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1. Introduction

In his invited lecture at the American Economic Association meeting in January
2000, Larry Summers asks the audience to imagine that he is an emerging market
borrower, and that they have all lent money to him. He then poses the following
problem.

“Imagine that everyone who has invested $10 with me can expect
to earn $1, assuming that I stay solvent. Suppose that if I go bank-
rupt, investors who remain lose their whole $10 investment, but that
an investor who withdraws today neither gains nor loses. What would
you do? ... Suppose, first, that my foreign reserves, ability to mobilize
resources, and economic strengths are so limited that if any investor
withdraws, I will go bankrupt. It would be a Nash equilibrium (in-
deed, a Pareto-dominant one) for everyone to remain, but (I expect)
not an attainable one. Someone would reason that someone else would
decide to be cautious and withdraw, or at least that someone would
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reason that someone would reason that someone would withdraw, and
so forth. ...
Now suppose that my fundamental situation were such that every-

one would be paid off as long as no more than one-third of the investors
chose to withdraw. What would you do then? Again, there are multi-
ple equilibria: everyone should stay if everyone else does, and everyone
should pull out if every else does, but the more favorable equilibrium
seems much more robust.
I think that this thought experiment captures something real. On

the one hand, bank runs or their international analogues do happen.
On the other hand, they are not driven by sunspots: their likelihood
is driven and determined by the extent of fundamental weakness.”
[Lawrence Summers (2000, p. 7)].

The thought experiment urged on us by Summers helps to throw into sharper
relief the issue of strategic uncertainty - that is, uncertainty concerning the actions
and beliefs (and beliefs about the beliefs) of others. Even if the underlying
fundamentals of the problem were known for sure, the strategic uncertainty is still
all-pervasive. Adam Brandenburger (1996) similarly draws a distinction between
strategic uncertainty and ‘structural’ uncertainty, the latter having to do with the
underlying fundamentals.
Douglas Hofstadter (1985, pp.752 - 3) coined the term “reverberant doubt” to

describe this type of uncertainty. The idea is that even a small seed of doubt
concerning the ability of the players to close ranks to achieve the good outcome will
start to undermine the resolve of an individual player to stick to the cooperative
strategy. The small seed of doubt “reverberates” to become a much larger doubt,
and when the players catch themselves thinking this way, it becomes a compelling
reason to act unilaterally, and opt out. Our task in this paper will be to pin down
what could be meant by “reverberant doubt”, and to see whether we can gain a
foothold in beginning to quantify such uncertainty.
As well as the purely conceptual interest in this exercise, it is also worth

noting in passing that many examples from economics and finance conform to this
stylized setting, especially when an element of formal voting is invoked. Collective
action clauses (CACs) in bond convenants stipulate a critical majority in the
creditors’ vote to restructure the claims. More generally, for the restructuring or
recapitalization of distressed firms (whether under formal bankruptcy proceedings
or informal offers), the success of the restructuring is determined by the strength of
support for the injection of new funds to tide the firm over its current difficulties.
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At the time of writing (summer of 2002), such distressed reorganizations have
become depressingly familiar in the corporate world in the U.S. and elsewhere1.

2. Contribution Game

The decision problem posed by Summers is an example of a voluntary contribution
game for a public good, where each individual decides whether to contribute
toward the public good, or to opt out. Contributing toward the public good is a
risky action since the successful provision of the public good requires contribution
from a critical mass of the players. If the contribution falls short of this critical
mass, the provision of the public good fails, resulting in poor payoffs for those who
decided to contribute. Opting out is a safe action for an individual agent, but
leads to a socially sub-optimal outcome. Van Huyck, Battalio and Beil (1990,
1991) have conducted experiments on similar games, and Crawford (1991) gives
an evolutionary rationalization of their results. Carlsson and van Damme (1993)
have examined general stag hunt games, of which our game can be seen as a special
case.
We will first deal with the case where there is a continuum of players. The

continuum assumption simplifies some steps in the argument, but the essential
feature of the problem is unaffected if we have a finite number of players, instead.
The finite player case entails solving some combinatorial problems which is of
independent interest. We will deal with the finite players case later in this paper.
Each player has to choose between two actions - to contribute to the public

good, or to opt out. Denote by κ the proportion of agents who have chosen to
contribute. The public good is successfully provided when κ is larger than some
critical threshold κ̂. The consumption value of the public good is 1, but player
i faces a cost ci in contributing to the provision of the public good. Thus, the
payoff to player i from contributing to the public good is½

1− ci if κ ≥ κ̂
−ci if κ < κ̂

(2.1)

The payoff to opting out is zero, and does not depend on κ.
1On a fairly typical day (July 12th 2002) the Financial Times carries the story of the coor-

dination problem faced by the bank creditors of Energis (page 20) and how Worldcom’s bond
holders are in conflict with its bankers (page 26). The lead story is the new aggressive down-
grading strategy of the credit rating agencies.
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If ci < 0, then the decision is trivial, since contributing is a dominant action.
Similarly, if ci > 1, then opting out is dominant. However, for ci between zero
and one, the optimal choice depends on the probability that player i attaches to
κ exceeding the threshold κ̂. The focus of our paper will be on how this belief is
determined in the game.
Before getting into the detailed analysis, it is worthwhile taking a step back-

wards and considering what a reasonable outcome would be in such a game. In
the simplest setting, such as the one outlined by Summers, there is no uncertainty
over the fundamentals of the problem in terms of the cost ci. The players are
told that everyone has the same cost of provision c and each player knows his
own cost. Hence the players ought to infer that everyone else’s cost is given by
c also. And yet, Summers’s intuition (which seems eminently reasonable) is that
successful coordination is achieved only when κ̂ is sufficiently low relative to the
cost c. For any given cost c, the reluctance to contribute would be increasing
in the critical threshold κ̂. Conversely, for any given critical threshold κ̂, the
reluctance to contribute would be increasing in cost c. The experiments by Van
Huyck et al. (1990, 1991) reveal that coordination is, indeed, more difficult to
achieve when the condition for successful coordination is more stringent.
Fixing the critical mass κ̂, we may conjecture that there is some critical thresh-

old for costs c∗ such that, if c were larger than this, the players would choose to opt
out, while if c were lower than c∗, they would choose to contribute. The evidence
from experiments, such as from the paper by Frank Heinemann, Rosemarie Nagel
and Peter Ockenfels (2002) suggest that such threshold strategies arise fairly com-
monly in games of this kind even when the fundemantals are ostensibly common
knowledge among the players. We say “ostensibly”, since the cautious actions
of the players betray a lack of confidence in the proposition that c is common
knowledge.
Pushing one’s intuition a little further, it would be reasonable to expect that

the threshold cost c∗ depends on the critical threshold κ̂. The cost of contribution
determines the balance of the net gain from the public good and the costs of failure,
while the critical mass κ̂ determines the margin for error in failing to coordinate.
We would expect that the threshold cost level c∗ is higher (thereby increasing
the likelihood of contribution) when the critical mass κ̂ is lower. Thus, when
we view c∗ as a function of κ̂, we would expect c∗ to be a decreasing function of
κ̂. Experiments may uncover precisely what this decreasing function looks like.
What would such a function tell us about the problem?
Being able to identify the switching point c∗ reveals a lot about the strategic
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uncertainty that the players face in the game. When ci = c∗, player i is indifferent
between contributing and opting out. Denoting by F (c∗) the probability that
κ < κ̂ conditional on ci = c∗, the expected payoff to contributing is given by

−c∗F (c∗) + (1− c∗) (1− F (c∗))
= (1− c∗)− F (c∗)

When player i is indifferent between contributing and opting out, we have

F (c∗) = 1− c∗ (2.2)

Thus, being able to observe the threshold point c∗ gives us direct information
on the strategic uncertainty facing player i in terms of F (c∗) - the conditional
probability that κ < κ̂ - and hence the perceived danger that the attempt at
coordination will fail.
More ambitiously, we can think about the beliefs that players hold about κ

- the proportion of players who contribute. κ is a random variable which takes
values in the unit interval [0, 1]. We can ask what information is revealed about
the subjective density of κ from the actions of the players. Denoting by

g (κ|c∗)

the subjective density over κ conditional on c∗, equation (2.2) tells us thatZ κ̂

0

g (κ|c∗) dκ = F (c∗) = 1− c∗

Thus, observation of c∗ gives us one fix on the “reverberant doubt” that faces the
players in this game in terms of the value of the cumulative distribution function
of κ at the point κ̂. In this way, we can begin to reconstruct the beliefs that
underlie the players’ actions.
The most challenging task is to ask whether there is a way of rationalizing

such outcomes in terms of the conventional apparatus of game theory. This
would entail showing how, even in the absence of any uncertainty on the costs of
contribution c, there is nevertheless non-trivial strategic uncertainty in equilibrium
in terms of a non-degenerate density over κ. We will explore how the tools of
global games can be used to answer some of these questions.
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3. Global Games

We examine the case where the costs of contribution {ci} across players are de-
termined both by a common element, and by small idiosyncratic elements that
introduce small differences in costs around the central tendency. We begin with
a very simple case. Suppose that player i’s cost ci satisfies

ci = θ + si (3.1)

where θ is the common element in the costs of all players, while si is the idiosyn-
cratic element for player i. The idiosyncratic element si is uniformly distributed
over the interval [−ε, ε], where ε is a small positive number. For any two distinct
individuals i 6= j, si is independent of sj. Finally, let us suppose that θ itself has
a uniform ex ante distribution.
On observing his own cost, player i reasons his way towards the probability

density over κ. As a working hypothesis, player i assumes that all other players
are using the switching strategy around c∗, so that anyone who has cost below
c∗ will contribute, while anyone with cost above c∗ will opt out. In particular,
suppose that player i’s cost happens to be exactly c∗. Player i then asks himself
what the cumulative distribution function over κ is, conditional on c∗. For this,
he needs to answer the following question.

“My cost is c∗. What is the probability that κ is less than z?” (Q)

This question is the key to our task, since the answer to question (Q) yields the
value of the cumulative distribution function G (·|c∗) evaluated at z. The density
over κ is then obtained by differentiating this function. The steps to answering
question (Q) are illustrated in figure 3.1.

When the common element of cost is θ, the individual costs are distributed
uniformly over the interval [θ − ε, θ + ε]. The players who contribute are those
whose costs are below c∗. Hence,

κ =
c∗ − (θ − ε)

2ε

When do we have κ < z? This happens when θ is high enough, so that the area
under the density to the left of c∗ is squeezed out. There is a value of θ at which
κ is precisely equal to z. This is when θ = θ∗, where

θ∗ = c∗ + ε− 2εz
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.............................................................. ...........
........

..............................................
.........
...................

Figure 3.1: Deriving cumulative distribution function G (z|c∗)

See the top panel of figure 3.1. We have κ < z if and only if θ > θ∗. Thus, we
can answer question (Q) if we can find the probability that θ > θ∗.
For this, we must turn to player i’s posterior density over θ conditional on his

cost being c∗. This posterior density is uniform over the interval [ci − ε, ci + ε].
This is because the ex ante distribution over θ is uniform and the idiosyncratic
element of cost is uniformly distributed around θ. The bottom panel of figure
3.1 depicts this posterior density over θ. The probability that θ > θ∗ is then the
area under the density to the right of θ∗. This is,

(c∗ + ε)− θ∗
2ε

(3.2)

=
(c∗ + ε)− (c∗ + ε− 2εz)

2ε
= z

In other words, the probability that κ < z conditional on cost level c∗ is exactly

7



z. The cumulative distribution function G (z|c∗) is the identity function:

G (z|c∗) = z (3.3)

The density over κ is then obtained by differentiation.

g (κ|c∗) = 1 for all κ (3.4)

The density over κ is uniform. The noteworthy feature of this result that the
constant ε does not enter into the expression for the density over κ. No matter
how small or large is the dispersion of costs, κ has the uniform density over the
unit interval [0, 1]. Figure 3.1 reveals the intuition for why ε does not matter.
As ε shrinks, the dispersion of costs shrinks with it, but so does the support of
the posterior density over θ. The region on the top panel corresponding to z
is the mirror image of the region on the bottom panel corresponding to G (z|c∗).
Changing ε stretches or squeezes these regions, but it does not alter the fact that
the two regions are equal in size. This identity is the key to our result.
In the limit as ε → 0, every player’s cost converges to θ. Thus, fundamental

uncertainty disappears. Everyone’s cost converges to the common element θ, and
everyone knows this fact. And yet, even as fundamental uncertainty disappears,
the strategic uncertainty is unchanged. The subjective density over κ is invariant.
The “reverberant doubt” remains intact.
Let us now see what the equilibrium of the contribution game looks like in the

limit as ε→ 0. Since the density over κ is uniform at the switching point c∗, the
probability that the contributions will fail to produce the public good is

F (c∗) =
Z κ̂

0

κdκ = κ̂

Thus, from (2.2), the switching point c∗ satisfies:

c∗ = 1− κ̂ (3.5)

Figure 3.2 illustrates. As we conjectured in the informal discussion, the switching
point c∗ is, indeed, a decreasing function of the critical mass κ̂, and takes a
particularly simple form. We should also verify that the switching strategy around
c∗ is the optimal strategy for an individual player when everyone else uses it. If
ci > c∗, then from (3.2), the conditional probability that κ < κ̂ is greater than
F (c∗), so that it is optimal to opt out. Conversely, if ci < c∗, then the conditional
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Figure 3.2: Switching point c∗ as a function of κ̂

probability that κ < κ̂ is less than F (c∗), so that it is optimal to contribute. This
shows that everyone following the switching strategy around c∗ is an equilibrium.
It is somewhat ironic that Summers’s conjecture is actually false in the context

of this example. Summers considered the case where κ̂ = 2/3, so that a two third
critical mass is required for the good outcome. Each investor stakes 10 dollars,
and either gets 11 dollars or nothing. Normalizing the payoffs, we have ci = 10/11
for all i in the limit as ε → 0. However, the equilibrium switching point is 1/3.
This means that the cost of contribution is too high to sustain contribution to the
public good. For the critical mass of two thirds, the costs must be lower than
one third in order for contribution to take place.

4. A More General Framework

Suppose that the common element of cost θ now has a normal distribution with
mean y and precision α (i.e. with variance 1/α). Let player i’s cost be given by

ci = θ + si

where the idiosyncratic component of cost si is drawn from the normal density
with zero mean and precision β. We will derive the strategic uncertainty facing
the players by deriving the subjective density over κ of a typical player.
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4.1. Density over κ

Let us begin with the working hypothesis that all players are following the switch-
ing strategy around the point c∗. Suppose further that player i’s cost happens to
be exactly c∗. We will derive this player’s subjective density over κ - the propor-
tion of players who contribute - by following the analogous steps to the discussion
above. The cumulative distribution function over κ can be obtained from the
answer to the following question.

“My signal is c∗. What is the probability that κ is less than z?”

The answer to this question will yield G (z|c∗) - the probability that the pro-
portion of players who contribute is at most z, conditional on being at the switch-
ing point c∗. Given the common cost element θ, the proportion of players who
contribute is

Φ
³p

β (c∗ − θ)
´

(4.1)

where Φ (·) is the cumulative distribution function for the standard normal. Let
θ∗ be the common cost element at which this proportion is exactly z. Thus,

Φ
³p

β (c∗ − θ∗)
´
= z (4.2)

When θ ≥ θ∗, the proportion of players that contribute is z or less. So, the ques-
tion of whether κ ≤ z boils down to the question of whether θ ≥ θ∗. Conditional
on c∗, the density over θ is normal with mean

αy + βc∗

α + β

and precision α + β. Thus, the probability that θ ≥ θ∗ is the area under this
density to the right of θ∗, namely

1−Φ
³p

α + β
³
θ∗ − αy+βc∗

α+β

´´
(4.3)

This expression givesG (z|c∗). Substituting out θ∗ by using (4.2) and re-arranging,
we can re-write (4.3) to give:

G (z|c∗) = Φ
³

α√
α+β

(y − c∗) +
q

α+β
β
Φ−1 (z)

´
(4.4)
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Differentiation of this expression with respect to z will give us the subjective
density over κ. We note an important difference between (4.4) and the uniform
example discussed in the previous section. The distribution over κ as given by
(4.4) depends, in general, on c∗. So, the density over κ will shift around as we
consider alternative switching points c∗. The strategic uncertainty thus depends
on the switching point. This is in contrast to the uniform case discussed in the
previous section. There, the density over κ was shown to be uniform, irrespective
of the switching point.
Below, we plot G (z|c∗) for c∗ = 0.5 for two alternative values of y. The dark

line is the plot for y = 0.2, while the faint line is the plot for y = 0.8. We have
set α = 1 and β = 3.

0

0.2

0.4

0.6

0.8

1

G(z|c*)

0.2 0.4 0.6 0.8 1z

Plot of G (z|0.5) : y = 0.2 (dark), y = 0.8 (faint)
When y is low, so that the players’ costs are drawn from a density with lower

costs, the players are more optimistic about the successful provision of the public
good. The probability that the public good fails to be provided is the value of
G evaluated at z = κ̂. We can see that for any threshold κ̂, the probability that
the public good provision fails is lower when y is lower. The intuition for this
lies in the inference that a player makes about the costs of others. When player
i draws cost ci = 0.5 for himself but the ex ante mean of the costs is y = 0.2,
he reasons that others are likely to have costs lower than himself, which makes
him more optimistic about successful provision of the public good. However, if y
were 0.8 instead, he would reason that others are likely to have costs higher than
himself, making him less optimistic.

11



We can see this more clearly from the corresponding density functions over κ
- the proportion of players who contribute to the public good. When y is low,
the density over κ puts more weight on higher values of κ, thereby making the
successful provision of the public good more likely.

0

0.2

0.4

0.6

0.8

1

1.2

g(k|c*)

0 1k

Densities over κ for y = 0.2 (dark), y = 0.8 (faint)

We can see that, in general, the densities over κ are not uniform. Nor are they
invariant to the value of the switching point c∗ or the ex ante mean of the costs
y. There is, however, one special case where the density is invariant to both c∗

and y. This is the special case where β →∞. In this limiting case, dispersion of
costs around θ shrinks to zero, so that everyone’s cost is given by θ, and everyone
knows this fact. In this sense, the fundamental uncertainty disappears from the
problem. We are just left with the strategic uncertainty. The limiting case of
(4.4) when β becomes large is given by:

G (z|c∗)→ Φ
¡
Φ−1 (z)

¢
= z

so that G is the identity function, and we retrive the case discussed in the last
section in which the density over κ is uniform. In this limit, the density over κ
is uniform and invariant over both c∗ and y.

4.2. Observable Implications of Equilibrium

What are the observable implications of these beliefs over κ? Can we use the
particularly simple form of the contribution game to reconstruct the beliefs of the
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players, and thereby to measure the “reverberant doubt” of the players? There
are a number of pitfalls along the way, but we will see that it is possible to go
some way toward retrieving the players’ beliefs from their observed behaviour.
For the moment, let us continue with the working hypothesis that all players

follow the switching strategy around some point c∗. We will see below that for
some parameter ranges, this is not always consistent with equilibrium behaviour.
We will be careful to point out the conditions under which the switching strategy
is the unique equilibrium strategy.
Recall that the indifference condition for the player with cost c∗ is

1− c∗ = F (c∗) (4.5)

where F (c∗) is the probability that the provision of the public good fails, condi-
tional on c∗. That is, F (c∗) = G (κ̂|c∗). Equation (4.5) defines the switching
point c∗ as a function of the critical mass κ̂. This is a mapping which is, in
principle, observable by the experimental economist. We will see what mapping
is implied by our theory for a variety of parameter values.
To proceed further with the analysis while maintaining tractability, it is useful

to make use of the logistic approximation

Φ (x) ' 1

1 + e−mx

Setting the constant m = π/
√
3 ensures that the standard deviation is 1, but

Amemiya (1981) recommends m = 1.6 as a better approximation for the overall
shape of the density2. We have Φ−1 (w) ' 1

m
log
¡

w
1−w

¢
so that we can write (4.4)

as
G (z|c∗) ' 1

1 +
¡
1−z
z

¢q α+β
β exp

³
mα√
α+β

(c∗ − y)
´ (4.6)

Indifference at the switching point c∗ then implies that

1− c∗ = G (κ̂|c∗) (4.7)

We can then solve this equation to obtain our mapping for the switching point
c∗ as a function of the critical mass κ̂. Although this equation cannot be solved

2This is due to the fatter tails of the logistic, as compared to the normal.
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explicitly for c∗, it is possible to solve for the inverse function - that is, we can
solve for κ̂ as a function of c∗. We have

κ̂ ' 1

1 +
³

c∗
1−c∗ exp

³
mα√
α+β

(y − c∗)
´´q β

α+β

(4.8)

We can invert (4.8) to obtain the main observable implication of our game in terms
of the plot of the switching point c∗ as a function of the critical mass κ̂. Below,
we plot c∗ (κ̂) for the two values of y that we have dealt with above - namely,
y = 0.2 (the dark line) and y = 0.8 (the faint line). We have set m = 1.6, as
recommended by Amemiya, and we have set α = 1 and β = 3. As we would
expect, the lower y is more conducive toward contribution by the players.

0

0.2

0.4

0.6

0.8

1

c*

0.2 0.4 0.6 0.8 1k^

Figure 4.1: Plot of c∗ (κ̂) for y = 0.2 (dark), y = 0.8 (faint)

4.3. Retrieving Beliefs from Actions

The plot of c∗ as a function of κ̂ is something that is (at least in principle) observ-
able by the experimental economist. There is a close relationship between this
function and the beliefs of the players concerning the strategic uncertainty face,
and this gives us an intriguing re-interpretation that goes to the heart of the issue
of measuring the strategic uncertainty.
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Suppose we have a downward sloping function c∗ (κ̂) with the additional pair
of restrictions that c∗ (0) = 1 and c∗ (1) = 0. Then 1 − c∗ can be seen as a
cumulative distribution function over κ. Denote this cumulative distribution
function as G (κ). Consider an individual player whose subjective distribution
over κ is given by G (κ) irrespective of his own cost level. Then, this player’s
optimal switching point is given by

1− c∗ = G (κ̂)

which exactly coincides with the observed switching point c∗ (κ̂). In this way, the
decision of this individual player will mimic the observed plot of c∗.
We should add immediately that the beliefsG (κ) that are reconstructed in this

way are not the true beliefs of the player in the game. We have seen already that
the true density over κ will shift around as a function of c∗ and y. However, the
observable features of the problem in terms of the decisions of a player will coincide
exactly with the decisions of our hypothetical player in equilibrium. Players in
the actual game will act ‘as if’ they held the invariant beliefs G (κ) and acted
in accordance with them. For this reason, the density function over κ implied
by G (κ) takes on great significance. This density over κ can be obtained from
implicit differentation of the function c∗ (κ̂) and is given by

−dc
∗

dκ̂

This density gives us the behavioural counterpart to the strategic uncertainty
faced by the players.

4.4. Case of Independent Costs

So far, we have taken as a working hypothesis that the switching strategy around
c∗ is the only equilibrium strategy in the game. However, for some parameters,
there is no such unique switching point. In particular, the case where players
costs are indepedent is particularly badly behaved. Not only is there more than
one equilibrium, there is no equilibrium in which players switch at some point c∗

in the interior of the unit interval [0, 1].
We can accommodate the case of independent costs by letting α→∞ in our

framework. Then the common element in cost θ is known to everyone, and the
only source of uncertainty is the (independent) idiosyncratic variations in costs
given by si.
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When players have independent costs, there is no equilibrium where the players
use a switching point c∗ strictly between zero and one. To see this, suppose for the
sake of argument that the players are using a switching strategy around c∗ ∈ (0, 1).
Then, the proportion of players that contribute is given by

κ = Φ
³p

β (c∗ − θ)
´

(4.9)

Since θ is known to all players, so is the fact that κ is given as above. Now,
either κ ≥ κ̂ or κ < κ̂. If it is the former, than the provision of the public
good is successful, in which case those players with costs between c∗ and 1 are
playing sub-optimally, since they are opting out even though they would get a
higher payoff by contributing. Conversely, if κ < κ̂, then those players with costs
between 0 and c∗ are playing sub-optimally, since the provision of the public good
fails, and they would be better off by opting out rather than contributing.
This argument shows that there can be no non-trivial switching point c∗. The

only equilibrium switching points are at c∗ = 0 and at c∗ = 1, and either can be
supported as an equilibrium. Thus, there is more than one equilibrium3.

4.5. Uniqeness of Equilibrium

In general, the question of the uniqueness of equilibrium can be settled by the
rate of change of the perceived failure probability for the provision of the public
good. This perceived probability is given by (4.4), and the slope with respect to
c∗ is given by

−φ (...) α√
α + β

(4.10)

where φ (...) indicates the value of the standard normal density evaluated at
α√
α+β

(y − c∗) +
q

α+β
β
Φ−1 (κ̂). Since φ ≤ 1/

√
2π, a sufficient condition for the

absolute value of the slope to be less than one is α√
α+β

≤ √2π.

5. Finite Number of Players

So far in the paper, we have examined the continuum player case, where the law
of large numbers arguments simplify the analysis. However, the analysis remains

3This result stands in contrast to other examples of global games that have been examined in
the literature (McKelvey and Palfrey (1995), Baliga and Sjostrom (2001) and Morris and Shin
(2002)) where independent types are compatible with unique equilibrium.
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unchanged in spirit when we suppose that the number of players is finite. Let
us begin with the uniform-uniform example of section 3. Suppose there are N
players, where the cost of player i is given by

ci = θ + si

where θ is the common cost element, and si is the idiosyncratic cost element for
player i. We maintain the assumption that θ has a uniform density, and si has
uniform density over [−ε, ε] for small ε > 0. In addition, si and sj are independent
for i 6= j.
Just as for the continuum case, let us maintain the working hypothesis that

all players follow the switching strategy around c∗, so that any player with cost
below c∗ contribute, and any player with cost above c∗ opt out. Then, let us
consider the following analogue to question (Q).

My cost is c∗. What is the probability that exactly n players contribute? (Q0)

The answer to question (Q0) turns out to be 1/ (N + 1), irrespective of n. In other
words, the probability mass function over the number of players who contribute is
uniform with support {0, 1, 2, · · · , N}. Thus, the spirit of the continuum player
case holds for the finite player case. Hans Carlsson and Eric van Damme (1993)
and Young Se Kim (1996) have presented solutions of many player coordination
games that rely on this result.
Let us demonstrate that the answer to question (Q0) is 1/ (N + 1). Figure

3.1 for the continuum case is still useful for illustrating the reasoning. When the
common cost element is θ, the probability that player i’s cost is below c∗ (and
hence contributes) is the area under the density to the left of c∗ in the top panel
of figure 3.1. This is given by

z =
c∗ − θ + ε

2ε
(5.1)

Thus, the probability that exactly n players contribute out of the total population
of N players is the binomial probability:µ

N

n

¶
zn (1− z)N−n

=

µ
N

n

¶
(c∗ − θ + ε)n (θ − c∗ + ε)N−n

(2ε)N
(5.2)
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Conditional on c∗, the density of θ is uniform, with support [c∗ − ε, c∗ + ε]. Thus,
the answer to question (Q0) is given by the expectation of (5.2) as θ takes values
in the interval [c∗ − ε, c∗ + ε] with a uniform density. In other words,¡

N
n

¢
2ε

Z c∗+ε

c∗−ε

(c∗ − θ + ε)n (θ − c∗ + ε)N−n
(2ε)N

dθ (5.3)

We can simplify this expression by taking the change of variables (5.1). Then
dθ = 2εdz, while the limits of the integral are from 0 to 1. Then, (5.3) can be
written as µ

N

n

¶Z 1

0

zn (1− z)N−n dz (5.4)

Our claim is that this integral does not depend on n, and is equal to 1/ (N + 1).

Lemma 1.
¡
N
n

¢ R 1
0
zn (1− z)N−n dz = 1

N+1
, for all n.

The proof of lemma 1 is given in the appendix. This result tells us that the
answer to question (Q0) is 1/ (N + 1). The probability mass function over the
number of players who contribute is uniform.
Just as in the continuum case, the uniform density over the number of players

who contribute is one facet of a more general result. When the variation in
the idiosyncratic portion of the players’ costs is small relative to the variation of
the common cost element, the uniform mass function over the number of players
that contribute is a good approximation to the true mass function. We will
give an informal sketch of the argument here. A more precise argument can be
constructed using the technique shown in the survey of global games by Morris
and Shin (2000, section 2).
Let θ be uniformly distributed, and let the idiosyncratic element in cost si

be i.i.d. across players, with density function f (.). For the purpose of this
illustration, we will suppose that the density f (.) is symmetric around zero4. The
interpretation of the uniform density for θ is that the information contained in the
prior density over θ is swamped by the information contained in the realization of
ci. So, this situation is an approximation to the case where θ has some general
(possbly non-uniform) density, but where the idiosyncratic element in costs si
is very small, so that the information contained in the prior density over θ is
swamped by the observation of one’s own cost.

4Symmetry of the density around zero is not necessary for the general argument. See Morris
and Shin (2000, section 2).
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What we need to show is that the probability z that any particular player
contributes is itself a random variable that has a uniform density over the unit
interval [0, 1]. Then, the probability that exactly n players contribute will be
given by the average

¡
N
n

¢ R 1
0
zn (1− z)N−n dz. Suppose that the players follow the

switching strategy around c∗. Denote by z the probability that any particular
player contributes. Let

G (w|c∗)
be the probability that z is w or lower, conditional on c∗. In other words, G (·|c∗)
is the cumulative distribution function over z. When the common element of cost
is θ, the probability that any particular player contributes is given by

z =

Z c∗−θ

−∞
f (c− θ) dc

We know that z ≤ w if and only if θ ≥ θ∗ where θ∗ is defined in terms of

w =

Z c∗−θ∗

−∞
f (c− θ∗) dc

Thus, G (w|c∗) is given by the probability that θ ≥ θ∗ conditional on c∗. Since
the prior density over θ is uniform and f (.) is symmetric around zero, we have

G (w|c∗) =

Z ∞

θ∗−c∗
f (θ − c∗) dθ

=

Z c∗−θ∗

−∞
f (c− θ∗) dc

= w

so that the cumulative distribution function G (·|c∗) for z is the identity function,
implying that the density function over z is uniform. This was what we wanted
to show.

6. Concluding Remarks

The public good contribution game examined in this paper has turned out to be
a useful vehicle in piecing together the beliefs of the players from their observed
choices. In particular, we have seen two themes emerge from the analysis. First,
the case where the strategic uncertainty is given by the uniform density over
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the proportion of players who contribute has particular significance. Not only
is this the shape of the strategic uncertainty in the uniform-uniform case, it is
also a good approximation to the shape of the strategic uncertainty in the case
where the variation in idiosyncratic costs is small relative to the variation in the
common cost. Second, it is possible to reconstruct the beliefs of an individual
whose behaviour exactly mimics the equilibrium behaviour of the players in the
game. When, in addition, the strategic uncertainty is uniform, the behaviour
conforms to the linear rule in which the switching point c∗ is given by 1− κ̂.

Appendix

In this appendix, we prove lemma 1. Begin by noting that

zn (1− z)N−n = zn
N−nX
i=0

¡
N−n
i

¢
(−1)i zi

=

N−nX
i=0

¡
N−n
i

¢
(−1)i zn+i

Thus R
zn (1− z)N−n dz =

N−nX
i=0

¡
N−n
i

¢
(−1)i zn+i+1

n+ i+ 1

so that
1R
0

zn (1− z)N−n dz =
N−nX
i=0

¡
N−n
i

¢
(−1)i

n+ i+ 1

However,

N−nX
i=0

¡
N−n
i

¢
(−1)i

n+ i+ 1
=

n! (N − n)!
(N + 1)!

=
1

(N + 1)
¡
N
n

¢
Thus ¡

N
n

¢ 1R
0

zn (1− z)N−n dz = 1

N + 1

which is the statement of lemma 1.
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