + zjt + ajt

δj = N(0, 1)

εjt = ρεj,t−1 + ξjt

yjt = xjt + ajt + δj + εjt

where j indexes one of the J panels and t indexes on of the T time periods within a panel.
N(0, 1) represents an i.i.d. standard normal random variable, zjt represents a valid instrumen-
tal variable for xjt, ajt is the unobserved variable that induces a correlation between xjt and
the error term in the endogenous fixed effects regression of yjt on xjt, and δj is an unobserved
fixed effect. εjt is the error term in the model which follows an AR(1) process (|ρ| < 1). We
also experiment with serveral other ways to construct yjt:

yjt = xj,t−1 + ajt + δj + εjt

yjt =

{
xjt + ajt + δj + εjt if j < J/2
xj,t−1 + ajt + δj + εjt if j ≥ J/2

yjt =


xjt + ajt + δj + εjt if j < J/3
xj,t−1 + ajt + δj + εjt if J/3 ≤ j < 2J/3
xj,t−2 + ajt + δj + εjt if j ≥ 2J/3

We experimented with the following estimators in in our Monte Carlo study:

1. (FE-IV) Fixed effects IV regression of yjt on xjt, instrumenting xjt by zjt

2. (FD-IV) First differences IV regression of (yjt − yj,t−1) on (xjt − xj,t−1), instrumenting
(xjt − xj,t−1) by (zjt − zj,t−1)

3. (FE-IV-LAG) Fixed effects IV regression of yjt on xj,t−1, instrumenting xj,t−1 by zj,t−1

4. (FE-IV-3YR) Fixed effects IV regression of ỹjs on x̃js instrumenting x̃js by z̃js (where
ṽjs denotes the three-year averages of vjt and s represents a three-year groups of years)

5. (FD-IV-3YR) First differences IV regression of (ỹjs − ỹj,s−1) on (x̃js − x̃j,s−1), instru-
menting (x̃js − x̃j,s−1) by (z̃js − z̃js)

Finally, we choose J = 10 and T = 30, and we experiment with three values of ρ
(0.1, 0.5, 0.9).

The results (based on 500 simulations) are given in Appendix Table A14. There are five
panels of results corresponding to each of the five estimators mentioned above. The resuls are
the mean of the estimates across each of the simulations and the standard deviation of the
parameter estimates (in parentheses underneath). The first panel reports the FE-IV results.
As would be expected, the standard deviation of the parameter estimates is larger when there
are higher amounts of serial correlation. The second panel reports FD-IV results, where (also
as expected) the standard deviation of the parameter estimates goes down as there is more
serial correlation. The third panel reports FE-IV-LAG results, and the last two columns report
the two sets of 3-year average results (FE-IV-3YR and FD-IV-3YR).
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Each panel reports results for the same set of four models. The first row is the standard
model where all panels adjust instantly. All estimators except FE-IV-LAG perform very well
(the average of the parameter estimates is very close to the true value of 1.000). The second
row reports results using a model where all panels take one time period to adjust. For this
model the FE-IV and FD-IV results perform very poorly, while FE-IV-LAG unsurprisingly
performs optimally. Interestingly, FE-IV-3YR still performs reasonably well, though for all
degrees of serial correlation the estimates are roughly 2/3 of the true value.

The final two rows (rows 3 and 4) report results when there is heterogeneity in the adjust-
ment dynamics (where a random set of panels responds instantly and another random set of
panels does not respond instantly). For all estimators the results are attentuated away from
the true coeffi cient, but the FE-IV-3YR estimator always performs best, even when there is
substantial serial correlation.

We conclude two things from this simulation exercise: (1) heterogeneous adjustment dy-
namics can lead standard estimators (FE-IV and FD-IV) to underestimate the true long-run
effect and (2) estimators using 3-year averages appear to be reasonably robust to a moderate
amount of heterogeneity in adjustment dynamics.
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Hospital Technology First Year Last Year
Years of 

Data
Fraction 
Adopted

Emergency Department 1970 1990 21 0.998
Histopathology Services 1970 1990 21 0.964
Home care Program / Department 1970 1990 21 0.701
Hospital Auxiliary 1970 1990 21 0.993
Inhalation Therapy Department (Respiratory) 1970 1990 21 0.993
Occupational Therapy 1970 1990 21 0.852
Physical Therapy Department 1970 1990 21 0.993
Psychiatric Partial Hospitalization Program 1970 1990 21 0.727
X-Ray Therapy 1970 1990 21 0.873
Blood Bank 1970 1990 20 0.993
Open Heart Surgery Facilities 1970 1990 20 0.528
Psychiatric Emergency Services (Outpatient) 1970 1990 20 0.788
Psychiatric Emergency Services 1970 1990 19 0.887
Rehabilitation Outpatient Unit 1970 1990 19 0.764
Organized Outpatient Department 1970 1988 18 0.940
Social Work Department 1970 1989 17 0.966
Cardiac Intensive Care 1970 1985 16 0.970
Family Planning Service 1970 1985 16 0.630
Psychiatric Foster And/Or Home Care 1970 1986 16 0.393
Self Care Unit 1970 1985 16 0.503
Premature Nursery 1970 1985 15 0.943
Rehabilitation Inpatient Unit 1970 1985 15 0.592
Postoperative Recovery Room 1970 1982 13 0.993
Electroencephalography 1970 1981 12 0.921
Hemodialysis / Renal Dialysis (Impatient) 1970 1981 12 0.682
Hemodialysis / Renal Dialysis (Outpatient) 1970 1981 12 0.675
Organ Bank 1970 1981 12 0.337
Pharmacy with FT Registered Pharmacist 1970 1981 12 0.974
Pharmacy with PT Registered Pharmacist 1970 1981 12 0.942
Psychiatric Inpatient Unit 1970 1980 11 0.750
Intensive Care Unit (Mixed) 1970 1979 10 0.973
Cobalt and Radium Therapy 1970 1978 9 0.669
Radium Therapy 1970 1978 9 0.837
Cobalt Therapy 1970 1977 8 0.693
Extended Care Unit 1970 1974 5 0.810
Basic Emergency Department 1970 1970 1 0.975
Major Emergency Department 1970 1970 1 0.743
Provisional Emergency Unit 1970 1970 1 0.962
Radioisoptope Facility 1970 1970 1 0.852
Genetic Counseling Service 1971 1990 20 0.441
Radioisoptope Facility (Diagnostic) 1971 1990 20 0.967
Radioisoptope Facility (Therapeutic) 1971 1990 20 0.836
Volunteer Services Department 1971 1990 20 0.956
Psychiatric Consultation and Education 1971 1986 16 0.799
Burn Care 1971 1985 15 0.472
Speech Therapist Services / Pathology 1972 1990 19 0.877
Clinical Psychologist Services 1972 1986 15 0.847
Dental Services 1972 1985 14 0.968

Appendix Table A1: Hospital Technologies
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Podiatrist Services 1972 1985 13 0.796
Chronic Obstructive Pulmonary Disease 1975 1990 16 0.783
Alcohol / Chemical Dependency (Outpatient) 1975 1990 15 0.742
Skilled Nursing or Long Term Care Unit 1975 1985 11 0.852
Alcohol / Chemical Dependency (Impatient) 1975 1985 10 0.723
Neonatal Intensive Care 1976 1985 10 0.743
Pediatric Unit (Impatient) 1977 1978 2 0.951
Patient Representative Services 1978 1990 13 0.958
Abortion Service (Impatient) 1978 1981 4 0.794
Abortion Service (Outpatient) 1978 1981 3 0.638
Radioactive Implants 1979 1990 12 0.811
Megavoltage Radiation Therapy 1979 1990 11 0.781
Computerized Tomography Scanner (Head or Body) 1979 1990 10 0.859
Pediatric Intensive Care 1979 1985 7 0.773
Cardiac Catheterization 1980 1990 11 0.722
Hospice 1980 1990 11 0.715
Recreational Therapy 1980 1990 11 0.869
Ultrasound Facility (Diagnostic) 1980 1990 11 0.976
Kidney Transplant 1980 1990 7 0.327
Organ Transplant (Other than Kidney) 1980 1990 7 0.377
Chaplaincy Services 1980 1985 6 0.987
Electrocardiography 1980 1985 6 1.000
Intermediate Care for Mentally Retarded 1980 1985 6 0.439
Intravenous Admixture Services 1980 1985 6 0.993
Medical/Surgical Acute Care 1980 1985 6 1.000
Medical/Surgical Intensive Care 1980 1985 6 0.998
Newborn Nursery 1980 1985 6 1.000
Obstetrical Care 1980 1985 6 1.000
Other Long-Term Care / Intermediate Care Facility 1980 1985 6 0.838
Pediatric Acute Care 1980 1985 6 1.000
Pharmacy Unit Dose System 1980 1985 6 0.990
Psychiatric Acute Care 1980 1985 6 0.953
Psychiatric Long Term Care 1980 1985 6 0.568
General Surgical Services 1980 1985 5 1.000
General Laboratory Services 1980 1985 4 1.000
Health Science Library 1980 1990 3 0.968
Psychiatric Intensive Care 1980 1982 3 0.679
Ambulance Services 1980 1981 2 0.930
Anesthesia Service 1980 1981 2 1.000
Autopsy Services 1980 1981 2 0.989
C.T. Scanner (Body Unit) 1980 1981 2 0.761
C.T. Scanner (Head Unit) 1980 1981 2 0.570
Cancer/Tumor 1980 1981 2 0.894
Electromyography 1980 1981 2 0.826
Hemodialysis (Home Care/ Mobile Unit) 1980 1981 2 0.464
NeuroSurgery 1980 1981 2 0.769
Physical Rehabilitation 1980 1982 2 0.856
Pulmonary Function Laboratory 1980 1981 2 0.987
Toxicology 1980 1981 2 0.983
Intravenous Therapy 1980 1980 1 0.886
Medical/Surgical Acute Care (Inpatient) 1980 1980 1 0.335
Rehabilitation 1980 1980 1 0.953
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Residential Care 1980 1980 1 0.547
Residential Care (Inpatient) 1980 1980 1 0.280
Day Hospital 1981 1987 7 0.822
Pediatric Psychiatric Services 1981 1986 6 0.777
Health Promotion 1981 1985 5 0.964
Optometric Services 1981 1985 5 0.857
Other Special Care 1981 1985 5 0.877
Sheltered Care 1981 1985 5 0.419
Ambulator Surgical Services 1981 1981 1 1.000
Podiatrist Services (Inpatient) 1981 1981 1 0.873
Podiatrist Services (Outpatient) 1981 1981 1 0.835
Hemodialysis Services 1982 1990 9 0.850
Outpatient Surgery 1982 1990 8 1.000
Abortion Services 1982 1985 4 0.825
Pharmacy Services 1982 1985 4 1.000
Comprehensive Geriatric Assessment Services 1983 1990 8 0.805
Nuclear MRI Facility 1983 1990 8 0.542
Psychiatric Liaison Services 1983 1990 8 0.819
Trauma Center 1984 1990 7 0.751
Alcohol / Chemical Acute Care (Inpatient) 1984 1984 1 0.903
Alcohol / Chemical Subacute Care (Inpatient) 1984 1984 1 0.852
Birthing Room 1985 1990 6 0.970
Extracorporeal Shock-Wave Lithotripter 1985 1990 6 0.395
X-Ray (Diagnostic) 1985 1989 5 0.999
Unknown Technology 1985 1985 1 0.678
Adult Day Care 1986 1990 5 0.567
Community Health Promotion 1986 1990 5 0.984
Fertility Counseling 1986 1990 5 0.608
Fitness Center 1986 1990 5 0.746
Geriatric Acute-Care Unit 1986 1990 5 0.754
Occupational Health Services 1986 1990 5 0.869
Patient Education 1986 1990 5 0.992
Respite Care 1986 1990 5 0.803
Sports Medicine Clinic / Service 1986 1990 5 0.775
Sterilization 1986 1990 5 0.945
Women's Center 1986 1990 5 0.762
Worksite Health Promotion 1986 1990 5 0.959
Organ Transplant (Including Kidney) 1986 1989 4 0.467
AIDS Services 1986 1987 2 0.926
Continuing Care Case Management 1986 1987 2 0.773
Contraceptive Care 1986 1987 2 0.646
Genetic Counseling Screening 1986 1987 2 0.532
Satellite Geriatric Clinics 1986 1987 2 0.278
Child Adolescent Psychiatric Services 1987 1990 4 0.872
Geriatric Psychiatric Services 1987 1990 4 0.839
Psychiatric Education 1987 1990 4 0.887
AIDS (Outpatient) 1988 1990 3 0.414
AIDS General Inpatient Care 1988 1990 3 0.980
AIDS/ARC Unit 1988 1990 3 0.247
AIDS/HIV Testing 1988 1990 3 0.969
Alzheimer's Diagnostic Assessment Services 1988 1990 3 0.596
Emergency Response for Elderly 1988 1990 3 0.932
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Geriatic Clinic 1988 1990 3 0.496
In Vitro Fertilization 1988 1990 3 0.379
Medicare Certified Distinct Part Skilled Nursing Unit 1988 1990 3 0.886
Organized Social Work Services 1988 1990 3 0.989
Other Skilled Nursing Care 1988 1990 3 0.891
Senior Membership Program 1988 1990 3 0.737
Angioplasty 1989 1990 2 0.708
Arthritis Treatment Center 1989 1990 2 0.485
Emergency Social Work Services 1989 1990 2 0.911
Freestanding Outpatient Center 1989 1990 2 0.686
Hospital Based Outpatient Care Center 1989 1990 2 0.998
Orthopedic Surgery 1989 1990 2 0.972
Outpatient Social Work Services 1989 1990 2 0.939
Bone Marrow Transplant 1990 1990 1 0.301
Cardiac Rehabilitation 1990 1990 1 0.924
Non-Invasive Cardiac Assessment 1990 1990 1 0.970
Positron Emission Tomography Scanner 1990 1990 1 0.267
Single Photo Emission Computed Tomography 1990 1990 1 0.754
Stereotactic Radiosurgery 1990 1990 1 0.415
Tissue Transplant 1990 1990 1 0.432

Notes: This table lists the 172 unique technologies from the AHA annual surveys between 1970 and 1990.  For each 
technology, this table reports the first year the technology appears, the last year the technology appears, and the 
fraction of economic sub-region (ESR)-year observations that contain at least one hospital that has adopted the 
technology.
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All 
South

Drop 
AL

Drop 
AR

Drop 
DE

Drop
FL

Drop
FL

Drop 
GA

Drop 
KY

Drop 
LA

Drop 
MD

Drop 
MS

Drop 
NC

Drop 
OK

Drop 
SC

Drop 
TN

Drop 
TX

Drop 
WV

log(Income)jt 0.723 0.702 0.725 0.695 0.725 0.694 0.838 0.714 0.706 0.655 0.782 0.677 0.823 0.764 0.680 0.461 0.750
(0.214) (0.226) (0.216) (0.216) (0.216) (0.219) (0.183) (0.212) (0.272) (0.215) (0.214) (0.235) (0.184) (0.223) (0.222) (0.695) (0.248)

   [0.004]    [0.008]    [0.005]    [0.006]    [0.005]    [0.007]    [0.000]    [0.005]    [0.021]    [0.009]    [0.003]    [0.012]    [0.001]    [0.004]    [0.009]    [0.518]    [0.009]
R2 0.968 0.969 0.967 0.969 0.967 0.968 0.967 0.968 0.969 0.970 0.967 0.968 0.967 0.969 0.968 0.974 0.969
N 2065 1877 1918 2044 2054 2002 1900 1897 1939 1981 1939 1918 1897 1939 1918 1813 1939                                                                                                                                                                          

All 
South

Drop 
AL

Drop 
AR

Drop 
DE

Drop
DC

Drop
FL

Drop 
GA

Drop 
KY

Drop 
LA

Drop 
MD

Drop 
MS

Drop 
NC

Drop 
OK

Drop 
SC

Drop 
TN

Drop 
TX

Drop 
WV

Oil Reservesj  × 9.245 9.312 9.386 9.182 9.205 9.236 9.347 9.874 8.997 9.007 9.349 8.660 8.892 9.051 9.164 21.641 8.236
  log(oil price)t -1 (2.216) (2.375) (2.303) (2.222) (2.215) (2.285) (2.356) (2.363) (2.015) (2.221) (2.303) (2.127) (1.678) (2.265) (2.311) (4.879) (1.831)

   [0.001]    [0.002]    [0.001]    [0.001]    [0.001]    [0.001]    [0.001]    [0.001]    [0.001]    [0.001]    [0.001]    [0.001]    [0.000]    [0.001]    [0.001]    [0.001]    [0.001]
R2 0.983 0.983 0.983 0.983 0.983 0.983 0.984 0.983 0.984 0.984 0.983 0.983 0.983 0.983 0.982 0.984 0.984
N 2065 1877 1918 2044 2054 2002 1900 1897 1939 1981 1939 1918 1897 1939 1918 1813 1939
F -statistic 17.41 15.37 16.61 17.08 17.26 16.33 15.73 17.45 19.93 16.45 16.48 16.58 28.09 15.97 15.73 19.67 20.24

Notes: Table reports estimates of variants of estimating equation (10) by IV in Panel A and equation (11) by OLS in Panel B. In all specifications income and hospital expenditures are 
divided by hospital-utilization weighted measure of population (HUWP) and then logged.  First column shows results from our baseline sample of all Southern states between 1970 and 
1990 (see column 7 of Table 3 and column 3 of Table 4).  Subsequent columns show the results when the state specified in the column heading is omitted from the analysis. Unit of 
observation is an economic sub-region (ESR)-year; all regressions include ESR and year fixed effects. Standard errors, adjusted to allow for an arbitrary variance-covariance matrix for 
each state over time, are in parentheses and p-values are in brackets.  

Appendix Table A2: Results Leaving Out Each State in Census South

Panel B: First Stage Results

Dependent Variable: Total Hospital Expenditures
Panel A: IV Results

Dependent Variable: Income
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(1) (2) (3) (4) (5) (6) (7)

Baseline 5-year Lead Horse Race
Region 
Trends

State 
Trends

1970-1984 
Subsample

Falsifi-
cation Test

IV IV IV IV IV RF RF
log(Income)jt 0.723 0.992 0.697 0.352 0.131                     

(0.214) (0.306) (0.283) (0.192) (0.118)                     
   [0.004]    [0.005]    [0.027]    [0.088]    [0.286]                     

Oil Reservesj  ×                                                   4.980 -3.107
  log(oil price)t -1                                                   (1.656) (4.044)

                                                     [0.009]    [0.455]
Oil Reservesj  ×           -11.322                                                   
  log(oil price)t+5           (7.830)                                                   

             [0.169]                                                   
R2 0.968 0.964 0.970 0.972 0.976 0.966 0.980
N 2065 2065 2054 2065 2065 1471 1487                                                                      

Oil Reservesj  × 9.245 8.186 8.219 11.722 13.774 14.172
  log(oil price)t -1 (2.271) (2.157) (2.387) (3.004) (3.951) (3.481)

   [0.001]    [0.002]    [0.004]    [0.001]    [0.003]    [0.001]
Oil Reservesj  ×           4.821                                         
  log(oil price)t+5           (3.291)                                         

             [0.164]                                         
R2 0.983 0.983 0.984 0.984 0.985 0.986
N 2065 2065 2054 2065 2065 1471
F-statistic 16.577 14.396 11.853 15.222 12.154 16.571

Notes:  Table reports results from estimating variants of equation (10) by IV in Panel A, except in columns 6 and 7 which 
show variants of equation (12) estimated by OLS in Panel A; table reports results from estimating variants of equation (11) 
by OLS in Panel B. All dependent variables are in logs.  In all columns hospital expenditures and income are divided by a 
hospital-utilization weighted measure of population (HUWP) before taking logs. Unit of observation is an economic sub-
region (ESR)-year, and all columns include ESR and year fixed effects.  In columns 1 through 5 the sample is all Southern 
states between 1970 and 1990. Column 1 reproduces baseline results (see column 7 of Table 3 and column 3 of Table 4).  
Column 2 includes a 5-year lead of the instrument as a control variable.  Column 3 includes several additional interaction 
terms as control variables in a "horse race"; the interaction terms are the log oil price interacted with each of the following 
variables: hospital expenditures in 1969, hospital beds in 1969, population in 1970, wage bill in 1970, and employment in 
1970.  Column 4 adds region-specific linear time trends for the three Census regions in the South.  Column 5 includes state-
specific linear time trends for the 16 Southern states.  Column 6 produces the first stage and reduced form results for 1970 
to 1984 as comparison to the falsification test in column 7, which "grafts" the same oil price series in 1970 to 1984 onto 
the hospital data in 1955 to 1969. Standard errors, adjusted to allow for an arbitrary variance-covariance matrix for each 
state over time, are in parentheses and p-values are in brackets.  

Appendix Table A3: Examination of Identifying Assumption

Panel A: IV and Reduced Form OLS Results
Dependent Variable: Hospital Expenditures

Dependent Variable: Income
Panel B: First Stage Results
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(1) (2) (3) (4) (5) (6)
log(Income)jt 0.723 0.491 0.640 0.632 1.095 0.860

(0.214) (0.145) (0.194) (0.205) (0.670) (0.870)
   [0.004]    [0.004]    [0.005]    [0.008]    [0.123]    [0.339]

R2 0.968 0.971 0.969 0.970 0.962 0.966
N 2065 2065 2065 2065 2065 2065

(1) (2) (3) (4) (5) (6)
Oil Reservesj  × 9.245                                                   
  log(oil price)t -1 (2.216)                                                   

   [0.001]                                                   
Oil Reservesj  ×           0.886                                         
  oil pricet -1           (0.200)                                         

             [0.000]                                         
Oil Reservesj  ×                     10.080                               
  log(oil price)t                     (2.467)                               

                       [0.001]                               
max(Oil Reserves,                               12.646                     
         95th percentile) ×                               (2.523)                     
  log(oil price)t -1                                  [0.000]                     
1{Oil Reserves > 0} ×                                         0.041           
  log(oil price)t -1                                         (0.014)           

                                           [0.012]           
1{Oil Reserves > 0} ×                                                   0.808
  Mining share of labor force in 1970 ×                                                   (0.240)
  log(oil price)t -1                                                      [0.004]
R2 0.983 0.984 0.983 0.983 0.984 0.983
N 2065 2065 2065 2065 2065 2065
F-statistic 17.41 19.71 16.69 25.12 8.22 11.36

Notes:  Table reports estimates of variants of estimating equation (10) by IV in Panel A and equation (11) 
by OLS in Panel B.  The specifications vary in their definition of the instrument, which is given in the left-
hand column of Panel B.  Unit of analysis is an economic sub-region (ESR)-year.  All dependent 
variables are in logs.  In all columns hospital expenditures and income are divided by a hospital-
utilization weighted measure of population (HUWP) before taking logs. The sample is ESRs in Southern 
states between 1970 and 1990.  Column 1 reproduces baseline results (see column 7 of Table 3 and 
column 3 of Table 4). 1(Oil Reserves > 0) is an indicator variable for whether the ESR has any large oil 
wells.  All columns include ESR fixed effects and year fixed effects.  Standard errors, adjusted to allow 
for an arbitrary variance-covariance matrix for each state over time, are in parentheses and p-values are in 
brackets.  

Appendix Table A4: Alternative Specifications of Instrument

Panel B: First Stage Results
Dependent Variable: Income

Panel A: IV Results
Dependent Variable: Hospital Expenditures

27



(1) (2) (3) (4) (5) (6) (7)

Baseline
IV IV-GLS IV-GLS IV-GLS IV-GLS IV IV

Within-panel serial correlation
Cluster at 

State
Common 

AR(1)
Common 

AR(2)

State-
specific 
AR(1)

State-
specific 
AR(2)

Cluster at 
State

Cluster at 
State

log(Income)jt 0.697 0.963 1.111 0.724 0.770 0.491 0.120
  (A ) (0.216) (0.505) (0.681) (0.263) (0.287) (0.135) (0.067)

   [0.006]    [0.057]    [0.103]    [0.006]    [0.007]    [0.002]    [0.075]
log(Total Hospital Exp.)t -1                                                   0.426 0.154
  (B )                                                   (0.088) (0.047)

                                                     [0.000]    [0.001]
Implied long-run effect 0.856 0.142
  (A /(1-B )) (0.214) (0.080)

   [0.001]    [0.077]
N 2016 2016 2016 2016 2016 1966 1966

Dependent Variable: Hospital Expenditures

Appendix Table A5: IV-GLS and Lagged Depedendent Variable

Arellano-
Bond

Lagged 
Dep. Var.

Notes:  Table reports results from estimating variants of equation (10) by IV.  The sample is all Southern states 
between 1970 and 1990.  Unit of observation is an economic sub-region (ESR)-year.  All specifications include 
ESR fixed effects and year fixed effects.  In all columns, income and hospital expenditures are divided by a 
hospital-utilization weighted measure of population (HUWP) before taking logs. For columns 1 through 5, the 
baseline sample is modified to only include the 96 (of 99) ESRs with data for all 21 years between 1970 and 
1990.  Column 1 produces baseline IV results with this modified sample.  Columns 2 through 5 report IV-GLS 
results.  In column 2, ρ1 is estimated to be 0.585.  In column 3, ρ1 is estimated to be 0.508 and ρ2 is estimated to 
be 0.127.  In column 4, ρ1 is estimated separately by state; estimated values of ρ1 range from 0.155 to 0.887 with 
mean 0.604 and s.d. 0.240.  In column 5, ρ1 and ρ2 are estimated separately by state; estimated values of ρ1 
range from 0.118 to 0.747 with mean 0.487 and s.d. 0.200, and estimated values of ρ2 range from 0.041 to .341 
with mean 0.192 and s.d. 0.083.  Column 6 includes a lagged dependent variable as a control.  Column 7 uses 
the Arellano-Bond GMM dynamic panel estimator.  In columns 6 and 7 the standard error on the implied long-
run effect is estimated using the delta method. 
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

Regression:
First Stage 

OLS IV IV IV IV IV IV IV IV

Dependent 
Variable: Income

Total Health 
Care Exp.

Hospital 
Exp.

Physician 
and Other 
Services

Dental 
Services

Drugs and 
Other 

Medical 
Non-

durables
Vision 

Products
Nursing 

Care

Other 
Health 

Services

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Oil Reservesj  × 3.626                                                                                 
  log(oil price)t -1 (0.776)                                                                                 

   [0.000]                                                                                 
log(Income)jt           0.055 0.067 0.179 0.622 0.248 1.187 -1.302 -0.359

          (0.077) (0.157) (0.152) (0.100) (0.120) (0.516) (0.321) (0.228)
             [0.484]    [0.675]    [0.257]    [0.000]    [0.057]    [0.036]    [0.001]    [0.137]

R2 0.985 0.998 0.995 0.996 0.991 0.993 0.914 0.926 0.963
N 236 236 236 236 236 236 236 236 236
F -statistic 21.81                                                                                 

                    46.30% 24.73% 5.17% 11.33% 1.80% 7.02% 3.44%

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Oil Reservesj  × 3.162                                                                                 
  log(oil price)t -1 (0.586)                                                                                 

   [0.000]                                                                                 
log(Income)jt           0.098 0.139 0.365 0.650 0.307 0.748 -1.944 -0.953

          (0.167) (0.151) (0.186) (0.173) (0.112) (0.824) (0.968) (0.758)
             [0.558]    [0.361]    [0.056]    [0.000]    [0.009]    [0.368]    [0.050]    [0.214]

R2 0.98 0.996 0.965 0.974 0.986 0.989 0.879 0.918 0.915
N 729 729 729 729 729 729 729 729 729
F -statistic 29.11                                                                                 

                    45.06% 25.04% 6.07% 10.40% 2.02% 8.57% 3.39%

Appendix Table A6: Hospital Spending Versus Overall Health Spending

Notes:  Table reports first stage results of estimating equation (11) by OLS in column 1; remaining columns report estimates of variants of 
estimating equation (10) by IV.  Unit of observation is a State-year in all columns.  Dependent variables are various measures of health care 
expenditures from the Health Care Finance Administration (HCFA).  HCFA data are available in 1972, 1976 - 1978, and 1980-1990.  All 
dependent variables and income are in logs and divided by a hospital-utilization weighted measure of population (HUWP).  In all columns 
income is divided by HUWP before taking logs.  Sample is Southern states in Panel A and All U.S. (except Alaska and Virginia) in Panel B.  
Standard errors, adjusted to allow for an arbitrary variance-covariance matrix for each state over time, are in parentheses and p-values are in 
brackets.  

Share of Total 
Health Care Exp.

Panel A: Southern States Only

Panel B: All U.S.

Share of Total 
Health Care Exp.
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(1) (2) (3) (4)
log(Income)jt 0.550 0.451 0.740 0.568

(0.230) (0.160) (0.359) (0.263)
   [0.030]    [0.013]    [0.045]    [0.036]

R2 0.992 0.993 0.981 0.982
N 326 326 1015 1015

(1) (2) (3) (4)
Oil Reservesj  × 2.564 3.128 2.220 2.895
  log(oil price)t -1 (0.523) (0.851) (0.443) (0.682)

   [0.000]    [0.002]    [0.000]    [0.000]
R2 0.989 0.990 0.985 0.983
N 326 326 1015 1015
F-statistic 24.05 13.50 25.10 18.05

(1) (2) (3) (4)
Income definition Payroll GSP Payroll GSP
Geographic sample South South USA USA

Appendix Table A7: Labor Income vs. All Income

Panel B: First Stage Results
Dependent Variable: Income

Notes:  Table reports estimates of variants of estimating equation (10) by IV in Panel A 
and equation (11) by OLS in Panel B. Unit of observation is a State-year in all columns. 
In all specifications income and hospital expenditures are divided by hospital-utilization 
weighted measure of population (HUWP) and then logged.  Bottom rows define the 
specification variants; these are the definition of income (Payroll as in the baseline 
specification or Gross State Product (GSP)) and the geographic sample (South or all 
US). In all columns the years of analysis are 1970 - 1990. The sample is all Southern 
states between 1970 and 1990 in columns 1 and 2; columns 3 and 4 expand sample to 
all US (except Alaska and Virginia).  Column 1 reproduces results from column 6 in 
Table 4 (Panel A) and column 8 of Table 3 (Panel B).   All regressions include state and 
year fixed effects.  Standard errors, adjusted to allow for an arbitrary variance-
covariance matrix for each state over time, are in parentheses and p-values are in 
brackets.  

Panel A: IV Results
Dependent Variable: Hospital Expenditures

Specification 
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(1) (2) (3) (4) (5) (6)

Amuse-
ment Hotels

Legal 
Services

Other 
Services Food

Health 
Services

log(Income)jt 0.900 0.835 1.635 1.375 -0.009 -0.048
(0.385) (0.319) (0.317) (0.387) (0.416) (0.181)

   [0.034]    [0.019]    [0.000]    [0.003]    [0.984]    [0.793]
R2 0.984 0.984 0.991 0.989 0.965 0.996
N 326 326 326 308 324 326

log(Income)jt 1.080 0.940 1.749 1.400 0.255 0.207
(0.384) (0.397) (0.291) (0.270) (0.356) (0.412)

   [0.007]    [0.022]    [0.000]    [0.000]    [0.477]    [0.617]
R2 0.975 0.978 0.988 0.984 0.977 0.994
N 1013 1015 1015 989 1013 1015

Industry-specific Gross State Product

Appendix Table A8: Income Elasticity of Other  Goods

Notes:  Table reports results from estimating variants of equation (10) by IV. Dependent 
variables are given in column headings. All dependent variables are in logs, and all dependent 
variables and income are divided by a hospital-utilization weighted measure of population 
(HUWP) before taking logs. The sample is all Southern states between 1970 and 1990 in Panel 
A and all US states (except Alaska and Virginia) between 1970 and 1990 in Panel B.  Unit of 
analysis is a state-year.  All columns include state and year fixed effects.  Dependent variable is 
the Gross State Product for various industries, as indicated by column headings.  Standard 
errors, adjusted to allow for an arbitrary variance-covariance matrix for each state over time, are 
in parentheses and p-values are in brackets.  

Panel A: Southern States Only

Panel B: All U.S.
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(1) (2) (3) (4)

Regression: IV IV

Reduced 
Form 
OLS

Reduced 
Form 
OLS

Oil Reservesj  ×                     6.680 10.567
  log(oil price)t -1                     (2.099) (7.511)

                       [0.006]    [0.180]
log(Income)jt 0.725 0.833                     

(0.216) (0.369)                     
   [0.005]    [0.040]                     

log(Income)jt ×           -0.066                     
  log(Income)j,t=1970           (0.143)                     

             [0.652]                     
{ Oil Reservesj  ×                               -487.728
  log(oil price)t -1 }

2                               (717.177)
                                 [0.507]

R2 0.967 0.965 0.973 0.973
N 2054 2054 2065 2065
 -1 standard deviation 0.725 0.862 6.680 11.855
Marginal Effect at Mean 0.725 0.833 6.680 10.567
 +1 standard deviation 0.725 0.804 6.680 9.278

Appendix Table A9: Decomposition and Tests for Nonlinear Effects

Notes:   Table reports IV estimates of variants of equation (10) in columns 1 and 2 and 
OLS estimates of a variant of equation (12) in columns 3 and 4.  The unit of anlaysis is an 
economic sub-region (ESR)-year, and the regressions include ESR fixed effects and year 
fixed effects.  All dependent variables are in logs.  In all columns hospital expenditures 
and income are divided by a hospital-utilization weighted measure of population (HUWP) 
before taking logs. The sample is all Southern states between 1970 and 1990.  Note that 
the results in columns 1 and 3 differ slightly from baseline results in Table 4 because the 
sample does not include Washington, DC (DC is dropped because there is no data for DC 
in the 1970s).  Standard errors, adjusted to allow for an arbitrary variance-covariance 
matrix for each state over time, are in parentheses and p-values are in brackets.  

Dependent Variable: Hospital Expenditures
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(1) (2) (3) (4) (5)
log(Income)jt 0.723 0.700 0.804 N/A 0.853

(0.214) (0.368) (0.633) (0.439)
   [0.004]    [0.106]    [0.210]    [0.071]

R2 0.968 0.967 0.956 0.970
N 2065 1070 4915 3547

(1) (2) (3) (4) (5)
Oil Reservesj  × 9.245 6.237 7.094 1.481 7.966
  log(oil price)t -1 (2.271) (1.655) (2.375) (1.882) (1.930)

   [0.001]    [0.009]    [0.004]    [0.443]    [0.001]
R2 0.983 0.985 0.982 0.984 0.986
N 2065 1070 4915 3547 3547
F-statistic 16.58 14.21 8.92 0.62 17.04

(1) (2) (3) (4) (5)
Years 1970-1990 1970-1990 1970-1990 1970-2005 1970-2005
Geographic sample South Southern 

States w/ 
Large Oil 

Wells

All US South South

State-specific time trends N N N N Y

Panel A: IV Results

Notes:  Table reports estimates of variants of estimating equation (10) by IV in Panel A and 
equation (11) by OLS in Panel B. All dependent variables and income are in logs and divided by a 
hospital-utilization weighted measure of population (HUWP) before taking logs.  Unit of analysis is 
an economic sub-region (ESR)-year in all columns, and all columns include ESR fixed effects and 
year fixed effects.  Bottom rows define the specification variants. The baseline sample is all 
Southern states between 1970 and 1990.  Column 1 reproduces baseline results from column 7 in 
Table 3 and column 3 in Table 4.  Standard errors, adjusted to allow for an arbitrary variance-
covariance matrix for each state over time, are in parentheses and p-values are in brackets.  Because 
there is no statistically significant first stage in column 4, the IV results are not reported.  

Appendix Table A10: Heterogeneity Across Geography and Time

Panel B: First Stage Results
Dependent Variable: Income

Dependent Variable: Hospital Expenditures

Specification
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(1) (2) (3) (4) (5) (6) (7) (8)
log(oil price)t -1 0.034 0.005 0.014 0.010 -0.090 -0.156 -0.151 -0.175

(0.054) (0.057) (0.060) (0.063) (0.089) (0.093) (0.101) (0.107)
   [0.537]    [0.927]    [0.816]    [0.880]    [0.315]    [0.098]    [0.141]    [0.107]

log(oil price)t -1 - log(oil price)t -2           0.249 0.254 0.264           0.318 0.319 0.351
          (0.158) (0.160) (0.167)           (0.156) (0.159) (0.166)
             [0.120]    [0.119]    [0.121]              [0.046]    [0.050]    [0.041]

log(oil price)t -2 - log(oil price)t -3                     -0.121 -0.123                     -0.038 -0.034
                    (0.166) (0.170)                     (0.167) (0.169)
                       [0.469]    [0.474]                        [0.819]    [0.840]

log(oil price)t -3 - log(oil price)t -4                               0.047                               0.125
                              (0.172)                               (0.170)
                                 [0.786]                                  [0.467]

t                                         0.111 0.142 0.141 0.157
                                        (0.064) (0.065) (0.070) (0.075)
                                           [0.088]    [0.035]    [0.050]    [0.040]

N 55 54 53 52 55 54 53 52
Dickey-Fuller test statistic 0.621 0.092 0.234 0.151 -1.014 -1.686 -1.498 -1.642
Approximate p-value 0.988 0.966 0.974 0.969 0.942 0.757 0.830 0.776

Appendix Table A11: Augmented Dickey-Fuller Tests

Notes:  Table based on annual data on oil prices from 1950 to 2005 (see Figure 2).  Standard errors are in parentheses and p-values are 
in brackets.  

Dependent Variable: log(oil price)t  - log(oil price)t -1
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(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Income
Hospital 

Expenditures
Hospital 

Expenditures Income
Hospital 

Expenditures
Hospital 

Expenditures
Hospital 

Expenditures
Baseline Baseline Baseline 10-year 10-year 10-year 3-year avg.

FS
OLS

RF
OLS IV

FS
OLS

RF
OLS IV IV

Oil Reservesj  × 9.245 6.680           7.621 6.050                     
  log(oil price)t -1 (2.271) (2.099)           (2.643) (2.628)                     

   [0.001]    [0.006]              [0.011]    [0.036]                     
log(Income)jt                     0.723                     0.794 0.826

                    (0.214)                     (0.411) (0.231)
                       [0.004]                        [0.073]    [0.003]

R2 0.983 0.973 0.968 0.986 0.986 0.981 0.976
N 2065 2065 2065 296 296 296 690
F-statistic 16.577                     8.318                               

Appendix Table A12: Short-run versus Long-run Effects

Notes:  Table reports results of estimating equations (10), (11) or (12) by OLS or IV as indicated. All dependent variables are in logs. Unit 
of analysis is an economic sub-region (ESR)-year, and all columns include ESR fixed effects and year fixed effects. In all columns income 
and hospital expenditures are divided by a hospital-utilization weighted measure of population (HUWP) before taking logs. Columns 1 
through 3 are the baseline sample of all Southern states between 1970 and 1990; in columns 4 through 6, only observations from 1970, 
1980, and 1990 are included.  Column 7 uses 3-year averages of all variables (see Appendix Section B for more details).  Standard errors, 
adjusted to allow for an arbitrary variance-covariance matrix for each state over time, are in parentheses and p-values are in brackets.  
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Dependent 
Variable:

Total 
Hospital 

Expenditures

Total 
Hospital 
Payroll FTE

RN/
(RN+LPN) Admissions

In-Patient 
Days Beds

Number of 
Hospitals

Number of 
Technologies

Open-Heart 
Surgery

Radioisotope 
Therapy

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.723 0.934 0.039 0.329 -0.430 -1.034 -0.698 -0.552 -0.132 -3.163 1.083

(0.214) (0.233) (0.222) (0.089) (0.193) (0.488) (0.455) (0.358) (0.221) (11.334) (2.575)
   [0.004]    [0.001]    [0.862]    [0.002]    [0.042]    [0.051]    [0.146]    [0.144]    [0.558] [0.169] [0.545]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065 849 262

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.801 0.953 0.311 0.266 -0.025 -0.451 -0.217 -0.395 -0.095 -1.154 1.537

(0.155) (0.167) (0.175) (0.072) (0.138) (0.324) (0.295) (0.262) (0.161) (3.929) (3.467)
   [0.000]    [0.000]    [0.096]    [0.002]    [0.861]    [0.184]    [0.474]    [0.152]    [0.564] [0.187] [0.259]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065 849 262

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.665 0.920 -0.161 0.415 -0.728 -1.468 -1.053 -0.667 -0.160 -2.450 1.894

(0.263) (0.282) (0.297) (0.112) (0.265) (0.645) (0.584) (0.447) (0.272) (9.014) (3.297)
   [0.023]    [0.005]    [0.595]    [0.002]    [0.015]    [0.038]    [0.092]    [0.156]    [0.565] [0.194] [0.278]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065 849 262

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.550 0.865 -0.119 0.326 -0.333 0.258 0.294 -0.028 0.819 N/A N/A

(0.230) (0.187) (0.181) (0.095) (0.187) (0.204) (0.212) (0.287) (1.672)
   [0.030]    [0.000]    [0.520]    [0.004]    [0.095]    [0.226]    [0.186]    [0.924]    [0.631]

N 326 326 326 251 326 311 326 326 322

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.451 0.709 -0.098 0.274 -0.273 0.212 0.241 -0.023 0.673 N/A N/A

(0.160) (0.126) (0.154) (0.100) (0.160) (0.165) (0.172) (0.236) (1.323)
   [0.013]    [0.000]    [0.534]    [0.015]    [0.109]    [0.218]    [0.182]    [0.924]    [0.619]

N 326 326 326 251 326 311 326 326 322

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.740 0.863 -0.086 0.407 -0.188 -0.009 0.109 0.098 1.054 N/A N/A

(0.359) (0.398) (0.244) (0.112) (0.342) (0.268) (0.395) (0.295) (1.367)
   [0.045]    [0.035]    [0.726]    [0.001]    [0.585]    [0.973]    [0.783]    [0.741]    [0.444]

N 1015 1015 1015 777 1015 967 1015 1015 1011

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.568 0.662 -0.066 0.331 -0.144 -0.007 0.084 0.075 0.812 N/A N/A

(0.263) (0.298) (0.189) (0.102) (0.264) (0.205) (0.303) (0.225) (1.023)
   [0.036]    [0.031]    [0.728]    [0.002]    [0.588]    [0.973]    [0.783]    [0.740]    [0.431]

N 1015 1015 1015 777 1015 967 1015 1015 1011

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.700 0.852 -0.042 0.487 -0.630 -2.089 -1.816 -1.098 -0.047 -2.760 2.996

(0.368) (0.378) (0.544) (0.124) (0.305) (0.578) (0.626) (0.513) (0.237) (22.066) (10.381)
   [0.106]    [0.065]    [0.940]    [0.008]    [0.085]    [0.011]    [0.027]    [0.076]    [0.850] [0.299] [0.377]

N 1070 1070 1070 815 1070 1019 1070 1070 1070 399 128

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.804 0.882 0.030 0.503 -0.330 -0.598 -0.595 -0.383 -0.191 -2.135 1.292

(0.633) (0.557) (0.352) (0.126) (0.406) (0.439) (0.605) (0.320) (0.325) (9.394) (7.234)
   [0.210]    [0.120]    [0.932]    [0.000]    [0.420]    [0.180]    [0.330]    [0.237]    [0.560] [0.302] [0.168]

N 4915 4914 4915 3749 4915 4681 4915 4915 4915 1906 503

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.853 0.935 0.591 0.281 -0.038 -0.486 -0.064 -0.650 0.039 N/A N/A

(0.439) (0.565) (0.761) (0.063) (0.197) (0.230) (0.350) (0.410) (0.110)
   [0.071]    [0.119]    [0.450]    [0.000]    [0.850]    [0.052]    [0.858]    [0.134]    [0.729]

N 3547 3546 3547 3058 3547 3449 3547 3547 2164

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.794 0.921 0.071 0.625 -0.510 -1.562 -0.771 -0.728 -0.311 N/A N/A

(0.411) (0.541) (0.548) (0.250) (0.306) (0.846) (0.689) (0.491) (0.355)
   [0.073]    [0.109]    [0.898]    [0.025]    [0.117]    [0.085]    [0.281]    [0.159]    [0.396]

N 296 296 296 296 296 296 296 296 296

Appendix Table A13: Replication of Robustness Analysis for Other Dependent Variables

Panel I: ESR-level Results, All U.S. (see Table A10, column (3))

Panel K: Decadal Panel (see Table A12, column (6))

Panel H: Drop States with No Large Oil Wells (see Table A10, column (2))

Panel J: 1970-2005 + state-specific linear time trends (see Table A10, column (5))

Panel A: Baseline Results (reproduced from Table 5)

Panel B: No Population Adjustment (see Table 4, column (4))

Panel C: Per Capita Population Adjustment (see Table 4, column (5))

Panel D: State-level Results (see Table 4, column (6))

Panel F: State-level Results, All U.S. (see Table A7, column (3))

Panel G: State GSP instead of Income, All U.S. (see Table A7, column (4))

Panel E: State GSP instead of Income, Census South (see Table A7, column (2))
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.826 0.954 0.235 0.259 -0.369 -0.719 -0.614 -0.635 -0.162 N/A N/A

(0.231) (0.216) (0.169) (0.101) (0.175) (0.429) (0.434) (0.371) (0.255)
   [0.003]    [0.001]    [0.185]    [0.022]    [0.052]    [0.115]    [0.178]    [0.107]    [0.534]

N 690 690 690 592 690 690 690 690 690

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.992 1.188 -0.023 0.360 -0.563 -0.979 -0.824 -0.761 -0.175 N/A N/A

(0.306) (0.263) (0.224) (0.086) (0.271) (0.588) (0.592) (0.518) (0.321)
   [0.005]    [0.000]    [0.918]    [0.001]    [0.056]    [0.117]    [0.185]    [0.163]    [0.594]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.697 0.748 0.117 0.284 -0.617 -0.380 0.084 -0.676 0.314 N/A N/A

(0.283) (0.284) (0.275) (0.142) (0.278) (0.346) (0.318) (0.397) (0.226)
   [0.027]    [0.020]    [0.678]    [0.065]    [0.044]    [0.290]    [0.794]    [0.110]    [0.187]

N 2054 2053 2054 1565 2054 1956 2054 2054 2054

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.352 0.439 0.053 0.262 -0.014 0.279 -0.740 -0.382 -0.040 -2.699 2.023

(0.192) (0.254) (0.287) (0.062) (0.127) (0.071) (0.371) (0.210) (0.134) (11.844) (6.711)
   [0.088]    [0.104]    [0.855]    [0.001]    [0.913]    [0.001]    [0.065]    [0.090]    [0.769] [0.312] [0.239]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065 849 262

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.491 0.648 -0.038 0.230 -0.258 -0.657 -0.506 -0.393 -0.110 -1.392 2.089

(0.145) (0.135) (0.127) (0.061) (0.119) (0.298) (0.294) (0.243) (0.159) (8.824) (3.380)
   [0.004]    [0.000]    [0.768]    [0.002]    [0.047]    [0.044]    [0.106]    [0.127]    [0.499] [0.479] [0.191]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065 849 262

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.640 0.823 0.103 0.342 -0.315 -0.996 -0.605 -0.469 -0.173 -3.064 2.016

(0.194) (0.233) (0.222) (0.104) (0.171) (0.458) (0.403) (0.306) (0.210) (13.207) (7.030)
   [0.005]    [0.003]    [0.649]    [0.005]    [0.085]    [0.046]    [0.154]    [0.147]    [0.423] [0.240] [0.242]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065 849 262

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.632 0.888 -0.032 0.336 -0.410 -1.025 -0.711 -0.459 -0.145 -2.717 2.003

(0.205) (0.227) (0.206) (0.095) (0.187) (0.482) (0.454) (0.335) (0.225) (10.449) (3.490)
   [0.008]    [0.001]    [0.879]    [0.003]    [0.045]    [0.050]    [0.138]    [0.190]    [0.527] [0.237] [0.255]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065 849 262

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 1.095 1.377 0.076 0.297 -0.169 0.078 0.014 0.384 -0.322 0.597 -0.669

(0.670) (0.661) (0.507) (0.210) (0.416) (0.753) (0.681) (0.505) (0.343) (6.238) (4.904)
   [0.123]    [0.055]    [0.883]    [0.177]    [0.691]    [0.919]    [0.984]    [0.459]    [0.362] [0.458] [0.631]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065 849 262

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.860 0.975 -0.219 0.189 -0.391 -0.236 0.005 -0.113 0.344 -1.141 -0.212

(0.870) (0.805) (0.484) (0.162) (0.450) (0.877) (0.871) (0.584) (0.604) (9.114) (3.217)
   [0.339]    [0.245]    [0.658]    [0.262]    [0.399]    [0.792]    [0.995]    [0.849]    [0.577] [0.278] [0.869]

N 2065 2064 2065 1576 2065 1967 2065 2065 2065 849 262

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
log(Income)jt 0.856 0.951 0.157 0.048 -0.373 -0.505 -0.638 -0.611 -0.114 N/A N/A

(0.214) (0.181) (0.156) (0.019) (0.168) (0.518) (0.414) (0.353) (0.239)
   [0.001]    [0.000]    [0.331]    [0.024]    [0.042]    [0.344]    [0.144]    [0.104]    [0.641]

N 1963 1961 1963 988 1963 1768 1963 1963 1963

Panel R: max(Oil Reserves, 95th Percentile) (see Table A4, column (4))

Panel S: Has Large Oil Wells Dummy (see Table A4, column (5))

Panel T: Oil Wells Dummy x Mining Share of Labor Force in 1970 (see Table A4, column (6))

Panel N: Horse Race (see Table A3, column (3))

Panel M: Include 5-year Lead (see Table A3, column (2))

Notes:  This table shows robustness results across all of the dependent variables in Table 5 (Panel A reproduces baseline results in Table 5 for comparison).  The table and column 
number in each panel heading references the specification that is being shown; see notes in main tables for details on the various specifications.  In all panels, the first column replicates 
the robustenss analysis shown in the referenced table for total hospital expenditures. In all panels, the dependent variable in columns 4, 8, and 9 is not adjusted for population.  Standard 
errors, adjusted to allow for an arbitrary variance-covariance matrix for each state over time, are in parentheses and p-values are in brackets.  In some panels, there is not enough 
variation to estimate the Cox proportional hazard models in columns (10) and (11); we place "N/A" in these cells.  We do not include robustness tests for the IV-GLS results in Table A5 
because several of the alternative dependent variables are missing data for various years, making estimation of the AR(1) and AR(2) coefficients difficult because of the "gaps" in the 
panel data set. The results reported in Panel U (lagged dependent variable specification) are the implied long-run effects.

Panel U: Lagged Dependent Variable (see Table A5, column (6))

Panel O: Region-specific linear time trends (see Table A3, column (4))

Panel P: Oil price in levels (see Table A1, column (2))

Panel Q: Oil price at time t instead of t-1 (see Table A4, column (3))

Panel L: 3-year Averages (see Table A12, column (7))
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ρ =0.1 ρ =0.3 ρ =0.9 ρ =0.1 ρ =0.3 ρ =0.9 ρ =0.1 ρ =0.3 ρ =0.9 ρ =0.1 ρ =0.3 ρ =0.9 ρ =0.1 ρ =0.3 ρ =0.9
y jt  = x jt +a jt +δ j +ε jt 1.008 1.009 1.012 1.010 1.009 1.009 -0.041 -0.038 -0.033 1.020 1.026 1.032 1.029 1.032 1.034

(0.094) (0.097) (0.127) (0.111) (0.102) (0.095) (0.111) (0.117) (0.141) (0.181) (0.220) (0.352) (0.228) (0.243) (0.245)
y jt = x j,t-1 +a jt +δ j +ε jt -0.033 -0.031 -0.029 -0.490 -0.491 -0.491 0.993 0.996 1.001 0.626 0.632 0.638 0.496 0.499 0.501

(0.138) (0.143) (0.158) (0.127) (0.120) (0.115) (0.089) (0.095) (0.124) (0.228) (0.260) (0.378) (0.291) (0.310) (0.324)
y jt = x j,t +a jt +δ j +ε jt    0.482 0.484 0.486 0.253 0.253 0.253 0.479 0.482 0.486 0.810 0.816 0.821 0.743 0.746 0.748
 or    x j,t-1 +a jt +δ j +ε jt     (0.135) (0.139) (0.159) (0.155) (0.149) (0.146) (0.146) (0.148) (0.166) (0.229) (0.258) (0.371) (0.294) (0.312) (0.322)
y jt = x jt +a jt +δ j +ε jt    0.307 0.309 0.311 0.161 0.161 0.160 0.309 0.311 0.316 0.626 0.632 0.637 0.480 0.483 0.486
 or    x j,t-1 +a jt +δ j +ε jt (0.139) (0.144) (0.163) (0.153) (0.149) (0.146) (0.147) (0.151) (0.168) (0.257) (0.284) (0.388) (0.313) (0.330) (0.340)
 or    x j,t-2 +a jt +δ j +ε jt

Notes: This table reports results from the Monte Carlo study described in Appendix (Section D).  Each cell displays the mean of the parameter estimates from 500 simulations; standard 
deviation of parameter estimates is reported below in parentheses.

Appendix Table A14: Monte Carlo Simulation Results

FE-IV FD-IV FE-IV-LAG FE-IV-3YR FD-IV-3YR
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