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Networks: Lecture 10 Introduction

Outline

Mixed Strategies

Existence of Mixed Strategy Nash Equilibrium in Finite Games

Characterizing Mixed Strategy Equilibria

Existence of Nash Equilibrium in Infinite Games

Extensive Form and Dynamic Games

Subgame Perfect Nash Equilibrium

Applications.

Reading:

Osborne, Chapters 3-6.
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Nonexistence of Pure Strategy Nash Equilibria

Example: Matching Pennies.

Player 1 \ Player 2 heads tails
heads (−1, 1) (1,−1)
tails (1,−1) (−1, 1)

No pure Nash equilibrium.

How would you play this game?
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Nonexistence of Pure Strategy Nash Equilibria

Example: The Penalty Kick Game.

penalty taker \ goalie left right
left (−1, 1) (1,−1)

right (1,−1) (−1, 1)

No pure Nash equilibrium.

How would you play this game if you were the penalty taker?

Suppose you always show up left.
Would this be a “good strategy”?

Empirical and experimental evidence suggests that most penalty
takers “randomize”→mixed strategies.
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Mixed Strategies

Let Σi denote the set of probability measures over the pure strategy
(action) set Si .

For example, if there are two actions, Si can be thought of simply as a
number between 0 and 1, designating the probability that the first
action will be played.

We use σi ∈ Σi to denote the mixed strategy of player i , and
σ ∈ Σ =

∏
i∈I Σi to denote a mixed strategy profile.

Note that this implicitly assumes that players randomize
independently.

We similarly define σ−i ∈ Σ−i =
∏

j 6=i Σj .

Following von Neumann-Morgenstern expected utility theory, we
extend the payoff functions ui from S to Σ by

ui (σ) =

∫
S

ui (s)dσ(s).
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Mixed Strategy Nash Equilibrium

Definition

(Mixed Nash Equilibrium): A mixed strategy profile σ∗ is a (mixed
strategy) Nash Equilibrium if for each player i ,

ui (σ
∗
i , σ
∗
−i ) ≥ ui (σi , σ

∗
−i ) for all σi ∈ Σi .

Proposition

Let G = 〈I, (Si )i∈I , (ui )i∈I〉 be a finite strategic form game. Then,
σ∗ ∈ Σ is a Nash equilibrium if and only if for each player i ∈ I, every
pure strategy in the support of σ∗i is a best response to σ∗−i .

Proof idea: If a mixed strategy profile is putting positive probability on a
strategy that is not a best response, then shifting that probability to other
strategies would improve expected utility.

6



Networks: Lecture 10 Mixed Strategies

Mixed Strategy Nash Equilibria (continued)

It follows that every action in the support of any player’s equilibrium
mixed strategy yields the same payoff.

Implication: it is sufficient to check pure strategy deviations, i.e., σ∗

is a mixed Nash equilibrium if and only if for all i ,

ui (σ
∗
i , σ
∗
−i ) ≥ ui (si , σ

∗
−i ) for all si ∈ Si .

Note: this characterization result extends to infinite games: σ∗ ∈ Σ
is a Nash equilibrium if and only if for each player i ∈ I, no action in
Si yields, given σ∗−i , a payoff that exceeds his equilibrium payoff, the
set of actions that yields, given σ∗−i , a payoff less than his equilibrium
payoff has σ∗i -measure zero.
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Examples

Example: Matching Pennies.

Player 1 \ Player 2 heads tails
heads (−1, 1) (1,−1)
tails (1,−1) (−1, 1)

Unique mixed strategy equilibrium where both players randomize with
probability 1/2 on heads.

Example: Battle of the Sexes Game.

Player 1 \ Player 2 ballet football
ballet (1, 4) (0, 0)

football (0, 0) (4, 1)

This game has two pure Nash equilibria and a mixed Nash equilibrium(
( 4

5 ,
1
5 ), ( 1

5 ,
4
5 )
)

.
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Weierstrass’s Theorem

Theorem

(Weierstrass) Let A be a nonempty compact subset of a finite
dimensional Euclidean space and let f : A→ R be a continuous function.
Then there exists an optimal solution to the optimization problem

minimize f (x)

subject to x ∈ A.

There exists no optimal    that attains it
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Kakutani’s Fixed Point Theorem

Theorem

(Kakutani) Let f : A ⇒ A be a correspondence, with x ∈ A 7→ f(x) ⊂ A,
satisfying the following conditions:

A is a compact, convex, and non-empty subset of a finite dimensional
Euclidean space.

f (x) is non-empty for all x ∈ A.

f (x) is a convex-valued correspondence: for all x ∈ A, f (x) is a
convex set.

f (x) has a closed graph: that is, if {xn, yn} → {x , y} with
yn ∈ f (xn), then y ∈ f (x).

Then, f has a fixed point, that is, there exists some x ∈ A, such that
x ∈ f (x).
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Definitions (continued)

A set in a Euclidean space is compact if and only if it is bounded and
closed.
A set S is convex if for any x , y ∈ S and any λ ∈ [0, 1],
λx + (1− λ)y ∈ S .

convex set not a convex set
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Kakutani’s Fixed Point Theorem—Graphical Illustration

is not convex-valued does not have a 
closed graph
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Nash’s Theorem

Theorem

(Nash) Every finite game has a mixed strategy Nash equilibrium.

Implication: matching pennies necessarily has a mixed strategy
equilibrium.

Why is this important?

Without knowing the existence of an equilibrium, it is difficult (perhaps
meaningless) to try to understand its properties.
Armed with this theorem, we also know that every finite game has an
equilibrium, and thus we can simply try to locate the equilibria.
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Proof

Recall that σ∗ is a (mixed strategy) Nash Equilibrium if for each
player i ,

ui (σ
∗
i , σ
∗
−i ) ≥ ui (σi , σ

∗
−i ) for all σi ∈ Σi .

Define the best response correspondence for player i Bi : Σ−i ⇒ Σi as

Bi (σ−i ) =
{
σ′i ∈ Σi | ui (σ

′
i , σ−i ) ≥ ui (σi , σ−i ) for all σi ∈ Σi

}
.

Define the set of best response correspondences as

B (σ) = [Bi (σ−i )]i∈I .

Clearly
B : Σ ⇒ Σ.
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Proof (continued)

The idea is to apply Kakutani’s theorem to the best response
correspondence B : Σ ⇒ Σ. We show that B(σ) satisfies the
conditions of Kakutani’s theorem.

1 Σ is compact, convex, and non-empty.

By definition

Σ =
∏
i∈I

Σi

where each Σi = {x |
∑

xi = 1} is a simplex of dimension |Si | − 1,
thus each Σi is closed and bounded, and thus compact. Their finite
product is also compact.

2 B(σ) is non-empty.

By definition,
Bi (σ−i ) ∈ arg max

x∈Σi

ui (x , σ−i )

where Σi is non-empty and compact, and ui is linear in x . Hence, ui is
continuous, and by Weirstrass’s theorem B(σ) is non-empty.
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Proof (continued)

3. B(σ) is a convex-valued correspondence.

Equivalently, B(σ) ⊂ Σ is convex if and only if Bi (σ−i ) is convex for all
i . Let σ′i , σ

′′
i ∈ Bi (σ−i ).

Then, for all λ ∈ [0, 1] ∈ Bi (σ−i ), we have

ui (σ
′
i , σ−i ) ≥ ui (τ i , σ−i ) for all τ i ∈ Σi ,

ui (σ
′′
i , σ−i ) ≥ ui (τ i , σ−i ) for all τ i ∈ Σi .

The preceding relations imply that for all λ ∈ [0, 1], we have

λui (σ
′
i , σ−i ) + (1− λ)ui (σ

′′
i , σ−i ) ≥ ui (τ i , σ−i ) for all τ i ∈ Σi .

By the linearity of ui ,

ui (λσ
′
i + (1− λ)σ′′i , σ−i ) ≥ ui (τ i , σ−i ) for all τ i ∈ Σi .

Therefore, λσ′i + (1− λ)σ′′i ∈ Bi (σ−i ), showing that B(σ) is
convex-valued.
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Proof (continued)

4. B(σ) has a closed graph.

Supposed to obtain a contradiction, that B(σ) does not have a closed
graph.
Then, there exists a sequence (σn, σ̂n)→ (σ, σ̂) with σ̂n ∈ B(σn), but
σ̂ /∈ B(σ), i.e., there exists some i such that σ̂i /∈ Bi (σ−i ).
This implies that there exists some σ′i ∈ Σi and some ε > 0 such that

ui (σ
′
i , σ−i ) > ui (σ̂i , σ−i ) + 3ε.

By the continuity of ui and the fact that σn
−i → σ−i , we have for

sufficiently large n,

ui (σ
′
i , σ

n
−i ) ≥ ui (σ

′
i , σ−i )− ε.
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Proof (continued)

[step 4 continued] Combining the preceding two relations, we obtain

ui (σ
′
i , σ

n
−i ) > ui (σ̂i , σ−i ) + 2ε ≥ ui (σ̂

n
i , σ

n
−i ) + ε,

where the second relation follows from the continuity of ui . This
contradicts the assumption that σ̂n

i ∈ Bi (σ
n
−i ), and completes the

proof.

The existence of the fixed point then follows from Kakutani’s theorem.

If σ∗ ∈ B (σ∗), then by definition σ∗ is a mixed strategy equilibrium.
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Existence of Equilibria for Infinite Games

A similar theorem applies for pure strategy existence in infinite games.

Theorem

(Debreu, Glicksberg, Fan) Consider an infinite strategic form game
〈I, (Si )i∈I , (ui )i∈I〉 such that for each i ∈ I

1 Si is compact and convex;

2 ui (si , s−i ) is continuous in s−i ;

3 ui (si , s−i ) is continuous and concave in si [in fact quasi-concavity
suffices].

Then a pure strategy Nash equilibrium exists.
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Definitions

Suppose S is a convex set. Then a function f : S → R is concave if
for any x , y ∈ S and any λ ∈ [0, 1], we have

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y) .

concave function not a concave function
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Proof

Now define the best response correspondence for player i ,
Bi : S−i ⇒ Si ,

Bi (s−i ) =
{

s ′i ∈ Si | ui (s ′i , s−i ) ≥ ui (si , s−i ) for all si ∈ Si

}
.

Thus restriction to pure strategies.

Define the set of best response correspondences as

B (s) = [Bi (s−i )]i∈I .

and
B : S ⇒ S .
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Proof (continued)

We will again apply Kakutani’s theorem to the best response
correspondence B : S ⇒ S by showing that B(s) satisfies the
conditions of Kakutani’s theorem.

1 S is compact, convex, and non-empty.

By definition

S =
∏
i∈I

Si

since each Si is compact [convex, nonempty] and finite product of
compact [convex, nonempty] sets is compact [convex, nonempty].

2 B(s) is non-empty.

By definition,
Bi (s−i ) ∈ arg max

s∈Si

ui (s, s−i )

where Si is non-empty and compact, and ui is continuous in s by
assumption. Then by Weirstrass’s theorem B(s) is non-empty.
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Proof (continued)

3. B(s) is a convex-valued correspondence.

This follows from the fact that ui (si , s−i ) is concave [or quasi-concave]
in si . Suppose not, then there exists some i and some s−i ∈ S−i such
that Bi (s−i ) ∈ arg maxs∈Si ui (s, s−i ) is not convex.
This implies that there exists s ′i , s

′′
i ∈ Si such that s ′i , s

′′
i ∈ Bi (s−i ) and

λs ′i + (1− λ)s ′′i /∈ Bi (s−i ). In other words,

λui (s
′
i , s−i ) + (1− λ)ui (s

′′
i , s−i ) < ui (λs ′i + (1− λ) s ′′i , s−i ).

But this violates the concavity of ui (si , s−i ) in si [recall that for a
concave function f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y)].
Therefore B(s) is convex value.

4. The proof that B(s) has a closed graph is identical to the previous
proof in is left for the homework.
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Existence of Nash Equilibria

Can we relax concavity?

Example: Consider the game where two players pick a location
s1, s2 ∈ R2 on the circle. The payoffs are
u1(s1, s2) = −u2(s1, s2) = d(s1, s2), where d(s1, s2) denotes the
Euclidean distance between s1, s2 ∈ R2.

No pure Nash equilibrium.

However, it can be shown that the strategy profile where both mix
uniformly on the circle is a mixed Nash equilibrium.
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A More Powerful Theorem

Theorem

(Glicksberg) Consider an infinite strategic form game 〈I, (Si )i∈I , (ui )i∈I〉
such that for each i ∈ I

1 Si is compact and convex;

2 ui (si , s−i ) is continuous in si and s−i .

Then a mixed strategy Nash equilibrium exists.

The proof of this theorem is harder and we will not discuss it.

In fact, finding mixed strategies in continuous games is more
challenging and is beyond the scope of this course.
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Extensive Form Games

Extensive-form games model multi-agent sequential decision making.

For now, we will focus is on multi-stage games with observed actions.

Extensive form represented by game trees.

Additional component of the model, histories (i.e., sequences of
action profiles).

Extensive form games will be useful when we analyze dynamic games,
in particular, to understand issues of cooperation and trust in groups.
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Histories

Let Hk denote the set of all possible stage-k histories

Strategies are maps from all possible histories into actions:
sk
i : Hk → Si

Player 1

C D

E F G H

Player 2

(2,1) (3,0) (0,2) (1,3)

Example:

Player 1’s strategies: s1 : H0 = ∅ → S1; two possible strategies: C,D
Player 2’s strategies: s2 : H1 = {C ,D} → S2; four possible strategies:
EG,EH,FG, FH
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Strategies in Extensive Form Games

Consider the following two-stage extensive form version of matching
pennies.

Player 1

H T

H T H T

Player 2

(-1,1) (1,-1) (1,-1) (-1,1)

How many strategies does player 2 have?
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Strategies in Extensive Form Games (continued)

Recall: strategy should be a complete contingency plan.

Therefore: player 2 has four strategies:

1 heads following heads, heads following tails (HH,HT);
2 heads following heads, tails following tails (HH, TT);
3 tails following heads, tails following tails (TH, TT);
4 tails following heads, heads following tails (TH, HT).
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Strategies in Extensive Form Games (continued)

Therefore, from the extensive form game we can go to the strategic
form representation. For example:

Player 1/Player 2 (HH,HT ) (HH,TT ) (TH,TT ) (TH,HT )
heads (−1, 1) (−1, 1) (1,−1) (1,−1)
tails (1,−1) (−1, 1) (−1, 1) (1,−1)

So what will happen in this game?
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Strategies in Extensive Form Games (continued)

Can we go from strategic form representation to an extensive form
representation as well?
To do this, we need to introduce information sets. If two nodes are in
the same information set, then the player making a decision at that
point cannot tell them apart. The following two extensive form games
are representations of the simultaneous-move matching pennies.
These are imperfect information games.
Note: For consistency, first number is still player 1’s payoff.

Player 1

Player 2

H T

H T H T

(-1,1) (1,-1) (1,-1) (-1,1)

Player 2

H T

H T H T

Player 1

(-1,1) (1,-1) (1,-1) (-1,1)

31



Networks: Lecture 10 Extensive Form Games

Entry Deterrence Game

Entrant

In Out

A F

Incumbent

(2,1) (0,0)

(1,2)

Equivalent strategic form representation

Entrant\Incumbent Accommodate Fight
In (2, 1) (0, 0)

Out (1, 2) (1, 2)

Two pure Nash equilibria: (In,A) and (Out,F).
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Are These Equilibria Reasonable?

The equilibrium (Out,F) is sustained by a noncredible threat of the
monopolist

Equilibrium notion for extensive form games: Subgame Perfect
(Nash) Equilibrium

It requires each player’s strategy to be “optimal” not only at the start
of the game, but also after every history

For finite horizon games, found by backward induction

For infinite horizon games, characterization in terms of one-stage
deviation principle.
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Subgames

Recall that a game G is represented by a game tree. Denote the set
of nodes of G by VG .

A game has perfect information if all its information sets are
singletons (i.e., all nodes are in their own information set).

Recall that history hk denotes the play of a game after k stages. In a
perfect information game, each node v ∈ VG corresponds to a unique
history hk and vice versa. This is not necessarily the case in imperfect
or incomplete information games.

We say that a node x ∈ VG is a successor of node y ∈ VG , or y � x ,
if in the game tree we reach y through x .
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Subgames (continued)

Definition

(Subgames) A subgame G ′ of game G is given by the set of nodes
V x

G ⊂ VG in the game tree of G that are successors of some node x ∈ V x
G

[i.e., for all y ∈ V x
G , we have y � x] and are not successors of any node

y /∈ V x
G [i.e., for any z ∈ V x

G if there exists y such that z � y, then y � x].

A restriction of a strategy s subgame G ′, s|G ′ is the action profile
implied by s in the subgame G ′.
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Subgames: Examples

Player 1

H T

H T H T

Player 2

(-1,1) (1,-1) (1,-1) (-1,1)

Recall the two-stage extensive-form version of the matching pennies
game

In this game, there are two proper subgames and the game itself
which is also a subgame, and thus a total of three subgames.
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Subgame Perfect Equilibrium

Definition

(Subgame Perfect Equilibrium) A strategy profile s∗ is a Subgame
Perfect Nash equilibrium (SPE) in game G if for any subgame G ′ of G ,
s∗|G ′ is Nash equilibrium of G ′.

Loosely speaking, subgame perfection will remove noncredible threats,
since these will not be Nash equilibria in the appropriate subgames.

In the entry deterrence game, following entry, F is not a best
response, and thus not a Nash equilibrium of the corresponding
subgame. Therefore, (Out,F) is not a SPE.

How to find SPE? One could find all of the Nash equilibria, for
example as in the entry deterrence game, then eliminate those that
are not subgame perfect.

But there are more economical ways of doing it.
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Backward Induction

Backward induction refers to starting from the last subgames of a
finite game, then finding the Nash equilibria or best response strategy
profiles in the subgames, then assigning these strategies profiles to be
subgames, and moving successively towards the beginning of the
game.

Entrant

In Out

A F

Incumbent

(2,1) (0,0)

(1,2)
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Backward Induction (continued)

Theorem

Backward induction gives the entire set of SPE.

Proof: backward induction makes sure that in the restriction of the
strategy profile in question to any subgame is a Nash equilibrium.
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Existence of Subgame Perfect Equilibria

Theorem

Every finite perfect information extensive form game G has a pure strategy
SPE.

Proof: Start from the end by backward induction and at each step one
strategy is best response.

Theorem

Every finite extensive form game G has a SPE.

Proof: Same argument as the previous theorem, except that some
subgames need not have perfect information and may have mixed strategy
equilibria.
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Examples: Value of Commitment

Consider the entry deterrence game, but with a different timing as
shown in the next figure.

Entrant

Incumbent

In Out

A F

(2,1) (1,2) (0,0)

In Out

(1,2)

Note: For consistency, first number is still the entrant’s payoff.
This implies that the incumbent can now commit to fighting (how
could it do that?).
It is straightforward to see that the unique SPE now involves the
incumbent committing to fighting and the entrant not entering.
This illustrates the value of commitment. 41
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Examples: Stackleberg Model of Competition

Consider a variant of the Cournot model where player 1 chooses its
quantity q1 first, and player 2 chooses its quantity q2 after observing
q1. Here, player 1 is the Stackleberg leader.

Suppose again that both firms have marginal cost c and the inverse
demand function is given by P (Q) = α− βQ, where Q = q1 + q2,
where α > c .

This is a dynamic game, so we should look for SPE. How to do this?

Backward induction—this is not a finite game, but all we have seen
so far applies to infinite games as well.

Look at a subgame indexed by player 1 quantity choice, q1. Then
player 2’s maximization problem is essentially the same as before

max
q2≥0

π2 (q1, q2) = [P (Q)− c] q2

= [α− β (q1 + q2)− c] q2.

42



Networks: Lecture 10 Extensive Form Games

Stackleberg Competition (continued)

This gives best response

q2 =
α− c − βq1

2β
.

Now the difference is that player 1 will choose q1 recognizing that
player 2 will respond with the above best response function.

Player 1 is the Stackleberg leader and player 2 is the follower.
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Stackleberg Competition (continued)

This means player 1’s problem is

maximizeq1≥0 π1 (q1, q2) = [P (Q)− c] q1

subject to q2 =
α− c − βq1

2β
.

Or

max
q1≥0

[
α− β

(
q1 +

α− c − βq1

2β

)
− c

]
q1.
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Stackleberg Competition (continued)

The first-order condition is[
α− β

(
q1 +

α− c − βq1

2β

)
− c

]
− β

2
q1 = 0,

which gives

qS
1 =

α− c

2β
.

And thus

qS
2 =

α− c

4β
< qS

1

Why lower output for the follower?

Total output is

QS = qS
1 + qS

2 =
3 (α− c)

4β
,

which is greater than Cournot output. Why?
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