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Abstract

This paper studies the implications of individuals’ knowledge of future job loss for the exis-
tence of an unemployment insurance (UI) market. Learning about job loss leads to consumption
decreases and spousal labor supply increases. This suggests existing willingness to pay estimates
for UI understate its value. But, it yields new estimation methodologies that account for and ex-
ploit responses to learning about future job loss. Although the new willingness to pay estimates
exceed previous estimates, I estimate much larger frictions imposed by private information. This
suggests privately-traded UI policies would be too adversely selected to be profitable, at any
price.

1 Introduction

The risk of job loss is one of the most salient risks faced by working-age individuals. Job loss

leads to drops in consumption and significant welfare losses.1 Millions of people hold life insurance,

health insurance, liability insurance, and many other insurance policies. But, there does not exist a

thriving private market for insurance against unemployment or job loss. The government provides

some unemployment insurance, and individuals may have help from family, savings, or severance if

they lose their job. But why don’t insurance companies sell policies to provide additional insurance

against these risks?2

∗Harvard University, nhendren@fas.harvard.edu. I am very grateful to Daron Acemoglu, Raj Chetty, Amy Finkel-
stein, Jon Gruber, Luigi Pistaferri, Rob Townsend, and a long list of seminar participants for their comments. I also
thank Trevor Bakker, Augustin Bergeron, Lizi Chen, Michael Droste, Robert Fluegge, Frina Lin, Jeremy Majerovitz,
Jimmy Narang, Nina Roussille, and Priyanka Shende for helpful research assistance. Early versions of Sections 4 and 6
of this paper appeared in the second chapter in my MIT PhD thesis and also circulated under the title "Private Infor-
mation and Unemployment Insurance". Support from NSF Graduate Research Fellowship and the NBER Health and
Aging Fellowship, under the National Institute of Aging Grant Number T32-AG000186 is gratefully acknowledged.

1See Gruber (1997), Browning and Crossley (2001), Aguiar and Hurst (2005), Chetty (2008), and Blundell et al.
(2012).

2Two companies have attempted to sell such policies in the past 20 years. PayCheck Guardian attempted
to sell policies from 2008, but stopped selling in 2009 with industry consultants arguing “The potential set
of policyholders are selecting against the insurance company, because they know their situation better than
an insurance company might” (http://www.nytimes.com/2009/08/08/your-money/08money.html). More recently,
IncomeAssure has partnered with states to offer top-up insurance up to a 50% replacement rate for work-
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This paper provides empirical evidence that unemployment or job loss insurance would be too

adversely selected to deliver a positive profit, at any price. This market failure provides a potential

rationale for government intervention that requires workers to pay into a government UI system.

I begin by documenting several pieces of evidence that individuals have knowledge about their

future job loss that could be used to adversely select an insurance contract. First, using data from

the Health and Retirement Study (HRS), I show that individual’s elicited probability of losing

their job is predictive of subsequent job loss. This remains true even conditional on a wide range

of observable characteristics an insurer might use to reduce the information asymmetry. Second,

spouses are more likely to enter the labor market when individuals learn they might lose their

job. Finally, while it has been shown that consumption expenditure drops 7-10% upon the onset

of unemployment (e.g. Gruber (1997)), I use data from the Panel Study of Income Dynamics to

show that food expenditure also declines by 2.7% in the 1-2 years prior to unemployment. This

occurs on a a sample who remain employed in these pre-periods with no pre-trend in income, and

therefore indicates forward-looking savings behavior anticipating potential job loss. Taken together,

these patterns suggest individuals have knowledge about their future job loss.3 Moreover, the labor

supply and ex-ante consumption responses suggest individuals would prefer to have more financial

resources in the event of job loss. This implies they would have a demand for unemployment or

job loss insurance and potentially use their knowledge to (adversely) select insurance contracts.

Given these patterns, the primary task of the paper is to ask: Can this knowledge of future job

loss explain why there is not a thriving private market for unemployment insurance? To assess this,

I consider a general model in which individuals face a privately-known risk of losing their job and

characterizes when insurance companies can profitably sell insurance. The model extends a similar

setup in Hendren (2013) by allowing for both moral hazard and also dynamic consumption and

labor supply responses. I show that a market can exist only if the markup individuals are willing to

pay for insurance exceeds the cost imposed by worse risks adversely selecting their contract – where

this cost is measured as the “pooled price ratio” defined in Hendren (2013).4 Therefore, I analyze

the implications of the reduced-form empirical patterns for both the (a) markup individuals are

ers in some industries and occupations (https://www.incomeassure.com). Back-of-the envelope calculations sug-
gest their markups exceed 500% over actuarially fair prices, and it has been criticized for shrouding the
true price by not saliently noting that the government provides the baseline 30-40% replacement rate (e.g.
http://www.mlive.com/jobs/index.ssf/2011/08/get_out_your_calculator_before_you_buy_p.html#).

3As discussed below in the related literature, these patterns are consistent with previous work documenting
knowledge of future job loss (e.g. Stephens (2004)). The primary distinction relative to this work is that I isolate the
private component of individual’s knowledge after controlling for observables insurers would use to price insurance,
as this is what is relevant for generating adverse selection.

4Along the way, the model illustrates that moral hazard does not provide a singular explanation for the absence
of an insurance market – a point initially recognized by Shavell (1979). This is because the first dollar of insurance
provide first-order welfare gains, but the behavioral response to a small amount of insurance imposes a second order
impact on the cost of insurance.
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willing to pay for UI and (b) the pooled price ratio.

A large literature has attempted to estimate the markup individuals are willing to pay for UI.

The most common approach estimates the impact of unemployment or job loss on a yearly first

difference of consumption and then scales this impact by a coefficient of relative risk aversion (Baily

(1976); Gruber (1997)). However, job loss affects consumption not only at its onset but also in

the years prior. This suggests the yearly first difference estimate understates the causal effect. To

correct for this bias, I develop a two-sample instrumental variables strategy that scales the first

difference estimate by the amount of information revealed over the time period encompassing the

first difference (i.e. the last year before job loss). Regressing the subjective probability elicitations

on the job loss indicator suggests 80% of the information about job loss is revealed in the last year

prior to unemployment. I show that one can divide the 7-10% first difference estimate by this “first

stage” of 0.8 to arrive at the average causal effect of 8-13%. Scaling by a coefficient of relative risk

aversion (e.g. 2) yields the markup individuals are willing to pay for UI (e.g. 16-26%).

One potential concern with using the causal effect of the job loss event on consumption to

measure willingness to pay is that it requires utility over consumption to be state independent.

This could be violated for many reasons. On the one hand, the unemployed may have more time to

substitute home production or shopping for lower prices (Aguiar and Hurst (2005)); on the other

hand, unemployment may bring additional job search costs that yield a high value of additional

financial resources. To deal with these potential concerns, I provide a new method for valuing UI

that exploits the ex-ante behavioral responses to learning about future job loss.

Using the changes in consumption prior to unemployment I provide conditions under which one

can scale the 2.7% consumption change in the 1-2 years prior to unemployment by the amount of

information about unemployment in year t that is revealed between year t − 2 and t − 1. Using

subjective probability elicitations, I estimate that 10% of information about unemployment in year

t is revealed between year t − 2 and t − 1. This suggests that individuals are willing to pay a

markup for UI of 30% multiplied by the coefficient of relative risk aversion (i.e. a 60% markup for

a coefficient of relative risk aversion of 2.) Analogously, I show that scaling the ex-ante spousal

labor supply responses by the elasticity of labor force participation with respect to a change in

wages reveals the markup individuals would be willing to pay for UI. For a semi-elasticity of

0.5, this suggests individuals are willing to pay of around a 60% markup for UI. Because these

approaches exploit behavioral responses while individuals are still employed, they do not require

state independence of the utility function and allow for preferences over consumption to depend on

leisure or unemployment status.

Are these willingness to pay estimates sufficient to overcome the hurdles imposed by adverse
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selection? To answer this question, I build on the strategies developed in Hendren (2013) to estimate

the pooled price ratio. I use the information contained in the subjective probability elicitations

to provide non-parametric lower bounds and semi-parametric point estimates on the pooled price

ratio. This yields lower bounds that are generally in excess of 70% and point estimates in excess

of 300%. The pooled price ratio remains large across varying assumptions about the observables

insurers would use to price the UI policies and also is quite persistent across subgroups. Since these

estimates generally exceed the estimates for the willingness to pay for UI, the results suggest a

private UI policies would be too heavily adversely selected to deliver a positive profit, at any price.

Related literature This paper is related to a large literature studying the degree to which

individuals are insured against unemployment and income shocks5 and their behavioral response

to these adverse events.6 The methods used in this paper also relate to a previous literature using

subjective expectation data (Pistaferri (2001); Manski (2004)). In particular, this paper is most

closely related to the work of Stephens (2004), who illustrates that subjective probability elicitations

in the HRS are predictive about future unemployment status, and to Stephens (2001) and Stephens

(2002) who find evidence of ex-ante consumption drops and spousal labor supply increases in the

U.S. using the PSID.

Relative to previous literature, the primary contribution of this paper is to study the implica-

tions of people’s knowledge of future job loss for the workings of a private UI market.7 By using

subjective probability elicitations to identify the ’supply side’ frictions imposed by private infor-

mation, the paper utilizes many of the tools developed in Hendren (2013). On the ’demand side’, I

develop a new methodology to measure willingness to pay for UI when individuals have knowledge

of future job loss. Ex-ante behavioral responses suggest methodologies using the response of first-

differences of consumption tend to under-state the value of UI (e.g. Gruber (1997)). I provide a

correction to this method in Section 5.1. In addition, these ex-ante behavioral responses open a po-
5In the UI context, see Baily (1976); Acemoglu and Shimer (1999, 2000); Chetty (2006); Shimer and Werning

(2007); Blundell et al. (2008); Chetty (2008); Shimer and Werning (2008); Landais et al. (2010). See also Bach (1998)
for one of the only papers documenting adverse selection in a UI context in which mortgage insurance companies
provide mortgage payments in the event of job loss.

6For example, see Guiso et al. (1992); Dynan (1993); Hubbard et al. (1994); Carroll and Samwick (1997, 1998);
Carroll et al. (2003); Lusardi (1997, 1998); Engen and Gruber (2001); Guariglia and Kim (2004); Bloemen and
Stancanelli (2005); Barceló and Villanueva (2010); Campos and Reggio (2015); Brown and Matsa (2015). Most
closely, Basten et al. (2012) and Gallen (2013) find evidence of ex-ante savings increases in response to future
unemployment in Norway and Denmark.

7Along the way, the analysis clarifies the empirical estimands required to answer this question. For example, one
needs to know whether the elicitations are predictive of job loss conditional on public information insurers would use
to price insurance. Further, when studying ex-ante consumption responses, it is important to restrict to a sample that
remains employed in these periods to estimate the demand that would be held by potential insurance customers. To
the best of my knowledge, this paper is the first to document that food expenditure growth drops on the sub-sample
of those who remain employed in the pre-period and experience no drop in consumption.
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tentially fruitful new pathway to valuing insurance by exploiting the ex-ante responses to measure

the value of insurance in Section 5.2 that avoids requirements of state independence of the utility

function employed in previous literature (e.g. Baily (1976); Gruber (1997)). In particular, the drop

in food expenditure and increased spousal labor supply that occurs when people learn they might

lose their job suggests job loss is significantly under-insured in the U.S., regardless of whether the

utility function is state-dependent or individuals have more time to cook or search for lower prices

when unemployed.8

Finally, this paper also contributes to the growing literature documenting the impact of private

information on the workings of insurance markets and the micro-foundations for under-insurance.

Previous literature often tests for private information by asking whether existing insurance contracts

are adversely selected (Chiappori and Salanié (2000); Finkelstein and Poterba (2004)). My results

suggest this literature has perhaps suffered from a “lamp-post” problem, as forebode in Einav et al.

(2010): If private information prevents the existence of entire markets, it is difficult to identify its

impact by looking for the adverse selection of existing contracts. Combining with the evidence in

Hendren (2013) that private information prevents the existence of health-related insurance markets

for those with pre-existing conditions, the results suggest a broader pattern: the frictions imposed

by private information form the boundary to the existence of insurance markets.

The rest of this paper proceeds as follows. Section 2 discusses the data used in the analysis.

Section 3 presents a series of motivating statistics establishing the presence of private information

that individuals would use to (adversely) select insurance. Section 4 places these patterns in the

context of a general model of unemployment risk. A private market will not be profitable if the

markup individuals would be willing to pay for UI is less than the pooled price ratio defined in

Hendren (2013). Section 5 considers the implications of the patterns in Section 3 for measuring

individual’s willingness to pay for UI, and Section 6 considers the implications for measuring the

pooled price ratio. Section 7 discusses robustness and alternative theories of market non-existence.

Section 8 concludes.

2 Data

I use data from two panel surveys: the Health and Retirement Survey (HRS) and the Panel Study of

Income Dynamics (PSID). The HRS provides measures of subjective probability elicitations about

future unemployment and measures of spousal labor supply. The PSID does not contain subjective

probability elicitations, but includes a panel of information on food expenditures.
8See Aguiar and Hurst (2005) for a discussion and evidence that expenditure measurements may mis-state the

impact of retirement and job loss on consumption.
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2.1 HRS

The HRS sample draws from waves of the Health and Retirement Study (HRS) spanning years

1992-2013. The HRS samples individuals over 50 and their spouses (included regardless of age).

The baseline sample includes everyone under 65 in the survey who holds a job in the current survey

wave and is not self-employed or in the military.

Subjective Probability Elicitations The HRS contains a battery of subjective expectation

information about future adverse events. In particular, the survey asks: What is the percent

chance (0-100) that you will lose your job in the next 12 months? Figure I presents the histogram

of these elicitations. As noted in previous literature (Gan et al. (2005)), the responses concentrate

on focal point values, especially zero. Taken literally, these responses of zero (or 100%) imply

individuals would be willing to bet an infinite amount of money against the chance of losing (or

keeping) ones’ job. As a result, at no point will these elicitations be used as true measures of

individuals beliefs. Instead, I follow the approach of Hendren (2013) by treating these elicitations

as noisy and potentially biased measures of true beliefs about losing one’s job. To maintain this

distinction, I will let Z denote the responses to these survey questions, and I will let P denote

the subjective probability held by the individual that governs their willingness to pay for lotteries

and financial contracts, as in Savage (1954). These “true” beliefs, P , are related to individual’s

willingness to pay for an unemployment insurance contract (as will be formalized in Section 4), but

will be assumed to be unobserved to the econometrician, Z 6= P .

Outcomes To infer people’s knowledge of future job loss, we combine information on subjective

beliefs with the subsequent event corresponding to the elicitation. For the baseline analysis, I let

U denote an indicator that the individual involuntarily lost their job in the subsequent 12 months

from the survey, denoted U . The subsequent wave asks individuals whether they are working at the

same job as the previous wave (roughly 2 years prior). If not, respondents are asked when and why

they left their job (e.g. left involuntarily, voluntarily/quit, or retired). I exclude voluntary quits

and retirement in the baseline specifications. Defining U in this manner means that the baseline

analysis will estimate the impact of private information on a hypothetical insurance market that

pays if the individual loses her job in the subsequent 12 months. I also consider the robustness of

the results to alternative definitions of job loss and unemployment below. Changing the definition

of U will simulate different hypothetical UI policies. For example, I consider an indicator of job

loss in the 6-12 months after the subjective elicitation, which excludes cases where individuals lose

their job in the 6-months immediately following the probability elicitation. This will provide an
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estimate of the impact of private information on an insurance contract that has a 6-month waiting

period before claims can be exercised.

Public Information Estimating private information requires specifying the set of observable

information insurers could use to price insurance policies. Changing the set of observable char-

acteristics simulates how the potential for adverse selection varies with the underwriting strategy

of the potential insurer. The data contain a very rich set of observable characteristics that well-

approximate variables used by insurance companies in disability, long-term care, and life insurance

(Finkelstein and McGarry (2006); He (2009); Hendren (2013)) and also contain a variety of variables

well-suited for controlling for the observable risk of job loss. The baseline specification includes

a set of these job characteristics including job industry categories, job occupation categories, log

wage, log wage squared, job tenure, and job tenure squared, along with a set of demographic

characteristics: census division dummies, gender dummies, age, age squared, and year dummies.9

Spousal Labor Supply For the sub-sample of married households in the HRS, I define labor

market entry as an indicator for the spouse working for pay in the current wave but not in the

previous wave of the survey (2 years prior). The primary analysis will focus on labor market

entry by previously non-working spouses, as opposed to total spousal labor supply because of the

potential presence of correlated shocks to labor earning opportunities within the household arising

from spouses working in the same labor market, industry, or firm.

2.2 PSID

I explore the impact of unemployment on food expenditure in the Panel Study of Income Dynamics

(PSID), building upon a large literature (e.g. Gruber (1997); Chetty and Szeidl (2007)). I utilize a

sample to heads of household between the ages of 25 and 65 who have non-missing food expenditure.

I define food expenditure as the sum of food expenditure in and out of the home, plus food stamps.

Following Gruber (1997), I restrict the baseline sample to those with less than a threefold change in

food expenditure relative to the previous year and whose household head is in the labor force (i.e.

either employed or unemployed and looking for work). For some specifications, I utilize a measure

of household expenditure needs, which the PSID constructs to measure the total expenditure needs

given the age and composition of the household. In addition to analyzing food expenditure, I also

explore the robustness of the results to the broader consumption expenditure measures available

every two years starting after 1997.
9This set is generally larger than the set of information previously used by insurance companies who have tried

to sell unemployment insurance. Income Assure, the latest attempt to provide private unemployment benefits, prices
policies using a coarse industry classification, geographical location (state of residence), and wages.
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I construct an indicator for job loss if the individual was laid off or fired from the job held

in the previous wave of the survey.10 This job loss measure corresponds closely to the definition

in the HRS. Ideally, one would measure food expenditure after the onset of a job loss. However,

the survey elicits food expenditure only at the time the survey is administered, which may differ

from the onset of the job loss. To the extent to which individuals who lose their job find new jobs,

food expenditure at the time the subsequent survey is administered may understate expenditure

immediately after the job loss. To align the timing of food expenditure and employment status, I

follow previous literature and define an indicator for whether the individual is currently unemployed

at the time of the survey (e.g. Gruber (1997); Chetty and Szeidl (2007)). I explore results using

both job loss and current unemployment status, but focus on current unemployment status for the

baseline analysis.

For the primary sample construction, I select those who are employed in the previous two years

of the survey. This aligns with the sample selection in the HRS that requires that individuals are

employed at the time of eliciting their job loss probability.

2.3 Summary Statistics

Table I presents the summary statistics for the main samples. For the baseline HRS sample,

there are 26,640 observations (individual-by-year) in the sample, which correspond to 3,467 unique

households. This drops to 2,214 households when using the married subsample. The PSID sample

contains 65,450 observations (individuals-by-year) from 9,557 individuals who are heads of house-

hold.

Individuals in the samples have relatively similar earnings ($36K in the HRS; $40K in the PSID),

although earnings are slightly higher in the PSID sample of household heads. The household heads

in the PSID are also more likely to be male (83% versus 40%).11

The most notable distinction between the HRS and PSID samples is the difference in their age

distributions. The HRS sample is older, with a mean age of 56 as opposed to 41. Despite this, the

frequency of involuntary job loss and subsequent unemployment is fairly similar, with annualized

rates of job loss of 3.1% in the HRS and 2.8% in the PSID sample. The PSID sample is more likely

to be unemployed (2.4% versus 1.9% in the HRS), perhaps because job losses in the HRS sample

are more likely to lead to retirement: the retirement hazard in the HRS sample is 5.3% per year
10I only include job losses coded as “fired or laid off”, and do not include cases where the individual quit, the job

was seasonal/temporary, or the company “folded/changed hands/moved out of town/went out of business”. I do not
include this latter case because it includes cases where the individual never loses employment (but had a change in
job title because, for example, of a change in management).

11Although the HRS is a representative sample of individuals over 50 and their spouses, the sample of women
exceeds 50% because women are more likely than men to be married to someone over age 65 (and those over age 65
are not included in the baseline sample).
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versus just 1.7% in the PSID sample.12 As discussed below, the analysis will assume an insurer

can distinguish involuntary job loss from retirement; if this is not possible, the knowledge of future

retirement plans could present an additional source of adverse selection in a private UI market.

For the married HRS sample, 69.3% of spouses are employed and 3.9% of spouses make an entry

into the labor market (defined as an indicator for being out of the labor force in the previous wave

and in the labor force in the current wave of the survey. For the PSID sample, mean household

food expenditure is $7,314.

Finally, the second-to-last set of rows in Table 1 report the summary statistics for the subjective

probability elicitations. While 3.1% of the HRS sample loses their job in the subsequent 12 months

from the survey, the mean subjective probability elicitation is 15.7%. Such bias is a common feature

of subjective probability elicitations (see, e.g., Hurd (2009)). In particular, for low probability events

there is a natural tendency for measurement error in elicitations to lead to an upward bias. This

provides further rationale for treating these elicitations as noisy and potentially biased measures of

true beliefs, as is maintained throughout the empirical analyses below. An alternative explanation

is that individuals hold overly pessimistic beliefs about losing their job. I return to a discussion of

the implications of biased beliefs in Section 7.

3 Knowledge of Future Job Loss

This section documents three empirical patterns. First, individuals’ subjective probabilities are

predictive of future job loss conditional on a wide range of observables that insurers could potentially

use to price an insurance policy. Second, when individual’s learn they might lose their job, spouses

are more likely to enter the labor market. Third, consumption growth differs for those who do versus

those who do not lose their job in the 1-2 years prior to job loss. These empirical patterns will

provide a basis for considering the implications for the workings of a private UI market, discussed

in Sections 4-6.

3.1 Private Information about Future Job Loss Using Subjective Probability
Elicitations

Do people have private information about their likelihood of losing their job that could be used

to adversely select an insurance policy if it were offered? To address this, I ask whether those

with higher subjective probability elicitations, Zit, are more likely to experience a job loss in the

subsequent 12 months, Uit, conditional on year dummies, demographic characteristics, and job

characteristics, Xit. The fact that the elicitations are predictive of subsequent job loss was first
12I construct the yearly retirement hazard in the HRS by computing the fraction of the sample who is retired in

the subsequent wave (2 years forward) and dividing by 2.
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shown by Stephens (2004). The analysis in this section expands upon this work by focusing on

individual’s knowledge that is not captured by observable characteristics, Xit, that insurers might

use to price insurance.

To illustrate the predictive content of the elicitations, I partition the range of responses of Zit

in the unit interval into five bins, Gj , and construct indicators for Zit ∈ Gj . I regress an indicator

for job loss in the subsequent 12 months from the survey, Uit, on observable controls at time t, Xit,

and bin indicators,

Uit = α+
n∑
j=1

ψj1 {Zit ∈ Gj}+ ΓXit + εit (1)

Figure II plots the coefficients, ψj , omitting the lowest bin (corresponding to Z = 0 ) and adding

back the mean job loss probability for those in the lowest bin of 1.9%. The figure reveals an

increasing pattern: those with higher subjective probability elicitations are more likely to lose

their job, conditional on demographics and job characteristics. This suggests individuals have

knowledge about future job loss that is not readily captured by their observable demographic and

job characteristics.

Table II presents the results from a linear parameterization of this relationship. I regress the

indicator for job loss in the subsequent 12 months, Uit, on observable controls at time t, Xit, and

the subjective probability elicitation, Zit:

Uit = α+ βZit + ΓXit + εit (2)

For the baseline specification with demographics and job characteristics, the estimated slope is

0.0836 (s.e. 0.00675). For every 1pp increase in the elicitation, Z, individuals are roughly 0.08pp

more likely to lose their job in the subsequent 12 months. Columns (2)-(4) illustrate the robustness

of the estimated coefficient to alternative controls, Xit. Dropping job characteristics leads to a

slightly higher coefficient of 0.0956 (s.e. 0.00685); adding additional controls for health character-

istics13 reduces the coefficient to 0.0822 (s.e. 0.00736).

Column (4) adds individual fixed effects. Of course, an insurer could never actually use an

individual fixed effect to price insurance, as it would require using information that is partially

realized in the future in order to construct the individual-specific means. Nonetheless, even if an

insurer could do so it would not mitigate the asymmetric information problem: adding individual

fixed effects only reduces the coefficient to 0.0738 (s.e. 0.012). This highlights that individuals’ risk

of job loss is largely time-varying within an individual. This underscores the difficulty that would
13These include indicators for a range of doctor-diagnosed medical conditions (diabetes, a doctor-diagnosed psy-

chological condition, heart attack, stroke, lung disease, cancer, high blood pressure, and arthritis) and linear controls
for bmi
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be faced by an insurance company attempting to use observable variables to reduce the asymmetric

information problem.

Columns (5)-(10) illustrate the presence of private information across a range of subsamples.

Although the HRS primarily focuses on older workers, Columns (5)-(6) split the sample into those

above and below 55 years old. The coefficients are similar, illustrating the stability of the patterns

across the age ranges observed in the data. Columns (7)-(8) split the sample into those with

above- and below-median wage earnings to show the stability of the pattern across the income

distribution. Finally, Columns (9)-(10) split the sample into those with more and less than 5 years

of job tenure. Again, the pattern is similar with the estimated coefficient ranges around 0.07-0.09.

Across demographic subgroups, individuals have knowledge about their potential future job loss.

3.2 Spousal Labor Supply Response to Knowledge of Future Job Loss

Individuals have knowledge about their future job loss. Would they use this information to adversely

select an insurance contract if it were offered to them? More generally, how do individuals react

to learning they might lose their job? If individuals are under-insured against the risk of job

loss, learning today that you might lose your job tomorrow should trigger anticipatory responses

to earn more income and cut back on consumption. This subsection explores how spousal labor

supply responds to learning about future job loss. This extends a large literature on the added

worker effect (e.g. Gruber and Cullen (1996)) and builds on Stephens (2002) who shows evidence

of an ex-ante response by spouses to unemployment shocks in the PSID. Here, I use the subjective

probability elicitations in the HRS to provide new evidence that spousal labor supply responds to

learning one might lose their job.

Figure III shows that spouses of individuals who are likely to lose their job are more likely to

enter the labor market. To construct this figure, I replace the job loss variable, Uit, in equation

(1), with an indicator for spousal labor market entry that is equal to 1 if the spouse not working

for pay last wave and working for pay in the current wave of the survey, denoted Entryit. Figure

III plots the resulting coefficients on the elicitation bins, ψi. For example, spouses of individuals

with Z > 50 as opposed to Z = 0 are 2 percentage points more likely to enter the labor force. On

the one hand, this is a small effect: it suggests roughly 1 in 50 extra spouses are induced into the

labor market when the elicitation is above 50%. On the other hand, relative to the base entry rate

of these spouses of 3.9%, it is quite large. For values Z < 50, the response is more muted, perhaps

consistent with a model in which labor market entry has high fixed cost.

Table III linearly parameterizes the relationship in Figure III using the regression equation

Entryit = βZit + ΓXit + ηit, (3)
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where β is the increased likelihood of spousal labor force entry for those with a 1pp increase in the

subjective probability elicitation, Z. This yields a coefficient of 0.0258 (s.e. 0.0087) for the baseline

specification in Column (1). Column (2) restricts the sample to those who do not end up losing their

job in the 12 months after the survey, yielding 0.0256 (s.e. 0.009). This suggests households are

responding to the risk of job loss, even if the realization does not occur. This highlights the value

of using the elicitations as opposed to the realization of future job loss as a proxy for knowledge

of future job loss. Column (3) uses a specification that defines spousal work as an indicator for

full-time employment, as opposed to any working for pay. This definition includes shifts from part

time to full time work in the definition of labor market entry, and finds a similar slope of 0.0255

(s.e. 0.0099).

The results suggest that spousal labor supply increases in response to learning one might lose

their job. However, the patterns could also reflect a selection effect. For example, perhaps indi-

viduals who are more likely to lose their jobs may be more likely to have spouses that have less

labor force attachment and are more likely to come and go into the labor market. To this aim,

Column (4) considers a placebo test that uses the lagged value of the elicitation, Zit−2 instead of

Zi,t (where year t−2 corresponds to the previous wave of the survey conducted 2 years prior). Here,

the coefficient is 0.00122 (s.e. 0.008) and is not statistically distinct from zero. Columns (5) and

(6) add household and individual fixed effects to the specification in Column (1), yielding similar

coefficients. In short, the results suggest that in response to learning about future job loss spouses

are more likely to enter the labor market.14 This suggests not only that individuals and households

have private information about future job loss, but that they would act upon this information if

presented with opportunities to mitigate this risk, such as private UI markets.

3.3 Consumption Response to Knowledge of Future Job Loss

There is also a large literature studying the impact of unemployment on measures of consumption

and food expenditure. For example, Gruber (1997) uses data from the PSID to document that food

expenditure drops 6-10% upon unemployment. However, if individuals learn about their potential

future unemployment prior to its onset, one would expect these cuts to occur before individuals

become unemployed. In this section, I find evidence for this ex-ante food expenditure drop in the
14One may also expect to see fewer spouses leave the labor force in response to learning about future unemployment

prospects for the other earner. However, a countervailing force could arise from correlated labor demand shocks (e.g.
from spouses working in the same industry). To explore these patterns, Column (7) defines labor market exit as an
indicator for a spouse working for pay last wave and not working for pay in the current period. The coefficient of 0.0174
(s.e. 0.0119) is positive, although not statistically significant and suggests households face correlated unemployment
shocks. Further evidence of correlated shocks is presented in Column (9), which shows that the the elicitation is
positively related to spousal unemployment in the subsequent year, with a coefficient of 0.0213 (s.e. 0.0097). For
these reasons, I focus primarily on labor market entry of spouses not currently in the labor market and perhaps face
greater flexibility in their choice of industry/occupation/firm/etc when choosing employment.
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1-2 years prior to the job loss or unemployment spell.

Following Gruber (1997), let gi,t = log (ci,t)−log (ci,t−1) denote yearly food expenditure growth,

where ci,t is food expenditure of household i in year t. Let Uit denote an indicator for being

unemployed at the time of the survey in year t, Uit. I regress food expenditure growth gi,t on

unemployment in year t− k,

gi,t = ak + ∆FD
k Ui,t−k + ΓkXi,t + νi,t (4)

for a range of leads and lags, k. The coefficient ∆FD
k measures the average difference in consumption

growth in period t between those who are and are not unemployed in period t− k. To control for

other life-cycle or aggregate trends in consumption that might affect gi,t, I include a cubic in the

household head’s age and a full set of year dummies in the controls, Xi,t.

Using the sample of individuals who are employed in the 2 years prior to the unemployment

measurement, Figure IV plots the coefficients ∆FD
k for k = −4,−3, ..., 0, ..., 3, 4. Consistent with

previous literature, food expenditure drops by 7-8% at the onset of unemployment. But, there is

also a 2-3% impact on food expenditure growth in the the year prior to unemployment. We also

find small but statistically insignificant drops in consumption in the earlier years (e.g. t−3 relative

to t− 4).15 In years after the unemployment measurement, the coefficients ∆FD
k are close to zero.

Because all of these regressions are in first differences, the impact of unemployment is consistent

with a long-run shock to food expenditure that does not recover, as shown in Stephens (2001).

Table IV illustrates the robustness of the ex-ante drop in food expenditure in the 1-2 years

prior to unemployment, ∆FD
−1 . Column (1) shows that the baseline specification yields a -2.71%

(s.e. 0.975%) drop in food expenditure16 in the year before unemployment occurs. Column (2)

shows that controlling for the change in household size in years t− 2 versus t− 1 and the change in

expenditure needs delivers a fairly similar coefficient of -2.11% (s.e. 1.05%).17 Column (3) restricts

the sample to those under age 50 – a group largely not captured by the HRS analysis above.

This yields a coefficient of -2.88% (s.e. 1.06%), which is similar in magnitude but not statistically

distinguishable from the baseline estimate. This suggests knowledge of future job loss is present
15The smaller responses in earlier periods is consistent with evidence discussed below that a large portion (e.g.

10%) of knowledge of future job loss in period t is revealed in years t− 2 relative to t− 1, but not as much is revealed
in the earlier years. See Section 6 and Online Appendix Figure I.

16Online Appendix Figure II replicates the baseline regression in Figure IV using more recent PSID data on total
household expenditure on a sample that is surveyed every two years. The broad patterns are similar, although the
consumption drop upon unemployment is slightly larger (e.g. 12%) when using total consumption expenditure as
opposed to food expenditure. There is also an ex-ante response of 3.6% (p = 0.055) in t − 2 relative to t − 4 in
total consumption expenditure, which again suggests individuals decrease their food expenditure in response learning
about future unemployment.

17Restricting to the subsample of 53,327 observations for which the needs variable is available drops the coefficient
in column (1) to 2.4%, suggesting roughly half of the drop in the point estimate is driven by differential sample
composition; of course, all of these point estimates are well within 1 standard error of the baseline estimate.
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across the age distribution in the U.S, not only the older sample surveyed by the HRS.

Unemployment versus job loss The baseline figure studies consumption patterns around un-

employment, which may be distinct from a job loss event; Column (4) illustrates the ex-ante food

expenditure response to future job loss (regardless of whether it leads to future unemployment).

Individuals who experience a job loss in the future year are likely to have already dropped their

consumption by 2.6% (s.e. 0.824%) relative to those who will not experience a future job loss in

the subsequent year.18 Online Appendix Figure III presents the lead and lag estimates as in Figure

IV using job loss instead of unemployment and finds similar patterns to Figure IV. Overall, the

results reveal a similar ex-ante drops in food expenditure for both job loss and unemployment.

Forward looking behavior versus correlated income shocks While the results are consis-

tent with ex-ante responses to learning about future unemployment, a competing hypothesis is that

income is dropping prior to unemployment and individuals are simply consuming hand-to-mouth.

To explore this, Column (5) of Table IV adds controls for a cubic polynomial of changes in log

household income to the baseline specification. This yields a coefficient of 2.72% (s.e. 0.969%)

nearly identical to the baseline specification in Column (1). The results are similar with higher and

lower order polynomial controls, or restricting those with small income changes between t− 1 and

t− 2 . Column (6) adds controls for a cubic polynomial of changes in log income of the household

head, again yielding a similar coefficient of -2.81% (s.e. 0.983%).19

To understand why the results are not affected by adding controls for income, Online Appendix

Figure IV replicates Figure IV using log household income as the dependent variable as opposed to

log food expenditure. For those employed in both t− 2 and t− 1, unemployment in period t is not

associated with any significant income change in any of the years prior to unemployment.20 There-

fore, the ex-ante expenditure drop does not appear to be the result of hand-to-mouth consumption

combined with correlated income shocks; it is more consistent with an anticipatory response to

learning about future unemployment.21

18Temporary or seasonal work is coded separately and not included in job loss. Therefore, the ex-ante consumption
responses in the PSID suggest the patterns in the HRS are not driven solely by knowledge about fixed term temporary
contracts.

19The sample sizes are slightly lower for these specifications due to non-response to income questions. The food
expenditure patterns are similar when restricting to a sample with non-missing income reports.

20The absence of an ex-ante drop in income differs from the findings of Davis and von Wachter (2011) for plant
closings. To be sure, there are sub-samples in the PSID for which income does decline; in particular, if one includes
those who are unemployed in t − 1 or t − 2, then income does decline prior to the unemployment measurement (as
shown in Stephens (2001)). In this sense, the patterns identified here are similar to those found in Stephens (2001)
who shows roughly a 2% drop in the year prior to a job loss; the main empirical distinction is that I illustrate that
these patterns hold on the sample who remain employed in periods t− 1 and t− 2, so that it is not driven by these
correlated income shocks in the pre-periods.

21While the narrative here is that consumption declines because of the future unemployment event, there is a
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4 Model

Individuals have knowledge about their future job loss and take actions to increase their financial

resources available when unemployed. This suggests they would have a demand for an unemploy-

ment insurance contract if it were offered. Yet they would likely use their private information to

potentially adversely select the contract. This remainder of this paper explores whether this private

information prevents the existence of the private unemployment insurance market.

To do so, I begin by developing a theory of when a private market should exist that can be

used to guide the empirical analysis in Sections 5 and 6. The framework builds upon a model of

Hendren (2013) by incorporating dynamics and precautionary responses, and allows for behavioral

responses to providing unemployment insurance (i.e. moral hazard). The model will characterize

the empirical objects that need to be estimated in order to understand whether private information

prevents market existence. Along the way, the model also provides a framework for thinking about

alternative explanations for the absence of a private market, including aggregate risk, biased beliefs,

and moral hazard, which will be discussed further in Section 7.

4.1 Setup

Individuals face a risk of losing their job in the next year. They (or their households22) choose

consumption today, cpre, along with a plan for consumption in the event of not losing and losing her

job in the future, ce and cu. In addition, they also make a set of other choices, denoted by a vector

a, which can include spousal labor supply, job search activities, and can be contingent plans for

future behavior conditional on other events that may happen in the future. In this sense, the model

is both stochastic and dynamic. Let p denote an individual’s chance of losing her job in the next 12

months. The model should be thought of as conditioning on a particular observable characteristics,

X, so that p reflects the individual’s privately known information. This probability p can be also

be affected by the choices of the individual – for example, UI may increase the likelihood of job

loss (moral hazard).

Individual i makes choices {cpre, cu, cu, a, p} ∈ Ωi subject to an individual-specific constraint

potential for reverse causation that is worth mentioning. An alternative story is that there is a negative shock to the
marginal utility of consumption in t− 1, which leads to an increase in savings, which in turn leads to a wealth effect
on job effort and an increase in the likelihood of losing one’s job. Although such a story would potentially explain
the pattern of consumption, it would yield opposing predictions for spousal labor supply. A decline in the marginal
utility of income in period t−1 should lead to a decrease in spousal labor supply, which contrasts with the increasing
patterns shown in Section 3.2.

22Throughout, I use the language of individuals to refer to the maximization decision. But, many of the variables
will be measured at the household level and can be thought of as the result of joint household decision-making. This
distinction is without loss of generality as long as the within-household allocations are Pareto efficient.
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set, Ωi, to maximize a utility function that satisfies

v (cpre) + pu (cu) + (1− p) v (ce) + Ψi (p, a) (5)

where v (cpre) is the utility over consumption today, u (cu) and v (ce) are the utility over consumption

if the individual does and does not lose her job next year, and Ψi (p, a) is the (dis)utility from all

the other choices p and a.

The model generalizes the structure in Hendren (2013) in several ways. First, the utility function

over consumption is allowed to differ for those who remain employed, v, versus those who lose their

job, u. This allows for state-dependent utility. Second, the probability of job loss is allowed to be a

choice, so that the problem incorporates moral hazard: more insurance can increase the cost to the

insurer of providing that insurance. Third, the model in principle allows for multiple dimensional

heterogeneity (e.g. different individuals, i, may have different utility functions, ψi, and face different

constraints, Ωi). In the exposition in the main text, I assume heterogeneity can be fully summarized

by the choice of p (i.e. it is uni-dimensional); but the modeling in Appendix A illustrates how the

analysis readily extends to the case of multi-dimensional heterogeneity. Finally, the model allows

for sources of formal and informal insurance: items such as transfers from friends and family, and

the current level of government benefits are embodied in the constraints, Ωi. In particular, the

model allows for dynamic responses to under-insurance and thus the ability to match the empirical

patterns in Section 3.

Consumption Responses The model captures the dynamic consumption patterns in Figure IV

by assuming that the constraints, Ωi, allow the individual to save today to increase consumption

in both states of the world tomorrow.23 Optimization of this savings decision yields the familiar

Euler equation:

v′ (cpre (p)) = pu′ (cu (p)) + (1− p) v′ (ce (p)) (6)

The marginal utility of income today equals the expected marginal utility of income in the future.

If the marginal utility of income is higher when unemployed, u′ > v′ (i.e. individuals are under-

insured), then learning one might lose their job should cause individuals to cut back on current

consumption and save for future consumption. In this sense, the ex-ante responses in Figure IV

suggest individuals are not fully insured against the risk of job loss.
23To be specific, I assume that if {cpre, cu, cu, a, p} ∈ Ωi then {cpre − s, cu + s, cu + s, a, p} ∈ Ωi for all s. For

simplicity, I assume that the interest rate on savings equals 1 to be consistent with the lack of discounting in equation
(5). More generally, this Euler equation is obtained as long as the discount rate on utility equals the interest rate on
risk free savings.
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Spousal Labor Supply Responses The model also captures the spousal labor supply responses

documented in Section 3.3. To see this, one can incorporate spousal labor supply into the set of

other actions. Let a = (lspouse, a′) and ψi (p, a) = κi (p, a′)−η (lspouse (p)) , where a′ is the vector of

all other actions and η captures the disutility of spousal labor supply. Let wspouselspouse denote the

earnings of the spouse with labor supply lspouse. Then, the intratemporal choice of labor supply

implies the marginal disutility of labor is equated to the marginal value of consumption multiplied

by the wage, η′ (lspouse (p)) = wspousev′ (cpre (p)). So, the Euler equation (6) can be re-written as

1

wspouse
η′ (lspouse (p)) = pu′ (cu (p)) + (1− p) v′ (ce (p)) (7)

The marginal disutility of labor divided by the spouse’s wage equals the expected marginal utility of

income in the future. When individuals are under-insured against job loss (i.e. u′ > v′), an increase

in p should lead to an increase in spousal labor supply because of the increase in the marginal utility

of income. Equation (7) illustrates this logic along the intensive margin; Appendix C.5 illustrates

this logic using extensive margin responses. If individuals have higher marginal utilities of income

if they lose their job than if they do not, they will want to increase income if job loss becomes more

likely. In this sense, the model formalizes how the ex-ante consumption and labor supply responses

suggest u′ (cu (p)) > v′ (ce (p)) , so that individuals are not fully insured against job loss and would

have a demand for a private UI policy.

4.2 Existence of Private Markets

When can a third-party insurance company enter this environment and profitably sell an insurance

contract? To begin, I consider a private market for additional insurance on top of what is currently

provided by existing formal and informal insurance arrangements. Later, Section 7 discusses the

alternative (and more difficult) question of whether a private market would arise in a counterfactual

world in which the government were to stop providing UI.

Suppose an insurer attempts to sell a policy that pays $1 in the event the individual loses her

job. An individual who has a likelihood p of losing her job is willing to pay p
1−p

u′(cu(p))
v′(ce(p))

from the

future state of not losing her job to buy this policy, where u′ (cu (p)) and v′ (ce (p)) are the marginal

utilities of consumption in the event of losing and not losing her job.

The actuarially fair cost of providing this $1 to a type p is p
1−p . If an insurer could sell at this

price there would be a profitable insurance market as long as the individual had a higher marginal

utility of income when unemployed, u′(cu(p))
v′(ce(p))

> 1. But, since p is unobserved to the insurer, the

cost to the insurance company depends on who else prefers such an insurance contract. One would

expect that those with higher probabilities, p, will tend to prefer this insurance contract. Let
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P denote the random variable corresponding to the distribution of probabilities chosen by the

population. Assuming that individuals with higher p will have a higher demand for insurance, the

cost of providing insurance to type p will be determined by the average probability of worse risks,
E[P |P≥p]

1−E[P |P≥p] . Appendix A states these assumptions more formally and shows that a private market

cannot exist if and only if
u′ (cu (p))

v′ (ce (p))
≤ T (p) ∀p (8)

where u′(cu(p))
v′(ce(p))

− 1 is the markup over actuarially fair rates that a type p is willingness to pay for a

small amount of insurance and T (p) = E[P |P≥p]
1−E[P |P≥p]

1−p
p is the pooled price ratio defined in Hendren

(2013). The pooled price ratio is the markup a type p would have to be willing to pay in order

to cover the pooled cost of worse risks adversely selecting their insurance contract. In words, the

no trade condition in equation (8) says that unless someone in the economy is willing to pay the

pooled cost of worse risks in order to obtain some insurance, there can be no profitable insurance

market.

Moral Hazard The responsiveness of behavior to insurance (e.g. an increase in p resulting from

insurance) does not affect whether a market exists. This is because the first dollar of insurance

provides first-order welfare gains (given by u′(cu(p))
v′(ce(p))

) but the behavioral response to that first dollar

of insurance imposes only a second-order cost to the insurance company. As a result, moral hazard

does not provide a singular explanation for the absence of an insurance market. This insight,

initially noted by Shavell (1979), suggests moral hazard does not affect whether insurers’ first

dollar of insurance is profitable.24 Moral hazard can limit the size of the gains to trade, but does

not provide a singular theoretical explanation for the absence of a market. In contrast, the first

dollar of insurance can be adversely selected by strictly worse risks, so that private information can

explain the absence of a market.

Multi-Dimensional Heterogeneity and Relation to Akerlof (1970) and Einav, Finkel-

stein, and Cullen (2010) Equation (8) is similar to the unraveling condition in Akerlof (1970)

and Einav et al. (2010). In those models, the market will fully unravel whenever the average cost

curve (average cost of those purchasing the insurance at a given price) lies everywhere below the

demand curve (willingness to pay for the marginal purchaser). Loosely, the “demand curve” is given

by p
1−p

u′(cu(p))
v′(ce(p))

and the “average cost curve” is given by E[P |P≥p]
1−E[P |P≥p] .

25 The key distinction of the

model in this paper is that it does not exogenously restrict the set of insurance contracts traded.
24As discussed in Section 5.3, one could combine a model of moral hazard and fixed costs to explain the absence

of a private market.
25Online Appendix Figure V presents a graphical illustration of equation (8).
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When Equation (8) holds, the market for any insurance contract (or menu of insurance contracts,

as shown in Appendix A.2) about the job loss will fully unravel in the sense of Akerlof (1970) and

Einav et al. (2010).

While the model allows for endogenous contracts, the assumption that individuals with higher

p will always have a higher demand for insurances is more restrictive than the models of Akerlof

(1970) and Einav et al. (2010) because it assumes a single dimension of heterogeneity summarized

by p. In Appendix A.1, I extend the baseline model in Section 4 to allow two people with the same

p to have a different willingness to pay, u′

v′ . In this setting, ideally one would estimate the joint

distribution of each person’s willingness to pay for UI and the cost they impose on the insurance

company. With this, one could simulate the demand and cost curves of Einav et al. (2010) for

any hypothetical insurance contract and understand whether a market could exist. I extend the

model to allow for multi-dimensional heterogeneity in Appendix A.1 and derive an equation similar

to equation (8) in which one can replace the willingness to pay, u
′(cu(p))
v′(ce(p))

, with a more complicated

interior quantile of the type space that depends on the joint distribution of the type distribution and

willingness to pay. A market can exist only if there exists one of these interior types that is willing

to pay the pooled cost of worse risks, T (p), in order to obtain insurance. In this sense, the pooled

price ratio remains a key empirical quantity of interest even in the presence of multi-dimensional

heterogeneity, and whether individuals are willing to pay the pooled cost of higher risks continues

to characterize when a private market can exist.

In short, equation (8) provides a theory of how private information can prevent the existence

of a UI market. The next two sections focus on translating the empirical evidence in Section 2 and

3 into estimating each side of this equation: the willingness to pay for UI, u
′(cu(p))
v′(ce(p))

, and the pooled

price ratio, T (p).

5 Implications for Willingness to Pay

The absence of a private market for UI makes it difficult to know how much people would be willing

to pay for it, u
′(cu(p))
v′(ce(p))

. This section develops two strategies to estimate this willingness to pay. The

first strategy in Section 5.1 builds on previous literature by inferring the willingness to pay from the

size of the causal effect of job loss or unemployment on consumption (i.e. the difference between

ce (p) and cu (p)). The ex-ante responses documented in Section 3 suggests that previous approaches

using first-difference estimates (e.g. Gruber and Cullen (1996)) understate the true causal effect. I

provide a method to correct for this bias.

The second strategy presented in Section 5.2 provides new methods that exploit these ex-ante

behavioral responses to infer people’s willingness to pay for UI. Under assumptions provided below,

19



the extent to which individuals cut their consumption in response to learning they might lose their

job in the future reveals how much they are willing to pay to have additional resources if they lose

their job.

5.1 Approach #1: Consumption when unemployed versus employed

5.1.1 Setup

A common approach in previous literature to measure the willingness to pay for UI is to assume

individuals have state independent preferences over consumption (v (c) = u (c)). Under this as-

sumption, one can follow Chetty (2006) by using a third-order Taylor expansion for u′ around

ce (p)26, to write:
u′(cu (p))

v′ (ce (p))
− 1 ≈ σ∆c

c
(p)

[
1 +

γ

2

∆c

c
(p)

]
(9)

where ∆c
c = ce(p)−cu(p)

ce(p)
is the causal effect of job loss on type p’s percentage difference in consump-

tion, σ is the coefficient of relative risk aversion, σ = − ce(p)u′′(ce(p))
u′(ce(p))

, and γ = − ce(p)u′′′(ce(p))
u′′(ce(p))

is

the coefficient of relative prudence.27 For simplicity, I assume constant coefficient of relative risk

aversion (e.g. u (c) = c1−σ

1−σ ) so that the coefficient of relative prudence equals the coefficient of

relative risk aversion plus 1, γ = σ+ 1. Following Gruber (1997), it is common to approximate this

percentage change using log consumption,

∆c

c
(p) ≈ log (ce (p))− log (cu (p)) (10)

Therefore, estimating the willingness to pay for UI requires estimating the causal impact of job loss

on log consumption.

To estimate the causal effect of job loss on consumption using observational data, one must

account for the fact that those who lose their job may differ on many other dimensions (e.g. have

lower earnings history or less savings) that generate differences in consumption levels. To remove

this selection bias, previous literature often uses yearly consumption first differences, as in ∆FD
0

in Equation 4 (Gruber (1997); Chetty and Szeidl (2007)). The first row of Table V presents the

estimates for ∆FD
0 in Equation 4 using the baseline sample from the PSID. Consistent with Gruber

(1997) and Chetty and Szeidl (2007), the event of unemployment leads to a roughly 7-8% lower

food expenditure relative to the previous year.28 Column (1) presents the results for the baseline

sample in the PSID, yielding a coefficient of 7.23% (s.e. 0.997%).
26Formally, u′ (c) ≈ u′ (ce (p)) + u′′ (ce (p)) (c− ce (p)) + 1

2
u′′′ (ce (p)) (c− ce (p))2

27See Appendix C.1 for the derivation.
28Ideally, one would measure the impact of job loss on consumption, not necessarily the impact of unemployment

on consumption, as this would more closely align with the hypothetical insurance product that pays $1 in the event of
job loss and corresponds to the definition of U and p in Section 4. However, as noted in Section (3.3), the PSID does
not measure food expenditure directly at the precise time a job loss occurs – rather, one must wait for the next survey
wave. To be conservative in testing equation (8), I focus on the larger impact of unemployment, as opposed to an
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5.1.2 Correcting Bias in First Difference Estimator

Unfortunately, the ex-ante responses documented in Section 3 suggest ∆FD
0 does not capture the

full causal effect. Indeed, one can write the first difference estimate as:

∆FD
0 = E [log (ce (p))− log (cu (p))]︸ ︷︷ ︸

Average Causal Effect

− (E [log (cpre (p)) |U = 0]− E [log (cpre (p)) |U = 1])︸ ︷︷ ︸
Bias from ex-ante response

(11)

where the bias term equals the difference in consumption in the year prior between those who

subsequently do versus do not lose their job. The divergence in year t− 1 suggests that ∆FD
0 will

under-state the true average causal effect.

Here, I show that one can recover the average causal effect from the first difference estimate by

accounting for the fact that some information about job loss in period t has been revealed at time

t − 1. More precisely, if P reflects the beliefs about the event U in year t measured in year t − 1,

then a fraction var(P )
var(U) = E [P |U = 1]− E [P |U = 0] of the information about U has been revealed

at the time P is measured. Under the assumptions stated in Proposition 1, the causal effect is

recovered by inflating the first difference estimate, ∆FD
0 , by the fraction of information about job

loss that remains, 1− (E [P |U = 1]− E [P |U = 1]).29

Proposition 1. Suppose that (i) the utility function is state-independent (u (c) = v (c)), (ii) the

Euler equation 6 holds, and (iii) the causal effect of U on consumption is not varying with p,
d[log(ce(p))−log(cu(p))]

dp = 0. Let “≈” denote an equality up to log-linear consumption approximations

and third-order Taylor approximations for u and v. Then, the average causal effect of U on log

consumption is given by

E [log (ce (p))− log (cu (p))] ≈ ∆FD
0

1− κ (E [P |U = 1]− E [P |U = 0])
≡ ∆IV (12)

where var(P )
var(U) = E [P |U = 1]−E [P |U = 0] is the fraction of variance in U that is realized in beliefs

P at time t− 1 and κ = E

[
1

1+p
u′(cu(p))−v′(ce(p))

u′(ce)

]
≈ 1.

If Assumption (iii) is violated, ∆IV is greater than (less than) E [log (ce (p))− log (cu (p))] if

higher values of p correspond to larger (smaller) consumption drops.

Proof. See Appendix C.2.

If individuals have no knowledge about U , then E [P |U = 1] = E [P |U = 0], so that the de-

nominator equals 1, and the first difference estimate recovers the average causal effect. But, if

indicator for job loss occurring between surveys. This has the added benefit of aligning with much previous literature
focusing on estimating the impact of unemployment on consumption (e.g. Gruber (1997); Chetty and Szeidl (2007)).
And, I show below this is likely a conservative path to prevent under-stating the willingness to pay for insurance.

29An alternative strategy would be to use longer lags instead of 1-year lagged consumption. However, Online
Appendix Figure V shows that individuals have (albeit small) predictive information about future unemployment 10
years in advance. This suggests the lags would need to be longer than 10 years to remove the bias in Equation (11).
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individuals have ex-ante knowledge, one must estimate inflate the first difference estimate to ac-

count for the information that has been revealed when measuring ct−1. The correction factor κ

adjusts for the fact that the ex-ante consumption response is valued using the ex-ante marginal

utility, whereas the insurance markup is defined relative to the marginal utility in the ex-post state

of employment. Appendix C.2 shows that κ ≈ 1 because p is small on average (E [p] = 4%). For

example, if individuals are willing to pay a 25% markup and E [p] = 4%, then this correction factor

is roughly κ = 1.01. Going forward I assume κ ≈ 1.

Appendix C.2 provides the proof of Proposition 1 and illustrates how Assumptions (i)-(iii) lead

to the scaling in Equation (12). Assumption (i) is the state independence assumption that allows

one to infer differences in marginal utilities from differences in consumption levels multiplied by a

coefficient of relative risk aversion. Assumption (ii) is a standard Euler equation that provides a link

between the ex-ante consumption response of cpre (p) and the causal effect (i.e. difference between

ce (p) and cu (p)). Finally, Assumption (iii) requires that there is no systematic heterogeneity in

the causal effect of U on log (c) that is correlated with p. Assumptions (ii) and (iii) combine to

imply that the impact of learning that unemployment is 1% more likely (i.e. p increases by 1pp),
dlog(cpre(p))

dp , equals 1% of the causal effect, d[log(cu)−log(ce)]
dp . This equality suggests that the first

difference estimate is attenuated by the amount of information about U that has been revealed,

(E [P |U = 1]− E [P |U = 0]), which yields the formula in equation (12).30

5.1.3 Results

Estimating E [P |U = 1]−E [P |U = 0] I use the subjective probability elicitations in the HRS to

estimate E [P |U = 1]−E [P |U = 0]. Regressing an indicator for job loss on the elicitations, Z, yields

an estimate of E [P |U = 1] − E [P |U = 0] as long as the measurement error in Z is classical (i.e.

Z−P is uncorrelated with U). Because P and U are bounded variables, the classical measurement

error assumption is likely violated. Nonetheless, this provides a natural benchmark. The estimates

presented in Appendix Table I suggest E [P |U = 1] − E [P |U = 0] ≈ 0.197 (s.e. 0.012), which

implies 80.3% of the uncertainty in job loss is not known 1 year in advance. Appendix Table I also

illustrates that the 80% statistic is quite similar across various demographic subgroups.
30It is certainly possible that Assumption (iii) is violated so that the counterfactual consumption difference varies

with the unobserved likelihood of job loss, p. In this case, one can show that

E [log (ce (p))− log (cu (p))] =
∆FD

0 + d[log(ce(p))−log(cu(p))]
dp

(E [P |U = 1]− E [P ])

1− κ (E [P |U = 1]− E [P |U = 0])− E [P ]σ d[log(ce(p))−log(cu(p))]
dp

Estimating this more general equation would require an estimate of d[log(cu(p))−log(ce(p))]
dp

, which in turn requires data
on the joint distribution of consumption and beliefs. Because I use belief data in the HRS and consumption data
in the PSID, it is difficult to estimate this unobserved heterogeneity, and so I consider the benchmark case where
d[log(cu(p))−log(ce(p))]

dp
= 0.
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Baseline Results Table V shows that the first difference estimate of the impact of unemployment

on consumption is ∆FD
0 = 7.23%. The second set of rows in Table V divide the first difference

estimate, ∆FD
0 , by 0.803. This suggests a 9% average causal effect of U on food expenditure. The

remaining rows translate the causal effect into a willingness to pay by following equation (9) for

common values of risk aversion (e.g. σ ranging from 1 to 3). For σ = 2, individuals would be

willing to pay a 20.4% markup for UI. Higher risk aversion (e.g. σ = 3) raises the willingness to

pay to 31.9%; if individuals are less risk averse (e.g. σ = 1), they would be willing to pay a 9.8%

markup for UI.

Robustness The baseline analysis in column (1) makes a couple of specification decisions whose

robustness are explored in Columns (2)-(6). Column (2) controls for changes in household size

and food needs, yielding a similar willingness to pay estimate. Column (3) explores the pattern

for those age 50 and under (analogous to Column (3) in Table IV for ∆FD
−1 ) and again finds a

similar coefficient to the baseline specification. Column (4) re-introduces observations with more

than a threefold change in food expenditure, which were dropped to align with the specification of

Gruber (1997). Re-introducing these observations increases the first difference estimate to 8.89%

(s.e. 1.23%).

The baseline definition of food expenditure sums monthly food spending in the house, out of the

house, and any spending that occurred through food stamps. While this follows Zeldes (1989); Gru-

ber (1997), there are two concerns with including food stamp expenditures. First, individuals may

have already included this spending in their report for in- and out-of-house expenditure (although

technically this would not be a correct response). Second, the wording of the food stamp question

elicits concurrent expenditure for the previous week, whereas the food expenditure measures elicit

a “typical” week. Since unemployment is co-incident with rises in food stamp use, this differential

recall window could lead to an under-stating of the impact of unemployment on food consumption.

To understand the potential impact of this, Column (5) expands the specification in Column (4)

to exclude food stamp expenditure from the food expenditure measure altogether. This yields a

larger expenditure drop of 18.2% (s.e. 1.71%), and provides arguably an upper bound on the size

of the causal effect of 22.7%. This would suggest individuals are willing to pay a 60.9% markup for

UI with a coefficient of relative risk aversion of 2.

Job Loss versus Unemployment The analysis in Columns (1)-(6) measure how food expendi-

ture varies with whether or not the individual is employed at the time of the survey. As discussed

in Section 2.2, one would ideally like to estimate the impact on consumption at the time of the job

loss regardless of whether the individual is unemployed at the time of the next survey. To explore
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this, Column (6) shows that food expenditure growth is 4.87% (s.e. 0.860%) lower relative to the

previous year if a job loss has occurred relative to the previous year. This is slightly lower than the

baseline estimate of 7.23% in Column (1). This is consistent with attenuation from mis-alignment

of the timing of job loss and consumption measurement. This suggests the baseline estimates re-

lying on the impact of unemployment provide a conservatively high estimate of the willingness to

pay for insurance against losing one’s job.

Heterogeneity Formally, equation (8) requires comparing the willingness to pay for all p to the

pooled price ratio. Therefore, it is also useful to understand not only the average willingness to

pay but also the heterogeneity in the potential willingness to pay across the population. How

much might some people be willing to pay for insurance? Estimating a maximum as opposed to an

average is generally more difficult. Here, the problem is compounded by the fact that consumption

expenditure is generally measured with error (Zeldes (1989); Meghir and Pistaferri (2011)). To

shed light on the potential heterogeneity in willingness to pay across the population, Appendix C.3

develops a measurement error model that uses symmetry assumptions to provide an upper bound

on the causal effect of unemployment on food expenditure, minp {log (cu (p))− ce (p)}, which can

be used to construct a maximum willingness to pay for UI. For brevity, the details of this approach

are provided in the Appendix.

Columns (7)-(8) present the results. For the baseline sample in Column (7), the results suggest

a maximum causal impact on food expenditure is 13.7%, or roughly twice as large as the mean

consumption drop. This rises to 14.6% on the broader sample that does not drop outliers with

greater than a threefold change in measured food expenditure. The lower rows in Table V scale

these estimates by various values of risk aversion. For a conservative estimate of 3, it suggests the

maximum markup individuals would be willing to pay is less than 52.6% on the baseline sample

and 56.6% in the broader sample including outliers. In short, the causal impact of job loss on

consumption combined with standard risk aversion parameters suggest that the markup individuals

would be willing to pay for UI generally lies below 60%.

5.2 Approach #2: Exploiting Ex-Ante Responses as Evidence of WTP

Inferring willingness to pay from the causal effect of job loss or unemployment on food expenditure

relies heavily on an assumption of state-independence of the utility function over food expendi-

ture.31 This assumption can lead to an over- or under-statement of the true willingness to pay. If
31This is often stated as two distinct assumptions: (1) state independence over consumption (u (c) = v (c) for all

c), and (2) food expenditure as a valid proxy for consumption. But, it should be clear that all that matters is how
well food expenditure and risk aversion are able to provide a proxy for the marginal utility of consumption.
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unemployed individuals have more time to spend searching for lower priced consumption goods or

have more time to cook at home instead of needing to eat at restaurants (as shown in Aguiar and

Hurst (2005)), then their marginal utility of additional food expenditure when employed, v′ (ce),

may be equal to the marginal utility of additional food expenditure in the event of job loss, u′ (cu),

even if ce > cu. In this case, the causal impact will overstate the willingness to pay for UI. Con-

versely, individuals may derive greater value from higher expenditure when unemployed. Or, the

unplanned loss of a job might raise the value of financial resources to help find a new job or cope

with other costs that arise. In this case, the size of the causal impact on food expenditure will

understate the willingness to pay for UI.

This section presents a new strategy for identifying the willingness to pay for UI that overcomes

these potential biases and allows for state dependence of the utility function. Instead of comparing

consumption across states of the world, the approach exploits the ex-ante behavioral response

(while currently employed) to learning one might lose their job in the future. The extent to which

individuals take actions in response to learning they might lose their job in the future to generate

or save financial resources helps reveal their willingness to pay for UI.

Exploiting Ex-Ante Consumption Responses To see how ex-ante consumption responses

can reveal willingness to pay for UI, recall the Euler equation (6):

v′ (cpre (p)) = pu′ (cu (p)) + (1− p) v′ (ce (p))

Individuals who learn today that they will lose their job in the next year will equate their marginal

utility of consumption today to the marginal utility of consumption when losing their job, v′ (cpre (1)) =

u′ (cu (1)). Conversely, those that learn today that they won’t lose their job in the next year will

have a current marginal utility of consumption equal to the marginal utility of consumption when

employed next year, v′ (cpre (0)) = v′ (ce (0)). So, if ce (p) and cu (p) do not systematically vary with

p, then v′ (cpre (0))− v′ (cpre (1)) = u′ (cu)− v′ (ce). Taking a Taylor approximation to v′ (cpre (p))

around c̄pre and dividing by v′ (c̄pre) yields
v′(cpre(0))−v′(cpre(1))

v′( ¯cpre)
≈ σ dlog(cpre(p))dp , where σ =

v′′(c̄pre)c̄pre
v′(c̄pre)

is the coefficient of relative risk aversion over consumption (within the employed state of the world)

and dlog(cpre(p))
dp is the ex-ante response of consumption to learning future job loss is more likely.

Therefore, the difference in marginal utilities, u′(cu)−v′(ce)
v′(ce)

, can be inferred from the size of the

response of consumption to an increase in the likelihood of job loss multiplied by the coefficient of

relative risk aversion within the state of being employed. Proposition 2 formalizes this result.

Proposition 2. Suppose (a) the Euler equation holds, (b) ce and cu do not vary systematically

with p, dcedp = 0 and dcu
dp = 0, and (c) the coefficient of relative risk aversion in the ex-ante employed
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state is constant, σ =
−v′′(cpre(p))
v′(cpre)

cpre (p). Then,

u′ (cu)− v′ (ce)
v′ (ce)

=
σ

κ
E

[
−dlog (cpre (p))

dp

]
(13)

where κ = E

[
1

1+p
u′(cu(p))−u′(ce(p))

u′(ce)

]
≈ 1 and E

[
−dlog(cpre(p))

dp

]
is the average relationship between

consumption today, cpre, and beliefs about future employment, p.

Proof. See Appendix C.4.

Proposition 2 shows that one can identify the markup individuals are willing to pay for UI by

scaling the impact of a change in beliefs about future unemployment on consumption today by the

coefficient of relative risk aversion over current consumption. Because the consumption response

is within the state of being employed, it allows for state dependence (i.e. u (c) 6= v (c)). But, the

ability to allow for state dependence does not come without additional assumptions. In particular,

one needs to assume that the levels of future consumption conditional on U to not be systematically

correlated with beliefs, p: dce
dp = dcu

dp = 0. This ensures that the response of cpre to an increase in

p is because of the different marginal utilities, u′ versus v′. This could be violated if individuals

who learn they might lose their job today also tend to have their wages reduced even if they don’t

end up losing their job. In this case, they would lower their consumption today in response to an

increase in p (because dce
dp < 0). But, this would not reflect the value of UI (that moving resources

from v′ (ce) to u′ (cu)) but rather a desire for more financial resources even if they remain employed.

To see how this would lead to an over-statement of the true demand for UI, note that if dce
dp 6= 0,

then differentiating the Euler equation yields

dcpre
dp

v′′ (cpre (p)) = u′ (cu (p))− v′ (ce (p)) + (1− p) v′′ (ce (p))
dce
dp

(14)

where the term (1− p) v′′ (ce (p)) dcedp reflects an additional reason to save in response to an increase

in p. In this case, the ex-ante method would over-state the value of UI. In this sense, it generates

a conservative estimate for comparing to the pooled price ratio in equation (8). I return to a

discussion of this potential bias in Section 5.3.

2-Sample Implementation To estimate how log (cpre (p)) varies with p in equation 13, I fol-

low a methodology similar to Section 5.1 but using ex-ante responses. I divide the amount food

expenditure changes between t− 2 and t− 1, ∆FD
−1 in equation (4), by the amount of information

revealed between t− 2 and t− 1. Mathematically,

dlog (cpre)

dp
≈

∆FD
−1

E [Pt,t−1 − Pt,t−2|Ut = 1]− E [Pt,t−1 − Pt,t−2|Ut = 0]
(15)
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where Pj,t is the beliefs in period t about job loss in period j. The denominator is the fraction of

information that individuals learn about Ut between year t− 2 and t− 1.32 Inflating ∆FD
−1 by the

fraction of information revealed over the time the first difference is estimated (t− 2 to t− 1) yields

an estimate of the impact of learning about future job loss on ex-ante food expenditure, cpre (p).

Table IV reported that food expenditure growth is ∆FD
−1 = 2.71% lower in the year prior to

the unemployment measurement. To estimate the denominator in equation 15, recall that the

average difference in beliefs one year prior to the job loss measure between those who do and do

not lose their job is E [Pt,t−1|Ut = 1]−E [Pt,t−1|Ut = 0] = 19.7% (Appendix Table I, Column (1)).

In this sense, 20% of the information about job loss in year t is already known in year t − 1.

So, one needs to know how much is known in year t − 2, E [Pt−2,t|Ut = 1] − E [Pt−2,t|Ut = 0]. To

obtain this, I regress the elicitation, Z, on an indicator for losing one’s job in the subsequent

12-24 months after the elicitation. The second row of Appendix Table I reports this value as

E [Pt−2,t|Ut = 1]−E [Pt−2,t|Ut = 0] = 9.4%.33 The difference of 10.3% is an estimate of the fraction

of information about job loss in year t is revealed between t− 2 and t− 1.

Dividing ∆FD
−1 by 0.103 yields an estimate of dlog(cpre)

dp = 0.29 for the baseline specification in

Column (1) of Table VI; alternative specifications yield similar estimates for dlog(cpre)
dp of around

20-30%. Scaling these by a coefficient of relative risk aversion of σ = 2 suggests individuals are

willing to pay around a 50-60% markup for unemployment insurance. For higher values of risk

aversion (σ = 3) this increases to 70-90%; for lower values (σ = 1) this decreases to 20-30%.

Exploiting Spousal Labor Supply Responses Not only does food expenditure respond to

learning about future job loss, but also spouses are more likely to enter the labor market. Analogous

to scaling food expenditure responses by a coefficient of relative risk aversion, one can also scale

the spousal labor supply responses by the semi-elasticity of spousal labor supply to arrive at an

alternative measure for the willingness to pay for UI. This alternative measurement has the added

benefit that it can be constructed for the HRS sample, which corresponds to the sample used to

measure the pooled price ratio, T (p), in Section 6. To do so, Appendix C.5 provides conditions

analogous to those in Proposition 1 that enable the willingness to pay for UI in equation 13 to be

written as

u′ (cu)− v′ (ce)
v′ (ce)

≈
E
[
dLFP
dp

]
εsemi

(16)

32This can also be written as E [Pt,t−1 − Pt,t−2|Ut = 1]− E [Pt,t−1 − Pt,t−2|Ut = 0] =
var(Pt,t−1)−var(Pt,t−2)

var(U)
.

33Online Appendix Figure I also reports the coefficients for future years of unemployment and obtains estimates of
E [Zt−j,t|Ut = 1] − E [Zt−j,t|Ut = 0] ranging from 0.1 to 0.05 at j = 8, which suggests most of the information in Z
is about unemployment in the subsequent year. This is consistent with a relatively flat consumption growth profile
for years prior to t− 2 as shown in Figure IV.

27



where E
[
dLFP
dp

]
is the average response of the female labor participation rate to an increase in

beliefs, p, and εsemi = dLFP
dlog(w) is the response of the female labor participation rate to a 1% increase

in wages. Comparing the response of labor supply to the size of the response to a wage increase

reveals individuals’ implicit valuation of UI. If spousal labor supply is very inelastic, then the

finding that many spouses enter the labor market in response to an increase in p suggests they have

a higher desire for additional financial resources in the event of losing their job.34

For the empirical analysis, I use a baseline value of εsemi = 0.5, following Kleven et al. (2009). I

also consider a range of estimates between 0.33 and 1, loosely consistent with the range of estimates

found in Blundell et al. (2016).

The first row of Table VII reports the coefficients, β = dLFP
dZ , from equation (3) of around

0.025 that were presented in Table III. Because the elicitations, Z, are noisy measures of true

beliefs, P , this slope is likely an attenuated measure of the relationship between true beliefs and

spousal labor entry, dLFPdp . To correct for this, I make a couple of assumptions on the distribution

of measurement error and beliefs. In particular, I assume that (i) the noise in the elicitations is

classical (i.e. Z−P is uncorrelated with P ), and (ii) that true beliefs are unbiased (Pr {U |P} = P ).

The classical measurement error assumption implies that the attenuation will be equal to the

ratio of total variance to signal variance, var(Z|X)
var(P |X) . The unbiasedness of true beliefs implies that

cov (Z,U |X) = cov (P,U |X) = var (P |X). Therefore, the true relationship between beliefs and

LFP is given by multiplying the coefficient β in equation (3) by the ratio of total to signal variance
var(Z|X)
var(P |X) = var(Z|X)

cov(Z,U |X) ,
dLFP

dp
=

var (Z|X)

cov (Z,U |X)
β (17)

I estimate var (Z|X) as the mean square error of a regression of Z on X. I estimate the covariance

between Z and U as the covariance between residuals of regressions of Z on X and U on X.35 This

yields an estimate of var(Z|X)
cov(Z,U |X) ≈ 12, as reported in the second set of rows in Table VII.

Multiplying β = 0.025 by this factor of 12 yields an estimate of dLFP
dp of around 0.3. This

suggests that a 10pp increase in the true beliefs, p, will increase LFP by 3pp. Scaling by the semi-
34In addition to using spousal labor supply for the ex-ante method for valuing UI, one could also implement

equation (16) using the contemporaneous impact of job loss on spousal labor supply, analogous to the approach in
Section 5.1. Here, Stephens (2002) finds evidence that spouses increase their labor supply prior to the onset of job
loss, but also finds that the impact of job loss in year t on spousal labor supply in year t is considerably more muted
relative to the sharp drop in consumption that is observed at the onset of job loss or unemployment. There are
two potential interpretations: on the one hand, it could be the case that the willingness to pay is not that high and
the large consumption drop upon unemployment reflects state-dependent utility. In this case, the willingness to pay
estimates that compare consumption between employed and unemployed will over-state the true willingness to pay.
On the other hand, the onset of the job loss could reflect a particularly strong correlated shock to the spouse’s job
opportunities. In this case, the lack of a spousal labor supply response could indicate the lack of work opportunities
as opposed to the lack of desire for additional income.

35I adjust for the degrees of freedom used to estimate the coefficients on X in those regressions.
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elasticity of labor supply, εsemi, of 0.5, suggests that individuals would be willing to pay roughly

a 60% markup for UI. As shown in Table VII, if labor supply is more elastic (e.g. εsemi = 1), it

suggests a willingness to pay of around 30%; if labor supply is less elastic (e.g. εsemi = 0.33), it

suggests a willingness to pay of around 90%.

5.3 Discussion

The valuations exploiting ex-ante responses are generally higher than the ex-post methods. This

could be for several reasons. On the one hand, there could be a violation of state independence

of the utility function (u 6= v) so that individuals have a higher desire for income after job loss

than is suggested by their drop in consumption. In this case, the ex-ante methods provide a more

accurate measure of the value of UI. On the other hand, individuals that learn they might lose

their job might also learn that they have lower earnings prospects even if they do not lose their job.

This would suggest consumption in the employed state, ce, declines in response to an increase in p,

which would violate Assumption (iii) in Proposition 2. In this case, one would expect the ex-ante

methods to overstate the willingness to pay for UI. For the purposes of understanding whether a

private market can exist, this potential upward bias in the willingness to pay for UI only makes it

more difficult for private information to explain the absence of a private market.

Going forward, the next section will compare both sets of estimates to the pooled price ratio to

understand whether this willingness to pay is high enough so that individuals would be willing to

pay the pooled cost of worse risks to obtain insurance.

6 Implications for the Pooled Price Ratio

How much of a markup must individuals be willing to pay to cover the pooled cost of worse risks

adversely selecting their insurance contract? This section builds on Hendren (2013) by providing

two approaches for measuring the pooled price ratio, T (p).

Ideally, one would construct T (p) using the distribution of true beliefs, P , to compute E [P |P ≥ p]

for each p and form T (p) = E[P |P≥p]
1−E[P |P≥p]

1−p
p for each p. Then, one could compare the willingness to

pay to the pooled price ratio for each p, as suggested by equation (8). In particular, if insurers know

the distribution of P , they would be able to set prices to select an insurance pool that generates

the smallest value of T (p), inf T (p). To that aim, Section 6.2 will provide a point estimate of the

minimum pooled price ratio using a set of semi-parametric assumptions.

Before imposing the semi-parametric assumptions, Section 6.1 will provide a lower bound on

the average pooled price ratio, E [T (P )], that relies on weaker assumptions. While the minimum

pooled price ratio is the relevant statistic if insurers know the distribution of P , Appendix B.1
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shows that the average pooled price ratio provides information about the frictions from adverse

selection if insurers do not know the distribution of P . In particular, if insurers enter the market

by setting prices in a random fashion (that does not target the type p with the lowest pooled price

ratio) then Appendix B.1 shows that E [T (P )] (as opposed to inf T (p)) will characterize whether

firms can profitably sell insurance. In this sense, the non-parametric lower bounds on E [T (P )] and

semi-parametric point estimates for inf T (p) will provide complementary evidence on the frictions

that would be imposed by private information.

6.1 Non-parametric Lower Bounds for the Average Pooled Price Ratio, E [T (P )]

I begin by using the predictive power of the elicitations to form lower bounds on the average pooled

price ratio, E [T (P )]. Let PZ denote the predicted values from a regression of U on the elicitations,

Z, controlling for X,

PZ = Pr {U |X,Z}

Hendren (2013) shows that the distribution of PZ is related to the true distribution of beliefs, P ,

under two assumptions: (a) the elicitations contain no more information about U than does P :

Pr {U |X,Z, P} = Pr {U |X,P} and (b) true beliefs are unbiased Pr {U |X,P} = P . Assumption

(a) is a natural assumption to place on the elicitations, as it is difficult to imagine how someone

could report more information than what is contained in their true beliefs. Assumption (b) is more

restrictive, as individuals may have biased beliefs. I return to a discussion of the impact of biased

beliefs in Section 7. Under Assumptions (a) and (b), the true beliefs are a mean-preserving spread

of the distribution of predicted values:

E [P |X,Z] = PZ

To construct PZ , I run a probit of U on X and a 3rd order polynomial in Z along with indicators

for Z = 1, Z = 0.5, and Z = 0. The predicted values yield PZ . I repeat this probit omitting the Z

variables to form Pr {U |X}. Figure V then illustrates the predictive content of the elicitations by

plotting the cumulative distribution of PZ − Pr {U |X}. The figure reveals how the information in

the elicitations, Z, generate a significant amount of dispersion in the distribution of PZ . The logic

of how a private market may unravel can be seen in Figure V: would any individual with risk p be

willing to pay the pooled cost of those with higher odds of losing their job? The thick upper tail

of the distribution suggests insurers would face difficulty from those higher risks aversely selecting

an insurance contract.

To quantify these frictions, ideally one would measure the pooled price ratio using the distri-

bution of true beliefs, P , not the predicted values, PZ . However, it turns out one can use the
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distribution of PZ to construct a lower bound on the average pooled price ratio, E [T (P )]. For

each p, let m (p) = E [PZ − p|PZ ≥ p] denote the average extent to which the predicted values, PZ ,

lie above p. Next, normalize this by the probability of job loss in the population, Pr {U},

TZ (p) = 1 +
m (p)

Pr {U}

Drawing p from the distribution of predicted values, PZ , Appendix B.1 shows that E [TZ (PZ)]

forms a lower bound on the average pooled price ratio36:

E [TZ (PZ)] ≤ E [T (P )] (18)

Equation (18) shows that the predictive content of the elicitations for U form a non-parametric

lower bound for the average pooled price ratio. This lower bound, E [TZ (PZ)], only requires that

the elicitations contain no more information than the true beliefs (Assumption (a)) and that true

beliefs are unbiased (Assumption (b)). To emphasize the weak nature of these assumptions, note

that they do not require Z to be a number, nor are they affected by any one-to-one transformation

of Z. All that matters for generating the lower bounds is how well Z predicts U , conditional on X.

Results For the baseline demographic and job characteristics controls, the average markup im-

posed by the presence of worse risks is at least 77% (s.e. 5.2%), suggesting E [T (P )] ≥ 1.77.37 The

top row of Table VIII presents these results and shows that adding health controls or dropping the

job characteristic controls do not meaningfully change the estimates (72% and 80% in Columns

(2) and (3)). To further illustrate how the controls affect the results, Figure VI, Panel A, plots

estimates of E [TZ (PZ)] − 1 on the vertical axis against the pseudo-R squared of the model for

Pr {U |X,Z} for specifications with different controls, X. Additional job characteristics help pre-

dict job loss, but they do not reduce the average pooled price ratio. This is because the magnitude

of E[PZ − p|PZ ≥ p] depends on the thickness of the upper tail of the distribution of predicted
36This lower bound builds upon but is distinct from the results in Hendren (2013). Hendren (2013) shows that

E [m (PZ)] ≤ E [m (P )] but does not provide a lower bound on E [T (P )].
37As in Hendren (2013), the construction of E [TZ (PZ)] and E [mZ (PZ)] is all performed by conditioning on X.

To partial out the predictive content in the observable characteristics, I first construct the distribution of residuals,
PZ−Pr {U |X}. I then constructmZ (p) = E [PZ − p|PZ ≥ p] for each value ofX as the average value of PZ−Pr {U |X}
above p+ Pr {U |X} for those with observable characteristics X. In principle, one could estimate this separately for
each X; but this would require observing a rich set of observations with different values of Z for that given X. In
practice, I follow Hendren (2013) and specify a partition of the space of observables, ζj , for which I assume the
distribution of PZ − Pr {U |X} is the same for all X ∈ ζj . This allows the mean of PZ to vary richly with X, but
allows a more precise estimate of the shape by aggregating across values of X ∈ ζj . In principle, one could choose
the finest partition, ζj = {Xj} for all possible values of X = Xj . However, there is insufficient statistical power to
identify the entire distribution of PZ at each specific value of X. For the baseline specification, I use an aggregation
partition of 5 year age bins by gender. Appendix Table III (Columns (3)-(5)) documents the robustness of the results
to alternative aggregation partitions.
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values. This upper tail (shown in Figure V) is not removed by changing the set of controls, X.38

Indeed,eEven if an insurer could (unrealistically) use individual fixed effects to price insurance,

individuals would still on average have to be willing to pay at least a 40% markup to cover the

pooled cost of worse risks, as shown in Column (4) of Table VIII.

The remaining columns of Table VIII and panels of Figure VI explore how the estimated

markups vary across subsamples. This yields estimates of E [TZ (PZ)] − 1 in excess of 50% across

occupations (Figure VI, Panel B), ages (Panel C), and years (Panel D). Adverse selection would

impose significant barriers to a private market across a wide range of subsamples of the population.

A common strategy insurers use to mitigate adverse selection is to impose waiting periods on

the use of the insurance policy. To explore whether this help reduce the adverse selection problem,

Figure VI (Panel E) presents results for a specification that replaces the baseline definition of U with

an indicator for losing one’s job in the 6-12 months after the elicitation; this simulates a requirement

of a 6-month waiting period.39 This generates a smaller but still significant lower bound of 57.9%

(p < 0.001). The estimates also remain high for other potential timelines and definitions of U ,

such as 0-24 and 6-24 month payout windows, and a requirement that an individual also files for

government UI.40 Waiting periods and alternative contract lengths would not remove the threat of

adverse selection.

Another potential UI policy would pay benefits proportional to the amount of time the individual

spends unemployed. Although duration is not perfectly observed in the HRS, a potential proxy for

unemployment duration and severity is whether individuals are unemployed and looking for work

in the next survey wave (24 months later). Figure VI (Panel E) shows that this contract would

also suffer significant adverse selection, with the lower bound on the average pooled price ratio

above 40%. Requiring individuals to also file for government UI would also not remove the barriers

imposed by private information.

Another underwriting strategy that is common in health-related insurance markets is to only

sell insurance only to observably low risks. For example, health-related insurance markets generally

exclude those with pre-existing conditions (Hendren (2013)). One potentially analogous strategy

in UI would be to sell only to those with long job tenures and steady work histories. Figure VI
38Appendix Table III explores robustness to various specifications, including linear versus probit error structures,

alternative aggregation windows for constructing E [mZ (PZ)], and alternative polynomials for Z. All estimates are
quite similar to the baseline and yield lower bounds of E [TZ (PZ)]− 1 of around 70%.

39The lower bound result in equation (18) does not require that Z be an elicitation that perfectly corresponds to
an event, U . Therefore the lower bound remains valid even when Z is elicited about future job loss in the next 12
months but U is defined as an indicator of job loss in the 6-12 months after the survey.

40This calculation also assumes individuals are unable to re-time their job loss. If individuals can costlessly re-time
their job loss, this would impose an added cost on the insurer. See Cabral (2013) for an example of this behavior in
dental insurance.
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(Panel F) presents the lower bound estimates on these subsamples. In contrast to the idea that

restricting to low risks would help open up an insurance market, if anything the opposite is true:

lower risk populations have higher values of E [TZ (PZ)] − 1. For those with greater than 5 years

of job tenure, I estimate a lower bound of 110%. It is true that this population is much less likely

to lose their job (less than 2% lose their job in the subsequent 12 months). But, there is still a

presence of some privately-known higher risks who impose an especially high cost on the pooled

price ratio faced by most of this population.

Overall, the results suggest that common underwriting strategies like imposing waiting periods

and restricting insurance to observably low risks will not mitigate the adverse selection problem in

a private UI market. Moreover, the size of these lower bounds is generally similar to or larger than

the willingness to pay estimates in Section 5.

6.2 Semi-parametric Point Estimates of inf T (p)

Moving from lower bounds on E [T (P )] to a point estimate of the minimum pooled price ratio,

inf T (p), requires an estimate of the distribution of beliefs, P . To obtain this, I follow Hendren

(2013) by making additional assumptions about the distribution of measurement error in the elici-

tations. Note that the observed density (p.d.f./p.m.f.) of Z and U can be written as41

fZ,U |X (Z,U |X) =

∫ 1

0
pU (1− p)1−U fZ|P,X (Z|P = p,X) fP (p|X) dp (19)

where fZ|P,X is the distribution of elicitations given true beliefs (i.e. elicitation error) and fP is the

distribution of true beliefs in the population. The goal is to use the observed joint distribution of

the elicitations and the event conditional on X, fZ,U |X , to estimate the true distribution of beliefs,

fP . This can then be used to construct T (p) at each p.

Without additional assumptions, fP is not identified from fZ,U |X in equation (19) because the

dimensionality of fZ|P,X is too high. Placing parametric structure on the distribution of elicitations

given beliefs, fZ|P,X , reduces its dimensionality and allows one to identify the distribution of beliefs,

fP (p|X), from fZ,U |X . To parameterize fZ|P,X , I follow Hendren (2013) and assume elicitations are

equal to beliefs plus a noise term, Z = P + ε, where ε is drawn from a mixture of a censored normal

and ordered probit distribution, where the ordered probit captures the excess mass at focal point

values of 0, 50, and 100. Because the mechanics of using this approach follow closely to Hendren

(2013), I relegate further estimation details to Appendix B.2.
41This is obtained by first taking the conditional expectation with respect to p and then using the assumption that

Pr {U |Z,X, P} = P .
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Results The baseline specification yields an estimate of inf T (p)−1 of 3.36 (s.e. 0.203), as shown

in the second set of rows of Table VIII. Including health controls reduces this markup slightly

to 323% (s.e. 26.8%), and using only demographic controls increases the markup to 530% (s.e.

65.5%).42 The high minimum pooled price ratios are robust across subsamples, as illustrated in

Columns (4)-(9) of Table VIII. For example, those with longer job tenure have values of inf T (p)−1

of 474%. The minimum pooled price ratio is similar across age groups (333% for ages at or below

55 and 344% for ages above 55); and it is slightly higher for below-median wage earners (436%)

than above-median wage earners (316%).

Overall, the point estimates estimates far exceed the estimated markups individuals are willing

to pay for UI documented in Section 5. Moreover, even the lower bounds in Section 6.1 generally lie

at or above the willingness to pay estimates in Section 5. In short, the results suggest that private

information provides an explanation for the absence of a private UI market. If insurers were to try

to sell UI, policies would be too heavily adversely selected to deliver a positive profit at any price.

7 Discussion

The analysis above suggests private information provides an explanation for the absence of a UI

market. Here, I discuss extensions of the model and alternative theories of market non-existence.

Government UI The government is a major provider of UI in the U.S. The baseline analysis

above considers the hypothetical market for a additional UI on top of existing sources of formal and

informal insurance, including government UI. The results suggest that this market for additional

insurance would unravel because of adverse selection. However, one could also ask an alternative

question: If the government were to lower UI benefits would a private market arise? Answering

this question requires comparing the willingness to pay for UI to the pooled price ratio, where both

are estimated in the counterfactual world with less provision of government UI.

Using cross-state variation in UI generosity, Gruber (1997) estimates how the consumption

impact of unemployment varies with the level of government benefits. Extrapolating his estimates

out of sample to a world with no UI, they suggest the willingness to pay could increase by a factor

of 3 (Gruber (1997), Table I, p196). This would continue to yield willingness to pay estimates

that are smaller than the estimated 300% markups individuals would need to be willing to pay to

overcome adverse selection. Assuming the removal of government UI does not significantly affect
42Appendix Table IV presents the raw point estimates for αi and ξi. It suggests there is a small (e.g. 10%)

sub-sample of the population that has a very high chance of losing their job. The presence of this upper tail drives
these high estimated markups.
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the distribution of P and estimates of the pooled price ratio, this suggests a private market would

not arise even in the absence of government provision of UI.

Moral Hazard and Fixed Costs Moral hazard is another common explanation for market non-

existence. As noted in Section 4, moral hazard alone cannot make it unprofitable to sell insurance.

Although behavior may change when individuals obtain insurance, the behavioral response to a

small amount of insurance will be small; and the impact of the small response on the cost of a small

insurance policy is second-order – analogous to the logic that the deadweight loss of a tax varies

with the square of the tax rate. However, moral hazard can limit the gains to trade. Combined

with fixed costs of providing insurance, it could provide a rationale for the absence of a private

market. But, the results above show that even if firms could costlessly offer insurance policies,

private information would render the market unprofitable.43 In this sense, the presence of private

information provides a singular explanation for the absence of a UI market.

Government Regulation Another theory of market non-existence is overly burdensome gov-

ernment regulation. For example, Cochrane (1995) suggests that this is a reason one does not

see markets for “reclassification risk” in health insurance markets.44 Translating this idea to UI,

perhaps individuals are willing to pay for UI, but the reason such demand is not satisfied is because

the government prevents it from existing. Here, the empirical results in Section 5 and 6.2 suggest

that because of adverse selection, firms have no ability to profitably enter the market even absent

regulatory hurdles. Regulatory constraints could impose additional costs on insurers, but they are

not needed to explain the absence of an insurance market.

Aggregate Risk The baseline model in Section 4 assumes that the insurer is risk neutral or

has access to risk-neutral (re)insurance markets. If there is aggregate risk, the cost to the insurer

of transferring dollars from employed to unemployed states for a type p may be higher than the

risk-neutral cost of p
1−p because of a higher marginal cost of capital in states where people are

unemployed. In the limit where unemployment is perfectly correlated across individuals and all

individuals have the same willingness to pay for UI, there may be no scope for a profitable insurance

market.

However, the risk of losing one’s job is not purely an aggregate shock. The world does not

oscillate between full unemployment and full employment. To be sure, unemployment and job
43It is straightforward to show that in a world with fixed costs of selling insurance contracts, the no trade condition

is sufficient but not necessary for the absence of a private market.
44This theory is made suggestively, and the paper does not provide direct evidence of an impact of government

regulation.
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separation rates vary across years; but the R-squared of a regression of job loss on year dummies

yields an R-squared of 0.0019. As long as the risk of job loss has an idiosyncratic component, there

will be first order gains to risk pooling and an insurance company should be able to profitably sell

UI. If insurers did not want to absorb any aggregate risk, they could in principle condition their

insurance contract on the aggregate unemployment rate and fully insure the residual 99.81% of job

loss risk that is not collinear with the aggregate risk. Doing so would shield the insurance company

from aggregate risk. Because my baseline analysis includes time dummies in all regressions, my

results suggest that this market for insuring the idiosyncratic component of the risk would be too

heavily adversely selected to deliver a positive profit.45 In this sense, aggregate risk does not readily

provide an explanation for the absence of a UI market.

Biased beliefs The baseline model above assumes individuals have accurate beliefs. This is at

odds with literature suggesting individuals may have biased beliefs about their unemployment and

job prospects (e.g. Stephens (2004); Spinnewijn (2015)).

To extend the model in Section 4 to include biased beliefs, suppose p is the objective belief for

a given individual. But, following Kahneman and Tversky (1979), let q (p) denote the re-weighted

probability function that governs their decisions over financial assets. It is straightforward to show

that the no trade condition becomes:

β (p)
u′ (cu (p))

v′ (ce (p))
≤ T (p) ∀p (20)

where β (p) = p
q

1−q
1−p is the distortion in individuals’ marginal rate of substitution arising from

biases in beliefs (as opposed to differential marginal utilities of income, u
′

v′ ). Biased beliefs generate

a second reason individuals would be willing to pay for UI: they may over (or under) state the

likelihood of job loss, β (p).

One can use the estimates above to ask how biased beliefs must be to overcome the frictions

imposed by private information. With a baseline minimum pooled price ratio of T (p) = 1 + 3.3 =

430% and markup individuals are willing to pay less than 75%, a market would not be profitable

unless individuals believe that job loss is 5.7-times more likely to occur than in reality (430/75=5.7).

Generating a profitable insurance market would require a very large degree of bias to sufficiently

inflate demand to overcome the hurdles that would be imposed by adverse selection.
45The fact that the vast majority of unemployment risk is idiosyncratic perhaps also explains why there is not a

large private market for households to insure against fluctuations in the aggregate unemployment rate.
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8 Conclusion

This paper argues that private information prevents the existence of a robust private market for

unemployment or job loss insurance. If insurers were to attempt to sell such policies, the empirical

results suggest that they would be too heavily adversely selected to deliver a positive profit at

any price. Figure VII compares the estimates of the minimum pooled price ratio to estimates

from health-related insurance markets studied in Hendren (2013). In long-term care insurance,

life insurance, and disability insurance, Hendren (2013) finds no statistically significant amounts of

private information for those with observable characteristics that allow them to purchase insurance.

However, for individuals with pre-existing conditions that would cause them to be rejected by an

insurance company, the estimated markups are 42% for life, 66% for disability, and 83% for long-

term care. Combining these patterns with those identified in this paper for UI, the results suggest

that the frictions imposed by private information form a boundary to the existence of insurance

markets.

While this paper addresses the positive question of why a third-party insurance market for

UI does not exist, the paper has not explored the normative implications. In particular, the

presence of ex-ante knowledge of future job loss suggests individuals may have demand not only

for insurance against losing their job in the future; but also demand for insurance against learning

today that they might lose their job in the future. Additionally, it is quite plausible that much

of the “private” information documented in the present paper is jointly known to the firm and

worker. If this is the case, then one might ask why firms don’t provide additional UI or severance46

and whether additional government UI introduces externalities on the firm’s contracting decisions.

The normative implications of the patterns documented in this paper for optimal UI design are an

interesting direction for future work.
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FIGURE I: Histogram of Subjective Probability Elicitations
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Notes: This figure presents a histogram of responses to the question “What is the percent chance (0-100) that you will lose
your job in the next 12 months?”. The figure reports the histogram of responses for the baseline sample (corresponding to
Column (1) in Table 1)). As noted in previous literature, responses tend to concentrate on focal point values, especially Z = 0.



FIGURE II: Predictive Content of Subjective Probability Elicitations: Binned Scatterplot of U
versus Z, conditional on X
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Notes: This figure reports mean unemployment rate in each elicitation category controlling for demographics, job characteris-
tics, and year controls. To construct this figure, I run the regression in Equation (1). The figure plots the coefficients on bins of
the elicitations. I omit the lowest bin (corresponding to Z = 0) and add back the mean job loss of 1.9% to all coefficients. The
5 / 95% confidence intervals are constructed using the standard errors of the regression coefficients, clustering by household.



FIGURE III: Relationship between Potential Job Loss and Spousal Labor Supply
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Notes: The figure present coefficients from a regression of an indicator for a spouse entering the labor force, defined as
an indicator for not working in the previous wave and working in the current wave, on category indicators for the subjective
probability elicitations, Z, controlling for demographics, job characteristics, and year controls. Figure reports 5/95% confidence
intervals for each category indicator which are computed by clustering standard errors by household.



FIGURE IV: Impact of Unemployment on Consumption Growth
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Notes: These figures present coefficients from separate regressions of leads and lags of the log change in food expenditure
on an indicator of unemployment, along with controls for year indicators and a cubic in age. Data is from the PSID with
one observation per household per year. Unemployment is defined as an indicator for the household head being unemployed.
Following Gruber (1997) and Chetty et al. (2005), food expenditure is the sum of food in the home, food outside the home,
and food stamps. The horizontal axis presents the years of the lead/lag for the consumption expenditure growth measurement
(i.e. 0 corresponds to consumption growth in the year of the unemployment measurement relative to the year prior to the
unemployment measurement). The sample is restricted to household heads who are employed in t− 1 or t− 2 .



FIGURE V: Cumulative Distribution of Pr {U |Z, X} − Pr {U |X}
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Notes: This figure presents the cumulative distribution of Pr {U |X, Z} − Pr {U |X}. To construct Pr {U |X, Z}, I use the
baseline sample in the HRS and regress job loss in the next 12 months, U , on both the observable characteristics (year dummies,
demographics, and job characteristics) and the elicitations (a cubic in Z combined with indicators for Z = 0, Z = 0.5, Z = 1
to capture focal point responses). I use a probit specification and construct the predicted values to form an estimate of
Pr {U |X, Z} for each observation in the baseline sample. For Pr {U |X}, I repeat this process but exclude the elicitation
variables. These predicted values provide an estimate of Pr {U |X}. I then construct the difference, Pr {U |X, Z} − Pr {U |X}
for each observation, and plot its cumulative distribution.



FIGURE VI: Lower Bounds for Average Pooled Price Ratio, E [T (P )]− 1
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B. By Occupation
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C. By Age
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D. By Year
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E. Alternative U Definitions
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F. Low Risk Sub-samples
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Notes: These figures present estimates of the lower bounds on the average pooled price ratio, E [TZ (PZ)], using a range of sub-
samples and controls. Panel A reports estimates of E [TZ (PZ)] for a range of control variables, including a specification with
individual fixed effects. All specifications use a probit link specification for Pr {U |X, Z} except for the fixed effects specification
in Panel A, which uses a linear specification because of the presence of fixed effects. The horizontal axis presents the Psuedo-R2

of the specification for Pr {U |X, Z}. Panel B constructs separate estimates by occupation. Panel C constructs estimates by
age group. Panel D constructs separate estimates for each wave of the survey. Panel E reports specifications for alternative
definitions of U . These include whether the individual loses her job in the subsequent 6-12 months, 6-24 months, or 0-24
months (instead of 0-12 months). Panel F restricts the sample to varying sub-samples, analyzing the relationship between
E [TZ (PZ)] and restrictions to lower-risk subsamples. The horizontal axis in Panels B-F report the mean unemployment
probability, Pr {U}, for each sub-sample.



FIGURE VII: Comparison of inf T (p)− 1 to Other (Non-)Existing Insurance Markets
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Notes: Hendren (2013) argues private information prevents people with pre-existing conditions from purchasing insurance in
LTC, Life, and Disability insurance markets. This figure compares the estimates of inf T (p)− 1 for the baseline specification
in the unemployment context to the estimates in Hendren (2013) for the sample of individuals who are unable to purchase
insurance due to a pre-existing condition (blue circles) and those whose observables would allow them to purchase insurance in
each market (red hollow circles). Figure reports the confidence interval and the 5 / 95% confidence interval for each estimate
in each sample. For the sub-samples in LTC, Life, and Disability for which the market exists, one cannot reject the null
hypothesis of no private information, inf T (p) = 0. In contrast, sub-samples whose observables would prevent them from
purchasing insurance tend to involve larger estimates of the minimum pooled price ratio, which suggests the frictions imposed
by private information form the boundary of the existence of insurance markets.



ONLINE APPENDIX: Not For Publication

A No Trade Condition
This section provides a more formal exposition of the no trade condition in Section 4. To provide a general treatment,
I begin by relaxing the condition of uni-dimensional heterogeneity in the population. Individuals are indexed by a
heterogeneity parameter, θ, and make choices {cpre (θ) , cu (θ) , ce (θ) , a (θ) , p (θ)} ∈ Ωθ , where the constraint set
varies arbitrarily across types.

Consider a policy that provides a small payment, db, in the event of losing one’s job that is financed with a small
payment in the event of remaining employed, dτ , offered to those with observable characteristics X. By the envelope
theorem, the utility impact to type θ of buying such a policy will be given by

dU = − (1− p (θ)) v′ (ce (θ)) dτ + p (θ)u′ (cu (θ)) db

which will be positive if and only if
p (θ)u′ (cu (θ))

(1− p (θ)) v′ (ce (θ))
≥ dτ

db
(21)

The LHS of equation (21) is a type θ’s willingness to pay (i.e. marginal rate of substitution) to move resources from
the event of remaining employed to the event of job loss.47 The RHS of equation (21), dτ

db
, is the cost per dollar of

benefits of the insurance policy.
Let Θ̄

(
dτ
db

)
denote the set of all individuals, θ, who prefer to purchase the additional insurance at price dτ

db
(i.e.

those satisfying equation (21)). An insurer’s profit from a type θ is given by (1− p (θ)) τ−p (θ) b. Hence, the insurer’s
marginal profit from trying to sell a policy with price dτ

db
is given by

dΠ = E

[
1− p (θ) |θ ∈ Θ̄

(
dτ

db

)]
dτ︸ ︷︷ ︸

Premiums Collected

−E
[
p (θ) |θ ∈ Θ̄

(
dτ

db

)]
db︸ ︷︷ ︸

Benefits Paid

−
(
dE

[
p (θ) |θ ∈ Θ̄

(
dτ

db

)])
(τ + b)︸ ︷︷ ︸

Moral Hazard

The first term is the amount of premiums collected, the second term is the benefits paid out, and the third term is
the impact of additional insurance on its cost. If more insurance increases the probability of job loss, dE [p (θ)] > 0,
then it reduces premiums collected, τ , and increases benefits paid, b.48

However, for the first dollar of insurance when τ = b = 0, the moral hazard cost to the insurer is zero. This insight,
initially noted by Shavell (1979), suggests moral hazard does not affect whether insurers’ first dollar of insurance is
profitable – a result akin to the logic that deadweight loss varies with the square of the tax rate.

The first dollar of insurance will be profitable if and only if

dτ

db
≥

E
[
p (θ) |θ ∈ Θ̄

(
dτ
db

)]
E
[
1− p (θ) |θ ∈ Θ̄

(
dτ
db

)] (22)

If inequality (22) does not hold for any possible price, dτ
db
, then providing private insurance will not be profitable at

any price. Under the natural assumption49 that profits are concave in b and τ , the inability to profitably sell a small
amount of insurance also rules out the inability to sell larger insurance contracts.

Equation (22) characterizes no trade under an arbitrary dimensionality of unobserved heterogeneity, θ. To provide
a clearer expression of how demand relates to underlying fundamentals, such as marginal rates of substitution and
beliefs, it is helpful to impose a dimensionality reduction on the unobserved heterogeneity.
Assumption A1. (Uni-dimensional Heterogeneity) Assume the mapping θ → p (θ) is 1-1 and continuously
differentiable in b and τ in an open ball around b = τ = 0. Moreover, the marginal rate of substitution, p

1−p
u′(cu(p))
v′(ce(p))

,
is increasing in p.

Assumption A1 states that the underlying heterogeneity can be summarized by ones’ belief, p (θ). In this case,
the adverse selection will take a particular threshold form: the set of people who would be attracted to a contract
for which type p (θ) is indifferent will be the set of higher risks whose probabilities exceed p (θ). Let P denote the

47Note that, because of the envelope theorem, the individual’s valuation of this small insurance policy is independent
of any behavioral response. While these behavioral responses may impose externalities on the insurer or government,
they do not affect the individuals’ willingness to pay.

48To incorporate observable characteristics, one should think of the expectations as drawing from the distribution
of θ conditional on a particular observable characteristic, X.

49See Appendix A.3 for a micro-foundation of this assumption.
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random variable corresponding to the distribution of probabilities chosen in the population in the status quo world
without a private unemployment insurance market, b = τ = 0.50 And, let cu (p) and ce (p) denote the consumption
of types p (θ) in the unemployed and employed states of the world. Under Assumption A1, equation (22) can be
re-written as:

u′ (cu (p))

v′ (ce (p))
≤ T (p) ∀p (23)

where T (p) is the pooled price ratio defined in Hendren (2013):

T (p) =
E [P |P ≥ p]

E [1− P |P ≥ p]
1− p
p

The market can exist only if there exists someone who is willing to pay the markup imposed by the presence of higher
risk types adversely selecting her contract. Here, u

′(cu(p))
v′(ce(p))

− 1 is the markup individual p would be willing to pay and
T (p)− 1 is the markup that would be imposed by the presence of risks P ≥ p adversely selecting the contract. This
suggests the pooled price ratio, T (p), is the fundamental empirical magnitude desired for understanding the frictions
imposed by private information.

The remainder of this Appendix further discusses the generality of the no trade condition. A.1 discusses multi-
dimensional heterogeneity. Appendix A.2 also discusses the ability of the firm to potentially offer menus of insurance
contracts instead of a single contract to screen workers. Appendix A.3 illustrates that while in principle the no trade
condition does not rule out non-marginal insurance contracts (i.e. b and τ > 0), in general a monopolist firm’s profits
will be concave in the size of the contract; hence the no trade condition also rules out larger contracts.

A.1 Multi-Dimensional Heterogeneity and Robustness to Outlier Willingness
to Pay

In reality, there are many reasons beyond one’s chance of job loss that drive differences in willingness to pay. To
understand the impact of multidimensional heterogeneity, this section solves for the no-trade condition in the case
where there is an (unbounded) distribution of u

′(cu(θ))
v′(ce(θ))

among the set of those with the same risk type, p (θ). In this
case, there is heterogeneous willingness to pay for additional UI for different types θ with the same p (θ).

I show that there exists a mapping, f (p) : A → Θ , that maps A ⊂ [0, 1] into the interior of the type space, Θ,
such that the no trade condition reduces to testing

u′ (cu (f (p)))

u′ (ce (f (p)))
≤ T (p) ∀p (24)

In this sense, even though some types are willing to pay an unboundedly high amount for UI, their extreme willingness
to pay does not directly affect the no trade condition. Rather, one needs to search through an interior subset of the
type space. Hence, if there are sufficiently many people of risk type p with very high willingness to pay, then one
would expect the type f (p) to be willing to pay the pooled cost of worse risks, so that equation (24) will not hold.
But, the results illustrate that a simple addition of individuals with outlier willingness to pay for UI will not open
up a market unless there are sufficiently many other types with the similar risk type that are also willing to pay the
pooled cost of worse risks.

I prove this result as follows. First, I assume for simplicity that the distribution of p (θ) has full support on [0, 1]

and the distribution of u
′(cu(θ))
v′(ce(θ))

has full support on [0,∞) (this is not essential, but significantly shortens the proof
– note this allows for some individuals with unboundedly high willingness to pay). Now, fix a particular policy, dτ

db
,

and consider the set of θ that are willing to pay for this policy:

E

[
p (θ) |θ ∈ Θ̄

(
dτ

db

)]
Without loss of generality, there exists a function p̃

(
dτ
db

)
such that

E

[
p (θ) |θ ∈ Θ̄

(
dτ

db

)]
= E

[
p (θ) |p (θ) ≥ p̃

(
dτ

db

)]
50In other words, the random variable P is simply the random variable generated by the choices of probabilities,

p (θ), in the population.
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so that the average probability of the types selecting dτ
db

is equal to the average cost of all types above p̃
(
dτ
db

)
. Without

loss of generality, one can assume that p̃ is strictly increasing in dτ
db

so that p̃−1 exists.51

I construct f (p) : A → Θ as follows. Define A to be the range of p̃ when taking values of dτ
db

ranging from 0 to
∞. For each p, define f (p) to be a value(s) of θ such that the willingness to pay equals p̃−1 (p):

p

1− p
u′ (ce (f (p)))

v′ (cu (f (p)))
= p̃−1 (p)

Now, suppose p̃−1 (p) ≤ T (p) for all p. One needs to establish that inequality (22) does not hold for any dτ
db
:

dτ

db
≤

E
[
p (θ) |θ ∈ Θ̄

(
dτ
db

)]
E
[
1− p (θ) |θ ∈ Θ̄

(
dτ
db

)]
To see this, note that

E
[
p (θ) |θ ∈ Θ̄

(
dτ
db

)]
E
[
1− p (θ) |θ ∈ Θ̄

(
dτ
db

)] =
E
[
p (θ) |p (θ) ≥ p̃

(
dτ
db

)]
1− E

[
p (θ) |p (θ) ≥ p̃

(
dτ
db

)]
so that we wish to show that

E
[
p (θ) |p (θ) ≥ p̃

(
dτ
db

)]
1− E

[
p (θ) |p (θ) ≥ p̃

(
dτ
db

)] ≥ dτ

db
(25)

for all dτ
db
. Note that the set A is generated by the variation in dτ

db
, so that testing equation (25) is equivalent to

testing this equation for all p in the range of A:

E [p (θ) |p (θ) ≥ p]
1− E [p (θ) |p (θ) ≥ p] ≥ p̃

−1 (p) ∀p ∈ A

which is equivalent to
E [p (θ) |p (θ) ≥ p]

1− E [p (θ) |p (θ) ≥ p] ≥
p

1− p
u′ (ce (f (p)))

v′ (cu (f (p)))
∀p ∈ A

which proves the desired result.
Intuitively, it is sufficient to check the no trade condition for the set of equivalent classes of types with the same

willingness to pay for dτ
dp
. Within this class, there exists a type that one can use to check the simple uni-dimensional

no trade condition.

A.2 Robustness to Menus
Here, I illustrate how to nest the model into the setting of Hendren (2013), then apply the no trade condition in
Hendren (2013) to rule out menus in this more complex setting with moral hazard. I assume here that there are
no additional choices, a, other than the choice p, although the presence of such additional choices should not alter
the proof as long as they are not observable to the insurer. With this simplification, the only distinction relative to
Hendren (2013) is the introduction of the moral hazard problem in choosing p. This section shows that allowing p to
be a choice doesn’t make trade any easier than in a world where p (θ) is exogenous and not affected by the insurer’s
contracts; hence the no trade condition results from Hendren (2013) can be applied to rule out menus.

I consider the maximization program of a monopolist insurer offering a menu of insurance contracts. Whether
there exists any implementable allocations other than the endowment corresponds to whether there exists any alloca-
tions other than the endowment which maximize the profit, π, subject to the incentive and participation constraints.

Without loss of generality, the insurer can offer a menu of contracts to screen types, {ν (θ) ,∆ (θ)}θ∈Γ where ν (θ)
specifies a total utility provided to type θ, v (θ) = p (θ)u (cu (θ)) + (1− p (θ)) v (ce (θ))−Ψ (p; θ), and ∆ (θ) denotes
the difference in utilities if the agent becomes unemployed, ∆ (θ) = u (cu (θ)) − v (ce (θ)). Note that ν (θ) implicitly
contains the disutility of effort.

Given the menu of contracts offered by the insurer, individuals choose their likelihood of unemployment. Let
q̂ (∆, θ) denote the choice of probability of employment for a type θ given the utility difference between employment
and unemployment, ∆, so that the agent’s effort cost is Ψ (q̂ (∆; θ) θ). Note that a type θ that accepts a contract
containing ∆ will choose a probability of employment q̂ (∆; θ) that maximizes their utility. I assume that q̂ is weakly
increasing in ∆ for all θ.

51If p̃ is not strictly increasing (e.g. because of “advantageous selection”), it will be strictly more profitable to an
insurance company to sell the insurance at a higher price. Hence, one need not test the no trade condition for such
intermediate values of dτ

db
where p̃ is decreasing in p.
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Let Cu (x) = u−1 (x) and Ce (x) = v−1 (x) denote the consumption levels required in the employed and unem-
ployed state to provide utility level x. Let π (∆, ν; θ) denote the profits obtained from providing type θ with contract
terms ν and ∆, given by

π (∆, ν; θ) = q̂ (∆; θ) (cee − Ce (v −Ψ (∆; θ))) + (1− q̂ (∆; θ)) (ceu − Cu (ν −∆−Ψ (∆; θ)))

Note that the profit function takes into account how the agents’ choice of p varies with ∆.
Throughout, I maintain the assumption that profits of the monopolist are concave in (ν,∆). Such concavity can

be established in the general case when u is concave and individuals do not choose p (see Hendren (2013)). But,
allowing individuals to make choices, p, introduces potential non-convexities into the analysis. However, it is natural
to assume that if a large insurance contract would be profitable, then so would a small insurance contract. In Section
A.3 below, I show that global concavity of the firm’s profit function follows from reasonable assumptions on the
individuals’ utility function. Intuitively, what ensures global concavity is to rule out a case where small amounts of
insurance generate large increases in marginal utilities (and hence increase the demand for insurance).

I prove the sufficiency of the no trade condition for ruling out trade by mapping it into the setting of Hendren
(2013). To do so, define π̃ (ν,∆; θ) to be the profits incurred by the firm in the alternative world in which individuals
choose p as if they faced their endowment (i.e. face no moral hazard problem). Now, in this alternative world,
individuals still obtain total utility ν by construction, but must be compensated for their lost utility from effort
because they can’t re-optimize. But, note this compensation is second-order by the envelope theorem. Therefore, the
marginal profitability for sufficiently small insurance contracts is given by

π (ν,∆; θ) ≤ π̃ (ν,∆; θ)

Now, define the aggregate profits to an insurer that offers menu {ν (θ) ,∆ (θ)}θ by

Π (ν (θ) ,∆ (θ)) =

∫
π (ν (θ) ,∆ (θ) ; θ) dµ (θ)

and in the world in which p is not affected by Π,

Π̃ (ν (θ) ,∆ (θ)) =

∫
π (ν (θ) ,∆ (θ) ; θ) dµ (θ)

So, for small variations in ν and ∆, we have that

Π (ν (θ) ,∆ (θ)) ≤ Π̃ (ν (θ) ,∆ (θ))

because insurance causes an increase in p. Now, Hendren (2013) shows that the no trade condition implies that
Π̃ ≤ 0 for all menus, {ν (θ) ,∆ (θ)}. Therefore, the no trade condition also implies Π ≤ 0 for local variations in the
menu {ν (θ) ,∆ (θ)} around the endowment. Combining with the concavity assumption, this also rules out larger
deviations.

Conversely, if the no trade condition does not hold, note that the behavioral response is continuous in ∆, so that
sufficiently small values of insurance allow for a profitable insurance contract to be traded.

A.3 Concavity Assumption and Sufficient Conditions for Concavity
The presence of moral hazard in this multi-dimensional screening problem induces the potential for non-convexities in
the constraint set. Such non convexities could potentially limit the ability of local variational analysis to characterize
the set of implementable allocations. To be specific, let π (∆, µ; θ) denote the profit obtained from type θ if she is
provided with total utility µ and difference in utilities ∆,

π (∆, µ; θ) = (1− p̂ (∆; θ)) (cee − Cv (µ−Ψ (1− p̂ (∆; θ)))) + p̂ (∆; θ) (ceu − Cu (µ−∆−Ψ (1− p̂ (∆; θ))))

To guarantee the validity of our variational analysis for characterizing when the endowment is the only implementable
allocation, it will be sufficient to require that π (∆, µ; θ) is concave in (∆, µ).

Assumption. π (∆, µ; θ) is concave in (∆, µ) for each θ

This assumption requires the marginal profitability of insurance to decline in the amount of insurance provided.
If the agents choice of p is given exogenously (i.e. does not vary with ∆), then concavity of the utility functions, u
and v, imply concavity of π (∆, µ; θ). Assumption A.3 ensures that this extends to the case when p is a choice and
can respond to θ.

Claim. If Ψ′′′ (q; θ) > 0 for all θ and
u′(ceu)
v′(cee)

≤ 2 then π is globally concave in (µ,∆).
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For simplicity, we consider a fixed θ and drop reference to it. Profits are given by

π (∆, µ) = q̂ (∆) (cee − Ce (µ−Ψ (q̂ (∆)))) + (1− q̂ (∆)) (ceu − Cu (µ−∆−Ψ (q̂ (∆))))

The goal is to show the Hessian of π is negative semi-definite. I proceed in three steps. First, I derive conditions
which guarantee ∂2π

∂∆2 < 0. Second, I show that, in general, we have ∂2π
∂µ2 < 0. Finally, I show the conditions provided

to guarantee ∂2π
∂∆2 < 0 also imply the determinant of the Hessian is positive, so that both eigenvalues of the Hessian

must be negative and thus the matrix is negative semi-definite.

A.3.1 Conditions that imply ∂2π
∂∆2 < 0

Taking the first derivative with respect to ∆, we have

∂π

∂∆
=

∂q̂

∂∆
(cee − ceu + Cu (µ−∆−Ψ (q̂ (∆))))

− (1− q̂ (∆))C′u (µ−∆−Ψ (q̂ (∆)))− q̂ (∆)C′e (µ−Ψ (q̂ (∆)))

Taking another derivative with respect to ∆, applying the identity ∆ = Ψ′ (p̂ (∆)), and collecting terms yields

∂2π

∂∆2
= −

[
(1− q̂ (∆)) (1 + ∆)2 C′′u (µ−∆−Ψ (q̂ (∆))) + q̂ (∆)

(
∆q̂′ (∆)

)2
C′′ (µ−Ψ (q̂ (∆)))

]
+
∂q̂

∂∆

[
(1− q̂ (∆))C′ (µ−∆−Ψ (q̂ (∆))) + q̂ (∆)C′ (u−Ψ (q̂ (∆)))−

(
2 + 2∆q̂′ (∆)

)
C′ (µ−∆−Ψ (q̂ (∆)))

]
+
∂2q̂

∂∆2

[
cee − ceu + C (µ−∆−Ψ (q̂ (∆)))− C (µ−Ψ (q̂ (∆))) + (1− q̂ (∆)) ∆C′ (µ−∆−Ψ (q̂ (∆))) + q̂ (∆)C′ (µ−Ψ (q̂ (∆)))

]
We consider these three terms in turn. The first term is always negative because C′′ > 0. The second term,
multiplying ∂q̂

∂∆
, can be shown to be positive if

(1 + q̂ (∆))C′ (µ−∆−Ψ (q̂ (∆))) ≥ q̂ (∆)C′ (µ−∆)

which is necessarily true whenever
u′ (ceu)

v′ (cee)
≤ 2

This inequality holds as long as people are willing to pay less than a 100% markup for a small amount of insurance,
evaluated at their endowment.

Finally, the third term is positive as long as Ψ′′′ > 0. To see this, one can easily verify that the term multiplying
∂2q̂
∂∆2 is necessarily positive. Also, note that ∂2q̂

∂∆2 = −Ψ′′′

(Ψ′′)2
. Therefore, if we assume that Ψ′′′ > 0, the entire last term

will necessarily be negative. In sum, it is sufficient to assume
u′(ceu)
v′(cee)

≤ 2 and Ψ′′′ > 0 to guarantee that ∂2π
∂∆2 < 0.

A.3.2 Conditions that imply ∂2π
∂µ2 < 0

Fortunately, profits are easily seen to be concave in µ. We have

∂π

∂µ
= − (1− q̂ (∆))C′ (µ−∆−Ψ (q̂ (∆)))− q̂ (∆)C′ (µ−Ψ (q̂ (∆)))

so that
∂2π

∂µ2
= − (1− q̂ (∆))C′′ (µ−∆−Ψ (q̂ (∆)))− q̂ (∆)C′′ (µ−Ψ (q̂ (∆)))

which is negative because C′′ > 0.

A.3.3 Conditions to imply ∂2π
∂∆2

∂2π
∂µ2 −

(
∂2π
∂∆∂µ

)
> 0

Finally, we need to ensure that the determinant of the Hessian is positive. To do so, first note that

∂2π

∂µ∂∆
= (1− q̂ (∆))C′′ (µ−∆−Ψ (q̂ (∆)))

(
1 + ∆q̂′ (∆)

)
+ q̂ (∆)C′′ (µ−Ψ (q̂ (∆))) ∆q̂′ (∆)
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Also, we note that under the assumptions Ψ′′′ > 0 and
u′(ceu)
v′(cee)

≤ 2, we have the inequality

∂2π

∂∆2
< −

[
(1− q̂ (∆)) (1 + ∆)2 C′′u (µ−∆−Ψ (q̂ (∆))) + q̂ (∆)

(
∆q̂′ (∆)

)2
C′′ (µ−Ψ (q̂ (∆)))

]
Therefore, we can ignore the longer terms in the expression for ∂2π

∂∆2 above. We multiply the RHS of the above equation

with the value of ∂
2π
∂µ2 and subtract

(
∂2π
∂∆∂µ

)2

. Fortunately, many of the terms cancel out, leaving the inequality

∂2π

∂∆2

∂2π

∂µ2
−
(

∂2π

∂∆∂µ

)2

≥ (1− q̂ (∆)) q̂ (∆)
(
1 + ∆q̂′ (∆)

)2
C′′ (µ−∆−Ψ (q̂ (∆)))C′′ (µ−Ψ (q̂ (∆)))

+q̂ (∆) (1− q̂ (∆))
(
∆q̂′ (∆)

)2
C′′ (µ−Ψ (q̂ (∆)))C′′ (µ−∆−Ψ (q̂ (∆)))

−2 (1− q̂ (∆)) q̂ (∆)
(
1 + ∆q̂′ (∆)

)
∆q̂′ (∆)C′′ (µ−∆−Ψ (q̂ (∆)))C′′ (µ−Ψ (q̂ (∆)))

which reduces to the inequality

∂2π

∂∆2

∂2π

∂µ2
−
(

∂2π

∂∆∂µ

)2

≥ q̂ (∆) (1− q̂ (∆))C′′ (µ−∆−Ψ (q̂ (∆)))C′′ (µ−Ψ (q̂ (∆)))K (µ,∆)

where

K (µ,∆) =
(
1 + ∆q̂′ (∆)

)2
+
(
∆q̂′ (∆)

)2 − 2∆q̂′ (∆)− 2
(
∆q̂′ (∆)

)2
= 1

So, since C′′ > 0, we have that the determinant must be positive. In particular, we have

∂2π

∂∆2

∂2π

∂µ2
−
(

∂2π

∂∆∂µ

)2

≥ q̂ (∆) (1− q̂ (∆))C′′ (µ−∆−Ψ (q̂ (∆)))C′′ (µ−Ψ (q̂ (∆)))

A.3.4 Summary

As long as Ψ′′′ > 0 and
u′(ceu)
v′(cee)

≤ 2, the profit function is globally concave. Empirically, I find that
u′(ceu)
v′(cee)

≤ 2.

Therefore, the unsubstantiated assumption for the model is that the convexity of the effort function increases in
p, Ψ′′′ > 0. An alternative statement of this assumption is that ∂2q̂

∂∆2 < 0, so that the marginal impact of ∆ on
the employment probability is declining in the size of ∆. Put differently, it is an assumption that providing utility
incentives to work has diminishing returns.

Future work can derive the necessary conditions when individuals can make additional actions, a (θ), in response
to unemployment. I suspect the proofs can be extended to such cases, but identifying the necessary conditions for
global concavity would be an interesting direction for future work.

B Details of Empirical Approach

B.1 Details on Lower Bounds on Average Pooled Price Ratio

This section provides details on the estimation of the lower bounds on the average pooled price ratio. I begin by
providing theoretical motivation for the average pooled price ratio by showing it characterizes when an insurer can
earn positive profits if it enters with a particular random pricing strategy. Then, I provide conditions under which
the average pooled price defined by the predicted values provides a lower bound on the average pooled price ratio,
TZ ≤ E [T (P )].

B.1.1 Motivating the Average Pooled Price Ratio when Insurers don’t know P

To see the theoretical relevance of E [T (P )], suppose an insurer seeks to start an insurance market by randomly
drawing an individual from the population and, perhaps through some market research, learns exactly how much this
individual is willing to pay. The insurer offers a contract that collects $1 in the event of being employed and pays an
amount in the unemployed state that makes the individual perfectly indifferent to the policy. If p is the probability
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this individual will become unemployed, then all risks P ≥ p will choose to purchase the policy as well. The profit
per dollar of revenue will be

r (p) =
u′ (cu (p))

v′ (ce (p))
− T (p)

So, if the original individual was selected at random from the population, the expected profit per dollar would be
positive if and only if

E

[
u′ (cu (p))

v′ (ce (p))

]
≥ E [T (P )]

If the insurer is randomly choosing contracts to try to sell, the average pooled price ratio, E [T (P )], provides
information on whether or not a UI market would be profitable.

B.1.2 Conditions under which E [TZ (PZ)] ≤ E [T (P )]

Here, I provide conditions under which E [TZ (PZ)] provides a lower bound on the average pooled price ratio,
E [T (P )]. To begin, assume that (a) the elicitations, Z, have no more information about U than do true be-
liefs, P . Stated formally: Pr {U |X,Z, P} = Pr {U |X,P}. Second, assume that beliefs are unbiased, so that
Pr {U |X,P} = P . Hendren (2013) shows that these two assumptions imply that E [m (PZ)] ≤ E [m (P )]. This
suggests that E [TZ (PZ)] ≤ 1 + E[m(P )]

Pr{U} . So, what remains to show is that 1 + E[m(P )]
Pr{U} ≤ E [T (P )]. For this, we

make one additional assumption that cov
(
m(P )
P

, P
)
≤ 0. This is a natural assumption because m (p) is, on average,

a decreasing function in p (because m (1) = 0), so dividing by P renders it an even more strongly decreasing function
in P . Indeed, I have been unable to find a random variable P for which cov

(
m(P )
P

, P
)
> 0.

Given these assumptions note that

E [T (P )] = Ep

[
E [P |P ≥ p]

p

1− p
1− E [P |P ≥ p]

]
≥ Ep

[
1 +

m (p)

p

]
≥ 1 + E

[
m (P )

P

]
where Ep represents the expectation with respect to drawing p from the distribution of P . Note the second line
follows from the fact that E [P |P ≥ p] ≥ p.

So, it suffices to show that E
[
m(P )
P

]
≥ E[m(P )]

E[P ]
. Clearly

E [m (P )] = E

[
m (P )

P

]
E [P ] + cov

(
P,
m (P )

P

)
so that

E

[
m (P )

P

]
=
E [m (P )]− cov

(
P, m(P )

P

)
E [P ]

Imposing cov
(
m(P )
P

, P
)
≤ 0 yields E [T (P )] ≥ 1 + E[m(P )]

E[P ]
, which in turn implies E [T (P )] ≥ E [TZ (PZ)].

B.2 Specification for Point Estimation
I follow Hendren (2013) by assuming that Z = P + ε, where ε has the following structure. With probability λ,
individuals report a noisy measure of their true belief P that is drawn from a [0, 1]-censored normal distribution with
mean P +α (X) and variance σ2. With this specification, α (X) reflects potential bias in elicitations and σ represents
the noise. While this allows for general measurement error in the elicitations, it does not produce the strong focal
point concentrations shown in Figure 1 and documented in existing work (Gan et al. (2005); Manski and Molinari
(2010)). To capture these, I assume that with probability 1−λ individuals take their noisy report with the same bias
α (X) and variance σ2, but censor it into a focal point at 0, 50, or 100. If their elicitation would have been below κ,
they report zero. If it would have been between κ and 1− κ, they report 50; and if it would have been above 1− κ,
they report 1. Hence, I estimate four elicitation error parameters: (σ, λ, κ, α (X)) that capture the patterns of noise
and bias in the relationship between true beliefs, P , and the elicitations reported on the surveys, Z.
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Specifically, the p.d.f./p.m.f. of Z given P is given by

f (Z|P,X) =



(1− λ) Φ
(
−P−α(X)

σ

)
+ λΦ

(
κ−P−α(X)

σ

)
if Z = 0

λ
(

Φ
(

1−κ−P−α(X)
σ

)
− Φ

(
κ−P−α(X)

σ

))
if Z = 0.5

(1− λ) Φ
(

1−P−α(X)
σ

)
+ λ

(
1− Φ

(
1−κ−P−α(X)

σ

))
if Z = 1

1
σ
φ
(
Z−P−α(X)

σ

)
if o.w.

where φ denotes the standard normal p.d.f. and Φ the standard normal c.d.f. I estimate four elicitation error param-
eters: (σ, λ, κ, α (X)). σ captures the dispersion in the elicitation error, λ is the fraction of focal point respondents,
κ is the focal point window. I allow the elicitation bias term, α (X), to vary with the observable variables, X. This
allows elicitations to be biased, but maintains the assumption that true beliefs are unbiased. This approach builds
upon Manski and Molinari (2010) by thinking of the focal point responses as “interval data” (i.e. 50/50 corresponds
to some region around 50%, but not exactly 50%). However, the present approach differs from Manski and Molinari
(2010) by allowing the response to be a noisy and potentially biased measure of this response (as 50/50 corresponds
to a region around 50% for the noisy Z measure, not the true P measure).

Ideally, one would flexibly estimate the distribution of P given X at each possible value of X. This would enable
separate estimates of the minimum pooled price ratio for each value of X. However, the dimensionality of X prevents
this in practice. Instead, I again follow Hendren (2013) and adopt an index assumption on the cumulative distribution
of beliefs, F (p|X) =

∫ p
0
fP (p̃|X) dp̃,

F (p|X) = F̃ (p|Pr {U |X}) (26)

where I assume F̃ (p|q) is continuous in q (where q ∈ {0, 1} corresponds to the level of Pr {U |X}). This assumes
that the distribution of private information is the same for two observable values, X and X ′, that have the same
observable unemployment probability, Pr {U |X} = Pr {U |X ′}. Although one could perform different dimension
reduction techniques, controlling for Pr {U |X} is particularly appealing because it nests the null hypothesis of no
private information (F (p|X) = 1 {p ≤ Pr {U |X}}).52

Beta versus Point-Mass Distribution Hendren (2013) flexibly approximates F (p|q) using mixtures of Beta
distributions. In the current context,A key difficulty with using functions to approximate the distribution of P is
that much of the mass of the distribution is near zero. Continuous probability distribution functions, such as Beta
distributions, require very high degrees for the shape parameters to acquire a good fit. Therefore, I approximate P
as a sum of discrete point-mass distributions.53 Formally, I assume

F̃ (p|q) = w1 {p ≤ q − a}+ (1− w) Σiξi1 {p ≤ αi}

where αi are a set of point masses in [0, 1] and ξi is the mass on each point mass. I estimate these point mass
parameters using maximum likelihood estimation. For the baseline results, I use 3 mass points, which generally
provides a decent fit for the data. Appendix Table IV presents the raw estimates for these point mass distributions.

Given the estimate of F̃ (p|q), I then compute the pooled price ratio at each mass point and report the minimum
across all values aside from the largest mass point. Mechanically, this has a value of T (p) = 1. As noted in Hendren
(2013), estimation of the minimum T (p) across the full support of the type distribution is not feasible because of
an extremal quantile estimation problem. To keep the estimates “in-sample”, I report values for the mean value of
q = Pr {U} = 0.031; but estimates at other values of q are similarly large.

52Moreover, it allows the statistical model to easily impose unbiased beliefs, so that Pr {U |X} = E [P |X] for all X.
53This has the advantage that it does not require integrating over high degree of curvature in the likelihood function.

In practice, it will potentially under-state the true variance in P in finite sample estimation. As a result, it will tend to
produce lower values for T (p) than would be implied by continuous probability distributions for P since the discrete
approximation allows all individuals at a particular point mass to be able to perfectly pool together when attempting
to cover the pooled cost of worse risks.
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C Willingness to Pay Metrics

C.1 Taylor Expansion

Note that u (c) = v (c) so that

u′(cu (p))

u′ (ce (p))
≈

u′ (ce (p)) + u′′ (ce (p)) (cu (p)− ce (p)) + 1
2u
′′′ (ce (p)) (cu (p)− ce (p))2

u′ (ce (p))

= 1 +
u′′ (ce (p))

u′ (ce (p))

cu (p)− ce (p)

ce (p)

= 1 +
−ce (p)u′′ (ce (p))

u′ (ce (p))

ce (p)− cu (p)

ce (p)
+
ce (p)u′′′ (ce (p))

u′′ (ce (p))

ce (p)u′′ (ce (p))

u′ (ce (p))

1

2

(
ce (p)− cu (p)

ce (p)

)2

= 1 + σ
∆c

c
(p)

[
1 +

γ

2

∆c

c
(p)

]
And, under an assumption of constant relative risk aversion, we have γ = σ + 1

u′(cu (p))

u′ (ce (p))
− 1 ≈ σ

∆c

c
(p)

[
1 +

σ + 1

2

∆c

c
(p)

]
= σ

∆c

c
(p) + σ

σ + 1

2

(
∆c

c
(p)

)2

C.2 Proof of Proposition 1
Note under state independence, the Euler equation implies

u′ (cpre (p)) = pu′ (cu (p)) + (1− p)u′ (ce (p))

so that
u′′ (cpre (p))

dcpre
dp

= u′ (cu (p))− u′ (ce (p)) + pu′′ (cu (p))
dcu
dp

+ (1− p)u′′ (ce (p))
dce
dp

Dividing,

u′ (cpre (p))
u′′ (cpre (p))

u′ (cpre (p))

dcpre
dp

= u′ (ce)
u′ (cu (p))− u′ (ce (p))

u′ (ce (p))
+pu′ (cu (p))

u′′ (cu (p))

u′ (cu (p))

dcu
dp

+(1− p)u′ (ce (p))
u′′ (ce (p))

u′ (ce (p))

dce
dp

or

u′ (cpre (p))σ
−dlog (cpre)

dp
= u′ (ce)σ [log (ce)− log (cu)]+pu′ (cu (p))σ

−dlog (cu (p))

dp
+(1− p)u′ (ce (p))σ

−dlog (ce (p))

dp

So, dividing by u′ (ce (p)) yields:

u′ (cpre (p))

u′ (ce)
σ
−dlog (cpre)

dp
= σ [log (ce)− log (cu)] + p

u′ (cu (p))

u′ (ce (p))
σ
−dlog (cu (p))

dp
+ (1− p)σ−dlog (ce (p))

dp

And, using the Euler equation, pu′ (cu (p)) + (1− p)u′ (ce (p)) = u′ (cpre (p)),

pu′ (cu (p)) + (1− p)u′ (ce (p))

u′ (ce (p))
σ
−dlog

(
cpre (p)

)
dp

=
u′ (cu (p))− u′ (ce (p))

u′ (ce (p))
+ p

u′ (cu (p))

u′ (ce (p))
σ
−dlog (cu (p))

dp
+ (1− p)σ

−dlog (ce (p))

dp(
p
u′ (cu (p))

u′ (ce (p))
+ 1− p

)
σ
−dlog

(
cpre (p)

)
dp

=
u′ (cu (p))− u′ (ce (p))

u′ (ce (p))
+

(
p
u′ (cu (p))

u′ (ce (p))
+ 1− p

)
σ
−dlog (ce (p))

dp
+ p

u′ (cu (p))

u′ (ce (p))
σ

(
d [log (ce)− log (cu)]

dp

)

so that

σ
−dlog (cpre)

dp
=

u′(cu(p))
u′(ce(p))

− 1

1 + p
(
u′(cu(p))
u′(ce(p))

− 1
) + σ

−dlog (ce (p))

dp
+

pu
′(cu(p))
u′(ce(p))

pu
′(cu(p))
u′(ce(p))

+ 1− p
σ

(
d [log (ce)− log (cu)]

dp

)
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or

−dlog (cpre)

dp
=

1
σ

(
u′(cu(p))
u′(ce(p))

− 1
)

1 + p
(
u′(cu(p))
u′(ce(p))

− 1
) +

−dlog (ce (p))

dp
+

pu
′(cu(p))
u′(ce(p))

pu
′(cu(p))
u′(ce(p))

+ 1− p

(
d [log (ce)− log (cu)]

dp

)
Note that the assumption is maintained that log (cpre) is linear in p, in addition to log (ce) and log (cu) being linear
in p. This is of course an approximation in practice, as the equation above illustrates this cannot simultaneously be
true for all p. Therefore, I assume it is true only in expectation, so that

−dlog (cpre)

dp
=

1

σ

(
u′ (cu (p))

u′ (ce (p))
− 1

)
E

 1

1 + p
(
u′(cu(p))
u′(ce(p))

− 1
)
+
−dlog (ce (p))

dp
+E

 pu
′(cu(p))
u′(ce(p))

pu
′(cu(p))
u′(ce(p))

+ 1− p

(
d [log (ce)− log (cu)]

dp

)
which if it holds for all p must also hold for the expectation taken with respect to p. Let κ = E

[
1

1+p
(
u′(cu(p))

u′(ce(p))
−1
)
]
.

Note also that
u′ (cu (p))

u′ (ce (p))
− 1 ≈ σE [log (ce (p))− log (cu (p))]

which implies

−dlog (cpre)

dp
= E [log (ce (p))− log (cu (p))]κ+

−dlog (ce (p))

dp
+ E

 pu
′(cu(p))
u′(ce(p))

pu
′(cu(p))
u′(ce(p))

+ 1− p

(
d [log (ce)− log (cu)]

dp

)
Now, consider the impact of unemployment on the first difference of consumption. Define ∆FD as the estimated

impact on the first difference in consumption:

∆FD = E [log (c)− log (c−1) |U = 1]− E [log (c)− log (c−1) |U = 0]

Adding and subtracting E [log (ce) |U = 1] yields

∆FD = E [log (c) |U = 1]−E [log (ce) |U = 1]+E [log (ce) |U = 1]−E [log (c) |U = 0]−(E [log (c−1) |U = 1]− E [log (c−1) |U = 0])

Note that c = cu for those with Ut = 1 and c = ce for those with U = 0. The following three equations help expand
∆FD:

E [log (c−1) |U = 1]− E [log (c−1) |U = 0] =
dlog (cpre)

dp

var (P )

var (U)

and

E [log (c) |U = 1]− E [log (ce) |U = 0] = E [log (cu) |U = 1]− E [log (ce) |U = 1]

= E [log (cu)− log (ce)] +
d [log (cu)− log (ce)]

dp
(E [P |U = 1]− E [P ])

and

E [log (ce) |U = 1]− E [log (c) |U = 0] = E [log (ce) |U = 1]− E [log (ce) |U = 0]

=
dlog (ce)

dp

var (P )

var (U)

So, substituting these into ∆FD yields:

∆
FD

= E [log (cu)− log (ce)]−
var (P )

var (U)

[
κ (E [log (ce)− log (cu)]) + E [P ]

u′ (cu)

u′ (ce)

d [log (ce)− log (cu)]

dp

]
+

[
d [log (ce)− log (cu)]

dp

]
(E [P |U = 1]− E [P ])

Let d∆
dp

= d[log(ce)−log(cu)]
dp

denote how the consumption drop varies with p. Solving for E [log (ce)− log (ce)] yields

E [log (cu)− log (ce)] =
∆FD + d∆

dp
(E [P |U = 1]− E [P ])

1− var(P )
var(U)

κ− p̄σ d∆
dp

where κ =which yields the desired result. Note that if the consumption drop does not vary with p, then this reduces
to

E [log (cu)− log (ce)] =
∆FD

1− var(P )
var(U)

κ
≡ ∆IV

More generally, if the size of the consumption drop is increasing with p, then E [log (cu)− log (ce)] > ∆IV .
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C.3 Maximum Willingness to Pay
While the analysis to this point estimates the average causal effect of unemployment, Equation (8) requires comparing
the willingness to pay for all p to the pooled price ratio. Therefore, it is also useful to understand the heterogeneity in
the potential willingness to pay across the population. How much might some people be willing to pay for insurance?

Estimating minima and maxima is always more difficult than estimating means; but this section attempts to
make a bit of progress to help shed light on this important question. Let ∆min denote the largest causal effect of
unemployment in the population,

∆min = min
p

[log (cu (p))− log (ce (p))] (27)

Following equation (9), note that the willingness to pay satisfies

u′ (cu)− u′ (ce)
u′ (ce)

≥ σ
(
−∆min

)(
1 +

γ

2

(
−∆min

))
(28)

Therefore, ∆min generates a upper bound on the willingness to pay (note that ∆min < 0).
This motivates the question: How big can the causal impact of unemployment be? To address this, note that

one can write the causal effect as the sum of two first differences:

log (cu (p))− log (ce (p)) = log (cu (p))− log (ct−1 (p))− (log (ce (p))− log (ct−1 (p)))

where the first term captures consumption change if unemployed and the second term is the consumption change
if employed. Let ∆max

e = maxp {log (ce (p))− log (ct−1 (p))} denote the maximum consumption change experienced
by those who did not lose their job. And, let ∆min

u = minp {log (cu (p))− log (ct−1 (p))} denote the minimum
consumption change experienced by those who lose their job. Note that we expect ∆max

e > 0 and ∆min
u < 0. The

Euler equation ((6)) combined with the assumption of CRRA preferences implies that ct−1 lies between cu(p) and
ce (p), ct−1 (p) ∈ [cu (p) , ce (p)] for all p. Under this natural assumption, the causal impact of unemployment is
bounded below by the difference between these drops:

∆min ≥ ∆min
u −∆max

e

Therefore, one can bound the causal effect of unemployment on consumption by the largest consumption drop
minus the smallest consumption increase. The question now becomes: how large can the consumption drop upon
unemployment be, ∆min

u ? And, how large can the consumption increase upon learning that you didn’t lose your job
be, ∆max

e ?
If one observed consumption directly, one could estimate the full distribution of first differences in consumption

for those who become unemployed, log (cu (p)) − log (ct−1 (p)), and remain employed, log (ce (p)) − log (ct−1 (p)).
Then, one could in principle find ∆min

u and ∆max
e directly from the data.

However, consumption data in the PSID and other datasets is quite noisy in practice (see for example Zeldes
(1989); Meghir and Pistaferri (2011)).54 Therefore, I proceed as follows. Note that the Euler equation implies that
ct−1 (p) ∈ [cu (p) , ce (p)] for all p. In particular, this implies that the log consumption change should always drop for
those who lose their job, ct−1 (p) ≥ cu (p). Therefore, I use the extent to which one observes consumption increases
for those who become unemployed to provide information about how the consumption change distribution and its
minimum, ∆min

u , is affected by measurement error.
I begin by removing systematic variation in consumption changes due to life cycle and year effects. In particular,

I regress the consumption change on the observables, X, in Equation (4) (an age cubic and year dummies) and let
∆∗it denote the residuals.55 Online Appendix Figure VI plots the distributions of ∆∗it for those with Uit = 1 and
Uit = 0. As one can see, the wide dispersion is suggestive of considerable measurement error, as noted in previous
literature.

Let Q (α,U) denote the α−quantile of the distribution of ∆∗it as a function of unemployment status, Ut. Appendix
Table II reports that 41.7% of the sample who become unemployed have ∆∗it > 0 (i.e. Q (58.3, 1) = 0), even after
controlling for age and year effects. Because the Euler equation suggests consumption changes should not be positive,

54This “left-hand-side” measurement error was necessarily not a problem for estimating the mean consumption
impact of unemployment (assuming the error is classical). But, for estimating properties of the distribution of
consumption changes such as minima and maxima, this measurement error becomes a significant limitation.

55This residualization can be formalized by assuming there are known time and year preference shocks affecting
the marginal utility of consumption that are common across individuals. Note the residuals now satisfy the ex-ante
Euler equation, E [∆∗it] = 0. But, the means of the residuals will differ for those who do and do not experience
unemployment, E [∆∗it|Uit = 1] ≤ 0 and E [∆∗it|Uit = 0] ≥ 0.
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it suggests the excess dispersion is the result of measurement error. The key assumption I impose is that the impact
of measurement error is symmetric across the distribution of consumption changes. In particular, I assume that the
probability that the observed consumption change lies above the maximum plausible consumption change of 0 is less
than or equal to the probability that the observed consumption change is below the minimum actual consumption
change, Pr

{
∆∗it ≤ ∆min

u |Uit = 1
}
≥ Pr {∆∗it ≥ 0|Uit = 1}, where Pr {∆∗it ≥ 0|Uit = 1} = 41.7%. Appendix Figure V

shows that the observed distribution of consumption changes is fairly symmetric, which would be consistent with the
underlying assumptions needed for Equation (29) to hold.56 With this assumption,

∆min
u ≥ Q (Pr {∆∗it ≥ 0|Uit = 1} , 1) (29)

Because Pr {∆∗it ≥ 0|Uit = 1} = 41.7%, one can bound the consumption drop by the 41.7th quantile of the observed
consumption drop distribution. This equals −13.7%, as shown in Appendix Table II.

Similarly, one can impose an analogous assumption on the distribution of consumption changes for the employed
that the observed fraction of the population that experiences a consumption decline when remaining employed is less
than or equal to the fraction who experience a consumption increase that is above ∆max

e , Pr {∆∗it ≤ 0|Uit = 0} =
Pr {∆∗it ≥ ∆max

e |Uit = 0}. Under this assumption,

∆max
e ≤ Q (Pr {∆∗it ≤ |Uit = 0} , 0) (30)

Appendix Table II shows this maximal consumption increase equals 0.5%. Combining equations (29) and (30) yields
the lower bound on the causal impact of unemployment on consumption:

∆min ≥ Q (Pr {∆∗it ≥ 0|Uit = 1} , 1)−Q (Pr {∆∗it ≤ |Uit = 0} , 0)

where the right hand side equals −13.7%−0.5% = 14.2% (s.e. 1.1%), as reported in Table V, Column (7). Therefore,
the maximum causal impact on food expenditure is 14.2%, or roughly twice as large as the mean consumption drop.
The lower rows in Table V scale this estimate by various values of risk aversion. With a conservative estimate of 3,
it suggests the maximum markup individuals would be willing to pay is 54.7%.

C.4 Proof of Proposition 2
Differentiating the Euler equation under assumption (b) yields

u′ (cu)− v′ (ce) = v′′ (cpre (p))
dcpre
dp

Now, dividing by v′ (ce) yields
u′ (cu)− v′ (ce)

v′ (ce)
=
v′′ (cpre (p))

v′ (ce)

dcpre
dp

and expanding the RHS yields

u′ (cu)− v′ (ce)
v′ (ce)

=
v′ (cpre (p))

v′ (ce)

cpre (p) v′′ (cpre (p))

v′ (cpre (p))

1

cpre (p)

dcpre
dp

And, imposing the Euler equation to replace v′ (cpre (p)) in the numerator on the RHS (v′ (cpre (p)) = pu′ (cu) +
(1− p) v′ (ce)) yields,

u′ (cu)− v′ (ce)
v′ (ce)

=

[
p
u′ (cu)

v′ (ce)
+ (1− p)

]
cpre (p) v′′ (cpre (p))

v′ (cpre (p))

1

cpre (p)

dcpre
dp

Dividing by pu
′(cu)
v′(ce)

+ (1− p) and taking expectations over p yields

κ
u′ (cu)− v′ (ce)

v′ (ce)
= E

[
cpre (p) v′′ (cpre (p))

v′ (cpre (p))

1

cpre (p)

dcpre
dp

]
Now, imposing σ =

−cpre(p)v′′(cpre(p))
v′(cpre(p))

for all p, noting that 1
cpre(p)

dcpre
dp

=
dlog(cpre)

dp
, and dividing by κ yields:

u′ (cu)− v′ (ce)
v′ (ce)

=
σ

κ
E

[
−dlog (cpre)

dp

]
56While the symmetry assumption is not directly testable, it can be micro-founded from many common assump-

tions on measurement error distributions. For example, if the true distribution of consumption changes is symmet-
ric and the distribution of measurement error is symmetric and unbiased, then it is straightforward to show that
Pr
{

∆∗it ≤ ∆min
u |Uit = 1

}
≥ Pr {∆∗it ≥ x|Uit = 1}, where x ≤ 0 is the maximum consumption change for those who

become unemployed. Symmetric and median-unbiasedness is a common assumption measurement error models (see,
e.g., Bollinger (1998); Hu and Schennach (2008)).
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C.5 Ex-ante labor supply derivation
This section illustrates how to use the spousal labor supply response, combined with known estimates of the spousal
labor response to labor earnings, to estimate the ex-ante willingness to pay for UI.

To begin, one needs a model of extensive margin labor supply response. I assume spousal labor force participation
generates income, y, but has an additively separable effort cost, η (θ). I assume a spouse labor supply decision,
l ∈ {0, 1}, is a binary decision and is contained in the set of other actions, a. Formally, let utility be given by

v (cpre) + pu (cu) + (1− p) v (ce) + 1 {l = 1} η (θ) + Ψ̃i (1− p, ã, θ)

where η (θ) is the disutility of labor for type θ, distributed Fη in the population.
Let k (y, l, p) denote the utility value to a type p of choosing l to obtain income y when they face an unemployment

probability of p. The labor supply decision is

k (y, 1, p)− k (0, 0, p) ≥ η (θ)

so that types will choose to work if and only if it increases their utility. This defines a threshold rule whereby
individuals choose to work if and only if η (θ) ≤ η̄ (y, p) and the labor force participation rate is given by Φ (y, p) =
F (η̄ (y, p)).

Now, note that
dΦ

dp
= f (η̄)

∂η̄

∂p
= f (η̄)

[
∂k (y, 1, p)

∂p
− ∂k (0, 0, p)

∂p

]
and making an approximation that the impact of the income y does not discretely change the instantaneous marginal
utilities (i.e. because it will be smoothed out over the lifetime or because the income is small), we have

dΦ

dp
≈ f (η̄)

∂2k

∂p2
y

Finally, note that ∂k
∂y

= v′ (cpre (p)) is the marginal utility of income. So,

dΦ

dp
≈ f (η̄)

d

dp

[
v′ (cpre (p))

]
y

and integrating across all the types p yields

Ep

[
dΦ

dp

]
≈ Ep

[
f (η̄)

d

dp
v′ (cpre (p)) y

]
To compare this response to a wage elasticity, consider the response to a $1 increase in wages

dΦ

dy
= f (η̄)

∂k

∂y

so,

Ep

[
dΦ

dp

]
≈ Ep

[
dΦ

dy
y

d
dp
v′ (cpre (p))

v′ (cpre (p))

]
Now, let εsemi = dΦ

dlog(y)
denote the semi-elasticity of spousal labor force participation. This yields

Ep
[
dΦ
dp

]
εsemi

≈ Ep

[
d
dp
v′ (cpre (p))

v′ (cpre (p))

]
so that the ratio of the labor supply response to p divided by the semi-elasticity of labor supply with respect to wages
reveals the average elasticity of the marginal utility function. Assuming this elasticity is roughly constant and noting
that a Taylor expansion suggests that for any function f (x), we have f(1)−f(0)

f(0)
≈ d

dx
log (f),

Ep
[
dΦ
dp

]
εsemi

≈ v′ (1)− v′ (0)

v′ (0)

Now, how does one estimate dΦ
dp

? Regressing labor force participation, l, on Z will generate an attenuated coefficient
because of measurement error in Z. If the measurement error is classical, one can inflate this by the ratio of the
variance of Z to the variance of P , or

v′ (1)− v′ (0)

v′ (0)
≈ β 1

εsemi
var (Z)

var (P )
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Baseline Sample
(1)

Estimate for max{log(cu(p))-log(ce(p))}, Δmin -0.137
s.e. (0.02)

Lower bound for drop when unemployed, Δu
min -0.138

s.e. (0.02)

Upper bound for increase when unemployed, Δe
max -0.001

s.e. (0.002)

Fraction unemployed with positive consumption change 0.415
Fraction employed with negative consumption change 0.499

Num of Obs. 65,808
Num of HHs 9,562

Maximum Causal Effect of Unemployment on Food Expenditure
APPENDIX TABLE II

Note: This table presents the calculation for the maximum causal effect of unemployment on food expenditure. The first rows present the 
resulting estimate, Δmin. The second rows present the estimates for the lower bound on the consumption drop when unemployed, Δu

min. The 

third rows present the estimates for the upper bound for the increase in consumption when employed,  Δu
max. The next row presents the 

fraction of people who are unemployed, Uit=1, who experience a positive consumption change,  Δ*
it>0, and the fraction who are employed, 

Uit=0, who experience a negative consumption change,Δ*
it>0 . All standard errors are constructed using bootstrap resampling by household 

(1000 repetitions).
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Specification Baseline Demo Health Age <= 55 Age > 55
Below 

Median Wage
Above 

Median Wage
Tenure > 5 

yrs
Tenure <= 5 

yrs
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1st mass
Location 0.001 0.012 0.002 0.001 0.002 0.007 0.000 0.000 0.022

s.e. (0.001) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001) (0.000) (0.003)
Weight 0.446 0.713 0.449 0.437 0.461 0.530 0.452 0.422 0.612

s.e. (0.024) (0.071) (0.054) (0.035) (0.030) (0.032) (0.034) (0.036) (0.034)
T(p) 63.839 6.301 39.032 101.038 36.986 12.413 262.088 6.9E+08 5.052

s.e. 6.1E+06 1.7E+00 1.8E+06 1.0E+07 1.1E+06 3.2E+00 7.6E+07 2.5E+08 6.0E-01

2nd mass
Location 0.031 0.031 0.032 0.030 0.031 0.037 0.024 0.018 0.0575

s.e. N/A N/A N/A N/A N/A N/A N/A N/A N/A
Weight 0.471 0.202 0.470 0.483 0.456 0.365 0.486 0.508 0.2771

s.e. (0.024) (0.071) (0.052) (0.035) (0.030) (0.032) (0.034) (0.037) (0.0341)
T(p) 4.360 8.492 4.228 4.325 4.442 5.217 4.223 5.736 4.7392

s.e. 0.203 4.194 4.576 0.306 0.279 0.417 2.181 3.008 0.5227

3rd Mass
Location 0.641 0.639 0.642 0.639 0.643 0.626 0.649 0.641 0.6420

s.e. (0.004) (0.004) (0.028) (0.005) (0.005) (0.005) (0.006) (0.005) (0.0055)
Weight 0.082 0.086 0.081 0.081 0.083 0.105 0.061 0.070 0.1105

s.e. (0.002) (0.002) (0.006) (0.003) (0.003) (0.003) (0.003) (0.002) (0.0040)

Controls
Demographics X X X X X X X X X
Job Characteristics X X X X X X X X
Health Characteristics X

Num of Obs. 26,640 26,640 22,831 11,134 15,506 13,320 13,320 17,850 8,790
Num of HHs 3,467 3,467 3,180 2,255 3,231 2,916 2,259 2,952 2,437

APPENDIX TABLE IV
Estimation of F(p|X)

Alternative Controls Sub-Samples

Notes: This table presents estimates of the distribution of private information about unemployment risk, P. Column (1) reports the baseline specification. Columns (2) uses 
only demographic controls; Column (3) uses demographic, job characteristics, and health characteristics. Columns (4)-(9) report results for the baseline specification on 
various subsamples including below and above age 55 (Columns 4 and 5), above and below-median wage earners (Columns 6 and 7) and above and below 5 years of job 
tenure. The F(p) estimates report the location and mass given to each point mass, evaluated at the mean q=Pr{U=1}=0.031. For example, in the baseline specification, the 
results estimate a point mass at 0.001, 0.031, and 0.641 with weights 0.446, 0.471 and 0.082. The values of T(p) represent the markup that individuals at this location in the 
distribution would have to be willing to pay to cover the pooled cost of worse risks. All parameter estimates are constructed using maximum likelihood. Because of the non-
convexity of the optimization program, I assess the robustness to 1000 initial starting values. All standard errors are constructed using bootstrap re-sampling using 1000 re-
samples at the household level. 



ONLINE APPENDIX FIGURE I: “First Stage” Impact of Unemployment on Beliefs
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Notes: This figure presents the estimated coefficients of a regression of the elicitations (elicited in year t) on unemployment
indicators in year t + j for j = 1, .., 8. To construct the unemployment indicators for each year t + j, I construct an indicator
for involuntary job loss in any survey wave (occurring every 2 years). I then use the data on when the job loss occurred to
assign the job loss to either the first or second year in between the survey waves. Because of the survey design, this definition
potentially misses some instances of involuntary separation that occur in back-to-back years in between survey waves. To the
extent to which such transitions occur, the even-numbered years in the Figure are measured with greater measurement error.
The figure presents estimated 5/95% confidence intervals using standard errors clustered at the household level.



ONLINE APPENDIX FIGURE II: Impact of Unemployment on Total Consumption Expenditure
(2-year intervals)
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Notes: This figure presents the estimated coefficients of a regression of leads and lags of log household consumption expenditure
on an indicator for unemployment. The figure replicates the sample and specification in Figure IV (Panel B) by replacing
the dependent variable with log total consumption expenditure on a sample beginning in 1999, surveyed every two years. I
restrict the sample to household heads who are employed in t− 2 or t− 4. Following the baseline specification, the sample is
restricted to observations with less than a threefold change in consumption expenditures. Note that after 1999, the PSID asks
a broader set of consumption questions but is conducted only every two years, which prevents analyzing total 1-year interval
responses to unemployment.



ONLINE APPENDIX FIGURE III: Impact of Job Loss on Consumption
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Notes: This figure re-constructs the analysis in Figure IV using job loss instead of unemployment. I define job loss as an
indicator for being laid off or fired from the job held in the previous wave of the survey. The figure present coefficients from
separate regressions of leads and lags of the log change in food expenditure on an indicator of job loss, along with controls for
year indicators and a cubic in age. Sample is restricted to household heads who are employed in years t− 1 and t− 2.



ONLINE APPENDIX FIGURE IV: Household Income Pattern Around Unemployment
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Notes: This figure presents the estimated coefficients of a regression of leads and lags of log household income on an indicator
for unemployment. The figure replicates the sample and specification in Figure IV by replacing the dependent variable with
log household income as opposed to the change in log food expenditure. I restrict the sample to household heads who are not
unemployed in t− 1 or t− 2 .



ONLINE APPENDIX FIGURE V: Illustration of No Trade Condition Using Demand and
Average Cost Curves

A. MRS versus Average Cost
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B. Pooled Price Ratio versus 1 + Willingness to pay (Markup)
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Notes: This figure illustrates the no trade condition using the marginal and average cost curves as in Einav, Finkelstein and
Cullen (2010). Panel A presents an illustrative example for the demand for a contract that pays $1 in the event of becoming
unemployed. The willingness to pay out of income if employed is given by the marginal rate of substitution, p

1−p
u′(cu(p))
v′(ce(p)) .

Under a standard single crossing condition, all types P ≥ p would also purchase the insurance policy (see text for discussion
of multi-dimensional heterogeneity). Therefore, the cost to the insurer of the contract is given by the average likelihood that
the payment is made, E [P |P ≥ p] relative to the likelihood the payment is received, 1 − E [P |P ≥ p], E[P |P≥p]

1−E[P |P≥p] . Panel B
normalizes by 1−p

p
to illustrate the empirical approach that compares the pooled price ratio, T (p) = 1−p

p
E[P |P≥p]

1−E[P |P≥p] , to one
plus the markup individuals are willing to pay for insurance, u′(cu(p))

v′(ce(p)) . The empirical results suggest the willingness to pay
lies below the pooled price ratio, as depicted in Panels A and B.



ONLINE APPENDIX FIGURE VI: Distribution of Reported Log Food Expenditure Growth, ∆∗
it,

for Employed and Unemployed

A. Unemployed (Uit = 1)
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B. Employed (Uit = 0)
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Notes: This figure plots histograms of ∆∗it for those who are employed, Uit = 0, and unemployed, Uit = 1. ∆∗it is defined as
the residual from a regression of log (cit)− log (cit−1) on an age cubic and year dummies, X. I restrict the sample to household
heads who are employed in t− 1 and t− 2. Following the baseline specification, the sample is restricted to observations with
less than a threefold change in consumption expenditures.
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