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Reading:

Jackson, Sections 4.1.1 and 4.2.1-4.2.3.

2



Networks: Lecture 3 Introduction

Erdös-Renyi Random Graph Model

We use G (n, p) to denote the undirected Erdös-Renyi graph.

Every edge is formed with probability p ∈ (0, 1) independently of every
other edge.

Let Iij ∈ {0, 1} be a Bernoulli random variable indicating the presence of
edge {i , j}.
For the Erdös-Renyi model, random variables Iij are independent and

Iij =
{

1 with probability p,
0 with probability 1− p.

E[number of edges] = E [∑ Iij ] = n(n−1)
2 p

Moreover, using weak law of large numbers, we have for all α > 0

P

(∣∣∣∣∑ Iij −
n(n− 1)

2
p

∣∣∣∣ ≥ α
n(n− 1)

2

)
→ 0,

as n→ ∞. Hence, with this random graph model, the number of edges is a
random variable, but it is tightly concentrated around its mean for large n.
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Properties of Erdös-Renyi model

Recall statistical properties of networks:

Degree distributions
Clustering
Average path length and diameter

For Erdös-Renyi model:

Let D be a random variable that represents the degree of a node.
D is a binomial random variable with E[D ] = (n− 1)p, i.e.,
P(D = d) = (n−1

d )pd (1− p)n−1−d .
Keeping the expected degree constant as n→ ∞, D can be
approximated with a Poisson random variable with λ = (n− 1)p,

P(D = d) =
e−λλd

d !
,

hence the name Poisson random graph model.
This degree distribution falls off faster than an exponential in d , hence
it is not a power-law distribution.

Individual clustering coefficient≡ Cli (p) = p.
Interest in p(n)→ 0 as n→ ∞, implying Cli (p)→ 0.

Diameter:?
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Other Properties of Random Graph Models

Other questions of interest:

Does the graph have isolated nodes? cycles? Is it connected?

For random graph models, we are interested in computing the probabilities
of these events, which may be intractable for a fixed n.

Therefore, most of the time, we resort to an asymptotic analysis, where we
compute (or bound) these probabilities as n→ ∞.

Interestingly, often properties hold with either a probability approaching 1 or
a probability approaching 0 in the limit.

Consider an Erdös-Renyi model with link formation probability p(n) (again
interest in p(n)→ 0 as n→ ∞).
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The graph experiences a phase transition as a function of graph parameters
(also true for many other properties).
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Branching Processes

To analyze phase transitions, we will make use of branching processes.

The Galton-Watson Branching process is defined as follows:

Start with a single individual at generation 0, Z0 = 1.

Let Zk denote the number of individuals in generation k.

Let ξ be a nonnegative discrete random variable with distribution pk , i.e.,

P(ξ = k) = pk , E[ξ] = µ, var(ξ) 6= 0.

Each individual has a random number of children in the next generation,
which are independent copies of the random variable ξ.

This implies that

Z1 = ξ, Z2 =
Z1

∑
i=1

ξ(i)(sum of random number of rvs).

and therefore,

E[Z1] = µ, E[Z2] = E[E[Z2 | Z1]] = E[µZ1] = µ2,

and E[Zn] = µn.
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Branching Processes (Continued)

Let Z denote the total number of individuals in all generations,
Z = ∑∞

n=1 Zn.

We consider the events Z < ∞ (extinction) and Z = ∞ (survive
forever).

We are interested in conditions and with what probabilities these
events occur.
Two cases:

Subcritical (µ < 1) and supercritical (µ > 1)

Subcritical: µ < 1

Since E[Zn] = µn, we have

E[Z ] = E
[ ∞

∑
n=1

Zn

]
=

∞

∑
n=1

E
[
Zn

]
=

1

1− µ
< ∞,

(some care is needed in the second equality).

This implies that Z < ∞ with probability 1 and P(extinction) = 1.
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Branching Processes (Continued)

Supercritical: µ > 1

Recall p0 = P(ξ = 0). If p0 = 0, then P(extinction) = 0.

Assume p0 > 0.

We have ρ = P(extinction) ≥ P(Z1 = 0) = p0 > 0.

We can write the following fixed-point equation for ρ:

ρ =
∞

∑
k=0

pkρk = E[ρξ ] ≡ Φ(ρ).

We have Φ(0) = p0 (using convention 00 = 1) and Φ(1) = 1

Φ is a convex function (Φ′′(ρ) ≥ 0 for all ρ ∈ [0, 1]), and Φ′(1) = µ > 1.
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Figure: The generating function Φ has a unique fixed point ρ∗ ∈ [0, 1).
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Phase Transitions for Erdös-Renyi Model

Erdös-Renyi model is completely specified by the link formation probability
p(n).

For a given property A (e.g. connectivity), we define a threshold function
t(n) as a function that satisfies:

P(property A)→ 0 if
p(n)
t(n)

→ 0, and

P(property A)→ 1 if
p(n)
t(n)

→ ∞.

This definition makes sense for “monotone or increasing properties,”
i.e., properties such that if a given network satisfies it, any
supernetwork (in the sense of set inclusion) satisfies it.

When such a threshold function exists, we say that a phase transition occurs
at that threshold.

Exhibiting such phase transitions was one of the main contributions of the
seminal work of Erdös and Renyi 1959.
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Phase Transition Example

Define property A as A = {number of edges > 0}.
We are looking for a threshold for the emergence of the first edge.

Recall E[number of edges] =
n(n−1)

2 p(n) ≈ n2

2 p(n).

Assume
p(n)
2/n2 → 0 as n→ ∞. Then, E[number of edges]→ 0, which implies

that P(number of edges > 0)→ 0.

Assume next that
p(n)
2/n2 → ∞ as n→ ∞. Then, E[number of edges]→ ∞.

This does not in general imply that P(number of edges > 0)→ 1.

Here it follows because the number of edges can be approximated by a
Poisson distribution (just like the degree distribution), implying that

P(number of edges = 0) =
e−λλk

k !

∣∣∣∣∣
k=0

= e−λ.

Since the mean number of edges, given by λ, goes to infinity as n→ ∞, this
implies that P(number of edges > 0)→ 1.
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Phase Transitions

Hence, the function t(n) = 1/n2 is a threshold function for the emergence
of the first link, i.e.,

When p(n) << 1/n2, the network is likely to have no edges in the
limit, whereas when p(n) >> 1/n2, the network has at least one edge
with probability going to 1.

How large should p(n) be to start observing triples in the network?

We have E[number of triples] = n3p2, using a similar analysis we can
show t(n) = 1

n3/2 is a threshold function.

How large should p(n) be to start observing a tree with k nodes (and k − 1
arcs)?

We have E[number of trees] = nkpk−1, and the function
t(n) = 1

nk/k−1 is a threshold function.

The threshold function for observing a cycle with k nodes is t(n) = 1
n

Big trees easier to get than a cycle with arbitrary size!
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Phase Transitions (Continued)

Below the threshold of 1/n, the largest component of the graph includes no
more than a factor times log(n) of the nodes.

Above the threshold of 1/n, a giant component emerges, which is the
largest component that contains a nontrivial fraction of all nodes, i.e., at
least cn for some constant c .

The giant component grows in size until the threshold of log(n)/n, at which
point the network becomes connected.
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Phase Transitions (Continued)

Figure: A first component with more than two nodes: a random network on 50
nodes with p = 0.01.
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Phase Transitions (Continued)

Figure: Emergence of cycles: a random network on 50 nodes with p = 0.03.
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Phase Transitions (Continued)

Figure: Emergence of a giant component: a random network on 50 nodes with
p = 0.05.
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Phase Transitions (Continued)

Figure: Emergence of connectedness: a random network on 50 nodes with
p = 0.10.
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Threshold Function for Connectivity

Theorem

(Erdös and Renyi 1961) A threshold function for the connectivity of the Erdös

and Renyi model is t(n) = log(n)
n .

To prove this, it is sufficient to show that when p(n) = λ(n) log(n)
n with

λ(n)→ 0, we have P(connectivity)→ 0 (and the converse).

However, we will show a stronger result: Let p(n) = λ
log(n)

n .

If λ < 1, P(connectivity)→ 0, (1)

If λ > 1, P(connectivity)→ 1. (2)

Proof:

We first prove claim (1). To show disconnectedness, it is sufficient to show
that the probability that there exists at least one isolated node goes to 1.
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Proof (Continued)

Let Ii be a Bernoulli random variable defined as

Ii =
{

1 if node i is isolated,
0 otherwise.

We can write the probability that an individual node is isolated as

q = P(Ii = 1) = (1− p)n−1 ≈ e−pn = e−λ log(n) = n−λ, (3)

where we use limn→∞

(
1− a

n

)n
= e−a to get the approximation.

Let X = ∑n
i=1 Ii denote the total number of isolated nodes. Then, we have

E[X ] = n · n−λ. (4)

For λ < 1, we have E[X ]→ ∞. We want to show that this implies
P(X = 0)→ 0.

In general, this is not true.
Can we use a Poisson approximation (as in the previous example)? No,
since the random variables Ii here are dependent.
We show that the variance of X is of the same order as its mean.
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Proof (Continued)

We compute the variance of X , var(X ):

var(X ) = ∑
i

var(Ii ) + ∑
i

∑
j 6=i

cov(Ii , Ij )

= nvar(I1) + n(n− 1)cov(I1, I2)

= nq(1− q) + n(n− 1)
(

E[I1I2]−E[I1]E[I2]
)

,

where the second and third equalities follow since the Ii are identically
distributed Bernoulli random variables with parameter q (dependent).

We have
E[I1I2] = P(I1 = 1, I2 = 1) = P(both 1 and 2 are isolated)

= (1− p)2n−3 =
q2

(1− p)
.

Combining the preceding two relations, we obtain

var(X ) = nq(1− q) + n(n− 1)
[ q2

(1− p)
− q2

]
= nq(1− q) + n(n− 1)

q2p

1− p
.
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Proof (Continued)

For large n, we have q → 0 [cf. Eq. (3)], or 1− q → 1. Also p → 0. Hence,

var(X ) ∼ nq + n2q2 p

1− p
∼ nq + n2q2p

= nn−λ + λn log(n)n−2λ

∼ nn−λ = E[X ],

where a(n) ∼ b(n) denotes
a(n)
b(n) → 1 as n→ ∞.

This implies that

E[X ] ∼ var(X ) ≥ (0−E[X ])2P(X = 0),

and therefore,

P(X = 0) ≤ E[X ]
E[X ]2

=
1

E[X ]
→ 0.

It follows that P(at least one isolated node)→ 1 and therefore,
P(disconnected)→ 1 as n→ ∞, completing the proof.
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Converse

We next show claim (2), i.e., if p(n) = λ
log(n)

n with λ > 1, then
P(connectivity)→ 1, or equivalently P(disconnectivity)→ 0.

From Eq. (4), we have E[X ] = n · n−λ → 0 for λ > 1.

This implies probability of isolated nodes goes to 0. However, we need more
to establish connectivity.

The event “graph is disconnected” is equivalent to the existence of k nodes
without an edge to the remaining nodes, for some k ≤ n/2.

We have

P({1, . . . , k} not connected to the rest) = (1− p)k(n−k),

and therefore,

P(∃ k nodes not connected to the rest) =
(

n

k

)
(1− p)k(n−k).
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Converse (Continued)

Using the union bound [i.e. P(∪iAi ) ≤ ∑i P(Ai )], we obtain

P(disconnected graph) ≤
n/2

∑
k=1

(
n

k

)
(1− p)k(n−k).

Using Stirling’s formula k ! ∼
(

k
e

)k
, which implies (nk) ≤ nk

( k
e )k

in the

preceding relation and some (ugly) algebra, we obtain

P(disconnected graph)→ 0,

completing the proof.
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