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Outline
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Connectivity threshold

Emergence and size of a giant component

An application: contagion and diffusion

Reading:

Jackson, Sections 4.2.2-4.2.5, and 4.3.
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Phase Transitions for Erdös-Renyi Model

Erdös-Renyi model is completely specified by the link formation probability
p(n).

For a given property A (e.g. connectivity), we define a threshold function
t(n) as a function that satisfies:

P(property A)→ 0 if
p(n)
t(n)

→ 0, and

P(property A)→ 1 if
p(n)
t(n)

→ ∞.

This definition makes sense for “monotone or increasing properties,”
i.e., properties such that if a given network satisfies it, any
supernetwork (in the sense of set inclusion) satisfies it.

When such a threshold function exists, we say that a phase transition occurs
at that threshold.

Exhibiting such phase transitions was one of the main contributions of the
seminal work of Erdös and Renyi 1959.
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Threshold Function for Connectivity

Theorem

(Erdös and Renyi 1961) A threshold function for the connectivity of the Erdös

and Renyi model is t(n) = log(n)
n .

To prove this, it is sufficient to show that when p(n) = λ(n) log(n)
n with

λ(n)→ 0, we have P(connectivity)→ 0 (and the converse).

However, we will show a stronger result: Let p(n) = λ
log(n)

n .

If λ < 1, P(connectivity)→ 0, (1)

If λ > 1, P(connectivity)→ 1. (2)

Proof:

We first prove claim (1). To show disconnectedness, it is sufficient to show
that the probability that there exists at least one isolated node goes to 1.
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Proof (Continued)

Let Ii be a Bernoulli random variable defined as

Ii =
{

1 if node i is isolated,
0 otherwise.

We can write the probability that an individual node is isolated as

q = P(Ii = 1) = (1− p)n−1 ≈ e−pn = e−λ log(n) = n−λ, (3)

where we use limn→∞

(
1− a

n

)n
= e−a to get the approximation.

Let X = ∑n
i=1 Ii denote the total number of isolated nodes. Then, we have

E[X ] = n · n−λ. (4)

For λ < 1, we have E[X ]→ ∞. We want to show that this implies
P(X = 0)→ 0.

In general, this is not true.
Can we use a Poisson approximation (as in the example from last
lecture)? No, since the random variables Ii here are dependent.
We show that the variance of X is of the same order as its mean.
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Proof (Continued)

We compute the variance of X , var(X ):

var(X ) = ∑
i

var(Ii ) + ∑
i

∑
j 6=i

cov(Ii , Ij )

= nvar(I1) + n(n− 1)cov(I1, I2)

= nq(1− q) + n(n− 1)
(

E[I1I2]−E[I1]E[I2]
)
,

where the second and third equalities follow since the Ii are identically
distributed Bernoulli random variables with parameter q (dependent).

We have
E[I1I2] = P(I1 = 1, I2 = 1) = P(both 1 and 2 are isolated)

= (1− p)2n−3 =
q2

(1− p)
.

Combining the preceding two relations, we obtain

var(X ) = nq(1− q) + n(n− 1)
[ q2

(1− p)
− q2

]
= nq(1− q) + n(n− 1)

q2p

1− p
.
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Proof (Continued)

For large n, we have q → 0 [cf. Eq. (3)], or 1− q → 1. Also p → 0. Hence,

var(X ) ∼ nq + n2q2 p

1− p
∼ nq + n2q2p

= nn−λ + λn log(n)n−2λ

∼ nn−λ = E[X ],

where a(n) ∼ b(n) denotes
a(n)
b(n) → 1 as n→ ∞.

This implies that

E[X ] ∼ var(X ) ≥ (0−E[X ])2P(X = 0),

and therefore,

P(X = 0) ≤ E[X ]
E[X ]2

=
1

E[X ]
→ 0.

It follows that P(at least one isolated node)→ 1 and therefore,
P(disconnected)→ 1 as n→ ∞, completing the proof.
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Converse

We next show claim (2), i.e., if p(n) = λ
log(n)

n with λ > 1, then
P(connectivity)→ 1, or equivalently P(disconnectivity)→ 0.

From Eq. (4), we have E[X ] = n · n−λ → 0 for λ > 1.

This implies probability of having isolated nodes goes to 0. However, we
need more to establish connectivity.

The event “graph is disconnected” is equivalent to the existence of k nodes
without an edge to the remaining nodes, for some k ≤ n/2.

We have

P({1, . . . , k} not connected to the rest) = (1− p)k(n−k),

and therefore,

P(∃ k nodes not connected to the rest) =
(

n

k

)
(1− p)k(n−k).
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Converse (Continued)

Using the union bound [i.e. P(∪iAi ) ≤ ∑i P(Ai )], we obtain

P(disconnected graph) ≤
n/2

∑
k=1

(
n

k

)
(1− p)k(n−k).

Using Stirling’s formula k ! ∼
(

k
e

)k
, which implies (nk) ≤

nk

( k
e )k

in the

preceding relation and some (ugly) algebra, we obtain

P(disconnected graph)→ 0,

completing the proof.
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Phase Transitions — Connectivity Threshold

Figure: Emergence of connectedness: a random network on 50 nodes with
p = 0.10.
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Giant Component

We have shown that when p(n) << log(n)
n , the Erdös-Renyi graph is

disconnected with high probability.

In cases for which the network is not connected, the component
structure is of interest.

We have argued that in this regime the expected number of isolated
nodes goes to infinity. This suggests that the Erdös-Renyi graph
should have an arbitrarily large number of components.

We will next argue that the threshold p(n) = λ
n plays an important

role in the component structure of the graph.

For λ < 1, all components of the graph are “small”.
For λ > 1, the graph has a unique giant component, i.e., a component
that contains a constant fraction of the nodes.
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Emergence of the Giant Component—1

We will analyze the component structure in the vicinity of p(n) = λ
n using a

branching process approximation.

We assume p(n) = λ
n .

Let B(n, λ
n ) denote a binomial random variable with n trials and success

probability λ
n .

Consider starting from an arbitrary node (node 1 without loss of generality),
and exploring the graph.

B(n− 1, λ
n )

B(n− 4, λ
n )

1

k = 0 k = 1 k = 2

(a) Erdos-Renyi graph process.

B(n, λ
n )

B(n, λ
n )

1

k = 0 k = 1 k = 2

(b) Branching Process Approx.
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Emergence of the Giant Component—2

We first consider the case when λ < 1.

Let ZG
k and ZB

k denote the number of individuals at stage k for the graph
process and the branching process approximation, respectively.

In view of the “overcounting” feature of the branching process, we have

ZG
k ≤ ZB

k for all k .

From branching process analysis (see Lecture 3 notes), we have

E[ZB
k ] = λk ,

(since the expected number of children is given by n× λ
n = λ).

Let S1 denote the number of nodes in the Erdös-Renyi graph connected to
node 1, i.e., the size of the component which contains node 1.

Then, we have

E[S1] = ∑
k

E[ZG
k ] ≤∑

k

E[ZB
k ] = ∑

k

λk =
1

1− λ
.
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Emergence of the Giant Component—3

The preceding result suggests that for λ < 1, the sizes of the components
are “small”.

Theorem

Let p(n) = λ
n and assume that λ < 1. For all (sufficiently large) a > 0, we have

P
(

max
1≤i≤n

|Si | ≥ a log(n)
)
→ 0 as n→ ∞.

Here |Si | is the size of the component that contains node i .

This result states that for λ < 1, all components are small [in particular they
are of size O(log(n))].

Proof is beyond the scope of this course.
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Emergence of the Giant Component—4

We next consider the case when λ > 1.

We claim that ZG
k ≈ ZB

k when λk ≤ O(
√

n).

The expected number of conflicts at stage k + 1 satisfies

E[number of conflicts at stage k + 1] ≤ np2E[Z2
k ] = n

λ2

n2
E[Z2

k ].

Zk

We assume for large n that Zk is a Poisson random variable and therefore
var(Zk ) = λk . This implies that

E[Z2
k ] = var(Zk ) + E[Zk ]2 = λk + λ2k ≈ λ2k .

Combining the preceding two relations, we see that the conflicts become
non-negligible only after λk ≈

√
n.

15



Networks: Lecture 4

Emergence of the Giant Component—5

Hence, there exists some c > 0 such that
P(there exists a component with size ≥ c

√
n nodes)→ 1 as

n→ ∞.

Moreover, between any two components of size
√

n, the probability of
having a link is given by

P(there exists at least one link) = 1− (1− λ

n
)n ≈ 1− e−λ,

i.e., it is a positive constant independent of n.

This argument can be used to see that components of size ≤
√

n
connect to each other, forming a connected component of size qn for
some q > 0, a giant component.
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Size of the Giant Component

Form an Erdös-Renyi graph with n− 1 nodes with link formation probability
p(n) = λ

n , λ > 1.

Now add a last node, and connect this node to the rest of the graph with
probability p(n).

Let q be the fraction of nodes in the giant component of the n− 1 node
network. We can assume that for large n, q is also the fraction of nodes in
the giant component of the n-node network.

The probability that node n is not in the giant component is given by

P(node n not in the giant component) = 1− q ≡ ρ.

The probability that node n is not in the giant component is equal to the
probability that none of its neighbors is in the giant component, yielding

ρ = ∑
d

Pd ρd ≡ Φ(ρ).

Similar to the analysis of branching processes, we can show that this
equation has a fixed point ρ∗ ∈ (0, 1).
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An Application: Contagion and Diffusion

Consider a society of n individuals.

A randomly chosen individual is infected with a contagious virus.

Assume that the network of interactions in the society is described by an
Erdös-Renyi graph with link probability p.

Assume that any individual is immune with a probability π.

We would like to find the expected size of the epidemic as a fraction of the
whole society.

The spread of disease can be modeled as:

Generate an Erdös-Renyi graph with n nodes and link probability p.
Delete πn of the nodes uniformly at random.
Identify the component that the initially infected individual lies in.

We can equivalently examine a graph with (1− π)n nodes with link
probability p.
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An Application: Contagion and Diffusion

We consider 3 cases:

p(1− π)n < 1:

E[size of epidemic as a fraction of the society] ≤ log(n)
n
≈ 0.

1 < p(1− π)n < log((1− π)n):

E[size of epidemic as a fraction of the society]

=
qq(1− π)n + (1− q) log((1− π)n))

n
≈ q2(1− π),

where q denotes the fraction of nodes in the giant component of the graph
with (1− π)n nodes, i.e., q = 1− e−q(1−π)np.

p > log((1−π)n)
(1−π)n :

E[size of epidemic as a fraction of the society] = (1− π).
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