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Networks: Lecture 12 Introduction

Outline

Traffic equilibrium: the Pigou example

General formulation with single origin-destination pair

Multi-origin-destination traffic equilibria

Congestion games and atomic traffic equilibria

Potential functions and potential games

Network cost-sharing
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Reading:
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Jackson, Chapter 6.
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Networks: Lecture 12 Introduction

Motivation

Many games are played over networks, in the sense that players
interact with others linked to them through a network-like structure.

Alternatively, in several important games, the actions of players
correspond to a path in a given network.

The most important examples are choosing a route in a traffic problem
or in a data routing problem.
Other examples are cost sharing in network-like structures.

Finally, the formation of networks is typically a game-theoretic
(strategic) problem.

In this lecture, we take a first look at some of these problems,
focusing on traffic equilibria and formation of networks.
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Networks: Lecture 12 Wardrop Equilibria

The Pigou Example of Traffic Equilibrium

Recall the following simple example from lecture 9, where a unit mass of
traffic is to be routed over a network:

no congestion effects

delay depends on congestion

1 unit of traffic

System optimum (minimizing aggregate delay) is to split traffic equally
between the two routes, giving

min
x1+x2≤1

Csystem(xS) =
∑

i

li (xS
i )xS

i =
1

4
+

1

2
=

3

4
.

Instead, the Nash equilibrium of this large (non-atomic) game, also referred
to as Wardrop equilibrium, is x1 = 1 and x2 = 0 (since for any x1 < 1,
l1 (x1) < 1 = l2 (1− x1)), giving an aggregate delay of

Ceq(xWE ) =
∑

i

li (xWE
i )xWE

i = 1 + 0 = 1 >
3

4
.
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Networks: Lecture 12 Wardrop Equilibria

The Wardrop Equilibrium

Why the Wardrop equilibrium?

It is nothing but a Nash equilibrium in this game, in view of the fact
that it is non-atomic—each player is infinitesimal. Thus, taking the
strategies of others as given is equivalent to taking aggregates, here
total traffic on different routes, as given.

Therefore, the Wardrop equilibrium (or the Nash equilibrium of a
large game) is a convenient modeling tool when each participant in
the game is small.

A small technical detail: so far we often took the set of players, I, to
be a finite set. But in fact nothing depends on this, and in non-atomic
games, I is typically taken to be some interval in R, e.g., [0, 1].
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Networks: Lecture 12 Wardrop Equilibria

More General Traffic Model

Let us now generalize the Pigou example. In the general model, there
are several origin-destination pairs and multiple paths linking these
pairs

2

22

2

3x 1

0 0

0 0

x+1

Cost = 2x1 + 2x3=8
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Networks: Lecture 12 Wardrop Equilibria

More General Traffic Model: Notation

Let us start with a single origin-destination pair.

Directed network N = (V ,E ).

P denotes the set of paths between origin and destination.

xp denotes the flow on path p ∈ P.

Each link i ∈ E has a latency function li (xi ), where

xi =
∑

{p∈P|i∈p}

xp.

Here the notation p ∈ P|i ∈ p denotes the paths p that traverse link
i ∈ E .

The latency function captures congestion effects. Let us assume for
simplicity that li (xi ) is nonnegative, differentiable, and nondecreasing.

We normalize total traffic to 1 and in the context of the game
theoretic formulation here, I = [0, 1]. We also assume that all traffic
is homogeneous. Each motorist wishes to minimize delay.
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Networks: Lecture 12 Wardrop Equilibria

More General Traffic Model (continued)

We denote a routing pattern by the vector x. If it satisfies the two
constraints above, it is a feasible routing pattern.

The total delay (latency) cost of a routing pattern x is:

C (x) =
∑
i∈E

xi li (xi ),

that is, it is the sum of latencies li (xi ) for each link i ∈ E multiplied
by the flow over this link, xi , summed over all links E .
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Networks: Lecture 12 Wardrop Equilibria

Socially Optimal Routing

Socially optimal routing, defined as the routing pattern minimizing
aggregate delay, is given by xS that is a solution to the following
problem

minimize
∑
i∈E

xi li (xi )

subject to
∑

{p∈P|i∈p}

xp = xi , for all i ∈ E ,

∑
p∈P

xp = 1 and xp ≥ 0 for all p ∈ P.
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Networks: Lecture 12 Wardrop Equilibria

Wardrop Equilibrium

What is a Wardrop equilibrium?

Since it is a Nash equilibrium, it has to be the case that for each
motorist their routing choice must be optimal.

This implies that if a motorist k ∈ I is using path p, then there does
not exist path p′ such that∑

i∈p

li (xi ) <
∑
i∈p′

li (xi ).

Put differently, x must be such that

(1) For all p, p′ ∈ P with xp, xp′ > 0,
∑
i∈p′

li (xi ) =
∑
i∈p

li (xi ).

(2) For any p ∈ P and p′ /∈ P with xp > 0 and xp′ = 0,∑
i∈p′

li (xi ) ≥
∑
i∈p

li (xi ).
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Networks: Lecture 12 Wardrop Equilibria

Characterizing Wardrop Equilibria

Theorem

A feasible routing pattern xWE is a Wardrop equilibrium if and only if it is
a solution to

minimize
∑
i∈E

∫ xi

0
li (z) dz

subject to
∑

{p∈P|i∈p}

xp = xi , for all i ∈ E ,

∑
p∈P

xp = 1 and xp ≥ 0 for all p ∈ P.

Moreover, if each li is strictly increasing, then xWE is unique.

Note that by Weierstrass’s Theorem, a solution exists, and thus a
Wardrop equilibrium always exists.
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Networks: Lecture 12 Wardrop Equilibria

Proof

Rewrite the minimization problem as

minimize
∑
i∈E

∫ ∑
i∈p xp

0
li (z) dz

subject to
∑
p∈P

xp = 1 and xp ≥ 0 for all p ∈ P.

Since each li is nondecreasing, this is a convex program. Therefore,
first-order conditions are necessary and sufficient.

First-order conditions with respect to xp are∑
i∈p

li

(
xWE
i

)
≥ λ

with the complementary slackness, i.e., with equality whenever
xWE
p > 0.
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Networks: Lecture 12 Wardrop Equilibria

Proof (continued)

Here λ is the Lagrange multiplier on the constraint
∑

p∈P xp = 1.

The Lagrange multiplier will be equal to the lowest cost path, which
then implies the result that for all p, p′ ∈ P with xWE

p , xWE
p′ > 0,∑

i∈p′ li (xWE
i ) =

∑
i∈p li (xWE

i ). And clearly, for paths with xWE
p = 0,

the cost can be higher.

Finally, if each li is strictly increasing, then the set of equalities∑
i∈p′ li (xWE

i ) =
∑

i∈p li (xWE
i ) admits unique solution, establishing

uniqueness.
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Networks: Lecture 12 Wardrop Equilibria

Inefficiency of the Equilibrium

We saw from the Pigou example that the Wardrop equilibrium fails to
minimize total delay—hence it is inefficient.

In fact, it can be arbitrarily inefficient. Consider the following figure,
which is the same as the Pigou example, except with a different
latency on path 1.

1 unit of traffic
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Networks: Lecture 12 Wardrop Equilibria

Inefficiency of the Equilibrium (continued)

In this example, socially optimal routing again involves

l1 (x1) + x1l ′1 (x1) = l2 (1− x1) + (1− x1) l ′2 (1− x1)

xk
1 + kxk

1 = 1

Therefore, the system optimum sets x1 = (1 + k)−1/k and

x2 = 1− (1 + k)−1/k , so that

min
x1+x2≤1

Csystem(xS) =
∑

i

li (xS
i )xS

i = (1 + k)−
k+1
k + 1− (1 + k)−1/k .
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Networks: Lecture 12 Wardrop Equilibria

Inefficiency of the Equilibrium (continued)

The Wardrop equilibrium again has x1 = 1 and x2 = 0 (since once
again for any x1 < 1, l1 (x1) < 1 = l2 (1− x1)). Thus

Ceq(xWE ) =
∑

i

li (xWE
i )xWE

i = 1 + 0 = 1.

Therefore, the Price of anarchy is now

Csystem(xS)

Ceq(xWE )
= (1 + k)−

k+1
k + 1− (1 + k)−1/k .

This limits to 0 as k →∞ (the first term tends to zero, while the last
term limits to 1).

Thus the equilibrium can be “arbitrarily” inefficient relative to the
social optimum.
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Networks: Lecture 12 Wardrop Equilibria

Further Paradoxes of Decentralized Equilibrium: Braess’s
Paradox

Idea: Addition of an intuitively helpful route negatively impacts
network users.

Paradoxical, since the addition of another route should help traffic. In
fact, the addition of a link can never increase aggregate delay in the
social optimum.

But the situation is different in a Wardrop equilibrium.

This idea was first introduced in transportation networks by Braess.
Hence the name of the paradox.
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Networks: Lecture 12 Wardrop Equilibria

Further Paradoxes of Decentralized Equilibrium: Braess’s
Paradox (continued)

x

   traffic

1/2

1/2

1

1 x

x

1 unit of

eq

sysC     = 3/2
C   = 1/2 (1/2+1) + 1/2 (1/2+1) = 3/2

1

x

eqC   = 1 + 1 = 2

sysC    = 3/2

0
1 unit of
   traffic

1

1
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Networks: Lecture 12 Multiple Origin-Destination Pairs

Multiple Origin-Destination Pairs

The above model is straightforward to generalize to multiple
origin-destination pairs.

Suppose that there are K such pairs (some of them having possibly
the same origin or destination).

Origin-destination pair j has total traffic rj .

Let us denote the set of paths for origin-destination pair j by Pj , and
now P = ∪jPj .

Then the socially optimal routing pattern is a solution to

minimize
∑
i∈E

xi li (xi )

subject to
∑

{p∈P|i∈p}

xp = xi , i ∈ E ,

∑
p∈Pj

xp = rj , j = 1, . . . , k , and xp ≥ 0 for all p ∈ P.
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Networks: Lecture 12 Multiple Origin-Destination Pairs

Wardrop Equilibrium with Multiple Origin-Destination Pairs

Essentially the same characterization theorem for Wardrop equilibrium
applies with multiple origin-destination pairs.

Theorem

A feasible routing pattern xWE is a Wardrop equilibrium if and only if it is
a solution to

minimize
∑
i∈E

∫ xi

0
li (z) dz

subject to
∑

{p∈P|i∈p}

xp = xi , i ∈ E ,

∑
p∈Pj

xp = rj , j = 1, . . . , k, and xp ≥ 0 for all p ∈ P.

Moreover, if each li is strictly increasing, then xWE is uniquely defined.
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Networks: Lecture 12 Congestion Games

Congestion Games

A Wardrop equilibrium presumes that there are so many players that
they all take aggregates as given.

This “non-atomic” player assumption is a good approximation for
many situations. But in others, players may be large and may thus
naturally take into account their effect on the total amount of traffic
on a particular path.

For example, United Airlines would naturally take into account the
congestion implications of using Washington Dulles as a hub.

This would be a special case of a congestion game.
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Networks: Lecture 12 Congestion Games

Congestion Games (continued)

Congestion Model: C = 〈I,M, (Si )i∈I , (c j)j∈M〉 where

I = {1, 2, · · · , I} is the set of players.

M = {1, 2, · · · ,m} is the set of resources.

Si ⊂M is the set of resource combinations (e.g., links or common
resources) that player i can take/use. A strategy for player i is
si ∈ Si , corresponding to the resources that this player is using.

c j(k) is the benefit for the negative of the cost to each user who uses
resource j if k users are using it.

Define congestion game 〈I, (Si ), (ui )〉 with utilities

ui (si , s−i ) =
∑
j∈si

c j(kj),

where kj is the number of users of resource j under strategies s.

How do we analyze congestion games? To do so, we will introduce a
more general class of games called potential games.
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Networks: Lecture 12 Potential Games

Potential Games

A finite game (or a game with a finite number of players but with
infinite strategy spaces) is a potential game [ordinal potential game,
exact potential game] if there exists a function Φ : S → R such that
Φ (si , s−i ) gives information about ui (si , s−i ) for each i ∈ I.

If so, Φ is referred to as the potential function.

The potential function has a natural analogy to “energy” in physical
systems. It will be useful both for locating pure strategy Nash
equilibria and also for the analysis of “myopic” dynamics in the next
lecture.
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Networks: Lecture 12 Potential Games

Potentials

A function Φ : S → R is called an ordinal potential function for the
game G if for each i ∈ I and all s−i ∈ S−i ,

ui (x , s−i )−ui (z , s−i ) ≥ 0 iff Φ(x , s−i )−Φ(z , s−i ) ≥ 0, for all x , z ∈ Si ,

and

ui (x , s−i )−ui (z , s−i ) > 0 iff Φ(x , s−i )−Φ(z , s−i ) > 0, for all x , z ∈ Si .

A function Φ : S → R is called an exact potential function for the
game G if for each i ∈ I and all s−i ∈ S−i ,

ui (x , s−i )− ui (z , s−i ) = Φ(x , s−i )− Φ(z , s−i ), for all x , z ∈ Si .
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Networks: Lecture 12 Potential Games

Potential Games

A finite game G is called an ordinal (exact) potential game if it
admits an ordinal (exact) potential.

In what follows, we refer to ordinal potential games as potential
games, and only add the “exact” qualifier when this is necessary.

A game G with infinite strategy space and finite number of players is
a potential game if it admits a continuous potential function.
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Networks: Lecture 12 Potential Games

Pure Strategy Nash Equilibria in Potential Games

Theorem

Every potential game has at least one pure strategy Nash equilibrium.

Proof: The global maximum of an ordinal potential function is a pure
strategy Nash equilibrium. To see this, suppose that s∗ corresponds
to the global maximum. Then, for any i ∈ I, we have, by definition,
Φ(s∗i , s

∗
−i )− Φ(s, s∗−i ) ≥ 0 for all s ∈ Si . But since Φ is a potential

function,

ui (s∗i , s
∗
−i )−ui (s, s∗−i ) ≥ 0 iff Φ(s∗i , s

∗
−i )−Φ(s, s∗−i ) ≥ 0, for alls ∈ Si .

Therefore, ui (s∗i , s
∗
−i )− ui (s, s∗−i ) ≥ 0 for all s ∈ Si and for all i ∈ I.

Hence s∗ is a pure strategy Nash equilibrium.

Note, however, that there may also be other pure strategy Nash
equilibria corresponding to local maxima.
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Networks: Lecture 12 Potential Games

Examples of Ordinal Potential Games

Example: Cournot competition.

I firms choose quantity qi ∈ (0,∞)

The payoff function for player i given by ui (qi , q−i ) = qi (P(Q)− c).

We define the function Φ(q1, · · · , qI ) =
(∏I

i=1 qi

)
(P(Q)− c).

Note that for all i and all q−i ,

ui (qi , q−i )− ui (q′i , q−i ) > 0 iff Φ(qi , q−i )− Φ(q′i , q−i ) > 0 for all qi , q
′
i > 0.

Φ is therefore an ordinal potential function for this game.
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Networks: Lecture 12 Potential Games

Examples of Exact Potential Games

Example: Cournot competition (again).

Suppose now that P(Q) = a− bQ and costs ci (qi ) are arbitrary.

We define the function

Φ∗(q1, · · · , qn) = a
I∑

i=1

qi − b
I∑

i=1

q2
i − b

I∑
1≤i<l≤I

qiql −
I∑

i=1

ci (qi ).

It can be shown that for all i and all q−i ,

ui (qi , q−i )− ui (q′i , q−i ) = Φ∗(qi , q−i )− Φ∗(qi , q
′
−i ), for all qi , q

′
i > 0.

Φ is an exact potential function for this game.
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Networks: Lecture 12 Potential Games

Congestion and Potential Games

Theorem

Every congestion game is a potential game and thus has a pure strategy
Nash equilibrium.

Proof: For each j define k̄ i
j as the usage of resource j excluding

player i , i.e.,

k̄ i
j =

∑
i ′ 6=i

I [j ∈ si ′ ] ,

where I [j ∈ si ′ ] is the indicator for the event that j ∈ si ′ .

With this notation, the utility difference of player i from two
strategies si and s ′i (when others are using the strategy profile s−i ) is

ui (si , s−i )− ui (s ′i , s−i ) =
∑
j∈si

c j(k̄ i
j + 1)−

∑
j∈s′i

c j(k̄ i
j + 1).
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Networks: Lecture 12 Potential Games

Proof Continued

Now consider the function

Φ(s) =
∑

j∈
⋃

i′∈I si′

 kj∑
k=1

c j(k)

 .
We can also write

Φ(si , s−i ) =
∑

j∈
⋃

i′ 6=i

si′

 k̄ i
j∑

k=1

c j(k)

+
∑
j∈si

c j(k̄ i
j + 1).
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Networks: Lecture 12 Potential Games

Proof Continued

Therefore:

Φ(si , s−i )− Φ(s ′i , s−i ) =
∑

j∈
⋃

i′ 6=i

si′

 k̄ i
j∑

k=1

c j(k)

+
∑
j∈si

c j(k̄ i
j + 1)

−
∑

j∈
⋃

i′ 6=i

si′

 k̄ i
j∑

k=1

c j(k)

+
∑
j∈s′i

c j(k̄ i
j + 1)

=
∑
j∈si

c j(k̄ i
j + 1)−

∑
j∈s′i

c j(k̄ i
j + 1)

= ui (si , s−i )− ui (s ′i , s−i ).
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Network Cost Sharing

Consider the problem of sharing the cost of some network resources
among participants.

Directed graph N = (V ,E ) with edge cost ce ≥ 0, k players.

Each player i has a set of nodes Ti he wants to connect.

A strategy of player i set of edges Si ⊂ E such that Si connects to all
nodes in Ti .

Cost sharing mechanism: All players using an edge split the cost
equally

Given a vector of player’s strategies S = (S1, . . . ,Sk), the cost to
agent i is Ci (S) =

∑
e∈Si

(ce/xe), where xe is the number of agents
whose strategy contains edge e.
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Networks: Lecture 12 Potential Games

Network Cost Sharing (continued)

The game here involves each player simultaneously choosing Si ⊂ E .

This immediately implies:

Proposition

The network cost-sharing game is a potential game and thus has a pure
strategy Nash equilibrium.

In fact, network cost sharing games typically have several equilibria.

As a trivial example, in a network consisting of two links with equal
(or similar) costs and I players who could all use either link, there are
two pure strategy equilibria: all players using link 1 or all players using
link 2.
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Networks: Lecture 12 Network Formation

A Simple Game of Network Formation

The model of network cost sharing can be viewed as a specific
instance of “endogenous network formation”. However, the most
interesting aspect of network formation, the benefits as well as the
cost of forming links, are absent from this model.

Let us now consider a simple game of network formation.

There are I symmetric players. The set of possible graphs (networks)
is denoted by G, and corresponds to all possible configurations of links
between the I players.

The utility function of player i is

ui : G → R,

and assigns a utility level to every possible network configuration.
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Networks: Lecture 12 Network Formation

A Simple Game of Network Formation (continued)

More specifically, suppose that for any network g ∈ G, we have

ui (g) =
∑
j 6=i

b (`ij (g))− di (g) c ,

where:

c is the cost of a direct connection;
di (g) is the degree of player i in the network g ;
`ij (g) is the distance between player i and player j in the network g ,
with the convention that `ij (g) =∞ if the two players are not
connected;
b : N→ R is a benefit function depending on the distance; we assume
that b (·) is strictly decreasing and b (∞) = 0.

A network g ∈ G is “efficient” if there does not exist g ′ ∈ G such that

U ′ =
I∑

i=1

∑
j 6=i

b (`ij (g ′))− di (g ′) c

 > U =
I∑

i=1

∑
j 6=i

b (`ij (g))− di (g) c

 .
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Networks: Lecture 12 Network Formation

Pairwise Stability

We can next study the equilibrium networks that will emerge in this
game. For example, as in the network cost sharing game, we could
look for the simultaneous move games and study the pure strategy
Nash equilibria. However, as shown in that discussion, there are many
such equilibria, and multiplicity problem becomes worse when the
formation of a link requires “agreement” from two parties.

An alternative proposed by Jackson and Wolinsky (1996) “A
Strategic Model of Social and Economic Networks” is to look at the
concept of pairwise stability.
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Pairwise Stability (continued)

Pairwise stability requires that there are no profitable deviations by a
pair of agents by either adding a new link or by removing an existing
link.

More formally, a network g is pairwise stable if

1 For all {i , j} ∈ g , ui (g) ≥ ui (g − {i , j}) and uj (g) ≥ uj (g − {i , j});
and

2 For all {i , j} /∈ g , if ui (g) > ui (g + {i , j}), then
uj (g) < uj (g + {i , j}).
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Pairwise Stability and Efficiency in Network Formation

Suppose that
b (1) < c < b (1) + (I − 2) b (2) .

Then, the efficient network is a star network.

To see this, note that in a star network all nodes except the star have
utility

ui (g) = b (1)− c + (I − 2) b (2) ,

since they are connected only to the star and are distance equal to 2
from all other nodes (of which there are I − 2).

The utility of the star node is

ui (g) = (I − 1) [b (1)− c] .

38



Networks: Lecture 12 Network Formation

Pairwise Stability and Efficiency in Network Formation
(continued)

Thus total utility is

U = (I − 1) {[b (1)− c + (I − 2) b (2)] + [b (1)− c]} .

Given symmetry, it is sufficient to check that total utility cannot be
increased by adding or subtracting one link.

Removing one link would lead to a new network with total utility

U ′ = (I − 2) {[b (1)− c + (I − 3) b (2)] + [b (1)− c]} .

Therefore

U ′ − U = −2 [b (1)− c]− 2 (I − 2) b (2) < 0,

since, by assumption, c < b (1) + (I − 2) b (2).
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Pairwise Stability and Efficiency in Network Formation
(continued)

Now imagine adding one more link. This would not change the
distance for all but two players and thus lead to total utility

U ′′ = (I − 3) [b (1)− c + (I − 2) b (2)] + (I − 1) [b (1)− c]

+2 {2 [b (1)− c] + (I − 3) b (2)} .

Then

U ′′ − U = 2 {2 [b (1)− c] + (I − 3) b (2)}
−2 [b (1)− c + (I − 2) b (2)]

= 2 (b (1)− c)− 2b (2) < 0,

in view of the fact that b (1) < c.
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Pairwise Stability and Efficiency in Network Formation
(continued)

However, the star network is not pairwise stable, since the utility of
the star is

ui (g) = (I − 1) [b (1)− c] < 0,

again in view of the fact that b (1) < c .

This example shows how efficient network formation is difficult to
achieve in general.

Intuitively, in this case, forming a link creates a positive externality
on others because it reduces the distance between other players.

This externality is not internalized and thus equilibrium networks will
tend to have too few links. Here the equilibrium notion, captured by
the pairwise stability concept, reflects this intuition.
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