
6.207/14.15: Networks
Lecture 9: Introduction to Game Theory–1

Daron Acemoglu and Asu Ozdaglar
MIT

October 13, 2009

1



Networks: Lecture 9 Introduction

Outline

Decisions, Utility Maximization

Games and Strategies

Best Responses and Dominant Strategies

Nash Equilibrium

Applications

Next Lecture: Mixed Strategies, Existence of Nash Equilibria, and
Dynamic Games.

Reading:

Osborne, Chapters 1-2.

EK, Chapter 6.

2



Networks: Lecture 9 Introduction

Motivation

In the context of social networks, or even communication networks,
agents make a variety of choices.

For example:

What kind of information to share with others you are connected to.
How to evaluate information obtained from friends, neighbors,
coworkers and media.
Whether to trust and form friendships.
Which of the sellers in your neighborhood to use.
Which websites to visit.
How to map your drive in the morning (or equivalently how to route
your network traffic).

In all of these cases, interactions with other agents you are connected
to affect your payoff, well-being, utility.

How to make decisions in such situations?

→ “multiagent decision theory” or game theory.
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Networks: Lecture 9 Introduction

“Rational Decision-Making”

Powerful working hypothesis in economics: individuals act rationally
in the sense of choosing the option that gives them higher “payoff”.

Payoff here need not be monetary payoff. Social and psychological
factors influence payoffs and decisions.
Nevertheless, the rational decision-making paradigm is useful because it
provides us with a (testable) theory of economic and social decisions.

We often need only ordinal information; i.e., two options a and b,
and we imagine a (real-valued) utility function u (·) that represents
the ranking of different options, and we simply check whether
u (a) ≥ u (b) or u (a) ≤ u (b).

In these cases, if a utility function u (·) represents preferences, so does
any strictly monotonic transformation of u (·).

But in game theory we often need cardinal information because
decisions are made under natural or strategic uncertainty. The theory
of decision-making under uncertainty was originally developed by
John von Neumann and Oskar Morgenstern.
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Decision-Making under Uncertainty

von Neumann and Morgenstern posited a number of “reasonable”
axioms that rational decision-making under uncertainty should satisfy.
From these, they derived the expected utility theory.

Under uncertainty, every choice induces a lottery, that is, a probability
distribution over different outcomes.

E.g., one choice would be whether to accept a gamble which pays $10
with probability 1/2 and makes you lose $10 with probability 1/2.

von Neumann and Morgenstern’s expected utility theory shows that
(under their axioms) there exists a utility function (also referred to as
Bernoulli utility function) u (c), which gives the utility of consequence
(outcome) c .

Then imagine that choice a induces a probability distribution F a (c)
over consequences.
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Decision-Making under Uncertainty (continued)

Then the utility of this choice is given by the expected utility
according to the probability distribution F a (c):

U (a) =
∫

u (c) dF a (c) .

In other words, this is the expectation of the utility u (c), evaluated
according to the probability distribution F a (c).

More simply, if F a (c) is a continuous distribution with density f a (c),
then

U (a) =
∫

u (c) f a (c) dc ,

or if it is a discrete distribution where outcome outcome ci has
probability pa

i (naturally with ∑i pa
i = 1), then

U (a) = ∑
i

pa
i u (ci ) .

6



Networks: Lecture 9 Introduction

Decision-Making under Uncertainty (continued)

Given expected utility theory and our postulate of “rationality,” single
person decision problems are (at least conceptually) simple.

If there are two actions, a and b, inducing probability distributions
F a (c) and F b (c), then the individual should choose a over b only if

U (a) =
∫

u (c) dF a (c) ≥ U (b) =
∫

u (c) dF b (c) .
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From Single Person to Multiperson Decision Problems

But in a social situation (or more specifically, in a “social network”
situation), the utility of an agent or probability distribution over
outcomes depends on actions of others.
A simple game of “partnership” represented as a matrix game:

Player 1 \ Player 2 work hard shirk
work hard (2, 2) (−1, 1)

shirk (1,−1) (0, 0)

Here the first number is the payoff to player (partner) 1 and the
second number is the payoff to player 2. More formally, the cell
indexed by row x and column y contains a pair, (a, b) where
a = u1(x , y) and b = u2(x , y).
These numbers could be just monetary payoffs, or it could be
inclusive of “social preferences” (the fact that you may be altruistic
towards your partner or angry at him or her).
Should you play “work hard” or “shirk”?
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A Paradoxical Network Example

Consider the following “non-atomic” game of traffic routing.

Non-atomic here refers to the fact that there is a “continuum” of
players, so the effect of any given individual on “aggregates” is
negligible.

Each route has a cost (delay/latency) function li (xi ) measuring costs
of delay and congestion on link i as a function of the flow traffic xi on
this link. Suppose that motorists wish to minimize delay.

Traditional Network Optimization Approach: choose the allocation of
traffic so as to achieve some well-defined objective, such as
minimizing aggregate delay.

In practice, routing is “selfish,” each motorist choosing the route that
has the lowest delay.

This problem was first studied by the famous economist Alfred Pigou.
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A Paradoxical Network Example (continued)

Consider the following example with a unit mass of traffic to be routed:

no congestion effects

delay depends on congestion

1 unit of traffic

System optimum (minimizing aggregate delay) can be found by solving

min
x1+x2≤1

Csystem(xS ) = ∑
i

li (xS
i )xS

i .

First-order condition:

l1 (x1) + x1l ′1 (x1) = l2 (1− x1) + (1− x1) l ′2 (1− x1)
2x1 = 1

Hence, system optimum is to split traffic equally between two routes, giving:

min
x1+x2≤1

Csystem(xS ) = ∑
i

li (xS
i )xS

i =
1

4
+

1

2
=

3

4
.
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A Paradoxical Network Example (continued)

Suppose instead that there is selfish routing so that each motorist
chooses the path with the lowest delay taking aggregate traffic
pattern as given (is this reasonable?).

This will give x1 = 1 and x2 = 0 (since for any x1 < 1,
l1 (x1) < 1 = l2 (1− x1)). Aggregate delay is

Ceq(xWE ) = ∑
i

li (xWE
i )xWE

i = 1 + 0 = 1 >
3

4
.

The outcome is “socially suboptimal”—a very common occurrence in
game theory situations.

Inefficiency sometimes quantified by the measure of Price of
anarchy, defined as

Csystem(xS )
Ceq(xWE )

=
3

4
.
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Strategic Form Games

Let us start with games in which all of the participants act
simultaneously and without knowledge of other players’ actions. Such
games are referred to as strategic form games—or as normal form
games or matrix games.

For each game, we have to define

1 The set of players.
2 The strategies.
3 The payoffs.

More generally, we also have to define the game form, which captures
the order of play (e.g., in chess) and information sets (e.g., in
asymmetric information or incomplete information situations). But in
strategic form games, play is simultaneous, so no need for this
additional information.
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Strategic Form Games (continued)

More formally:

Definition

(Strategic Form Game) A strategic forms game is a triplet
〈I , (Si )i∈I , (ui )i∈I 〉 such that
I is a finite set of players, i.e., I = {1, . . . , I};
Si is the set of available actions for player i ;
si ∈ Si is an action for player i ;
ui : S → R is the payoff (utility) function of player i where S = ∏i Si is
the set of all action profiles.

In addition, we use the notation

s−i = [sj ]j 6=i : vector of actions for all players except i .
S−i = ∏j 6=i Sj is the set of all action profiles for all players except i
(si , s−i ) ∈ S is a strategy profile, or outcome.
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Strategies

In game theory, a strategy is a complete description of how to play
again.

It requires full contingent planning. If instead of playing the game
yourself, you had to delegate the play to a “computer” with no
initiative, then you would have to spell out a full description of how
the game would be played in every contingency.

For example, in chess, this would be an impossible task (though in
some simpler games, it can be done).

Thinking in terms of strategies is important.

But in strategic form games, there is no difference between an action
and a pure strategy, and we will use them interchangeably.

This will no longer be the case even for strategic form games when we
turn to mixed strategies.
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Finite Strategy Spaces

When the strategy space is finite, and the number of players and
actions is small, a game can be represented in matrix form.

Recall that the cell indexed by row x and column y contains a pair,
(a, b) where a = u1(x , y) and b = u2(x , y).

Example: Matching Pennies.

Player 1 \ Player 2 heads tails
heads (−1, 1) (1,−1)
tails (1,−1) (−1, 1)

This game represents pure conflict in the sense that one player’s
utility is the negative of the utility of the other player. Thus zero
sum game.

More generally true for strictly competitive games, that is, games in
which whenever one player wins the other one loses, though the sum of
the payoffs need not be equal to 0.
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Infinite Strategy Spaces

Example: Cournot competition.

Two firms producing a homogeneous good for the same market
The action of a player i is a quantity, si ∈ [0, ∞] (amount of good he
produces).
The utility for each player is its total revenue minus its total cost,

ui (s1, s2) = sip(s1 + s2)− csi

where p(q) is the price of the good (as a function of the total
amount), and c is unit cost (same for both firms).
Assume for simplicity that c = 1 and p(q) = max{0, 2− q}

Consider the best response correspondence for each of the firms, i.e.,
for each i , the mapping Bi (s−i ) : S−i ⇒ Si such that

Bi (s−i ) ∈ arg max
si∈Si

ui (si , s−i ).

Why is this a “correspondence” not a function? When will it be a
function?
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Cournot Competition (continued)

By using the first order optimality
conditions, we have

Bi (s−i ) = arg max
si≥0

(si (2− si − s−i )− si )

=
{ 1−s−i

2 if s−i ≤ 1,
0 otherwise.

1/2
1

1/2

1

B1(s2)

B2(s1)

s1

s2

The figure illustrates the best response correspondences (which in this case
are functions).

Assuming that players are rational and fully knowledgeable about the
structure of the game and each other’s rationality, what should the
outcome of the game be?
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Dominant Strategies

Example: Prisoner’s Dilemma.

Two people arrested for a crime, placed in separate rooms, and the
authorities are trying to extract a confession.

prisoner 1 / prisoner 2 Confess Don’t confess
Confess (−2,−2) (0,−3)

Don’t confess (−3, 0) (0, 0)

What will the outcome of this game be?

Regardless of what the other player does, playing “Confess” is better
for each player.

The action “Confess” strictly dominates the action “Don’t confess”

Prisoner’s dilemma paradigmatic example of a self-interested, rational
behavior not leading to jointly (socially) optimal result.
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Prisoner’s Dilemma and ISP Routing Game

Consider two Internet service providers that need to send traffic to
each other
Assume that the unit cost along a link (edge) is 1

DC C Peering points

s1

t1

s2

t2

ISP1: s1 t1
ISP2: s2 t2

This situation can be modeled by the “Prisoner’s Dilemma” payoff
matrix.

ISP 1 / ISP 2 Hot potato Cooperate
Hot potato (−4,−4) (−1,−5)
Cooperate (−5,−1) (−2,−2)
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Dominant Strategy Equilibrium

Compelling notion of equilibrium in games would be dominant
strategy equilibrium, where each player plays a dominant strategy.

Definition

(Dominant Strategy) A strategy si ∈ Si is dominant for player i if

ui (s ′i , s−i ) ≥ ui (si , s−i ) for all s ′i ∈ Si and for all s−i ∈ S−i .

Definition

(Dominant Strategy Equilibrium) A strategy profile s∗ is the dominant
strategy equilibrium if for each player i , s∗i is a dominant strategy.

These notions could be defined for strictly dominant strategies as well.
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Dominant and Dominated Strategies

Though compelling, dominant strategy equilibria do not always exist,
for example, as illustrated by the partnership or the matching pennies
games we have seen above.

Nevertheless, in the prisoner’s dilemma game, “confess, confess” is a
dominant strategy equilibrium.

We can also introduce the converse of the notion of dominant
strategy, which will be useful next.

Definition

(Strictly Dominated Strategy) A strategy si ∈ Si is strictly dominated
for player i if there exists some s ′i ∈ Si such that

ui (s ′i , s−i ) > ui (si , s−i ) for all s−i ∈ S−i .
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Dominated Strategies

Definition

(Weakly Dominated Strategy) A strategy si ∈ Si is weakly dominated
for player i if there exists some s ′i ∈ Si such that

ui (s ′i , s−i ) ≥ ui (si , s−i ) for all s−i ∈ S−i ,

ui (s ′i , s−i ) > ui (si , s−i ) for some s−i ∈ S−i .

No player should play a strictly dominated strategy

Common knowledge of payoffs and rationality results in iterated
elimination of strictly dominated strategies
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Iterated Elimination of Strictly Dominated Strategies

Example: Iterated Elimination of Strictly Dominated Strategies.

prisoner 1 / prisoner 2 Confess Don’t confess Suicide
Confess (−2,−2) (0,−3) (−2,−10)

Don’t confess (−3, 0) (0, 0) (0,−10)
Suicide (−10,−2) (−10, 0) (−10,−10)

No dominant strategy equilibrium; because of the additional “suicide”
strategy, which is a strictly dominated strategies for both players.
No “rational” player would choose “suicide”. Thus if prisoner 1 is
certain that prisoner 2 is rational, then he can eliminate the latter’s
“suicide” strategy, and likewise for prisoner 2. Thus after one round
of elimination of strictly dominated strategies, we are back to the
prisoner’s dilemma game, which has a dominant strategy equilibrium.
Thus iterated elimination of strictly dominated strategies leads to a
unique outcome, “confess, confess”—thus the game is dominance
solvable.
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Iterated Elimination of Strictly Dominated Strategies
(continued)

More formally, we can follow the following iterative procedure:

Step 0: Define, for each i , S0
i = Si .

Step 1: Define, for each i ,

S1
i =

{
si ∈ S0

i | @s ′i ∈ S0
i s.t. ui

(
s ′i , s−i

)
> ui (si , s−i ) ∀ s−i ∈ S0

−i

}
.

...

Step k: Define, for each i ,

Sk
i =

{
si ∈ Sk−1

i | @s ′i ∈ Sk−1
i s.t. ui

(
s ′i , s−i

)
> ui (si , s−i ) ∀ s−i ∈ Sk−1

−i

}
.

Step ∞: Define, for each i ,

S∞
i = ∩∞

k=0Sk
i .
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Iterated Elimination of Strictly Dominated Strategies
(continued)

Theorem

Suppose that either (1) each Si is finite, or (2) each ui (si , s−i ) is
continuous and each Si is compact. Then S∞

i (for each i) is nonempty.

Proof for part (1) is trivial.

Proof for part (2) in homework.

But note that S∞
i need not be a singleton.
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How Reasonable is Dominance Solvability

At some level, it seems very compelling. But consider the following
game, often called the k- beauty game.

Each of you will pick an integer between 0 and 100.

The person who was closest to k times the average of the group will
win a prize.

How will you play this game? And why?
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Revisiting Cournot Competition

Apply iterated strict dominance to Cournot model to predict the
outcome

1/2 1

1/2

1

B1(s2)

B2(s1)

s1

s2

1
4/

1
4/

1/2 1

1/2

1

s1

s2

1
4/

1
4/

B2(s1)

B1(s2)

One round of elimination yields S1
1 = [0, 1/2], S1

2 = [0, 1/2]
Second round of elimination yields S1

1 = [1/4, 1/2], S1
2 = [1/4, 1/2]

It can be shown that the endpoints of the intervals converge to the
intersection
Most games not solvable by iterated strict dominance, need a
stronger equilibrium notion
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Pure Strategy Nash Equilibrium

Definition

(Nash equilibrium) A (pure strategy) Nash Equilibrium of a strategic
game 〈I , (Si )i∈I , (ui )i∈I 〉 is a strategy profile s∗ ∈ S such that for all
i ∈ I

ui (s∗i , s∗−i ) ≥ ui (si , s∗−i ) for all si ∈ Si .

Why is this a “reasonable” notion?

No player can profitably deviate given the strategies of the other
players. Thus in Nash equilibrium, “best response correspondences
intersect”.

Put differently, the conjectures of the players are consistent: each
player i chooses s∗i expecting all other players to choose s∗−i , and each
player’s conjecture is verified in a Nash equilibrium.
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Reasoning about Nash Equilibrium

This has a “steady state” type flavor. In fact, two ways of justifying
Nash equilibrium rely on this flavor:

1 Introspection: what I do must be consistent with what you will do
given your beliefs about me, which should be consistent with my beliefs
about you,...

2 Steady state of a learning or evolutionary process.

An alternative justification: Nash equilibrium is self-reinforcing

If player 1 is told about player 2’s strategy, in a Nash equilibrium she
would have no incentive to change her strategy.
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Role of Conjectures

To illustrate the role of conjectures, let us revisit matching pennies

Player 1 \ Player 2 heads tails
heads (−1, 1) (1,−1)
tails (1,−1) (−1, 1)

Here, player 1 can play heads expecting player 2 to play tails. Player 2
can play tails expecting player 1 to play tails.

But these conjectures are not consistent with each other.
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Intersection of Best Responses

Recall the best-response correspondence Bi (s−i ) of player i ,

Bi (s−i ) ∈ arg max
si∈Si

ui (si , s−i ).

Equivalent characterization: an action profile s∗ is a Nash
equilibrium if and only if

s∗i ∈ Bi (s∗−i ) for all i ∈ I .

Therefore, in Cournot as formulated above, unique Nash equilibrium.

1/2
1

1/2

1

B1(s2)

B2(s1)

s1

s2
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Example: The Partnership Game

Let us return to the partnership game we started with.

Player 1 \ Player 2 work hard shirk
work hard (2, 2) (−1, 1)

shirk (1,−1) (0, 0)

There are no dominant or dominated strategies.

Work hard is a best response to work hard and shirk is a best
response shirk for each player.

Therefore, there are two pure strategy Nash equilibria (work hard,
work hard) and (shirk, shirk).

Depending on your conjectures (“expectations”) about your partner,
you can end up in a good or bad outcome.
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Focal Points

What do we do when there are multiple Nash equilibria?

Our models would not be making a unique prediction.

Two different lines of attack:

Think of set valued predictions—i.e., certain outcomes are possible,
and Nash equilibrium rules out a lot of other outcomes.
Think of equilibrium selection.

Equilibrium selection is hard.

Most important idea, Schelling’s focal point.

Some equilibria are more natural and will be expected.

Schelling’s example: ask the people to meet in New York, without
specifying the place. Most people will go to Grand Central. Meeting
at Grand Central, as opposed to meeting at any one of thousands of
similar places, is a “focal point”.
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Examples: Battle of the Sexes and Matching Pennies

Example: Battle of the Sexes (players wish to coordinate but have
conflicting interests)

Player 1 \ Player 2 ballet football
ballet (1, 4) (0, 0)

football (0, 0) (4, 1)

Two Nash equilibria, (Ballet, Ballet) and (Soccer, Soccer).

Example: Matching Pennies.

Player 1 \ Player 2 heads tails
heads (−1, 1) (1,−1)
tails (1,−1) (−1, 1)

No pure Nash equilibrium (but we will see in the next lecture that
there exists a unique mixed strategy equilibrium).
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Examples: Cournot Competition

We now provide an explicit characterization of the Nash equilibrium
of Cournot for a specific demand function.
Suppose that both firms have marginal cost c and the inverse demand
function is given by P (Q) = α− βQ, where Q = q1 + q2, where
α > c. Then player i will maximize:

max
qi≥0

πi (q1, q2) = [P (Q)− c ] qi

= [α− β (q1 + q2)− c ] qi .

To find the best response of firm i we just maximize this with respect
to qi , which gives first-order condition

[α− c − β (q1 + q2)]− βqi = 0.

Therefore, the best response correspondence (function) or firm i can
be written as

qi =
α− c − βq−i

2β
.
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Cournot Competition (continued)

Now combining the two best response functions, we find the unique
Cournot equilibrium as

q∗1 = q∗2 =
α− c

3β
.

Total quantity is 2 (α− c) /3β, and thus the equilibrium price is

P∗ =
α + 2c

3
.

It can be verified that if the two firms colluded, then they could
increase joint profits by reducing total quantity to (α− c) /2β and
increasing price to (α + c) /2.
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Examples: Bertrand Competition

An alternative to the Cournot model is the Bertrand model of
oligopoly competition.

In the Cournot model, firms choose quantities. In practice, choosing
prices may be more reasonable.

What happens if two producers of a homogeneous good charge
different prices? Reasonable answer: everybody will purchase from
the lower price firm.

In this light, suppose that the demand function of the industry is
given by Q (p) (so that at price p, consumers will purchase a total of
Q (p) units).

Suppose that two firms compete in this industry and they both have
marginal cost equal to c > 0 (and can produce as many units as they
wish at that marginal costs).
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Bertrand Competition (continued)

Then the profit function of firm i can be written as

π (pi , p−i ) =


Q (pi ) (pi − c) if p−i > pi
1
2Q (pi ) (pi − c) if p−i = pi

0 if p−i < pi

Actually, the middle row is arbitrary, given by some ad hoc
“tiebreaking” rule. Imposing such tie-breaking rules is often not
“kosher” as the homework will show.

Proposition

In the two-player Bertrand game there exists a unique Nash equilibrium
given by p1 = p2 = c.
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Bertrand Competition (continued)

Proof: Method of “finding a profitable deviation”.

Can p1 ≥ c > p2 be a Nash equilibrium? No because firm 2 is losing
money and can increase profits by raising its price.

Can p1 = p2 > c be a Nash equilibrium? No because either firm
would have a profitable deviation, which would be to reduce their
price by some small amount (from p1 to p1 − ε).

Can p1 > p2 > c be a Nash equilibrium? No because firm 1 would
have a profitable deviation, to reduce its price to p2 − ε.

Can p1 > p2 = c be a Nash equilibrium? No because firm 2 would
have a profitable deviation, to increase its price to p1 − ε.

Can p1 = p2 = c be a Nash equilibrium? Yes, because no profitable
deviations. Both firms are making zero profits, and any deviation
would lead to negative or zero profits.
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Examples: Second Price Auction

Second Price Auction (with Complete Information) The second price
auction game is specified as follows:

An object to be assigned to a player in {1, .., n}.
Each player has her own valuation of the object. Player i ’s valuation
of the object is denoted vi . We further assume that v1 > v2 > ... > 0.

Note that for now, we assume that everybody knows all the valuations
v1, . . . , vn, i.e., this is a complete information game. We will analyze
the incomplete information version of this game in later lectures.

The assignment process is described as follows:
The players simultaneously submit bids, b1, .., bn.
The object is given to the player with the highest bid (or to a random
player among the ones bidding the highest value).
The winner pays the second highest bid.
The utility function for each of the players is as follows: the winner
receives her valuation of the object minus the price she pays, i.e.,
vi − bi ; everyone else receives 0.
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Second Price Auction (continued)

Proposition

In the second price auction, truthful bidding, i.e., bi = vi for all i , is a
Nash equilibrium.

Proof: We want to show that the strategy profile (b1, .., bn) = (v1, .., vn)
is a Nash Equilibrium—a truthful equilibrium.

First note that if indeed everyone plays according to that strategy,
then player 1 receives the object and pays a price v2.

This means that her payoff will be v1 − v2 > 0, and all other payoffs
will be 0. Now, player 1 has no incentive to deviate, since her utility
can only decrease.

Likewise, for all other players vi 6= v1, it is the case that in order for
vi to change her payoff from 0 she needs to bid more than v1, in
which case her payoff will be vi − v1 < 0.

Thus no incentive to deviate from for any player.
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Second Price Auction (continued)

Are There Other Nash Equilibria? In fact, there are also unreasonable
Nash equilibria in second price auctions.

We show that the strategy (v1, 0, 0, ..., 0) is also a Nash Equilibrium.

As before, player 1 will receive the object, and will have a payoff of
v1 − 0 = v1. Using the same argument as before we conclude that
none of the players have an incentive to deviate, and the strategy is
thus a Nash Equilibrium.

It can be verified the strategy (v2, v1, 0, 0, ..., 0) is also a Nash
Equilibrium.

Why?
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Second Price Auction (continued)

Nevertheless, the truthful equilibrium, where , bi = vi , is the Weakly
Dominant Nash Equilibrium
In particular, truthful bidding, bi = vi , weakly dominates all other
strategies.
Consider the following picture proof where B∗ represents the
maximum of all bids excluding player i ’s bid, i.e.

B∗ = max
j 6=i

bj ,

and v ∗ is player i’s valuation and the vertical axis is utility.

B*v*

ui(bi)

bi = v*

B*v* B*
v*

bi < v* bi > v*

ui(bi) ui(bi)

bi bi
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Second Price Auction (continued)

The first graph shows the payoff for bidding one’s valuation. In the
second graph, which represents the case when a player bids lower
than their valuation, notice that whenever bi ≤ B∗ ≤ v ∗, player i
receives utility 0 because she loses the auction to whoever bid B∗.

If she would have bid her valuation, she would have positive utility in
this region (as depicted in the first graph).

Similar analysis is made for the case when a player bids more than
their valuation.

An immediate implication of this analysis is that other equilibria
involve the play of weakly dominated strategies.
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