
Abstract
Collective Action under Uncertainty

Michael Thomas McBride
2002

I examine collective action under uncertainty in public good games and social networks.

The first chapter analyzes discrete public good games in which the threshold number of

contributions needed for provision is randomly selected from a known probability

distribution function.  Simultaneous voluntary-contribution equilibria are often inefficient

under binary contribution decisions.  Wider uncertainty about the threshold can reduce

inefficiencies, however, because contributions are higher when there is greater

uncertainty about the threshold (in terms of second-order stochastic dominance) if the

value of the public good is sufficiently high.  Games with continuous contribution

decisions and sequential contribution decisions are also considered.

The second chapter presents results from public good experiments specifically

designed to test the main qualitative predictions of the first chapter.  As predicted for

within-session changes, contributions are higher under wider uncertainty when the value

of the public good is high, and contributions are lower when the value of the public good

is low.  I use a proper scoring rule to elicit data on beliefs, and these data exhibit

qualitative features of standard learning models.  Using these data to proxy for actual

beliefs, I show both parametrically and non-parametrically that aggregate decisions are

not consistent with expected payoff maximization.  Decisions are more consistent with a

game-theoretic decision rule that accounts for risk aversion and innate cooperativeness.

The third chapter examines equilibrium network structures under uncertainty.

Bala and Goyal (Econometrica 2000) model network formation as a non-cooperative



game under complete information.  I extend their approach to include uncertainty about

the network structure and uncertainty about the benefits of network participation.  I

define an incomplete-information imperfect-monitoring equilibrium concept, called

Generalized Conjectural Equilibrium.  I apply this concept to find strict equilibrium

network structures in twenty different informational environments.  I find that the unique

equilibrium architecture of complete information games—the center-sponsored star—is

still unique even under large decreases in information.  I show exactly how the type of

equilibrium structure depends on the informational environment.  A main contribution of

this paper is the characterization of network uncertainty.  Another contribution is the

definition and use of a new non-Nash equilibrium concept.
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INTRODUCTION

This collection of three chapters examines collective action under uncertainty in public

good games and social networks. The first two chapters consider discrete public

good games in which the threshold number of contributions needed to provide the

good is not known. For example, peasants who could participate in a revolution

might not know how big the peasant army needs to be in order to successfully defeat

the dictator. The first chapter contains theoretical analysis to determine if and

when this uncertainty can ever be good in the sense of e ciency or in the sense

of contributions. The second chapter presents results from a series of laboratory

experiments that support the main theoretical predictions of the theoretical analysis.

The third chapter examines social networks in which there is uncertainty about both

the benefits of participating in and the structure of the network. For example, an

individual might know the benefits of the network of which he is a member, but he

might not know the benefits of another network of which he is not a member.

The first chapter analyzes discrete public good games where the threshold is

randomly selected from a publicly known probability distribution. I examine situa-

tions in which individuals make a binary choice to participate or not participate. I

consider the full set of equilibria, including mixed equilibria, under di erent threshold

distributions. Simultaneous voluntary-contribution equilibria are often ine cient.

Greater uncertainty about the threshold, however, can reduce ine ciencies. The
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reason is that contributions are higher when there is greater uncertainty about the

threshold (in terms of second-order stochastic dominance) if the value of the public

good is su ciently high. This result arises because of the increased probability of

being pivotal at higher contribution strategy profiles when the value of the public

good is high. Binary contribution decisions are contrasted with situations in which

individuals choose contribution levels from a continuous set, like monetary contri-

bution levels. Such continuous contribution games are less ine cient than binary

contribution games. These results are unchanged when considering sequential equi-

libria.

The second chapter presents results from a series of public good experiments

specially designed to test the main qualitative predictions of the above theoretical

work. As predicted for within-session changes, actual contributions are higher when

the uncertainty is increased if the value of the public good is high, and contributions

are lower when the value of the public good is low. I also elicit data on agents’ be-

liefs using a proper scoring rule. These data exhibit qualitative features of standard

learning models. Using these data to proxy for actual beliefs, I show that aggre-

gate decisions are not consistent with expected payo maximization. This result is

confirmed both parametrically and non-parametrically. However, I show that deci-

sions in later rounds become more consistent with a game-theoretic decision rule as I

account for risk aversion and innate cooperativeness.

The third chapter examines equilibrium network structures under uncertainty.

Bala and Goyal (Econometrica 2000) model network formation as a non-cooperative
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game under complete information. I extend their approach to include two types

of uncertainty: uncertainty about the network structure and uncertainty about the

benefits of network participation. I also consider five levels of uncertainty: (1)

each individual receives information about all others in the game (i.e., the Bala and

Goyal (2000) case); (2) each individual only receives information about others in

his own network; (3) each individual only receives information about all others

directly connected to his own direct neighbors; (4) each individual only receives

information about those to whom his own neighbors have initiated connections; (5)

each individual receives no information. To study these environments, I define an

incomplete-information imperfect-monitoring equilibrium concept, called Generalized

Conjectural Equilibrium. I use this concept to solve for the strict equilibria in each

of the twenty di erent cases. I find that the unique equilibrium architecture of

complete information games–the center-sponsored star–is still unique even under

large decreases in information. The crucial aspect in determining network equilibrium

structures is whether or not an agent knows aspects of the network that are beyond his

direct links. Furthermore, as uncertainty increases, the set of equilibrium structures

increases in interesting ways. For example, the set of equilibria in a game where

players know the benefits of network participation but not the network architecture

can be very di erent from the set of equilibria when the players know the architecture

but not the benefits. A main contribution of this paper is the characterization of

network uncertainty. Another contribution is the definition and use of a new non-

Nash equilibrium concept.
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CHAPTER 1

DISCRETE PUBLIC GOODS UNDER THRESHOLD UNCERTAINTY

1.1 INTRODUCTION

Potential participants in a collective action often have uncertainty about the threshold

number of contributions needed to provide a discrete public good. For example,

peasants will not know how big their revolutionary army needs to be to overthrow

the incumbent dictator; neighborhood residents will not know how many individual

requests to the city will be required to install a signal at a local intersection; local

citizens might not know the amount of money required to build a public project.

This chapter gives gives necessary and su cient conditions for wider uncertainty to

increase voluntary contributions. More specifically, for a large class of threshold

probability distributions, contributions will increase after a widening of uncertainty

when the players su ciently value the public good, while contributions will decrease

when the players’ valuations of the public good are su ciently low.

Palfrey and Rosenthal (1984) show that in a discrete public good game with

complete information, an e cient simultaneous-contribution equilibrium always ex-

ists, although ine cient equilibria can also exist. My paper adds uncertainty about

the threshold to their basic model and then focuses on how contribution levels change

under di erent levels of that uncertainty. In these games, a player contributes when

her probability of being pivotal in providing the public good is greater than some
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critical number. After an increase in uncertainty by 2nd-order stochastic domi-

nance, a non-contributor’s probability of being pivotal can increase, thus driving up

contributions if that probability increases above the critical number. However, the

probability of being pivotal can also decrease for those already contributing, thus

decreasing contributions if the probability drops below the critical number. Final

contributions in both pure and mixed equilibria will thus be determined by this criti-

cal number, which in equilibrium, is inversely related to the value of the public good.

Furthermore, in games with binary contributions, wider uncertainty can also lead to

increased e ciency. E ciency will rise when the probability of public good provision

significantly increases due to the larger number of contributions.

Various types of uncertainty have been added to discrete public good games.1

Nitzan and Romano (1990) add a type of uncertainty similar to the threshold uncer-

tainty that I add. Assuming that individuals choose contributions from a continuous

set and that the threshold is chosen from a commonly known continuous distribu-

tion over [a, b], Nitzan and Romano derive necessary and su cient conditions for

the e ciency of a Pareto-undominated equilibrium. By assuming continuous con-

tributions, they are e ectively assuming that contributions are monetary in nature.

1Previous studies have examined discrete public good games with uncertainty about other strate-
gic variables. These studies can be grouped into those that examine binary (or discrete) contribu-
tions and those that allow continuous contributions. Bagnoli and Lipman (1989) allow for continuous
contributions and show that, under complete information, if refunds are allowed then undominated
equilibria are e cient and also that sequential equilibria can be e cient. Palfrey and Rosenthal
(1988) model discrete contributions where there is uncertainty about other players’ altruism. Pal-
frey and Rosenthal (1991) model discrete contributions where there is uncertainty about individual
contribution costs. Menezes, Monteiro, and Temimi (2001) show that with continuous contributions
and thresholds that require more than one persion, uncertainty about others’ valuations of the public
good generally results in ine cient equilibria.
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The binary contributions considered in my paper are more akin to participation or

“in/out” contributions. After presenting my main theoretical findings, I explain how

the equilibrium properties under these di erent contribution assumptions will result

in greater e ciency when contributions are continuous.

The literature on collective action spans many di erent methodological ap-

proaches,2 and there are many criticisms of the public good analysis used in this

paper. A prominent set of challenges argues that the rational choice methodology

misrepresents the complicated social environments in which actual behavior occurs.

From this perspective, successful collective action depends on political opportunities

in societies that are characterized by social, economic, and political groups, and these

groups operate within complicated cultural and institutional contexts.

In this chapter, I take the middle of the road perspective presented by Lich-

bach (1998). On the one hand, while other approaches (e.g., Structuralist) provide

valuable insights into the social context of collective action, they are less precise on

the individual and strategic considerations of social behavior. The individual-level

approach provides important pieces to the collective action puzzle, and even though

this rational choice methodology does not account for all the richness of social con-

text, it provides key insights into the minutest aspects of social behavior. For the

purposes of this study, I take it for granted that uncertainty about the threshold is a

2There are many strands of collective action research. See Olson (1989) and Sandler (1992) for
general discussions of collective action from the economics perspective. Another formal approach
(apart from discrete public good analysis) used often by sociologists to explain riots and revolutions
is the threshold or tipping model, as in Granovetter (1978), Yin (1998), and Chwe (1999, 2000). A
totally di erent approach to collective action is one that focuses on authority and structure (Lichbach
1998).
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real and important aspect of many collective action scenarios. In addition to being

an important benchmark and framework for studying aspects of collective action,3

the discrete public good game framework (e.g., Palfrey and Rosenthal 1984) allows

us to isolate of the e ects of changes in threshold uncertainty.

Section 1.2 describes the basic model with binary contributions and threshold

uncertainty. Section 1.3 contains the analysis for the main theoretical predictions.

Section 1.4 compares binary contribution games with continuous contribution games

and briefly discusses the similarities between simultaneous and sequential contribution

games. The results in this chapter yield inights into collective action, but I will

postpone discussion of these insights until after presenting the experimental results

in Chapter 2. This discussion of insights into collective action will consider both my

theoretical and experimental results, and so the discussion will be presented at the

end of Chapter 2.

1.2 MODEL

The discrete public good game consists of the following. The set of expected payo

maximizing players is N = {1, ..., n}, 2 < n < . Players have identical binary

action sets Ai = {0, 1}, with actions labeled {don’t contribute, contribute} . When
3Here are some reasons that justify this benchmark. First, although it is well-established that

certain modeling implications of expected utlity theory do not exist in reality, the expected utility
framework can be a useful predictor of behavior (Rabin 1999). This is the case in the experiments
reported here. Second, recent work using evolutionary models gives justification for looking at
equilibria because they can arise even from boundedly rational individuals. This suggests the
existence of scenarios in which predicted outcomes can arise even if the modeled motives exactly
represent the individuals’ true motives. Third, from a theoretical perspective, a precise benchmark
allows for both departure and comparison.
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players mix over those actions, let i be the probability that ai = 1 (i contributes).

The cost of contributing c and the value of a provided public good v are the same

for all individuals. The contribution threshold t to provide the public good is chosen

from a publicly known distribution cdf F with pdf f s.t. F (0) = 0. Given C realized

contributions, the payo s are:

payo for i =

v if C t and ai = 0
v c if C t and ai = 1
0 if C < t and ai = 0
c if C < t and ai = 1

.

For most of this chapter, I use discrete threshold distributions, but assuming

an underlying continuous contribution will be necessary to consider what happens

when the binary action set assumption is relaxed in Section 1.4.4

The timing of the game is as follows: (1) n, v, c, F , and the game set-

up are commonly known; (2) the players simultaneously choose whether or not to

contribute; (3) payo s are received. The analysis focuses on Nash equilibria.

1.3 ANALYSIS

The number of contributions in equilibrium is of greater interest than which play-

ers contribute in equilibrium. I will treat two equilibria with the same number of

contributions as a unique equilibrium.

Section 1.3 will assume that the threshold distribution is strictly quasi-concave.

Formally, call a cdf F with pdf f strictly quasi-concave if the pdf is single-peaked and

f (x) 6= f (x+ 1) for any x in its range. The pdf cannot be flat at any x with

4The analysis is unchanged if the discrete F is actually a discrete representation of an underlying
continuous threshold distribution. For example, consider a continuous cdf H (x) with pdf h (x) over
(0, ). Then F the discrete version of H (with pdf h (x)) is calculated s.t. F (x) =

R x
0
h(x)dx for

all x = {1, 2, ...} .
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f (x) > 0, but it can be flat at x where f (x) = 0.5 The main results in this paper

can be obtained without this condition, as discussed in Section 1.4. This condition

is not unrealistic, however, and it greatly simplifies the intution for the analysis.

1.3.1 Pure Equilibria

For now, the focus is on pure equilibria. An agent’s decision in equilibrium will

depend on the probability he is pivotal in providing the public good. Denote C i to

be the set of contributing agents besides i. The payo matrix is

C i < t 1
(lost cause)

C i = t 1
(pivotal)

C i > t 1
(redundant)

spend c v c v c
keep 0 0 v

.

Let a i = (a1, ..., ai 1, ai+1, ..., an). Further denote Pr[piv|a i, F ] to be the

probability that i is pivotal given a i and F , Pr[lost|a i, F ] to be the probability of

a lost cause, and Pr[red|a i, F ] to be the probability of being redundant.
6 Given a i

and F , a player is willing to contribute if

Pr [lost|a i, F ] ( c) + Pr [piv|a i, F ] (v c) + Pr [red|a i, F ] (v c)

Pr [red|a i, F ] v

Pr [piv|a i, F ]
c

v
.

5To illustrate, a uniform pdf over {3, 4} is single-peaked, but it is not strictly quasi-concave
because it is flat at f (3) and f (4).

6The calculation of these is straightforward: Pr [piv|a i, F ] =P
x=1 (Pr [C i = x 1|a i] f (x)) , Pr [lost|a i, F ] =

P
x=1 (Pr [C i < x 1|a i] f (x)) ,

Pr [red|a i, F ] =
P
x=1 (Pr [C i > x 1|a i] f (x)) .
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It follows that for each i in a pure Nash equilibrium:

ai =
0 if Pr [piv|a i, F ] <

c
v

a0 {0, 1} if Pr [piv|a i, F ] =
c
v

1 if Pr [piv|a i, F ] >
c
v

. (1)

Denote a pure equilibrium by C, which now signifies the number of pure

contributions in equilibrium. In a pure equilibrium C a contributing player believes

with probability one that exactly C 1 others are contributing. That player is pivotal

with probability f (C). A non-contributing player in the proposed equilibrium C is

pivotal with probability f (C + 1). It follows that conditions for existence of an

equilibrium C are:

C =
0 if f (1) c

v

x {1, .., n 1} if f (x) c
v
and f (x+ 1) c

v

n if f (n) c
v

. (2)

If there is more than one pure equilibrium in a game, one of the equilibria

is the trivial equilibrium with zero contributions. Proposition 1 contains some pre-

liminary conditions for uniqueness of equilibria. In this proposition and throughout

the rest of the paper, the feasible mode is the mode of the distribution from 1 to n.

More formally, x N is the feasible mode where f (x) > f (x0) for all x0 N , x0 6= x

(“>” by strict quasi-concavity).

Proposition 1: (Uniqueness of Pure Equilibria) Fix the players N , the

contribution cost c, the value of the value of the public good v, and the

threshold distribution F .

(a) The unique equilibrium is C = 0 if and only if the cost-value

ratio c
v
is strictly greater than the mass at the feasible mode. The unique
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equilibrium is C = n if and only if the cost-value ratio c
v
is weakly less

than f (x) for all feasible contributions x.

(b) If the threshold distribution F is strictly quasi-concave, then there

is at most one non-trivial equilibrium with C > 0. Furthermore, if there

is more than one equilibrium then there are exactly two equilibria: one is

the trivial equilibrium C = 0, and the other is a non-trivial equilibrium

with C > 0.

(c) If the threshold distribution F is strictly quasi-concave, then any

non-trivial equilibrium with C > 0 has C (weakly) to the right of the

feasible mode.

Proof: (a) Follows directly from the conditions in (2).

(b) For there to be more than one non-trivial equilibrium, there

must be x < x0 < x00, all in N , s.t. f (x) c
v
, f (x0) c

v
, and f (x) c

v
.

But the single-peaked nature of strict quasi-concavity prevents this from

being true. Because there is only one non-trivial equilibrium, if there is

more than one equilibrium, then the only other possible equilibrium is the

trivial equilibrium at C = 0.

(c) By (2), any interior equilibrium C > 0 must have f (C) c
v

f (C + 1). By strict quasi-concavity, C must be to the right of the feasible

mode where the pdf is “downward sloping.” If C = n then C is trivially

to the right since it is not left of any feasible x N . ¥
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These pure equilibria can be represented graphically. Figure 1.1(a) shows

a typical pdf. As shown, there is a trivial equilibrium C = 0, and with n = 5

there is a non-trivial equilibrium at C = 4. Notice that for a strictly quasi-concave

distribution, the internal/non-trivial equilibrium must be to the right of the feasible

mode and on the downward-sloping side of the pdf. As stated in Proposition 1, this

fact comes straight from the nature of equilibrium. Each contributor must be willing

to contribute (f (C) c
v
), and each non-contributor must not want to contribute¡

f (C + 1) c
v

¢
.

Hereafter, we focus on the non-trivial equilibrium C . The non-trivial equi-

librium is C = 0 if the cost-value ratio c
v
is higher than the feasible mode (by

Proposition 1). Otherwise, the non-trivial equilibrium is C > 0. As shown later,

this non-trivial equilibrium is the Pareto-undominated equilibrium, although it can

be ine cient.

I now state the two main propositions of this paper. The first of these will

consider a threshold distribution that is totally feasible. Say that a distribution F

is totally feasible when F (n) = 1.

Proposition 2: (Higher Contributions under 2nd-order Stochastic Dom-

inance) Consider two games that are identical except for their strictly

quasi-concave threshold distributions F and bF , F 6= bF . Denote C and

bC their respective non-trivial equilibria. If F 2nd-order stochastically

dominates bF , F and bF have the same mean, and F and bF are both to-

tally feasible, then there exists a scalar k > 0 such that bC C if the
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cost-value ratio c
v

k. Furthermore, if it is also true that the feasible

mode of F is strictly greater than the feasible mode of bF , then there exists
a second scalar k0 k such that C bC if the cost-value ratio c

v
> k0.

Proposition 3: (Higher Contributions under a Single-Crossing Condi-

tion) Consider two games that are identical except for their strictly quasi-

concave threshold distributions F and bF , F 6= bF . Denote C and bC
their respective non-trivial equilibria, and assume that the feasible mode of

F is higher than the feasible mode of bF . If the pdf’s f and bf cross ex-
actly once on the right of the feasible mode of F , then there exists a scalar

k > 0 such that bC C if the cost-value ratio c
v

k, and C bC if

the cost-value ratio c
v
> k.

The proofs of Proposition 2 and 3 will follow directly from a more general

result about the comparison of non-trivial equilibria in games that di er only in their

threshold distributions. This more general result is Lemma 1. In the rest of Section

1.3.1, we will first work towards establishing Lemma 1, after which Propositions 2

and 3 will be proven.

Because the non-trivial equilibrium C > 0 is to the right of the feasible

mode, we can restrict our attention to that part of the threshold pdf that is between

the feasible mode and the maximum number of contributions n. We can also go one

step further when comparing the non-trivial equilibria of otherwise identical games

13
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Figure 1.1:  An Example for Finding Equilibria Graphically
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with di erent threshold distributions. The following corollary to Proposition 1 says

that when looking for the equilibrium with higher contributions of the two games, we

can restrict our attention to that part of the two distributions that is between the

feasible mode with higher mass and n. In other words, if the mass at F ’s feasible

mode is higher than the mass at bF ’s feasible mode, then we need only be concerned
with the area to the right of F ’s feasible mode.

Corollary 1: (Comparing Non-trivial Equilibria) Consider two games

that are identical except for strictly quasi-concave threshold distributions F

and bF , F 6= bF . Denote C and bC their respective non-trivial equilibria.

(a) bC > C if and only if there exists some level of contributions x,

C < x n, such that f (x) is weakly greater than the cost-value ratio c
v
.

(b) Consider the feasible modes of F and bF . If bC > C then bC
must be to the right of the feasible mode with higher mass.

With our attention now restricted to the right of the feasible mode with higher

mass, we now look more closely at the behavior of the two distributions F and bF from
that feasible mode to n. I will often call this specific area the interior and denote it

by I.

One key condition of interest is when one of the pdf’s has a higher interior-

right tail, that is, one pdf is greater than the other pdf for all contribution levels

from some number in the interior I to n. The “interior-right” means that we are
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looking at the right tail in this interior I. Another key condition is the analog for

the interior-left, but this condition will also be defined by the height of the pdf’s to

the right of the interior-left. After formally defining these conditions, I will illustrate

them graphically.

Interior Tails Conditions: Consider two strictly quasi-concave distri-

butions F and bF , F 6= bF , with respective pdf’s f and bf . Denote I to

be the interior, that is, the set of contribution levels between the feasible

mode with higher mass m and n, I = {m, ..., n}.

(a) Say that bf has a fatter interior-right tail than f if there exists
an x I, such that bf (x0) f (x0) for all x x0 n.

(b) Say that f has a fatter interior-left tail than bf if there exists
an x I, such that f (x0) bf (x0) for all m x0 x, and, if x < n,

f (x0) > f (x00) for all m x0 x, x < x00 n.

Figure 1.2 illustrates these conditions. Smooth pdf’s are drawn for clarity.

Figure 1.2(a) shows the case where both a fatter interior-right tail IR and a fatter

interior-left tail IL exist. Notice that these tails do not necessarily meet. Figure

1.2(b) shows when the two tails meet on the vertical axis. Figure 1.2(c) shows when

one pdf is always above the other in the interior I.

The reason for the second condition in the definition of the fatter interior-

left tail is that we want to know when the non-trivial equilibrium C will be in that
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interior-left tail and when C bC . This idea is illustrated on Figure 1.2(b). Notice

that if c
v
= k1, then bC is higher than C = x1 even though f (x1) > bf (x1). This is

because x1 is to the left of the feasible mode of bF .
We can use Figure 1.2(a)-(b) to demonstrate the two main propositions of the

paper and lead us closer to Lemma 1. Notice that the k and k0 in Figure 1.2(a) satisfy

the k and k0 in Proposition 2. In this graph, F 2nd-order stochastically dominates

bF , and F has a higher feasible mode. We see that if c
v

k then bC C , whereas

if c
v
> k0 then C bC . Figure 1.2(b) illustrates Proposition 2. The horizontal line

at k is such that if c
v

k then bC C , whereas if c
v
> k then C bC .

These illustrations lead us to the main lemma from which Propositions 2 and

3 are derived.

Lemma 1: (Fatter Interior Tails and Pure Equilibria) Consider two

games that are identical except for their strictly quasi-concave threshold

distributions F and bF , F 6= bF . Denote C and bC their respective

non-trivial equilibria.

(a) If bf has a fatter interior-right tail than f , then there exists a
scalar k, 0 < k < 1, such that bC C if the cost-value ratio c

v
k.

(b) If f has a fatter interior-left tail than bf , then there exists a
scalar k0, 0 < k0 < 1, such that C bC if the cost-value ratio c

v
> k0.
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Proof: (a) Suppose the contrary, that bf has the fatter interior-right tail
but C > bC for some c

v
k. Choose k = f (mR), where mR is the mode

of bf over the fatter interior-right tail {x, ..., n}. It follows that c
v

k

implies that C x, where x is the beginning of the fatter interior-right

tail. For C > bC , it must be that f (x0) c
v
> bf (x0) for some x0,

x x0 n, but this contradicts the fact that bf has a fatter interior-right
tail. Similar logic will show that any k

h
0, bf (mR)

i
will satisfy the

claim.

(b) Follows from logic similar to that used in part (a). ¥

With Lemma 1 established, we can now prove Propositions 2 and 3. I first

prove and comment on Proposition 2 before addressing Proposition 3.

Proof of Proposition 2: F 2nd-order stochastically dominates bF im-
plies that

Px0
x=0

bF (x) Px0
x=0 F (x) for all x

0 N. Total feasibility and

same means together imply that
Pn

x=0
bF (x) = Pn

x=0 F (x) (see La ont

1989). Subtracting the first condition from the second condition yields

nX
x=0

bF (x) x0X
x=0

bF (x) nX
x=0

F (x)
x0X
x=0

F (x)

nX
x=x0+1

bF (x) nX
x=x0+1

F (x) .

This last equation says that, starting from n and moving to the left on

the graph of the cdf’s, when F and bF first separate, bF must be below
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F . This implies that bf must have a fatter interior-right tail than f .
(Notice that if F and bF do not separate in interior I, then bf and f have
identical interiors, which means that bf has a fatter interior-right tail by
the weakness.) Since bf has a fatter interior-right tail, we use Lemma 1
to show that there exists a k that satisfies the first claim in Proposition

2.

If the feasible mode of f has mass strictly greater than the feasi-

ble mode of bf then it follows that f has a fatter interior-left tail. We

use Lemma 1 to show that there exists a k0 as in the second claim in

Proposition 2. ¥

The intuition for Proposition 2 is straightforward. The spread will push

probability mass to the right part of the tail, and the total feasibility restriction

means that this mass will stay in the feasible region. With more mass in the interior-

right tail, the probability of being pivotal is higher for high contribution levels. This

alone is not enough to ensure that contributions will be higher in the game with the

spread probability. If the cost-value ratio c
v
is too high, then the mass increase on

the right will not be enough, and there might be a drop in contributions. This is seen

in Figure 1.2(a) when c
v
> k0. If the cost is low enough (below k) then contributions

are higher.

Notice that total feasibility is su cient, but not necessary. What is necessary

in this case of a mean-preserving spread is that enough mass is spread to the interior-

20



right. In other words, all I need for the Proposition 2 is a fatter interior-right

tail. Proposition 3, which I now prove, demonstrates this point (because it does

not assume total feasibility) while making another claim about an implication of the

single-crossing property.

Proof of Proposition 3: Denote mF and m bF the feasible modes of
F and bF , respectively. The claim assumes that f (mF ) > bf ¡m bF ¢ and
that the pdf’s cross exactly once over {mF , ..., n}. Suppose they cross

at x {mF , ..., n}, so that f (x0) bf (x0) for all mF x0 < x, and

f (x00) f (x00) for all x x00 n. It follows then that bf has a fatter
interior-right tail and f has a fatter interior-left tail. It remains to show

that k = k0 in Lemma 1.

If f
¡
m bF¢ bf ¡m bF¢ then by strict quasi-concavity, f has a fatter

interior-left tail from mF to x + 1 and bf has a fatter interior-right tail
from x to n. These two tails meet each other, so k = k0 in Lemma 1,

thus satisfying the claim. Now suppose that f
¡
m bF ¢ < bf ¡m bF ¢. (This

is akin to Graph 3.2(b).) Set k = bf ¡m bF¢, and then find where f crosses
k. For any c

v
k, we satisfy Lemma 1(a), and for any c

v
> k, we satisfy

Lemma 1(b). Thus k = k0 in Lemma 1. ¥

Proposition 3 gives a very clean result that is applicable in a wide variety of

threshold distributions. For example, many monotone mean-preserving spreads will
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meet this single-crossing condition. Also, the class of uniform threshold distribu-

tions meets this single-crossing condition. I take advantage of this last fact in the

experiments I conducted (see Chapter 2).

I now turn to discussing mixed equilibria before looking at the e ciency

considerations.

1.3.2 Symmetric/mixed Equilibria

Similar logic is used in examining the mixed equilibria, but there is one important

di erence. While the results for pure equilibria come from looking at fatter interior

tails of the probability distributions, the results for the mixed equilibria come from

looking at fatter interior tails of transformations of the probability distributions.

For reasons given below, when looking at mixed equilibria, we can restrict our

attention to symmetric equilibria. With i the probability that player i contributes,

we now let = i = j, for all i, j N , be the rate at which every player mixes.

From (1), we see that the conditions for a symmetric equilibrium are

i =
0 if Pr [piv| = 0, F ] < c

v0 [0, 1] if Pr [piv| = 0, F ] = c
v

1 if Pr [piv| = 1, F ] > c
v

. (3)

The transformation of the probability distribution that we are interested in

is what we will call the Pr[piv|F ]-curve. This curve maps the probability player i is

pivotal given that all others are mixing at rate [0, 1] . Figure 1.1(b) illustrates

this Pr[piv|F ]-curve for the pdf in Figure 1.1(a). This curve is derived as follows:

Pr [piv| , F ] =
nX
x=1

µ
n 1

x 1

¶
x 1 (1 )n x f (x) .
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With five players in the game, there are three symmetric equilibria in Figure

1.1(b): = 0, = 0.32, and = 0.91. From the conditions in (3), it follows

that symmetric equilibria can only occur at three places in the figure: at the origin

if the Pr[piv|F ]-curve crosses the vertical axis at a place above c
v
, at a place where

the Pr[piv|F ]-curve intersects the c
v
-line, and at the = 1 line if the Pr[piv|F ]-curve

crosses it above c
v
. This last possibility would happen in Figure 1.1(b) if c

v
0.15.

Equilibria at = 0 and = 1 have a nice stability property: an increase

in from 0 would drive contributions back down to zero, and an decrease in from

1 would drive contributions back to one. Strictly mixing equilibria only share this

property if the slope of the Pr[piv|F ]-curve is downward sloping where it crosses the
c
v
-line. In Figure 1.1(b), the 0.32 equilibrium is not stable, but the 0.91 one is stable.

Thus we see that the stable symmetric equilibria have qualitative properties

similar to the pure equilibria: they occur where the distribution (whether F for pure

or it’s Pr[piv|F ]-curve transformation for symmetric) crosses the c
v
-line from above.

We take advantage of this fact in analyzing the symmetric equilibria.

This stability notion coincides with the concept of evolutionarily stable strate-

gies7 (ESS): i is at least as better o playing than playing the perturbed strategy

given that the others play , and if i is indi erent to playing the perturbed strat-

egy given the other play , then i is strictly better o playing than playing the

perturbed strategy when all others play the perturbed strategy.

7See Gintis (2000) for a discussion of ESS.

23



With this concept of stability, we state Propositions 1A. This proposition is

the Pr[piv|F ]-curve analog to Proposition 1 for symmetric/mixed equilibria but with

the addition of part (0).

Proposition 1A: (Uniqueness of Symmetric Equilibria) Fix the players

N , the contribution cost c, the value of the value of the public good v, and

the threshold distribution F .

(0) If there is a stable equilibrium in which at least two players i

and j are strictly mixing i, j (0, 1), then it must be that i = j

(generically).

(a) The unique equilibrium is = 0 if and only if the cost-value

ratio c
v
is strictly greater than the maximum of the Pr [piv|F ]-curve. The

unique equilibrium is = 1 if and only if the cost-value ratio c
v
is weakly

less than Pr [piv|F ]-curve for all [0, 1].

(b) If the Pr [piv|F ]-curve is strictly quasi-concave, then there is at

most one stable equilibrium with > 0. Furthermore, if there is more

than one stable equilibrium then there are exactly two stable equilibria: one

is the trivial equilibrium = 0, and the other is a non-trivial equilibrium

with > 0.

(c) If the Pr [piv|F ]-curve is strictly quasi-concave, then any stable

equilibrium with > 0 has (weakly) to the right of the mode of the

Pr [piv|F ]-curve.
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Proof: (0) Suppose there is a mixed equilibrium with two players i and

j such that i and j are both in (0, 1). Without loss of generality let

i < j. Because of the symmetry, both players strictly mixing implies

that each has a probability of being pivotal equal to c
v
by (3). Since j is

mixing at a higher rate than i, i’s expected number of contributors other

than himself must be higher than j’s expected number of contributors

other than himself. However, this means that i and j do not have equal

probabilities of being pivotal (generically), which means that both cannot

have probabilities of being pivotal equal to c
v
which is a contradiction.

(a)-(c) Follows directly from analysis similar to that used in proving

Proposition 1. ¥

From now on, the focus is on the non-trivial equilibria that are stable and

symmetric. Part (0) provides justification for looking only at symmetric equilibria.

Any strict mixers must mix at the same rate, so if a mixed equilibrium is asymmetric,

the asymmetry is in who mixes and not the rate at which they mix. In fact, the

mixing rate in one of these asymmetric equilibria is the mixing rate in a symmetric

equilibrium of a transformed game.8 As a result, we are examining the main strategic

aspects9 of all mixed equilibria when considering symmetric equilibria. We can justify

looking at stable equilibria, too. First, the ESS concept has nice stability properties

8More precisely, if Nmix is the set of mixers and N1 is the set of pure contributors, then the rate
at which the mixers is mixing is equal to the mixing rate in game G0 with f 0 (x) = f (x+ |N1|) for
all x > 0.

9The only aspect missing is the possibility of a di erent number of strict mixers.

25



that suggest that such strategies are more likely to be observed. Second, ESS can

arise out of many dynamic processes which again suggests they are more likely to be

observed.10 Third, symmetric mixed ESS will exhibit comparative static properties

that are qualitatively similar to the asymmetric pure equilibria thereby giving added

justification to the comparative static predictions of these equilibria.

The analog to the non-trivial pure equilibrium C is the non-trivial stable

and symmetric equilibrium . Lemma 1 can be restated as Lemma 1A in terms of

the fatter interior tails of the Pr[piv|F ]-curves.

Lemma 1A: (Fatter Interior Tails and Symmetric Equilibria) Consider

two games that are identical except for their threshold distributions F and

bF , F 6= bF . Denote and b their respective symmetric and stable

non-trivial equilibria.

10Here are two examples of dynamic processes that lead to an ESS being reached. The
first example is a restricted best-response dynamic process. Suppose in period t, each player
chooses a best response to the strategies of the previous period with the restriction that BRi,t
[ai,t 1 , ai,t 1 + ] [0, 1] . In other words, each player is restricted to making only small de-
viations from his previous period’s strategy. Without this restriction, players would jump back
and forth between contributing and not contributing, and no mixed equilibrium would be reached.
In these dynamics, only ESS will be reached if the system starts out of equilibrium. The second
example of a dynamic process is based on the interpretation of mixed strategies in terms of large
population, random interaction models in which players only play pure strategies. Consider a large
population of players that is randomly divided into n-sized groups over a long period of time. If
players that receive higher payo s reproduce at faster rates, convergence will occur to a population
where a fraction of the population that contributes towards the public good will be equal to the
mixed strategy equilibrium. Each of these two examples have dynamics that will lead to conver-
gence to identical equilibria, either mixed in the first model or pure but in the mixed proportions in
the second model. Equilibria that are not ESS cannot be sustained with pertubations under any
evolutionary model. We therefore expect to see actual behavior fall more in line with these ESS.
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(a) If the Pr
h
piv| bFi-curve has a fatter interior-right tail than the

Pr [piv|F ]-curve, then there exists a scalar k, 0 < k < 1, such that b
if the cost-value ratio c

v
k.

(b) If the Pr [piv|F ]-curve has a fatter interior-left tail than the

Pr
h
piv| bFi-curve, then there exists a scalar k0, 0 < k0 < 1, such that

b if the cost-value ratio c
v
> k0.

A 2nd-order stochastic dominance relationship between threshold distribu-

tions F and bF does not necessarily imply a 2nd-order stochastic dominance between
the Pr[piv|F ]- and Pr

h
piv| bFi-curves. However, that dominance relationship between

F and bF will generally imply that the Prhpiv| bFi-curve has a fatter interior-right tail,
and it is the fatter interior-right tail that really matters when comparing the equilib-

rium contribution rates. This means that there will generally exist the k that yields

b whenever c
v

k, which is the symmetric equilibrium analog to Proposition

2.

Similarly, when the feasible mode of F is strictly higher than the feasible

mode of bF , the mode of the Pr[piv|F ]-curve will often have a higher mass than the
mode of the Pr

h
piv| bFi-curve. This will result in a fatter interior-left tail for the

Pr[piv|F ]-curve, which is su cient for the existence of the k0 that yields b
whenever c

v
> k0. This fact, which completes the symmetric analog to Proposition

2, follows from logic similar to that used to establish the last claim in Proposition 2.
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1.3.3 E ciency

We are interested in the e ciency of equilibria when there is threshold uncertainty and

also in the comparative e ciency of equilibria under di erent threshold distributions.

The welfare criterion used here is the sum of expected utilities

W (C) = nF (C) v Cc.

An increase in contributions does not imply an increase in expected welfare.

For an increase in welfare to follow from an increase in contributions, we must have

a su cient increase in the probability of provision. Before coming back to the

discussion of welfare changes, we will first discuss Proposition 4, which makes some

basic claims about e ciency.

Proposition 4: (E ciency) Fix the players N , the contribution cost c,

the value of the value of the public good v, and the threshold distribution

F . Assume F is strictly quasi-concave.

(a) The non-trivial pure equilibrium C is the Pareto-undominated

equilibrium in the class of pure equilibria. This equilibrium C , 0 C <

n, is ine cient when c
vn
< f (C + 1) < c

v
.

(b) The symmetric and stable non-trivial equilibrium is generically

ine cient, but it can yield higher expected welfare than the non-trivial pure

equilibrium C .
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Proof: (a) Suppose the contrary, that there exists some equilibrium

C < C , where nF (C) v Cc > nF (C ) v C c. Some algebra yields

n(F (C ) F (C))
C C

< c
v
. This inequality is a contradiction for all values of the

LHS. In particular, since f (C ) c
v
, the lowest the LHS can be is

n( cv )
C
,

so
n( cv )
C

< c
v
implies n < C which is a contradiction. It must similarly

be a contradiction for any LHS greater than
n( cv)
C
.

We prove the case for when C {1, ..., n 1} . By Proposition

1, C is to the right of the feasible mode. By strict quasi-concavity,

f (C ) c
v
> f (C + 1) f (C + k) for all 1 < k n C . This

means that the largest marginal welfare gain to be had by an increase in

one contribution is from C to C +1. Welfare is higher under C +1 when

W (C + 1) > W (C ) . Doing the algebra shows this to be equivalent

to f (C + 1) > c
vn
. It follows that the C is ine cient when c

vn
<

f (C + 1) < c
v
.

(b) That mixed equilibria are generically ine cient is trivial. That

the symmetric equilibrium can yield higher expected welfare than the pure

equilibrium is illustrated by an example. Suppose n = 5, f (1) = 0.54,

f (2) = 0.13, f (3) = 0.12, f (4) = 0.11, f (5) = 0.10, and c
v
= 0.14. Then

we can find that C = 1, ' 0.5, W (C ) = 18.29, and W ( ) ' 23. ¥

As is common in public good games, ine ciencies arise because the marginal

gain to an individual from contributing is di erent from the marginal social gain from
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that same contribution. This di erence comes from the welfare function accounting

for all players’ marginal gain’s instead of just one individual’s marginal gain. This

ine ciency does not arise when f (C + 1) < c
v
, C = n, or when F (C ) = 1. Notice

that this implies that the non-trivial equilibrium C is e cient when the threshold

is known with certainty–a fact already established by Palfrey and Rosenthal (1984).

Their result is thus a special case of the more general result in Proposition 4(a).

As shown in the example in the proof of part (b), the symmetric equilibrium

can have higher expected welfare when the pdf has a tail to the right of C that is

close to but under c
v
. In this example, the e cient outcome is C = n (or = 1),

and each additional contribution increases welfare. In this example, the symmetric

equilibrium has higher welfare because expected contributions are higher, and this

increase in contributions more than o sets the decline in welfare due to greater total

contribution cost.

Because contributions can increase due to an increase in uncertainty (i.e., by

2nd-order stochastic dominance), it turns out that welfare can be higher under an

increase in uncertainty. Again, suppose that the initial distribution has a right tail

above C that below c
v
but above c

vn
from C + 1 to n or close to n. A widening of

uncertainty that drives up the right tail will increase contributions, and if the increase

in the probability of provision is su cient then there will be an increase in expected

welfare.
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1.4 Other Modeling Considerations

This section discusses the robustness of the main theoretical findings to alterations

in certain assumptions made in the model. First, we consider allowing for threshold

distributions that are not strictly quasi-concave. Second, we consider allowing indi-

viduals to make contributions from a continuous contribution set. Third, we briefly

consider how the analysis changes when there is risk aversion. Finally, we briefly

discuss sequential contributions.

General Threshold Distributions. I have worked out the analogs to the

main claims for when the threshold distributions are not restricted to be strictly quasi-

concave. The added complication when the distribution is not strictly quasi-concave

is that there might be more than one non-trivial equilibrium. The way around

this complication is to look at the equilibrium with the highest level of expected

contributions. Doing so allows us to do the same analysis as before on this high-

contribution equilibrium. For pure equilibria, this high-contribution equilibrium is

the Pareto-undominated equilibrium, and Lemma 1 and Propositions 2 and 3 can be

restated exactly word for word substituting only “high-contribution equilibrium” in

place of “non-trivial equilibrium.” The analysis will also be similar for symmetric

equilibria.

Continuous Contributions. Nitzan and Romano (1990) allow individuals

to make continuous contributions. These continuous contributions can be likened to

monetary contributions, whereas binary contributions can be likened to participation
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decisions. Leaving the binary case means we must consider the underlying threshold

distribution. Proposition 5 assumes that the underlying threshold distribution is a

continuous and strictly quasi-concave threshold distribution function H from which

the discrete transformations F and F 0 are derived so as to assign mass over Ai and

A0i, respectively.

Proposition 5: (Continuous Contributions, partly from Nitzan and Ro-

mano (1990)) Consider two games that are identical except for their con-

tribution sets Ai and A
0
i. Assume that the threshold distribution function

H is continuous. Suppose binary contributions Ai = {0, 1} for all i in

the first game, and assume continuous contributions A0i = [0, 1] for all i

in the second game. Then expected welfare is always (weakly) higher in

the second game with continuous contributions.

The proof of this proposition combines a result from Nitzan and Romano

(1990) with my Proposition 4. Nitzan and Romano (1990) show that in continuous

contribution games we need to consider the maximum number of contributions that

players can make. Because we restrict players to contribute at most 1, the total

number of contributions players can make is n. In their notation, H is continuous

over [a, b], 0 < a < n. If n b in the continuous contribution game, then C = b, 11

the public good is provided with probability 1, and the equilibrium is e cient. If

11Here C is the total contribution but not necessarily the number of contributors because C is
not necessarily an integer.
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n < b, then C = n and the public good is provided with probability strictly less

than 1. My Proposition 4 says that things can be very di erent when contributions

are binary. First, if the public good is totally feasible (n b) then the equilibrium

is only e cient if f (b) c
v
. Second, if the public good is not totally feasible, then

equilibrium is only e cient if f (n) c
v
. Put succinctly, the equilibrium under

continuous contributions will always be e cient, but the equilibrium is not always

e cient under binary contributions.

The logic is straightforward. Consider a proposed equilibrium C < b. In

the binary case, a non-contributor considers if f (C + 1) is greater than c
v
. Now

in the continuous case, if the player considers a 1
2
contribution, then he compares

f
¡
C + 1

2

¢
with c

2v
in his decision rule. More generally, it can be shown that for a

1
2m
contribution, the player’s decision rule will compare f

¡
C + 1

2m

¢
with c

2mv
. As

m , the c
2mv
-line converges to 0 and f

¡
C + 1

2m

¢
converges to f (C). In the limit,

the player he will contribute an amount whenever f (C) > 0. Thus we see that

contributions will cover the whole feasible domain of the threshold distribution. For

symmetric equilibria, similar reasoning will show that with continuous contributions,

= b
n
when n b.

This logic implies that wider threshold uncertainty can only decrease e -

ciency for the continuous contribution case (when b increases past n), while wider

uncertainty can increase e ciency under binary contributions (even if b goes past n).

While this is a strikingly di erent result, the underlying behavior and analysis in each

case is the same. The di erence lies in the fact that we do not always have complete
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provision of the public good in the binary case due to the c
v
-line above the horizontal

axis.

Risk Aversion. If the players are risk averse then the free-rider e ect (the

worry about donating a redundant contribution) is relatively diminished while the

lost-cause e ect (the worry about contributing to a lost-cause) is relatively enlarged.

Risk aversion will likely be present in the experiments, and will be discussed later.

For now, I make the point that a qualitative result similar to Lemma 1 will hold, but

there is an important di erence. The decision rule (1) will not compare Pr [piv|a i, F ]

with c
v
. Instead of drawing a horizontal c

v
-line, there will be a “ c

v
-curve” that varies

by contribution level. On the graph of the pdf, this curve will be decreasing over

the domain of contribution levels with f (x) > 0, and its slope and shape will depend

on the size of the risk aversion. Under extreme amounts of risk aversion, the slope

becomes more negative and the whole curve shifts up. With a change in uncertainty

from F to bF , the curve will also change. For the analog to Lemma 1(a), our definition
of the fatter interior-right tail will have to consider not just the comparison pdf’s but

also the comparison of these curves.

Sequential Contributions. Since there is no private information in this

game, there are not the normal information issues involved in comparing simulta-

neous and sequential equilibria. Sequential moves in this game only allow players

to condition on observed behavior. This observation will matter when comparing a

mixed equilibrium to a sequential equilibrium, but any pure equilibrium of a the si-
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multaneous game is an equilibrium of any sequential move game.12 The main results

from Section 3.1 will thus still apply in the sequential move game. Hence, the focus

on simultaneous contributions in this paper is not missing other important strategic

issues (other than timing) that would arise in a sequential move game.

12Dekel and Piccione (2000) have a similar finding for voting games in symmetric binary elections.
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CHAPTER 2

THRESHOLD UNCERTAINTY IN DISCRETE PUBLIC GOOD EXPERIMENTS

2.1 INTRODUCTION

This chapter presents new data from laboratory experiments specially designed to

test the main theoretical predictions of the model presented in the first chapter.

The main predictions of interest are that an increase in threshold uncertainty will

increase contributions when the value of the public good is su ciently high, and that

an increase in threshold uncertainty will decrease contributions when the value of

the public good is su ciently low. My experimental data verify these qualitative

predictions, and they also support the underlying behavioral logic of the model.

In these experiments, subjects play multiple rounds of a public good game

in which they know all relevant information except the actual threshold. After

being told the distribution from which the threshold will be randomly selected, the

subjects privately make contributions. To induce proper incentives, subjects receive

payments according to the actual outcomes of play. As predicted, after an increase in

uncertainty, contribution rates increase (in later rounds) when the value of the public

good is high, and contribution rates decrease when the value of the public good is low.

I also elicit the subjects’ beliefs about other players’ contribution decisions using a

proper scoring rule. These reported beliefs show evidence of learning. Using the

reported beliefs to proxy for true beliefs, I conduct parametric and non-parametric
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analysis to study whether the subjects’ behavior is consistent with the behavioral

assumptions of the model. Although behavior is inconsistent with expected payo

maximization, the subjects’ behavior becomes more consistent with a game-theoretic

decision rule once when I allow for both risk-aversion and innate cooperativeness.

Section 2.2 describes the experiment design in detail. Section 2.3 presents five

main preliminary results from an initial analysis of the data. In these two sections, I

explain why the experiment design is correct for testing the model’s predictions and

what potential di culties are to be expected in verifying those predictions. Section

2.4 summarizes the experimental findings and discusses insights into collective action

that follow from the findings. In particular, there can be a status-quo bias towards

wide threshold uncertainty, and communication is likely to be vital for successful

collective action in one-shot provision games. Section 2.5 is an appendix that contains

the dialogue of the experiment.

2.2 EXPERIMENT DESIGN

Experiments were conducted at the California Social Science Experimental Labora-

tory (CASSEL) at the University of California–Los Angeles (UCLA). Subjects were

drawn from the UCLA summer 2001 student population. Each experiment session

consisted of 4 practice rounds and 30 real rounds (the exception being the experi-

ment on 8/21 which ended after 26 real rounds), and each session had either 25 or 30

students. All decisions were made over a computer network in a computer currency

called “tokens.” Subjects amassed tokens depending on the decisions and the factors
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determined by the computer. At the end of the session, subjects were paid U.S.

dollars according to a pre-announced token/dollar exchange rate. The upper half of

Table 2.1 lists basic session information and some basic session statistics.

The dialogue from the instructional period is included in the appendix (Sec-

tion 2.5) of this chapter. After an instructional period, the students participated in

the practice rounds to become familiar with the computer interface. In each round,

the computer randomly and anonymously assigned the subjects in the room into

groups of five, and each student was then given one computer token. Each subject’s

computer then displayed the public good value and the threshold range. Subjects

were told that the threshold range is a range
©
t, ..., t

ª
from which the computer will

randomly and uniformly select the true threshold. Subjects are told that all displayed

information is the same for all individuals and groups in the room.

Before deciding whether to keep (do not contribute) or spend (contribute) the

one given token towards the public good, each subject is asked to assign percentage

probabilities to what the others in his or her group will do.1 Since five students are

in each group, a student assigns probabilities to the following five events: exactly

0 others in the group spend, exactly 1 other spends, exactly 2 others spend, exactly

3 others spend, and exactly 4 others spend. Once the assigned percentages add

up to 100%, the student then makes the decision to keep or spend his or her token.

Subjects are not allowed to communicate with any other subjects in the room during

the practice or real rounds.

1See Nyarko and Schotter (2000) for discussion of the validity of using elicited beliefs.
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Session
1 2 3 4 5

(a)  Session Information
Date 8/21 8/22 8/29 9/6 9/7
Number of Subjects 30 25 25 30 25
Exchange Rate (tokens/dollar) 15 15 7.5 15 15

Parameter order ordered ordered ordered ordered random
Threshold range order of uncertainty increasing increasing increasing decreasing random
Parameters

Rounds, Obs. by Parameter Profile
6, {3} 15, 450 15, 375 15, 450 10, 250
6, {2,3,4} 15, 375 15, 450 10, 250
6, {1,2,3,4,5} 11, 330 10, 250
3, {3} 15, 375
3, {1,2,3,4,5} 15, 375

(b)  Basic Statistics by Session
(i) Sym. Expected Payoff Max Eqbm.

6, {3} 0.79 0.79 0.79 0.79
6, {2,3,4} 0.84 0.84 0.84
6, {1,2,3,4,5} 1.00 1.00
3, {3} 0.62
3, {1,2,3,4,5} 0.00

(ii) % Contributed Overall
6, {3} 73.1% 62.7% 67.3% 70.0%
6, {2,3,4} 65.3% 73.1% 70.8%
6, {1,2,3,4,5} 70.0% 67.2%
3, {3} 53.9%
3, {1,2,3,4,5} 49.9%

(iii) % Contributed Rounds 8+
6, {3} 73.3% 60.5% 67.5% 74.7%
6, {2,3,4} 65.5% 72.1% 73.3%
6, {1,2,3,4,5} 75.0% 66.7%
3, {3} 53.5%
3, {1,2,3,4,5} 46.0%
t-statistic for H0 of no difference -0.34 -1.04 1.50 -1.09
p-value (one-sided) 0.367 0.149 0.067 0.138

(iv) % Public Goods Provided Rounds 8+
6, {3} 85.4% 75.0% 77.1% 93.3%
6, {2,3,4} 70.0% 81.3% 100.0%
6, {1,2,3,4,5} 100.0% 86.7%
3, {3} 52.5%
3, {1,2,3,4,5} 42.5%

(c) Movement of Reported Beliefs by Type
Beliefs avg. moved toward last actual 77.4% 75.3% 75.1% 78.9% 64.9%
Beliefs last actual (weakly) increased 82.9% 85.3% 79.1% 85.2% 73.2%
Avg. Beliefs Error -0.060 -0.017 0.138 -0.053 -0.140

Source:  Experiment sessions conducted by author at CASSEL in the summer of 2001.
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Table 2.1:  Experiment Session Descriptions (8/21-9/7)
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A subject’s payment for a given round has two parts: the payment from

spending or keeping and meeting or not meeting the threshold, and the payment

based on the accuracy of the reported beliefs. The first payment is described in the

matrix

C i < t 1 C i = t 1 C i > t 1
spend 0 v v
keep 1 1 v + 1

,

where C i is the contributions made by others in the group, and t is the true threshold

chosen by the computer from the threshold range
©
t, ..., t

ª
. A proper scoring rule was

used to elicit true beliefs. Let bpayt be the payment for that round t’s beliefs report,

let v
2
be the amount for a perfect reporting, let bit (e) be the probability assigned by

i in round t to event that exactly e others in his group contribute, and let actualt be

what was actually contributed by others in the group in t:

bpayt =
v

2

Ã
bit (actualt)

4X
e=0

bit (e)

!
v

4
.

The lowest possible total payment for any given round is zero tokens while the highest

is v + 1 + v
2
.

As seen in Table 2.1, the sessions could vary in three ways: the parameters (v

and
©
t, ..., t

ª
), the order in which the parameters changed from round to round, and

the direction of change in uncertainty. The five di erent parameter settings allow

for high v or low v, 6 or 3, respectively, and for varying levels of uncertainty, {3} ,

{2, 3, 4} , {1, 2, 3, 4, 5}. The order of parameters can be ordered or random. Ordered

means that the parameters were the same for 15 rounds, and then the parameters

changed in the 16th round but were the same thereafter. For example, in Session
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2, v = 6 and
©
t, ..., t

ª
= {3} in rounds 1-15, but thereafter the parameters were

v = 6 and
©
t, ..., t

ª
= {2, 3, 4}. The direction of change in uncertainty can be either

increasing, decreasing, or random. Increasing uncertainty is illustrated in Session

2 where the threshold range is smaller in the early rounds and larger in the later

rounds. Decreasing uncertainty is illustrated in Session 4, where rounds 1-15 were

under range {2, 3, 4} and rounds 16-30 were under range {3} . Random uncertainty

means that the range varied randomly from round to round.

This design is the correct design to test the e ects of threshold uncertainty

on contributions in public good games. Here are some of the main justifications for

the set-up. (1) This set-up only di ers from standard public good games in two

ways: the unknown threshold and the eliciting of beliefs. Keeping the set-up similar

to established experimental procedure allows for comparison with other results from

other public good experiments. (2) The uniform threshold range
©
t, ..., t

ª
is the

best way to model the threshold distribution because subjects can easily understand

a uniform distribution. The uniform threshold range also implies single-crossing for

both pure and symmetric equilibria, and this single-crossing implies nice qualitative

predictions of contribution movements with changes in uncertainty (Proposition 3

from Chapter 1). (3) The chosen parameters profiles will allow for high and low v and

for high and low uncertainty. Data for all these scenarios are needed to compare with

the predictions. (4) Since there are legitimate reasons to expect the results to not

perfectly match the predictions (see below), eliciting beliefs will allow for more direct

testing of the underlying behavior of the subjects. Providing incentives to report
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true beliefs adds credibility to the beliefs data. (5) Groups always have exactly five

students so that we can ignore the e ects of group size. (6) No communication is

allowed so that there are no social pressures or social comparisons that might a ect

behavior. (7) The maximum payment for beliefs is half as much as the payment

from the keep/spend decision. This should remove the motive for players to play a

game that maximizes the beliefs payment.

It also worth noting why the laboratory is the correct place to test the pre-

dictions. The experiments are unique because I specifically control for both levels

of and changes in threshold uncertainty. Because the threshold uncertainty can be

controlled so precisely in the laboratory, the laboratory is the ideal place to conduct

the first test of the theoretical predictions.

Although this study is not about learning, we expect the subjects to be

engaged in some form of learning, and this reality must be considered in interpreting

results. For this reason, a number of rounds are done for a given set of parameters.

Since the predictions are equilibrium predictions, looking at the later rounds for a

given parameter setting is likely to be more appropriate for assessing the validity of

the predictions. On the same note, varying the order in which subjects experience

parameters allows us to compare how learning might be a ected by the ordering.

This is important since if learning is slowed then close-to-equilibrium behavior might

not be reached in the rounds for which we have data.

Careful wording was used during the experiment. Words like “game,” “con-

tribute,” “win,” “lose,” “reward,” and “punishment” are not used when speaking to
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the subjects, since such words carry subtle meanings that can a ect behavior. In-

stead, words and phrases such as “decision making environment,” “keep,” “spend,”

and “payment” were used.

2.3 RESULTS

The literature on past experiments suggests that we should be concerned about uncon-

trollable factors that can lead to the non-verification of the theory. While presenting

the five main preliminary results, I discuss the relevance of many of these concerns.2

I organize the five results into three categories: results about contribution changes,

results about the movements of reported beliefs, and results about the consistency of

players actions with their beliefs. The first two results are concerned with verification

of the theoretical predictions. The third result demonstrates the meaningfulness of

the elicited beliefs data. The fourth and fifth results describe in what manner the

subjects’ behavior matches the behavioral assumptions of the game-theoretic model.

2Consider the following possible reasons for non-verification of the predictions. (1) Subjects
might have extreme attitudes towards risk that lead to qualitative movements in contributions that
di er from what is predicted. (2) Convergence to equilibrium might not have yet occurred in the
limited rounds of the experiment. Since the analysis examines equilibrium behavior, if the players are
far from equilibrium then the behavior might not coincide with the predicted equilibrium behavior.
(3) Some subjects might have other qualitative di erences like innate tendencies to cooperate or not
cooperate, and a small session might have such players in proportions not equal to true population
proportions. Such di erences across sessions can make comparisons of contribution levels across
sessions problematic. (4) Subjects might be playing more complicated strategies than a simple
single-period best-response decision rule. (5) Subjects might not fully understand the game.
When presenting the results, I discuss the relevance of concerns (1)-(4). As for concern (5),

I asked the subjects informal questions after the experiment to assess their understanding of the
experiment’s environment. It is impossible to show that all subjects had a perfect understand, but
the subjects’ answers to the informal questions indicated general understanding of the game.
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2.3.1 Contribution Changes

Result 1: Qualitative predictions are moderately verified for in-session

uncertainty changes.

Contribution percentages are listed in Table 2.1(b). The numbers listed as

the Expected Payo Maximizing Equilibrium are computed contribution rates of the

symmetric equilibrium in the game under the given parameters with expected payo

maximizing players. As seen in the table, v = 6 is su ciently high to lead to higher

contributions when the threshold range is increased from {3} to {2, 3, 4} and also

to {1, 2, 3, 4, 5}, and v = 3 is su ciently low to decrease contributions when the

range goes from {3} to {1, 2, 3, 4, 5}. Contribution movements would be similar for

pure equilibria. The symmetric equilibria are listed only to illustrate the expected

direction of change in contributions.

Looking at part (ii), we see that contribution movements match the predic-

tions for Sessions 2-4 but not for Sessions 1 and 5. As mentioned above, because

of potential learning e ects, it is best to consider the contributions from the later

rounds. Part (iii) lists the contributions after round 7 (Rounds 8+) in each session.

The qualitative prediction is verified within the ordered parameter sessions (Sessions

1-4), but the statistical analysis is not totally conclusive.

For Sessions 1, 2, and 4, I test the null hypothesis that contributions under

range {3} are greater than contributions under wider uncertainty. The t-statistic for
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testing the equality of two means px and py is

Z =
bpx bpyr

p0 (1 p0)
³
nx+ny
nxny

´ ,
where p0 =

pxnx+pyny
nx+ny

(Newbold 1995, 360). I want to reject this null hypothesis,

and corresponding t-statistics and p-values are mixed. Risk aversion can possibly

account for the very low power in Session 1 since 6 might not be su ciently high to

induce higher contributions in the {1, 2, 3, 4, 5} range under extreme risk aversion.3

The t-statistics for Sessions 2 and 4 give us much more confidence, and they should

even in the face of risk aversion. For Session 4, I test the null hypothesis that

contributions are lower under less uncertainty, and the corresponding t-statistic again

gives moderate support for rejecting this null.

Two points are worth mentioning here. Since there exist many possible

equilibria (asymmetric mixed, symmetric mixed, pure), nothing can be said about

which equilibrium is played. However, since the change in contributions for any of

the equilibria (whether asymmetric, symmetric, or pure) should move up if v = 6

(and down if v = 3) for expected payo maximizers, we do not need to specify

which equilibrium might be being played. As such, trying to compare the observed

behavior with the quantitative prediction of a particular equilibrium is problematic,

and such comparisons should not be a standard to use to test the validity of the

theory. Instead, comparing qualitative movements in contributions is a better way

to assess the theoretical predictions than trying to match observed behavior with

3See Section 2.2.3 for more discussion on risk aversion.
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certain quantitative predictions because this avoids the problem of selecting which

equilibrium to quantitatively test.

Another point is that the predictions do not hold in Session 5. As will be

discussed below (see Result 3), there is evidence that the random ordering of the

parameters slows down the learning which then in turn prevents behavior from ap-

proaching the Nash equilibrium behavior. This suggests that the ordered parameter

sessions o er the best test of the theory which assumes correct beliefs. Although

this apparent non-verification has a possible explanation that does not invalidate the

theory, it does illustrate the sensitivity of the result to the environment (more on this

below).

Result 2: Comparisons across sessions are problematic, so comparisons

within session provide a better test of the theory.

Notice that the 65.3% contributions for range {2, 3, 4} in Session 2 is lower

than the 73.3% contributions for range {3} in Session 1, which the qualitative predic-

tion that contributions in range {2, 3, 4} should be higher than contributions under

range {3}. Evidence suggests there are important di erences in subjects across ses-

sions (see Result 5). For example, one session might consist of many risk-lovers,

while another session might consist of extreme risk averters. Another example could

be that subjects in one session have stronger innate tendencies to cooperate. The

presence of these di erences across sessions suggests that looking at within-session
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contribution changes is most appropriate for testing the theory because it would hold

fixed changes in unobservable subject characteristics (Camerer 1995, 633).

2.3.2 Movements of Reported Beliefs

Result 3: The movements of reported beliefs respond to past history,

thereby suggesting the beliefs data are meaningful.

Denote i’s mean beliefs in t to be bit =
Pn 1

e=0 ebit (e). We ask if bit

actualt 1 bit 1 actualt 1. If yes then the average of i’s reported beliefs for

round t moved towards what actually happened in round t 1. Such movement

might be expected if the subjects are using a beliefs-updating mechanism. Another

belief movement that can be expected is if the probability assigned to what happened

in the previous round is increased in the current round. So we also consider if

bit (actualt 1) bit 1 (actualt 1).

Table 2.1(c) lists the percent of belief movements that coincide with these

two notions. The first round of a particular parameter profile is not included in

the calculation of this percentage. For example, round 16 in Session 1 is the first

round of range {1, 2, 3, 4, 5}, so comparing what is believed in that round with what

happened under range {3} in round 15 is not useful. For Sessions 1-4, movements

of the beliefs average toward the last actual event occurs at least 75% of the time,

while movements of the absolute reported belief occur about 80% or more. These

numbers strongly suggest that an individual updates his beliefs while learning about
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the behavior of the other subjects. These numbers also suggest that the data on

beliefs do have meaningful information.

Because Session 5 has random parameter ordering, the calculation of these

percentages was done by ordering the data by parameter profile and then by round.

So the percentage in Session 5 is for comparing what is believed in round t with the

actual event from the last time that parameter profile occurred. The movements

occur substantially less in Session 5, and this suggests that the beliefs updating and

learning occurs at a slower rate in this session. The slower rate is probably due

to the fact that the subjects are learning about three di erent parameter settings

almost simultaneously, and this will slow down their learning. Because of this, we

suspect that the contribution rates in Session 5 might still be far from equilibrium

contribution rates. Therefore, Session 5 is not the best session with which to test a

prediction based on Nash equilibrium behavior.

Below these percentages in Table 2.1 is the average di erence between the

mean beliefs and the actual event for each session:

1

(rounds) (subjects)

roundsX
t=1

subjectsX
i=1

¡
bit actualt

¢
.

It in interesting that this number is an order of magnitude higher in Sessions 3

and 5 than in Sessions 1, 2, and 4. This is interesting because the large errors

corresponds with the largest deviations from the expected payo symmetric equilibria.

Under v = 3 and range {1, 2, 3, 4, 5} in Session 3 we should really expect very low

contributions according to the model (unless, of course there are other unobservable

characteristics), yet contributions are still almost 50%. Contribution movements
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also deviate significantly from the expected payo symmetric equilibria. In fact, the

qualitiative movements do not even match the prediction.

Table 2.2 lists results from regressions of mean beliefs bit on control variables.

Again, data from the first round of a given parameter profile is dropped because

lags of the dependent variable are control variables. A simple OLS regression of

bit on bit 1,
¡
actualt 1 bit 1

¢
, and

¡
actualt bit 1

¢2
gives the results shown in the

table. OLS does not account for possible autocorrelation, and the standard Durbin-

Watson test indicates the presence of negative autocorrelation, as evidenced by a test

statistic significantly di erent than 2. Autocorrelation is detected even though this

statistic should be biased towards 2 because of the lagged dependent variable. The

Durbin h test that accounts for the lagged dependent variable also indicates negative

autocorrelation.4

Results from two di erent 1st-degree autoregressions are in Table 2.2. The

first AR(1) gives results similar to the OLS results. As expected, the current mean

depends on the previous mean, the di erence between the last actual and last mean,

and that di erence squared. The signs on all of these are expected. The coe cient

on the squared di erence indicates a second order e ect due to larger di erences.

The second AR(1) includes more control variables that try to capture how beliefs-

updating might be di erent in later rounds of a particular parameter profile. The

R2 values over 50% indicate that a significant amount of the mean beliefs can be

explained by the regressors used.

4See Chapter 13 in Greene (1997) for a discussion of autocorrelation and autocorrelation tests.
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Regression OLS 1st AR(1) 2nd AR(1)

Estimates

intercept 0.4897 0.4147 0.4996
(0.0346) (0.0332) (0.0743)

mean belief t-1 0.8066 0.8357 0.7905
(0.0127) (0.0122) (0.0271)

actual t-1 - mean belief t-1 0.1507 0.1510 0.2378
(0.0070) (0.0069) (0.0155)

(actual t-1 - mean belief t-1)
2 0.0116 0.0116 0.0170

(0.0044) (0.0043) (0.0092)

Parameter Round -- -- -0.0125
(0.0085)

(mean belief t-1)*(Parameter Round) -- -- -0.0065
(0.0031)

(actual t-1 - mean belief t-1)*(Parameter Round) -- -- -0.0116
(0.0018)

(actual t-1 - mean belief t-1)
2*(Parameter Round) -- -- -0.0013

(0.0011)

R2 0.5345 0.5376 0.5464

Durbin-Watson 2.1338 -- --

Durbin-h -4.5605 -- --

Source:  Experiment sessions conducted by author at CASSEL in the summer 2001.

Table 2.2:  Beliefs Data Regression Results
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2.3.3 Consistency of Actions with Reported Beliefs

The beliefs movements in Table 2.1(c) and the regression results in Table 2.2 suggest

that the beliefs data do carry information. This likelihood justifies using the beliefs

data to proxy for true beliefs. Results 4 and 5 describe how the subjects’ decisions

are or are not consistent with game-theoretic decision rules.

Result 4: Actions are not consistent with expected payo maximization.

As shown in Section 3, expected payo (EP) maximization yields the following

EP decision rule: spend if Pr[piv|bit, F ] > c
v
; keep or spend if Pr[piv|bit, F ] = c

v
, keep

if Pr[piv|bit, F ] < c
v
. Figure 2.1(a) contains non-parametric fits of the EP decision

rule using the subjects decisions and reported beliefs. I use the Epanechnikov kernel

in the Nadaray-Watson kernel estimator under three di erent smoothing bandwidth

parameters h = 0.025, 0.1, and 0.15 (Härdle 1990). Denoting x =Pr[piv|bit, F ] c
v
,

this estimator is

mh (Xi, h) =

1
(h)(#obs)

P
obs

3
4

³
1

¡
xobs Xi

h

¢2´
I
¡
x Xi
h

1
¢
aobs

1
(h)(#obs)

P
obs

3
4

³
1

¡
xobs Xi

h

¢2´
I
¡
x Xi
h

1
¢ .

The curve labeled “EP Perfect” is only for comparison. That curve depicts

what we would expect the estimate to look like if the behavior is consistent with

EP maximization. As we should expect, the estimated curves have positive slopes

which suggests that a subject is more likely to increase the higher the probability

of being pivotal. However, the curves are generally above 0.5–even for negative

di erences–which suggests that subjects contribute much more often than predicted
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by EP maximization. The curves for the 8+ rounds (not shown) are only marginally

closer to EP maximization. Figure 2.1(b) plots approximate 95% confidence inter-

vals5 around the estimates using bandwidth h = 0.1. As seen on the graph, we

must go well outside the confidence interval to get consistencyd, which supports the

rejection of consistency of actions with EP maximization. The evidence also suggests

a bias towards contributing.

Table 2.3(a) shows a breakdown of decisions using the reported beliefs as

a proxy for true beliefs and assuming the players are expected payo maximizers.

“Should Go & Did Go” means that the reported beliefs yield Pr[piv|bit, F ] > c
v
and

the player did spend his token. “Indi erent” means that Pr[piv|bit, F ] = c
v
, so that

both keeping and spending are optimal. As seen in Table 2.3(a), when v = 6 (Sessions

1, 2, 4, 5) about 60-69% of the decisions are consistent with the EP decision rule.

When v = 3 (Session 3), about 55% of the decisions are EP consistent. Further

breaking down of these decisions into earlier and later rounds (not in table) reveals

that in each session more decisions in rounds 8+ are EP consistent than decisions in

rounds 1-7 for all Sessions, although the increased percentage is not very large.

The percentages in Table 2.3(a) suggest that the EP decision rule, although

not a perfect approximation, might still be a decent first approximation for the

5To obtain better confidence intervals, I should compute bootstrap interval estimates. For
statistical ease, however, I use the approximate confidence interval described by Härdle (1990, 100-

101). The interval is mh (x)±
³
c c

1/2
K b (x)´ /r³nh bf (x)´, where c is the 100 quantile of the

normal distribution, c
1/2
K is a kernel constant, b (x) is the estimate of the standard deviation, andbf (x) is the estimate of the density. This confidence interval is hampered by a bias, but if the bias is

negligible then these confidence intervals are good approximates. As we see from the graph, there
would have to be a huge bias for consistency with EP maximization to be a legitimate possibility.
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Source:  Experiment sessions conducted by author at CASSEL in the summer of 2001.

Figure 2.1:  Non-parametric Regressions for EP Decision Rule
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(a)  Non-parametric EP Regressions with h=0.025, 0.1, 0.15
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Session
1 2 3 4 5

All Observations
1. Should Go & Did Go 55.8% 55.1% 18.0% 58.4% 62.7%
2. Should Go but Did Not Go 23.6% 31.9% 11.3% 20.9% 25.5%
3. Should Not Go but Did Go 16.0% 7.7% 33.9% 10.6% 6.3%
4. Should Not Go & Did Not Go 4.6% 3.9% 36.8% 8.0% 4.8%
5. Indifferent 0.0% 1.4% 0.0% 2.1% 0.7%
% Consis. with EP Max. (sum of 1, 4, & 5) 60.4% 60.4% 54.8% 68.5% 68.2%

Rounds 8+
1. Should Go & Did Go 56.7% 55.5% 19.8% 57.1% 64.9%
2. Should Go but Did Not Go 20.3% 32.3% 12.0% 20.4% 24.0%
3. Should Not Go but Did Go 17.2% 6.0% 30.0% 10.6% 6.7%
4. Should Not Go & Did Not Go 5.8% 4.8% 38.3% 8.3% 4.4%
5. Indifferent 0.0% 1.5% 0.0% 3.5% 0.0%
% Consis. with EP Max. (sum of 1, 4, & 5) 62.5% 61.8% 58.0% 69.0% 69.3%

Probit Logit
Regression (1) (2) (3) (1a) (2a) (3a)
Rounds All Rds Rds 1-7 Rds 8+ All Rds Rds 1-7 Rds 8+

Coefficients

Pr[piv|b it,F] 1.5488 1.2331 1.9025 2.5856 2.0479 3.1869
(0.1234) (0.1676) (0.1833) (0.2117) (0.2852) (0.3166)

c/v -0.3088 0.2107 -0.8600 -0.5789 0.2904 -1.4982
(0.1755) (0.2452) (0.2532) (0.2908) (0.4059) (0.4201)

H0:  Consistency*
Wald-stat:  (2)=(3), (2a)=(3a) 9.3274 9.4261
Hausman:  (1)=(2), (1a)=(2a) 9.4580 9.6797
Hausman:  (1)=(3), (1a)=(3a) 9.1461 9.1957

*  The Chi(2) critical values at 97.5% and 99% are 7.38 and 9.21, respectively.

Source:  Experiment sessions conducted by author at CASSEL in the summer of 2001.
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decision rule used by subjects. This claim would be especially true if most of the

inconsistent decisions are made when the di erence between Pr[piv|bit, F ] and c
v
is

very small. A more formal test of consistency with EP maximization is by regressing

the decision (keep or spend) on Pr[piv|bit, F ] and c
v
. The probit and logit regres-

sion procedures (without an intercept) are appropriate given the discrete nature of

the dependent variable. If the decisions are EP consistent then the coe cient on

Pr[piv|bit, F ] should be 1 and the coe cient on c
v
should be 1.

Regressions 1-3 on Table 2.3(b) show these probit estimates for all rounds,

rounds 1-7, and rounds 8+, respectively. In all three regressions the null hypothesis

of EP consistency is rejected since the coe cients are never simultaneously equal to

1 and 1. I perform a Wald test for structural change in the parameters from the

early rounds to the later rounds. This test is calculated as

W =
³b

1 7
b
8+

´0 ³bV1 7 + bV8+´ 1 ³b
1 7

b
8+

´
,

where b and bV are the respective coe cient vectors and variance matrices. This test

statistic is distributed with a chi-squared distribution, and we reject the null when

W is large. The test statistic for structural change from the early rounds to the later

rounds is 9.3274. This Chi(2) statistic rejects the null hypothesis of no change at

1% levels thus indicating that the decision rule used in later rounds is di erent than

behavior in the early rounds.

The Hausman test statistic tests if the parameters are the same in all rounds

as they are for a subset of rounds. Under the null for testing rounds 1-7 against all

rounds, ball is consistent and e cient while b1 7 is consistent and ine cient. The
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statistic is calculated as

H =
³b

all
b
1 7

´0 ³bV1 7
bVall´ 1 ³b

all
b
1 7

´
,

which is distributed with a chi-squared distribution. We reject the null when H is

large. Again, we find that the Chi(2) statistics show di erence high confidence levels,

again indicating that the decision rules di er in later versus early rounds. Regressions

4-6 show that logit regressions yield similar conclusions. These results in Table 2.3

and on Figure 2.1 provide strong evidence against the EP hypothesis as the best

explanation for the observed behavior.

Result 5: Behavior is significantly more consistent with expected utility

maximization that accounts for both risk aversion and innate cooperative-

ness than with expected payo maximization.

Previous work has established that subjects’ behavior is better understood in

terms of expected utility (EU) maximization instead of EP maximization (Camerer

1995). Evidence of three particular variations on EP appears in many public good

experiments. First, players show signs of risk aversion even in small payo games

where expected utility theory suggests players should approximately risk neutral.

Even though this ultimately illustrates the non-validity of expected utility theory,

expected utility theory can have some predictive power (Camerer 1995, Rabin 1999).

Second, subjects can be grouped into types by innate tendencies to cooperate even

at costs to themselves, and these innate cooperators are a substantial subset of the
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subject population (Ledyard 1995, O erman 1997, Ostrom 2000). Third, empirical

best response functions are better understood as probabilistic than deterministic,

and this notion is captured in McKelvey and Palfrey’s (1995) Quantal Response

Equilibrium (QRE). This concept has two parts. First, each player’s calculations

of expected utility are unbiased (correct on average) but prone to i.i.d. error. As a

result, individuals’ best-response functions are probabilistic instead of deterministic.

Second, each player assumes that the other players make similarly error-prone but

unbiased calculations. This random process has a fixed point called a QRE.

I model risk aversion as a simple power function in the monetary payo

(payoff) i where i is the risk aversion coe cient. I model innate cooperativeness as

a simple additive utility term labelled Bi for contribution bias.
6 These modifications

yield the following utility matrix:

C i < t 1 C i = t 1 C i > t 1
spend Bi v i +Bi v i +Bi
keep 1 1 (vi + 1)

.

Expected utility maximization yields the following decision rule:

spend if Pr [piv|bit, F ] > Pr[not needed|bit,F ]((v+1) i v i)+Pr[lost cause|bit,F ]
(v i 1)

Bi
(v i 1)

keep if Pr [piv|bit, F ] < Pr[not needed|bit,F ]((v+1) i v i)+Pr[lost cause|bit,F ]
(v i 1)

Bi
(v i 1)

spend or keep otherwise

.

(1)

The separability assumption between the payo and B allows for a distinct contri-

bution bias term in this decision rule, and this makes estimation much easier. For

convenience, denote the first and second terms on the RHS to be RHS and BIAS,

respectively.

6A more realistic (but complicated) notion of contribution bias has players modeled as “condi-
tional cooperators.” Such an agents has a contribution bias in early rounds, but the bias decreases
if he or she perceives no reciprocation by other subjects (Ostrom 2000).
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This decision rule in the QRE framework yields a probabilistic best-response

function. Assuming normal errors, the probability that player i contributes is

pit =

Z
i(Pr[piv|bit,F ] RHS(bit, i)+BIAS(Bi))

(z) dz, (2)

where i is a measure of i’s error in decision making and (z) is the normal pdf.

Note that i 0 implies complete randomness in the decision making while i

means there is no error. A QRE converges to a Nash Equilibrium if i for all

i.

To examine global behavior, I assume identical risk aversion, contribution

bias, and calculation error across individuals: i = , Bi = B, and i = for all i.

Table 2.4 shows the maximum-likelihood results from a sequence of regressions that

add these new components to the decision making process. When not separately

estimated, is fixed at 1, is fixed at 1 (risk neutrality imposed), and B is fixed

at 0 (no contribution bias). In this table, we see that when estimated alone or

jointly with other coe cients, there is always risk aversion ( significantly less than

1) and there is always a contribution bias (B is significantly greater than 0). Also

note that I always estimate less calculation error (higher ) in later rounds than in

earlier rounds. McKelvey and Palfrey (1995) discuss how this can be interpreted

as reflecting learning through experience that yields more accurate expected utility

calculations. These findings are robust to di erent starting values in the estimation

algorithm.

The regressions in Table 2.4 impose the consistency with the decision rule,

and we are interested in whether or not it is reasonable to make this consistency
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assumption. To find out, I re-ran Regressions (1)-(15) from Table 2.4 with the

addition of coe cients on the Pr[piv|bit, F ] and RHS terms. (This estimation is

similar to regression in Table 2.3 except I allow for risk aversion, the contribution bias,

and decision error.) Under the joint H0, the respective coe cients on Pr[piv|bit, F ]

and RHS are simultaneously 1 and 1. We can then calculate an F-statistic to test

the joint null that the coe cients are 1 and 1, respectively.7

The results from these regressions are not shown, but I will summarize the

findings. In most of these modified (1)-(15) regressions, the maximum likelihood pro-

cedure produced multiple solutions. These multiple convergences are due to relative

flat spots or non-convexities in the likelihood function. These function characteris-

tics are probably due to the complicated nature of the non-linear estimation. For

example, at small , the denominator (v 1) approaches 0 as decreases.8

It turns out that for any of the modified (1)-(15) regressions, I can obtain

solution estimates that reject the hypothesis of consistency. However, when I include

both risk aversion and bias B, some of the solutions do not reject the hypothesis of

consistency. In short, if I do not allow for risk aversion and the bias, then I always

reject the null hypothesis of consistency, but if I allow for both then I do not always

reject the null. Of course, the multiple convergences demonstrate that these tests

have low power in preventing Type II errors (non-rejections of a false hypothesis).

7The F-statistic is calculated as

F [2,#obs K] =
1

2

µb ·
1
1

¸¶0 ³bV ´ 1
µb ·

1
1

¸¶
.

8One way to get around this problem of multiple convergences is to obtain maximum likelihood
estimates using a grid search procedure.
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Nonetheless, the finding is clear: if the behavior is globally consistent with the

modified decision rule in (4), then it must be true that the there is both risk aversion

and a cooperation bias.

Ideally, we could take advantage of the panel structure of the data to find

evidence of risk aversion and contribution biases at the individual level. I use a

maximum score method to obtain some preliminary results along these lines, and as

the results in Table 2.5 show, allowing for risk aversion and contribution bias can

explain up to 90% of the choices. In the bottom half of Table 2.5, I use the following

grid: ( i, Bi) {0.01, 0.02, ..., 3.00} × { 6.00, 5.99, ...6.00}. At each point in this

grid, I calculate the number of observed decisions that, given those parameters, match

what the decision rule says the individual should do. Because multiple parameter

profiles can lead to the same number of decision matches, I choose as my estimate

the profile whose distance is closest to the EP profile. That is, among the set of

profiles that maximize the number of matches, I choose the profile
³bi, bBi´ that

minimizes

r
(bi 1)2 +

³ bBi´2.9
The average listed in the table is the average of the individual estimates, and

the percent of matches is the percent of matches using the individual estimates. The

standard deviation and “min,max” ranges show that there is wide variation across

individuals within sessions. There are substantial di erences across sessions, too.

For all rounds in Session 1, the averages of the individual risk coe cients and the

individual contribution biases are 0.86 and 0.15, respectively. For session 2, the

9Only rarely does this procedure produce more than one estimate. If multiple estimates remain,
I take the average those estimates.
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averages are 0.73 and -0.07. These numbers suggest that there are qualitative dif-

ferences across sessions, and these di erences make comparing absolute contribution

levels across sessions problematic in terms of testing our qualitative predictions (see

Result 2).

The top half of Table 2.5 shows the results from solving for only i and Bi.

When solving for the risk coe cient, I held the bias fixed at 0 and examined the

matches for i in {0.01, 0.02, ..., 3.00}. When solving for the bias, I held the risk

coe cient fixed at 1 and examined the matches for Bi in { 6.00, 5.99, ...6.00}. Ta-

ble 2.3 shows that about 60% of the decisions can be explained by EP maximization.

Table 2.5 shows that if we allow for heterogeneity in only the risk preferences, we can

explain 75% of the decisions. Allowing for heterogeneity in only the contribution

biases, we can explain even more of the decisions–about 85%. Allowing simultane-

ously for both risk preferences and contribution biases, we can explain almost 90% of

the decisions.

These estimates are not perfect measures. The grids used were discrete

and bounded. The bounded nature of the grid means that the size of the grid can

a ect the estimates. Increasing the upper grid boundary will increase the estimates.

Also, the fact that my procedure chooses the parameter profile (within the set of score

maximizing profiles) that is closest to EP maximization will obviously bias the results

towards the EP estimates, and this can explain why the estimated biases are fairly

low (near 0 on average for many sessions). Lastly, we cannot perform any formal

statistical significance tests.
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Average Std. Dev min,max match% Average Std. Dev min,max match%
All Rounds

1 1.14 0.59 0.38,2.78 73.8% 0.18 1.05 -2,1 87.4%
2 1.04 0.89 0.02,2.99 80.8% -0.33 1.55 -4.1,1 83.5%
3 0.80 0.45 0.1,1.73 62.8% -0.06 0.69 -2,1 75.9%
4 1.19 0.76 0.18,2.99 81.8% 0.16 0.67 -1,1 88.0%
5 1.18 0.84 0.13,2.97 82.9% 0.00 0.95 -2,1 87.9%
Overall 1.08 0.72 0.02,2.99 76.5% 0.00 1.02 -4.1,1 84.8%

Rds 1-7
1 1.10 0.62 0.13,2.78 74.0% 0.33 0.84 -2,1 86.4%
2 1.02 0.84 0.02,2.99 80.9% -0.47 1.53 -4.1,1 84.0%
3 0.80 0.31 0.18,1.26 58.0% -0.06 0.63 -2,1 77.1%
4 1.03 0.78 0.03,2.91 85.5% -0.06 0.91 -3.8,1 89.5%
5 1.07 0.78 0.13,2.97 83.0% -0.08 1.17 -3.5,1 88.0%
Overall 1.01 0.69 0.02,2.99 76.5% -0.05 1.06 -4.1,1 85.2%

Rds 8+
1 1.10 0.58 0.13,2.38 76.9% 0.25 0.87 -1.88,1 90.8%
2 1.12 0.82 0.02,2.78 84.3% -0.39 1.03 -3.21,1 85.5%
3 0.85 0.45 0.13,1.78 69.0% -0.03 0.47 -1.11,1 79.3%
4 1.04 0.73 0.12,2.93 83.1% 0.09 0.66 -1.7,1 89.2%
5 1.15 0.71 0.07,2.81 86.7% -0.06 0.56 -1.41,1 91.1%
Overall 1.05 0.67 0.02,2.93 80.0% -0.01 0.77 -3.21,1 87.4%

Average Std. Dev min,max Average Std. Dev min,max
All Rounds

1 0.86 0.43 0.31,2 0.15 0.59 -1.4,1
2 0.73 0.56 0.01,2.59 -0.07 0.41 -1.4,0.37
3 0.78 0.55 0.01,2.52 0.34 0.86 -0.35,4.2
4 0.89 0.38 0.29,2 0.02 0.60 -1.4,1
5 0.75 0.35 0.22,2 -0.11 0.64 -2.6,0.34
Overall 0.81 0.46 0.01,2.59 0.07 0.64 -2.6,4.2

Rds 1-7
1 0.78 0.32 0.31,2 0.17 0.50 -1.4,1
2 0.70 0.41 0.07,2 -0.12 0.43 -1.4,0.34
3 0.77 0.30 0.01,1.05 0.16 0.34 -0.5,1
4 0.91 0.55 0.13,2.89 0.03 0.58 -1.4,2.2
5 0.68 0.23 0.24,1.01 -0.03 0.37 -1.02,0.34
Overall 0.77 0.39 0.01,2.89 0.05 0.47 -1.4,2.2

Rds 8+
1 0.78 0.22 0.31,1.07 0.16 0.44 -0.5,1
2 0.93 0.66 0.06,3 -0.10 0.34 -1.07,0.37
3 0.92 0.44 0.18,2.2 0.27 0.63 -0.39,2.86
4 0.90 0.36 0.14,2 0.02 0.82 -1.7,3.4
5 0.83 0.37 0.07,2 -0.07 0.35 -1.4,0.34
Overall 0.87 0.42 0.06,3 0.06 0.56 -1.7,3.4

Source:  Experiment sessions conducted by author at CASSEL in the summer of 2001.
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Gamma chosen from [0.01,3] and Bias chosen from [-6,6] simultaneously



Despite the above complications with these initial estimates, allowing for

heterogeneity in risk aversion and innate cooperativeness can explain a significant

amount of the behavior. This fact provides further support for the conclusion that

an expected utility model that accounts for both risk preferences and contribution

biases is a very good model for predicting the behavior in these experiments.

2.3.4 Comments on Beliefs, Learning, and Strategy

The di erent behavior between early and later rounds in some sessions suggests the

presence of learning, dynamic strategies, both, and other factors. Examining the be-

liefs updating in the early versus later rounds indicates that beliefs are being updated

in a very similar manner in all rounds. This suggests that if there is learning going

on, it is not about the rules of the game. Instead, subjects are learning to make more

accurate best response calculations and learning about other subjects’ behavior.

Let us look closer at the beliefs. In a symmetric mixed equilibrium, con-

tributors and non-contributors should have identical beliefs, and in an asymmetric

equilibrium, the non-contributors should expect more contributions by others. But

this is opposite of what occurs in Sessions 1, 2, 3, and 5, where contributors always

expect more contributions by others than do non-contributors. This fact is more

striking if we look separately at the early and later rounds of the di erent parameter

profiles. In the early rounds under a given parameter profile, the di erence between

what the contributors and non-contributors expect others to spend is much larger

than the di erence in later rounds.

64



This convergence of beliefs indicates that the players are learning about each

others’ behavior and updating their beliefs accordingly. A convergence of beliefs

is expected if players behavior is approaching a symmetric equilibrium, but how

do we reconcile the initial divergence of beliefs with equilibrium behavior since the

divergence appears on the surface to be opposite of what it would be in equilibrium?

I suggest two explanations: dynamic strategies and risk aversion. (Future research

should include the development of methods to separately identify the presence of

these two factors in the experimental data.)

The notion that players use dynamic strategies is supported by statements

made by subjects after being asked informal questions at the end of the experiment.

Some subjects described early spending as attempts to ensure future contributions by

others by getting them accustomed to high payo s from provided public goods. It is

as if these players want to take advantage of the presence of conditional cooperators

(Ostrom 2000), i.e., players that are more willing to contribute when they perceive

others to be cooperative. This notion is captured in the modified decision rule (4) as

a bias term that increases when others are expected to cooperate and that decreases

when others are expected to not cooperate. The existence of such individuals is one

possible reason why it is the contributors in Session 1, 2, 3, and 5 that expect others

to be spending more often. A subject who sees others as being more cooperative is,

therefore, more willing to cooperate, and a subject who believes that there are fewer

cooperators will be less likely to spend. The presence of conditional cooperators can

thus explain why contributors reported higher mean beliefs in Session 1, 2, 3 and 5.
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A second explanation is that players are risk averse. According to the

modified decision rule (4) that incorporates risk aversion, the probability a player

contributes goes down when the probability of a lost cause increases relative to

the probability of being redundant (all else equal). In rounds 1-7 under range

{1, 2, 3, 4, 5} in Session 1, the contributing subjects reported higher mean beliefs than

non-contributing subjects. In fact, the mean beliefs for non-contributing subjects

in rounds 1-7 of range {1, 2, 3, 4, 5} is much lower than the mean beliefs for the con-

tributing and non-contributing subjects the rounds 8+ of range {3} in that same

session. The modified decision rule (4) suggests that the subjects did not contribute

because they believed there was a greater chance of a lost cause due to a drop in

expected spending by others. The presence of risk aversion can thus explain why the

non-contributors reported lower mean beliefs.

Each of these two explanations provides a story for why contributions did not

increase as predicted in the early rounds under range {1, 2, 3, 4, 5} in Session 1. With

the divergence of beliefs and certain players’ lowered expectations of others’ spending,

the presence of risk aversion and/or conditional cooperators can lead to a decrease in

contributions. This decrease is opposite of what the Nash equilibrium-based theory

predicted. It was only when the beliefs converged in the later rounds under range

{1, 2, 3, 4, 5} that the behavior matched the predictions. The implication is that the

Nash-equilibrium predictions based on converged beliefs are not going to do a good

job predicting behavior when beliefs are not converged.
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2.4 SUMMARY AND DISCUSSION OF CHAPTERS 1 AND 2

The theoretical work suggests that there can be advantages to having wider threshold

uncertainty, while the experiments help clarify when these advantages are more likely

to exist. More precisely, when the value of the public good is high, wider uncertainty

can lead to higher contributions and higher e ciency, but contributions and e ciency

can decrease when the value of the public good is low (Propositions 2 and 3, Lemmas 1

and 1A). The experiments show that the game-theoretic logic underlying these main

findings does a good job of explaining behavior once it accounts for risk aversion

and innate cooperativeness (Results 4 and 5). The experiments also demonstrate,

however, that the theoretical predictions are sensitive to the equilibrium assumption

of the convergence of beliefs (Results 1-3, Section 2.3.4).

These theoretical and experimental findings yield insights into understanding

individuals’ behavior in collective action environments marked by threshold uncer-

tainty. I will briefly discuss two particular insights. The first insight is that there

can be a status-quo bias towards initially high levels of threshold uncertainty. The

second insight is that communication is vital to collective action success in one-shot

provision environments.

Status-quo Bias Towards Initially Wide Uncertainty. Suppose all

individuals observe the same public signal tpub = t + epub, where t > 0 is the actual

threshold and epub is drawn from a known error distribution with mean 0 and variance

2. This signal and error structure imply a threshold distribution F , which will

then imply an equilibrium C . Now suppose that before the players make their
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contributions but after observing the signal, the players can generate and observe

another noisy public signal. Will the individuals ever prefer to not generate this

second signal, even if generating the signal is cost-less? The answer is yes.

For simplicity, assume that players are randomly selected to be the contribut-

ing agents (see the next footnote). The first signal and the error structure imply a

probability distribution over the possible second signals, and this distribution implies

another distribution over the possible new equilibria that will result from observing

the additional signal. Suppose the initial equilibrium results from an inferred F with

a fat interior-right tail so that the probability of provision in equilibrium C is at or

near 1. If players expect the distribution after observing the second signal to have an

interior-right tail that is thick but below c
v
, then they will expect the new equilibrium

to have much fewer contributions and a much lower probability of provision. If they

expect a su cient drop in the probability of provision (i.e., a drop that leads to lower

expected utilities despite the drop in the probability of having to contribute), then

they will prefer to not observe that signal. In other words, the players will prefer

the status-quo uncertainty to a new state with lower uncertainty. The origin of this

status-quo bias is in the worry that the additional information will lead to an equi-

librium which will provide the good with a much lower probability than the original

equilibrium C .10

10The story is slightly di erent when contributors and non-contributors in the initial equilibrium
are known because contributors and non-contributors will have di erent desires for new information.
Obviously, this will also depend on who contributes in the new equilibrium. This variation is closely
connected to the idea of Fernandez and Rodrik (1991), who explain how uncertainty about who gains
and benefits from a reform can prevent that reform even if that reform is welfare-enhancing. Even
though their idea can be present in my example, it is incorrect to think their idea is driving the
status-quo bias I mention here. The reason is that the same aversion to additional information can
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There is another environment in which a status-quo bias towards wide un-

certainty can exist. Up to this point we have talked about identical players in an

abstract public good setting, but many collective action settings have other strategic

elements. For example, suppose that the public good provider (e.g., public televi-

sion) cares about maximizing the di erence between contributions and the threshold

(C t) because any contributions over the threshold are a transfer from the contrib-

utors to the provider. In this case, the provider will prefer wider uncertainty when a

highly valued public good implies a larger amount of contributions under that wider

uncertainty. Furthermore, if the provider can act to reduce the public’s uncertainty

about the threshold, the provider has the incentive to not undertake such an action.

Further strategic issues follow from this logic (for example, if I know the

provider has those incentives, then the fact that the provider does not act might reveal

information to me about the threshold, thereby a ecting my decision to contribute,

thereby a ecting the provider’s decision to act, and so on), but for the purposes of

this paper, it is su cient to note that diametric incentives can result in a bias towards

the wide uncertainty of the status-quo.

Communication in One-shot Provision Environments. In Section

2.3.4, I discussed how the divergence of beliefs led to changes in contribution levels

opposite of those that were predicted in the initial rounds following a change in

uncertainty. We expect and observe a convergence in beliefs in the experiments as

result even when there is no individual-specific uncertainty. The real reason for the result is the fear
of F 0 having a right boundary that is relatively fat but also underneath the c

v -line, which translates
into a low probability of public good provision.
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the rounds advance, but in early rounds, players do not have much of a past history

to use in guiding their beliefs. If beliefs and behavior in these early rounds are

indicative of beliefs and behavior in one-shot games, then there is reason to believe

that the equilibrium predictions will not be accurate in one-shot games because of

the beliefs divergence.

In one-shot coordination games, communication can lead to the convergence

of beliefs. Communication could also allow for coordination on an asymmetric equi-

librium in which risk averse subjects would be less concerned with lost causes (as a

reminder, the lost cause is the event that the public good is not provided even when

you contribute). In short, the communication makes the convergence of beliefs–and,

hence, the Nash equilibrium prediction–more likely. This reasoning implies that, for

groups facing threshold uncertainty in one-shot provision scenarios, communication

or formal coordination of contributions might be essential for public good provision.

This claim should be especially true when there is wide uncertainty. Under wide

uncertainty, extreme risk averters will only contribute when they believe that the

probability of a lost cause is very small. Formal coordination of contributions might

be essential for those fears of a lost cause to be diminished.11

11The social psychology literature points out that for simple problems (e.g, the coordination
of contributions), highly centralized communication networks are more e cient. See Chapter 3
of Brown (2000) for a discussion of these and similar findings. My findings suggest that such
communication networks probably matter more for one-shot scenarios than for repeated interaction.
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2.5 EXPERIMENT DIALOGUE

Introduction. Hello, and welcome to the Social Science Experimental Lab-

oratory. Thank you for coming. I am Michael McBride, a graduate student at Yale

University. Today you will be placed in a decision making environment. In par-

ticipating you receive a show-up payment of $ but you will also receive additional

monetary payments. Your actual total payment will depend on your decisions, the

decisions of others, and factors determined randomly by the computer.

We should finish in approximately 100 minutes. During this time, you will

be interacting with the others in this room over a computer network. At any time

during the study, you are free to end your participation if you feel the need. Should

you decide to stop your participation, you will still receive the show-up payment. To

stop your participation at any time, please raise your hand to notify me.

All decisions you make today will be made in a computer currency which

we call “tokens.” As you make your decisions, you will amass a large number of

these tokens. When we are finished, you will receive actual US dollars according to

a token/dollar exchange rate. The more tokens you amass, the more US currency

you receive. The exchange rate is 15 tokens for 1 dollar. Each student in the room

is likely to take home a di erent amount. You are under no obligation to tell your

amount to anyone.

I will be giving you verbal instructions. You must follow my instructions. Do

not take any initiative by typing or mouse-clicking before I tell you. When you have

a question, please raise your hand. Please be careful around the computers. If one
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computer loses its connection then the software will freeze. So please do not kick any

wires or bump the computer under your desk. Also, please turn o your cell phones

to prevent any interruptions.

Consent. In order to participate, you must first give your consent to partic-

ipate. By registering on the CASSEL web page for today’s session, you acknowledged

that your participation is voluntary. Is there anyone who did not give this consent?

[WAIT] You are again reminded that your participation is voluntary. If you wish to

end your participation, please notify me by raising your hand.

Begin Public Good Game. The computer software places each of you in a

decision making environment and records your decisions. First, I will briefly explain

this decision making environment. Then you will participate in 4 practice rounds to

familiarize yourself with the computer interface. After the practice rounds, you will

participate in 30 real rounds. The tokens you amass during the real rounds are the

ones you will exchange for US dollars. The practice rounds are only to familiarize

yourself with the decision making environment and the computer interface.

In each round, both practice and real, you will make choices using the mouse

only. During these rounds, do not speak or communicate with any other students in

the room. In other words, you are never allowed to speak to anyone else. All of your

decisions must be made privately. If you have questions, you can raise you hand, and

I will come answer your question.

Begin Worded Explanation. Let me now give you a brief explanation in

words of the decision making environment. In each round, the computer will randomly
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assign you and four other students in this room into a five-student group. You will

not know who else is in your group. You will also be given one ”computer token.”

You will ultimately decide to either “keep” or “spend” that one token. If the number

of tokens spent by students in your group including yourself is greater than or equal

to a certain amount then everyone in your group receives a certain number of tokens

back whether or not they spent tokens. Otherwise, no one gets any tokens back.

On the board is an example. Suppose the computer tells you that at least 3

tokens must be spent in order for everyone in the group to get back 5 tokens. The

3 token requirement is called the “threshold,” and the 5 token payment is called

the “threshold-met-value.” Suppose four of the students in your group spent their

tokens and one kept her token. Then the threshold was met since four spent tokens is

greater than or equal to threshold 3. This means that each person in your group gets

5 additional tokens. The students who spent their tokens therefore receive 5 tokens

for that round. But notice that one student kept her token. She has 6 tokens for

that round: five from the threshold-met-value, and 1 from the kept token. Suppose

in another group, two students spent their tokens and three kept their tokens. The

threshold was not met. The two students who spent their tokens have a total of 0

tokens for that round. The other three students each have a total of 1 token for that

round-the token that was not spent.

You will always be told the threshold-met-value, and it is the same for ev-

eryone in your group. However, you will generally not be told the actual threshold.

Instead, the computer will tell you a range of values from which the threshold will be

73



chosen. For example, the computer might tell you that the “threshold range” is 3-5.

This means that the computer will randomly select either 3, 4, or 5 to be the actual

threshold. Each of these is equally likely to be chosen by the computer. There are

many other possible ranges: 1-5, 2-4, 2-3, 3-3, and so on. If the range is 3-3 then you

know for sure that 3 is the threshold.

In addition to making a keep/spend decision, the computer will ask what you

think the others in your group will do. Since there are four others in your group,

there are five possible outcomes: first, none of those four others spend; second, one of

those four spends; third, two of those four spends; fourth, three of those four spend;

and fifth, four of those four spend. The computer will ask you what you think are

the chances of each of those five occurrences. You will be shown how the computer

asks you this in a minute. In addition to the payment you receive from your group

meeting or not meeting the threshold, you will also receive a payment according to

the your answers to these questions about the likelihoods of these occurrences. We

will describe this payment in a minute, too.

Begin Practice Rounds. Now I will walk you through doing this on the

computer. Please pull out the dividers that separate you from your neighbors. Please

close any windows that might be open on your computer. To start the software,

please use your mouse to double-click on the PUBGOOD MCBRIDE icon on your

screen. A window will come up asking you to enter your name. Once you have entered

your name, please click CONFIRM. You must click CONFIRM instead of pressing

the ENTER key. Once everyone has clicked CONFIRM, your screen will show the
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layout. Please raise your hand if you do not see the layout on your screen at this

moment. [WAIT.]

There are two parts to the layout. The first of these is the main window.

This is what you see on your monitor right now. The second part is currently hidden

and will be explained in a minute. Look at the main window. Near the top-left of

your screen you will see your ID number in blue. After you entered your name, you

were assigned an ID number by the computer. Below the ID number on the main

screen, you should see ten di erent column headings. The left-most column heading

is the match or round number. The second column is the threshold-met-value for that

round. The third column is the threshold range. At the beginning of a new round,

you will be given the information in these three left columns.

The other columns record your keep/spend decision, the total tokens spent

by the others in your group, the actual threshold chosen by the computer from the

threshold range, your payment from the keep/spend decisions in your group, your

payment from your probability assignments, the sum of these two payments for that

round, and the overall total payment through all rounds. These right columns will

show their information after all choices have been made in a particular round.

The bottom half of the main window is a message box that will prompt you

at times with messages. Right now it says, “Please listen carefully to the instructions

given by the experimenter, and so on” At the very bottom of the screen are the KEEP,

SPEND, and PROCEED buttons. The KEEP and SPEND buttons are used when
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deciding whether to keep or spend your token. The PROCEED button is mainly used

to advance to new rounds.

Please click this PROCEED button now. Your message box now tells you

we are about to begin the practice rounds. Click PROCEED again. We have now

started the first practice round. At the very top left of your screen, the probability

window has just popped-up. Please grab this window with your mouse and move it

to the bottom right of your screen so that you can see the left columns on the main

window. You should see that the match or round number is 1, the threshold-met-

value is 5, and the threshold range is 3-3. This means that you know for sure that

the threshold is 3. To remind you, this means that at least 3 tokens must be spent

in your group for everyone to get the threshold-met-value back. The threshold range

and threshold-met-values are the same for all groups in the room. Further notice that

the right columns have questions marks indicating that your decisions have not yet

been made.

In each round, both practice and for real, you do two things. First, you assign

your likelihoods to the di erent occurrences of no others going, one other going, etc.

Second, you make your spend/keep decision. You can only do these two things in

this order. I will walk you through doing this now.

Look at the probability window. There are five pull-down lists-one corre-

sponding to each of the outcomes of the decisions of the others in your group. In blue

are the possible outcomes: 0 through 4 others spending. Immediately beneath each

blue outcome is the corresponding pull down list, each of which currently says 0% and
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has a black down arrow. Go to the pull-down list for 0 and click and hold your mouse

button. Notice that you are allowed to select the percentages in 1% increments. Move

the mouse to 50% and release the mouse button. Please raise your hand if you have

not been able to assign 50% as asked. [WAIT.] You have just assigned a 50% chance

to 0 others in your group spending their tokens. Notice that on the very right of this

window, the total probability you have assigned says 50%. Now use the pull-down

list under 4 to select 45% that four others spend. Your total should now say 95%.

Once your assigned probabilities add up to 100%, you are allowed to press the

white CLICK TO PROCEED button that runs the length of the probability window.

If you press CLICK TO PROCEED and the probabilities do not add up to 100%,

then a message will pop up right above your CLICK TO PROCEED button in the

probability window telling you that the probabilities do not add up to 100%. In that

event you must adjust your assigned probabilities until they add to 100% before you

can proceed to making your keep/spend decision. Once you have pressed CLICK TO

PROCEED after making probability assignments that add to 100%, the probability

window disappears. At this point you are not allowed to change those probability

assignments for that round. So be sure to not press CLICK TO PROCEED until you

have entered and/or adjusted your desired probability assignments.

Let’s now do the first practice round. First make your probability assignments

in the probability window using the pull-down lists. Do this now. Of course, if you

do not want to select 50% for the 0 event and 45% for the 4 event, please select other

percentages using the pull-down lists. Once you have assigned your probabilities,
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press CLICK TO PROCEED. The probability window will disappear. Next you

make your keep/spend decision by pressing either KEEP or SPEND at the bottom

of the main window. Once everyone in the room has made the keep/spend decision,

the right columns on your main screen should tell you the results of this first round.

[WAIT.]

Does everyone see the results for your group for the first round in the right

columns on your main screen? Please raise your hand if you do not see the results.

[WAIT.] Look to see if your group spent enough tokens to meet the threshold. Look in

the decision payment column. If your group met the threshold, the decision payment

should say either 5 or 6, depending on whether you spent or kept your token. If your

group did not meet the threshold, the decision payment should be either 0 or 1, again

depending on whether you spent or kept your token. Also look in the probability

payment column. This column tells you how many tokens you received from your

probability assignments. [WAIT.]

The highest probability payment you can receive in a given round is 3 tokens.

For example, if you assign 100% to the occurrence that exactly 3 tokens would be

spent and exactly 3 others spent, then you receive a probability payment of 3 tokens.

If you care to know the exact formula used to calculate this payment, it is on the

board. The more accurate your probability assignments, the more tokens you receive.

The least you can receive in a given round is 0 tokens.

After briefly examining the information in the right columns, press PRO-

CEED at the bottom of the main window to advance to the next round. Your mes-

78



sage box contains information about the decisions made, but it also has instructions

that do not apply for this session. Please ignore the instruction to write down your

choices. In fact, the message box contains no new information, so you can ignore it’s

instructions and press PROCEED. Once everyone has pressed PROCEED, the screen

will advance to the next round. I repeat, the round will only advance once everyone

has clicked PROCEED, so please click PROCEED now if you have not clicked it yet.

Are there any questions? [WAIT.] Now try practice rounds 2, 3, and 4 on

your own. Let me remind you that you that the computer randomly places you into a

newly selected group in each round. For round 2, Notice that the threshold-met value

and threshold range have changed. Remember to always look to see the threshold-

met-value and threshold range at the start of every round. Also remember to not

talk or communicate in any manner with any other students in the room. If you have

any questions, please raise your hand. Go ahead and finish the rest of the practice

rounds on your own. When the message area in the bottom half of the main windows

prompts you to click PROCEED, please click PROCEED.

[WAIT AND WATCH UNTIL PRACTICE ROUNDS ARE OVER.] Now

that the four practice rounds are over, do you have any questions? [ANSWER QUES-

TIONS.]

Begin Real Rounds. Let’s now do the real rounds. Please press PROCEED

to do the real rounds. The message box tells you that your payo s in the real rounds

will count towards your earnings. Press PROCEED one more time and start doing

the real rounds now. Remember that you are not allowed to communicate with any
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other students in the room during these rounds. [WAIT FOR FINAL ROUND TO

FINISH.]

Conclusion. Please follow my special directions in filling out the receipt.

Fill out the date, the time of the experiment, your name, and your computer assigned

ID number. Please enter the show-up fee of $5. On your screen should be a window

that popped up after the last round was completed. Notice where your total amount

is listed in dollars. On the line on your receipt for the decision payment, please enter

your dollar amount from your screen rounded up to the nearest quarter. For example,

if your dollar amount is $10.04, then round up to $10.25. When you have done this

click QUIT to close that window. Do not sign the receipt yet. You will sign it when

you receive your money.

Over the next few weeks I will be conducting more of these sessions. By

participation today you are ineligible to participate in other sessions run by me. Please

note in future emails if it says that your participation today makes you ineligible. If

it says so, please do not sign up to participate. Thank you for coming. Please form

a line starting at the lab o ce to receive your payments.
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CHAPTER 3

NON-COOPERATIVE NETWORK EQUILIBRIA

UNDER HETEROGENEITY AND UNCERTAINTY

3.1 INTRODUCTION

Social networks are increasing used in both theoretical and empirical research in eco-

nomics.1 The basic idea is that individuals make their choices in environments that

are either constrained, enhanced, or defined by some sort of social interaction, and the

concept of the social network is used to precisely define that social interaction. Bala

and Goyal (2000) (BG hereafter) made an important stride forward in the theoreti-

cal work on network formation by modeling network formation as a non-cooperative

game. By so doing, they can take advantage of the wide variety of concepts and tools

of non-cooperative game theory. They look at the statics and dynamics of network

formation, provide a characterization of strict Nash equilibria networks, and show

that under some simple best-response dynamics, individual e orts to access the ben-

efits of a network can lead quickly to the emergence of equilibrium networks. These

limiting networks often have simple structures and will likely be socially e cient.

In BG’s model, the benefits of network participation and the structure of

the network are commonly known. The full information assumption is strong and

begs the question of how network formation and limiting networks might change

1See Bala and Goyal (2000) for a list of theoretical and empirical work.
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when there is uncertainty about the benefits of the network and the structure of the

network. Because we would expect that individuals in many social networks might

not have the full information that BG assume, examining network formation under

uncertainty can yield important insights into the types of actual networks that social

scientists should expect to find. In this study, I add two types of uncertainty to

the BG model and examine the implications of the uncertainty concerning the values

of other agents’ network goods and uncertainty about the structure of the network.

Table 3.1.1 summarizes the di erences between the model in BG and the model of

this paper.

In the network games in this paper, each agent i has a unique, non-rival good

that is excluded from any agent j not directly or indirectly connected to i through the

network. Each network good has a certain value which is received by any connected

agent. The game is non-cooperative because the cost c of each network connection–

called a link–is paid only by the link-initiating agent. BG show that when all agents

have goods valued at v > c and the flow is two-way, the unique strict Nash equilibrium

is a connected, center-sponsored star, as show in Figure 3.1.1(a). A circle on a link

near an agent signifies which agent initiated and pays for the link.

This study shows that the qualitative feature of the center-sponsored star is

robust to large decreases in information. Although under low levels of information

we may have networks that are not connected (a network is connected when all agents

are directly or indirectly connected to one another), subnetworks retain the center-

sponsored architecture except in the most extreme times of uncertainty. For example,
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Table 3.1.1:  Comparison of BG and McBride

Figure 3.1.1:  Some Equilibrium Networks

Figure 3.2.1:  Illustration of Example 3.2.1



consider a network where the whole network structure and the values of the network

goods are not know a priori by the agents. Further consider that the agents do know

all j with whom they are directly connected and they know all k directly connected to

those j. If all agents have goods valued higher than c, the network in Figure 3.1.1(b),

one in which not everyone is connected, can be sustained as an equilibrium. This

network, although not connected, does have a subnetwork with a center-sponsored

star. To have an equilibrium that does not have a center-sponsored star subnetwork,

we must remove the ability of the agents to see everything beyond their direct links.

As expected, as uncertainty increases, the set of equilibrium structures in-

creases (weakly), but this increase depends on the type of uncertainty, the actual val-

ues of the agents’ network goods, and the belief-updating procedure used by agents.

For example, in a setting where the agents know the values of others’ goods but do

not know the structure, equilibrium network structures can be di erent than when

agents know the structure but do not know the agents’ good values. Again assuming

all agents have goods valued at v > c, the network in Figure 3.1.1(b) is one that can

be sustained as an equilibrium when the structure is known but the values are not

known. This same network, however, cannot be sustained as an equilibrium when

the values are known but the structure is not known.

To obtain these results, I had to overcome many hurdles. First, how do we

account for flows of information about the network structure and about the other

agents’ network goods? Second, what is the correct concept of equilibrium to use?

Third, how should agents use the information they receive to form probabilities over
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the possible network states? To overcome this first hurdle, I suppose agents assign

probabilities to di erent states of the world, and these probabilities can be updated

according to the information that the agents receive. To overcome the second hur-

dle, I propose and apply a generalized version of the conjectural equilibrium concept

(Gilli (1999)). This generalized concept allows for incomplete-information, imperfect-

monitoring, and the relaxing of the common knowledge of rationality assumption. I

do not completely clear the third hurdle, but I illustrate certain aspects of beliefs-

updating to which equilibria are particularly sensitive. The ultimate goal is to clear

all hurdles and develop a dynamic model of network formation under uncertainty.

This paper examines the static equilibria of this network game, but it only o ers a

brief discussion on aspects of the dynamics of the formation.

Section 3.2 describes the model and the notation. This section describes how

I deal with the first two of these hurdles. Since the actual equilibria depend on the

realized network good values, we must describe the network equilibria accordingly.

Section 3.3 uses examples to illustrate many of our results for the case when all agents

have goods valued higher than the cost of forming a link. Section 3.4 describes

the results for the other cases and discusses how the results are robust to adding

common knowledge of rationality and removing a key assumption (called the overflow

assumption). In Sections 3.3 and 3.4, I characterize the set of equilibrium structures

that can be sustained as equilibria when the beliefs are chosen arbitrarily by the game

theorist. In Section 3.5, I discuss when the equilibria have beliefs that are justified

by some dynamic process.
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The general contribution of this paper is that it takes a first step towards

understanding network formation under certain types of uncertainty. A more specific

contribution of this paper is its approach used to describe and account for uncertainty

in the network game, i.e., the characterization of information and beliefs and how

these relate to the decision making processes of the agents. This characterization is

easily extended to other types of non-cooperative network games. For example, in

otherwise identical games but with one-way flow, we can obtain similar qualitative

results as those found here.2 The reason is that, whether flows are one-way or two-

way, the stability of a network depends on the ability of an agent to see beyond his

own direct links.

This paper also contributes to the literature on non-Nash equilibrium con-

cepts. Gilli (1999) remarked, “to study the notion of equilibrium in game theory,

we should study the role of players’ information in strategic situations” (185). The

network game is a natural setting in which to examine how players’ actions deter-

mine what they can learn, and how what they learn will a ect how they act. I

pay particular attention to the information received by the individuals and show how

the equilibria are or are not sensitive to such information. To do this, I propose a

generalized version of an existing non-Nash equilibrium concept, and apply this con-

cept appropriately. This paper is thus a detailed application of an original non-Nash

concept.

2The di erence between the one-way and two-way games is that the strict Nash equilibrium
network in the one-way game is a wheel network. Just as the center-sponsored star architecture
is robust to large informational decreases in the two-way game, the wheel architecture is robust to
large decreases in information in the one-way game. This paper only examines the two-way game.
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3.2 MODEL AND NOTATION

3.2.1 Basics of the Network Game

Consider a game with set of agents N = {1, 2, . . . , n}, where 3 < n < 3 and each

player i N must decide with which agents he wants to initiate a link. Agent i will

want to link with other agents in order to access the network goods that those agents

have. Each agent has a non-rivalrous network good that can only be transferred

through connections in the network. Agent i will pay a marginal link cost c for each

link he initiates. I will always assume that network goods flow in both directions,

and there is no flow decay of the network good.

The value of other agents’ network goods and the other agents’ actions might

not be known. As such, each i will have beliefs concerning certain possible states

of the world. Denote v0 to be an n × 1 matrix containing values of network goods

associated with N , and denote s0 an n × n matrix describing the structure of the

network. Row j in that matrix is the action of player j. A state of the world

(v0, s0) is an network good value matrix (vector) v0 and a network structure matrix s0

combination. Denote the true state of the world (vt, st) . Example 3.2.1 illustrates

a possible state of the world. The network structure of this example is illustrated in

Figure 3.2.1.

3We will generally assume n > 3, yet in some pictures we use n = 3 to illustrate simple ideas.
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Example 3.2.1: The following is a state of the world. Figure 3.2.1 shows how

st in this example is illustrated in pictorially.

¡
vt, st

¢
=

1
2
2
2
1

,

1 1 0 0 0
0 1 0 0 0
0 1 1 0 0
1 1 1 1 0
0 0 0 0 1

.

The state of the world might not be known will certainty, so player i might

believe there to be many possible states of the world. Let V be the set of possible

combinations of values of agents’ goods and S be the set of possible network struc-

tures. Let i be a probability distribution that i has over the possible states of the

world (V, S). Let i be the set of probability assignments that i has over states of

the world, and = ×i N i.

Let ai be i’s action, which is a 1×n matrix of zeros and ones, with a 1 in the

jth place signifying i is initiating a link with j. While it costs c to pay for a link, i

is always costlessly linked with himself. Let i’s strategy set be {0, 1}1×n, where the

ith place must be 1 (because linked to oneself), so that the diagonal of st is ones.

I will assume ui equals the sum of the values obtained by i (including his own

good) through the network minus the cost of any links. In Example 3.2.1, if c = 0.5

then u1 = 6.5 and u5 = 1.

The network game G is a combination of utility maximizing agents N , sets of

actions A, sets of states of the world (V, S) , and for each i N, corresponding utility

functions ui, beliefs i over the states of the world, and belief updating functions hi (to

be described below). In abbreviated notation, G = N,A, (V, S) , , (ui)i N , (hi)i N
®
.

88



3.2.2 Generalized Conjectural Equilibrium (GCE)

The approach used to find equilibria in this paper is as follows: pick a network

structure and see if we can choose beliefs that sustain this structure as an equilibrium

and are consistent with what the agents know about the network. The equilibrium

concept closest to what I need is the Conjectural Equilibrium concept described by

Battigalli, Gilli, and Molinari (1992) and Gilli (1999), yet this concept does not allow

for incomplete information. I propose a new concept that will fit the needs of this

paper. After defining a general incomplete-information, imperfect monitoring game,

I define the Generalized Conjectural Equilibrium.

Definition of General Incomplete-information, Imperfect-

monitoring Game (IIG): The general incomplete-information, imper-

fect monitoring game is a combination

N, ,A, , (ui)i N , (mi)i N , (hi)i N
®

where: N is a set of players; is a set of states; Ai is the set of actions

for i N and A = ×i NAi; i is i’s set of probability distributions over

{ ×A} and = ×i N i; ui : { ×A} R is i’s utility function; mi :

{ ×A} Mi is i’s message (or signal) function; and hi : { i ×Mi}

i is i’s beliefs-updating function or rule.
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In general, it might be the case that mi ( , a) = mi (
0, a0) for some ( , a) ,

( 0, a0) { ×A} . When the player’s message is the same under two di erent states

of the world, he will generally not be able to separately distinguish which of the two is

the true state of the world. In this case of imperfect monitoring, each player then has

an information partition Ii (mi ( , a)) = {( 0, a0) { ×A} |mi ( , a) = mi (
0, a0)} .

In words, given his signal mi, i knows that the true state of the world is some ( , a)

Ii, and It will generally be a strict subset of { ×A} .

Definition of Generalized Conjectural Equilibrium (GCE): Fix

. A GCE of IIG is a (ai , i )i N
® {A× } combination such

that for each i N :

(1) for all ai 6= ai , ai Ai, it is true that

X
( 0,a0) { ×A}

i (
0, a0)u (ai | 0, a0)

X
( 0,a0) { ×A}

i (
0, a0)u (ai | 0, a0) ;

(2) i = hi ( i ,mi ( , a )), where a = ×j Naj ;

(3) for any ( 0, a0) { ×A} that is assigned strictly positive prob-

ability by i , it must be that Pr [(
0, a0) Ii (mi ( , a ))] = 1.

Condition 1 of GCE states that the player is playing a best response to

his conjecture concerning the true state of the world. Condition 2 states that the

player’s posterior beliefs equal his prior beliefs given his signal and his beliefs-updating
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rule. Condition 3 states that equilibrium beliefs must assign probability 1 to the

observed signal. This third condition restricts hi (·) to assign probability 0 to any

( 00, a00) / Ii (mi ( , a )). This hi function updates i’s beliefs given his message and

knowledge of the game. There can be many methods that this function uses to assign

probabilities, e.g., Bayes rule or some other rule. Notice that this function does not

assume common knowledge of rationality. As is usual with solution concepts, there

is no explanation why the equilibrium is reached but instead the concept says that

if these actions and beliefs are played for some reason then there is no incentive to

change behavior.

GCE is the appropriate concept to study networks under uncertainty. In

general, an agent might not know the values of the other agents’ network goods

(incomplete-information). Agents will not generally observe the actions of all other

players (imperfect-monitoring), and what the agents know about the network is likely

to depend on with whom they are connected (they receive messages). And since we

are motivating this study by a dynamic network formation game, our equilibrium

concept need not impose equilibrium deductions (no imposed common knowledge of

rationality).

The conjectural equilibrium from the literature is a GCE with only one pos-

sible state of the world = { }. If = { } and common knowledge of rationality

is added, we have Gilli’s (1999) Strong Rationalizable Conjectural Equilibrium. In

general, i’s action will a ect the messages and rational play of the others, and, hence,

his own message and rational play. To get to Rubinstein and Wolinsky’s (1994)
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Rationalizable Conjectural Equilibrium, we must further impose that i’s message be

independent of his own action. Fudenburg and Levine’s (1993) Self-confirming Equi-

librium is an extensive form version of rationalizable conjectural equilibrium with the

restriction that i’s signal is the strategies that others play at all information sets that

are reached with positive probability. Player i’s beliefs are correct along the equilib-

rium path but not necessarily correct o that path.4 A GCE is a Nash equilibrium

when it is common knowledge that mi contains the true and a for each i.

I explain how I apply the GCE to networks in Section 3.2.6.

3.2.3 Assumptions on Network Goods and Flows

The network goods are assigned randomly before actions are taken. Network good

values are drawn randomly from {d, 2d, ..., D} . Agent i’s good is non-excludable to

anyone that is linked to i, but his good is excluded from any agent not connected to

him either directly or indirectly agent. I assume that player i knows with certainty

the value of his own network good and his action, but i might not know the values

of the goods of other agents even though he might be connected with some subset of

them. Further assume that d < c < D.

Notice, however, that i only receives the sum total of values so that there is

no “double-counting” of goods. For example, in Figure 3.2.2(b), player 1 receives

agent 3’s network good through player 5 and player 2, but 1 does not receive double

4Although we use di erent notation than that used in the definitions of conjectural equilibrium,
rationalizable conjectural equilibrium, and self-confirming equilibrium, the relationships are clear
once the role of the signal is understood.
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utility.5 The agent knows his own utility at a given point in time. This utility,

as stated above and known by the agent, is equal to the total flow of network good

values received through the network.

I place a restriction on an agent’s beliefs about the flows that he would receive

in other networks: an agent knows what his total flow utility would be for each subset

of his current direct links (whether or not he initiated the link), holding the rest of

the network fixed. I call this restriction the overflow assumption because, as shown

below, it allows the players to detect redundant links by the flows. A consequence

of this restriction is that (i) the agent knows the utility flow from one of his direct

links when removing all others (and the rest of the network fixed) and (ii) the agent

knows the utility flow from any network with all but two of his direct links removed

(again, holding the rest of the network fixed).

Consider Figure 3.2.2, where vt = (1, 1, 1, 1, 1)0 . Let f1 be 1’s utility flow

(this is the flow of utility the player receives from other agents without subtracting

the cost of paying for any links). In Figure 3.2.2(a), agent 1 knows that f1 = 4.

By the overflow assumption, he also knows that his total utility flow in this network

if all links but his link with 2 were removed is f1|2 = 2. Similarly, f1|5 = 2. Since

f1|2+ f1|5 = f1, agent 1 knows he has no redundant links. In Figure 3.2.2(b), f1 = 3,

f1|2 = 3, and f1|5 = 3. A consequence of this 1 knows that his link with 5 can be

removed without decreasing his total flow utility f1. In Figure 3.2.2(c), f1 = 4,

5For example, suppose player A is in Albania, B is in Bermuda, and C is in Canada. Each knows
the weather in his country, and utility is obtained by knowing the weather in the states. Assume
A and B both have direct links with C. That means that A, B, and C each know the weather in all
three countries. Suppose now we add another link between A and B. Since A already knows the
weather in Bermuda and Canada, this extra link with B provides no new utility.
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f1|2 = 2, f1|3 = 2, and f1|5 = 3. By the overflow assumption 1 also knows f1|2,3 = 2,

uf1|2,5 = 4, and uf1|3,5 = 4, where f1|j,k is 1’s utility flow when all links but those with

j and k are removed. He can then know by these flows that his link with either 2

or 3 can be removed without decreasing his total flow. Note that the agent not only

knows if there is a redundant link, but he also knows which link is redundant.

3.2.4 Information Regimes and Revelation

An information regime is the information setting in which the game takes place, and

we will consider four di erent information regimes in this paper. One information

regime is the full information regime, where the true state of the world is known with

certainty by each player. Denote this game GV S, where the superscript says that the

values and the structure are known with certainty. If st is known with certainty but

vt is not necessarily known, we say we are in the structure regime, denoted GS. If vt

is known with certainty but st is not necessarily known, we say we are in the value

regime, denoted GV . If neither vt nor st are known then we are in the empty or null

information regime, denoted G .

While the information regime describes the setting in which the game takes

place, we must also consider how agents learn about the network by actually being a

member of the network. I use the term revelation to describe the information about

the true state of the world that is revealed to the agent through his links. I say

the network game has (i) -link revelation, denoted G , when to each i is revealed

the value and action every j with whom i is either directly or indirectly connected
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(in a sense, to i is revealed everything about his own subnetwork but nothing about

agents not connected with him); (ii) 1-link revelation, denoted G1, when to each

i is revealed certain information concerning agents one link away (more said on this

below); (iii) 0-link revelation, denoted G0, when to each i is only revealed with whom

he is connected (whether or not he initiated that link).

Assume that with 1-link revelation, i always learns the network good values

for all agents with whom i is directly connected (whether or not he initiated that

link). But whether or not i knows more will depend on the type of 1-link revelation.

I characterize four types of 1-link revelation corresponding to Table 3.2.1. Of these

types of 1-link revelation, G1CC has the (weakly) most information revealed to agent

i. In G1CC , for each i directly connected to some j, i learns all which k are directly

connected to j. Notice that anything revealed in G1CA is also revealed in G1CC since

any link initiation by j is a connection. But revealed in G1CC and not in G1CA are

the links to j which j did not initiate. Similarly, G1AA reveals the (weakly) least

information since agent i has to initiate the link with j to learn his actions. Again,

G1AC yields (weakly) more information than G1AA since it reveals the links which j

did not initiate. Below I will denote G1·A to mean G1AA or G1CA.

3.2.5 Structure Features and Terminology

One “welfare” feature of a network is the network’s connectedness. A network is

connected if all every agent is either directly or indirectly connected with all others.

A network is empty if there are no links. A network is partial if it is not connected
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and not empty. When I say a network is non-connected, it can be either partial or

empty. A network is minimal if the removal of a link by some i results in the removal

of access to i for some j’s network good where i 6= j. An agent is unconnected or

separate if he is not linked with any agents. The idea behind minimal networks is

that “redundant” links are removed. Figure 3.2.3 illustrates some network types. A

minimal network might be connected, partial, or empty. Figures 3.2.3(b) and 3.2.3(c)

are minimal, but 3.2.3(a) is not minimal.

Star networks, as in Figure 3.2.4, are important networks. The center of a

star is the sole means whereby the other agents in the network receive access to the

other agents’ network goods. Such an agent is the channel through with another

agent to receive other agents’ network goods. The center-sponsored and periphery-

sponsored stars are one-channel networks. The non-channel agents in those stars

that have only one direct connection will be called stems. Note that a network that

is not connected can have a star subnetwork, as is the case in Figure 3.2.3(c).

More precisely: an agent i is a channel if there is some agent j that receives

some agent k’s network good only through i; an agent i is a strict channel if he is a

channel to all agents with whom he is directly connected; an agent i is a stem if he

has only one direct connection.

3.2.6 Applying GCE in the Network Game: Strict Network Equilibrium (SNE)

I apply the GCE concept in the network game with the additional restrictions and

assumptions from Sections 3.2.2 and 3.2.3. An equilibrium of the network game will
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comprise actions and beliefs such that no agent has the incentives to change actions

or alter beliefs. Each agent’s action is a best-response to his beliefs about the values

and structure of the network, and each agent’s beliefs must be consistent with his

message.

Definition of Strict Network Equilibrium (SNE): A SNE is a pure

strategy GCE of the network game where (1) the best-response must be

a strict best-response, (2) beliefs are restricted according to the overflow

assumption, and (3) each individual’s signal carries information entitled

by the information regime and the revelation.

The strictness stated in condition (1) is used for two reasons. First, strictness

has nice refining power, as shown by BG. The number of possible network structures

increases exponentially as n increases, and strictness nicely reduces the set of equi-

libria to be examined. Second, in a dynamic framework, strict equilibria are stable,

absorbing points. What is meant in condition (3) is that the message will contain

all available information that is permitted under the information regime and type of

revelation. For example, if the information regime is that the values vt are known

and the revelation is -link revelation, each agent’s message contains vt and the

actions of all agents in his own subnetwork but nothing about the actions of agents

not in his subnetwork. These characterizations will become clear in the next section

through some examples.
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In Sections 3.3, 3.4, and 3.5, we will distinguish between two types of SNE.

Sections 3.3 and 3.4 looks at the structures of SNE with “arbitrary” but “consistent”

beliefs, the set of which is denoted S. The beliefs of these SNE are arbitrary in

that they are chosen by the game theorist. They are, of course, consistent in that

the beliefs and actions are correspond with the message and strict best-response

optimization. In terms of our notation, a SNE with arbitrary beliefs can be thought

of as a SNE where the priors are chosen by the game theorist and where the hi (·)

function is arbitrarily chosen by the game theorist.

Section 3.3 works through an extended example to illustrate the basic logic

behind the characterization of S for a particular case. Section 3.4 works through

the logic for the other cases. Section 3.5 examines SNE structures that can arise out

of the dynamic process, denoted S . Obviously, we are really interested in S , but

we look for S first for three reasons. First, S is easier to derive. Second, it turns

out that S S (in fact, S = S in many instances), so finding S can help us find S .

Third, further restrictions on hi turn out to a ect the SNE in complicated ways, so

finding S might in some ways and instances be the best description of equilibrium

structures (more on this below).

Our search for equilibria is as follows. The game type (e.g., GV ), type of

revelation (e.g., 1CA-link revelation), value range {d, ..., D} , c, and N are common

knowledge. Each agent is assigned a network good value from {d, ..., D} , and each

agent is assigned an action randomly to define an initial network structure. Given

these values and actions, we ask if the structure can be sustained as an equilibrium.
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If any agent (given his message which has his revelation) believes that he can strictly

improve his expected utility by changing his action, then the network is not an equi-

librium. Otherwise, the network structure is a SNE structure.

Note that agent i does not have beliefs over the other agents’ beliefs, which

rules out deductions based on equilibrium logic (which would further refine the set of

equilibria in some cases). One reason for this is that network formation arises in an

out-of-equilibrium dynamic process. At any point during a dynamic network game,

a person may have just played what he perceived to be a best-response, but then

learn that it was an action that made him strictly worse o . His action was not an

equilibrium action, so he should not conclude that other players’ current actions are

equilibrium actions. Also, in the dynamic game, for i to try and use some equilibrium

logic, he must keep track of all other players’ beliefs–not just their actions. It was

decided to focus more on the static equilibria that would correspond to the out-of-

equilibrium concept and dynamics used in BG. Also, although the solution is static,

I have the dynamic game in mind. We reconcile these by supposing that the agents

are concerned with their instantaneous payo s, that is, they are not concerned about

the e ect their actions might have on the other players’ actions or beliefs.

The focus is on SNE structures because, even though beliefs determine the

behavior, it is the resulting structure that determines the payo s. An infinite number

of beliefs might be able to sustain a single structure as an equilibrium, so instead of

focusing on the specific beliefs, we characterize necessary conditions of the beliefs that

are consistent and sustain the structure as an equilibrium.
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3.3 EXAMPLES TO ILLUSTRATE FINDING SNE FOR CASE I

As illustrated in Figure 3.2.2, when link overflow occurs, an agent will know if one

of his immediate links is unnecessary. It turns out that this assumption means that

any SNE will be minimal.

Lemma L1: Any SNE is minimal.

Proof: Suppose a SNE network is not minimal. By the definition of

a minimal network, non-minimal means that there is some i that has

initiated a link with some k such that i and k are still connected without

the link initiated by i. Either (1) k has also initiated a link with i or

(2) there is some j through which both i and k can access each other’s

good without the direct link by i. In each case, i is strictly better o by

removing the link with k, and i knows this fact by his ability to determine

link overflow. This contradicts the strictness. ¥

Lemma L2: Each agent in a SNE is either a strict channel, a stem, or

unconnected.

Proof: In a SNE, a player can have either 0, 1, or more than 1 direct

links. By definition, he is unconnected if he has 0 links, or he is a stem

if he has 1 link. Consider i who has more than 1 link, say with j and

k. Suppose i is not a strict channel. Since i is not a strict channel,

there must be some agent k directly connected with i who receives access
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to some j’s network good by some path other than through i. Then the

network is not minimal, which violates SNE by L1. Any agent that has

more than two links must therefore be a strict channel. ¥

L1 and L2 imply that to find the set of SNE for any network game we need

only look at minimal networks with only stems, strict channels, and unconnected

agents.6 The set of equilibria will depend on the actual values of the agents network

goods, so we break down our description into four cases. Case I is when all agents

have actual values greater than or equal to c. Case II is when exactly one agent has

value less than c and all others have high-valued goods. Case III is when at least

two but less than n agents have low-valued goods (i.e., there are between 1 and n 2

agents with high-valued goods). Case IV is when all agents are low-valued.

In the rest of this section, I will illustrate the process of finding the set of

equilibrium structures for Case I under varying types of uncertainty and revelation.

Consider Example 3.3.1, which will be used in this section to illustrate the SNE sets.

Example 3.3.1. Suppose the following network, represented in Figure 3.3.1,

where n = 5, d = 1, D = 2, c = 3
2
, and:

¡
vt, st

¢
=

2
2
2
2
2

,

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

6Strictness is not enough ensure minimality, as illustrated in Example 3.5.1.
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Figure 3.3.1:  Illustration of Example 3.3.1

Figure 3.3.2:  Modification of Example 3.3.1
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Figure 3.3.4:  Illustration for P3.7



3.3.1 Full Information Regime Case I: GV S

Consider Example 3.3.1 in the full information case GV S. Since (vt, st) is known by

all, agent 4 knows that he is better o by initiating a link to j {1, 2, 3} and 5

because he knows that the flow he receives will be greater than the cost. So this

network is not in SV S. Notice also that the agents in the subnetwork will also want to

initiate with 4 and 5, so the connected agents also have the incentive to deviate from

the existing a. This illustrates that in this full information setting with all agents

high-valued, we expect the network to be connected. This intuition is correct.

It turns out that the only structures that can be sustained as equilibria in

this case are center-sponsored stars. There are n of them since each agent can be the

center. In each of these, i = (v
t, st) with probability 1. I use the notation “i j”

to mean “i is the link-initiator in a direct link with j.” Ni will be used to denote

all agents linked, either directly or indirectly, to i, i.e., Ni is the set of agents in i’s

subnetwork.

Proposition P3.1: For Case I, SV S is the set of connected, center-

sponsored stars.

Proof: (Necessity.) Suppose you have a SNE in SV S that is not a

connected, center-sponsored star. Either the network is not connected,

or the network is connected but is not a center-sponsored star. If the

network is not connected then any member of a subnetwork is strictly

better o when initiating a link with someone not in his subnetwork.

This is known by full revelation, hence the network must be connected.
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Suppose the network is connected but not a center-sponsored star.

By L1, the network must be minimal. By L2, the network must only have

stems and channels since there are no unconnected agents in a connected

network. If the network has only one channel, then there must be a link-

initiating stem since it is not a center-sponsored star. This stem knows

he can remove his link with the channel and link with one other stem and

receive the same payo . This violates the strictness. If the network has

more than one channel, say i and j such that i j, then i can remove

his link with j and link with some k directly connected with j and receive

the same payo . This violates the strictness. Hence, you cannot have a

SNE in SV S which is not a connected, center-sponsored star.

(Su ciency.) A connected, center-sponsored star is a SNE since

each player is playing a strict best-response given his knowledge. ¥

3.3.2 Structure Regime for Case I: GS

Suppose in Example 3.3.1 we now are in GS where the structure is revealed to

everyone. Consider agent 1. He knows that 2 3 because st is common knowledge,

so 1 knows that if he switches his link from 2 to 3 he will be no worse o , which

violates the strictness condition for SNE. This holds for any link-initiating stem in

the subnetwork (as long as the subnetwork has more than two agents) which suggests

that any network with a link-initiating stem cannot be a SNE. But we can say even

more. In fact, any subnetwork must be an center-sponsored star in order for no agent
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in that subnetwork to meet the strictness condition of SNE. The intuition comes from

P3.1. Notice that this holds for 0-, 1-, and -link revelation.

Consider agent 4. He knows that 1, 2, and 3 are connected by GS, but he

does not know the summed valued of their subnetwork. He does know, however, that

the lowest the sum could be is 3d > c, so 4 knows that the least flow he can receive

from linking with, say, player 1 is greater than the cost of initiating that link. He

will then link with i {1, 2, 3} .

Your intuition might tell you then that SS is the set of connected, center-

sponsored stars, but that would be incorrect for two reasons. First, consider the

empty network. If everybody believed with probability one that everyone else had

values less than c, then the network is a SNE. For example, if

1 =

2
d
d
d
d

,

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

with probability 1 ,

then player 1 would not initiate any links. If players 2, 3, 4, and 5 had similar beliefs

then the empty network in this example is a SNE. Hence, the empty network is in

SS so long as d < c.

Second, what if instead d = 1
4
but the rest of the network was the same?

Player 1 could still switch from 2 to 3 so the subnetwork must still be a center-

sponsored star. But player 4 might not want to initiate with the 1-2-3 subnetwork if

his expected flow from linking with a player in that subnetwork is less than c, which
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is true if

4 =

d
d
d
2
d

,

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

with probability 1 .

In this case, the expected benefit from linking with a member of that subnetwork is

3d < c. Since 4 receives no revelation, he has no new information to contradict his

beliefs. Given these beliefs, he will not initiate any links.

Proposition P3.2: For Case I, SS is contains (a) the empty network,

(b) all partial networks where any subnetwork is a center-sponsored star

with fewer than c
d
agents, and (c) connected, center-sponsored stars.

Proof: (Sketch.) (a) In our discussion above, we illustrated how we

can choose beliefs for each agent such that the empty network is a SNE.

(b) In our discussion above, we illustrated how a partial network in which

the subnetwork is a center-sponsored star with fewer than c
d
agents is a

SNE, so long as the beliefs of any agent i outside subnetwork Nj are such

that i believes that all j Nj are unconnected and low-valued. A two-

person, minimal subnetwork is a center-sponsored star with one stem. (c)

Obvious. ¥

Notice that a non-connected network with a center-sponsored star subnetwork

might not exist. In our example with d = 1, D = 2, and c = 3
2
, any subnetwork will
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have more than c
d
players since c

d
< 2. Also notice that if such a network does exist,

there might be more than one center-sponsored star subnetwork.

Corollary C3.1: SS SV S.

Proof: (Right to Left.) Any SNE in SV S is in SS because any connected,

center-sponsored star is in SS. (Left to Right.) From PI-2, SS contains

the empty network which is not in SV S, so SS SV S. ¤

Notice that the set of SNE structures for GS is the same under 0-, 1-, and

-link revelation. Knowing your own subnetwork’s structure means that you can

always switch unless it is a center-sponsored star. To do such switching, you do not

need to know the actual values of agent j in Ni. All you need to know is that if you

switch a link from l to j you can receive the same payo . Also, it matters that i does

not receive any revelation about the values of agents who are not in his network.

3.3.3 Null Regime for Case I: G

Equilibrium Structures for G and G1·C. Let us now add some more uncertainty

in Example 3.1 to get from GS to G . Consider agent 4 with

4 =

d
d
d
2
d

,

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

with probability 1 .

Since agent 4 receives no revelation, he believes he is strictly worse o by initiating

links. So he will not initiate any links.
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Consider agent 1. Suppose

1 =

2
2
2
d
d

,

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

with probability 1 .

Although 1 does not want to initiate any new links with agents not in his subnetwork,

he can switch his link from 2 to 3. This violates the strictness of SNE, so this

network is not a SNE. We can deduce from this that any subnetwork must be a

center-sponsored star. Similar logic ends up showing that S1·C = S .

Proposition P3.3: For Case I, S is the set of empty, partial, and

connected minimal networks in which any subnetwork (including the con-

nected network) is a center-sponsored star.

Proof: (Necessity.) Suppose the SNE network has a subnetwork which

is not a center-sponsored star. By L1, the network must be minimal. By

L2, we need only look at unconnected, stems, and strict channels. If it is

not a center-sponsored star, then either (i) there is a link-initiating stem

in a subnetwork or (ii) there is more than one strict channel. (i) If the

subnetwork has only two members then we are fine. If it has three or more

then if there is a link-initiating stem i l, then i, by -link revelation,

i knows all j directly connected to l. Player i knows that he can switch

from l to j and receive the same payo . This violates strictness of SNE.
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A contradiction. (ii) Suppose at least two strict-channels. By definition

of strict channels, two of those strict channels, i and k, must be directly

connected. By -link revelation, i knows all j on the other side of k. He

also knows that he can switch his link from k to j and receive the same

payo . This contradicts the strictness for SNE.

(Su ciency.) The empty network is a minimal network without

subnetworks, so it meets the criterion. It is a SNE if each i believes

all other agents are unconnected with low-valued goods. This is so be-

cause no i receives revelation that contradicts his beliefs and is already

playing a best-response given these beliefs. A partial network with center-

sponsored star subnetworks is also a SNE if each connected agent believes

any j / Ni is unconnected and low-valued. Player i does not receive any

contradictory revelation, so he does not want to initiate any new links.

The connected, center-sponsored star is a SNE because each person is

playing a best response given their knowledge of (vt, st) . ¥

Proposition P3.4: S1·C = S .

Proof: We need to show that S1·C is the set of all empty, partial, and

connected minimal networks in which any subnetwork (including the con-

nected network) is a center-sponsored star. (Necessity.) The same logic

as in P3.3 can be used. Unless the subnetwork structure is a center-
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sponsored star, by 1 · C-link revelation, some agent in a subnetwork will

know that he can switch links to another person in his subnetwork. (Suf-

ficiency.) Again, each agent, if he believes all others to be unconnected

and low-valued, will not initiate new links. Center-sponsored star sub-

networks will prevent link switching. ¥

Corollary C3.2: For Case I, S1·C = S SS.

Proof: (Right to Left.) Any SNE in SS is i S because (i) the empty

network is in S , (ii) partial networks with center-pointing star subnet-

works of size c
d
are in S , and (iii) the connected, center-sponsored star is

in S . This also holds for S1·C by P3.4. (Left to Right.) Depending on

the actual c, d, D, and n, this relationship can be strict. If c
d
> n 1 then

S = SS. If c
d

n 1 then there is a partial network with subnetwork

of size n 1 which is in S but not in SS. ¥

Equilibrium Structures for G1·A. With 1 · A-link revelation, our SNE set will

change again in Example 3.3.1. Player 4 still receives no revelation about the 1-2-3

subnetwork, so if he assigns full probability to 1, 2, 3,and 5 being low-valued and

unconnected, player 4 will not want to initiate with any of them. Now think of

player 1. By 1 · A-link revelation, 1 will know that 2 3 because 1 2. So 1 can

switch his link from 2 to 3, which violates the strictness.
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But what if the network in Example 3.3.1 were the following

1 1 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

,

which is shown in Figure 3.3.2. Player 4 still might want to remain unconnected.

Player 1 would know by his flow from 2, that 2 is connected with at least one other

player (since the flow is higher than D). But by 1 ·A-link revelation, 1 will not know

if 2 is connected with 3, 4, or 5. Suppose 1 assigns equal probability to the following

states of the world:

2
2
2
d
d

,

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

2
2
2
d
d

,

1 1 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

,

2
2
d
2
d

,

1 1 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

2
2
d
2
d

,

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 0 0 1

,

2
2
d
d
2

,

1 1 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

2
2
d
d
2

,

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1

,

and zero probability to all other states. With these beliefs, 1 is indi erent between

linking with 2 and the player on the other side of 2, but he does not know which

player is on the other side of 2. With 1, if he removes his link with 2 and links to

some other player m {3, 4, 5} then his expected payo is 2
3
(d) + 1

3
(4), with the 4

being the flow he will receive from a successful switch. His expected cost is the flow
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of 4 he gives up with certainty. Since d < 4, he is strictly worse o in expectation

by attempting the switch.

The issue illustrated here is whether two link-initiators are directly connected.

If they are connected then one of them, by 1·A-link revelation, knows with certainty of

a successful switch which violates the strictness of SNE. So a necessary condition for

a SNE in S1·A is that there cannot be two directly connected link-initiators. In fact,

in Case I, any non-connected network without two directly connected link-initiators

is a SNE. If the network is not connected, then the flow is never high enough to

convince i that the network must be connected. If i believes there is a positive

probability that there is some agent m / Ni and believes that m to be low-valued

and unconnected, then i might be afraid to switch links.

Things are trickier when the network is connected. If the flows are su ciently

high, then by the flow i receives, he might be able to know that the network is

connected. In our example, since all agents have goods valued at 2, if the network

was connected, each i would know it was connected by the flow being so high. In

this case, i knows the network is connected, so he might be able to make a successful

switch. This is true under certain conditions of the connected network.

Condition C10 defines these necessary aspects of the network. Part (a) of C10

is met if the network is not connected or if the network is connected but the flows are

su ciently low as to prevent i from knowing that the network is connected. Part (b)

considers when the network is connected and the agent knows it is connected. Then

there are special conditions to be met to prevent link switching. In that condition,
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fl is the flow received by i through his link with l, v
t
l is the true value of l’s good,

Li is the set of agents directly linked with i, and |Li| is the number of agents in Li.

Given C10, I state our next proposition characterizing S1·A. The proof of this is very

detailed, but it is straightforward once we have proven the characterization of S0 .

Intuition is provided after explaining C1.

Condition C10: C1 0 holds if for each i either (a) or (b) is true:

(a) if
P

l Li

h
up
³
fl vtl
D

´i
< n 1 |Li| .

(b) if
P

l Li

h
up
³
fl vtl
D

´i
= n 1 |Li| , then

(i) if exactly one l Li has up
³
fl vtl
D

´
> 0, it is also true that

l initiated the link with i, or

(ii) if more than one l Li has up
³
fl vtl
D

´
> 0 and up

³
fl vtl
D

´
=

1 for each of those l, it is also true that at least one of those initiated the

link with i, or

(iii) if more than one l Li has up
³
fl vtl
D

´
> 0 and at least one

has up
³
fl vtl
D

´
> 1.

The up
³
fl vtl
D

´
term tells i the least number of agents that are beyond his

link with l. If the sum of these is less than n 1 |Li| , as for C10(a), then it is

possible that i’s subnetwork is not connected. If this is the case then i might be

afraid of switching or initiating a new link because he might believe any j / Ni to
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be low-valued. On the other hand, if the sum equals n 1 |Li| then i knows that

his subnetwork is connected, so in order for him to not want to switch, some other

conditions must be met. C10(b)-(i) describes when i has exactly one link with a j

that is not a stem. If he switches then he will switch to someone on the other side of

j, but if j initiated the link with i then any removal of a link means i is not getting

someone’s good. C10(b)-(ii) describes when i has more than one j Li where j is a

channel. If this condition is met then one of those j’s initiated a link with i, so that

i does not want to switch for fear of linking with that agent on the other side of that

j, thereby becoming worse o . C10(b)-(iii) describes when there is some channel j

which has more than 1 agent on the side opposite i. Now if i switches more than

one link, he might hit two or more on that other side and lose some utility.

In a randomly assigned structure, C10(a) will generally be met. However, we

must consider all cases, so C10(b) considers the special case when C10(a) is not met.

Proposition P3.5: For Case I, S1·A contains all minimal networks

in which (i) no two link-initiators are directly connected and (ii) C1 0 is

satisfied.

Corollary C3.3: For Case I, S1·A S1·C .

Proof: (Right to Left.) Any minimal network with center-sponsored

stars does not have two directly connected link-initiators, so any SNE in
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S1·C is also in S1·A. (Left to Right.) A partial network with periphery-

sponsored star subnetworks is in S1·A but not in S1·C . Such a network

always exists. ¥

Equilibrium Structures for G0. Let us look at Example 3.3.1 with 0-link revela-

tion. Agent 4 again will not initiate new links if he believes all others are unconnected

and low-valued. Things are di erent for agent 1 as compared to our last case. Agent

1 receives flow of 4 through his link with 2, but he does not know with whom 2 is

connected. He knows (since 4 > D) that 2 must be connected to another person;

maybe he is connected to all others or just one other. Let 1’s beliefs be the same

as those formally listed when looking at the equilibrium structures for G1•A. In this

event, 1 will not want to switch because he is strictly worse o in expectation. It

turns out that this network is a SNE in S0 . In fact, any non-connected network that

is minimal is in S0 , and many connected networks are also in S0 . I again state the

formal condition and then give the proposition.

Condition C1: C1 holds if for each i either (a) or (b) is true:

(a) if
P

l Li

£
up
¡
fl
D

¢
1
¤
< n 1 |Li| .

(b) if
P

l Li

£
up
¡
fl
D

¢
1
¤
= n 1 |Li| , then

(i) if exactly one l Li has up
¡
fl
D

¢
1 > 0, it is also true that

l initiated the link with i, or
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(ii) if more than one l Li has up
¡
fl
D

¢
1 > 0 and up

¡
fl
D

¢
1 =

1 for each of those l, it is also true that at least one of those initiated the

link with i, or

(iii) if more than one l Li has up
¡
fl
D

¢
1 > 0 and at least one

has up
¡
fl
D

¢
1 > 1.

Proposition P3.6: For Case I, any minimal network is in S0 if and

only if the network satisfies C1.

Proof: (Necessity.) By L1, we know any SNE network must be minimal.

Consider a minimal network where C1 is violated. This occurs whenP
l Li

£
up
¡
fl
D

¢
1
¤
= n 1 |Li| for any i, and either (i) |Li| = 1 and

i l or (ii) up
¡
fl
D

¢
1 = 1 and i l for all l Li.

(a) Suppose |Li| = 1 and i l. Since i knows by the flow that the

network is connected, he can remove his link with l and initiate the link

with any m 6= l and receive the same payo while paying the same cost.

This violates the strictness condition for equilibrium.

(b) Suppose up
¡
fl
D

¢
1 = 1 and i l for all l Li. By the

flow, i knows that each of his links has one and only one m on its other

side. Knowing this and since i has initiated all links, he can remove all

of his links and initiate links with all m / (Li {i}) and receive the same
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payo while paying the same cost. This violates the strictness condition

for equilibrium.

(Su ciency.) Need to show that if C1 holds, we can choose (ai , i )i N
®

that makes any minimal network a SNE.

Consider i such that i believes (i) that any unconnected agent has

good valued less than c with probability 1 and (ii) that any agent not in

his subnetwork is unconnected with probability 1, and (iii) there is no m

on the other side of some l Li such that i knows with probability 1 that

m is on the other side of l.

(C1(a).) Consider a minimal network where C1(a) is satisfied. By

L2, i must either be a stem, a strict channel, or unconnected.

Assume i is a strict channel. Choose i such that (i), (ii), and (iii)

from the previous paragraph are satisfied. By C1(a),
P

l Li

£
up
¡
fl
D

¢
1
¤
<

n 1 |Li| , and since the LHS < RHS, i believes there is positive prob-

ability that his subnetwork is not connected. By 0-link revelation, i does

not know who is on the other side of any l Li, nor does i receive any

information about who is unconnected. It follows that (i), (ii), and (iii)

are not contradicted. Hence, i = hi ( i ; a , v
t) . Player i is strictly worse

o in expectation should he initiate a link with some k N\ (Li, {i}) .

This is so because if i links with someone new, he expects to receive value

less than c, and if i links with someone already connected to him, he pays
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c but gets no new value. So we need only be concerned about when i

might want to remove a link from some l Li and link to someone on the

other side of that l to receive the same payo . First, notice that fl > c

(Case I). Second, notice that player i does not know which m might be

on the other side of that l, so removing the link with l and initiating a

link to m yields strictly less than Fl in expectation since there is positive

probability that i might instead link with some agent not on the other

side of l. Since fl with certainty is greater then the expected payo by

switching, i is playing a strict best response. Notice that this reasoning

already includes the case where i is a stem with one link.

Consider unconnected agent i. Set i such that with probability

1 that all agents have good valued less than c and that the network is

empty. By 0-link revelation, i receives no information to contradict i,

so i is a fixed point of hi (·) . Given i, i’s believes he is strictly worse

o by forming any links, thus no links is a strict best response.

(C1(b).) Consider a minimal network where C1(b) holds. C2(b)

implies that
P

l Li

£
up
¡
fl
D

¢
1
¤
= n 1 |Li| . Thus i knows the network

is connected, and we need only consider when i wants to switch a link.

(i) If exactly one l Li then i is a stem where l i. In this

case, i already receives the most possible flow and pays the least possible

amount. Any link initiation by him would make him strictly worse o ,

so he is already playing a strict best response.
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(ii) Consider now if at least two l Li have up
¡
fl
D

¢
1 > 1, where

each of those l is such that up
¡
Fl
D

¢
1 = 1, and one of them l0 i.

For any l where up
¡
fl
D

¢
1 = 1, i knows that there is at least one other

agent m N\ (Li, {i}) on the other side of l, but he does not know

which particular agent m is behind which particular link l because of 0-

link revelation. If i were to remove a link with l 6= l0 and link with

some m N\ (Li, {i}) , there is positive probability that i will link with

k on the other side of l0, in which case, i is strictly worse o because he

pays c but gains no additional value. So i is already playing a strict

best response. Choose i such that the network is connected, any player

l Li is assigned value min{D, fl}, and any player m N\ (Li, {i}) is

not assigned connection with a particular l with probability 1. Under

0-link revelation these beliefs will not be contradicted, so i = hi ( i , ai ) .

(iii) Consider now if one or more l Li has up
¡
fl
D

¢
1 > 0 and at

least, say l0 one has up
¡
fl
D

¢
1 > 1. Player i knows that the network

is connected, so he believes there are no unconnected agents for whom to

initiate links. From his flow, he knows that there are at least two agents

on the other side of l0. Choose i such that no particular two agents are

believed to be on the other side of l0 with probability 1.

If i were to remove x links he has initiated and initiate y links where

y > x, he knows he is strictly worse o because he pays more than he cur-

rently pays and gets strictly less value (because the network is minimal).
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If y < x, he is strictly worse o because, by Case I, any flow is greater

than c and he would be losing some profitable flow (because the network

is minimal). Consider y = x. If x = y = 1. If he removes his link with

any l then there is positive probability that he links with some k not on

the other side of l but instead on the other side of l0 Li and receives zero

while paying c. This makes i strictly worse o in expectation. The same

holds for when he removes a link with l0 and links with an agent on the

other side of some l. If x = y 2. When at least two links are switched,

there is a positive probability that i links with both m on the other side of

l0. In that case, i initiates a link that gains zeros but pays c. This makes

him strictly worse o . Because he is strictly worse o in expectation,

i’s best response is to not change his links. With 0-link revelation, he

receives no information that contradicts his beliefs, so i = hi ( i , ai ) . ¥

Before showing S0 S1·A, I describe the relationship between C1 and C10.

Lemma L3: C1 0 C1, but C1 ;C1 0.

Proof: (1) Let C10 be satisfied. If up
¡
fl
D

¢
1 < up

³
fl vtl
D

´
for any l,

then C1(a) is satisfied. If up
¡
fl
D

¢
1 = up

³
fl vtl
D

´
, then either C10(a) is

satisfied or C10(b) is satisfied. So we need only show that up
¡
fl
D

¢
1

up
³
fl vtl
D

´
. Since the RHS is lowest when vtl = D, we need only check
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that case:

up

µ
fl vtl
D

¶
= up

µ
fl D

D

¶
= up

µ
fl
D

1

¶
= up

µ
fl
D

¶
1.

(2) The second statement is true if there exists some (vt, st) that

satisfies C1 but does not satisfy C10. Consider the following example

with vt = [2, 2, 2, 2] , D = 5, and st =

1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

.

C1(b) part (ii) is satisfied for players 2 and 4, and C1(a) is satisfied for

players 1 and 3. C10(b) part (ii) is violated because player 1 has exactly

one link (with player 3) where up
³
fl vtl
D

´
> 0, but player 1 initiates that

link. ¥

Corollary C3.4: For Case I, S0 S1·A.

Proof: (Right to Left.) Any network in S1·A is in S0 because (i) any

network in S1·A, meets C1 (by L3) and (ii) any minimal network without

two directly connected link-initiators is minimal. (Left to Right.) We

only need to show a network that always exists that is in S0 but not in

S1·A. Any minimal network that has two directly connected link initiators

and satisfies C1(a) is in S0 but is not in S1·A because one of those two

link initiators knows he can switch and receive the same payo , thereby

violating strictness. Such a network always exists. ¥
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3.3.4 Structure not Commonly Known for Case I: GV

Things get trickier as we examine the relationships for when the values are known

but the structure is not (GV ) because, depending on the exact values and structure

of the network, i might be able to tell with whom he is connected even though he

does not know the exact structure. Consider Example 3.3.2.

Example 3.3.2: Suppose a network with vt = [1, 3, 4, 5, 8, 10, 20.3, 22] and st

according to Figure 3.3.3. Assume the game is GV0 and c = 0.9. Consider agent 4.

He receives flow of 26 through agent 3 and knows that agent 3’s value is 4 (remember

vt is common knowledge in GV ). He knows then that the sum of values on the other

side of agent 3 is 22. However, there are two agent combinations that add up to 22:

agent 8 by himself and the sum of agents 1, 2, 5, and 6. Therefore agent 4 cannot

deduce exactly which agents are connected to agent 3.

If all agents had the same problem identifying the connections, then we can have

a SNE. This condition is not met in this example. Agent 1 receives a flow of 12

through agent 2 and knows that 2’s value is 3, so agent 1 knows that agent 2 must

be linked to at least one other agent. The sum of values of these agents must be 9

(since 12 3 = 9), and since only the sum of agents 3 and 4’s values is 9, agent 1

deduces that agents 3 and 4 must be on the other side of agent 2. Although he does

not know exactly how they are connected, he knows who is connected. By similar

logic, 1 knows that 6 must be on the other side of 5. Since agent 1 knows this, he

can remove his link with 5 and initiate a link with 6 to receive the same payo .
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There is another reason why this cannot be a SNE. Agents 7 and 8 are unconnected

and know that they can link with any other agents and receive higher utility.

Proposition P3.7: For Case I, (a) S0 SV0 and (b) SV0 SV1·A

SV1·C = S
V = SV S 6= .

Proof: (a) If there is any unconnected agent, that agent knows that

he can link with any other agent in increase his utility (because we are

in Case I and vt is known). Since S0 includes any minimal network that

satisfies C1, we have shown the left to right. Right to left follows since

S0 includes the empty network.

(b) With SV1·C and SV , every agent will know his own subnetwork

with certainty thus knowing which agents are not in the subnetwork. By

Case I, they will initiate links with all those not in the subnetwork. The

network must then be a connected, center-sponsored star. Depending

on the actual values, it might be that SV0 = SV1·A = SV1·C . Let vt =

[1, 3, 5, 7, 14] and c = 0.9. Because no combination of agents will have a

sum equal to any other combination of agents, every i will know exactly the

other agents in his subnetwork. The network must thus be a connected,

center-sponsored star. No other structure can be sustained as a SNE.

To consider the “ ” relation, set vt = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

and st according to Figure 3.3.4(a). This network is in SV0 but not in SV1·A.
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It is in SV0 because no agent is willing to take the risk to initiate a new

link or switch a link. We can choose beliefs for agent 1 (agent 1 believes

all agents not in his subnetwork are unconnected) such that his expected

benefit from switching is 37
12
(1 with probability 7

12
and 6 with probability

5
12
) while his expected cost is the 6 that he gives up with certainty by

removing the link with 2. Agent 1 will not switch. We can choose beliefs

for agent 2 such that his expected benefit from switching his link with 1 is

7
11
(1 with probability 7

11
and 0 with probability 4

11
) which is less than his

expected cost of 1. Similarly, if he switches his link with 3, his expected

benefit is 27
11
(1 with probability 7

11
and 5 with probability 4

11
) which is less

than his expected cost of 5. Similar logic is use to show that none of the

other agents will switch or initiate new links.

That network is not in SV1·A because there are two directly connected

link-initiators. Consider the same vt with st according to Figure 3.3.4(b).

This network is in SV0 and SV1·A but not in SV1·C . We can pick beliefs (in

the same manner as in the previous paragraph) to show that this network

is in SV0 and SV1·A. It is not in SV1·C because it is not a connected, center-

sponsored star. ¥

In illustrating that it might be the case that SV0 = SV1·A = SV1·C , I stated that

this was possible when each agent can tell by the flow exactly which other agents are

in his subnetwork. If no combination of agents’ values equals another combination
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of other agents’ values then each agent will know exactly the other players in his

subnetwork. This is a su cient condition for SV0 = SV1·A = SV1·C . If we knew d and D

before the values were actually assigned, we could calculate the probability that the

one combination of values equaled another combination of values. Proposition P3.8

states what happens to this probability as d 0 or as D .

Proposition P3.8: For Case I, Pr
£SV = SV S¤ 1 as d

D
0.

The proof is in the appendix, but the intuition is simple. As the number of

possible agents’ values gets very large, the likelihood that any combination of agents’

values equals any other combination of agents’ values goes to 0. Since this likelihood

goes to 0, the probability that an agent will know exactly the other agents in his

subnetwork will go to 1. An implication of this proposition is Pr
£SV = SV S¤ 1

if the values are i.i.d. random variables from a continuous distribution over [d,D] ,

where 0 d < D < .

3.4 SNE WITH ARBITRARY BELIEFS

From Section 3.3, we can express the set relationships of the SNE structure sets for

Case I. These relationships, along with the set relationships and descriptions for

the other cases, are summarized in Table 3.4.1. Section 3.4.2 describes these cases.

In Section 3.4.3 and 3.4.4, I discuss adding common knowledge of rationality and

removing the overflow assumption. In Section 3.4.5, I comment on the results.

126



127

Table 3.4.1:  Description of SNE Sets with Arbitrary Beliefs



3.4.1 Cases II, III, and IV

First consider Case II when exactly one agent has a low-valued good. Formal proofs

would follow as those for Case I with one crucial di erence. Call agent L the low-

valued agent. The equilibrium sets for Case II are the same as for Case I except that

agent L must never be a non-link-initiating stem, since no agent would maintain a

link to L only (since the value of L’s good is less than c). Hence, L must be either

a strict channel, unconnected, or a non-link-initiating stem. This refines the set of

SNE structures. No formal proof is given since the logic is straightforward. Notice

that for GV S, L must be the channel of the center-sponsored star. That means that

there is a unique SNE for GV S in Case II (as opposed to n SNE in SC in Case I).

The reasoning for Case III, when there are two or more but less than n low

agents, is similar to that of Case II, except we have more low-valued agents. Again,

a low-valued agent cannot be a non-link-initiating stem, but there are more of them

so this refines the set of SNE structures. In fact, it refines so much that SV S is the

empty set. This can be understood using the logic from Case II. If a network is

not a center-sponsored star then link-switching takes place, but we also know that

the low-valued agents cannot be the stems of such a center-sponsored star since they

are low-valued goods. Since the center-sponsored star can only have one low-valued

center, our logic removes the possibility of having such a structure as an equilibrium.

Therefore there is no equilibrium.

Now let us consider Case IV in which all agents are low-valued. Since all

agents have low-valued goods, any stem in an equilibrium network must be a link
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initiator. Since Case IV is so di erent from the other cases, some formal descriptions

and proofs of the relations will be given.

Proposition P4.1: For Case IV, S0 is the set of all minimal networks

such that (i) C1 is satisfied and (ii) for each i, fl > c for any l Li where

i l.

Proof: (Necessity.) Using the same logic as in PI-6, the strictness

condition of SNE is violated unless (i) is satisfied. If (ii) is not met, then

there is some link-initiator i l that is strictly better o by removing his

link to l.

(Su ciency–sketch.) Using the same logic as in PI-6, beliefs can

be chosen to show that any minimal network satisfying (i) and (ii) can be

sustained as a SNE for S0 for Case IV. ¥

Corollary C4.1: For Case IV, all stems are link initiators in any non-

empty network in S0 .

Proposition P4.2: For Case IV, (a) S0 S1·A and (b) S1·A is the set

of all minimal networks such that (i) C1 is satisfied and (ii) for each i,
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fl > c for any l Li where i l, and (iii) no two link-initiators are

directly linked.

Proposition P4.3: For Case IV, (a) S1·A S1·C and (b) S1·C is com-

prised only of the empty network.

Proof: (b) (Necessity.) Suppose there is a non-empty SNE network in

S1·C . Since it is non-empty, there must be at least one stem i connected

to j. If that stem is not a link-initiator, then it is not a SNE. If that stem

is a link-initiator, then the subnetwork minus i’s value must have value

greater than c or else i will remove his link which makes the network not

a SNE. If that value is greater than c, then j must be connected to some

agent k since j’s value is less than c (Case IV). By 1 ·C-link revelation, i

knows that j and k are linked and can remove his link with j and link with

k to receive the same payo . This violates strictness, and so a non-empty

network cannot be a SNE.

(Su ciency.) Suppose the network is empty. If all agents believe

the network is empty, then no agent has an incentive to initiate a link

since the value to be gained is less than the cost of the link. Therefore,

the empty network is a SNE.

(a) (Right to left.) The empty network with correct beliefs is in

both S1·A and S1·C . Since only empty networks are in S1·C , the right to
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left is shown. (Left to right.) A non-empty network that meets (i), (ii),

and (iii) of P1.2 is in S1·A but not in S1·C . ¥

Proposition P4.4: For Case IV, S1·C = S = SS = SV S.

Proposition P4.5: For Case IV, (a) S0 SV0 , and (b) S
V
0 SV1·A

SV1·C = S
V = SV S 6= .

Intuition: Part (b) holds by reasoning similar to that used in the proof

for P3.7. Part (a) is not strict as it is for Case IV. First, if a member

of a non-connected subnetwork does not know who else is in his network,

he will not want to initiate new links. Second, an unconnected agent

might not want to initiate any links if he believes the rest of the network

is empty. This second condition is violated in Cases I. The first condition

is not if, say vt = [1, 1, ..., 1]. ¥

3.4.2 Adding Common Knowledge of Rationality

Adding common knowledge of rationality changes nothing for SV S since that is al-

ready the set of strict Nash equilibria. Nothing changes for S for an opposite reason.

Although common knowledge of rationality will place restrictions on equilibrium be-

liefs, for each network in S (with some particular revelation) we can still find beliefs
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that sustain that network to still be a SNE in R . The proofs above for S each

give beliefs that are rationalizable. The main reason why R = S is that because

the only information is from the flows and the revelation, and being an S already

ensures that each agent is playing a best-response to some beliefs. Knowing this,

adding common knowledge of rationality imposes no restriction that has any bite.

Adding common knowledge or rationality will only change our equilibrium sets when

in the structure information regime and the value structure regime.

Consider SS for Case I, which is made up of the empty network and partial

and connected networks in which any subnetwork is a center-sponsored star. Any

partial network is not rationalizable: a member of the subnetwork would only initiate

a link if it was a best response, and if the value from that link is high enough to make

linking a best response, then it also in the interest of any unconnected agent to link

to that subnetwork. In other words, if I am unconnected and know of a subnetwork

out there, I know that for that subnetwork to be there it must be worth it, so I will

want to be a part of it. As such, the set of rationalizable structures for Case I in

the structure regime, denote it RS is the empty network and the connected, center-

sponsored star. This set is still strictly larger than SV S since it contains the empty

network, but it is much closer to it. Since it does contain the empty network, RS

will still be larger than SV S for Cases I, II, and III. For Case IV, common knowledge

of rationality does not further refining since SS already equals SV S.

Things are more complicated under the value regime. Consider Case I. It

can be proven that when all agents have the same good value, vti = v
t
j i, j,RV = SV S
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no matter the revelation, and this proof is in the appendix. Things are trickier when

vti 6= vtj. No formal proof has yet been obtained, but considering the proof in the

appendix, it seems correct that RV = SV S even when vti 6= vtj. The idea is simple.

The only time a SNE in SV is not in SV S is when the agents in a subnetwork cannot

tell who else is in their subnetwork so that they cannot link switch or form new links.

When agents can tell, they do so because of they use their knowledge of the flows and

vt to deduce which agents’ goods sum up to the total flow. When all agents have

the same value, the agents are least likely to make these deductions, but common

knowledge of rationality is still enough to make RV = SV S in this case. In times

when vti 6= vtj, an agent should have more accurate guesses as to which agents are

in his subnetwork. This increase in information should not lead us away from the

SV S but should bring us closer since it should mean more link-switching and new link

formation. In this sense, common knowledge of rationality should still mean that

RV = SV S. Using similar logic, it would seem that RV = SV S for Cases I-III For

Case IV under low revelation, however, we can still have rationalizable equilibria that

are not strict Nash.

3.4.3 Removing the Overflow Assumption

The overflow assumption was used immediately to show that any SNE must be mini-

mal. It turns out that this assumption really only has bite when revelation is 1·A-link

or lower. 1 ·C-link or higher revelation is enough alone to ensure that the equilibrium

is minimal even without the overflow assumption. When revelation is 1 · C-link or
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higher, this high revelation alone means that link-switching occurs in any subnetwork

unless it is a center-sponsored star, and this link-switching can occur without the

overflow assumption. In this event, minimality can come not by knowing the flows

from each link, but because it is an attribute of a center-sponsored star.

On the other hand, when revelation is 1·A-link or lower, we can have equilibria

which are not minimal. This can even hold when the values are known. Consider

the following example.

Example 3.4.1: Consider GV0 with v
t = [v, v, v, v, v, v] , v > c, and the network

structure given in Figure 3.4.1. This network is not a SNE, but it can be an equi-

librium if we remove the overflow assumption. Agents 2, 3, 5, and 6, obviously are

playing best responses, so we need only consider agents 1 and 4. Consider agent 1

first. We see that u1 = 6v 3c. His revelation does not tell him with whom 4 has

linked, and without the overflow assumption, he does not know that he can remove

his link with 5 and be strictly better o .

Suppose for some reason he knows that one of his links is redundant, but does not

know which. Suppose he assigns equal likelihood to each of them being redundant.

Then there is a 2
3
probability that removing his link with j {4, 5, 6} will yield him

6v 2c, but there is a 1
3
chance that he gets 5v 2v. Notice that for agent 1 to not

want to remove a link with j, it must be the case that his current action makes him

strictly better than removing that link:

2

3
(6v 2c) +

1

3
(5v 2v) < 6v 3c.
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Figure 3.4.1:  Illustration of Example 3.4.1

for Example 3.5.2Table 3.5.1:  Set Relationships
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This expression is true when v > 3c. The same condition must hold if agent 4 is to

not remove a link under similar beliefs. If this expression holds, the non-minimal

structure in Figure 3.4.1 can be sustained as an equilibrium.

This example illustrates that we can have a non-minimal structures if we re-

move the overflow assumption. We can come up with networks that can be equilibria

under 1 ·A-link revelation, too.

3.4.4 Comments on S

I now summarize the main results and conclusions of the analysis to this point. In

all information regimes and for all cases, S1·C = S , and any subnetwork must be a

center-sponsored star. This fact is interesting because there is a large informational

di erence between 1 · C- and -link revelation. The equilibrium structures are the

same in that seeing beyond your direct links allows link-switching if your subnetwork

has at least two other agents. In equilibrium, if you can see beyond your direct links,

there must be some reason why you would not switch links. In the center-sponsored

stars of Cases I and II, the reason is that you are not a link-initiator. You are

receiving benefits without paying costs so there is no reason to switch.

This reasoning shows why the center-sponsored star is so robust to large

decreases in information–because it is immune to link-switching. We must have

less than 1 ·C-link revelation in order to not have the center-sponsored star structure

in equilibrium. This center-sponsored star feature is even robust to removal of the

overflow assumption. In fact, minimality of the SNE structure is assured in a center-
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sponsored star, so that we do not need the overflow assumption for minimality with

1 · C-link or higher revelation. So long as a link-initiator can see beyond his own

direct links, he can make a successful switch, thereby violating strictness. The center-

sponsored star is thereby very robust to decreases in information–both in terms of

revelation and in terms of information about utility flows.

Another interesting fact is that uncertainty about the values and uncertainty

about the structure have very di erent e ects on the set of SNE. Even though in

both GV and GS the agents can have information beyond their own direct links, this

information is di erent in each regime and has di erent implications. Consider the

following examples in Figure 3.4.2. Under any revelation, Figure 3.4.2(a) is in SS

but is never in SV . In 0-link revelation, Figure 3.4.2(b) is in SV but is not in SS for

any revelation. One way to describe this di erence is that knowing the structure has

immediate implications about link-switching whereas knowing the values usually has

implications about the network’s connectivity.

So which is better if we want as many people linked together as possible in

equilibrium? Knowing the values is generally better than knowing the structure

because it can lead to link-initiation when all (or all but one) values are high and

it can sustain non-center-sponsored star subnetworks when all values are low. For

Cases I and II, if revelation is 1 ·C-link or higher, then knowing the values assures a

connected network in equilibrium. If revelation is 1 ·A-link or lower but the agent’s

values are fairly di erent from one another then knowing the values is still better

because agents can tell from their flows exactly which agents are in their networks.
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This knowledge can lead to new link-initiation and a connected network. However,

if the agents all have similar values then non-connected networks can exist as SNE.

But knowing the structure does not necessarily save us here because there will still

be no new link initiation even when the structure is not known. If the hi function

and initial priors are su ciently optimistic (discussed below) will can get a connected

network if the structure is known. For Cases III and IV, knowing the values instead

of structure is definitely better. For 1 · C-link revelation or higher, it makes no

di erence, but for 1 ·A-link revelation or lower, there is a chance of having a partial

network in SV but not in SS.

A similar question is: what is the minimal amount of information needed to

assure us of having an equilibrium that is also a strict Nash? Having both common

knowledge of vt and 1 ·C-link revelation is enough since SV1·C = SV S. These criterion

do not appear too strict, and notice that agents do not need to have beliefs about

others’ beliefs. If we do suppose agents to have beliefs on other agents’ rationality,

then we conjecture that common knowledge of rationality and vt is su cient even

with 0-link revelation.

Another “welfare” criterion is minimality. What is the least needed to ensure

minimality? Each of the following is su cient alone to ensure that SNE structures

are minimal: (1) 1 ·C-link or higher revelation, or (2) the overflow assumption. The

first of these is surprising since 1 · C-link revelation is not a strict requirement. At

lower revelation, however, minimality is not assured in the null and value regimes

without the overflow assumption.
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We can also comment on other variations in the game. If c < d then we

can only be in Case I, a fact which is commonly known. SV S is still connected,

center-sponsored stars, but now S1·C = S = SS = SV S. S0 and S1·A no longer

contain networks with unconnected agents. Even though there are no unconnected

agents, the networks are not necessarily connected. SV1·C = SV = SV S but SV0 and

SV1·A are not necessarily connected. If D < c then we can only be in Case IV. If c is

su ciently small, then the set relationships remain the same. If c is too large (e.g.,

c > (n 1)D) then the empty network is the only SNE for any game and revelation.

3.5 SNE STRUCTURES OF THE DYNAMIC GAME–DISCUSSION

As stated earlier, we are really interested in the sets of SNE structures that are not

arbitrarily chosen but instead arise out of the dynamics of the network formation

game. Denote these structures S . The relationships of the SNE sets described in

Table 3.4 illustrate nicely how incremental increases in uncertainty will increase the

set of equilibria with unjustified priors, but what happens if we now turn to the BG

dynamics? To what structures might the network converge when the beliefs arise out

of the network formation dynamics? How do we characterize S ? The first thing to

note is that the SNE that arise in the dynamic game will be contained by S.

Lemma L4: S S.

Proof: (Left to right.) Any beliefs that arise out of the dynamic process

of the game can be arbitrarily chosen by the game theorist. (Right to
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left.) S places more restrictions on the beliefs so that some action-belief

combinations that are SNE in S might not be in S . ¥

L4 is important. Unless we know the hi (·) used by each agent, we might not

know to which SNE in S the network will converge. But at least we do know that the

SNE must be in S if the network does converge. Quite often, in fact, S is relatively

small (i.e., when revelation is high), so knowing S is very informative in and of itself.

Nevertheless, we should consider times when S will or will not be refined.

Consider the following dynamics. Assume vt is determined at the beginning

of the game and does not change–a fact commonly known. As stated earlier, each

agent tries to maximize the immediate payo , so there is no strategic connection

between agents’ link forming. The stage game is as follows. First, in period t,

each agent i uses his revelation to update his prior beliefs i,t 1 to i,t according to

hi (·) . Second, each i chooses ai,t, which is a best response given this i,t. This is

called a “myopic” or “naive” best response. Third, there is a fixed probability that

each player exhibits inertia in playing his previous period’s strategy whether or not

it is a best response. This rules out perpetual mis-coordination but can be justified

as a behavioral property. Fourth, if there is more than one best response then one

is chosen (uniformly) randomly from the set of best responses, which removes the

possibility of settling into a non-strict equilibrium. Fifth, at the end of the period,

the payo to i is the sum of values of all agents with whom he is connected minus

the cost of links he has initiated.
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These steps are repeated until an equilibrium is reached, which occurs when

for each i in time t, i,t 1 = i,t and ai,t 1 is a strict best response given the updated

beliefs i,t. In this instance, no agent will change his action, and the conditions for

SNE are satisfied. BG show how these dynamics lead to convergence under full

information when c < min {vt} and c > max {vt} .

In our game, however, there is no guarantee that the network will converge

to an equilibrium. For example, in the full information game in Case III described

(Section 3.4.3) there is no SNE to which the system can converge. With this in

mind, we o er some discussion about S instead of giving convergence proofs. Our

discussion centers on two points: under certain hi (·) functions, it might be the case

that S = S,7 and S gets refined as agents become more optimistic about the size

of other possible subnetworks.

3.5.1 An Example of S = S

In our proofs characterizing S, we arbitrarily chose beliefs that were not contradicted

by revelation but would make each i least inclined to switch or initiate new links.

Switching and new-link initiating are closely related. If an agent believes that initi-

ating a link with some agent not in his network will reward him less than c, then the

agent will not initiate that link. Even further, if i is afraid to initiate that new link,

then he is generally more likely to not want to switch out of fear of accidently linking

with that agent not in his network. These beliefs depend crucially on i’s expected

7We mean by S = S that S = S for every game type and level of link revelation. That is,
S V S
0 = SV S0 , S V S

1·A = SV S1·A, S V S
1·C = SV S1·C , ...,S C = SC .
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size of his own subnetwork (E |Ni|) and his expected flow he will receive by linking to

some agent j (Efi|j). For example, if Efi|j is lower than c, i will not want to initiate

a new link with j. Supposing i thinks that j is a member of some other subnetwork

where Nj 6= Ni, i will be more inclined to link with j the larger j’s subnetwork.

Call i pessimistic about j if, with no other revelation or knowledge of j, i

believes Efi|j < c. Similarly say i is optimistic about j if i believes Efi|j c. For

example, i is pessimistic about all j / Ni if he believes Efi|j < c for each j / Ni. This

can be the case if i believes every j / Ni is unconnected and low-valued. It turns

out that if hi (·) assigns beliefs such that (i) i becomes inherently pessimistic about

all j / Ni and (ii) believes his own subnetwork is as small as cannot be contradicted

by his information, then S = S no matter the link revelation or game type. We will

illustrate this for G0.

Denote h0i (·) to be the updating function that updates according to the man-

ner described in the previous paragraph. Player i needs to consider all the states

of the world to which he assigns probability greater than one. By 0-link revelation,

condition (ii) suggests that i will assign positive probability to states of the world that

have Ni’s that are of size
P

l Li
up
¡
fl
D

¢
in which all l Li are connected according to

i’s revelation. By 0-link revelation, i is not going to know which other agents are in

Ni, so i assigns equal likelihood to each of those states of the world. In each instance,

any agent not in his network is assigned a low value and believed to be unconnected.

If our initial network is minimal and satisfies C1, this network will be in S0 for Case

I. These are exactly the characteristics of a network in S0 for Case I. For the other
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Cases, it also turns out that S0 = S0 . It also holds if we increase the link revelation

or change the game type.

The main point of this example is that it is possible to have an updating

function that does not further refine the set of SNE structures.

3.5.2 Refining S

It might seem unrealistic to assume that each i is pessimistic about other agents. For

example, with expected value of a network good D+d
2
= v > c, then we would suspect

that i is inherently optimistic about other players. Player i will also be optimistic

if he believes that j is in a relatively large subnetwork Since the condition for i to

form a new link with some j is

Efi|j (1 Pr [i already connected to j]) c 0,

we see that a higher Efi|j definitely increases the chances that i will initiate the link

with j. In fact, if the only agents that i knows are in his subnetwork with certainty

are his direct connections (as might be the case in GV S0 ) then this condition becomes

¡
Efi|j

¢µ
1

E |Ni| |Li|
|Mi|

¶
c 0, (1)

whereMi is the set of agents which i does not know if the j Mi is in his subnetwork

or not.

If we now choose h00i (·) such that (i) each i is inherently optimistic about the

others and (ii) same as above, then we can see that S V S
0 SV S0 for Case I. This

is easily verified because if any unconnected agent is optimistic, then that agent will
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initiate a link. In Case I, he will maintain that link because fi|j vtj > c. In this

case, S V S
0 is refined substantially. The general conclusion is that if all else is equal,

optimism about flows will refine S . We can illustrate this by an example. The

summarized set characteristics of this example are listed in Table 3.5.1.

Example 3.5.2. Suppose each agent sets Efi|j = v > c for all j / Ni. This is

akin to assuming that i believes any agent not in his network is unconnected by has

good valued at v.

First, lets examine S V , S S, S , and S1·C . It turns out that S V = SV for

all cases because each agent knows vt, so Efi|j = v makes no di erence here. In

Case I, for S S, S , and S1·C , since v c, any unconnected agent will initiate a link

with some j. As a result, there will be no unconnected agent. Since only center-

sponsored stars can be the SNE subnetwork structures in these games, the channel

of an center-sponsored star would know if that the subnetwork is not connected. If

it is not, the channel is strictly better o in expectation by linking with j Mi. In

Case I, since all agents have high-valued goods, the result is that the only SNE are

connected, center-sponsored stars. Hence S S = S = S1·C = S V S. The same

relation holds for Case II where the only element of S V S is where the low-valued

agent is the channel. The same relation holds for Case III where S V S = . For Case

IV, since S S = S = S1·C = S V S already, no further refining of S can be made.

Now lets consider S1·A, and S0 . Assuming that i believes all j Mi to be

unconnected, he will have Efi|j = v. If i is unconnected, then i will always initiate a
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link to j unless he knows the true value of j. It follows that for Cases I-III, S0 and

S1·A contain no networks in which there are unconnected agents. However, this does

not mean the network must be connected. If i does not know exactly which agents

are in Ni then he might not initiate links if he thinks there is su cient enough chance

to link with someone already in his subnetwork (and receive 0 additional benefits

while paying c).

The catch here is that we must know how i forms E |Ni| . Consider the following

procedures that form E |Ni| . In Procedure A, i assigns positive probability only to

those networks that have a number of agents closest to the expected number of agents

in the network. For example, suppose i is a stem that receives a flow of 10 from his

link in G0. If v = 3, then i assigns positive probability to any structure in which

there are exactly 3 agents (besides himself) in his subnetwork. Another possibility,

called Procedure B, assigns equal (strictly positive) probability to any network that

is possible. If i is the stem receiving flow 10, and d = 2 and D = 4, then i assigns

an equal probability to each structure that has either 3 or 5 agents (besides himself)

in his subnetwork.

Since E |Ni| is di erent in each procedure, condition (1) from Section 3.5.1 can

hold in Procedure A while not holding in Procedure B for some combination of vt,

st, and c. In other combinations of vt, st, and c, we can get (1) to hold in Procedure

B but not Procedure A. The result is that there is no simple way to characterize

S0 and S1·A. With this in mind, we will outline some of the general conditions that

must be met instead of trying to give a complete characterization of these sets.
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For Case I, a network can be a SNE in S0 if C1 is met and if condition (1) fails for

each agent. Condition (1) fails when each agent is connected to a subnetwork that

is (i) su ciently large and (ii) of shape that prevents each agent from believing he

can link with an non-subnetwork agent with high probability. This implies that the

network must have no unconnected agents, and it also implies that the flow that each

agent receives must be high enough to suggest that his subnetwork is of su cient size

to make the agent overly concerned about accidently linking with someone already

in his subnetwork. As before, S0 S1·A, because if two link-initiators are directly

connected then the strictness condition is violated. Because non-connected networks

are possible in these sets, S0 S1·A S V S. The same relationship holds for Cases

II, III, and IV.

4.6 APPENDIX

3.6.1 Proof of PI-8

Proof: It is su cient to show that the probability that any combination of sums of

values equals any other combination of sums of values equals goes to zero as d 0

or D 0.

Suppose a game where n draws from the same i.i.d. distribution over [d,D] are

made. Denote Y1 to be the set of draws {y1, y2, ..., yn} where 3 n < . Denote
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Y2 to be the set of sums of combinations of size two, i.e., Y2 is defined as

{y1 + y2, y1 + y3, ..., y1 + yn,

y2 + y3, ..., y2 + yn,

. . .
...

yn 1, yn}.

Similarly denote Y3, ..., Yn. Further denote Y to be Y1 × Y2 × · · · × Yn. For our

proof, it is su cient to show that, for any two draws without replacement from Y ,

the probability that those two draws are equal goes to zero as d 0.

Step 1: The General Expression. Consider drawing x0 and z0 without replacement

from Y. We are interested in the ex ante probability that these two draws will be

equal, Pr[x0 = z0] . Notice that if x0 = (yk + yl) and z0 = (yk + ym + yn) then

Pr [x0 = y0] = Pr [yk + yl = yk + ym + yn] = Pr [yl = ym + yn] .

If one yi is included in both draws then it can be subtracted, so that in our

probabilities we need only concentrate on the yi that are di erent in x
0 and z0. After

subtracting common elements, we are left with x and z. Denote the draw with fewer

elements (x in the immediate example) to be the draw from Yi and say the other is

from Yj. (In the example, i = 1 and j = 2). It follows that Pr [x
0 = z0] = Pr [x = z].

If i = j = 1, then Pr [x = z] equals the probability of a particular set of draws

times the number of combinations that they are equal. Thus, Pr [x = z] =
¡
d
D

¢2
.¡

D
d

¢
= d

D
.
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Suppose i = 1 and j = 2. Then the probability of a particular set of draws is
¡
d
D

¢3
since there is one element in x and two elements in z. The number of combinations

where they are equal is

D
dX
t=1

t 1X
q=1

1 =

D
dX
t=1

(t 1) = 0 + 1 + 2 + ...+

µ
D

d
1

¶
.

There are 0 combinations if x = d, 1 combination if x = 2d, 2 combinations if

x = 3d, and so on until there are D
d

1 combinations if x = D. It follows that

Pr [x = y] =
¡
d
D

¢3PD
d
t=1

Pt 1
q=1 1. Suppose i = 2 and j = 2. The probability of a

particular set of draws is
¡
d
D

¢4
, and the number of combinations is

D
dX

t1=1

D
dX

t2=1

t1 t2 1X
q2=1

1 = (0 + 0 + ...+ 0) |t1=1 +

(0 + 0 + 0 + 0 + 0 + ...+ 0) |t1=2 +

(1 + 0 + 0 + 0 + 0 + ...+ 0) |t1=3 +

(1 + 2 + 0 + 0 + 0 + ...+ 0) |t1=4 +

(1 + 2 + 3 + 0 + 0 + ...+ 0) |t1=5 +

(1 + 2 + 3 + 4 + 0 + ...+ 0) |t1=6 +

...+µ
1 + 2 + 3 + 4 + 5 + ...+

µ
D

d
1

¶
+ 0

¶
|t1=D

d
,

where
Ps00

s=s0 1 0 if s00 < s0. So Pr[x = y] =
¡
d
D

¢4PD
d
t1=1

PD
d
t2=1

Pt1 t2 1
q2=1

1.

Suppose i = 1 and j = 3. Then the probability of a particular set of draws is¡
d
D

¢4
, and the number of combinations where they are equal is

PD
d
t=1

PD
d
q1=1

Pt q 1
q2=1

1.

If follows that Pr [x = y] =
¡
d
D

¢4PD
d
t=1

PD
d
q1=1

Pt q1 1
q2=1

1.
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By continuing to raise i and j, we can obtain the general expression

Pr [x = z]

=

µ
d

D

¶i+j D
dX

t1=1

D
dX

t2=1

...

D
dX

ti=1

D
dX

q1=1

D
dX

q2=1

...

min{Dd ,t1+t2+...+tx (q1+q2+...+qj 1) 1}X
qj 1=max{1,t1+t2+...+tx (q1+q2+...+qj 1)

D
d }
1,

where i j and
Ps00

s=s0 1 0 if s00 < s0. The summations part is the number of

possible combinations that a draw from Yi equals a draw from Yj. The
¡
d
D

¢i+j
part

is the probability of a single combination.

Step 2: Convergence. We can show that Pr [x = z] 0 as d 0. Since D will

be fixed, we also need the number of possible draws = D
d
to be increasing at the

rate that d is decreasing.

µ
d

D

¶x+y D
dX

t1=1

D
dX

t2=1

...

D
dX

tx=1

D
dX

q1=1

D
dX

q2=1

...

min{Dd ,t1+t2+...+tx (q1+q2+...+qy 1) 1}X
qy 1=max{1,t1+t2+...+tx (q1+q2+...+qy 1)

D
d }
1

µ
d

D

¶x+y D
dX

t1=1

D
dX

t2=1

...

D
dX

tx=1

D
dX

q1=1

D
dX

q2=1

...

D
dX

qy 1=1

1

=

µ
d

D

¶x+y D
dX

t1=1

D
dX

t2=1

...

D
dX

tx=1

D
dX

q1=1

D
dX

q2=1

...

D
dX

qy 2=1

D

d

=

µ
d

D

¶x+y µ
D

d

¶x+y 1

=
d

D
=
1

0 as d 0 and .

Since a value greater than the value in question converges as d 0, the value in

question must converge. This holds for all i j n.

In GS (with any level of revelation), an agent is not able to deduce with whom he

is connected if more than one sum of agents values equals the flow that he receives.
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But since the probability that any two sums are equal converges to 0 as the d goes

to 0, the probability that any agent i in the network cannot deduce with whom he is

connected also goes to zero. If i knows everyone with whom he is connected, he will

initiate a link with some other agent j not connected with him until he receives the

network goods of all agents. Only the center-sponsored star can be maintained as

an equilibrium network in this instance. Hence, Pr
£SS = SC¤ 1 as d 0. The

same can be shown as D 0. ¥

3.6.2 Proof that RV = SV S when vti = vtj c, i, j

Here is a summary in words. In order for i to not form a new link, he must believe

that the other networks out there are smaller than his own. He must further believe

that any j / Ni believes that any network besides Nj is also smaller than Nj. Since

agents all know the size of their own networks (since vt and flows are known), j must

believe there is some k in an even smaller network, and so on until we finally get some

agent that must be unconnected, and being unconnected is never a best-response in

Case I when the vt is commonly known. The only rationalizable structure is thus

the connected, center-sponsored star.

Proof: We need to only show this for Case I.

(1) If i is in a connected network that is not a center-sponsored star, then by

their flows, the agents know they can switch links and be no worse o . The only

connected network that is rationalizable is thus the center-sponsored star.
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(2) Being unconnected is not a best response since i knows by vt known that he

can link to some other agent and be strictly better o .

(3) Consider partial networks. If a strict subnetwork has less than four agents,

then one of them must know the structure of the subnetwork with certainty. Because

we are in Case I and vt is known, that agent i in that subnetwork is strictly better

o by initiating a link with some agent j not in the subnetwork. Hence, it follows

that any strict network with less than four agents cannot exist in an SNE in Case I.

We now consider a strict subnetwork with at least four agents.

(i) We show that Pr [j / Ni]
n |Ni|
n 3

. A subnetwork in which all agents are

linked in a line is the subnetwork that provides the least amount of information in

signals. If we can show this for the line network then it holds for the others. A

channel i in such a subnetwork must have |Li| = 2. Since vti = vtj = v, i knows |Ni|.

Then i knows that there are n |Ni| agents not in Ni. Consider all j / {Li {i}}. If

i assigns equal likelihood to any of those j’s to not be in Ni then Pr[j / Ni] =
n |Ni|
n 1 |Li|

which will be equal to n |Ni|
n 3

if |Li| is it’s lowest amount.

If i does not assign these probabilities uniformly across all j / {Li {i}} then

there is still some j / {Li {i}} for which Pr[j / Ni] n |Ni|
n 3

. This is true because

if some k / {Li {i}} is assigned less than that amount, then k is more likely relative

to our uniform probability to be in Ni which means there is some j that must be more

likely to not be in Ni relative to the uniform probability. Hence, Pr[j / Ni]
n |Ni|
n 3

.

(ii) We show that if |Nj| |Ni| then i will initiate a link with j. Agent i

will initiate a link i Pr[j / Ni] fj = Pr [j / Ni] |Nj| v c since it would be a best
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response. This expression becomes Pr [j / Ni] |Nj| c
v
. We want to see if i initiates

this link whenever |Nj| |Ni| for all values of |Nj| , |Ni| , and n, and it will if

the LHS’s lowest value is greater than c
v
. Over |Nj| |Ni| , LHS is lowest when

|Nj| = |Ni| , n = |Nj| + |Ni| = 2 |Ni| , and Pr[j / Ni] = n |Ni|
n 3

. These values yield

Pr [j / Ni] |Nj| = n |Ni|
n 3

|Ni| = |Ni||Ni|
n 3

which some algebra reveals to always be greater

than 1 for positive values of |Ni|. Since c
v
is less than 1 by Case I, the LHS must

always be higher than c
v
, which means that i will always initiate a link with j should

he believe |Nj| |Ni|.

(iii) It follows that for i to not want to initiate a link, he must assign positive

probability to |Nj| < |Ni|.

(iv) We show that any strict subnetwork is not rationalizable. If BRi is no new

link then i must believe there is some |Nj| < |Ni| and for this j to not initiate a new

link then j must believe |Nk| > |Nj| , ..., and so on. Since |Ni| > |Nj| > |Nk| > ...

is a strictly decreasing sequence of inequalities involving integers, eventually some y

with |Ny| = 4 must believe there is some |Nz| < |Ny|. But if z Nz where |Nz| < 4,

then z is not playing a best response. Thus the best-response chain is violated, and

the conjecture is not rationalizable. Hence, any partial network with vt known and

vti = v
t
j c, i, j is not rationalizable. ¥
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