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Motivation

• People often have incorrect views of the world despite
abundant data.

• Examples:
– Belief that taxes are linear in income when they are not;
– Belief in the “law of small numbers” and the gambler’s fallacy;
– “Causation neglect” about the impact of actions on outcomes;
– Ignoring informative signals in the belief that they don’t

matter.

• It is important to understand how such agents learn from
data, and how they will behave.

• To understand behavior with endogenous data it’s not enough
to know that beliefs converge, we need some bounds on the
rate vis à vis the CLT.
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Learning from Exogenous Data
• Berk [1966]: With exogenous i.i.d observations and a possibly
misspecified prior, the posterior concentrates around the
Kullback-Leibler minimizers with respect to the true data
generating process. Various extensions in the statistics
literature to other exogenous data generating processes. More
recent work by economists extends this to endogenous data.
• Diaconis and Freedman [1990]: Sufficient condition for
Bayesian posteriors to converge to the empirical distribution
at a uniform exponential rate. This implies that non-myopic
agents play myopically once they have enough data, a fact
that has been useful in the analysis of non-equilibrium learning
in games and related topics.
• “Pathwise Concentration Bounds for Bayesian Beliefs,” FLS
[2021] extends Berk [1966] by providing a rate of convergence,
and extends Diaconis and Freedman [1990] to more general
priors.
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Misspecified Learning from Endogenous Data
• Esponda and Pouzo [2016] defines Berk-Nash equilibrium, and
shows that it is a necessary property for limit points when the
payoff function is subject to i.i.d. random shocks.
• Fudenberg, Romanyuk, and Strack [2017] shows the actions
and beliefs of a misspecified patient agent can cycle when they
would converge if the agent were correctly specified or myopic.
• Bohren and Hauser [2021] characterizes when actions
converge with myopic agents and finite-support priors.
• Esponda, Pouzo, and Yamamoto [2021] uses stochastic
approximation to characterize asymptotic action frequencies.
• Frick, Iijima, and Ishii [2021] characterizes global convergence.
• Other recent related work: Heidhues, Koszegi, and Strack
[2018],[2021], Molavi [2019], He [2021].
• “Limit Points of Endogenous Misspecified Learning,” FLS
[2021] characterizes exactly which Berk-Nash equilibria can be
limit points for general priors and possibly patient agents.
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Persistent Misspecification
• He and Libgober [2020] looks at the competition between a
misspecified model and the correctly specified model in games.
• Murooka and Yamamoto [2021] study games where all agents
have the same misspecification.
• In Gagnon-Bartsch, Rabin, and Schwartzstein [2019] the
agent’s attention partition determines whether they become
correctly specified.
• Montiel-Olea, Ortoleva, Pai, and Prat [2021] shows that
misspecified agents with lower dimensional models initially
have a higher willingness to pay for an object, while correctly
specified agents have a higher long-run willingness to pay.
• “Which Misperceptions Persist,” Fudenberg and Lanzani.
Purely Bayesian agents can never realize they are misspecified.
We use an evolutionary model to see which misperceptions
can persist. Mutations that lead some agents to use a
better-fitting model can yield lower payoffs and fail to spread.
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Learning from Exogenous Data

• Y is a finite set of possible outcomes.

• P = ∆(Y ) is the set of probability measures p over Y ,
endowed with the total variation norm.

• µ0 ∈ ∆(P ) denotes a prior distribution over distributions of
outcomes, and Θ = suppµ0 denotes its support.

• We don’t require that all p ∈ Θ assign positive probability to
all outcomes, or that they are mutually absolutely continuous.

• A data set yt = (y1, y2, . . . , yt) ∈ Y t is a vector of outcomes.
For every data set yt we let µt be the posterior belief, which is
required to satisfy Bayes rule on histories where it is defined:

µt(C | yt) =
∫
p∈C

∏t
τ=1 p(yτ )dµ0(p)∫

p∈P
∏t
τ=1 p(yτ )dµ0(p)

. (Bayes Rule)
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• The empirical distribution ft ∈ P is

ft(z) = 1
t

t∑
τ=1

1yτ=z .

• Let H : P × P → R̄ denote the (possibly infinite) KL
divergence of q with respect to p:

H(q, p) =
∑
z∈Y

q(z) log
(
q(z)
p(z)

)
.

with the convention that 0
0 = 0 and 0 log 0 = 0.

• The KL minimizers for q are M(q) = argminp∈ΘH(q, p).
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• The log-likelihood of yt under distribution p is

log
(

t∏
τ=1

p(yτ )
)

=
∑
z∈Y

t ft(z) log p(z)

= −tH(ft, p) + t
∑
z∈Y

ft(z) log ft(z) .

• Thus M(ft) corresponds to the outcome distributions that
maximize the likelihood of yt.
• And the posterior odds ratio for a set C is

µt(C)
1− µt(C) =

∫
π∈C exp(−H(ft, π)t)dµ0(π)∫
π/∈C exp(−H(ft, π)t)dµ0(π) .

• Mε(f) is the set of distributions that come within ε of the
minimum KL divergence:

Mε(f) =
{
p′ ∈ Θ : H(f, p′) ≤ min

p∈Θ
H(f, p) + ε

}
.
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Uniform Pathwise Concentration
• The prior µ0 is φ positive if for φ : R++ → R++, we have
µ0(Bε(p)) ≥ φ(ε) for every p ∈ P and ε > 0.

Theorem (Diaconis and Freedman 1990)

If µ0 is φ positive, for every α ∈ (0, 1) there is a function
Ãα : R++ → R++ such that

µt(Bε(ft))
1− µt(Bε(ft))

≥ Ãα(ε) exp(αεt),

for all ε ∈ (0, 1), t ∈ N, and ft ∈ ∆(Y ).

• In words, the beliefs concentrate around the empirical
distribution at a uniform and exponential rate.
• Choosing larger α yields a better rate but a smaller
multiplicative term; in the medium run and for small φ
functions an intermediate α provides the best bound.
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Limitations of φ positivity

• φ positivity rules out cases where the support of the prior

– is finite

– corresponds to a parametric model with dimension less than
that of Y , or

– rules out the true data generating process.

• We relax φ positivity: µ0 is φ positive on Θ if for
φ : R++ → R++ we have µ0(Bε(p)) ≥ φ(ε) for every
p ∈ Θ ≡ suppµ0 and every ε > 0.

• Let ∆Θ(Y ) be the set of empirical distributions for which
Bayes rule is well defined.

• And let Dε(p) = Bε(Mε(p)) be the ε-ball around the ε-KL
minimizers for p.
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Theorem (“Uniform Pathwise Bounds”)

If µ0 is φ positive on Θ, then for every α ∈ (0, 1), there is a
function Aα : R++ → R++ such that

µt(Dε(ft))
1− µt(Dε(ft))

≥ Aα(ε) exp(αεt) ,

for all ε ∈ (0, 1), t ∈ N and ft ∈ ∆Θ(Y ).

• Exponential convergence rate as in Diaconis Freedman, but
now around the ε-KL minimizers Dε(ft) = Bε(Mε(ft)).
• Beliefs needn’t concentrate around the empirical frequency ft
because ft might not be in the support of the prior.
• If Θ is convex points can strengthen this to the ε ball
Bε(M(ft)) around the exact minimizers M(ft).
• But need convexity as otherwise points far from the
minimizers can have almost the same divergence.
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Proof Sketch

• For any α ∈ (0, 1) there is a wedge of αε in the KL divergence
between distributions outside Dε(ft) and those inside a
sufficiently small ball around the exact KL-minimizers.

• We then use the lower semicontinuity of the KL divergence
and a compactness argument to show that there is a bound
for the size of this ball that holds uniformly over all empirical
distributions ft.

• This wedge guarantees the odds ratio µt(Dε(ft))
1−µt(Dε(ft)) grows at

an exponential rate.

• Then the result follows from φ positivity.
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Berk with a Convergence Rate

Theorem (Berk 1966)

If Θ is regular, then for all ε ∈ (0, 1)

lim
t→∞

µt(Bε(M(p∗))) = 1 p∗-a.s.

• Here “regular” is a set of technical conditions that are
satisfied in our setting if every p ∈ Θ is arbitrarily close to a
p′ ∈ Θ that has full support.

Theorem
If Θ is regular and µ0 is φ positive on Θ, then for every ε ∈ (0, 1)
with probability 1−O(exp(−t)), µt(Θ \Bε(M(p∗))) is
O
(√
t exp(−Kt)

)
.

• This follows from the uniform pathwise bound and the CLT.
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Learning from Endogenous Data
• Every period t ∈ N, the agent chooses an action a from the

finite set A.

• Action a has two consequences:
– Induces objective probability distribution p∗

a ∈ ∆ (Y );
– Directly influences the agent’s payoff through u : A× Y → R.

• Now the agent’s beliefs p are over action-dependent outcome
distributions with components pa.

• A (pure) policy π :
⋃∞
t=0A

t × Y t → A specifies an action for
every history (aτ , yτ )tτ=0 = (at, yt) ∈ At × Y t.

• The policy is chosen to maximize expected discounted utility
with discount factor β ∈ [0, 1).

• BR (µ) = arg maxa∈A
∫
P Epa [u(a, y)] dµ(p) is the set of

myopic best replies to belief µ.
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Berk-Nash Equilibrium
• For each action a, let Θ̂ (a) = argmin

p∈Θ
H (p∗a, pa) .

This is the set of action-contingent outcome distributions in
Θ that minimize the KL divergence relative to p∗a when the
agent plays a.
• Action a is a Berk-Nash equilibrium (Esponda and Pouzo
[2016]) if there is a belief ν ∈ ∆(Θ̂ (a)) such that a is
myopically optimal given ν.
• Agents need not be very patient, so they may have little or no
data about the consequences of some actions.
• Two outcome distributions p, p′ ∈ Θ are observationally
equivalent under action a if pa = p′a.
• Let Ea(p) ⊆ Θ denote the outcome distributions in Θ that are
observationally equivalent to p under a.
• While playing a the agent never updates the relative likelihood
of the two distributions in the same equivalence class Ea(p).
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Refinements of Berk-Nash Equilibrium

Definition (Uniform and Uniformly Strict Berk-Nash Equilibria)
Action a is a
(i) uniform Berk-Nash equilibrium if for every KL minimizing

outcome distribution p ∈ Θ̂(a), there is a belief over the
observationally equivalent distributions ν ∈ ∆ (Ea(p)) such
that a ∈ BR(ν).

(ii) uniformly strict Berk-Nash equilibrium if {a} = BR(ν) for
every belief in ν ∈ ∆(Θ̂ (a)).

• When the agent is correctly specified (i.e. p∗ ∈ Θ), p∗a is the
unique KL minimizer for a, so

Uniform B-N = B-N = Self-Confirming.

• When are there multiple KL Miminimizers?
16 / 47



Technical Assumptions
• The prior µ0 has subexponential decay: there is φ : R+ → R

such that for every p ∈ Θ and ε > 0, µ0(Bε(p)) ≥ φ(ε) with

limφ(K/n) exp(n) =∞ ∀K > 0.

• A strengthening of φ-positivity.

• Priors with a density that is bounded away from 0 on their
support, priors with finite support, and Dirichlet priors all have
subexponential decay. Fudenberg, He, and Imhof [2017] show
that Bayesian updating can behave oddly on priors w/o
subexponential decay.
• Simplyfing assumption for the talk: For all p ∈ Θ, p and
p∗ are mutually absolutely continuous. This guarantees that
no conceivable distribution is ruled out after a finite number
of observations.
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Only Uniform-Berk Nash Equilibria are Limit Actions

Theorem (Limit Actions are Uniform Berk-Nash Equilibria)
If actions converge to a ∈ A with positive probability, a is a
uniform Berk-Nash equilibrium.
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Proof Sketch
• The agent’s belief concentrates around the KL minimizers
from the empirical frequency at an exponential rate that is
uniform over the sample realizations.

• While playing a, the empirical frequency converges to p∗a.

• The difference between the empirical frequency and p∗a is a
random walk that oscillates towards the minimizers.

• By the Central Limit Theorem these oscillations die out at
rate 1√

t
, which is slower than the exponential concentration of

beliefs.
• So we can show that the beliefs concentrate around each
minimizer infinitely often.

• If a is not a uniform B-N, this induces the agent to switch to
another action.
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Possible Non-convergence
• Nyarko [1991] shows by example that misspecified learning
may not converge.

• Our theorem shows that if no equilibrium is uniform, actions
cannot converge; this may be easier to check than directly
verifying non-convergence.

• We show by example that uniform B-N equilibria need not
exist.

• One case where they do exist is if the agent is correctly
specified.
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Uniform Stability

Definition (Stability)
A Berk-Nash equilibrium a is uniformly stable if for every
κ ∈ (0, 1), there is an ε > 0 such that for all initial beliefs
ν ∈ ∆(Θ) such that ν(Θ̂(a)) > 1− ε, the action prescribed by any
optimal policy converges to a ∈ A with probability greater than
1− κ.

Theorem (Characterization theorem)
Action a ∈ A is uniformly stable if and only if it is a uniformly
strict Berk-Nash equilibrium.

Note that this covers the case where the agent perceives an
information value from experimentation, as in the example of
Fudenberg, Romanyuk, and Strack [2017].
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Proof Sketch
• If a is not a uniformly strict B-N there is some belief over

minimizers such that a is not strictly optimal, there is an
optimal policy where a is not the limit outcome.
• Conversely, if a uniformly strict, it is the unique myopic best

reply to every action- contingent outcome distribution p in a
ball around the KL minimizers P̂(a).
• And for any discount factor β ∈ (0, 1) a is the unique optimal
choice for beliefs in some smaller ball, as the probability of
learning from other actions becomes negligible.
• We then transform the odds ratio between the non-KL
minimizers and the minimizers to make it a positive
supermartingale, as in Frick, Iijima, and Ishii [2021].
• Then we generalize the “active supermartingales” of
Fudenberg and Levine [1993] to show that if this odds ratio
starts sufficiently low, it is unlikely to increase enough for the
agent to change their action.
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Positive Attractiveness

Definition (Positively Attracting)
Action a ∈ A is positively attracting if for every optimal policy π

Pπ
[

lim
t→∞

at = a

]
> 0 .

• Benaim and Hirsch [1999] show that linearly stable Nash
equilibria are positively attractive under stochastic fictitious
play.

• We show by example that uniformly strict BNE need not be
positively attractive.

• Uniformly strict BNE are positively attracting in some cases of
interest, such as when the agent believes that the distribution
over outcomes is the same for all actions (“causation neglect”)
or with one-dimensional priors and a supermodularity property.
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Which Misperceptions Persist?
• When will agents realize they are misspecified?
• Bayesian updating can’t lead to a positive probability on a
data generating process that lies outside the support of the
prior.
• We propose an evolutionary criterion to evaluate the stability
of misspecified Bayesian models.
• Each agent observes the actions and outcomes of the previous
generation, and uses them to update beliefs within their
subjective model.
• The agents then choose an action that is a best reply to these
beliefs.
• Different agents may employ different subjective models, and
the relative frequency of the models that induce better actions
increases over time.
• The steady states of this process coincide with Berk-Nash
equilibria.
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• “Mutations” lead some agents to adopt an expanded
subjective model with a larger support.
• They use the expanded model to make their inferences and
choose their actions.
• We then ask whether the use of the expanded model will
spread, or whether the existing model “resists mutations.”
• Not all equilibria are unstable, because the share of mutants
only increases if they do better than agents using the
prevailing paradigm.
• We consider two ways that subjective models can expanded:
“local” expansions to nearby subjective models, and
“one-hypothesis relaxations” that drop one of the hypotheses
that characterize the subjective model.
• We characterize stability in both cases.
• We apply the results to several common misspecifications.
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Parametric Models and Inference
• Objective contingent outcome distributions p∗(·|·) ∈ ∆(Y )A.
• A subjective model for an agent is the set of parameters

Θ ⊆ Rk they consider possible, where each θ ∈ Θ is
associated with family of probability distributions pθ(·|a).
• Let ψ ∈ ∆(A) be a distribution over actions in the population.
• Given a distribution ψ let

Hψ(p∗, pθ) =
∑
a∈A

ψ(a)H (p∗(·|a), pθ(·|a)) .

• Let Θ(ψ) denote KL minimizers for ψ:

Θ(ψ) : = argmin
θ∈Θ

Hψ(p∗, pθ).

• These are the parameters that best fit the data generated by
ψ.
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State of the System
• There is a continuum of agents.

• The state of the system is a finite-support joint distribution
π ∈ ∆(K×A) =: Π over the subjective models and actions of
the agents.

• Each agent’s posterior beliefs are supported on the
KL-minimizing parameters in their Θ with respect to the
distribution over actions in the last period.

• Agents play a best response to their beliefs.

• πt+1(·|Θ) ∈ ∆(A) denotes the distribution over actions played
at time t+ 1 by the agents with subjective model Θ when the
previous state is πt.
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Evolutionary Dynamics

• We assume that the share of agents with a particular
subjective model evolves according to a payoff monotone
(Samuelson and Zhang [1992]) dynamic T : Π→ ∆(K):
better-performing models increase their shares.

• In our model, the beliefs themselves are not inherited; what is
inherited is how to use observables to reach a conclusion.

• The offspring then learn from the data of the previous period.

• A solution of the system is a sequence of states where the
shares of the subjective models evolve according to T , and
agents play best replies to the KL-minimizers given the
previous period’s data.

• A steady state is a fixed point of that process, i.e. a constant
solution.
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Steady States and Mutations

Lemma
For all Θ ∈ K and ψ ∈ ∆(A), (δΘ × ψ) is a steady state if and
only if (Θ, ψ) is a Berk-Nash equilibrium.

Now we consider “mutations” that lead some agents to change
their subjective model.

Definition
π̄ is an ε mutation of a steady state δΘ × ψ to Θ′ ⊇ Θ if
(a) its marginal over subjective models is (1− ε)δΘ + εδΘ′ and
(b) π̄(·|Θ̃) ∈ ∆(BR(∆(Θ̃(ψ))))
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Resistance to Mutations

Definition
A Berk-Nash equilibrium (Θ, ψ) resists invasion by Θ′ if, after a
sufficiently small mutation, the aggregate behavior of the
population converges back to ψ.

Definition (Improving Mutations)
The ε mutation of a steady state δΘ × ψ to Θ′ is improving if Θ′
allows a lower KL divergence w.r.t. ψ than Θ does.

Proposition

A Berk-Nash equilibrium resists every mutation that is not
explanation improving: A more open-minded model can destabilize
an equilibrium only if it better explains the equilibrium distribution.
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Local Mutations

Definition (Local Mutations)
The ε expansion of Θ is Θε = {θ′ ∈ Rk : ∃θ ∈ Θ, ||θ − θ′|| ≤ ε}.

Definition
A Berk-Nash equilibrium (Θ, ψ) resists local mutations if it resists
invasion by every sufficiently small ε expansion of Θ.

• In a uniformly strict equilibria, the equilibrium action a is a
strict best response to every KL-minimizing parameter.
• So after a small mutation beliefs are concentrated on a
neighborhood where the unique best reply is still a.

Proposition

Every uniformly strict Berk-Nash equilibrium resists local
mutations.
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Most Improving Parameters
• Uniformly strict Berk-Nash equilibria need not exist.
• At other Berk-Nash equilibria, multiple strategies are a best
reply to some belief over KL-minimizers.
• Only some of these strategies are best replies to the KL
minimizers of the expanded model.
• The relative performance of these best replies and the
equilibrium is what determines resistance to local mutations.
• The most improving parameters at a steady state are

MΘ,ψ(ε) = argmin
θ∈Θε

Hψ (p∗, pθ) .

These parameters make the greatest local improvement in the
explanation of the equilibrium data.
• Following an ε expansion, the mutants’ beliefs will be
concentrated on these parameters.

32 / 47



Characterization

Proposition
• If all best replies to the most improving parameters at an
equilibrium induce a higher payoff, the equilibrium does not
resist local mutations.
• If the equilibrium is quasi-strict and some best reply to the the
most improving parameters give a lower payoff, the
equilibrium resists local mutations.

• An equilibrium is quasi-strict if all the best replies are played
with positive probability.
• If the equilibrium is not quasi-strict, the feedback gathered
from a tiny fraction of mutated agents playing a more
revealing action that is not used in equilibrium may change
the behavior of the old population, even if they were
performing better than the mutants.
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Monopoly Pricing and Linear Demand
• A monopolist faces demand function y = i∗ − l∗a+ ω.

• a is the price chosen by the monopolist and ω is a standard
normal shock.

• The monopolist’s payoff is u(a, y) = ay.

• It is uncertain about the the intercept i ∈ R and slope l ∈ R
of the demand function.

• The true values of the parameters are (i∗, l∗) = (42, 4).

• The monopolist has two actions, A = {2, 10}.

• Objectively optimal to use action 2.
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Nyarko [1994]
• The quasi-strict equilibrium ψ (2) = 1

5 is unstable to local
mutations because the most improving parameter relaxes the
unique binding constraint, allowing for a larger slope, which
induces the (optimal) low price.

(Green arrow points towards greatest KL improvement.)
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Esponda and Pouzo [2016]
• The quasi-strict equilibrium ψ (2) = 35

36 resists local mutations
because the most improving parameter has a larger intercept,
which induces the (suboptimal) high price.

(Green arrow points towards greatest KL improvement.)
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One-hypothesis Mutations
• We also consider agents whose subjective model is described
by a finite collection of hypotheses about the underlying
parameter.

• Quantitative statements like:

– Restrictions on the possible values of one of the dimensions of
the parameter, e.g. an overconfident agent who is sure that
their skill is higher than a threshold.

– Joint restrictions on the parameters, as independence between
two variables.

• The hypotheses describe the parts of the agent’s model that
can be separately relaxed by a mutation.

• Formally, there is a finite collection of continuous functions
(fi)mi=1, fi : Rk → R such that
Θ = {θ : fi(θ) ≥ 0, ∀i ∈ {1, ...,m}}.
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Definition
• The subjective model Θl is a one-hypothesis relaxation of

Θ = {θ ∈ Rk : fi(θ) ≥ 0,∀i ∈ {1, ...,m}}

if
Θ′ = {θ ∈ Rk : fi(θ) ≥ 0, ∀i ∈ {1, ...,m} \ {l}}.

• A Berk-Nash equilibrium (Θ, ψ) resists one-hypothesis
mutations if it resists invasion by every one-hypothesis
relaxation.

• Several collections of hypotheses can describe the same Θ,
and they can have different sets of one-hypothesis relaxations.

• This is natural, as the hypotheses are part of the agents’
model of the world.
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Taxation and Overshooting
• An agent chooses effort a ∈ A = {3, 4, 5} at cost
c(a) = 2a/3, and obtains income z = a+ ω, where
ω ∼ N(0, 1).
• The agent pays taxes x = τ∗(z), where τ∗ has two income

brackets, and the higher one is heavily taxed:

τ∗(z) =
{
z/6, if z ≤ 16/3
11
12z − 4, if z ≥ 16/3.

.
• The agent’s payoff is u(a, (z, x)) = z − x− c(a), so their

optimal action is 4.
• Their subjective model of the tax schedule is quadratic with
random coefficients:

τθ(z) = (θ1 + η)z + (θ2 + η)z2,

where η is a standard normal.
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• The agent observes y = (z, x) at the end of each period.

• The original paradigm is that the tax schedule is linear.

• Given any action a, the KL-minimizing parameter treats the
expected marginal rate as the actual average rate.

• The unique pure Berk-Nash equilibrium is uniformly strict and
has too much effort.

• An agent who drops the linearity assumption estimates a very
high quadratic term, because most realized income levels will
be near the shift point between brackets.

• They extrapolate this progressivity as a global feature which
leads them to choose the minimal action 3.

• The mutated agent overshoots the optimum, and the
equilibrium resists to “one-hypothesis” mutations.
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Figure: Misspecified Taxation Schedule
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Additive Lemons and Cursed Equilibrium, Esponda [2008]
• We extend the model to allow the agent to observe a signal at
the start of each period.
• We use this extension to explore the persistence of cursed
equilibria in a lemons problem where the buyer believes that
the seller’s ask price and value are independent.
• The agent is a buyer with valuation v = ω + 5 + s.
• Seller who owns the object and values it at ω.
• The signal s is a mean-zero shock independent of ω.
• The mechanism used is double action with price at the buyer’s
bid, so the seller sets their bid x equal to their value.
• The value ω is ω = 3, with probability 1/2, ω = 2 with
probability 1/4 and ω = 1 with probability 1/4.
• The value is observed only if a sale occurs.
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• A parameter is a probability distribution over prices, and a
conditional distribution over values given the price.

• The true distribution of values conditional on an ask price
depends on the price.

• However, the agent believes that the price and the value are
independent.
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Aligned Preferences
• Suppose the distribution of s is a point mass on 0.

• Then the objectively optimal strategy is to bid 3.

• Bidding 2 is a Berk-Nash equilibrium.

• The KL-minimizing parameter is an independent joint
probability distribution that is correct about the distribution of
seller bids.

• A mutation that drops the restriction that high values have
the same probability after each price has no effect: Because 3
is not accepted, the mutated agents cannot infer that there is
correlation at the high price level, and so they do not increase
their bid.
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• Suppose s instead that is uniform over {−1, 1}.
• The optimal strategy is still to always bid 3 after every signal.
• The strategy a = 2 + s is a Berk-Nash equilibrium— now the
agent sometimes bids 3.
• The KL-minimizer is again an independent joint probability
distribution that is correct about the distribution of seller bids.
• Since the value is observed only when a transaction occurs,
the observed distribution over values is too pessimistic, which
leads the agent to bids 1 after signal −1.
• The equilibrium does not resist one-hypothesis mutations: a
mutation that drops the restriction that high values have the
same probability after each price lets the agent realize the
high price is correlated with high value.
• Realizing this leads the agent to always bid high (a = 3).
• This did not happen without the noise since in that case the
agent never makes the high bid.
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Ongoing Research: Selective Memory
• Here we suppose that the agent’s memory is distorted through
a memory function ms : (Y ×A× S)→ [0, 1], which gives
the probability that the agent remembers the outcome, action,
signal triplet (y, a, s) when they observe signal s′.
• We assume the agent is unaware of their selective memory
and updates beliefs naively using Bayes rule.
• Past work (e.g. Mullinaithan [2002], Kahana [2012]. Bordalo
et al [2017]) focuses on the 1-step-ahead implication of
selective memory.
• We define a notion of “selective memory equilibrium” and
extend our concentration results to show that is is a necessary
condition for long-run outcomes.
• Now we are looking at various types of selective memory such
as associativeness and confirmation bias to see what we can
say about them.
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Thanks!
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When are there Multiple KL Miminimizers?

• For “generic priors” there is a unique KL minimizer for any
distribution p∗a.

• But symmetry or parametric restrictions are not generic.

• Example: suppose that y is the color of the ball drawn from
an urn which is known to contain 6 balls.

• The agent correctly believes their action doesn’t affect y.

• Outcome distributions correspond to the urn composition.

• The agent is certain that at most half of the balls have the
same color, i.e., that p(y) ≤ 1/2 for every y.
• In reality the urn has 4 white balls, 1 red, and 1 blue.
• So the two KL minimizers are (3 white, 2 blue, 1 red) and (3
white, 1 blue, 2 red). Text
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Infinitely Many Oscillations

• Fix a KL-minimizer qa for p∗a. Let Et be the event in which qa
is a KL minimizers for ft.
• We can show that the correlation between being a minimizer
at time t, and being a minimizer at time s, is not too large in
the sense

lim inf
t→∞

∑t
s=1

∑t
r=1 P[Es and Et](∑t
s=1 P[Es]

)2 > 0

• It then follows from the Kochen-Stone lemma that the
probability that infinitely many of the Et will realize is strictly
positive.
• The event “infinitely many Et realize” is invariant under finite
permutations so the Hewitt–Savage 0-1 law implies that the
probability must equal one. Text
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Payoff Monotonicity
• πt+1

K (Θ) = T (πt)(Θ), where T is continuous and such that
the dynamic is payoff monotone, meaning that

U∗(πt(·|Θ))
U∗(πt(·|Θ′)) > (=)1 =⇒ T (π)(Θ)

T (π)(Θ′) = πt+1
K (Θ)

πt+1
K (Θ′)

> (=) π
t
K(Θ)

πtK(Θ′) .

(1)
Back to slides
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Solution

Definition
A sequence (πt)t∈N0 ∈ ΠN0 is a solution if satisfies equations

πt+1(·|Θ) ∈ ∆(BR(∆(Θ(πtΠ))))

and

U∗(πt(·|Θ))
U∗(πt(·|Θ′)) > (=)1 =⇒ πt+1

K (Θ)
πt+1
K (Θ′)

> (=) π
t
K(Θ)

πtK(Θ′) .

for all t ∈ N0.

Back to slides
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Steady State

Definition
A steady state is a π̂ ∈ Π such that (π̂)t∈N0 is a solution and
π̂K = δΘ for some Θ ∈ K. A steady state is unitary if
π̂(·|Θ) ∈ ∆(BR(µ)) for some µ ∈ ∆(Θ(π̂A)).

Back to slides
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Resistance to Mutations

Definition
A Berk-Nash equilibrium (Θ, ψ) resists mutation to Θ′ if there is a
collection of solutions (πtε)t∈N0,ε∈(0,1), such that π0

ε is the ε
mutation of δΘ × ψ to Θ′, and

lim
ε→0

lim
t→∞

(πtε)A = ψ.

Back to slides
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