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Abstract

Incomplete information, local interaction and random matching games
all share a common structure. A type or player interacts with various sub-
sets of the set of all types/players. A type/player’s total payoff is additive
in the payoffs from these various interactions. This paper describes a gen-
eral class of interaction games and shows how each of these three types
of games can be understood as special cases. Techniques and results from
the incomplete information literature are translated into this more general
framework; as a by-product, it is possible to give a complete characteriza-
tion of equilibria robust to incomplete information (in the sense of Kajii
and Morris [1995]) in many player binary action co-ordination games.
Only equilibria that are robust in this sense [1] can spread contagiously
and [2] are uninvadable under best response dynamics in a local interac-
tion system. A companion paper, Morris [1997], uses these techniques to
characterize features of local interaction systems that allow contagion.
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1 Introduction

This paper introduces and analyses a class of interaction games. A finite or
infinite population interacts strategically. But each player’s payofl depends on
the population strategy profile in a special way. Each player is involved in



a number of interactions, consisting of subsets of players. He must choose the
same action in each of his interactions. He receives a payoff from each interaction
that does not depend on the actions of players not in the interaction. Each
interaction has a weight. An equilibrium of an interaction game is a profile of
possibly mixed strategies for each player such that each player maximizes the
weighted sum of his payofls from each interaction.

Two restrictions allow an interaction game to have an incomplete infor-
mation interpretation: N-partite interaction requires that the players can be
partitioned into IV groups, such that each interaction consists of exactly one
player from each group; bounded interactions requires that the weights of the
interactions add up to 1. Now consider the N player incomplete information
game where each of the NV groups represent the set of types of one “big player”.
Interactions then correspond to type profiles, or states, while the “weight” on
an interaction corresponds the probability of the type profile. The definition
of equilibrium for general interaction games corresponds to the standard defini-
tion of (Bayesian Nash) equilibrium of the incomplete information game. Any
incomplete information game can be interpreted as an interaction game in this
way.

To interpret an interaction game as a random maiching game, drop the N-
partite interaction assumption but assume bounded interactions and two more
restrictions: player independent payoffs requires that any player’s payofl from
an interaction depends only on his action and the actions of others in the group
(and not on the identity of the player or interaction); binary interaction requires
that each positive weight interaction consists of exactly two players. Now inter-
pret an interaction as a match of two players and the weight of an interaction
as the probability of that match. Players must choose actions without knowing
which match is chosen. Again, the definition of equilibrium for general inter-
action games corresponds to the standard definition of equilibrium for random
matching games and any random matching game can be interpreted as an in-
teraction game in this way. Indeed, only the bounded interactions assumption
is necessary to interpret an interaction game as a random matching game. One
can easily have many player matches where payofls depend on the identities of
all players in the match.

Finally, to interpret an interaction game as a deterministic local inleraction
game, maintain the player independent payoffs and binary interaction assump-
tions but replace bounded interactions with the following: constant weights
requires that each interaction receives a weight of either 0 or 1. Now two play-
ers are “neighbours” if the interaction consisting of those two players has weight
1; they are not neighbours if that interaction has weight 0. Again, equilibrium
notions coincide. Deterministic local interaction is the broadest interpretation
of interaction games since no restriction is necessary for the interpretation: one
can have an unbounded number of many player interactions where identities
matter and different interactions have different deterministic weights.

These equivalences are more than just a curiosity. By understanding the



common structure of interaction games, we understand each of these classes
of games better. For example, it transpires that what matters in the analysis
of incomplete information games is the additive separability of payofls across
interactions; the fact that types of one player do not interact with other types
of the same player is irrelevant for most purposes.

The equivalences are used in this paper to translate and extend earlier results
from the incomplete information literature. Kajii and Morris [1995] analysed
which equilibria of a complete information game were “robust to incomplete
information”: a complete information equilibrium is robust if behaviour close
to it is played in some equilibrium of every incomplete information game where
payofls are almost always given by the complete information game. Translated
into the context of interaction games, a complete information equilibrium is ro-
bust if behaviour close to it is an equilibrium of every interaction game where
most players in most interactions have payofls given by that complete informa-
tion game. Kajii and Morris [1995] provided different sufficient conditions for
robustness but none were very powerful in the case of many player games. As a
by-product of our analysis of interaction games, we are able to derive a sufficient
condition that has significant bite in many player games.

This new result allows a complete characterization of robustness in binary
action co-ordination (BC') games. A BC game is a symmetric game where each
player must choose one of two actions and the incentive to choose each action
is increasing in the number of opponents who choose that action. An action
is a “uniform best response” if it is a best response to a conjecture that puts
equal probability of each possible number of opponents choosing that action.
In a generic BC game, exactly one action is a uniform best response. We show
that the unique uniform best response is the unique robust action (in the sense
described above). It is also the unique action that might spread contagiously
under deterministic or a class of stochastic best response dynamics. Finally,
it is the unique action that is itself uninvadable under all such best response
dynamics in all local interaction systems.

The results in this paper build heavily on earlier research. Monderer and
Samet [1989] introduced techniques (using “belief operators”) for analysing
higher order beliefs (players’ beliefs about other players’ beliefs, etc...) in incom-
plete information games. The basic techniques and results in this paper exploit
translations of belief operator techniques, and results proved using them, to gen-
eral interaction games. In incomplete information games, higher order beliefs
are important exactly when players’ types are highly correlated and belief oper-
ators are most useful in such situations. The interaction game viewpoint makes
clear that this feature corresponds to highly local interaction and highly non-
uniform random matching. It is thus in these environments that the techniques
described are most useful.

Mailath, Samuelson and Shaked [1997] showed that the set of probability
distributions over action profiles generated by equilibria of random matching
games equals the set of correlated equilibria of the underlying game. This argu-



ment (summarized in section 3.3.1) implicitly exploits the equivalence between
incomplete information and local interaction / random matching games. The
purpose of this paper is to make the equivalence explicit in a more general class
of games, but also to develop a unified approach to analysing interaction games.
Many results are translations of known results into this general setting, in par-
ticular building on Morris, Rob and Shin [1995] and Kajii and Morris [1995].
In a companion piece, Morris [1997], these techniques are applied to give new
characterizations of which features of a local interaction system allow behaviour
to spread contagiously. That paper also contains a discussion of existing results
in the local interaction literature and their (sometimes close) connection to the
approach described here.

The paper is organized as follows. In section 2, I describe an “investment ex-
ample” that has incomplete information, local interaction and random matching
interpretations. With the incomplete information interpretation, the example
is close to the “electronic mail game” of Rubinstein [1989] that is the canonical
example illustrating how higher order beliefs can allow small probability events
to have high probability impacts in incomplete information games. With the
local interaction interpretation, the example is close to the interaction on a line
analysis of Ellison [1993] that is the canonical example of how the behaviour of
a small number of players can be bootstrapped to influence the behaviour of all
players in a local interaction system. This example goes a long way to providing
a feel for the equivalence.

The general class of interaction games is described in section 3, together
with the restrictions necessary to support the various interpretations. Four
examples in section 3.2 serve two purposes. They all clarify the role of the
various restrictions introduced. The latter two examples illustrate the usefulness
of a more general perspective on incomplete information results: a standard
no trade result and the convention game of Shin and Williamson [1996] are
translated from an incomplete information interpretation into a more general
interaction game set up.

The unified approach to analysing interaction games is presented in section
4.1; section 4.2 contains equilibrium results; section 4.3 contains results on best
response dynamics.

2 Leading Example

Two players (ROW and COL) must choose action “Invest” (I) or action “Don’t
Invest” (D). Fach player faces a cost 2 of investing. Each player realizes a
gross return of 3 from the investment if both (1) the other player invests and
(2) investment conditions are favorable for that player. Thus if investment
conditions are favorable for both players, then payofls are given by the following



symmetric matrix:

Favorable for ROW 1 D
Favorable for COL
1 1,1 [-20
D 0,-2 | 0,0

This game has two strict Nash equilibria: both players invest and both players
don’t invest. On the other hand, if conditions are unfavorable for ROW (but
favorable for player COL), payofls are given by the following matrix:

Favorable for ROW 1 D
Unfavorable for COL
1 2,1 (-200
D 0-2 (00

In this game, ROW has a dominant strategy to not invest, and thus the unique
Nash equilibrium has both players not investing.

2.1 Incomplete Information

Now allow a small amount of incomplete information about investment condi-
tions. In particular, investment conditions are always favorable for COL, but
not for ROW. ROW knows when investment conditions are favorable for him,
but COL does not.

Specifically, suppose that ROW observes a signal sg € {0, ..., K — 1} which
is drawn from a uniform distribution. Assume that investment conditions are
favorable for ROW wunless sg = 0. COL observes a noisy version of ROW’s
signal, s¢ € {0,..., K — 1}. In particular, assume that

o4 SR with probability 1/2
@7\ sg— 1, with probability 1/2

with mod K arithmetic, so that 0—1 =K —1. Thusif s =0, s¢isOor K —1
with equal likelihood.

The above constitutes a description of an incomplete information game. We
can summarize the game in the following diagram:

Type of
COL
0|1 |2 K-1
0 x|lo |o X U
1 X | x|o F
Type of
ROW 2 o | X | X F
K-1]o |o |o X F
F|F|F F




Types of ROW are represented by rows, types of COL by columns. Boxes with
a X correspond to type profiles which occur with positive probability; given the
uniform prior assumption, each occurs with ex ante probability % Boxes with
a o correspond to type profiles that occur with zero ex ante probability. Payofls
are specified by the letter - F for favorable, U for unfavorable - at the end of
the row/column corresponding to the type.

The unique equilibrium of this incomplete information game has each player
never investing. To see why, observe first that type 0 of ROW will not invest
in any equilibrium. But type 0 of COL attaches probability 1/2 to ROW
being of type 0, and therefore not investing. But even if investment conditions
are favorable, the best response of a player who believes that his opponent
will invest with probability less than or equal to a half is not to invest. Thus
type 0 of COL will not invest. But now consider type 1 of ROW. Although
investment conditions are favorable, he attaches probability 1/2 to his opponent
not investing; so he will not invest. This argument iterates to ensure that no
one will invest.

This example is an elaboration of an example of Rubinstein [1989]; this
version follows the leading example of Morris, Rob and Shin [1995]. Tt illustrates
the fact that, in order for investment to be an equilibrium outcome, it is not
enough that investment conditions are favorable for both players with high
probability; nor is it enough that everyone know that everyone know... up to an
arbitrary number of levels... that investment conditions are favorable for both
players.

2.2 Local Interaction

Now suppose that there are 2K players situated on a circle. Player k interacts
with his two neighbours, £ — 1 and £ + 1. We use mod 2K arithmetic, so that
player 2K ’s neighbours are 2K —1 and 1. Conditions are favorable for all players
except the player at location 1. It is common knowledge for whom investment
conditions are favorable.

Each player must decide whether to invest or not. His payoff is the sum of
his payoff from his two interactions with each of his two neighbours. A strategy
profile specifies which players invest, and which do not. A strategy profile is an
equilibrium strategy profile if each player’s action is a best response given the
behaviour of his two neighbours.

This local interaction game can be summarized by the following table:



2 4|6 2K
1 X lo | o U
3 x| x| o o F
5 o | x| x F
2K-1 o o | o | -] x F
FIF|F|-|F

A cross (x) marks a pair of players who interact with each other. Thus, for
example, player 3 interacts with players 2 and 4 and no other player.

The unique equilibrium of this game has all players never investing. The
argument is as for the incomplete information game. We know that the player
at location 1 will never invest. Consider the player at location 2. Since one
of his neighbours is not investing, his best response is not to invest. Similarly,
the player at location 3 does not invest, and the argument iterates to ensure
the result. This iterated deletion of dominated strategies argument is closely
related to the best response dynamics on a line argument of Ellison [1993] (the
relation is discussed in section 4.3).

The above table is constructed in such a way as to identify an exact re-
lationship between the incomplete information game and the local interaction
game. In particular, the odd numbered players in the local interaction game
play the role of ROW’s types in the incomplete information game, while the
even numbered players play the role of COL’s types.

2.3 Random Matching

The local interaction game can be easily interpreted as an environment with non-
uniform random matching. Suppose in each period, two players are randomly
drawn out of a population of 2K to play the investment game. The two players
are not randomly chosen: players are labelled 1 through 2K and only players
with consecutive labels may be chosen. Players must decide on an action before
knowing who they are matched against. Investment conditions are favorable for
all players except player 1.

3 Interaction Games

Fix a finite or countably infinite population of players, X. A standard strate-
gic form game among these players is described by a set of actions for each
player, {A,}, .., and payoff functions for each player, {v,}, ., , where each

vy o X Az — . Thus the game is described by 3-tuple (X, {As}pen 7{Um}ze){>'
zeX

A (simple) mixed strategy for player z is a (finite support) probability distri-

bution o, € A(A;). A mixed strategy profile is a vector a = {az},.,. For



notational convenience, I want to work with a constant set of actions A (so that
Az = Afor all © € X); we can always re-label actions so that the action set is
constant.

This paper is concerned with games with a special form of payofls. Write 7
for the collection of subsets of X' with at least two elements; an element X € 7
will be called an interaction. Write Z () for the collection of such interactions
involving player z, i.e.,

IT(x)={XeZT:xeX}.

Let P: 7 — Ry, where for all z € X,

0< > P(X)<oo. (1)

Xel(z)

Write ax = (a;),.x for a typical element of A*. Now for each 2 € X, let
U (ax, X) be the payofl that player x gets from interaction X € Z(x) if players
in X choose according to ax. Assume that payofls are bounded, i.e., for each
x € X, there exists M such that |u, (ax,X)| < M for all X € X and ay € AX.
This assumption ensures that total payofls are well defined:

v, (a) = Z P(X).uy (ax,X).

X €l(z)

In this paper, we will be studying interaction games of the above form, described
by the 4-tuple (X, P A, {uz}ze){>~ Payoff functions can be extended to mixed

strategies in the usual way; thus, for any o € [A (A)]X7

Uy (ax, X) = Z Hay(ay) Uy (ax, X)
aXGAX yGX

and v, (o) = Z P(X).uy (ax, X).
X€eI(z)

Definition 1 Strategy profile o* € [A (A)]X is a (Nash) equilibrium of (X, P A, {ur}zex>
if for allz € X and all o € A (A):

v (o0t ) Z s (aat,).

The degenerate interaction game with P (X) = 0 for all X # X can capture
any form of strategic interaction. But this formulation is of interest when X’
is large and P (X) > 0 only for small X. We will outline a number of alter-
native interpretations of interaction games below, each of which relies on extra
restrictions on the game (X, P A, {uz}ze){>'



3.1 Interpretations
3.1.1 Incomplete Information

For an incomplete information interpretation, we require first that for some
N > 2, only interactions with N members have positive weight. Writing Zy for
the set of interactions with N elements, we have:

P1 (N-ary Interaction): If P(X) >0, then X € Zy.

In the special case where N = 2, we refer to binary interaction. But we will
also require the stronger property that the players can be divided into N groups
such that each positive weight interaction involves exactly one player from each
of the groups.

P1* (N-partite Interaction): There exists a partition of X into N disjoint
subsets (X1,..,Xn) such that if P(X) > 0, X consists of exactly one
element of each of A7,.., Xn.

In the special case where N = 2, we refer to bipartite interaction. Note that
N-partite interaction (P1*) implies N-ary interaction (P1).

Second, the sum of the interaction weights over the whole system is bounded.
Without loss of generality, we can assume the sum is equal to one.

P2 (Bounded Interactions): > P(X)=1.
Xer

Now (X,A,P, {uz}ze){> can be interpreted as an incomplete information
game, where there are N “big players”, {1,..., N}, A is the action set of each
player n and A, is the set of types of big player n; now writing Z3} for the
set of interactions consisting of exactly one element of each X, each element
of T} corresponds to a type profile in & x .. x Xy, i.e., the cross product of
player types, or state space; P is the probability distribution over type profiles.
Note that payoffs depend on the type profile (state) X. Now a strategy profile
« can be thought of as a collection of mixed strategies for each big player,
a= {an}gzl, where each v, = {&; } . describes the behaviour of each type
of big player n. The definition of Nash equilibrium for general interaction games
given above corresponds to an interim definition of Bayesian Nash equilibrium.
But this is equivalent to the standard ex ante definition.! N-partite interaction
(P1) and bounded interactions (P2) are both necessary for the interpretation
of the interaction game as a standard game of incomplete information.?

1Harsanyi [1967, page 177] described an interim interpretation of incomplete information
games (he attributes it to Selten) where each type is treated as a separate player.

2Bounded interactions (P2) is necessary for a standard ez ante interpretation of incomplete
information games. But with an interim interpretation, no inconsistency arises if we allow for
improper priors (Hartigan [1983]) with infinite mass. Note that equation (1) is a maintained
restriction on P that implies that conditional probabilities are always well defined.
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3.1.2 Random Matching

If a € AX is a K-vector of actions, write 7 [a] € A (A) for the frequencies of
actions in that action profile, i.e.,

~ #{ke{l,...K}:ar=a}

7(a](a) =

] (0) =

for each ¢« € A. Now suppose that N players are matched together to play
a game. Each player cares only about the frequency of actions of his N — 1
opponents (not who takes which action). Thus if a player chooses action a € A
and his NV — 1 opponents choose action profile a € AN~ his payoff is g (a, 7 [a]).
A function ¢ : A x A(A) — R is a symmetric payoff function. For any N > 2,
write [g, N| for the symmetric N-player game where the nth player’s payoff from

action profile {a,,n}fi:l is g (an,% [{a,m}m#nD
Write X/x for the group consisting of all members of X except z. Requiring

that each player’s payofl from each interaction is given by some symmetric payoff
function gives us:

P3 (Symmetric Payoffs): For each x € X and X € 7 (z), there is a sym-
metric payofl function ¢ such that u, (ax,X) = ¢ (az,% [aX\I]) for all
ax € AX.

Note that the symmetric payoffs assumption is empty for those X with
#X = 2. Requiring in addition that each player’s payofl function does not
depend on which interaction he is involved in gives us:

P3*(Interaction Ind’t Payoffs): For each z € X, there is a symmetric pay-
off function g such that u, (ax,X) = ¢ (a,7 [ax\,]) for all X € T ()
and ay € AX.

Finally, requiring also that payoff functions do not depend on the identity
of the player gives us:

P3** (Player Ind’t Payoffs): There is a symmetric payofl function ¢ such
that v, (ax,X) =g (am,% [aX\I]) forallz € X, X CZ(x)anday € AX.

The most standard one population model of random matching assumes bi-
nary interaction (P1, with N = 2), bounded interactions (P2) and player ind’t
payofls (P3""). Now X is a collection of players. Each (positive probability)
match consists of two players. Thus 7 is the set of possible matches and P is a
probability distributions over matches. Payofls are independent of all features of
the match. An equilibrium has the following interpretation. Each player picks
a possibly mixed strategy. He does not know with whom he will interact. His
mixed strategy is a best response to the expected distribution over actions.

Only the bounded interactions assumption (P2) is necessary for this inter-
pretation. Matches may consist of more than two players. Payoffs may be
different for each player and may depend on who they interact with.

11



3.1.3 Local Interaction

A standard model of local interaction considers a graph (X,~), where X is
the set of players (or “locations”) and ~ is an irreflexive symmetric relation;
player x is a “neighbour” of player y if z ~ y. Players must choose the same
action against each neighbour, all players have the same payoff function from
all interactions, and their total payoff is the sum of their payofls from each
neighbour.

This model corresponds in this framework to assuming binary interaction
(P1, with V = 2), player ind’t payoffs (P3"") and

P4 (Constant Weights): P (X) € {0,c} for all X € T for some ¢ > 0.

Now z and y are neighbours exactly if P ({z,y}) = ¢. An equilibrium has
the following interpretation. Each player picks a possibly mixed strategy. His
mixed strategy maximizes the sum of his payofls from all interactions, given the
strategies of others.

The local interaction interpretation is the most general, in the sense that
no restriction is necessary for the interpretation. We can allow an unbounded
quantity of interactions involving many players with varying payofls that depend
on the interactions and the opponents’ identities. We can drop the constant
weights assumption. If P (X) > 0, we would say that the group X interacts and
P (X) measures the importance of that interaction.

3.2 Examples

Four examples will illustrate the general structure of interaction games. The in-
vestment example (section 3.2.1) and co-ordination on a lattice example (section
3.2.2) illustrate the various properties that we have introduced in the alternative
interpretations. No trade (section 3.2.3) and convention (section 3.2.4) exam-
ples illustrate how results that hold for incomplete information games generalize
to interaction games.

3.2.1 Investment Game
The following is a formal description of the example of section 2. Let X =

11,..,2K}; A={I,D};

P(X) =

?

5=, if X = {z,y} and either |z —y|=1or {z,y} = {1,2K}
0, otherwise

—2,ifa; =1
ul(aX’X):{ 0,ifar = D

12



and if z # 1, then

lifa,=Tforally e X
ug (ax,X)=<¢ —2,ifa, =1 and ay = D for some y € X
0 ifa, =D

e This game satisfies bipartite interaction (P1*, with NV = 2), bounded
interactions (P2), interaction ind’t payoffs (P3"), constant weights (P4),

but not player ind’t payolfs (P3""). To check for bipartite interaction, let
Xy ={z:zisodd} and X = {z : = is even}.

e The argument given in section 2 showed unique equilibrium o* has .}, (D) =
1 for all z € X. This is also the unique strategy profile satisfying iterated
deletion of strictly dominated strategies (we provide a formal definition
for this in the next section).

3.2.2 Co-ordination on a Lattice

Versions of this example have been studied in the local interaction literature
(Blume [1995], Ellison [1994], Anderlini and Ianni [1996]). Suppose that the set
of players consists of all points on a two dimensional lattice, each player interacts
with his nearest neighbours and each player’s payofls from each interaction are
given by the symmetric matrix

D
T [L,1]0,0}
D[ 0,022

This game may be formally represented at follows. Writing Z for the set of
integers, X = 2%, A = {I,D};

L if X ={z,y} and |zy —yi|+ |2 —y2| =1

0, otherwise ’

P(X):{

1,ifay=1forally e X
and u, (ax,X)=4¢ 2,ifa,=Dforally e X
0, otherwise

e This game satisfies bipartite interaction (P1*, with N = 2), player ind’t
payofls (P3""), constant weights (P4), but not bounded interactions (P2).
To check for bipartite interaction, let Xy = {z : 21 + 22 is odd} and Ap =
{z : 21 + x2 is even}.

e There are many equilibria (see Blume [1995] for a characterization). For
example, a* is an equilibrium where af (7) =1 if 21 > k and ¢} (D) =1
if ; < k, for some integer k.

13



3.2.3 No Trade Theorem

The standard no trade theorem for incomplete information games states that if
there are no ex ante gains from trade, no trade will take place in any trading
game where players always have the option of not trading. As a number of
researchers have noted, this result remains true if there are no interim gains
from trade (a weaker assumption, and thus a stronger result). One special case
where there are no interim gains from trade is when (i) there are no exr post
gains from trade; (ii) players are risk neutral; and (iii) players share a common
prior. This result has a natural analogue in all interaction games.

Let X be finite and A = {I,D}. For each X € 7, let fx : X — R satisly

> fx (x) < 0. Let
zeX

| fx(x)—e ifay=1forallye X
um(ava)_{ 0, ifay:DfOI‘ somey € X

where ¢ > 0. The interpretation is that player x must decide whether to par-
ticipate (1) or not (D). If he participates, he pays a transaction cost €. Each
interaction in which he participates is zero sum.

e This game satisfies bounded interactions (P2) and symmetric payoffs (P3)
but for non-trivial functions fx will fail interaction ind’t payofls (P3"). It
may or may not satisfly N-ary interaction (P1) or constant weights (P4).

Let a* be any equilibrium and let 5* (X) be the corresponding probability
that all players participate in interaction X, ie., 8*(X) = [[ i (I). Now
X

TE
player 2’s payofl is ui = > P(X)8*(X)(fx () —¢) > 0 (since he can
Xel(z)
guarantee himself 0 by choosing D). So

OSZU;

= 2 > PO (X)) (fx (@) —9)
zeX X €I(x)

= 3 Y PX)B (X)) (fx () —¢)

< _gZ#X.P(X)ﬂ*(X).

Thus P(X)>0= 3" (X)=0= o} (D) =1 for some x € X. In other words:
e In every positive probability interaction, at least one player chooses D.

In the incomplete information interpretation, the common prior assumption
plays a crucial role in this result (it ensures that the ex post zero sum property
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implies no interim gains from trade). The analogous property in interaction
games (built into this formulation) is that each player uses the same interaction
weights.

3.2.4 Conventions

Shin and Williamson [1996] described and analysed (a more general version of)
the following game (with an incomplete information interpretation). Let X be
finite, A = [0,1] and

2

B 1
uz(aX,X):u;r (aX\;mX)_g am_#X_l Z ay
yeX\z

for some € > 0. Thus player x’s payoff from interaction X is additively sepa-
rable in two components. The first component, (aX\I,X ), does not depend
on player x’s action. The second component is a quadratic loss function pro-
portional to the squared distance between player x’s action and the weighted
average of the actions of others in the interaction.

e This game satisfies bounded interactions (P2); it may or may not satisfy
N-ary interaction (P1), symmetric payoffs (P3) and constant weights
(P4).

FEach player’s best response is always to choose an action that is a weighted
average of actions chosen by the other players in the interactions he is a member
of. Thus this is a convention game where each player wants to mimic those he
interacts with. Thus for any ¢ € [0, 1], there is an equilibrium where ¢, (¢) =1
for all x € X'. More surprisingly, if every player is linked, directly or indirectly,
to every other player, all equilibria take this form. More precisely, this is true
if the following property is satisfied.

P5 (Connectedness): For all z,y € X, there exists a sequence of interactions
X1,...; X such that z € X1; 9y € Xk; P(Xi) >0forall k=1,..,K; and
XpNXpg #0forallk=1,..,K — 1.

The argument is straightforward. Let 1 be largest action played with pos-
itive probability by any player (say it is player z). Since each player’s action
is a strictly convex combination of the actions played by all players he inter-
acts with, we have o, (E) =1 for all y € U X. Iterating this

(X eT{z}:P(X)>0}
argument, connectedness ensures that o, (E) =1foralyeX.

It might be highly inefficient to have all players choose a constant action,
i.e., if ¢ is very small and 4, depends non-trivially on aX\I.3

3Morris [1997] contains positive results on the co-existence of conventions with discrete
actions. See also Sugden [1995] and Young [1996].
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3.3 Related Literature and Further Solution Concepts

3.3.1 Role Dependent Payoffs, Player Independent Payoffs and Cor-
related Equilibria

N-partite interaction (P1*) was the defining characteristic of an incomplete
information game. But it also has a natural interpretation in a local interaction
/ random matching setting: each player has a role and each interaction consists
of exactly one player in each of NV roles. Under this interpretation, it is natural
to consider settings where a player’s payofl depends on his role, but nothing
else. This restriction can be described formally as follows. Again write Zj, for
the set of interactions with exactly one player from each of the N roles, and
Ty () =Z(x)NZ}. Any X € T} can be written as X = {v (n,X)}g:17 where
v(n,X) is the unique (by N-partite interaction) element of X N &,,. An N-
player game (not necessarily symmetric) is parameterized by payofl functions

{gn}gzl, with each ¢, : AN — .

N
n=1"

that s (ax, X) = gn ((ay(mvx))fizl) for all € X,, X € T4 (z) and

ax € AX A

P3a (Role Dependent Payoffs): There is an N-player game {g, } such

Mailath, Samuelson and Shaked [1997] studied interaction games (with a ran-
dom matching interpretation) satisfying /N-partite interaction (P1), bounded in-
teractions (P2) and role dependent payoffs (P3a). They showed the following.
Let p € A (AN ) be the probability distribution over action profiles generated
by some equilibrium o of an interaction game, i.e.,

p(a)=> P(X) (H (. X) (aumX))) :

XeTl n=1

This probability distribution p is a correlated equilibrium of the N-player game
parameterized by {gn}gzl. Under the incomplete information interpretation,
the role dependent payoffs assumption (P3a) is equivalent to assuming that each
big player’s payofls are independent of his type. Thus the above result is equiv-
alent to Aumann’s [1987] classic characterization of correlated equilibrium.®

A related result holds in the case where N-partite interaction (P1") is weak-
ened to N-ary interaction (P1), although in this case it is necessary to have
player ind’t payoffs (P3"") (see Mailath, Samuelson and Shaked [1997] and

4Player ind’t payoffs (P3**) implies role dependent payoffs (P3a), but role dependent
payoffs need not imply even symmetric payoffs (P3).

5The common prior assumption was necessary for Aumann’s [1987] characterization. Drop-
ping the common prior assumption, his assumptions imply only that each player x (with
Z € Xy ) chooses an action that survives iterated deletion of strictly dominated strategies (for
player n in the N-player game {gn}ﬁrzl ). The same conclusion would follow if we relaxed the
assumption (in interaction games) that players use the same weights in calculating payoffs.
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Tanni [1996]). Since player ind’t payoffs is satisfied, assume that payoffs of all
players are given by symmetric payoff function g. For some equilibrium « of an
interaction game, we can calculate the probability distribution over unordered
profiles of actions. We can then construct a probability distribution p € A (AN )
over ordered action profiles by assuming that any ordering is equally likely. This
probability distribution is a symmetric correlated equilibrium of the symmetric
N-player game [g, N]. The formal construction is

1 7
#R) = e A R R @] & 2 P(X)(Ho‘z(az)>

B Xel {a’GAN:;(a’)z}?(a)} recX

(note that 7 (a') = 7T (a) exactly if a’ and a represent the same collection of
actions - possibly in a different order).

3.3.2 Iterated Deletion of Strictly Dominated Strategies

The natural definitions of equilibrium in incomplete information games, random
matching games and local interaction games all correspond to the natural defi-
nition of equilibrium in the general interaction games. However, other solution
concepts do not translate quite as straightforwardly. Consider the following
definition of iterated deletion of strictly dominated strategies for interaction
games.

Definition 2 Define {L{f}m each Uk C A, iteratively as follows: U = A;

AF = {ae [A (A as(a) =0 z'fa¢u§;},-

Ukt = {ace UF vy (a, ) > g (0, y) for alla € A, for some o € Ak} .

Action a survives iterated deletion of strictly dominated strategies for player x
ifacU* = N UL
E>1

This definition corresponds to iterated deletion of strictly interim dominated
strategies in an incomplete information game [Fudenberg and Tirole 1991, p.

226].

4 A Unified Analysis of Interaction Games
Some tools for analyzing interaction systems (X, P) are introduced in section

4.1; these tools are applied to characterizing equilibrium behaviour and best
response dynamics in interaction games in sections 4.2 and 4.3 respectively.
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4.1 The Structure of Interaction

Throughout section 4.1, we assume N-ary interaction (P1).

4.1.1 Neighbourhood Operators and Cohesion

Let Y C X be a group of players. We are interested in the set of players who
interact mostly with players within group Y. In particular, write 7y (Y| ) for
the proportion of player z’s interactions that involve exactly k neighbours within
Y (and thus N — &k — 1 neighbours outside Y); i.e.,

P(X)
(X €In(z)#XNY=k+1}

> P(X)

X GIN(.Z‘)

T (Y|z) >

Intuitively, = interacts more with group Y if 7 (Y] z) is large for large & and
small for small k. We want a one dimensional measure of how much = interacts
with group Y, so we will aggregate the 7 using different weights: let I'y be the
set of Y= (70,-..,7n-1) € RY with

V<1< <Nt (2)

Now for any v € T'y, let BY (Y) be the set of players within Y for whom the
~-weighted proportion of interactions involving players in Y is non-negative, i.e.,

BY(Y)= {xEY:NZ:l'ykwk(YM) ZO}.

k=0

The operators B” are referred to as neighbourhood operators. For different
values of 7y, such operators have quite different interpretations. Consider a few
special cases.

. _pifk<N—1 .
e Let v = (—p,... —p,1 —p), ie, 7 = 16}; R N_1 In this

case, B7 (Y) is the set of players in Y for whom at least proportion p of
interactions involve exclusively players in Y. This case will be important
later, and we will write 7’ = (—p,... — p,1 — p).

m times N—m times
—_—— —». 1
e More generally, letyvy= | —p,..,—p,1 —p,.., 1 —p | ,l.e, 7 = { 1 ]i’];f f:fz me

for some m € {1,..., N — 1}. In this case, B” (Y) is the set of players in YV’
for whom at least proportion p of interactions involve at least m players
inY.
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e Lety=(—p(N—-1),1—p(N —1),2—p(N —1),..,N—1—p(N —1)), ie,
v = k—p(N —1). In this case, B (Y) is the set of players in Y for whom
the average proportion of interacting players from Y is at least p.

By definition, BY(Y) C Y. Group Y is 7y-cohesive if each member of ¥
has non-negative y-weighted proportion of his interactions within Y, i.e., Y C
B7(Y). Iterating the operator, we have:

C(Y)=n [B(Y).
()=, BT )
It is straightforward to show that if v € T'y, B7 satisfies the following two
properties:

if Y CY', then BY (V) C B"(Y'); (monotonicity)
if Y1 C Yy for all &, then kgl BY(Y;) C B <kr>11 Yk> . (continuity)

The following result is a consequence of these two properties.

Proposition 1 For all groups Y: (1) C7(Y) is y-cohesive; (2) If Y' is -
cohesive and Y' C Y, then Y' C C7(Y); (3) x € C7(Y) if and only if there
exists a y-cohesive group Y' such that (i) x €Y' and (i) Y' C Y.

Proof. C7(Y) =0 B (v) C 0, B () C B (;Ql B (v)) =

k

B7(C7(Y)), by continuity, so (1) C7 (Y) is y-cohesive. Now for all Y/ C Y,
[BV]k (Y") C [BV]k (Y) for all k > 1, by iterated application of monotonicity;
thus C7 (Y') € CY(Y). If in addition Y’ in ~y-cohesive, then Y' = C7 (Y') C
C7 (Y), proving (2). For the “only if” part of (3), set Y’ = C7(Y). For the
“iI” part of (2), we have z € Y’ by (i), Y' = C7 (Y') by assumption that Y’ is
v-cohesive and C7 (Y') C C7 (Y) by (ii) and part (2). Soz € Y' = C7 (V') C
Cr(y). |

4,1.2 Interpretation of Neighbourhood Operators and Cohesion

Incomplete Information Assume N-partite interaction (P1") and bounded
interactions (P2). Thus under the incomplete information interpretation, X, is
the set of types of big player n. For any X € 7}, write v (n, X) for the unique
element of X N X,: v (n,X) is the type of big player n if the state (i.e., the
interaction) is X; and Z% (z) = Zx NZ (z). For arbitrary events E C T, define
Efb (E) to be the set of states where player n believes event ' with probability
at least p. Thus gﬁ 27 — 27 is defined by
P(X")
{X/ e (w(n, X)X eB}
P )
X'eT, (v(n,X))

BP(E)=!{Xel:
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Monderer and Samet [1989] introduced the operator “everyone believes event F
with probability at least p”. Thus let BY (E) be the set of states where all big

~ N
players believe event F with probability at least p, i.e., BY () = [ BE (E).
n=1

This beliel operator Ef is closely related to the neighbourhood operator B”
in the special case where v = (—p,..,—p,1 —p) = 7. Under the incomplete
information interpretation, a group Y is a collection of types. We can associate
with each collection of types an event E(Y) = {X € Zy : X CY}. Now it is
true by definition that

E (BVP (Y)) = {X eTi: X C BV (Y)}

P(X)
X7 ey (z):x'CY'}

= Xely: S P(X) >pforallz e X
X'€Ty ()
P(X")
N {X’GI* (v(n,X)):X'CY}
n=1 XT3 (0(n, X))
P(X")
N {X’GI* (v(n, X)X €B(Y) }
n=1 X' €T3 (w(n, X))
N

3

- OBP(E(Y))
Bt (BW).

Thus neighbourhood operators B can be thought of as belief operators re-
stricted to séimple events that have the form F (Y') (for the game theory appli-
cations that we will discuss in the next section, these are exactly the events we

|
* ~s

are interested in). Proposition 1 is thus a simple corollary of Proposition 3 of
Monderer and Samet [1989].6 In the language of Monderer and Samet [1989], an

event I (V) is “evident p-belief” if and only if the group Y is ¥*-cohesive; and
1D (Cvp (Y)) is the set of states where the event F (Y) is “common p-belief.””

6In fact, the restriction to simple events simplifies the argument: Ef is monotonic when
restricted to simple events, but not otherwise.
"When v is not in the simple form 77, BY (V) will still have a natural interpretation. For

example, if v = k — p(IN — 1), then Y is y-cohesive only if at each state in E (V) each player’s
expected proportion of players who think E (V') possible is at least p.
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Local Interaction With binary local interaction, the neighbourhood opera-
tor BY with v =7” = (—p, 1 — p) is especially relevant to the existing literature.
Under the local interaction interpretation, a group Y is 7P-cohesive if at least
proportion p of the interactions of each member involve only members of that
group. The local interaction interpretation of cohesion is discussed extensively in
a companion piece, Morris [1997]. That paper explores a simple form of local in-
teraction described by a graph (X', ~), where ~ is a symmetric and irreflexive re-
lation. Two players x and y are said to be neighbours if & ~ . This corresponds
(in the language of this paper) to the case of binary interaction (P1, with N = 2)
. . Lif X ={z,y} andxz~y

and constant weights (P4), i.e., P(X) = { 0. otherwiie } . In
this simple setting, it was natural to consider an operator defined by:

v _{, H#lyeY :y~ua}
it (Y)—{ EX'#{yEX:ny}Zp}'

This operator is related to the proportion operator of this paper as follows:

(o} eTa(a)id }CY}P({x’y})
BY(Y) = {eex S Emmvy >p
®) S Pl

{z,y}€la(2)
{ {xeX:MZp},ifxeY

#{yeX y~z}
0,ifxgyY

= YNIP(Y).

Random Matching Under the random matching interpretation, group Y is
AP -cohesive if each member of Y attaches probability at least p to any interaction
he is in involving only members of group Y.

4.1.3 The Size of Cohesive Groups

It will be useful to know something about the relation between the size of group
Y and the size of the group C7 (Y). Some more notation is required before
proving a result on this subject. Write Y for the complement of Y in X. Say
that group Y is finite if

> PX)<o

{Xel:XNY#D}

A sufficient condition for Y to be finite is that Y contains a finite number of
players. But an infinite number of players may constitute a finite group if the
sum of the weights of the interactions involving that infinite set of players is
a convergent sequence. In particular, if bounded interactions (P2) is satisfied,
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all groups are finite. Now if Y is finite, write P*[Y] for the total weight of
interactions involving some players in Y, i.e.,

P Y] = > P(X).

{Xel:XNY#D}
N-1
Finally, let I'; = {7 cln: > v > 0}.
k=1

Proposition 2 IfY is finile and v € FE, then

N-1
> |’Yk|
k=0
N-1

pr [?m Cv (?)] <
kZ::O Tk

N2P*[Y].

Proof. Step 1. We introduce some notation. Let Y be finite, Z =Y NC» (7)

and Z; = (B (Y)n (B! (Y). Thus the collection of groups {Zj};il
partitions Z. So for each x € Z, let j(x) be the unique j such that z €
Zj; let > be any complete ordering on Z with j (z) < j(y) = < y and a
minimal 2o € Z with z9 < @ for all z € Z\{zo}. For each z € Z, write
Zt (@) =C"(Y)U{z€Z:2>a}and Z~ (z) =YU{z € Z : 2 < z}. Note that
{[BV]j (?)} is a decreasing sequence of events and that x > 2 implies that
j=0
x survives longer in that sequence. Let (i () = 7 (Z~ (x)). Intuitively, ¢x ()
is the proportion of x’s interactions where k of z’s partners in the interaction

survived a smaller number of iterations. Finally, let ¢ = % Nil v > 0 and
N-1 =0
. = Y& — ¢. By construction, Y v, =0.
Step 2. We show the follov&ljizrfg fact; for all z € Z,
N-1
> (o) < ®
k=0

Foreachx € Z;, v ¢ [B7)! (Y). Since Z7 (z) C B! (Y), we also have z ¢
N

BY(Z* (x)), ie., kz;:ol YeTr (ZF (x)) < 0. But 7 (Z7 (2)) = 7y-1-% (Z7 () =

N-1
CN—1-% (x),50 Y Yuln—1-r (x) <0. Now
k=0
N-1 N-1
Z YN-1-x6k (T) = Z YN -1-1Ck (7) — ¢
k=0 k=0
< —cC.
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Step 3. We introduce more notation. Let

Jr (@) = > P(X);
(X eI y#XNZ (z)=k}

fr () is the weight of interactions involving exactly & players lower ranked under
<. Also write

Observe that by construction

fo(z) = fo(zo)— Z IL(2) Go (2);

{z€Z:z<x}

fo@) = fi(wo) + Z IL(2) (Cr-1(2) = G (2)), il k=1,...N — 1
{z€Z:z<x}

fyv(x) = fn(xo)+ Z I (2) {v-1(2).
{z€Z:z<x}

Step 4. Now the proof is completed by showing that since an appropriately
weighted sum of the fi, (z) cannot become unboundedly large, we can bound
P*[Z]. Solet & =y 1, & =9N_o+YN_1, €tc..., L€, for each k =1,...,N

?

k=1
let & = > 'yj’vflfj. Note that & > 0 for each k, and £5 = 0. Now
=0

N N-1
Zkafk(x) = kafk zo) +& ZH ZZ (&e — &pt1)
z€Z k=1 YA ze€Z k=1
N-1
= kafk 2o) + > TL(x) > Y1 1k (@
zeZ k=0
< kafk g —CZH
YA
N-1
But & < > |y for all &; so
i=1
N N-1 N
> &filwo) < | D Fr (x0)
=1 j=1 =1
N-1

I
=1
(]

=

&5

I () G ()

(4)



N-1
< Iyl | NP [YT,
j=1

while > II(z) > P*[Z]. Since the left hand side of equation (4) is non-negative
rc”Z

N-1
by construction, we have cP* [Z] < ( 3 |'yj|> NP*[Y]. Substituting for ¢
j=1

gives the expression in the Proposition. W
In the case where v = 7P, this result is essentially a special case of Propo-
sition 4.2 of Kajii and Morris [1995] (although there is a tighter bound in that

paper).

4.2 Equilibrium

This section reports generalizations of (incomplete information) results in Mor-
ris, Rob and Shin [1995] and Kajii and Morris [1995] applied to general interac-
tion games. Many proofs are abbreviated, where the arguments are essentially
unchanged.

4.2.1 Existence
P6 (Finite Action Set): A is a finite set.

P7 (Finite Interactions): P (X) > 0= X is finite.

Remark 1 If interaction game (X,P,A,{uz}zex) satisfies P6 and P7, then
there exists an equilibrium.®

Throughout section 4.2, these two properties (P6 and P7) are assumed, as
are N-ary interaction (P1) and interaction ind’t payoffs (P3"). The latter two
assumptions are inessential: more complicated results could be proved without
them. Under assumption (P3"), we can write u, (a, ) for player z’s payoff from
any interaction in which he chooses action a, his opponents choose ax, and

T=7 (aX\I).

8Existence fails in the following example satisfying P6 but not P7. Let X = Z; A = {I, D};
P(X)=1and P(X)=0for all X # X; and

—1,ifay =1 and ay = I for some y > x

l,ifay =T anday =D forally >z
Uz(aa‘}():
0,ifar =D
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4.2.2 Binary Action Co-ordination Games

The equilibrium characterizations that follow will have their strongest bite in a
class of binary action co-ordination games; we introduce this class here in order
to motivate the later analysis.

A binary action co-ordination (BC) game is defined as follows. Each player
has two possible actions, i.e., A has two elements. The game is symmetric, so
each player’s payoff depends only on the proportion of his neighbours taking
each of the two actions. Thus ¢ (a,7) is a player’s payofl if he chooses action
a, proportion 7 () of his neighbours choose action @ and therefore proportion
7w (a') = 1 — 7 (a) choose the other action a’. Write p(a,q) for the gain to a
player from choosing action a (rather than the other action ') if proportion
¢ of his neighbours choose action a; thus p(a,q) = g(a,7) — g (¢/,7), where
7 (a) = ¢. (Note that by construction, p(a,q) = —p (a’,1—¢)). The game is
sald to be a BC game if p(a,q) is increasing in ¢ for both a. A BC game is
completely characterized by the reduced form payoff function p and the number
of players V.

Definition 3 Action a is a uniform best response of the BC' game [p, N| if
N—1

S (e ——) >0
NP\ N :

k=1

Thus action a is a uniform best response if it is the unique best response when
a player puts a uniform prior on the number of his opponents choosing action a.
Note that for a generic choice of p, exactly one of the two actions will be uniform

N-1 N-1
best response (since if ' # a, Y %p (co7 %) =-3 %p (aﬂ%) =
E=1

k=1
N-1

- 5 vt

In the special case of two players, the uniform best response is the risk
dominant action in the sense of Harsanyi and Selten [1988]. The importance of
the uniform best response action was highlighted by Carlsson and van Damme
[1993b] and Kim [1996]. As Carlsson and van Damme [1993b] and Kim [1996]
discuss in detail, many evolutionary and other models predict the risk dominant
action in two player games but disagree in their predictions in many player
games. But the uniform best response, they showed, emerged under a natural
form of incomplete information. In particular, consider the case where “all play
@’ is a strict Nash equilibrium for each action a (this is true if p(a,1) > 0
for each action ). Thus with complete information, each action is consistent
with equilibrium. But if each player observed a noisy signal of the true payofls
in a certain natural way, only the uniform best response was consistent with
equilibrium.

The following interaction game example (with an incomplete information
interpretation) provides a discrete state space analogue of that argument.
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e The Critical N-ary Interaction Game. Let X = Z; A = {T,a};

LifX={z,z+1,...2+ N —1} forsome z € X
0, otherwise ’

P(X):{

ifze{l,.. N},

1,ifa, =@
“m(aX’X):{ 0,ifa, =a’

ifzé¢{1,.. N},

g (ax, X) :p<am7 #{yeX\v:a, :az}>

N-—-1

where p is some BC game payoff function and @ is the uniform best re-
sponse for [p, N].

This interaction game has payoffs given by BC game p for all but N players
in an infinite population. Those N players have a dominant strategy to play
the uniform best response @.

The interaction game has a unique equilibrium where action @ is played
by every player. To see why, first note that each player in {1,..,N} has a
dominant strategy to play @, and thus must play @ in any equilibrium. Now
consider player N 4+ 1. He is a participant in N positive weight interactions,
12, ,N+1}, 43,.., N+ 2},... , {N+1,...,2N}. Each of those interactions
has equal weight. Thus proportion % of his interactions involve all players in
{1,...,N}, & of his interactions involve all but one players in {1,..., N}, etc...
Since each player in {1,.., N} chooses @ in any equilibrium, the uniform best
response property of @ ensures that player N + 1 must play action @ in any
equilibrium. A symmetric argument ensures that player 0 must play @ in any
equilibrium. Then an iterative argument shows that players N +2 and —1 must
play @ in any equilibrium. And so on.

This example generalizes the logic of the binary interaction example of sec-
tion 2 to many player interactions. It illustrates the ability of payofls of a small
(finite) number of players to influence equilibrium outcomes for a large (infinite)
number of players. The analysis that follows identifies more generally when this
is, and is not, possible.

4,2.3 The Basic Lemma

The first question we want to address is: when is it possible to characterize
equilibrium behaviour for some group of players independently of what other
players do? We provide one set of sufficient conditions, combining the cohe-
sion properties of the interaction system with the following property of payofls,
adapted from Morris, Rob and Shin [1995]. Given v € T'y, say that action a
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is a strictly y-dominant action of game [g, V] if action a is the unique best re-
sponse against any conjecture over other players’ actions where the y-weighted
proportion of players choosing action a is non-negative. To define this formally,

write Ak (A) = {7T eA(A):7(a) € {07 +, %, . 1} for all a € A}.
Definition 4 Action o is strictly y-dominant in [g, N] if

A7) g (a,m) > Z A(m)g(a,m)
WGANfl(A) WGANfl(A)

for all o’ # a and for all X € A (An_1 (A)) with

> [{w:ww:%ﬂ > 0.

k=0

Thus action « is strictly 7P-dominant if it a best response whenever propor-
tion p of interactions involve all other players choosing a also. If a is strictly
F'-dominant, then everyone playing a is a strict symmetric Nash equilibrium of
[g, N]. If a is 7°-dominant, then action a is a dominant action in [g, N].

Fix an interaction game and write W (a,) for the set of players for whom
action a is strictly y-dominant, i.e.,

U (a,v) ={z € X : a is strictly y-dominant in [u,, N| }

Lemma 1 Suppose Y C W(a,v) and Y is y-cohesive; then there exists an
equilibrium e of the interaction game with a; (a) =1 for allz €Y.

Proof. Consider the modified interaction game where all players in Y are
required to play action a with probability one. Let ¢ be an equilibrium of the
modified game (an equilibrium exists by remark 1). I will show that ¢ is an
equilibrium of the original game. By construction, c, is a best response at all
x €Y. But if x € Y, then, since Y is y-cohesive, the condition for a to be a
best response is satisfied. W

This result is an extension (to interaction games) of Lemma 5.2 of Kajii
and Morris [1995] which in turn builds on theorem B of Monderer and Samet
[1989]. By Proposition 1, the largest p-cohesive group contained in ¥ (a, ) is
C7 (¥ (a,7)). Thus the following Proposition follows from Lemma 1.

Proposition 3 Interaction game (X, P A, {ug}
ag(a) =1 for allz € C7 (¥ (a,v)).

i X) has an equilibrium o with

4,2.4 Robustness

We first give an informal definition of robustness. An action a is said to be robust
in complete information game [g, N], if in any N-ary interaction game where
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almost all players’ payofls are given by g, there is an equilibrium where almost
all players choose action a. To make this definition precise, we must define
“almost all players”. It is convenient to focus on “unbounded” interaction games
with an infinite mass of interactions (i.e., games where the bounded interactions
property (P2) does not hold). In this case, a property is said to hold for “almost
all” players if it is true for a co-finite group of players; a group is co-finite if its
complement is finite; we earlier (see page 22) defined a group of players to be
finite if the mass of interactions involving players in that group was finite.

Definition 5 Action a is robust in [g, N| if every unbounded N-ary interaction
game where almost all players’ payoffs are given by g has an equilibrium where
a s played by almost all players.®

Proposition 4 If action a is strictly y-dominant in [g, N] for some v € FE,
then a is the unique robust action in [g, N].

Proof. Suppose almost all players’ payofls are given by g. Write Y for the finite

group for whom payoffs are not given by g. By Proposition 2, Y N C” (?) is
finite. The interaction game is unbounded, so since ¥ and Y N CY (?) are both
finite, C"7 (7) must be co-finite. But by Proposition 3, there is an equilibrium
where ¢ is played by all players in C7 (?), i.e., by almost all players. Thus a is
robust.

It is also straightforward to show, using a version of the N-ary critical in-
teraction example, that if action a is strictly v-dominant for some v € FE, then
no other action is robust. W

4.2.5 Back to Binary Action Co-ordination Games

In general games, we know little about the existence of strictly y-dominant
actions with v € FE. But we can give an exact characterization in BC' co-
ordination games.

Lemma 2 Action a is robust in a generic binary action co-ordination game if
and only if it is a uniform best response.

Proof. The genericity qualifier is to ensure the existence of a uniform best
response. Given Proposition 4, it is sufficient to show that @ is a uniform best
response if and only if it is strictly v-dominant for some v € FE.

9Exactly the same results follow if robustness is defined with respect to bounded interaction
games and the “almost all” statements replaced with (¢, 8) characterizations as in Kajii and
Morris [1995]. Thus we could alternatively say: action a is robust in [g, N] if, for any § > 0,
there exists € > 0 such that the following holds; take any bounded N-ary interaction game
where at most mass ¢ interactions involve players whose payoffs are not given by g; there
exists an equilibrium where at most mass § interactions involve some player not choosing a.

28



N-1
Let @ be the uniform best response. Thus Y. p (6,%) > 0. Now
k=1

N-1
let ¢ = ﬁ > ,0(6, %) > 0 and v, = ,0(6, %) — ¢. By construc-
k=1
N
tion, vy € FE. Now suppose A € A(Axy_1(A)) and > v p > 0, where

- N-1 - N-1
M= Al{mir@=gi}] Now To(ags)h = X whte >0
E=0 k=0
Thus action @ is strictly y-dominant.
Conversely, suppose action @ is strictly y-dominant with v € FE. Let A €

N-1
A(An_1 (A)) satisly A (7) = % forallm € Ay_1(A). Clearly, > YA HW 7 (7@)
k=0

N-1
+ > % > 0, so by definition of strict y-dominance, 3 Am)g(@m) >
k=0 WGANfl(A)
A(m) g (a,m) if @ #@. Thus action @ is a uniform best response. Wl
TEAN-_1(A)

4.3 Dynamics

In the investment example of section 2, we noted the close apparent connection
between iterated deletion of dominated actions (with an incomplete information
interpretation) and best response dynamics (with a local interaction interpreta-
tion). Here we show that the connection is precise. In particular, we will show
that the sufficient condition for robustness that we identified is also a sufficient
condition for an action to spread contagiously under a class of best response
dynamics with inertia, in some interaction system; it is also a sufficient condi-
tion for it to be uninvadable by all such inertial best response dynamics, in all
interaction systems.

In this section, we restrict attention to interaction games satisfying N-ary
interaction (P1), unbounded interactions (i.e., not P2) and player indt payolfs
(P3™"). Write (3, (a) for set of actions that are best responses for player z to
pure strategy profile a € A%*. We will be concerned with sequences of pure
strategy profiles {ak}zozl.

Definition 6 Pure strategy profile sequence {ak}zozl s a best response sequence
if [1] al™ = a and af # a for somek > 1= a € 3, (a”); and [2] 3, (a) = {a}
for allk > K = a¥ = a for some k> K.

Property [1] requires that each player at each date either plays the action
played in the previous period or plays some best response. Property [2] requires
that if action a is going to be the unique best response for player z forever, it
is never abandoned (even though it might be played only rarely).

These two weak properties characterize a class of best response dynamics
with inertia. Many dynamics studied in the literature satisfy the two properties
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(at least with probability one). Three examples are the following: each player
chooses a best response in each period (see, e.g., Morris [1997]); one randomly
chosen player gets to revise in each period while all others stick with their
previous action (see, e.g., Blume [1995]); each player revises or sticks with some
probability (see, e.g., Anderlini and Tanni [1996]).

Definition 7 Action a is contagious in g, N| if there exists an unbounded N-
ary interaction system (X', P) with a finite group Z such that every best response
sequence {ak}zozl with al = a for all v € Z satisfies a¥ = a for all sufficiently
large k, for each xr € X.

Thus an action is contagious if there exists some interaction system such
that every best response sequence leads that action to spread from some finite
group to the whole population.

Definition 8 Action a is uninvadable in [g, N if for every unbounded N-ary
interaction system (X, P) and every finite group Z, there exists another finite
group Y such that every besl response sequence {ak}zozl with al = a for all

x & 7 satisfies a¥ = a for allx ¢ Y, for all k.

Thus an action is uninvadable if once it is played by almost all players, it
continues to be played by almost all players, in every interaction system and
every best response sequence.

Note that if one action is contagious in [g, N], then, by definition, no other
action may be uninvadable in [g, N].

Proposition 5 If action a is strictly y-dominant in [g, N], for some v € FE,
then a is contagious and uninvadable in [g, N].

Proof. [1] Contagiousness. Fix the interaction system of the critical N-ary
interaction example and let Z = {1,.., N}. Consider any best response sequence
with al = a for all z € Z. By strict y-dominance and property [1], a]; = a for
all x € Z and all k. Thus by strict v-dominance, Sy, 1 (ak) = {a} for all k.
By property [2], a%_; = a for some %. By strict ~-dominance and property [1],
aﬁ“w_l =afor all k> k. The argument iterates to ensure the result.

[2] Uninvadability. For any finite Z, let Y = C7 (7) Now suppose al = a
for all x ¢ Z. By -dominance and property [1], a¥ = a for all z € C7 (7) and
all k. By Proposition 2, Y is finite. H

Corollary In a generic binary action co-ordination game, the following four
properties are equivalent: [1] action a is a uniform best response; [2] action
a is robust; [3] action « is uninvadable; and [4] action « is contagious.

The results in this section tell us only about what happens for extreme local
interaction systems. Morris [1997] characterizes (in a simpler environment)
which local interaction systems allow a contagious action to spread.
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5 Conclusion

Incomplete information, local interaction and random matching games can all
be understood as special cases of a general class of interaction games. The
distinguishing features of particular classes of games - for example, N-partite
interaction for incomplete information games - are in many cases a distraction.
A more abstract approach may both allow productive arbitrages across the
different research areas and provide a better understanding of what is driving
results. The equivalence allowed us to extend robustness results to many player
games and interpret those results in a wider set of contexts. Morris [1997]
represents a further attempt to exploit the equivalence.

One can think of further games that can be embedded in this class. Dynamic
games, where each player gets to make many choices, are routinely interpreted
as games between “agents” of those players, where each agent gets to make only
one choice. If payofls are additively separable through time, each agent’s payoff
depends only on interactions with a small subset of all agents (i.e., those acting
in the same time period). But the characteristic feature of dynamic games -
that players must anticipate the impact of their actions on others’ actions - is
not naturally embedded in the class of games described in this paper. However,
there are two special cases where the analysis translates. First, there is the case
where players make a sequence of choices at different points in time, without
observing others’ choices until the end of the game. In this case, Morris [1995]
shows that the incomplete information argument of Carlsson and van Damme
[1993a] translates to show that if players’ clocks are not perfectly co-ordinated,
they must play the risk dominant equilibrium in any two player two action
co-ordination game. Second, there is the continuum of players case. In this
case, again, individual players cannot influence others’ actions. Burdzy, Frankel
and Pauzner [1997] show that if there is symmetric noise concerning how payoffs
evolve through time, the risk dominant equilibrium must be played always. They
note the connection with the incomplete information argument of Carlsson and
van Damme.
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