ARTIFICIAL INTELLIGENCE AND GOVERNMENTS: THE GOOD, THE BAD, AND THE UGLY

Martin Beraja (MIT and NBER)

NBER Digitization Tutorial, Spring 2023

Al and Governments: the Good, the Bad, and the Ugly

- ► AI can transform modern economies but has brought **new challenges** to the fore
- ► This has raised questions about the role of governments

Al and Governments: the Good, the Bad, and the UGLY

- ► AI can transform modern economies but has brought **new challenges** to the fore
- ► This has raised questions about the role of governments
 - 1. **The Good:** All is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)

Al and Governments: the Good, the Bad, and the UGLY

- ► AI can transform modern economies but has brought new challenges to the fore
- ► This has raised questions about the role of governments
 - 1. The Good: Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)
 - 2. **The Bad:** Al is an automation technology. How should gov'ts respond? "Inefficient automation" (with Zorzi)

Al and Governments: the Good, the Bad, and the Ugly

- ► AI can transform modern economies but has brought new challenges to the fore
- ► This has raised questions about the role of governments
 - 1. The Good: Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)
 - 2. The Bad: Al is an automation technology. How should gov'ts respond? "Inefficient automation" (with Zorzi)
 - 3. The Ugly: AI is a surveillance technology. Gov't misuse for repression and social control? "AI-tocracy" (with Kao, Yang and Yuchtman)
 "Exporting the surveillance state via trade in AI" (with Kao, Yang and Yuchtman)

THE GOOD: ACCESS TO GOVERNMENT DATA AS INNOVATION POLICY

- ► Much focus on how data collected by **private** firms shapes AI innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- ▶ Yet, throughout history, **states** have also collected massive quantities of data
- ► The state has a large role in many areas
 - ▶ Public security, health care, education, basic science...

THE GOOD: ACCESS TO GOVERNMENT DATA AS INNOVATION POLICY

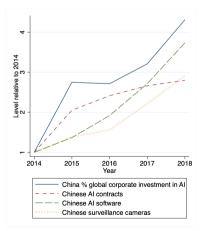
- ► Much focus on how data collected by **private** firms shapes AI innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- ► Yet, throughout history, **states** have also collected massive quantities of data
- ► The state has a large role in many areas
 - Public security, health care, education, basic science...

Can access to government data stimulate commercial AI innovation?

A common way in which firms access to gov't data is by providing services to the state

A common way in which firms access to gov't data is by providing services to the state

Think about facial recognition AI sector in China...

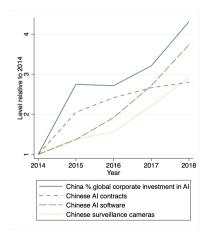

- ► Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms

A common way in which firms access to gov't data is by providing services to the state

Think about facial recognition AI sector in China...

- ► Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms

Al and the State in China



A common way in which firms access to gov't data is by providing services to the state

Think about facial recognition AI sector in China...

- ► Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms
- ► Firms gaining access to this data use it to train algorithms and provide gov't services
- ► If gov't data or algorithms are **sharable** across uses, they can be used to develop commercial AI (e.g., a facial recognition platform for retail stores)

Al and the State in China

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI firms

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI **firms**

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)

2. Obtain universe of **government contracts**

- 2,997,105 contracts
- Source: Chinese Govt. Procurement Database (Ministry of Finance)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI firms

- 7.837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)

2. Obtain universe of **government contracts**

- 2,997,105 contracts
- Source: Chinese Govt. Procurement Database (Ministry of Finance)

3. Link government buyers to AI suppliers

- 10,677 AI contracts issued by public security arms of government (e.g., local police department)

DATA 2: Al FIRMS' SOFTWARE PRODUCTION

Registered with Min. of Industry and Information Technology

Categorize by intended customers (with RNN model using tensorflow):

- 1. Commercial: e.g., visual recognition system for smart retail;
- 2. **Government:** e.g., smart city real time monitoring system on main traffic routes;
- 3. General: e.g., a synchronization method for multi-view cameras based on FPGA chips.

DATA 3: MEASURING ACCESS TO GOVERNMENT DATA

Within AI public security contracts: variation in the data collection capacity of the public security agency's local surveillance network

- 1. Identify non-Al contracts: police department purchases of street cameras
- 2. Measure quantity of advanced cameras in a prefecture at a given time
- 3. Categorize public security contracts as coming from "high" or "low" camera capacity prefectures

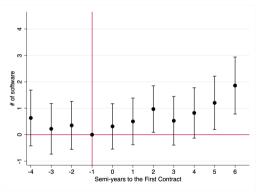
Public security contracts "data-richness" & Commercial Al innovation

Regional variation in contracts

Empirical strategy

► Triple diff: software releases before and after firm receives 1st data-rich contract (relative to data-scarce)

$$y_{it} = \sum_{\mathsf{T}} \beta_{1\mathsf{T}} \mathsf{T}_{it} \mathsf{Data}_i + \sum_{\mathsf{T}} \beta_{2\mathsf{T}} \mathsf{T}_{it} + \alpha_t + \gamma_i + \sum_{\mathsf{T}} \beta_{3\mathsf{T}} \mathsf{T}_{it} \mathsf{X}_i + \epsilon_{it}$$


- T_{it}: 1 if T semi-years before/since firm i's 1st contract
- Data_i: 1 if firm *i* receives "data rich" contract
- X_i pre-contract controls: age, size, and software prod

Public security contracts "data-richness" & Commercial Al Innovation

Regional variation in contracts

Cumulative commercial software releases

Magnitude: 2 new products over 3 years

► Automation raises productivity but displaces workers and lowers their earnings

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ▶ No **optimal policy** results that take into account **frictions** faced by displaced workers

- Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No **optimal policy** results that take into account **frictions** faced by displaced workers
- ► Two literatures can justify taxing automation

Tax automation

Guerreiro et al 2017; Costinot-Werning 2018

- (i) Govt. has preference for redistribution
- (ii) Automation/reallocation are efficient

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ▶ No optimal policy results that take into account frictions faced by displaced workers
- ► Two literatures can justify taxing automation

Tax automation

Guerreiro et al 2017; Costinot-Werning 2018

- (i) Govt. has preference for redistribution
- (ii) Automation/reallocation are efficient

Tax capital (long-run)

Aiyagari 1995; Conesa et al. 2002

- (i) Improve efficiency in economies with IM
- (ii) Worker displacement/reallocation absent

- Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ► No **optimal policy** results that take into account **frictions** faced by displaced workers
- ► Two **literatures** can justify taxing automation. Reallocation is frictionless or absent

Tax automation

Guerreiro et al 2017: Costinot-Werning 2018

Tax capital (long-run)

Aiyagari 1995; Conesa et al. 2002

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ▶ No **optimal policy** results that take into account **frictions** faced by displaced workers
- ► Two literatures can justify taxing automation. Reallocation is frictionless or absent
- Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ▶ No **optimal policy** results that take into account **frictions** faced by displaced workers
- ► Two literatures can justify taxing automation. Reallocation is frictionless or absent
- Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes

Could firms automate excessively? How should the gov't respond?

OUTLINE

Laissez-faire

Optimal Policy

Quantitative Analysis

Continuous time $t \ge 0$

Occupations

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha\right)\ ,\ \mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0\right)$$

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}} = \mathbf{F}\left(\mu^{\mathrm{A}}, \alpha\right) \ , \ \mathbf{y}^{\mathrm{N}} = \mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right) \equiv \mathbf{F}\left(\mu^{\mathrm{N}}, 0\right)$$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha\right)$$
 , $\mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0\right)$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

$$\partial_{\mathsf{A}}\mathsf{G}^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\pmb{\alpha}\right)\downarrow$$
 in $\pmb{\alpha}$ (labor-displacing)

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\pmb{\alpha}\right)$$
 concave in α (costly)

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha\right)\ \ \mathrm{,}\ \ \mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0\right)$$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

$$\partial_{\mathsf{A}} \mathsf{G}^{\star} \left(\mu^{\mathsf{A}}, \mu^{\mathsf{N}}; \pmb{\alpha} \right) \downarrow \mathsf{in} \; \pmb{\alpha} \; (\mathsf{labor-displacing})$$

$$G^{\star}\left(\mu^{A},\mu^{N}; \boldsymbol{\alpha}\right)$$
 concave in α (costly)

Profit maximization

$$\max_{\alpha\geq0}\int_{0}^{+\infty}Q_{t}\Pi_{t}\left(\alpha\right)dt$$

Continuous time t > 0

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha\right)\ \ \text{,}\ \ \mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0\right)$$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

$$\partial_{\rm A} {\it G}^{\star} \left(\mu^{\rm A}, \mu^{\rm N}; \pmb{lpha} \right) \downarrow {\it in} \; \pmb{lpha} \; ({\it labor-displacing})$$

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\pmb{\alpha}\right)$$
 concave in α (costly)

Profit maximization

$$\max_{\alpha\geq0}\int_{0}^{+\infty}Q_{t}\Pi_{t}\left(\alpha\right)dt$$

$$\Pi_{t}\left(\alpha\right) \equiv \max_{\mu^{A}, \mu^{N} \geq 0} G^{\star}\left(\mu^{A}, \mu^{N}; \alpha\right) - \mu^{A} W_{t}^{A} - \mu^{N} W_{t}^{N}$$

Workers

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{\mathsf{t}}^{\mathsf{A}}, \mu_{\mathsf{t}}^{\mathsf{N}}\right) egin{cases} = 1/2 & \text{in } t = 0 \\ & \text{Reallocation} & \text{afterwards} \end{cases}$$

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{\mathsf{t}}^{\mathsf{A}}, \mu_{\mathsf{t}}^{\mathsf{N}}\right) \begin{cases} = 1/2 & \text{in } \mathsf{t} = 0 \\ & \text{Reallocation} & \text{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{\mathsf{t}}^{\mathsf{A}},\mu_{\mathsf{t}}^{\mathsf{N}}\right) egin{cases} = 1/2 & \text{in } t=0 \ \\ \text{Reallocation} & \text{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

Two frictions

1. Reallocation (neoclassical)

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_t^{\mathsf{A}}, \mu_t^{\mathsf{N}}\right) egin{cases} = 1/2 & \text{in } t = 0 \ \\ \mathsf{Reallocation} & \mathsf{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$(\mu_t^A, \mu_t^N) \begin{cases} = 1/2 & \text{in } t = 0 \\ \text{Reallocation} & \text{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ
 - Unempl. / retrain. exit at rate κ

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{t}^{A}, \mu_{t}^{N}\right) egin{cases} = 1/2 & \text{in } t=0 \ \\ \text{Reallocation} & \text{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

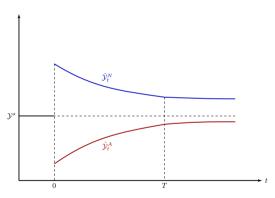
- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ
 - Unempl. / retrain. exit at rate κ
 - Productivity loss ${\color{blue} \theta}$

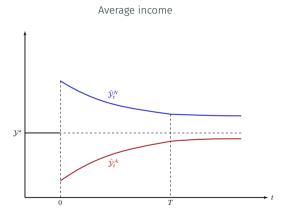
Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

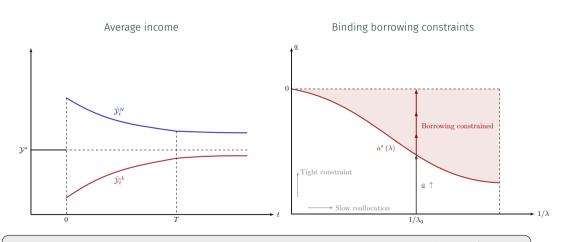
Initial allocation

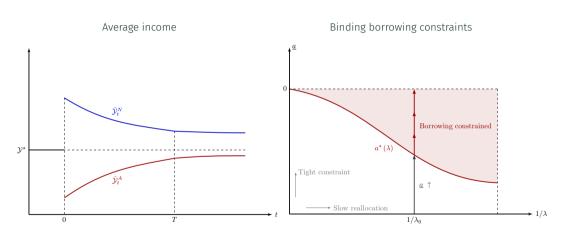
$$\left(\mu_{t}^{A}, \mu_{t}^{N}\right) egin{cases} = 1/2 & \text{in } t=0 \ \\ \text{Reallocation} & \text{afterwards} \end{cases}$$

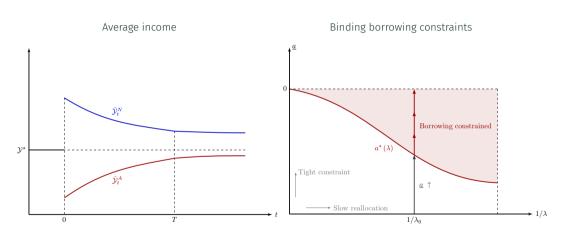

Budget constraint


$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate ${\color{black} \lambda}$
 - Unempl. / retrain. exit at rate κ
 - Productivity loss θ
- 2. Borrowing


$$a_t^h \ge \underline{a}$$
 for some $\underline{a} \le 0$




Workers expect income to improve as they reallocate o Motive for **borrowing**

Workers expect income to improve as they reallocate \rightarrow Motive for **borrowing**

Two benchmarks: instant realloc. (Costinot-Werning) or no borrowing frictions (Guerreiro et al)

Evidence: Earnings partially recover (Jacobson et al) + Imperfect cons. smoothing (Landais-Spinnewijn)

LAISSEZ-FAIRE: AUTOMATION

Firm automation choice α^{LF} : trades off cost $\mathcal{C}(\alpha)$ with increase in output

LAISSEZ-FAIRE: AUTOMATION

- Firm automation choice α^{LF} : trades off cost $\mathcal{C}(\alpha)$ with increase in output
- Optimality condition

$$\int_0^{+\infty} Q_t \Delta_t^{\star} dt = 0$$

where

$$\Delta_t^\star \equiv rac{\partial}{\partial lpha} \mathsf{G}^\star \left(\mu_t^\mathsf{A}, \mu_t^\mathsf{N}; oldsymbol{lpha}^\mathsf{LF}
ight)$$

denotes the output gains (net of cost) from automation, and

$$Q_t = \exp\left(-\int_0^t r_s ds\right) = \exp\left(-\rho t\right) \frac{u'\left(c_t^N\right)}{u'\left(c_0^N\right)}$$

since non-automated workers are unconstrained (savers).

OUTLINE

Laissez-faire

Optimal Policy

Quantitative Analysis

How should a government respond to automation?

How should a government respond to automation?

► Depends on the **tools** available

How should a government respond to automation?

- ► Depends on the **tools** available
- ► First best tools: lump sum transfers (directed, UBI)

Info requirements? Fiscal cost? (Guerreiro et al., 2017; Costinot-Werning, 2018, Guner et al., 2021)

How should a government respond to automation?

- ► Depends on the **tools** available
- ► Second best tools: tax automation + active labor market interventions

E.g., South Korea's reduction in automation tax credit in manuf; Geneva's tax on automated cashiers.

How should a government respond to automation?

- ► Depends on the **tools** available
- ► Second best tools: tax automation + active labor market interventions

 E.g., South Korea's reduction in automation tax credit in manuf; Geneva's tax on automated cashiers.
- ▶ **Primal problem:** The government maximizes the social welfare function

$$\mathcal{U} \equiv \sum_{h} \eta^{h} \int_{0}^{+\infty} \exp(-\rho t) u\left(c_{t}^{h}\right) dt$$

by choosing $\{\alpha, T, \mu_t^A, \mu_t^N, c_t^A, c_t^N\}$ subject to workers choosing consumption optimally, the law of motion of labor, firms choosing labor optimally, and market clearing.

 \blacktriangleright Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{A}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{A,\star}\right) dt$$

where Δ_t^\star is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

lacktriangle Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}} \times \left(\underbrace{\boldsymbol{\lambda}_{t}^{\times} + \boldsymbol{\Sigma}_{t}^{N,\star}} \right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\underbrace{\boldsymbol{\lambda}_{t}^{\times} + \boldsymbol{\Sigma}_{t}^{N,\star}} \right) dt$$

where Δ_t^\star is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

No borrowing constraints $\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} = \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Efficiency (only distributional terms)}$

lacktriangle Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{A}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{A,\star}\right) dt$$

where Δ_t^\star is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

- No borrowing constraints $\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} = \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Efficiency (only distributional terms)}$
- ▶ Still rationale for redistribution since $u'(c_t^N) < u'(c_t^A)$, e.g., utilitarian weights

 \blacktriangleright Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{A,\star}\right) dt$$

where Δ_t^\star is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

► Borrowing constraints $\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} > \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Inefficiency}$

ightharpoonup Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\int_{0}^{t} r_{s} ds\right)} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{A}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\Delta_{t}^{\star} + \Sigma_{t}^{N,\star}\right) dt$$

where Δ_t^{\star} is aggregate term and $\Sigma_t^{A,\star} + \Sigma_t^{N,\star} = 0$ are distributional terms.

▶ Borrowing constraints
$$\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} > \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Inefficiency}$$

There is a **conflict** between how the firm and displaced workers value the **effects of** automation over time. This creates room for Pareto improvements.

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.

(automated)

(non-automated / firm)

$$\delta\alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_{t}^{A})}{u'(c_{0}^{A})} \left(\Delta_{t}^{\star} + \Sigma_{t}^{\star,A}\right) dt \qquad \delta\alpha \times \int_{0}^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_{t}^{N})}{u'(c_{0}^{N})} \left(\Delta_{t}^{\star} + \Sigma_{t}^{\star,N}\right) dt$$

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.

(automated)

(non-automated / firm)

$$\delta \alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^A)}{u'(c_0^A)} \Delta_t^* dt \stackrel{?}{=} 0$$

$$\delta\alpha\times\int_{0}^{+\infty}\exp\left(-\rho t\right)\frac{u'(c_{t}^{N})}{u'(c_{0}^{N})}\Delta_{t}^{\star}dt=0$$

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.

(automated)

(non-automated / firm)

$$\delta \alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^A)}{u'(c_0^A)} \Delta_t^* dt \stackrel{?}{=} 0$$

$$\delta \alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^N)}{u'(c_0^N)} \Delta_t^* dt = 0$$

1. The output gains from automation Δ_t^\star build up over time

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.

(automated)

(non-automated / firm)

$$\delta \alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^{\mathsf{A}})}{u'(c_0^{\mathsf{A}})} \Delta_t^* dt > 0$$

$$\delta \alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^N)}{u'(c_0^N)} \Delta_t^* dt = 0$$

- 1. The output gains from automation Δ_t^\star build up over time
- 2. Automated workers are *more impatient* than the firm priced by unconst. workers

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.

(automated) (non-automated / firm)

$$\delta\alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^A)}{u'(c_0^A)} \left(\Delta_t^{\star} + \Sigma_t^{\star,A}\right) dt > 0 \qquad \delta\alpha \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^N)}{u'(c_0^N)} \left(\Delta_t^{\star} + \Sigma_t^{\star,N}\right) dt < 0$$

- 1. The output gains from automation Δ_t^\star build up over time
- 2. Automated workers are *more impatient* than the firm priced by unconst. workers

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.

(automated) (non-automated / firm)
$$\delta \textit{U}^{\textit{A}} > 0 \qquad \qquad \delta \textit{U}^{\textit{N}} = 0$$

- 1. The output gains from automation Δ_t^* build up over time
- 2. Automated workers are *more impatient* than the firm priced by unconst. workers
- 3. Set $\delta \alpha < 0$, and $\delta T < 0$ to compensate non-auto. workers (akin to future transfer)

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.

(automated) (non-automated / firm)
$$\delta \textit{U}^{\text{A}} > 0 \qquad \qquad \delta \textit{U}^{\text{N}} = 0$$

Taxing automation increases **aggregate consumption** and **redistributes** early on during the transition, precisely when **displaced workers** value it more.

OPTIMAL POLICY INTERVENTION

▶ Optimal intervention depends on how the government values efficiency vs. equity.

OPTIMAL POLICY INTERVENTION

- ▶ Optimal intervention depends on how the government values efficiency *vs.* equity.
- No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")

OPTIMAL POLICY INTERVENTION

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")
- ightharpoonup Optimality condition wrt lpha

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \sum_{h} \eta^{h, \text{effic}} u'(c_0^h) \times \int_0^{+\infty} \exp\left(-\rho t\right) \frac{u'(c_t^h)}{u'(c_0^h)} \times \left(\Delta_t^{\star} + \Sigma^{h, \star}\right) dt = 0$$

OPTIMAL POLICY INTERVENTION

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")
- ightharpoonup Optimality condition wrt α . Negative when evaluated at laissez-faire

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \sum_{h} \eta^{h, \text{effic}} u'(c_0^h) \times \int_0^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'(c_t^h)}{u'(c_0^h)}}_{< \exp\left(-\int_0^t r_s ds\right) \text{ for } h = A} \times \underbrace{\left(\Delta_t^\star + \Sigma^{h,\star}\right)}_{\text{Back-loaded}} dt < 0$$

OPTIMAL POLICY INTERVENTION

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")
- ightharpoonup Optimality condition wrt α . Negative when evaluated at laissez-faire

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \sum_{h} \eta^{h, \text{effic}} u'(c_0^h) \times \int_0^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'(c_t^h)}{u'(c_0^h)}}_{< \exp\left(-\int_0^t r_s ds\right) \text{ for } h = A} \times \underbrace{\left(\Delta_t^\star + \Sigma^{h,\star}\right)}_{\text{Back-loaded}} dt < 0$$

Proposition. (Taxing automation on efficiency grounds)

A government using efficiency weights $\{\eta^{h,\text{effic}}\}$ finds it optimal to tax automation.

OPTIMAL POLICY INTERVENTION

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")
- ightharpoonup Optimality condition wrt α . Negative when evaluated at laissez-faire

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \sum_{h} \eta^{h,\text{effic}} u'(c_0^h) \times \int_0^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u'(c_t^h)}{u'(c_0^h)}}_{\text{$$

Proposition. (Taxing automation on efficiency grounds)

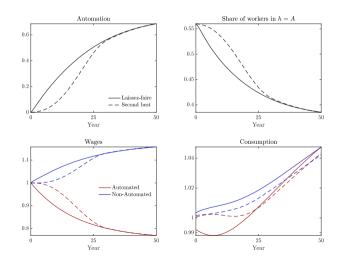
A government using efficiency weights $\{\eta^{h,\text{effic}}\}$ finds it optimal to tax automation.

▶ Pref. for equity: Government taxes even more with utilitarian weights

OUTLINE

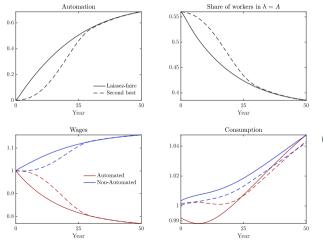
Laissez-faire

Optimal Policy


Quantitative Analysis

QUANTITATIVE MODEL

► Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)


QUANTITATIVE MODEL

► Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)

QUANTITATIVE MODEL

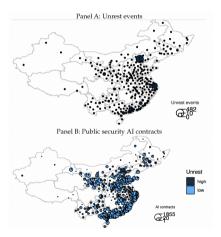
► Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)

Half-life of automation
15 years at LF v. 20 years at SB

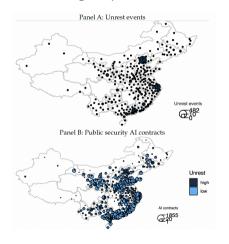
Welfare gains
0.8% for A workers and 0.2% overall

THE UGLY: THE SURVEILLANCE STATE

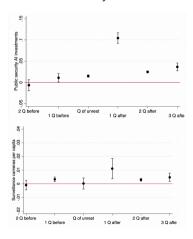
- ► As a technology of **prediction**, gov'ts may use AI for repression and social control (Zuboff, 2019; Tirole, 2021; Acemoglu, 2021)
- ► Facial recognition AI, in particular, is a technology of **surveillance** (and dual-use)


THE UGLY: THE SURVEILLANCE STATE

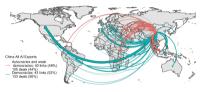
- ► As a technology of **prediction**, gov'ts may use AI for repression and social control (Zuboff, 2019; Tirole, 2021; Acemoglu, 2021)
- ► Facial recognition AI, in particular, is a technology of **surveillance** (and dual-use)


Evidence from China?

AI-TOCRACY


Unrest and gov't procurement of AI

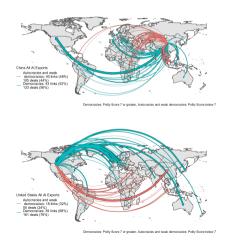
Unrest and gov't procurement of AI



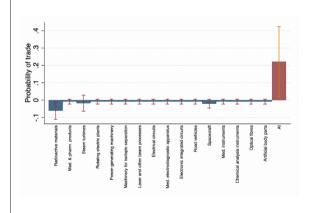
Unrest \longrightarrow Gov't buys AI and cameras

EXPORTING THE SURVEILLANCE STATE VIA TRADE IN AI

Exports of AI: China v. US



Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7



EXPORTING THE SURVEILLANCE STATE VIA TRADE IN AI

Exports of AI: China v. US

Autocracies and weak democracies are more likely to import Al from China

FINAL THOUGHTS

- ► AI is a new technology with many different features and uses
- ► Touches on issues across fields: macro (growth, innovation, labor), pol. econ, IO

FINAL THOUGHTS

- ► Al is a new technology with many different features and uses
- ► Touches on issues across fields: macro (growth, innovation, labor), pol. econ, IO
- ► Social scientists have a **responsibility** to study the benefits, risks, and policy implications of AI
 - ► Otherwise, we leave the task to...
- ▶ We have only started to scratch the surface. **More questions** as AI is widely adopted.

Much work ahead!