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ABSTRACT
A GAME THEORETIC APPROACH TO ECONOMIC POLICY ANALYSIS
Peter Norman

Andrew Postlewaite

In the first chapter, Legislative Bargaining and Coalition Formation, I analyze a widely used model
of endogenous policy determination. The main question is if the stationary equilibrium, a popular
equilibrium selection in applied work, can be rationalized as approximating the unique backwards
induction equilibrium with a long finite horizon. The answer is negative: I show that there is a
continuum subgame perfect equilibrium outcomes in the finite horizon model. With sufficiently
patient players a “folk theorem” applies. In contrast, I obtain generic uniqueness of equilibria in a
generalized model where differences in time preferences are allowed. However, a unique equilibrium
is always non-stationary and even if differences in discount rates are arbitrarily small, the non-
stationarity is non-negligible. In the second chapter, A ffirmative Action in a Competitive Economy
(with Andrea Moro), the objective is to investigate how affirmative action affects incentives for
human capital acquisition in a model of statistical discrimination with endogenous human capital.
Affirmative action may “fail” in the sense that there may still be discrimination in equilibrium.
However, the incentives to invest for the disadvantaged group are better in any equilibrium under
affirmative action than in the most discriminatory equilibrium without the policy. Welfare effects
are ambiguous: the policy may even hurt the intended beneficiaries, also when the initial equi-
librium is the most discriminatory equilibrium. The third chapter, Statistical Discrimination and
Efficiency, investigates if there is an efficiency rationale for policies aimed at statistical discrim-
ination. In the same framework as the second chapter I show that there is always an efficiency
rationale for intervention. However, the inefficiencies arise because of a “free-riding” problem,
which occurs independently of whether there is discrimination or not. A planner may want to
discriminate between two identical groups of workers. The reason is that discrimination makes
it possible for certain workers to specialize as qualified workers, which reduces the problem to
match workers with jobs efficiently. This positive effect must be weighted against inefficiencies in
investment behavior created by discrimination, but examples can be constructed where the surplus

maximizing allocation involves discrimination.
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1. LEGISLATIVE BARGAINING AND COALITION

FORMATION

Peter Norman!

University of Pennsylvania

November 21 1996

Abstract

The finite horizon version of a much studied legislative bargaining model due to Baron and
Ferejohn is investigated. It is shown that if there are three or more rounds of bargaining, then
a continuum of distributions are supportable as subgame perfect equilibria. In fact, the result
holds true even if one restricts attention to equilibria in Markov strategies. If the players are
sufficiently patient a folk theorem applies: any distribution of benefits such that all players receive
strictly positive shares can be supported as a subgame perfect equilibrium. In contrast to this
result we obtain a generic uniqueness result when allowing for differences in the players time
preferences. However, whenever there is a unique equilibrium it is also highly non-stationary and
the non-stationarity does not disappear in the limit as the discount factors converge towards a
common discount factor. Hence, the unique backwards induction equilibrium will not converge to
the stationary equilibrium in the original game when we consider a sequence of games with payoff

functions converging towards the payoffs of the original game.

'I thank Stephen Coate, George Mailath, Andrea Moro, Stephen Morris, Motty Perry and
Andrew Postlewaite for comments and interesting discussions. Remaining errors are mine. Corre-
spondence to pnorman@econ.sas.upenn.edu.



1.1. Introduction

In an influential paper, Baron and Ferejohn [6] set up a tractable model of legislative voting with
endogenous agenda setting. The model has later been generalized and applied to a wide variety of
questions in economics and political science. For example, Baron and Ferejohn [7] use the model to
analyze the role of committees in the legislative process, Baron [5] studies how legislative equilibria
depend on characteristics on the goods provided, Chari et al [11] use the model in their analysis of
split ticket voting and in McKelvey and Riezman [20], Baron and Ferejohn’s model is an important
building block in a political economy model where a seniority system is derived as an equilibrium
outcome.

The general idea behind the approach is that real world legislators must obey certain rules on
how and when to make proposals and vote. Thus it seems natural to proceed as in the literature
on bargaining and capture these constraints within some dynamic game and use non-cooperative
solution concepts to obtain predictions. Since the rules of the game creates “frictions” in the
bargaining process by restricting each agents’ possibilities of making proposals one may now obtain
testable implications even in situations where a non-institutional approach provides weak or no
predictions at all. In particular, there may now be equilibria when there for each proposal exists
a counterproposal preferred by a majority, so there is hope that situations where legislators have
profoundly conflicting preferences can be handled by this type of models.

This view is advanced by Baron and Ferejohn [6], who consider a stylized model of legislative
bargaining where the task of the legislature is to divide a given budget among its members. One
may interpret the model as one where each legislator represents a particular district and where
the problem for the legislators is how to allocate spending over the districts. The formal game is
essentially an n—player version of Rubinstein’s [26] bargaining model, with the important difference
that a proposal is accepted whenever a majority of the players vote in favor of the proposal, while
unanimous agreement is typically required in sequential bargaining models.

Baron and Ferejohn [6] show that if players are sufficiently patient, then any division can be
supported as a subgame perfect equilibrium in the infinite horizon version of their model. However,
they argue that equilibria based on infinitely nested punishments may be difficult to enforce and
restrict attention to stationary (Markov perfect) equilibria in the infinite game, i.e. equilibria
where all players behave in the same way in all structurally equivalent subgames. They show that

there is a unique stationary equilibrium and in their paper, as well as in most applications of their



model, the focus is exclusively on the stationary equilibrium.

There are several attractive features of the stationary equilibrium. Obviously, stationary equi-
libria makes the analysis more tractable and in the context of Baron and Ferejohn’s model it can be
made precise that the stationary equilibrium is the simplest equilibrium in a well defined sense (see
Baron and Kalai [8]). An alternative argument in favor of this equilibrium selection that has also
been proposed: there is an “essentially” unique subgame perfect equilibrium in the finite horizon
version of the model and the stationary equilibrium can be viewed as the limit of the backwards
induction solution as the number of bargaining rounds is taken to infinity. Note that this claim
corresponds well to the usual intuition about equilibria in strategies that are only a function of
payoff relevant variables: when agents are not allowed to condition play on payoff irrelevant parts
of the history, then “bygones are bygones” and the analysis is as if one solved for the backwards
induction equilibrium of the corresponding game with a finite horizon.

In this paper we study the finite horizon version of Baron and Ferejohns model. We show
that, for this particular game, the intuition that the stationary equilibrium corresponds to (the
unique) backwards induction solution of the corresponding finite horizon model is wrong: there
will simply not be a unique backwards induction equilibrium. In fact, with three or more rounds of
bargaining a continuum of divisions are supportable as subgame perfect equilibrium outcomes. It
is also shown that if there are sufficiently many rounds of bargaining and the players are sufficiently
patient, then any distribution of benefits such that all players receive a strictly positive share is
supportable as a subgame perfect equilibrium.

Since we study a game of perfect information, the non-uniqueness may be surprising at a first
glance. As is well known, there is a unique backwards induction solution for any game of perfect
information with generic payoffs, so there must be something non-generic with the payoffs of the
game. Interestingly enough, what creates the non-genericity is in a sense what makes the model
interesting: the proposer in the penultimate session must “bribe” sufficiently many players to get
a majority for her proposal. However, by symmetry of the game, the value of the game in the
beginning of the last period is the same for all players, so all players have the same acceptance rules
in the penultimate period. This means that the proposer in the penultimate session can choose
what players to “bribe” in any way he wants. Hence it is costless to punish and reward players
by making the identities of the players to be included in the winning majority dependent on the
history of play. Of course, non-uniqueness of equilibria follows directly from the observation that

the identities of the players selected by the proposer is indeterminate. However, if there are three



or more rounds of bargaining this in turn implies that we obtain a more interesting multiplicity:
if players are selected to be included in the “winning majority” with different probabilities, then
the value of the game in the beginning of the penultimate period is different for different players.
Thus, the acceptance rules will be different in the preceding session, so some players will be
more expensive to bribe than other players. As we will see, this makes it possible to support a
continuum of divisions as equilibrium outcomes even in strategies that are independent of payoff
irrelevant history.

Since the argument above depends crucially on the symmetry of the game one may guess that
the intuition that the stationary equilibrium may be obtained as a limit of a sequence of backwards
induction equilibria may be restored by breaking the symmetry of the model in such a way so that
the indifferences for the proposer in the penultimate period disappears. To see if this intuition
is correct we allow the discount factors to vary between individuals. In this case we show that
for generic choices of discount factors there is in fact a unique subgame perfect equilibrium of the
model. Here, generic means that the set of (vectors of) discount factors such that there is not a
unique equilibrium has Lebesgue measure zero, so we may interpret the result as saying that if
the n players discount factors are independent draws from a uniform distribution over the unit
interval, then we would get discount factors generating a unique equilibrium with probability one.

However, whenever we obtain a unique equilibrium this turns out to be highly non-stationary.
Moreover, the non-stationarity does not disappear when the discount factors converge to a common
discount factor for all players. Hence, while we typically get uniqueness of the equilibria when we
recognize the possibility that the players may have different time-preferences this does not really
help us to select equilibria in the infinite game. The same thing holds true for other natural
asymmetries. For example, if there are spillover effects between “nearby districts”, the same logic
goes through. Also, if the payoff functions are as in the original model, but the probabilities of
getting the opportunity of making an offer are different for different players, the proof of the generic
uniqueness result goes through with some minor modifications and the qualitative properties of
the equilibrium is as with differences in time preferences.

While one may interpret these results as mainly negative they do actually provide some insights
as to how sequential bargaining with majority rule (or any other rule different from unanimity rule)
differs from the standard setup where unanimous agreement is required: if no player has veto power
it is possible that it is undesirable to have a strong position in later stages of the game. The reason

is that being strong in the future makes the player more expensive to bribe in earlier stages and



therefore more likely to be excluded from the “winning coalition”. Because all players must get
at least their respective value of waiting to be willing to accept a proposal in standard sequential
bargaining models, these type of considerations do not emerge in models where everybody must
agree in order for a proposal to be implemented.

The remainder of this chapter is organized as follows. In the next section the basic model is
set up. In Section 1.3 some simple examples are analyzed in detail and the finite horizon folk
theorem is stated. In Section 1.4 the model is extended to allow for heterogenous time preferences.
The discussion in Section 1.5 concludes the chapter. Most proofs are relegated to the appendix in

Section 1.6.

1.2. The Model

The set up is as in Baron and Ferejohn[6]. Following their interpretation of the model we may
think of a body of legislators, each representing the voters of their district who are to make a

decision about how to distribute some benefits. Specifically we let:
the set of players (legislators) be given by [ = {1,..,n},
n
the set of potential "outcomes” be given by X = {0} U {:z: ERL|Y ' < w} , where w > 02,
i=1

each players’ instantaneous utility function be given by u; : X — R defined by u; (z) = z*. Payoffs

are discounted by the common discount factor § € (0, 1]

Hence, the “bargaining problem” is a n player cake-splitting problem. In Baron and Ferejohn
(6] one of the main objectives is to study how the equilibria of the game depends on the agenda
setting rules, so several extensive forms are considered. In this paper we will restrict attention to

the simplest case 3. The “institutional” assumptions are as follows;

Proposals. If the legislature has not agreed on any proposal in periods 1,....,t — 1 and if
t < T, one randomly chosen player is recognized to make a proposal in the beginning of period
t. The probability distribution over who is selected at time ¢ is assumed to be a time and history

independent distribution 1 € A™. As in Baron and Ferejohn we take u; = %

?L.e. we assume “free disposal”. We could at the cost of some additional complexity of the
proofs take X = {z € R | ¥ z* = w}. However, since it is feasible that no agent receives nothing
it is not clear why one would want to restrict agents to propose allocations on the boundary.

3This specification is referred to as “the closed rule” in Baron and Ferejohn [6] and Baron and
Ferejohn [7].



Voting. When a player j has made a proposal r € X, the legislature votes sequentially® and
according to a predetermined order between accepting and rejecting the proposal. If a ma jority
accepts z, the proposal is implemented and the game ends with payoffs &'z for all players i € /.
If a majority decides to reject and t = T the game ends with the zero payoffs being realized for all

players. If a majority decides to reject and t < T the game goes on to the next stage.

A history at the beginning of time ¢ is given by a list A, = (ai.a2,...,a;-1) where a, =
(i,,x,,vl,...,v,’.‘) is the “action profile” for periods + = 1,2,...t — 1, i, € I is the identity of the
proposer in session 7, zr € X is the proposal made at time 7 and v € {yes, no} is the vote cast
by player j in session 7. We let H, denote the set of all possible (beginning of) time ¢ histories.
However, voting is performed sequentially, so each player knows not only k., but also how all
players that are voting before her in the current session have voted. The order of voting in every
session is predetermined and known by all players. To translate this into formalism we assume
that for each ¢ there is an invertible function k. : I — I that generates a voting ordering in session
t°. We let h¥ denote a generic history when k — 1 votes have been cast in session ¢ and denote H I
the set of all such histories. Note that we can write a history when the kth player is just about

-1 Sl PP . . .
to vote as h¥ = (h.,,jt,:rg,v:‘ “),...,v:‘ * ”) . For example if &, is the identity function so that

player 1 votes first, player 2 second and so on, then Af = (h¢,,v},...,vf~!) . A (pure) strategy st

for player i € I is given by s* = {p;, vf}z;l where p} : H, — X lists a proposal for each possible
history at time ¢ and v} : H,k (@ {yes,no} describes the voting behavior of player i for every
possible history. A typical mixed (behavioral) strategy for i will be denoted o; = {&'{.ﬁfk}z;l .
where &; : H, — A(X) and 53¢ : HF —[0,1].

‘Whether voting is performed sequentially or simultaneously does not make much of a difference
in the finite horizon model, given that we in the case of simultaneous voting eliminate conditionally
weakly dominated strategies.

SHence, k(i) is the position in the voting order for player i in session t and k;! (i) gives the

identity of the person in the i*" place in the voting order at time ¢. For the particular equilibria we
construct in this paper the voting order does not matter, indeed we could even make the voting
order to depend on the history k.. However, there may be other equilibria where the order actually
matters.




1.3. Equilibria

To gain some intuition and to make the mechanics of the model clear, we will begin this section by
considering two examples. In the first example, it is shown that with three rounds of bargaining
there is multiplicity in the set of divisions that are supportable as equilibrium outcomes even with
history independent strategies. The result that there is a continuum of distributions supportable
as (Markov perfect) equilibrium outcomes follows as a slight generalization of the example. In
the second example, it is shown that there are subgame perfect equilibria that are at odds with
Riker’s minimal winning coalition theorem in the sense that more than (n + 1) /2 players may get
a positive share of the surplus in equilibrium. After these examples the general result is stated

and discussed.

Example 1.

We will consider the simplest example possible, with 7= 3, n = 3 and § = 1. The size of the

pie is without loss of generality normalized to unity and we proceed by solving the game backwards.

The Last Session

Suppose that player j is recognized in the last session and proposes zz withz} =1 and 2* =0
for i # j. Since all players get 0 if the proposal is rejected the voting rule “accept any proposal
after any history” implies Nash equilibrium play in every subgame starting after the last sessions
proposal. Given these voting rules there is no profitable deviation for the proposer Thus, there
are subgame perfect equilibria where all player proposes to take everything if called to make a
proposal in the final period and where these proposals are accepted for sure.

In fact, this is the unique proposal in the last session consistent with subgame perfection. To
see this, suppose that z§ > 0 for at least two players. We first argue that there are no voting rules
consistent with subgame perfection such that the proposal is rejected. The argument illustrates
how sequential voting makes it unnecessary to eliminate weakly dominated strategies. Consider
the choice of the last of the two players who receives strictly positive payoffs under zf. If she
is pivotal, she will always vote in favor of the proposal. Hence the first of the two players with

strictly positive payoffs knows that if she accepts, then the proposal will be implemented. The



first player in the voting order that receive strictly positive payoffs must therefore vote to accept
in any subgame perfect equilibrium, unless the other players follow such voting rules so that the
proposal will be implemented no matter how she votes. Thus the proposal must always be accepted
in any subgame perfect equilibrium. Now, if z{ > 0 for some i # j there exists ¢ small enough
so that z§ — e > 0. This proposal will be accepted for sure, but so will the alternative proposal
y with y; = 1::7, + €, yi = 4 — € (and the third players share unchanged). Since the proposer is
better off, z3 cannot be proposed in the last session in any subgame perfect equilibrium. Thus we
conclude that the only proposals in the last period consistent with subgame perfection is for the

last proposer to take the whole pie for herself. Le. player 1 proposes (1,0,0), player 2 (0,1.0) and
player 3 (0,0, 1) and these proposals will be accepted for sure.

The Second Session

Since each player gets 1 with probability % and 0 with probability % if the game continues to the
final stage, the continuation value for player any player i in the beginning of the last session is %
Thus if a player is pivotal in the voting stage of the second session, she must accept proposals with
! (2) > } and reject if 27 (2) < 3-° Consequently, if two players receive z (2) > & the proposal
will be accepted, while any other proposal must be rejected in any subgame perfect equilibrium.

Hence, anyone selected in the second period will offer % to one of the other players and keep % for

herself?.
A Symmetric Equilibrium

Consider the following proposal rule in the second session: regardless of history, each player
selects one player by randomizing with equal probabilities over the remaining players. She then
proposes to give this randomly select player % and keep % for herself. By the analysis above these
proposals will always be accepted in any subgame perfect equilibrium. Since proposals that gives

the proposer a larger share must be rejected in any equilibrium, the proposer has no incentive

6As in most other bargaining models, ties in the voting stage must be resolved in favor of
accepting the proposal with probability one in any subgame perfect equilibrium.

"Since the proposer can randomize arbitrarily between the remaining players when selecting who
is to receive part of the cake this means that there is a continuum of equilibria in any subgame
starting in session 2. The rest of the example illustrates that there is also multiplicity in terms of

distribution of benefits that goes beyond the set of possible permutations of ( 32—, %,0) .



to deviate. Hence the proposed strategy profile constitutes a subgame perfect equilibrium in the

game with two rounds of bargaining. We can compute the value of the game in the beginning of

the second period (before identity of the proposer is known) as

[T
o)~

1
2

Wi ho

2
Pr [i recognized] § + (1 ~ Pr i recognized]) Pr [j gives % to i} % = %% +

for i = 1,2,3. Hence, given that all players follow these proposal rules in the second session. the
voting rules in the first session must be the same as in the second session and following the analysis

of the second session we conclude that any player selected in the first period to make a proposal

must keep 2 for herself and give § to one of the other players8.

An Asymmetric Equilibrium

In the second period, let the players follow the following proposal rules after any history of

play:
If player 1 is recognized, she proposes z! (2) = (%, %,0) .
If player 2 is recognized, she proposes z3 (2) = (3, 2,0).
If player 3 is recognized, she proposes z3 (2) = (3.0, 2).

All proposals according to these rules must be accepted in any subgame perfect equilibrium.
Given these proposal rules, the continuation values of the game in the beginning of the second

session, which we denote by V*(2) for players i = 1,2, 3, are given by:

©)a

V1(2)=;L1§+ /.LiPr[igiv%%t01]§=%§+%§+%§=
3

22
V2(2) = po 2+ 'ﬁsﬂipr[i gives jto2] ;=12441-3
t

V3(2)=/J,3§+ .le,uipr[i gives % to 3]%: é%:%

Consider the following voting rules for the first session:

Player 1 accepts the proposal z7 (1) if and only if ] (1) > 3

80ne possibility is for all players to randomize with equal probabilities in the first period as well
which implies symmetric ex ante payoffs. As is easily seen we can proceed this way with arbitrary

many rounds of bargaining.
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Player 2 accepts the proposal =7 (1) if and only if = (1) >

=118

Player 3 accepts the proposal z7 (1) if and only if z{ (1) >

Since the continuation strategies are history independent one easily verifies that these voting
rules are sequentially rational given the continuation play®. Given these voting rules it is clear
that it is much cheaper to select player 3 in a winning majority than to select player 1. It is readily
verified that taking these continuation strategies into account the optimal way to make proposals

for the respective players in the first period is:
If player 1 is recognized in period one she proposes z! (1) = (%,0. %)
If player 2 is recognized in period one she proposes z2 (1) = (0, 1, 3)
If player 3 is recognized in period one she proposes z3 (1) = (0, 3, §)

The proposed strategies constitutes a subgame perfect equilibrium of the game by construction.
We see that two of these three distributions on the outcome path do not correspond to the sym-
metric equilibrium. Hence we have shown that there is multiplicity of equilibria that goes beyond
the identities of the players who are selected for the winning majority. To see that there is indeed
a continuum of divisions supportable as subgame perfect equilibrium outcomes, just let 7 be the
probability that players behave as in the (particular) asymmetric equilibrium in the second session
and (1 — ) the probability that the players behave as in the symmetric equilibrium. With this
specification the ordering of the players continuation payoffs remains the same for any 7 € (0.1]
and it is easy to see that by choosing = appropriately we can support any z! = (s'.0,1 — s!).
where s! € [%, %] , as an equilibrium outcome (realized if player one proposes in first session).

If we increase the number of sessions, any distribution supportable as a subgame perfect equi-
librium in the 3-period model is supportable in the T-period model. In other words, the set of
equilibrium outcomes can only get larger as the number of periods increases. To see this, note that
if, after any history h,, the continuation values at time ¢ are given by V! (t) = V2 (t) = V3(t) = |
, then a proposal will be accepted if and only if at least two players get at least % Thus, the player
recognized to be the proposer at time £—1 will propose to keep % and give % to one of the other play-
ers. If the indifference is resolved by letting Pr [i gives % to jat timet —1 |1 recognized] = % for

all 4, j the continuation value before the random draw at time ¢ —1 is again given by V* (¢ — 1) = 1

9There are also more complicated voting rules consistent with subgame perfection, hut all we
are doing here is to construct a particular equilibrium.
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for i = 1,2,3'% By induction it follows that we can construct a symmetric equilibrium for any
T'—period game with continuation payoffs given by (3, %, 1) in each period. Now consider the class
of equilibria of the T-period game where all players are playing in accordance to the symmetric
equilibrium strategies whenever they are called to play in the third session or later. The (history
independent) continuation payoffs in the beginning of session 3 (before the identity of the proposer
is known) in this class of equilibria equals the (history independent) continuation payoff in the
beginning of the last session in our 3-period example. Hence, anything that can be supported as
an equilibrium with three rounds of bargaining can also be supported with T rounds. We can then
conclude that there is a continuum of divisions supportable as subgame perfect equilibria if there
are more than three rounds of bargaining.

While we only considered the case with three players and no discounting, the logic had nothing

to do with these assumption. Arguing as in the example above one can show:

Proposition 1. Suppose that § > 0, T > 3 and n > 3. Then there is a continuum of divisions

supportable as subgame perfect equilibria of the model.

The proof is a straightforward extension of the example above and is omitted. Arguing as
in the example one shows that in the second session from the end, any player who is selected
to make a proposal will propose to distribute §/n to (n — 1) /2 of the other players and keep
1-6(n — 1) /2n for herself. We can then construct a symmetric and some asymmetric equilibrium
as in the example. The last step is then to show that, no matter which player i who is recognized
in the first session, one can always support any division in between the two particular equilibrium
divisions.

One interesting feature of the asymmetric equilibrium in the example is that the expected
payoff is for player one is lower than for the other two players. At the same time, player one is the
player who, conditionally on reaching it, has the strongest position in the second round. While
this helps player one to take a somewhat larger share if making a proposal in the initial session,
it is a disadvantage if any of the other players is making a proposal: the other players have less to
gain by turning down proposals, so player one will simply be excluded from the winning coalition

in the first session.

Note that symmetric continuation values can also be achieved by pure strategies. For example
if player 1 selects player 2, player 2 selects player 3 and player 3 selects player 1 we get the same
continuation valuations as from randomizing with equal probabilities.

11



Example 2 (history dependent strategies).

The purpose of this example is to show that the set of equilibrium outcomes is enlarged even
further if history dependent strategies are allowed. In particular, there are now equilibria that
are qualitatively different from the set of equilibria in Markov strategies: there are now equilibria
where all players receive a positive share of the benefits, that is, equilibria at odds with Riker’s[25]
minimal winning coalition theorem.

To minimize the algebraic complexity we again consider the case with § = 1,n =3 and T = 3.
As in the previous example these restrictions are purely for expositional convenience. For i = 1.2.3
we let ' € X be some outcome (that we want to support as an equilibrium outcome when i is
making a proposal in the initial session) and suppose the players follow the following strategies if

called to make a proposal in the second session.

“he

If player ¢ € {1,2,3} proposed z* in session 1 and is recognized again in session 2 she keeps
for herself and randomizes with equal probabilities over which of the other players should be

offered .

If player ¢ € {1,2,3} proposed z’ # z* in session 1 and is recognized again in session 2 she keeps
2 and give 1§ to the player who was offered the most in period 1 (if ¥/ = zi* the proposer

flips a fair coin)

If player j # ¢ proposed ' = z7 in session 1 player i proposes to take -§- for herself and give % to
player j if recognized to make a proposal in session 2.
If player j 3 i proposed z’ # 27 in session 1 player ¢ proposes to take % for herself and give % to
player who did not propose in the first session.
Since some permutation of (%, %,0) with the proposer getting % is proposed after any his-

tory of play we know by the analysis in Example 1 that these proposal rules together with the
uniquely determined backwards induction continuation strategies implies Nash equilibrium play in
any subgame from the beginning of the second session and on.

Given the above proposal rules the continuation values of the game in the beginning of the
second session will depend on the history of play, i.e. whether the “target outcome” r' was

proposed or not.



Suppose that player i was recognized in session 1, proposed a division z’ # ' such that x7 # /%
and that this proposal was rejected by a majority. After any such history the continuation values

in the beginning of the second session are given by;

V3 (¢ defected from z*) = 12 = 2 for the player who proposed in session one

V3§ (i defected from z%) = 12+ 21 =4 for the player who was offered the most in period 1
Vi (i defected from z') = 124 33 = 3 for the player who was offered the least in period 1

If the deviation is such that 2’7 = z’* then the continuation value for the player who proposed
is unchanged, but is l—";' for the other two players. Combining these two cases we see that a first

period deviation from z* will be accepted if and only if either!!,

the proposer offered at least

O

to one of the other players or,

the proposer offered at least

[C=11%]

to one of the other players and strictly more than % to the other

or,
the proposer offered at least 1—75 to both the other players.

Inspecting the alternatives above we see that best way for the proposer to deviate from r' is
to take g and give % to any of the other players.
Next we consider the value of the game in the second session after a history where the rejected

proposal was in accordance to the proposed equilibrium strategies. Then:
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Since a proposal is accepted if and only if at least two players get at least their continuation
value of the game we conclude that if z** > % and 27 > 3 for some j # i, then z* will be accepted
if proposed in first session given the continuation strategies above. The best deviation for the
proposer gives a payoff of g, so if ¥ > g and if the proposal is accepted in equilibrium, then there
is no profitable deviation from z* for the proposer in the first period. Hence we can for example

construct an equilibrium where the target outcome is z! = (, 3, &)if player 1 is recognized.

"1To be complete we should also include the provision that the proposer offered at least 2 to

herself, since otherwise she would have a strict incentive to reject her own proposal. The conditions
below assumes that the proposer will vote to accept.

13



z? = (&, 2, ) if player 2 is recognized and z% = (% 15+ 3) if player 3 is recognized in session
12,

The model as specified in this paper assumes that the utility functions are linear in the share
of benefits. In this case an equilibrium is efficient if and only if the players agree in the first period
(this is of course only relevant with § < 1) and no resources are thrown away. However, in many
applications it is natural to assume that there is some curvature in the utility functions, reflecting
attitudes towards risk or simply that the marginal benefits of additional spending in a district may
be decreasing. In this case the type of strategies described in Example 2 actually serves a purpose:
it will now be possible to increase the ex ante expected utility for all players by threatening to
punish proposers for making “too unfair” proposals in the initial session.

It is not surprising that the set of divisions supportable as equilibrium outcomes increases as
the number of sessions increases. However, if the players are not patient enough or if there are

too few (i.e. 3) players, then it is not possible to support an arbitrary distribution as a subgame

perfect equilibrium. The general result is:

Proposition 2. Suppose there are an odd number of players n > 3 . Then, for any distribution
of benefits = such that z; > 0 for all i € [ there isa T € N and some §* < 1 such that r is
supportable as a subgame perfect Nash equilibrium in the model if § > 6* and if there are at least

T rounds of bargaining.

The proof is relegated to the appendix in Section 1.6.2. The idea is to construct strategies
such that, [1] in the voting stage, voters are punished if an equilibrium proposal is rejected, 2]
in the voting stage, the "right group” of voters is rewarded if a deviant proposal is rejected, (3]
the proposer is punished if he proposes something else than the equilibrium proposal. The main
complication in the argument is that two different constructions have to be used. The equilibrium
strategies constructed are similar to the strategies in the second example towards the end of the
game. In sessions when there are not so many rounds left to go the strategies works roughly
the following way: A proposer that deviates from her “target proposal” will be excluded from
the winning majority in the next session. However, if a proposal is accepted the game ends, so
discipline must be induced for the voters as well. To do this (the first (n + 1) /2) voters that reject

deviant proposals are rewarded by inclusion in the winning majority in the next session. It is

12If we allow the players to throw away resources we can also support inefficient equilibria. For

example it is possible to support z' = (2, &,0),z%2 = (0, §, &).23 = (0, &.8).
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shown that these strategies makes it possible to induce the proposer to propose less for herself as
the number of sessions remaining is increased. Also, individual voters can be induced to accept
proposals that give them a smaller share, since they will otherwise be punished by exclusion from
the winning majority.

While the set of distributions supportable by these strategies is increasing in the number of
sessions remaining, they cannot support the whole simplex. But, if there are sufficiently many
periods continuation strategies of the type discussed above can be used to support equilibria with
sufficient flexibility in continuation valuations so that it is possible to "match” deviant proposals
in the beginning of the game. This matching works roughly as follows: for any deviant proposal,
let the equilibrium proposal for all players in the next period be such that the (n + 1) /2 players
that get the least under the deviation get something that in present value terms is at least as great
as under the deviation (and strictly more if recognized to propose). A player who deviates when
proposing is always excluded, unless recognized again in the next session. Working backward we
show that as the number of bargaining sessions go to infinity, the share the proposer gives to herself
goes to zero in this equilibrium. Using the specific equilibrium we construct, we can show that
irrespective how we pick an initial proposal (in the interior of the simplex), any player selected
to make a proposal in the first period will follow the recommendation and the proposal will be
accepted by a majority.

Note that for large legislatures, the condition that § > § is not a restriction since § — 0 as
n — 0. The reason for the requirement that z; > 0 for all players is that for any finite horizon
there is a probability for the same player to be recognized in every session. Hence the proposer

must get something strictly possible in order not to have incentives to deviate.

1.3.1. The Role of Sequential Voting

As is well known, simultaneous move voting games typically yield multiple equilibria. For example,
if 3 players all prefer alternative A to alternative B it is still a Nash equilibrium for everyone to vote
for B since no player can affect the outcome by a unilateral deviation. To avoid these unnatural
equilibria it is standard to restrict attention to weakly undominated Nash equilibria in voting
models.

These considerations are irrelevant when voting is performed sequentially. Consider the example
above, but suppose that player 1 votes first. Then, after observing how player 1 voted, player 2

votes and finally player 3 votes after observing the actions of the two other players. Now, if player
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3 is pivotal he will vote for A, his most preferred alternative. Foreseeing the optimal response by
player 3, player 2 will vote for A if player 1 voted for B and is indifferent if player one voted for
A. Finally player 1 can also vote for anything since no matter what he does there will always be a
majority for A, his most preferred outcome.

The logic of this example generalizes so that the set of subgame perfect equilibrium outcomes!3
of the game cannot be further refined by iterative elimination of conditionally weakly dominated
strategies. In fact, if conditionally weakly dominated voting strategies are eliminated in the model
with simultaneous voting, then the set of equilibrium outcomes is the same as for the model with

sequential voting.

1.4. Heterogeneous Time Preferences

In the examples and in the proof of Proposition 2 we exploited the fact that the set of optimal
proposals in the second period from the end is to give % to any group of "T"‘ other players and
keep the rest. Since the proposer is indifferent between a proposal where a particular set of players
are included in the set of "winners” and a strategy where say player i is excluded and player j is
included the proposer can punish and reward players without costs

Assume instead that the proposer in the penultimate period is not indifferent over whom to
select to receive positive benefits. This could be due to differences in the probabilities of recognition,
differences in the discount factors or payoff externalities between nearby districts. Then there is a
unique equilibrium proposal in the penultimate stage and weighting by the respective probabilities
of recognition we can compute the unique equilibrium continuation values in the beginning of the
second period from the end. Now if all these are distinct there is a unique optimal proposal in
the next period (give the discounted continuation payoff to the (n — 1) /2 players with the lowest
continuation payoff). Proceeding backwards, as long as the continuation values of the game are
distinct in each stage backwards induction produces a unique solution.

Consider the case with heterogenous time preferences and, say, three players with §; > 6, > 3.
Then if players 1 or 2 is to propose in the second stage from the end they will propose to give
% to player 3 since player 3 will be the cheapest player to bribe. For the same reason player
3 would select player 2. Now the unique equilibrium continuation values can be computed as

Vi=3(1-%), %@ =5(1-%)+3%and V3(2) = 1 (1-%) + 2% So the question

B3 Through the paper the term “outcome” refers to a physical allocation.
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whether the proposals at the third stage from the end are unique or not is a question whether
61V1 (2) # 82V2 (2) # 63V5 (2) or not. Intuitively, if we would select (81, 62,83) randomly we would
be quite surprised if we found that we had equality. Actually it is not hard to see that for almost
all choices of (81, 82,83) we have that §,V; (2) # 6,V5 (2) # 63V3(2).

It is natural to conjecture that this logic can be extended beyond the three person case and
the three period case. This conjecture turns out to be right and the purpose of this section is to
show this. The main result is that, for any choice of discount factors for the players from a subset
of [0,1]" with full Lebesgue measure, there is a unique subgame perfect equilibrium. Hence the
results for the basic model of Section 1.2 are only interesting if we have any reasons to believe that
the probabilities of recognition and discount factors are exactly equal'!. If we believe that there
are slight differences, the generic uniqueness result implies that the symmetric model is nct a good
approximation of the “right” model.

Before proceeding to the formal analysis, note that it does not matter whether the asymmetry
is in time preferences or in probabilities of recognition. Actually, if the probabilities of recognition
are allowed to be different across periods, then a simpler argument than the argument below can
be made to establish generic uniqueness. However, it is easier to interpret the case with differences
in discount factors or time invariant differences in the probability of recognition, so we stick to this
case.

Let § = (61,..-,6n) € [0,1]" be the vector of discount factors for the players. The §—perturbation
of the symmetric game G7 will be denoted GT (§) and is identical to the basic model described
in Section 1. 2 with the exception that the discount factors need not be identical. The set of
subgame perfect equilibria of G7 (§) is denoted SPE (T,6). The (ex ante) continuation value of
the game for player i € I given strategy profile ¢ and history h, € H, will be denoted V: (ht | a’,,) .
where o), denotes the truncation of o starting at time t. Note here that in Section 1. 2 we
reserved the notation H, for the set of possible histories at the beginning of session t!5and that
Vi (he | o)) is evaluated before it is known who is to make a proposal in the session. If for all
a,0 € SPE(T,6) and all h,,ﬁt € H, it is the case that V; (h, | o'|,) =V (E, | 5“) we will denote

the unique equilibrium continuation value for i at time ¢ as V; ().

Lemma 1. Suppose that V; (t) = Vi (k| 0p) = Vi (he | &) for all 0,6 € SPE (T,6) and all
| !

*4Actually, as long as the product of the two is equal we get a continuum of equilibria.

15The set of possible histories at nodes where a proposal is currently voted on are denoted H]
where j indexes how many players in the predetermined voting order have already cast their votes.
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he,he € H, and that there is a player m € I such that the sets A = {i € [ | §;V; (t) > 6 Vin (£)}
and B = {i € I | §;V; (t) < 6;xVin (t)} both have cardinality 251, Then there is a unique equilibrium

proposal at time t + 1 for any playeri € I, z}} _H

The proof is in the appendix in Section 1.6.2, but the idea is simple. All that the Lemma says
is that, under the hypothesis of the Lemma, any player must select (n — 1) /2 players with the
highest indices to receive their discounted continuation valuations. Clearly, any other proposal
would be suboptimal, since then the proposer would have to give away a larger share to other

players.

Lemma 2. Suppose the assumptions made in Lemma 1 holds. Then for each i € [ there exists
a unique value V; (t + 1) such that V; (t +1) = (ht+1 | Oles1) = Vi (Tzu_l [ 5’]:-{-1) for all ¢.7 €
SPE (T. 6) and all h.t+1,h-¢+[ € Hg.

Proof. By Lemma 1 there is a unique equilibrium proposal at time ¢ + 1 for any i € [. This
proposal is accepted for sure and the continuation value at t+1 for a particular player is simply the
sum over all players of the share the player gets if j is recognized multiplied by the probability that
J is recognized. Since the proposals are unique the numbers computed in this way are obviously
unique for each player.

Note that these continuation values can be written as

( (1— é&va)) for i < 2
Vi(t+1) =4 <1— D) t%V(t)>4-"‘—_‘2‘:{&(5Z for i = 2fL (1.1)
j=2g2
%( +6,Vi(t) - z:jﬂ&jvj(t))ﬁd"—“%ﬂl for ¢ > 2l
\ j=%3

Using Lemma 1 we now proceed to prove that a generic perturbation of the original game GT (§ )
has a unique equilibrium outcome. To be precise, any two equilibria differ only with respect to
the voting strategies given a particular proposal at a particular time and these differences do not

affect the outcome of the voting over this particular proposal.

Proposition 3. For any finite T there exists a set DT C [0,1]" with full Lebesgue measure such

that if 6§ € DT and if 0,5 € SPE (T, 6) the following holds true

18



1 Vi(t) = Vi (he | o) = Vi (E, 131,) for all 0,5 € SPE(T,8) all hy,h, € H, all i € I and all
t <T. Furthermore V; (t) > 0 for all i € I and all t'6.

2. Forany he,hi € H, ,anyic [ andallt <T:

a The local strategy at a node where i makes a proposal is pure.

b The proposal made at time t are history-independent . Le. (abusing notation) for any
o € SPE(T,6) o} : H, — A" satisfies ot (k) = 0! (E) for all hy, b, € H,.
¢ All equilibrium strategies and all possible histories induces the same proposal if any par-

ticular player i is recognized at time t. Le. oi (h,) = &+ (TI.) for all hy, h, € H,.

d All proposals on the equilibrium path are accepted for sure.

Hence the equilibrium outcome'” is the same for all 7,5 € SPE (T, 6)

Proof. The proof is by induction. Before getting into the details of the proof some words
about the logic might be helpful. We assume that when there are ¢ periods left to go there is a
unique equilibrium proposal for any player i for all §€ [0, 1]" \ X, where x(X,) = 0 and p denotes
the Lebesgue measure defined over [0,1]". We show that the set N4 C [0,1]" such that there
is not a unique equilibrium proposal at time ¢ + 1 satisfies 4 (N,,;) = 0. Since the union of two
sets of measure zero has measure zero it follows that there is a unique equilibrium proposal for all

be [0, 1]n. \ Xt+1 where 4\".*.1 = ng U NH—I = (Xt+1) =0.
The Last stage

In the last stage we argue as in the case with a common discount factor to show that, for any
6 € [0,1]", the unique equilibrium outcome is for the proposer to suggest to take everything and
this being accepted. Hence the continuation values in the beginning of the last session are uniquely
determined, V; (1) = Vi (h1 | o)) = V; (ki | 31) = & for all 0,5 € SPE (T, 8) all by, Ry € Hy. 50

the statement of Proposition 3 holds for ¢ = 1.

The Induction Step

16This is actually true in any subgame perfect equilibrium of the finite game. The intuitive reason
is that for all players there is a probability that the player is recognized in every session.
'"Remember that we refer distributions of benefits as outcomes.
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Suppose that the statement holds for the model with ¢ rounds of bargaining. By Lemma 1

there will then be a unique equilibrium proposal at ¢ + 1 if

where we have relabeled the players so that 6,V (t) > Vo (t) 2 ... 2 8,V, (t). Our task is to
show that for almost all § € [0, 1]" the two strict inequalities above is satisfied. Clearly, a sufficient
condition for the above inequality to hold is if &;V; (t) # &;V; (t) for all i,j with i 3 j (Fort =1
we have V; (t) = V; (t) = L. Since {§ €[0,1]" | §; = §; for some pair (Z,7)} has measure zero. this
shows that the proposition holds for the case with two rounds of bargaining). For an arbitrary
t > 2 we need to introduce some notation. It is convenient to first transform (1.1) to matrix

notation. We can express (1.1) as

r(t)=Aiz(t—-1) (1.2)
where z (t) = (8, Vi (t),....6aV, (t)) and A, is given by

A: B .
nxn 0 Ct

where A, is of order (23! x 25L), B, is of order (252, 2£1),0 is of order (2, 251) and C, is of

order (%! x 2#1) . The explicit formulas for the sub-matrices are given by
2 2

U s s
A=) 0 0 ¢ -3 Y
0 —Lt— 0 0 5 &
nVa(t-1)
A= 0 0 , Be= " " (1.4)
5 5
0 0 ——Li— ezl trd
"-V..ﬂ (t~1) 0 —_— -
§ns1 (n=1) L S,y
1 o = e
( nV,.f.l (e—1) + 2n TTm n
- -5._.# . B _5"+3 _Suf-:a
n nV, .3 (t=1) % n n
Ce= T (1.5)
Sy
- n
§ 5 s 1
_—# ——:- en —-#' —nV,,(t—l) +5;:_:‘ﬂ6n

To get these expressions we multiply both sides of the expression for V; (t) by §; and to rearrange

Lemma 3. A, has full rank

A direct proof of Lemma 3 is found in the appendix in Section 1.6.3 . It is also possible to

show that A, is a dominant diagonal matrix, which implies that it must have full rank. Since the
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date t is arbitrary, the Lemma holds for all dates t— 1, ....3 (by pre-multiplication by appropriately
chosen (full rank) permutation matrix in each step we can in principle keep track of the agents).
Hence, = (t) = Q,%, where @, is some permutation of A;A,_;...A3. Since As,...A, all have full
rank it follows that Q, has full rank.

Let ¢; be row i in Q. and suppose that §° is critical for period ¢ + 1. By Lemma 1 it follows

that &7V (t) = 6;V; (t) for some i, j with i # j. Thus:
BIVi(t) = 8V; () & i (8) = 23 (8) & @6 = g;8" & (g5 — 43) 6" = 0
Therefore the set of critical values at time ¢ + 1, is given by
Neyr = {8€[0,1]" | (¢: — g;) 6" =0 for some pair ¢;,q; i.e. some pair of rows of Q, }

But Q. has full rank, so each pair g;,q; are linearly independent, so (g; — q;)has some strictly
positive element. Therefore N, is the intersection between [0, 1|" and a finite set of hyperplanes
in R™. It follows that p (Ni41) = 0. Since X, = {6 €{0,1]" | § critical for some T < t} has measure

zero by the induction hypothesis it follows that
Xewr = {6 €[0,1]" | § critical for some 7 < £ + 1} = UL - Noys

has measure zero. By induction, X7 has measure zero for any T, which proves the result. l

1.5. Concluding Remarks

We have considered the finite horizon version of a legislative bargaining model due to Baron and
Ferejohn[6]. We showed that there is a continuum of divisions supportable as an equilibrium
outcome for any (common) discount factor as long as there are three or more rounds of bargaining.
Given that the players are sufficiently patient we showed that for any division of benefits such that
all players receive a strictly positive share, there is a T large enough, so that if there are at least
T rounds of bargaining, the proposed division can be supported as an equilibrium outcome.

For the specification of the model considered in this paper, there are no particular reasons why
we would expect the players to coordinate on the rather complicated equilibrium strategies used in
the examples and in the proof of the “limit folk theorem”. However, in most interesting applications
of the model there is some curvature of the players’ utility function. While I don’t have a proof
that covers this more general case, it seems that the logic of the arguments have nothing to do

with the linear payoffs. Thus, I conjecture that the indeterminacy results, if anything, only would
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be made stronger by assuming concave payoff functions. Moreover, in this case there would be
an efficiency rationale for coordination on an equilibrium where all players receive positive shares
with probability 1.

In Section 1. 4 the model is slightly generalized to allow for differences in the discount rate
across players. One can think of this as reduced form for different probabilities of reelection or
effects of term limits etc. It should however be noted that the

model with asymmetric payoff functions considered in Section 1. 4 we showed that, for generic
choices of discount factors, there is a unique subgame perfect equilibrium outcome. In this generi-
cally unique equilibrium the continuation strategies induces a unique distribution over the physical
outcomes after any history of play. These distributions will typically be varying over time, but not
history dependent.

The equilibrium outcomes of the non-symmetric model will have one important qualitative
property in common with the stationary equilibrium of the infinite model: only a majority of
the barest possible size will receive strictly positive benefits. Thus, Rikers’ [25] minimal winning
coalition theorem holds generically.

If we take limit as the number of sessions goes to infinity and consider the sequence of equilib-
rium proposals, then we note that these sequences can not converge unless the discounted value
of the game is the same for all players when there is some finite number of sessions left. But,
if the discounted value of the game is the same for all players, then we don’t have uniqueness.
Hence, when there is a unique equilibrium it can not approach the stationary equilibrium when
the discount factors converges towards a common discount factor and the number of sessions goes

to infinity.

1.6. Appendix

1.6.1. Proof of Proposition 2

Proof.  Time is counted backwards and we assume that n is odd. We let {m, }tT=1 be a sequence
of real numbers (to be specified later) with m, € [0,1] for each t. A strategy profile will be
constructed where each player i € I follows symmetric proposal strategies p* : H' — X when
called to make a proposal. Suppose that i’ € I was called to make a proposal at time ¢ + 1 (i.e.
the round before round t), proposed p* (he+1) and also voted in favor of this proposal, but that

this proposal was rejected by a majority. Furthermore, let the proposer at ¢ be indexed by i. After
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all histories h, with these properties we let p* (h,) = p*! (h,) , ..., p" (h:)'® be given by

my forj=1
p7 (he) = 0 for 231 randomly select agents who voted to reject p (het1) (1.6)
2 L__T‘ otherwise

If on the other hand the proposer himself voted to reject the proposal and a different agent is

selected to make a proposal at time ¢, then

m, forj=i
P (he) = 0 for the proposer at ¢ + 1 and 252 randomly select rejectors (1.7)
2(-my) otherwise

n—1
Note in particular that (regardless of whether the proposer at time ¢ + 1 voted to reject or not) all
agents who voted in favor of pi' (hes1) get a positive share with probability one. Also, since %‘
players receive %l we have that j P (k) =m, + "T-l-z—(-:—l—:'%l =1, so the proposal is always
feasible for any m, € [0,1]. For histories where in the last period agent i’ was selected to propose
and proposed z;4; # p* (hey1) and the current proposer i was among the first %‘ players who

voted to reject!9, then

my forj=1
P (he) = g;—__%‘l for j # i’ among first -’Ezﬂ players who voted to reject r,.; (1.8)
0 otherwise

If the current proposer was not among the "—'2Ll first agents who voted to reject one of the agents

in this group is drawn at random to receive nothing, i.e.

m, forj =1
p7 (k) = -2-(:1__—';"1 251 randomly select players from 2L first rejectors (1.9)
0

Observe that p' specifies what proposal to make after an arbitrary history no matter how the
sequence m. is specified. Our goal is to select the sequence m, so that p* is part of a subgame
perfect equilibrium, that is, it is always sequentially rational .or the current proposer to make
proposals in accordance to p'. Hence, we must see under what conditions deviant proposals are

rejected and under what conditions p* (h,) is accepted.

18The first superscript refers to the identity of the proposer and the second to the receiver.
19Note that it is not assumed that i’ # i. In fact, with equal probabilities of recognition, the
probability that ' =1iis 1/n.
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Assume that the strategy profile s is such that at time ¢ each player i € [ follows proposal rule
p' (h) and that this proposal is accepted. Let j be an agent who was among first %’—' players
(other than the proposer) who voted to reject a deviant proposal at time ¢ + 1. Now we can

compute agent j* ex ante continuation payoff at time ¢ (before identity of proposer is known) as

: 1 n—-1/1 1 2 2(1 —my,) _
V3 (ht,slh,)—;mt-f- o (§+§<1—n+1)) m—1 = Vi (z.0) (1.10)

The interpretation is as follows: with probability % the agent is called to make a proposal which
gives him m,. with probability % the agent is not called to make a proposal. In this case he will
get ?i;%'?‘l for sure if someone in the group of %‘ rejectors is proposing (which happens with
probability % conditional on that someone else is proposing), while if the proposer is not from this
group (conditional probability %) he may be the unlucky agent who does not get anything (with
conditional probability ﬁ) Simplifying we get that the unconditional probability that the agent
will receive ﬂ::_—'l“l is :—_“_}, so

n—12(1-—m¢)

1.11
n+l1l n-1 ( )

1
Vi (z,0) = ;mt +

Still assuming all agents follow p if called to propose and that any proposal in accordance to p
is accepted at time t we can compute the ex ante continuation payoff for any agent j who was
not among the first 24! to reject. Since these agents will receive zero benefits unless called to
propose we have that V7 (h¢,s)n,) = ~m, = V;(z,1) . The continuation payoff for the proposer
of the previous period is V* (h,,s”,() = '};mg, irrespective of whether the proposer voted to accept
or reject his own proposal. Now consider the case where the proposal rejected in the last period
was in accordance to p. Then the ex ante continuation payoff for an agent j who voted to accept
the proposal is given by

n—12(1-my)

. 1
v (ke sin,) =;mt+ n n-1

=Vi(p,1), (1.12)

while if j is in the set of r > %‘ agents who voted to reject p(h.4,) (and if the proposer is not

among the agents who voted to reject) we have that

j o me r—1/(2r-n-1 n—r (2r—-n+1 2(1 —m,)
Vi (hesin) = n+( n (2(r—1) + n 2r n-—1

= ‘/t (p,T,O). (113)

A similar formula can be derived in the case when the proposer is among the agents who voted to
reject, but, as we will see, the proposer will always be better off by deviating from the proposal

rule than from following the proposal rule and then vote to reject.
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Note that if p (he+1) was rejected by a minimal winning coalition, i.e. r = (n + 1) /2, then
(2r-n-1)/2(r—1)=0and (2r—n+1)/2r =2/(n+1) : in this case agent j will only receive
something with positive probability when someone outside the rejecting majority from last period
is called to propose (and only one agent is needed from this group to get a majority together with
the group of acceptors from last period so the probability of getting a positive share conditional
on that someone outside the rejecting majority is recognized is 2/ (n + 1)).

A voting rule is a mapping d} : H, ,k @ _, {1,0} and we could in principle work out exactly what
these must be if in the next period any player i selected to make a proposal at ¢ — 1 will do this
in accordance to p* and if any such proposal is accepted. However, given the particular proposal
rules we consider, the incentives for the proposer is only affected by whether proposal is accepted
or not and the proposers own voting behavior. For this reason it will be sufficient to know whether

the outcome of the voting stage is to accept or not, which simplifies the analysis a great deal.

Lemma 4. Let i’ € I denote the proposer at time t and let Vi (z,0) = T=l and Vi (£.0)
= Vi1 (z,0) for all i # ¢'. Suppose that all agents i € I follow the proposal rule p* at time t — 1
and that the voting rules at time t — 1 are such that p' (h._,) is always accepted for any h,_, and

any i € I. Then if the current proposer i’ proposes some allocation r, # p* (h:) we have that:

iIf 1:{ > 5sz-1 (z,0) for at least %i agents j € I there exists no sequentially rational voting

rules such that z, is rejected.

i If r{ < 6V,”'_1 (z,0) for at least "—;’—‘ agents j € I there exists no sequentially rational voting

rules such that z, is accepted.

iii Ifz} > 6V,’_ 1 (z,0) for at least -'%i agents j € I there exists some sequentially rational

voting rules such that z; is accepted.

Proof. i) Suppose =7 > V,’;l (z,0) for all j € J, where |J| = 2! Without loss of generality
relabel the players so that j =1 is the first agent in J who votes at round ¢, 2 is the second agent
in J to vote,....,and j = (n + 1) /2 is the last agent in J to vote. First consider the decision of
agent (n + 1) /2 after an arbitrary sequence of votes. Since agent (n + 1) /2 is not necessarily the
last agent to vote he must in general take the continuation strategies of the other players into
consideration But if (n — 1) /2 votes have already been cast in favor of the proposal and if the

continuation strategies are such that there is a positive probability that the proposal is rejected
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if (n +1) /2 votes to reject there is a strict incentive for the agent to vote in favor of proposal.
Hence the proposal must be accepted with probability 1 if when the last agent in J is called to
vote, (n — 1) /2 votes have already been cast in favor of the proposal. Now consider j < (n+1)/2.

Suppose that the continuation strategies are such that:

1. z; accepted for sure if j votes in favor of proposal.

2. z, rejected with positive probability if j votes to reject.

For the same reason as above j has a strict incentive to vote in favor of z,. Now suppose that
z; would be rejected. Then there must be some agent j € J who votes to reject??, since otherwise
there is a majority for x;. Let j’ be the first agent who votes to reject. Since j’ strictly prefers to
accept the proposal there must be some j” € J with j > j’ (that is, voting after j’) such that
J” would reject even if j' voted to accept. But j” also strictly prefers the proposal so there must
be j” € J with j” > j” such that ;" would reject even if both j* and j” voted to accept and
continuing by induction we find that j = (n + 1) /2 must reject even if all other j € J has voted
to accept. But since agent (n + 1) /2 strictly prefers z, this is a contradiction.

ii) Let J be a set of (n + 1) /2 agents such that the discounted value of being among the first
(n + 1) /2 rejectors is strictly higher than the payoff from the current proposal and argue as in i).

iii) Proceed by backwards induction. If at least (n — 1) /2 votes have already been cast in favor
of the proposal it is a best response for j = (n + 1) /2 to vote in favor of proposal (in fact, when
exactly (n — 1) /2 votes have been cast in favor of z, it is a conditionally weakly dominated action
to accept). If j* = (n — 1) /2 assumes that the last player in 7 will always accept after any sequence
of votes where at least (n — 1) /2 votes are in favor, it is a best response for j to vote in favor of
z, after any history where at least (n — 3) /2 votes are already in favor of z,. The result follows by

(backwards) induction.. ll

Lemma 5. Suppose that all agents i € I follow the proposal rule p' at time t — 1 and that the
voting rules at time t — 1 are such that p* (h,_,) is always accepted for any he_y and any i € [.
Furthermore, suppose that m,_; < 1. Then there exists no sequentially rational voting rules and

no history h, such that p* (h.) is rejected by more that (n + 1) /2 players.

#In the rest of this argument, “reject” means reject with positive probability.



Proof.  Suppose (n + 1) /2 players have already voted to reject p* (h;) when it is agent j° turn

to vote. If j votes in favor of proposal, her discounted expected payoff is

n—12(1 —mc_l))’

1.14
n n-1 ( )

1
614_.1 (p, 1) =6 (;mg-[ +

while if j votes to reject her discounted expected payoff is
_ me—y r-1/2r-n-~1 n—-r f2r—-n+1 2(1 — me—y) .
6Ve—1(p,0,7) —6( ~ +( " ( 2 =) )+ - ( o )) — ) (1.15)

where r > (n + 1) /2. To get the result we need to verify that V;_; (p,1) > Vi_; (p,0.r). Assume

that this it not the case and that m,_; < 1. Then

n—ls(r—l)(i'(:—iz)l>+(n_r)(2r—27:+1>'

It is easily verified that 22"(:—21‘)1 < 1and 2'—“2:_'1’—‘ < 1, which implies that the right hand side of the
expression is strictly less than n — 1, which is a contradiction. Thus V;_{ (p.1) > Vi_; (p.0.r) and

the result follows. l

Lemma 6. Suppose that all agents i € I follow the proposal rule p* at time t — 1 and that the
voting rules at time t — 1 are such that p* (h,_,) is always accepted for any h,_; and anv i € [

(where it is assumed that m,_; < 1). Then:

i If p*7 (he) > 6Viey (.0, 2£t) for at least 2 agents j € I there exists no sequentially
rational voting rules such that z, is rejected.

ii If pY (he) < 6Vi—1 (p,0, 241) for at least 2EL agents j € I there exists no sequentially
rational voting rules such that z, is accepted.

iii If p (he) > 6Vioy (p,0, 2EL) for at least 241 agents j € [ there exists some sequentially

rational voting rules such that z, is accepted.
The proof is using essentially the same arguments as in the proof of Lemma 4 and is omitted.

Lemma 7. Suppose that all agents i € I follow the proposal rule p* at time t — 1 and that
the voting rules at time t — 1 are such that p'(h,—,) is always accepted for any h,_; and any
i € I. Furthermore, suppose that all agents’ voting rules in round t are sequentially rational given
the continuation strategies and that p* (h,) is accepted with probability one by these sequentially
rational voting rules. Then, if m; > max {1 - @6%-1 (z,0), &"T“'} there is no profitable

deviation from p* (h,) for agent i when called to make a proposal at time t after history h,.
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Proof. By Part iii of Lemma 4, a necessary condition for a proposal r, # p (h,) to be accepted
is that =] > 6th_1 (z.0) for at least (n + 1) /2 agents j € . Assuming that the proposer votes
in favor of his own proposal (and that everyone else accepts when indifferent) it follows that
the best deviation for the proposer is to give 6V;_; (z,0) to (n — 1) /2 other players and keep

- -"%"5%_1 (z,0) for himself. On the other hand, if agent i* proposal is rejected by a majority
the discounted expected value of the proposers payoffs is ém,_,/n. Since m, is what the proposer
get if he sticks to the proposed strategy p* if p' (h) is accepted ,by assumption, the voting rules
are such that p* (h.) is accepted when proposed there is consequently no profitable deviation if

me 2 max {1~ S505Vic, (2,0, 2} m

Lemma 8. Let m; =1 and m; =1 — 6L2—l) (m;“ + 2“;::;")) for t =2,3,..T . Then there

exists voting rules such that these voting rules together with the proposal rules (p'...., p") consti-
tutes a subgame perfect equilibrium, where after any history of play h, any proposal in accordance

to p' is always accepted by a majority.

Proof. The unique subgame perfect equilibrium outcome for the one-period game has the
proposer suggesting that he takes everything and this proposal is accepted. With m; = 1 this is
also what the proposal rule p* specifies each player i do propose after any history h;. Now consider
some period ¢ > 1 and suppose that the proposal rules p', ..., p® (with m, recursively defined above)
together with some voting rules which are such that all proposals in accordance to p* are accepted
are consistent with Nash equilibrium play in every subgame from period ¢t — 1 on. We want to
show that under these hypothesizes, there exists sequentially rational voting rules such that: i)
any proposal in accordance to p' is accepted by a majority and ii) that there is no deviant proposal
that is accepted under these voting rules that makes the proposer strictly better off.

i) By Lemma 6, if p/ (h:) > 6Vi— (p,0, 25) for at least 241 agents j € I there exists some
sequentially rational voting rules such that p* (h.) is accepted (and if the equality is strict for %l
players the proposal is accepted under all sequentially rational voting rules). By applying the

definition of p' we see that if

m, > &V, (p,O, %1) and (1.16)
2(1-my) n+1
1 > (P, 0, T’)

then the value of the proposal is higher than the discounted "rejection” continuation value for the

l—m.

proposer and all agents who receive a share &Y?l’ so by Lemma 6 it is consistent with subgame
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perfection that p* (h,) is accepted if we can verify that the inequalities above holds. Note that

me = 1-— 6("2' D) (m;“ + z(ln_:ll“‘)) —1-5 ; Dy, (z,0) (L.17)
i
Hom) - v (z,0)

and that if m,_; < 1 then
(Tl - 1) 2(1 - mg_l)
n+1)(n-1)

1 (n—l)?(l—mt_l)_ n+1
> pru-tt n(n+1)(n-1) =V (2.0,

Hence, if m,_; < 1 and § > 0 it follows that p” (h,) > 6V;_, (p,0,2£!) for the 25! agents

(1.18)

1
Vi1 (£,0) = ;m:—l'f'

A

who receive 3(:1;_';3)- under the proposal p* (h). Left to verify is that the current proposer has
no incentives to reject the proposal. But given that the proposer would vote to reject her own
proposal p’ (h;) she is always excluded from the winning majority in the next period unless called
to propose again. The discounted continuation value for the proposer if she rejects is thus ‘”"%.

Hence, if

n - 2 n n+1

dm,_y <1—6("—1) (ml—l +2(1-—m¢_1)) (1.19)

then the proposer has no incentives to reject. Suppose for contradiction that this inequality is not
met. After some rearranging we then have

éme—y (n +1) _6(l—miy)(n-1)

n 2 ! n+1 (1:20)
i
(1-mi—y)n(n-1) 2n
m_; + (n+1)2 m+1)

Intuitively we see that the left hand side goes to one as n — oo, while the right hand side is always
strictly larger than one, so we see directly that if the legislature is large enough, then the proposer
has a strict incentive to vote to accept the proposal. However, as we will show next, there is no
incentive to deviate even if the legislature is small. The right hand side of (1.20) is decreasing in
6. Thus, if the inequality above is satisfied for some & € (0,1), it is also satisfied for § = 1. Hence.

the proposer has an incentive to reject proposal only if

(1-miy)n(n-1) 2n
me—y + (nt 1)2 > mt D) & (1.21)
m,-l((n+1)2—n(n—1))+n(n—1) = m1(Sn+1l)+n(n-1)>
> 2n(n+1)



Since m; < 1 for all ¢ we must then have that
In+l+nn-1)>2n(n+1)e1>n? (1.22)

which is a contradiction. We conclude that the proposer and "T"’ other players always have an
incentive to accept the proposal. It follows that if all agents follow the specified proposal rules
after any history, then there exists sequentially rational voting rules such that any proposal in
accordance to these rules will be accepted.

Left to verify is that the proposer has no incentive to deviate when making a proposal. But. by
construction, m, equals the payoff the proposer would get under the best possible deviation that
would be accepted by a majority. Hence, we only need to check that the proposer does not want
to propose something that would be rejected. But such proposal would give a discounted expected
payoff of ‘”"T‘" , 50 the calculations above shows that this is not a profitable deviation. ll

While the proposal rules described together with appropriate voting rules together with some
“initial proposal” satisfying certain conditions always constitutes a subgame perfect equilibrium.

there are some limits as to what these strategies can achieve. Let m* be defined as

1— §(n-1)
« __ (n+1) .
m = (1.23)
- 2n(n+1)

Note that m* — 0 as § — 1 and n — co. This has the implication that if n is large and § is close to
one, then almost every allocation can be supported as a subgame perfect equilibrium already with

the proposal rules considered so far (however, as we will see later, we can do better than this).

Lemma 9. There exists some T < oo such that if there are at least T rounds of bargaining, then
any initial proposals p (ht) = (p' (hr),...,p" (hr)) where for each player i € I , pi (hy) > m"
and p¥ (hr) > 6 [%m‘ + n(++1) (1- m‘)] for 231 players j # i can be supported as a subgame

perfect equilibrium.

Proof. We first show that {m,} is a monotonically decreasing sequence with m, € [0, 1] for all
t and m, — m*. To see that m, € [0, 1] for all t we note first that m; = 1 € [0, 1]. If m,_y €[0.1]

we have that

§(n - o 2(1-m,
m = 1 (n2 1) (m:l1+ (ln‘*_m1 1))= (1.24)
3 me_16(n—1)% §(n-1) §(n-1)° 6b(m-—1)
= 1+ 2n(n+1)  (n+1) 1 2n(n+1) (n+1) <l
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and
me_16(n—1)2  s(n-1) EIGES))

m(n+l)  (m+l) mrD % (1.25)

me =1+

By induction it follows that m, € [0,1] for all t. To show that the sequence is monotonically
decreasing we note that my < m; = 1 and that

§(n—-1)>?

It D) (Mme—y —me_2). (1.26)

mg—me =

It follows by induction that m, is monotonically decreasing. Since {m,} is a monotonic sequence in
a compact set it must have a limit in [0, 1] and it follows by straightforward algebra that this limit
is given by m*. The result then follows since if the inequalities hold in the limit, then there exists
some T large enough such that p* (hy) > mr and p“ (hy) > § [%m-p + 'n(nz_+1) (1- m—p)] for 251
players j # i. By Lemma 8, the proposer is (weakly) better off by proposing and accepting my than
any other deviation. Hence the proposer has a strict incentive to propose and accept p* (hr). By
choosing T large enough, my —mr_; can be made arbitrarily small, so %mr + n—(nle) (1—mp)=
L+ ﬁ (1 —mr_,), which is the value of the game in the beginning of time T — 1 for
an agent (different from the proposer) who voted to reject. Thus, if all inequalities holds, then at
least %‘ players who have a strict incentive to accept the initial proposal. The result then follows
since there by Lemma 8 is some subgame perfect equilibrium where the proposals are according to
p' for all players i € I and all histories h, € H, and where these proposals are accepted for sure. B

To complete the proof we must augment the proposal rule used after histories where the proposal
in the last period was not according to the candidate equilibrium strategies. As above we will

specify the rule in terms of an unknown sequences of numbers {y, }Z;T, y {we }Z;T, where

yr = mr (1.27)

n(n+1)

1
wr é [-ﬁmr-l -+ (1 _m'I‘—l) y

and the particular choices of y,,m, for t > T will be determined below. The reader may however
want to keep in mind that the idea is to construct these as decreasing sequences approaching zero.

Let t > T' (to be specified below) and suppose that i’ proposed z:+1 # p* (hi41) in round
t + 1. Then, for all histories h, following h,; such that z,. is rejected let L C I be an arbitrary

(but commonly known before the voting) subset consisting of a group of 2211- players (other than
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the proposer i') who receives the least under x,,,2!. If

z
yt+zmax{+;l’,wz}<l (1.28)

JEL

and if the proposer at time ¢ ,i € L, then let p* (h) be given by

y¢+max{%.w¢} fori=j
p7 (he) = max{%,w,} for all j € L | {i} (1.29)
0 otherwise
while if ¢ ¢ L then
Ye fori=j;
P (hy) = max{i{g—i,wt} for all j € L (1.30)
0 otherwise
For all ;4 such that '
yz+zma-t{rl—6“-,wz}21 (1.31)
JEL

we let the proposal rules be as above, with m, replaced by ..

Lemma 10. Let i’ € I denote the proposer at time t and suppose that all agents i € I follow the
proposal rule p* at time t — 1 > T and that the voting rules at time t — 1 are such that Pt (het)
is always accepted for any h._, and any i € . Then, if the current proposer i’ proposes some
allocation z, # p* (he) such that y, + Zje L max {%,wg} < 1 the proposal must be rejected

under any sequentially rational voting rules.

Proof. It is easily seen that the discounted value of the continuation payoffs for all j € L are
strictly higher than payoffs if z. is accepted, thus l'zﬂ agents have a strict incentive to reject the

proposal. Applying the backwards induction argument in Part i of Lemma 4 the result follows. B

Lemma 11. Let t > T + 1 and suppose that y, > ky,—, and suppose there exists some subgame
perfect equilibrium where all agents are proposing in accordance to p* at time t — 1 and that any
such proposal is accepted. Then if y,— + 2w, _, < 1 there exists some k € (0,1) and some §* < 1

such that if § > 6%, then the proposer has no incentive to deviate from the specified proposal rule.

#Le. without loss of generality, let i’ = n be the proposer and assume that z; < 9 < ... <

Tort < Togd ... < Zn—1. Then L is determined by payoffs only if £ax1 < Tusa, while if Zar1 = Znis
2 g 2 2 2 2
there are choices how to specify the set. No matter what is used as a "tie-breaker” all agents agree.
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Proof. Without loss of generality, index the agents so that n is the proposer and that z! < ... <
z"~! for the other players. For ease of notation we let m = (n — 1) /2. By Lemma 10 a necessary
condition for a deviant proposal to be accepted at time ¢ is that
m i
y¢_1+;max{?,wt_l} >1 (1.32)
Furthermore, a deviant proposal is profitable only if z® > y, > ky,_,. By 1.32, if y,; + "T"lw,_l <

1, then a necessary condition for z to be a profitable deviation is that

1 — n—1
321’,’ Z 1 =Yt — 5 We-q (133)

i=1
Thus, if § and k are sufficiently close to unity, a necessary condition for r to be a profitable

deviation is that

n m n—1
1 > in=z.1:.-+ Z Ti + Inp > (1.34)
i=1 i=1 i=m-+1
n—-1 n—1
> l—y-1— 2 we_; + Z Ti+ Y- — €=
i=m+1
n-1 =
= 1- 3 Wy + Z.’L’,‘—E

i=m+1

where by choosing &, k arbitrarily close to one, € can be made arbitrarily small. But this means that
2¢

n—-1-

there is at least one agent i € {m + 1,...,n —~ 1} for whom z; < w,_;+ Hence r* < w,_, +an1-
fori =1,...,m. But now, if y,| + "2;lw,_| < 1, € is small enough and 6 is sufficiently close to

unity, then y,_; + Z:’;l max {%'-, 'lU¢_1} < 1. Hence there can be no profitable deviation. M

Proof. (Proposition 2) To finish the argument we now only have to construct appropriate
sequences {yt}Z;T , {wt}g—r such that y,,w; — 0 and such that there always is a majority that

has an interest to accept the proposal after any history of play. To do this let

. §(n-1 - 2(1-m,_ -
Yy = mm(kyt_l,l— (n2 )(m;l+ (n_*_mlt l))) (1.35)
w, = 5(yt—1+2(1—y¢—1))
n n+1

Given that the proposal in the next period will be according to the rule specified, no agent receiving
wy has an incentive to reject proposal (same argument as in Lemma 8). Since the proposer get a

continuation payoff of 6y:‘“ if rejecting his own proposal, proposer has a strict incentive to accept

the proposal. Thus, there are %‘—1 players who has an incentive to accept p' (h,) and it follows
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that there exists sequentially rational voting rules so that the proposal is accepted with probability
one if proposed. By Lemma 8, if y,_; + "T"lwg_[ < 1, then there is no profitable deviation for the
proposer, so left to verify is that this condition holds for every ¢t > T. We can find T such that the

inequality holds for t =T if

- Tl'—l 1 - 2 .
m +—2-[;m +n(n—+1)(1—m)} < 1 (1.36)
1
2
» 2 (n2 4 1)

2Zn(n+1)+(n-3)(n+1)

which, since m* < 1, obviously holds as long as n > 3. Since v, is strictly decreasing for ¢t > T and
since consequently also w; is strictly decreasing the inequality holds for all ¢ > T. Thus, at each
time ¢, the proposer will stick to the candidate equilibrium proposal rule and any such proposal
will be accepted. Since y;,w; — 0 as T° — oo, we can thus support an arbitrary initial proposal

as an equilibrium, given that § is sufficiently close to unity. W

1.6.2. Proof of Lemma 1

Proof. Without loss of generality we rename the players so that
avi(t) >... 2 65‘-T—"V$ (t) > 5# nt (t) > 6u_-:~anTH (t) > ...> 6V, (t). (1.37)

Thus, A= {1,..,25'}, B= {283, ,n} and m = 24l We want to show that the all subgame
perfect equilibria has the property that regardless of what player is recognized to make a proposal
at time ¢ + 1, this player will propose to give §;V; (t) to the (uniquely determined) set of (n — 1) /2
players different from the proposer such that the discounted continuation payoff is lower than
for all other players. Le. the unique subgame perfect proposal rules at time ¢ + 1 are given by

p’ : Hypy — X, where if the proposer j ¢ A, then

1= TicabiVi(t) fori=j

Pl (hr) = Vi(t) foric A (1.38)
0 otherwise
while if § € 4, then
1= Cicav(ust) 6Vi(t)  fori=j
Prrr (her) = &:Vi (1) forie AU {2} . (1.39)
0 otherwise
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Clearly, everybody following the voting rule “accept an offer z at time ¢t+1 if and only if z* > 8,V; (¢)
is sequentially rational give continuation player according to any subgame perfect equilibrium (since
by assumption the continuation valuation at time ¢ are the same in all subgame perfect equilibria).

Given these continuation strategies the best proposal that is accepted are given by p? and since

Vi (t) <& (1= Vi(t) | < &m0 (hesr) (1.40)
i#j

the proposer has no incentive to propose something that would be rejected. Hence the proposed
strategies constitutes a subgame perfect equilibrium of the game with ¢ + 1 rounds of bargaining.
Next we want to show that there are no other proposals that are consistent with subgame perfection.
For contradiction, suppose that there is a subgame perfect equilibrium proposal that has at least
(n +1) /2 players to receive shares z* < §;V; (t). Now, if the last player among these in the voting
order is pivotal, then she has a strict incentive to reject. Hence if (n — 1) /2 players have already
voted in favor of rejection when the (n + 1) /2th player is to vote, the proposal must be rejected for
sure. Foreseeing this, the (n — 1) /2th player in the voting order (among those with strict incentive
to reject) knows that if at least (n — 3) /2 players have already voted to reject and she votes to
reject, then the proposal will be rejected for sure. Thus, the proposal must be rejected for sure in
any subgame perfect equilibrium, given that (n — 3) /2 votes have been cast in favor of rejection
when the (n — 1) /2th voter with a strict incentive to reject is to vote. Proceeding by (backwards)
induction it follows that the proposal must be rejected for sure in any subgame perfect equilibrium.
Hence there is no alternative subgame perfect equilibrium that gives the proposer a higher payoff.
A symmetric argument shows that if the proposer and (n — 1) /2 other players are strictly
better off when the proposal is implemented, then the proposal must be accepted for sure in any
subgame perfect equilibrium. So suppose that there is some subgame perfect equilibrium where
the proposer offers z at time ¢t + 1 and is worse off than in the equilibrium with proposal rule p{ 1
Then we can construct an alternative proposal y such that the proposer is better off and (n — 1) /2
other players get a strictly higher share than §;V; (t) . But, such proposal must be accepted for sure
in any subgame perfect equilibrium and leaves the proposer strictly better off. Thus the original
proposal x could not be a part of any subgame perfect equilibrium. Hence, there is no alternative
subgame perfect equilibrium that gives the proposer a strictly lower payoff. Combining the fact
that the payoff of the proposer must be given by pZ_JH (he+1) in all subgame perfect equilibria with
the condition that unless (n — 1) /2 players are getting a share of at least §;V; (t), it follows that

the equilibrium proposal rules are uniquely determined by p{ +1- N
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1.6.3. Proof of Lemma 3

Proof. Suppose 4, has not full rank. Then at least one row in A, can be expressed as a linear
combination of the others. Since the first "T_l rows have a strictly positive entry in a column where
all other rows have zeros it follows that any row from ( A B ) is linearly independent of all
other rows in A;. Thus, A; has full rank if and only if C, has full rank. From basic linear algebra
we know that if C; and D are conformable matrices with full rank, then DC, has full rank. This
is useful since if D is chosen wisely we can simplify the problem. For easy of notation we relabel
player (n + 1) /2 as playerl, player (n + 3) /2 as player 2,...., player n as player (n + 1)/2 = m.
Let D be given by

0 0
0 % 0
Dl (La1)
0
0 0 %
Then C; = DC, is given by
—1 1 1 1
( ms,vll(z—l) + nz_n' n ~n “n
~w mmeEn Tl ~n

(1.42)

1

n

1 1
“n meava=pn t1

~x
If this matrix has full rank, then C, as well as A, has full rank, which is what we want to show.
Although this matrix looks simple, the result is by no means obvious. The intuitive reason for why
Cy has full rank is that the diagonal elements are pretty large relative to the off diagonal elements,
so the matrix is “sufficiently close to the identity matrix”. In fact, it can be shown that Clisa
“dominant diagonal matrix” and since any such matrix has full rank, C; has full rank. However,
we will not follow this route, but prove the full rank of C} by a direct calculation.

Suppose first that the first row, ¢y, is linearly dependent of the other rows. Then there exists

36



m
scalars ko, ..., km such that ¢; =3 k;c;. Exploiting the structure of the matrix Cr:
=2

—~1 H
6;V;(lt 5+ Qt ) — lg k; (1 equation)

3 1
~l==3 ki+k; ("*‘1*‘——'6,‘/,(:_1))
=2

for j=2,... 2% (1.43)

(25! equations)

Combining these equations we get

_ 1 (n+1) ' 1 /
0‘(6M(t—1)+ 2 )”’(””@V;(t—l)) (1-44)

so a necessary condition for linear dependence is that

1 +!n+l!
§1Vi(t-1) 2 | forj—"’

1
[" +1+ %V;(t-l)]

n+1
2

(1.43)

kj=—

Now summing over j we get

= 1 (n+1)] «— 1
ki =~
Z 7 {611/1(t—1)+ 2 ]Z[Tl-f-l-f-&lT](ltm}

i=2 i=2

Hence if all 1'21’—1 conditions for ¢; to be linearly dependent on ¢y, ...c,, are to be satisfied

1 (n-1)
iyt “

siVi(t— _Z[ 1 } (1 46)
+1 :
6|v,(l:-1)+("2) = n+1+6V(t )
We can show that
(n—1t
Y AGE) ) Sn-l (1.47)
g+1) :
6|V|(l—l)+ - n+1
And that
1 n+1
Vi (t-1) < forall j & > o 1.48
772 1 6;Vi(t—1) 2 ( )
&~ 1 < 1 = 2 e
ntlt gty n+l+2H 0 3(n+1)
m
1 (n-1) n-—1
= < <
T
_;'—22 [n+1+m] 3(n+1) n+1
Hence
gn I!
n—1 < 61V|(¢-1) + =i l: 1 J < (n-1) n-1 (1.49)
: .
n+1 m.;_ﬁl = n+1+5vu- 3(n+1) n+1
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which is a contradiction. For any other row, say the k** we can proceed in the same way. If rp is

a linear combination of the other rows there are scalars ki, ..., kx—, kis1, ... km such that

~1=k (m + %—’-) - ;{ k; (1 equation)
t
1 — .
) awEn tr=-Lk (1 equation) (1.50)

forj#1,k
-1=- Z ki + k; (n+1+m)
iZk

| (%52 equations)

So we assume that m +n=-— ;:k k; and solve for k; to get a set of necessary conditions
1
for row & to be a linear combination of the other rows,

kl - _ n+l+ o t=1)

[T 1
i 7 n,vl(z—l)t (1 51)
+l+.,_lT . -
k]-=—n ~xtkCoDL for §# 1,k

(""*'H'alv)(z-l))

summing
1 1 1
Zki=‘["+1+ ] + ) (1.52)
nbe Vi (t—1 ntl 1 1

ik kVe(t=1) (—3‘ + 6.Vl(z—1)) JELK (" +1+ 6,V,(t—l))

Hence in order for the assumption n + m = — 3 k; to be fulfilled it must for instance be
i#k
that
\ 1
[" T EVe(t=1 ] 1 1
e 1 oo 1 (1.53)
["+1+ nékvk(l—l)] (_3_'*‘ 5.v,(:—1)) JELE ("'*‘1'*' a,v,(:—l))

This is however impossible. To see this we note that

1 2 .
< Combin-

1 1
< n+t =>Z:
("’+1+_L_hlvl(l—l) J#lLk n+l+W!“_”
ing these facts we find that

< 223 and —

- + > ! < (1.54)

1 1 1
(MzL + &.v.(z-l)) JFLk (" +1+ 5 (l—l))
2 n-—3

1
< n+1+2(n+1)—§

LHS

Also we have that

n+
RHS = [ "“V"“'”] > = (1.55)

1 1
[" +1+ G )] n

Combining these results
n

n+1

<RHS=LHS<%=>n<1 (1.56)

which is a contradiction. W
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Abstract

This paper analyzes statistical discrimination in a model with endogenous human capital for-
mation and a frictionless labor market. It is shown that in the presence of two distinguishable
but ez ante identical groups of workers discrimination is sustainable as an equilibrium outcome.
This is true irrespective of whether there are multiple equilibria when the groups have no distin-
guishable characteristics. When an affirmative action policy consisting of an employment quota
is introduced in the model it is shown that affirmative action can “fail” in the sense that there
may still be equilibria where the groups are treated differently. However, the incentives to invest
for agents in the disadvantaged group are better in any equilibrium under affirmative action than
in the most discriminatory equilibrium without the policy. Thus, the lower bound on the fraction
of agents from the disadvantaged group who invest in their human capital is raised by the policy.

The welfare effects are ambiguous. It is demonstrated that the policy may increase the incentives

OWe are grateful to Stephen Coate, Marcos Lisboa, George Mailath, Stephen Morris, Andrew
Postlewaite and seminar participants at University of Pennsylvania and Institute of International
Economic Studies, Stockholm for many helpful comments and interesting discussions.
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to invest and reduce the expected payoffs for all agents in the target group simultaneously. In-
deed, the policy may hurt the intended beneficiaries even when the initial equilibrium is the worst

equilibrium for the targeted group.

2.1. Introduction

Since its introduction in the sixties, affirmative action has been and remains one of the most
controversial policies to combat discrimination in the labor market. An economist has little to say
about issues on fairness and constitutionality, which are extensively discussed in the popular and
political debate. However, there are important aspects of affirmative action that can be analyzed
using economic theory and relatively little has been done.

In particular, the popular debate often focuses on the effects on incentives of the intended
beneficiaries. On the one hand side, opponents of affirmative action often argue that affirmative
action makes it easier for unqualified members of the target groups to obtain relatively well paid
Jobs. This, it is argued, reduces the incentives to invest in their skills for members of the target
groups, which means that the real problem, namely that skills are unevenly distributed across
groups, is only aggravated by affirmative action. On the other side, proponents of affirmative
action argue that minorities and in some cases women are at least partially excluded from the
more attractive parts of the labor market and that they for this reason simply do not have the
same incentives to make human capital investments. Affirmative action policies with numerical
goals for hirings of candidates from the discriminated groups helps overcome the situation by
forcing employers to hire people from the disadvantaged groups and therefore create incentives for
members of these groups to invest in their personal skills.

The purpose of this paper is to analyze what effects affirmative action policies may have on
the incentives to invest, in particular for workers from the groups the policy is intended to help.
Furthermore, since opponents often claim that the policy only helps already well situated members
of the minority groups, we are also interested in identifying winners and losers of affirmative action.
However, while our framework in principle allows us to do this, our understanding of the welfare
effects of affirmative action is still very incomplete.

In order to study the effects of affirmative action and other anti discriminatory policies we need
a model with discrimination as a possible equilibrium outcome. Here there are two main strands

in the literature. One approach, pioneered by Becker [9], explains discrimination from preferences.
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In this class of models employers prefer to hire candidates from the same group, workers prefer to
work with coworkers from the same group or consumers are unwilling to buy products produced
by firms’ employing workers from other groups.

The main alternative to these taste based models is a statistical theory of discrimination.
building on work by Arrow [4] and Phelps [24]. Here the main idea is that when worker skills are
imperfectly observable discrimination may occur although firms maximize profits and workers have
no preferences about their coworkers’ group identity: race, sex, religion etc... may serve as a proxy
for productivity if the distributions are different across groups. When each worker can affect their
own productivity by human capital investments discrimination may occur in equilibrium even if
the groups are identical in terms of “intrinsic abilities” or costs of investment in human capital. In
this paper we consider the effects of affirmative action within a model of statistical discrimination.

While there is a large theoretical literature on discrimination in general and discrimination
on the labor market in particular, surprisingly little attention has been paid to policy analysis.
Notable exceptions are Lundberg and Startz [19], Lundberg [18] and Coate and Loury [12]'. In
Lundberg and Startz [19] it is shown that an equal opportunity policy prohibiting the firms from
making wages dependent upon group identity may be an efficiency enhancing policy in a model
with statistical discrimination. In Lundberg (18], it is noted that enforcement of this type of policy
may be very difficult since there will be incentives for firms to evade the policy by using other
variables as proxies for group identity. The main concern of the paper is to find regulatory policies
that implement the equal opportunity laws under different informational assumptions.

The paper most closely related to our work is Coate and Loury [12] where the effects of em-
ployment quotas are studied in a setup where discrimination is in job assignments rather than
in wages. In their model, output can be produced using two different technologies and workers
face a costly human capital investment, which if undertaken makes them productive in the more
advanced technology. The sole decision made by employers’ is how to assign a number of randomly
drawn workers in jobs using either of the two technologies based on an imperfect signal of each
workers’ productivity in the more advanced job. Whenever there are multiple equilibria in the
model there will be equilibria where groups are treated differently.

It is shown that there are circumstances under which all equilibria with the affirmative action

policy are such that investment behavior is the same in both groups. However, under equally

tAll these papers are focusing on statistical discrimination. Welch [30] and Kahn [17] studies
employment quotas in models where discrimination is taste based.
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plausible circumstances there are still equilibria where groups behave differently and the employvers
(rationally) perceive members of one of the groups to be less capable. Indeed, it is shown that
group disparity of investment behavior may actually increase as a result of affirmative action.

The intuition for this possible failure of affirmative action is simple. Consider a situation where
the fraction of investors is lower in group a than in group b and make the thought experiment
that these fractions remains the same even after the introduction of affirmative action. In order to
comply with the policy this means that employers must employ agents from group a in the more
advanced job who are (rationally) perceived to have a lower probability of being productive than
all agents from group b . Hence both agents who have invested and agents who have not invested
are more likely to be employed in the skilled job and whether this improves the incentives to invest
for agents in group a or not depends on particularities of the probability distributions of the noisy
signal.

While the logic may sound compelling the analysis in Coate and Loury (12] raises some ques-
tions. Wages as well as the distribution of workers available for any firm are fixed exogenously
in their model. In a world where firms are competing with each other to attract workers these
assumptions do not make much sense. Rather one would think that equilibrium wages would de-
pend on investment behavior of the workers and policy parameters, which means that the change
in the incentives to invest would also depend on how the policy affects wages. In particular, since
the expected marginal productivity is increasing in the signal for agents in the complex technology
one would think that wages would also be increasing in the signal. But then the expected wage
conditional on the agent being employed in the more advanced technology will be higher for agents
who undertake the investment and it seems that if firms were forced to employ more workers from
the disadvantaged group in the advanced job this would indeed create better incentives to invest.

In our paper, human capital accumulation as well as the information technology is modeled
as in Coate and Loury [12]. Individual workers have to decide whether to undertake a costly
investment in human capital or not. This choice is unobservable to the firms but there is a
publicly observable test available that contains information about the likelihood that a particular
worker has undertaken the investment.

Instead of randomly assigning workers between firms we assume that the labor market works
without frictions. Firms compete in a Bertrand fashion by offering wage schedules, where the wage
is a function of the noisy signal. Apart from the fact that wages are endogenized our model departs

from that of Coate and Loury in that the production technology exhibits complementaries between
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tasks. To be specific we assume that production requires input of labor in two tasks, a complez
task and a simple task. It is assumed that only workers who have undertaken the investment are
productive in the complex task, whereas all workers can perform the simple task effectively. Output
is generated from the two types of labor input according to a standard neoclassical production
function.

When we introduce two groups of workers which only differ by some payoff irrelevant but
observable characteristic we show that discrimination is possible due to self confirming expectations
about differences in behavior between the groups.

The complementarity in the production technology has several interesting consequences. Even
if there is a unique equilibrium in the model where there are no observable payoff irrelevant
characteristics there will, under mild conditions, be equilibria with discrimination. The intuition is
that groups can specialize as high quality and low quality workers respectively. While this hurts the
group that specializes as low quality workers and also creates inefficiencies in investment behavior
it does reduce the informational problem for the firms2. It should be noted in this context that in
models where discrimination is explained as different groups coordinating on different equilibria in
some “base model”, as for example in Spence (29], Akerlof [2] and Coate and Loury [12], there are
no conflicts of interests between groups. The discriminated group is discriminated simply because
of coordination on a worse equilibrium than the other group and if this coordination failure could
be resolved the other group need not be affected at all. In our model on the other hand the group
with the higher fraction of investors unambiguously gains from discrimination since the supply of
qualified workers is more scarce than otherwise.

The complementarity in production also has the consequence that group size matters in the
determination of equilibria with discrimination. We find that the larger the group is, the more
stringent are the conditions that must be satisfied in order to support a (particular type of)
discrimination and the smaller is the differences in average earnings between groups (given that
discrimination is still sustainable). In a loose sense, we interpret this to mean that in our model
discrimination of a smaller group is more likely than discrimination of a larger group. To us this
seems to conform with the stylized facts about discrimination: to our knowledge there is no other

model with this property.

*It is indeed easy to visualize a version of our model where agents choose different types of
human capital investment that enhances the productivity in different types of jobs. In such a
model, discrimination may be efficiency enhancing. However, contrary to our framework such a
model may also have the property that discrimination is voluntary in the sense that it may be
incentive compatible to truthfully announce group identity if this would be unobservable.

43



Introducing an affirmative action policy consisting of an employment quota in the model we
find that we in general cannot rule out the possibility of discriminatory equilibria. Hence the
policy does not guarantee equal treatment across groups in equilibrium. However, this result alone
should not be interpreted as a “failure” of affirmative action. While the ultimate goal of equality
between groups is not guaranteed by the policy, it may still be that the policy is successful in the
sense that the inequality is reduced. Indeed, we get some results in this direction.

In our model, the “direct effect” of affirmative action, i.e. the effect on the benefits of invest-
ment in human capital assuming that investment behavior is unchanged, is typically to increase
the returns of investment for the discriminated group and to decrease them for the other group.
However, we do not have a theory that predicts what particular equilibrium will occur after the
introduction of the policy. Due to multiplicity of equilibria with and without the policy we must
compare the full set of equilibria with and without affirmative action. The only thing that can be
said in general is that the returns to investment and consequently also the fraction of agents who
invest in the most discriminatory equilibrium without the policy is lower than in any equilibrium
with affirmative action. The welfare effects are inconclusive. Output may decrease or increase
as a result of the policy and by example we show that even if the starting point is the most
discriminatory equilibrium, it is possible that the discriminated group is worse off with the policy.

The rest of this chapter is structured as follows. Section 2.2 contains the description of the
one-group model and section 2.3 characterizes the equilibria of this model. In section 2.4 we
extend the model by introducing two identical groups of workers and in section 2.5 we analyze the
consequences of affirmative action. The discussion in section 2.6 concludes. Most proofs can be

found in Section 2.7.

2.2. The Model

We assume that firms need to employ workers performing two different tasks to generate output.
These tasks will be referred to as the complez task and the simple task respectively. On the labor
market there are workers of two different types. Some workers, called qualified workers, are able to
perform the complex task and others are not. Let C be the effective input of labor in the complex
task for the firm, i.e. C equals the number of qualified workers employed in the skilled task. By
S we denote the number of workers employed in the simple task. The output of the firm is then

given by y(C, S) where y : R2 — R, satisfies the standard neoclassical assumptions, i.e. it is a
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twice continuously differentiable function, strictly concave in both arguments, and:

Al y(-,-) is homogeneous of degree one [constant returns to scale]

A2 (l:imo y1(C,S) = oo for any S > 0 and 5[}11}) y2(C,S) = oo for any C > 03 [boundary

behavior]
A3 y(0,5)=y(C,0)=0 [both factors essential]

Since we make the extreme assumption that the additional output generated by unqualified
workers in the complez task is zero only qualified workers would be hired for this task in a perfect
information environment. However, in the model there will be some mismatch due to uncertainty

about worker quality.

2.2.1. The Game

The timing of events is as follows: In Stage 1 individual workers decide whether to invest or not
in their human capital. After the investment decisions (Stage 2) each worker is assigned a signal
6 by nature. In Stage 3 firms simultaneously announce wage schedules (i.e. wages as functions
of the signal) and in Stage 4 workers choose which firm to work for. Finally, in Stage 5 firms
decide how to allocate the available workers between the two tasks.

For tractability we do not want the behavior of any individual worker to have any effect on
aggregate behavior so we will assume that the population of workers is large, represented by a
continuum.

The model will now be described in detail.

Stage 1. There is a continuum of agents with heterogeneous costs of investment. Each agent c
has to choose an action e € {e;, e, }, where e = ¢, means that the agent undertakes an investment
in his human capital (and becomes a qualified worker) and e = e, that he does not. If agent c
undertakes the investment he incurs a cost of ¢ while no cost is incurred if the investment is not
undertaken. The agents are distributed on the interval [c, €] € R according to the continuous and

strictly increasing distribution function G. We assume that ¢ < 0 and ¢ > 0.

3Subscripts are used to denote partial derivatives.
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Stage 2. Each worker is assigned a noisy signal 8 € [0,1] . The signal 6 is distributed according
to density f, for workers who invested in Stage 1 and f, for workers who did not invest. It is

assumed that f; and f, are continuously differentiable, bounded away from zero and satisfies:

A4 %:’—i%))- > ;A'(%% ifg>¢ strictly monotone likelihood ratio property]

This assumption implies that qualified workers are more likely to get higher values of § than

unqualified workers. We let F,; and F, denote the associated cumulative distributions.

Stage 3. There are two firms, i = 1,2. The firms simultaneously announce wage schedules.
We allow wages to be dependent on the signal so that a (pure) action of firm i in stage 3 is a
measurable function w; : [0,1] — Ry. We assume that the firms cannot observe the distribution

of signals when announcing wages®.
Stage 4. The workers observe w; and wy and decide which firm to work for.

Stage 5. In the final stage of the game the firms allocate the available workers by using a
task assignment rule which is a measurable function ¢; : [0, 1] — {0, 1}. The interpretation is that

ti (6) = 1 (0) means that firm ¢ assigns all workers with signal 8 to the complex (simple) task.

We assume that the risk neutral workers’ payoffs are additively separable in money income and
the cost of investment and that workers do not care directly in which task they are employed.
Thus, once the investment cost is sunk, the worker will rationally choose the firm that offers the
higher wage for his particular realization of 6. To save on notation we immediately impose optimal

behavior by workers in Stage 4 and write payoffs as
Ep [max {wy () ,w2 (6)} le] — c(e), (2.1)

where c(e;) = ¢ and c¢(e,) = 0.
Next we want to express the firms’ profits as a function of the actions and to do this we need

frequency distributions over realized values of the signals. Intuitively one would want to appeal to

4The only role of this assumption is that it simplifies the description of the strategy sets. See
the discussion in the end of Section 2.3.

5This is not the most general way to describe a pure action, but it will be sufficient for our
purposes. See footnote 7.
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the strong law of large numbers and take these to be given by Fyand F, but as noted by Judd [16]
and Feldman and Gilles [14] this is problematic with a continuum of random variables. Feldman
and Gilles [14] discusses alternative ways to ensure that the individuals’ probability distribution
and the frequency distribution coincides almost surely. The analysis in this paper relies only on
this property and not the particular way we make sure that the property holds. The simplest
solution is to use "aggregate shocks” rather than to assume that the signals are i.i.d. draws from
Fy and F,. The investment decisions by the agents induce distributions of qualified workers and
unqualified workers on [c,¢|. Call these distributions H, and H,. Now let the random variable =

be uniformly distributed on [0, 1] and let 8, () denote the test-score for a qualified agent ¢, where

(o) < { FrU(Hy(c)+z) ifH,(c)+z<1

FrU(Hg(c)+z—1) ifHy(c)+z>1

It is straightforward, but somewhat tedious to verify that Pr{f. (z) < 8| ;] = F, (§) forallc € [c, 7|
and all € [0,1] and that [ dH,(c) = F, () z € [0,1] and all & € [0, 1], where A(z.4) =
{ce e b:(z) > 8}. Clezi;(xt'l?e construction can be applied to the unqualified agents as well.
A single firm does not care directly about the realized frequency distributions for the whole
population, but rather about the particular workers the firm has available, which depends on the
decisions of the workers in Stage 4. Thus, to evaluate the profits of a single firm we need to
aggregate the behavior of the workers in some way. In principle, we could derive the distributions

for a firm given by arbitrary actions by workers, but we will immediately impose optimal behavior

by workers in Stage 4. To capture this we define

1 if w; (8) > wp (6)
Ly @) =19 L if wy (8) = ws (6) (2.3)
0 ifw(8) <wy(6)
and let [ (2w1,wg) be defined symmetrically. The interpretation is that / (iw,,w;») (8) = 1 means that

all workers with signal @ choose to work for firm i. Besides the fact that the tie-breaking rule is
arbitrary® these functions aggregates the workers optimal responses to (w;,ws) in the obvious way.

Given that a fraction 7 of the workers invests and wage schedules (w,, w,) we can now compute
the number of qualified workers in firm ¢ with a signal 8 < § as f05 I(iw‘.w-_») (0) 7 fq (6) df and the

number of unqualified workers can be computed symmetrically. The effective input of labor in the

§However, one can show that there are no additional equilibrium outcomes that can be supported
by changing the tie-breaking rule.



two tasks given a pair of wage schedules (w;,w,) and task assignment rule ¢; arc then given by

Ci (w1, wa,t;) = / Ly gy (B) £ (8) 7 £, (6) dB (2.4)

S: (wy,wat)) = / Loy (8) (1= £ (8)) (fy (6) + (1 — 7) £ (6)) dB

respectively. Letting fr (6) be shorthand notation for 7 f, (6) + (1 — 7) f, (§) we can express the

profits of firm i can then be expressed as
IT (-) = y(Ci (w1, w2, t:) , Si (wy, wa, L)) —/[zwl,w!) (8) wi (8) f= (8) d6. (2.5)

After the workers’ decisions in Stage 4 have been replaced by the sequentially rational allocation
rule (2.3) a pure strategy for a worker is simply to decide to invest or not. We will summarize the
behavior of all workers as a map i : [¢, ] — {eg,e,}.7 A pure strategy for a firm is a pair (w;. &;)
where w; is a measurable function from [0,1] into Ry, & : M x M — T , M denotes the set of
measurable functions from (0, 1] into R and T denotes the set of measurable functions from [0.1]
into {0,1}. The interpretation is that if & (w;, w,) (§) = 1 then firm i assigns workers with signal

¢ to the complex task given that the pair of wage schedules offered in Stage 3 is (w,, wa).

2.3. Characterization of Equilibria

In this section we characterize the set of equilibrium outcomes of the model. Although the model
is dynamic, standard refinements such as perfect Bayesian equilibrium will not give any sharper
predictions than Nash Equilibrium in terms of equilibrium outcomes8. Therefore we take Nash
equilibrium as our solution concept.

To find the equilibria of the game we will first characterize the firms’ equilibrium responses
given any investment behavior by the workers. These responses determine a unique wage schedule
consistent with any investment behavior by the workers and when we impose optimal behavior by
the workers in the initial stage we get a simple fixed point equation that characterizes the set of

equilibrium outcomes.

"This assumes that all workers with the same investment costs choose the same strategy. More
generally one could model a pure strategy profile in analogy with a “distributional strategy” in
the sense of Milgrom and Weber(22], i.e. as a joint distribution over [c, ¢] x {eg, €4} . In our model
this generality is not necessary since if the best response of agent ¢ is to invest and ¢ < c. then
the unique best response of agent ¢ is to invest.

8The reasons why any Nash equilibrium outcome can be supported as a perfect Bayesian equi-
librium will be briefly discussed towards the end of the section.
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First we will argue that the wage schedules offered by the firms must be identical almost
everywhere in any Nash equilibrium of the game. The reason is simple: If one firm would offer
a higher wage than the other to a set of workers with positive mass it could decrease the wage
bill by lowering wages slightly for all these workers. If the cut in wages is small enough the firm
still has the same distribution of workers available and by keeping the task assignment rule on the
outcome path as before the deviation profits would increase®.

Next we consider the decision problem for the firm in the final stage after a history when
an arbitrary fraction of agents = € (0,1]' has chosen to invest and the firms have offered wage
schedules (wy, w;) with w, (6) = w; (8) for almost all § € [0, 1]. For an arbitrary 8, the quantity of
qualified workers available for firm i with realized signal less than 6 is then simply %F,, (6) and the
quantity of unqualified workers with signal less than  is symmetrically %F » (6) . By the monotone
likelihood ratio assumption any optimal task assignment rule for firm ¢ must be a cutoff-rule!! of
the form _

w=] 0 0<% (2.6)
1 if8>6;
Using the identities in (2.4) and observing that the firms can do nothing about their wage costs in

the final stage of the game the problem to maximize output can be written as

max y(C;, Si) (2.

(R ST

subj. to 2C; < 7 (1l - F,(6:))

[ ]
-1
~

25, < wF,(6:) +(1—7)F.(6).

Eliminating 6; from the problem it is easy to show that the monotone likelihood ratio implies
that the constraint set is convex!? . Furthermore, y is strictly increasing in both arguments so
the constraint must bind with equality and strict quasi-concavity of y guarantees that there is a
unique solution to (2.7). Finally, the boundary condition A2 guarantees that any solution must
be interior, so the problem can be depicted graphically as in Figure 2.1.

Since both firms face a symmetric problem with a unique solution we drop the indices from

now on. Eliminating C and S from the problem and using constant returns to scale we can after

9See Lemma 12 in the appendix for a more formal argument.
19Given “worker strategy profile” i this is computed as 7 = [,

c€i~({e,})
11See Lemma 13.
12Gee Lemma 14.

dG (c).
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S: all workers employed in the simple task

C: qualified workers employed in the complex task

) gt

5
3
Q

Figure 2.1: The task-assignment problem

some algebra write the first order condition for (2.7) as
p(6, )y (7 (1 = Fy(6)), Fz (8)) = ya (m (L — Fy (), Fx (). (2.8)

where F7 (0) is shorthand notation for wF, (6) + (1 — v) F,, (8) and

/0 _
PO = - @ =l (29)

denotes the posterior probability that a randomly drawn agent with test score @ is qualified given
prior probability m. The economic interpretation is that an agent with signal equal to the optimal
cutoff point determined by (2.8) has the same expected marginal productivity in both tasks. All
agents with a lower realization of the signal are more productive in the simple task and agents
with higher signals are more productive in the complex task.

For each m > 0 we let the unique solution to (2.8) be denoted by § (). It is shown in Appendix
2.7.3 that 4 is continuously differentiable and therefore continuous on the open unit interval. To

save on notation we also define

7 (1 - Fy (5(71'))) ’ 210
nF, (E(w)) +(1=m)F, (é(w))

r(m) =

which, for an arbitrary = is the ratio of effective units of complex labor over units of simple labor

implied by the equilibrium task assignment rule (2.6).
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Our next task is to determine the equilibrium wage schedules. The most natural guess is that
all agents are paid according to their respective expected marginal productivity in the task where
they are employed. Thus, given a fraction = of investors we take the candidate “labor market

equilibrium” wage function to be given by w: [0,1] — R, defined as

y2(r(m),1) for 6 < 6 (x)

w(f) = - :
p(8,7)yi(r(x),1) for 8 >8(m)

(2.11)

where we have used the assumption of constant returns to scale!3. Observe that the assumption of
(strict) monotone likelihood ratio implies that p (6, ) is strictly increasing in 8 given any = > 0.
Hence the proposed wage schedule is strictly increasing on [5 (%), 1] .

Indeed, it can be shown that the intuition from Bertrand competition with constant returns to

scale carries over to our model. Formally:

Proposition 4. Let the fraction of agents who invest be given by w, let t : [0,1] — {0.1} be a
cutoff rule with critical point 5(71’) determined by (2.8) and let w : [0,1] — R be given by (2.11).
Furthermore, for any firm strategy profile (w;,&;);_, , let t; : [0,1] — {0, 1} be the task assignment
rule on the outcome path, ie. t;(0) = & (w;,w;)(6) for all §. Then both firms are playing best
responses if and only if w; (6) = w(0) and t; () =t (8) for i = 1,2 and for all almost all 8 € [0. 1].

The proof is in the appendix i Section 2.7.1. The intuition for the sufficiency part is that
any deviating firm has to pay at least the expected marginal productivity (given task assignments
according to candidate equilibrium) for all workers and strictly more if it wants to attract any
additional workers. The only way this could be a profitable deviation in a constant returns to
scale environment is if the deviating firm could allocate the workers more efficiently between tasks,
which is impossible since the original task assignment rule maximizes output. Deviations on sets
of measure zero will clearly have no effect on profits and it has been argued above that both firms
must choose task assignment rules identical to ¢ almost everywhere.

So far we have considered the firms’ equilibrium responses for any fixed investment behavior
by the workers. In a Nash Equilibrium of the full model the additional condition that each worker
maximizes (2.1) given the wage schedules must hold as well. The workers only care about the

mazimal offer for each realization of § , so we let w’(8) = max {w] (8) ,w, ()} for any pair of

BLe. y; (71' (1 ~ F, (ﬁ(n)))  Fy (5(«))) =y (r (7). 1)
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wage schedules (w}, w3) and write the set of pure best responses for agent ¢ € [c,¢| as
1: W2

eq if [w'(8)f,(8)dI—c> [w (6) f.(8)df
Be(w') =1 {egeu} if [w'(0)f,(0)d8~c= [w'(8)f.(8)dE - (2.12)
e if fw'(6)f,(8)d8—c< [w'(8)f.(8)db

The unique fraction of investors consistent with all workers playing best responses is thus given by

7r=G(/w' ®) f, (9)d9—/w'(9) fu (9)d9>. (2.13)

Since Proposition 4 guarantees that wages must be given by marginal productivities in any Nash
equilibrium of the full model we can substitute the wage schedule (2.11) into (2.13) to obtain a
fixed point equation in 7. We denote by H (w) the gross benefits of investment, i.e. the difference
between the expected earnings for an agent who invests and the expected earnings for an agent

who does not invest. By simple substitution we find that H (7) can be written as

1
v2(r (@), 1) (F, (8(m)) = £ ((m)) + 51 (r (m) 1) / p(6.7) (f,(6) — fu(0))dB.  (2.14)
8(x)
Since y; (r(w),1)p (5(71’) ,7r) =ya (r (m),1) it is easy to see that H () > 0 for all 7 in the interior
of the unit interval. As discussed above optimal behavior of the workers implies that an agent
should invest if and only if the cost of doing so is less than the expected benefits. The equilibria

of the model are thus fully characterized by the solutions to the equation
T =G (H (7)) (2.15)
Summing up these observations we have:

Proposition 5. Consider a strategy profile {i, {(w;, £,-)l.=l'2} and let w* be the fraction of investors
implied by worker strategy profile i'*. Furthermore, let w, t and t; be defined as in Proposition
4 (with # = 7*). Then {i, (wi,fi)i=l'2} is a Nash equilibrium if and only if ©* solves (2.15).
i(c)=eqforallc< G~ (n*) andi(c) =e, for allc > G~'(x*) and (w; () , t: (8)) = (w(8).t(8))
for i =1,2 and for almost all § € [0,1] .

Note that Proposition 5 implies that the question of existence of equilibria reduces to the
question of existence of a fixed point of the map G o H. This gives us a relatively easy proof of

existence of equilibria, which is the next result:

WThat is, 7" = dG(c).

c€i~!({e,})
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G(H(=))
7r
G(H(r))
G(0)
: HE—

Figure 2.2: An example with a unique interior equilibrium

Proposition 6. If G(0) > 03, then there exists a non-trivial equilibrium of the model.

The proof is the appendix in Section 2.7.2, but the idea can be understood from F igure 2.2.
While (2.8) is not defined at = = 0 it follows directly from the constraint that the only feasible
input of complex labor is zero when nobody invests. Since by assumption A3 both tasks are
needed in production, output must be zero. Hence w () = 0 for all § which implies H (0) = 0.
When 7 = 1 we have that p(8,1) = 1 for all 6 and since this means that the signal does not
provide any additional information the wage schedule is a constant function of 6, so H (1) =0. As
has already been argued H (7) > 0 for all intermediate values of 7 and after verifying that H (7)

is continuous on [0, 1] existence is established by use of the intermediate value theorem.

2.3.1. Why Use a Strategic Model?

In our model, it is very important that workers respond to wage schedules when choosing what

firm to work for. We capture this by the assumption that workers are allocated between firms in

5 Under the additional assumption that lime_g ”"(y?i‘z. ;)g‘.s > —oo the result holds even when
G (0) = 0 or, equivalently, when the lower bound on the support of the cost distribution c=0.1In
this case the model also has a trivial equilibrium where nobody invests, which is not the case when
¢ < 0. While not easy to interpret, the condition holds for several common parametric production
functions (for example in the Cobb-Douglas case). The proof, in which it is shown that the slope
of G o H is unbouded at 7 = 0 is available on request from the authors.
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accordance to (2.3). This makes the model extremely “competitive” in a strategic sense and, as we
have seen, the equilibrium conditions have an obvious flavor of competitive equilibrium. One may
therefore conjecture that the model could be formalized as a model with price taking agents, but
doing this one runs into technical as well as conceptual difficulties'6. The game-theoretic modelling
helps overcome these difficulties and also makes the policy analysis easier to handle.

Note that the "reduced game” obtained by assuming that each firm’s distribution of available
workers is determined by (2.3) is still a dynamic game and we have nevertheless been able to ignore
unreached information sets: propositions 1 and 2 do not even specify what firms are supposed to
do when choosing task assignment rules at information sets where the wage schedules differ on a set
of points with positive measure. The reader may therefore be worried that we consider equilibria
supported by non-credible threats off the equilibrium path, but this is not the case. The intuitive
explanation is that the last stage of the game is non strategic, in the sense that the task assignments
by the other firm has no impact on the best responses in Stage 3. Hence it is impossible to enlarge
the set of equilibrium outcomes compared to the set of perfect Bayesian equilibrium outcomes by
committing to task assignment rules that are suboptimal off the equilibrium path!”.

In the discussion above we derived the fixed point equation (2.15) by working from the end of
the game as if we were using backwards induction. However, since we are working with a continuum
of workers no single worker can affect aggregate variables and the function (3.46) therefore plays

the same role in the analysis as the best response correspondence in a static game.

2.4. The Model with Two Identifiable Groups of Workers

We now extend the basic model and assume that each worker belongs to one of two identifiable
groups, indexed by a and b respectively. The purpose of the section is to demonstrate the existence

of equilibria with discrimination. Under the assumption that not too many agents will invest when

16The problem is that when maximizing over "quantities” the decision variable of the firm is to
choose a distribution on the support of the noisy signal. In order to write down sensible market
clearing conditions it turns out that a strong law of large numbers is needed. The technical problem
is that to guarantee such a strong law of large numbers in an environment with uncountably many
independent random variables one has to rely on somewhat arbitrary probability measures (see
Judd (16] and Feldman and Gillles [14]). While we also have to deal with this problem in our
model it is much easier to circumvent in our framework. The conceptual problem is that even
with such a strong law of large numbers it is not clear how the firms should evaluate profits out of
equilibrium.

17Since it would not affect the set of equilibrium outcomes the reader may wonder why we did
not model the wage and task assignment decisions as simultaneous. The reason is that when
introducing the affirmative action policy we need task assignments to be done after the firm knows
what distribution of workers it has available.
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there are no monetary incentives, we show existence of discriminatory equilibria by construction.

2.4.1. The Extended Model

We now assume that a fraction A of the workers belongs to group a and a fraction \* = 1 — \® to
group b. It is assumed that the distribution of investment costs is given by G in each group and
that the probability density over signals is given by f, for any worker (from group a or b) who
invests and by f, for any worker who does not. These two assumptions means that the groups are
ez ante identical in terms of investment costs and that the signals are unbiased.

As in the single group model we assume that the realized frequency distributions of signals
coincides with the probability distributions F; and F,. This can be derived using the obvious
generalization of the exact stochastic model described in Section 2.2.1.

The game is the same as in Section 2.2.1, except that wage schedules are now allowed to
depend on “group identity”. Hence, a strategy for firm ¢ is a quadruple (w?, w? £2,€%) where
w{ : [0,1] — R4 is the wage schedule and Ef maps pairs of wage schedules to task assignment
rules for group j. For the same reason as in the single group model, the specification of the task
assignment rule off the equilibrium path will be irrelevant and we can think of the firm as choosing
a pair of wage schedules and task assignment rules ¢ : [0,1] — {0,1}.

We maintain the assumption that workers from each group allocate themselves between firms
according to (2.3), now evaluated using the relevant wage schedules for each group. Hence if the
fractions of agents who invest are given by = = (%, n®) , the effective input of labor in respective
task in firm 7 is given by

Ci(sm) = Y ,\J/I(w, wy OVE () £,(8) do (2.16)

Jj=ab

Si(sm) = Y ,\1/1 iy @ (1= ©) (77 £,0) + (1 ~ ) 1,.(9)) dB

Jj=ab
It should be clear how the firms’ profit functions should be generalized from (2.5).
2.4.2. Equilibrium in the Extended Model

Analogous to the procedure in Section 2.3 we begin by considering the problem of maximizing

output over task-assignment rules with the cutoff-property. This problem can be written as:

max y| Y Nl (1-F, (¢). ) NVF., () |. (2.17)

a gb l
(9+,8%)€(0,1] j=a,b j=a,b



The program is qualitatively very similar to (2.7), the task assignment problem in the basic model.
but (partial) corner solutions may now be possible. By similar arguments as in the single group
model one shows that there exists a unique solution to (2.17) for any = #(0,0) and that the
solution satisfies the Kuhn-Tucker conditions. We let v; be the multiplier associated with the
constraint 67 > 0 and 7; be associated with 1 — 87 > 0. The Kuhn-Tucker conditions are, after

some rearranging, given by

i _J Vi _ .
—p(¢. ) n (')+y2(')+ﬂ“—(9j)—01 for j =a,b (2.18)

together with the complementary slackness conditions. We let the solution be denoted by 8 (=) =
(5“ (),6° (17)) . As in the basic model, continuity of § follows from the implicit function thecrem.

To economize on notation we will let ¥ () denote the factor ratio implied by § (7). that is

© Nl (1-F, (§(m))

Jj=ab

- R (win (5(#))+(1—7r1)Fu (5(7:)))

j=a,b

r ()

(2.19)

As in the basic model each worker is paid according to his expected marginal productivity in

equilibrium, and by the assumption of constant returns the wage schedules can be written as:

r(m),1 for § < 67 (n
I (6) = y2'( (m),1) ~'( ) (2.20)
p(8,7) y, (F(x),1) for @ > 67 (x)
Finally, the fraction of agents in group j who invest can be found in the same way as before. Given

a wage schedule w’ for group j the fraction of agents who optimally decides to invest is given by

(2.13). The gross benefits of investment given any investment behavior 7 is

B(r) = w@E@.0(F(#F@)-F(@m)+ (2.21)
1
+u1 (F (), 1) / p(8,7) (f,(6) - fu (6))d6

62()

and the relevant system of fixed-point equations is
7 =G (B’ (n)), for j = a,b. (2.22)

The characterization results from the single group model generalize in a straightforward way, so the
equilibrium set will be fully characterized as the solutions to (2.22). For expositional convenience

we will therefore work directly with the reduced form equations. Given any solution to (2.22) we
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can always use (2.17) and (2.20) to construct the implied equilibrium wage schedules and task
assignment rules.

We will say that an equilibrium is discriminatory if 6° (x) # 6% (r) or w® # w® and non-
discriminatory otherwise. Here it is important to realize that 87 () as well as the wage schedule for
group j depends on investment behavior in both groups. The reason is that the fraction of investors
in the other group affects how scarce a resource qualified workers are and firms will therefore take
investment behavior in both groups into consideration when deciding on the task assignments for
any of the groups. This implies that the fraction of investors in the other group affects the benefits
of investors, both by the effect on the cutoff signal and by affecting the factor ratio. In fact one
can show that an increase in the fraction of investors in the other group monotonically decreases
the incentives to invest, so investment in the two groups are “aggregate strategic substitutes”. As
a consequence of these interdependencies the set of equilibria of the extended model will not be
the set of possible permutations of the equilibria of the single group model.

The set of non-discriminatory equilibria corresponds one to one with the set of equilibria of the
single group model: the equilibrium conditions of the extended model reduces to the equilibrium
conditions of the single group model when it is imposed that both groups are treated symmetrically.
Combining this simple observation with Proposition 6, it follows that there exists at least one non-
trivial non-discriminatory equilibrium in the extended model.

We are mainly interested in discriminatory equilibria and as the next proposition shows at least
one such equilibrium will exist under the assumption that not too many workers derive positive

utility from investment in human capital.

Proposition 7. Let y be a given production function and let fq: fu be some fixed densities, where
Y, fq and [, satisfies the assumptions stated in Section 2.2.1 and let (A%, \®) € int (A?%). Then,
there exists Gg > 0 such that if G (0) < Go, then there exists an equilibrium where no workers
from one of the groups are assigned to the complex task and a positive fraction of the agents
from the other group are assigned to the complex task. Moreover, in this equilibrium the wage
schedule for the group where all workers are assigned to the simple task is uniformly below the

wage schedule for the other group.

The construction is in the appendix in Section 2.7.3. Assuming that all agents in, say, group
a, are assigned to the simple task the equilibrium conditions for the other group are qualitatively

as in the single group model. Hence, applying the same steps as in the proof of Proposition 6 we
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have that there is an equilibrium where a fraction 7 > G (0) of the agents in the other group
invests and a positive fraction of these are assigned to the complex task, assuming that no agents
from the discriminated group are assigned to the complex task. Let the implied cutoff for group b
be given by 6°. In order to check that this is an equilibrium of the model with two groups we just
have to check that (l,gb)satisﬁes the Kuhn-Tucker conditions for the problem (2.17) when = is
given as above and 7* = G (0). This is indeed the case given that a sufficiently small fraction of
agents have negative costs of investment.

Observe that for §* = 1 to satisfy (2.18) it must be that p(1,7*) < ya(-) /y1(-). Since an
increase in A* decreases the factor ratio the right hand of this inequality is decreasing in A\® and it
follows that Gy is strictly decreasing in A®. Thus, the larger the group is the more difficult it is to
sustain this extreme form of discrimination against its members.

An alternative sufficient condition for existence of discriminatory equilibria is existence of mul-
tiple equilibria in the single group model. As a general property of discriminatory equilibria, it
can be shown that there exists some equilibrium in the single group model such that any agent
is better off than an agent in the disadvantaged group with the same investment costs ¢. The

discriminated group is thus always better off in some "autarchic equilibrium”.

2.5. Affirmative Action

In this section we will use our framework to analyze the effects of affirmative action, which we
model as a quota forcing the employers to fulfill certain requirements on the representation of
workers from the disadvantaged group in both tasks.

A more natural intervention would perhaps be an equal opportunities law requiring firms to
offer wages that do not depend on group identity. In our simple framework this would mean
that the firms would be constrained to offer identical wage schedules to both groups. Since the
incentives to invest would be the same for both groups this would eliminate discrimination in our
model.

The problem with this type of equal opportunity law is that the regulator must observe all
information the employer has available in order to implement such a policy. In a more realistic
setup where there are other variables than a one-dimensional signal, this type of policy would also
be possible to evade by using other variables as proxies for group identity. Moreover, in reality

hiring decisions are based on several factors that may or may not be an indicator of the expected



productivity of the worker. In particular if there are other variables correlated both with group
identity and intrinsic productivity it may be impossible for the regulatory authorities to disentangle
what part of the correlation is “real” and what is due to statistical discrimination!8.

Also observe that if the principle of “equal pay for equal work” is interpreted to mean that
the average wage for workers performing a particular task cannot differ across groups then the
discriminatory equilibrium constructed in the proof of Proposition 9 satisfies this principle. All
workers in the simple task are paid the same wage and no workers in the discriminated group
are assigned to the complex task, so “wage equality” in what seems to us to be the standard

operational sense holds.

2.5.1. The Model with Affirmative Action

For simplicity we will model affirmative action as a requirement for each firm to hire workers for
each task in accordance with the population fractions!®. The quantity of workers (qualified and
unqualified) from group j employed in the complex task by firm i given that a fraction 7’ has

invested and the actions A = (wg, w?, ¢2, ¢ i=1.2 IS given by
ol (A) =/1€ . > (8)t] (8) N fn, (6)d8 (2.23)

There is no distinction between the quantity of j—workers and the input of labor in the simple
task. This quantity, S{ (A), is therefore computed according to equation (2.16) in Section 2.4 and

the affirmative action requirement is

U2(A) A S*(A) Ae

The payoffs as functions of actions and the timing of the actions are as before and the only difference
compared to the model in Section 2.4 is that the task assignment rule chosen in the final stage of
the game must satisfy the affirmative action constraint??. Since we think of the affirmative action
policy as a constraint on the available actions we should in principle allow the task assignments to

be contingent on 7* and n® and adjust the strategy sets accordingly. However, for the same reasons

!8See Lundberg [18] for a discussion on these issues and some interesting suggestions on statistical
procedures the regulator could use in order to implement equal opportunities laws when there is
asymmetric information between the firms and the regulator

19We can handle quotas with other numerical goals, but as we will discuss later it is important
to have a quota for both tasks.

20ne could alternatively keep the strategy sets as before and impose affirmative action by
charging penalties to any firm that violates the numerical goals on employment stipulated by the
policymaker. If the penalty for a violation is sufficiently costly the two approaches are equivalent,.
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as earlier we can focus on Nash equilibria without any risk of analyzing equilibria supported by non
credible threats. In particular, since no worker can affect the fraction of investors it is immaterial
if we view the ”equilibrium responses” as dynamic reactions to the behavior of the workers or
fictitious best responses.

As in the single group model the first step in the equilibrium characterization is to note that
both firms must offer wage schedules that are identical almost everywhere in any equilibrium of
the model. By the monotone likelihood ratio property, the task assignment rules must be a pair of
cutoff rules. Using this fact we can characterize the optimal task assignment rule after any history

where both firms have offered (essentially) the same wage schedules by solving the problem

j=a,b Jj=a,

ma.xy( X N (1-F(¢)), ¥ N (nFy (67) + (1-=) F, (91))) '

ge gt
s.t TAF (%) + (1 — 7®) F, (6%) = w°F, (6°) + (1 — =*) F. (6%)

(2.25)

This problem is just adding a constraint to the task assignment problem (2.17) in Section 2.4. As
is easily verified this constraint is the affirmative action requirement (2.24) for the special case
when the wage schedules are the same and the task-assignment rules are taken to have the cutoff
property, which as we have argued must be properties of equilibrium.

The first-order conditions?! for this problem can after some rearranging be written as??;

(2.26)

“n ()p(0%,7*) +y2 (1) - & =0

~n()p (@) +w()+4& =0
where p > 0 if 7@ < 7 (see Footnote 22). Using the constraint, the multiplier and one of the
decision variables can be eliminated and the remaining equation has all the qualitative properties
of (2.8). By arguments more or less identical to the ones used in the single group model one can
show that for each m = (Tr",Trb) such that either 7® or #® is strictly positive there is a unique
g(r) = (5“ (w2, 70) G (7r“,1r")) >> 0 that solves (2.25) and that the implicit function theorem
applies®®. The solution will consequently be a smooth function of . To write things down more

compactly below will introduce one additional piece of notation. For each m, we denote by F(m)

211t is straightforward to show that the first-order conditions are sufficient and that there is a
unique solution to the program (2.25).

22t is useful to note that the solution(s) to the problem with the affirmative action restriction
formulated as an equality constraint must also be solution(s) to the problem with the same objective
and the inequality constraint 7 F, (8%)+(1 ~ 7%) F, (6*) < 7°F, (6°) +(1 — n?) F, (6°) if 7 < =®
and the reverse inequality if 72 > w®. Hence, if the multiplier is taken to be positive it enters with
a negative sign for the group with the smaller number of investors and a positive sign for the other
group.

#3The proofs follows the proofs of Lemma I and Lemma II in appendix B step by step.
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Group a (the discriminated group) Group b

np(d, )
1 np(d, )

Figure 2.3: Not an equilibrium

the unique factor ratio implied by the firms optimal choice of task assignment rules, that is

Zimas M1 (1= F, (8 (m)))

F(r) = (2.27)

S can M (,erq (51' (7r)) +(1-nd)F, (5(71'))) i

While the characterization of equilibrium task-assignment rules is not significantly harder than

in the single group model the determination of wages is somewhat counter-intuitive. It is tempting
to guess that wages still are given by expected marginal productivities, that is to take (2.20) as the
candidate equilibrium wage function, using the unique cut-off points determined above. This is
however not consistent with equilibrium since (assuming 7 # #®) some agents of the discriminated
group employed in the complex tasks would be paid less than other agents from the same group
who are in the simple task (see Figure 2.3). Hence a firm could deviate and attract all these
workers and replace some of the workers previously in the simple task by the additional workers
the firm attracts. If the affirmative action constraint was satisfied prior to the deviation it will be
satisfied after the deviation as well and output is unchanged. Since the wage bill has decreased
this is a profitable deviation.

The unique wage schedules consistent with equilibrium are depicted in Figure 2.4, which is
drawn under the assumption that m® < #®. As can be seen from the graph the wage in the simple

task is now determined by the marginal agent’s productivity in the complex task rather than the
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@ Group e (the discriminated group) b Group b
v1p(8, x°)
y1p(8, 7%)
nip(8®, 7*)
y2 y2
up(6°,7°)
ge g ¢ 0

Figure 2.4: Equilibrium wage schedules under affirmative action

productivity in the simple task. Intuitively, there is no incentive to deviate in order to change
the allocation of workers in the complex task for any of the firms: all workers already employed
in the complex task are paid their expected marginal productivities and all workers employed
in the simple task are paid more than their expected marginal productivity would be if in the
complex task. Furthermore, by the affirmative action constraint the firms cannot change the ratio
of a—workers to b—workers in the simple task. This means that what is left to show in order to
demonstrate that the proposed wage schedules are consistent with equilibrium is that the average
wage in the simple task equals the marginal productivity. To realize this it is useful to note that by
combining the two equations in (2.26) we see that for the optimal choice of § the weighted average
of the expected marginal productivities in the complex task for the critical agents’ in respective
group equals the marginal productivity in the simple task. That is, eliminating the multiplier from
(2.26) we have

p(F(n).1) 3 Vp (B (m),77) =5 (F(m), 1) (2.28)
Jj=ab
At this point it is simply to note that Fi. (5“ (7r)) = Frs (@’ (7r)) by the affirmative action

constraint, so the left hand side of (2.28) is also the average wage in the simple task, which gives

the result.

In terms of the notation introduced above we can write the proposed labor market equilibrium
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wage schedules depicted in Figure 2.4 as

o (F(r),1)p (51' (7) ,7rj) for 8 < & (x)

w’ (8) = -
Y1 (F(7),1)p (6,77) for 8 > 67 (x)

(2.29)

for j = a,b. Note that if #* < x° then §° (7) < g (m), since otherwise the affirmative action
constraint can not be satisfied. Hence p (5“ (7) ,w“) <p (97’ (m) ,1r") and by inspection of (2.26)
we see that w® (6) < y2 (F(7),1) for 8 < 6° (w) and w® (8) > ya (F(x),1) for 6 < B® (7). That is,
workers in the simple task from group a are paid less than their marginal productivity in the task
and workers from group b are paid more.

Summing up the discussion above as a proposition:

Proposition 8. Let the fractions of agents who invest in each group be given by & = (w¢.xb) and
let §(r) = (Ea (r), @ (7r)) be the unique solution to (2.26). Furthermore, for j = a,b let w’ (-) be
given by (2.29) and t7 (-) be the cutoff task assignment rule with critical value 67 (x). Finally, for
an arbitrary firm strategy profile (w?, w?,&?,fﬁ’)im‘b let t2 and t? be the task assignment rules
on the outcome path for firm i = 1,2. Then, both firms are playing best responses if and only if

w] (8) = w’ (§) and t] () =t/ (8) for i = 1,2 and j = a,b and for almost all 8 € [0, 1].

The proof in Section 2.7.4 fills in some of the details missing in the paragraphs above

One may believe that when we impose affirmative action as a constraint in both tasks, one
constraint is really redundant. The reason for this would be that if the affirmative action constraint
is satisfied in one of the tasks and if the market clears, which must be the case in equilibrium, then
the affirmative action constraint must be satisfied in the other task as well. This is indeed true and
it is also true that in order to characterize the equilibrium task assignment rules we need only one
of the constraints. The problem is that if there is affirmative action in the complex task only and
if the groups behave differently there is no "labor market equilibrium” in the continuation game.
To see this it useful to consider Figure 2.4, where it is easy to see that any deviation where a firm
reduces the number of workers from group b is profitable. Hence, since only non-discriminatory
(Nash) equilibria remains in the full game one could in principle interpret this as saying that
affirmative action works. However, we think that this is taking the notion of equilibrium too far2*.

Since for each 7 there is a unique wage function consistent with the firms playing mutual best

responses we can proceed as in the single group model and characterize the equilibrium set as fixed

241t has been suggested to us to consider a quota in the complex task together with a “civil rights
law” prohibiting wage discrimination in the simple task. However, the same nonexistence problem
remains under this policy.
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points of a function from [0, 1}? to [0, 1]%. The interpretation of this function is as simple as in the
single group model. The function computes the fractions of agents in each group who invests as a
best response to the wage function implied by any given investment behavior.

Using the wage schedules (2.29) we can express the expected gross benefits from undertaking
the investment for an agent in group j when 7 = (7%, %) as

H (x) = pn@m,0p(#@).~) (F @ m)-F @) (230)
+y1 (7 (), 1) /alm p(6.77) (f,(8) - fu (6))do.
Arguing as in the single group model we see easily that = = (7, #®) is an equilibrium if and only
if
7 =G (H (x)) for j = 1,2 (2.31)
From these expressions it is easily seen that any non-discriminatory equilibrium in the extended
model is an equilibrium under affirmative action. This should be fairly obvious since if the groups
behave the same way then the employers voluntarily treat the groups identically. To see it formally
we observe that the multiplier in the conditions (2.26) is zero when 7* = 7%, so both equations in
(2.31) reduces to the fixed point equation for the single group model.

If there are asymmetric equilibria under affirmative action, inspection of (2.29) reveals that
the wage schedule for the group with the lower fraction of agents who invests will be uniformly
below the wage schedule for the other group. Hence, wage discrimination persists in our model
unless the policy forces the economy to an equilibrium where the fractions of agents who invest
are the same in both groups. For this reason we will say that an equilibrium is discriminatory
unless 7% = #® and although one could potentially think of alternatives, we say that the most
discriminatory equilibrium is the equilibrium for which the difference |7r“ - 1r"l is the largest. We

observe:

Observation If 0 < G(0) < Gy (with Go defined as in Proposition 7) so that the most discrimi-
natory equilibrium (7°,7°) is such that 7* = G (0) and if (7*,7?)is the most discriminatory

equilibrium under affirmative action with 7 < 7#°. Then 7T > 7°.

To see this, observe that if G (0) > 0 there must clearly be a positive fraction of agents from
both groups who invest in any equilibrium. Hence the wage schedule for both groups will be strictly
increasing and there will consequently be some (possibly very small) monetary incentives to invest

for agents in both groups in any equilibrium under affirmative action.
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The fact that affirmative action provides a lower bound on the fraction of investors in the
discriminated group that is higher than in the "worst” equilibrium without affirmative action does
not help us if we want to analyze the consequences of introducing affirmative action in general. In
particular, it provides no guidance at all if we want to say something about the effects of affirmative
action starting from a situation where there is discrimination, but where some agents from both
groups are employed in both tasks.

If all equilibria under affirmative action would be non-discriminatory the situation would be
different. Hence, it would be desirable to have some sufficient conditions under which affirmative
action always eliminates the possibility of discriminatory equilibria. Intuitively, affirmative action
makes it harder to sustain discrimination since it pushes up wages in the simple task for workers
from the group with the higher fraction of investors and pushes down wages in the simple task for
the discriminated group. However, as we show next, any such sufficient conditions must involve

stringent restrictions on the distribution of investment costs.

Proposition 9. Let y be a given production function and let fa» fu be some fixed densities, where
Y, fq and f, satisfies the assumptions stated in Section 2.2.1. Furthermore fix any (A%, M) €
int (A?) . Then there exists some strictly increasing distribution function G with G (0) > 0 such

that the model with affirmative action has an equilibrium (7°,7°) with 7#° < 7°.

Proof.  Suppose 7* = 0 and 0 < 7 < 1. Then optimality conditions for the problem (2.23) can

in this case be written as
() - £ =0

~n()p (@) +u()+&=0

(2.32)

we observe that the unique solution (é\“,@’) must still be interior. Using (2.30) we also see that
H® (0,7°) =0 < H®(0,#*). It is straightforward to verify that H7 is continuous at (0,7°) for
J = a,b and it follows that there must exist some (72,7%) where 0 < #* < #* and, since H®
is initially increasing, 0 < H® (7%,7°) < H®(7%,7®). There must therefore exist some strictly
increasing function G such that G(0) > 0, G (H* (7%,7%)) = #* and G (H® (7%,7)) = 7°, i.e.
(7=,7®) is an equilibrium in the economy with fundamentals {y, fa fu, (X2, 20) ,G}. m

The result can be strengthened in several directions. First, it should be clear that we get
multiplicity for a generic set of distribution functions. To see this one notes that we can always

find an open set U containing (ﬁ“, 7?") such that the expected benefits of investment for members

in group b exceeds the benefits for members in group a for all ¥ €U . Also, the argument only



relies on existence of a function G that takes on particular values at a few points which means that
assumptions about its curvature will not be enough to get any sufficient conditions for ruling out
discriminatory equilibria. For example, one can show that there always exist uniform distributions
such that there are discriminatory equilibria in the model. The idea should be clear from the proof

above, but a slightly more complicated argument is needed to assure that G (0) > 0.

2.5.2. Welfare Effects of Affirmative Action

The purpose of this section is to illustrate that even if starting from the most extreme form of
discrimination, the disadvantaged group may or may not be hurt by affirmative action. To show

this we will consider simple distribution functions of the form:

Te ifc<e
Gle)=( n* ife<c<? . (2.33)
1 ifc>¢

where ¢ is some large cost. It is not difficult to extend the examples to strictly increasing distri-
bution functions, but for analytical simplicity we will not do so.

In the first example it is demonstrated that even if we start from the most extreme form of
discrimination introduction of affirmative action may make the disadvantaged group may be worse
off. The idea is to choose (7%,7") so that an there is an equilibrium with nobody in group a
employed in the complex task. Using the notation from Section 2.4 we let BJ (7) denote the
expected gross benefits of investment in the model without affirmative action. Now, if we fix
m® > 0 and 7° is sufficiently small the solution to the task assignment problem for the firm is
to assign all workers from group a to the simple task, while some workers from group b will be
assigned to the complex task. Hence B®(7%,7%) = 0 < B®(n%,7®) for 7 sufficiently small.
Thus, if € in (2.33) is in between 0 and B® (7, 7°) we have that (7%, ?) is an equilibrium in the
model without affirmative action. Next we proceed in the spirit of the argument of the proof of
Proposition 9 and argue that for 7 small enough and for the right choice of ¢ this will also be an
equilibrium with affirmative action. To see this we note that H® (z%,7%) — 0 as 7% — 0 while

H® (7°, %) —» H® (0,7%) > 0 as 7® — 0. Hence there exists some 7® > 0 such that
min (B® (v%,7°) , H® (x°,7°)) > H* (7°,7*) > B® (% 7°) = 0. (2.34)

The desired result follows: choosing ¢in (2.33) between H* (n°, #®) and the minimum of BY (w2, =)

and H® (7, 7*) we have that (7%, %) is an equilibrium both with and without the policy. It is
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now obvious that output decreases when affirmative action is introduced in this case. This follows
since the set of feasible production plans with the policy is a strict subset of the feasible plans
without the policy and the unique solution without the restriction is not in this subset.

The change in expected utility for an agent of group j who invests? is given by the difference
in expectation of the wage schedules with respect to f,:

. o~ l .
AWlyy = 1 (F(r),1)F, (0’ (7r)) +/_ )yl (F(r),1)p(6,77) £, (6)d8 - (2.35)

01 (s

—u (F(r),1) (p (# (), =) By (8(m) + /A

I

a1(

p(07) f(0) de)

The change in expected utility for agents who do not invest is derived symmetrically. Note that
the factor ratio in general changes when the policy is introduced. This effect may go either way
depending on the choice of production function and of distribution functions for §. However, given
the way this example is constructed this creates no difficulties. If the factor ratio increases when
the policy is introduced we can use (2.35) directly to show that the expected benefits for any
agent in group a decreases with the policy. On the other hand, if the factor ratio decreases we
cannot say anything in general since the wage under affirmative action for high realizations of 8
now may be higher than the (constant) wage in the original discriminatory equilibrium. However,
no matter what happens to the factor ratio we can always rely on the fact that under affirmative
action w® (6) <y (7(m),1)p(1,7°) for all 6, so for 7* small enough the policy must decrease the
expected utility for all agents in group a. The welfare effect for the other group is ambiguous.

It is also possible to construct examples where the discriminated group gains even if an equi-
librium occurs that leaves the group discriminated. To illustrate the point we want to make it is
however more straightforward to show that introduction of affirmative action may imply that a
symmetric equilibrium is the only possibility.

Consider the benefits of investment if a fraction 7 would invest in both groups, B (wb,#°) in
the model without the quota and H7 (7®, 7°) in the model with, both which equals the benefits of
investment in the single group model if a fraction n® invests, H (7*). It is straightforward to show
that the benefits of investment for agents in one of the groups is monotonically decreasing in the

fraction of investors in the other group, so

B (n% ) < B* (x*,7%) = H (x*) < B (n% =) (2.36)

25Since we constructed the equilibria so that the fraction of investors remains the same we do
not need to worry about agents who change their behaviour when the policy is introduced.

67



As we argued above B® (7r“,7r”) = 0 for some small enough 7% > 0, so for ¢ chosen in between 0
and B® (*,7%) and 7* small enough (7, 7®) is an equilibrium. But if Z is chosen in the interval
(0,H® (x*,#®)) then (% ,7*) is not an equilibrium when affirmative action is introduced. Thus
(assuming a is the smaller group we cannot switch to discrimination of the other group) the only
remaining equilibrium candidate is one where a fraction of 7% invests in both groups. Since & can
be chosen so that it is smaller than H (n®) there is a range of parameter values so that this is
indeed an equilibrium. One can show that the wage for agents employed in the simple task will be
higher in the symmetric equilibrium and this means that all agents in group a benefits from the
policy. Since production increases the other group may or may not be made worse off.

By relatively standard continuity arguments both examples can be extended to some strictly
increasing distribution functions as well.

We also conjecture that there are circumstances where affirmative action is necessarily a Pareto
improvement and other circumstances where removing affirmative action is a Pareto improvement,

but we have not been able to show this yet.

2.6. Discussion

We believe that our model captures important aspects of how discrimination may be sustained in
the real world: when few workers of a particular group invest in their skills, the firms will tend
not to promote these workers to higher paid more qualified jobs. This in turn suggests that the
incentives to invest in human capital should be lower for agents from a group where few workers
invest in their skills than for agents from a group where more workers invest. Hence discrimination
as a consequence of self-fulfilling expectations seems like a plausible explanation for differences in
labor market performance between groups.

Multiple equilibrium explanations of discrimination (as well as of other economic phenomena)
are often criticized on the grounds that the model gives no prediction. Our model is also vulnerable
to this type of criticism since it does not give a unique prediction for any fixed fundamentals.
However, when we combine the logic of self-confirming expectations with factor complementarity
this problem becomes less severe since the model has some implications about the relation between
relative group size and possibilities for discrimination. In this context we again want to stress
that since group size matters in the determination of discriminatory equilibria we cannot take an

arbitrary discriminatory equilibrium and construct a new equilibrium by reversing the roles of the
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groups.

Since we are explicitly taking competitive forces on the labor market into consideration our
model is a natural framework to analyze the consequences of anti-discriminatory policies. In
this paper, we focus on affirmative action. The specific way we model it is subject to criticism
since one would more naturally require quotas only on the skilled job, rather than in both jobs.
Unfortunately, a quota in the skilled job only implies non-existence of "labor market equilibria”™
in continuation games where the two groups behave differently. Besides this technical aspect, we
do not think that modelling affirmative action as a quota is particularly problematic. We already
pointed out that we could as well impose a penalty on employers not conforming to a specific
requirement and that a sufficiently stiff penalty would give the same results as our policy gives.
The quotas we are considering also have the attractive feature that they are possible to implement
under rather weak assumptions about what is observable to the policymaker.

One can think of alternative anti-discriminatory policies, such as different kinds of subsidies.
that are feasible under the same informational assumptions that are needed in order to implement
employment quotas. In a sequel to this paper we intend to compare the effects of quotas of the
type considered in this paper and different subsidies and to analyze optimal policies under different

informational assumptions.

2.7. Appendix

2.7.1. Proof of Proposition 4

Proof.  (sufficiency) Suppose that one of the firms would deviate from the proposed equilibrium
strategies and play some arbitrary strategy (w}, £/) so that the actions on the implied outcome path
(wi, t}) is different from (w,t) given by (2.11) and (2.6) on a set of positive measure (in principle
both firms could be playing according to the characterization and one firm could deviate by offering
a wage schedule different only on a finite set of points and this way trigger the other firm to react
by changing the task assignment rule. However, such a deviation would not change profits for the
deviator, which is why we without loss of generality can assume that the actions by the deviator
is changed on a set of positive measure). Define the following sets: O = {6 : w’ (8) > w (6)}.
Ol ={0:w'(0) <w(§)}, ©° = {#:w () =w(6)}. For ease of notation let C’ and S’ denote

the implied factor inputs for the deviating firm given that the other firm plays according to the
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proposed equilibrium strategies. Using (2.4) we see that these quantities can be expressed as:

, - , l ! 4 5 Yod
c' = _/8€eht (6)mfq (6)dE + 2/eee«t (0)7f,(8)do (2.37)

Sl

| a-tovn@a+rl[ a-cenneew
dcen = Joe

ec

where fr (-) denotes the density where fr (8) = 7f, (8) + (1 — 7) f, (8) for each 8 € [0, 1] . Using
the definition of the profit function (2.5) and the allocation rule (2.3) we can express the profits
for the deviating firm as;

L =v(@.8)- [ wO f@d-5 [ worf0)0 (2.38)

scon oco*
Let C,S > 0 be the implied factor inputs if both firms are playing according to the equilibrium

strategies. By concavity of y and Euler’s theorem it follows that
; 1
Ty <0 (CSC +0(CH5- [ WO frO0-3 [ wof@@ @)

ocen ocor
From the definition of p (8, 7) we have that 7 f; (6) = p(6,7) f» (§) and from the proposed equi-

librium wage schedule (2.11) we get w(8) = max {y: (C,S)p(8,7),42(C,S)}. Some algebraic

manipulations using these equalities gives;

n(CS8C < t (6)y: (C,S)p(6,7) fx (6)dO + t(8)y1 (C,S)p (8, 7) f~ (6X2610)
2

gcen oco"
1(C.9)S < /(1—t'(9))w(9)fﬂ<e)de+é / (1=¢(8))w (8) f= (6) dB
gcer " ocor

Summing over these inequalities we see that

nCHC+nCHT< [ wOr@w+; [ v@n@w @
fcon - 6€o-
and by substituting this into (2.39) we get
Moy < [ ) =/ 0) O, (2.42)
oeoh

and since w’ () > w (0) for all § € ©" this means that no deviation earns positive profits (we
can not conclude that a deviation leaves the deviator strictly worse off since there are deviations
that "scale down” production that also gives zero profits). Since the deviation was arbitrary this
completes the proof of the sufficiency part of Proposition 4. ll

The necessity part of Proposition 4 will be proved by using a sequence of intermediate results:

Lemma 12. Suppose (w;,&:);.., 5 is a pair of best responses. Then w (6) = w, (6) for almost all

6e[0,1)



Proof.  Suppose (w;,§;);_ , are best responses and that there exists a set © C [0, 1] positive
measure such that w; () — w;(6) > 0 for all § € ©. Consider a deviation (w?,£!) such that
& (wi,w;) (8) = & (wi,w;) (6) for all 4, w}(8) = w; (@) for § € [0,1]\O and wi(0) = (w; (8) +
w; (0))/2 for & € ©. We notice that the deviation leaves the distribution of available workers
unchanged and since the task assignment rule on the outcome path also is unchanged this means
that output is unchanged. The difference in expected profits is then simply the difference in the

total wage bill, i.e.

AL, = / 2O = O) (as ) + (1= 7) fu(8)) a0 > 0 (2.43)

9€0

which contradicts the hypothesis that (wi, &), 2 is a pair of best responses. W

Lemma 13. Let t; denote the implied task assignment rule on the equilibrium path for firms
i =1,2. Then there exists some 8 € (0,1) such that t; (8) = 1 for almost all § > §* and ¢; (§) = 0
for almost all § < 6 and fori = 1,2.

Proof. By Lemma 12, w; (8) = w; (6) for almost all 6, so Izwl.w'.') 9) = % for almost all 4. It

follows that if £; must satisfy:

ti(-) € argt(rr)laxy(q,s;-)
subj. to Ci= [t(f)xf,(6)dd - (2.44)
Si= [(1-t(6))fx(0)dd
For a contradiction, suppose that the claim is false. Then there are sets ©" @! C [0.1] with
positive measure such that 8% > ¢ for all §*,6' € ©* x & | but ¢, (6") =0 for all §* € ©" and
t: (') = 1 for all 8 € ©'. Since f, and f, are continuous the mixture fx is continuous as well
and we may therefore without loss of generality assume that -ﬁiee" f=(8)d8 = foee‘ f=(8)d8 > 0.

Consider the alternative task-assignment rule,

1 iffeon
ti (0) = 0 ifgeé (2.45)

t; (0) otherwise
Let S and C7 be the factor inputs implied by t¢ and let S; and C; be the inputs given the rule
t;. Since ﬂ?ee" f=(8)d8 = faee’ fx(6)dd it follows that S = S;, the input of simple labor is
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unchanged. Since the deviation assigns to the complex task workers who are productive with a

higher probability it is rather obvious that C? > C;. To see this formally we note that

Ci=z [ /g o f,(8)d — /8 » JAC) do] +C.. (2.46)

Suppose Cf < C;, which by (2.46) implies [yegu f(8)d8 < [, o f1(8) df. Let [(§) denote the
likelihood ratio f; (9) /f. (6) and rewrite this inequality as

| toneses [ oo (2.47)
gcon I=H
which since { (8%) > [ (8') for all 6*,6 implies that Jocen fu(6)d8 < feee' fu (8)d6. But then
/ fo(8)d8 = 7r/ f, (0)d0+(1—7r)/ fu(6)d6 < (2.48)
geon gecor geon
<[ fEew@+a ——7r)/ fu@do= [ f.(0)d8
9ot e} 6ce!

which contradicts our original assumption. Hence C? > C; and since S§¢ = S; this means that

output is higher under ¢, so t; could not solve (2.44). B

Lemma 14. Let ¢; denote the implied task assignment rule on the equilibrium path for firms

i =1,2 and let t be defined by (2.6). Then t;(8) = ¢ (6) almost everywhere.

Proof. By Lemma 13 the problem of finding an optimal task assignment rule reduces to
finding an optimal solution to the programing problem (2.7) in the main text. Since firms are
facing symmetric problems we drop indices and perform a change in variables by defining C =

m(1 —~ Fg(0)) and S = 7F, (8) + (1 — w) F, (9) . The problem can then be restated as

max y (C, S)
c.s (2.49)
subj. to g(C,S) =7-C-S+(1-7n)F, (Fz;.l (”;C)) 20
One verifies that
99(C.S) _ | l-mfu(F7'(55F) _ _  1-= L (2.50)
ac T f (Ft(%29)) T Y (F(=9))

and taking second derivatives we find that §%g/3C? < 0 while all other elements of the Hessian
matrix is zero by the linearity in S. Hence g is concave (one can actually see that 92g/9C? < 0
without explicitly performing the differentiation since i and Fr ! are both strictly increasing).
Since y is concave the Kuhn-Tucker conditions are sufficient conditions for a solution to (2.49) and

necessity follows since concavity of g is sufficient for constraint qualification. Invoking the boundary
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conditions we easily see that any solution to the Kuhn-Tucker conditions must be interior. Since

the programs (2.8) and (2.49) are equivalent this completes the proof. W

Lemma 15. Suppose (w),ws) is a pair of equilibrium wage schedules and let § (m) be the solution
to (2.6). Then there is a pair (ks, k.) such that w; (6) = k, for i = 1,2 and for almost all § < 5(7")
and w; (6) = p(8, ) k. fori = 1,2 and for almost all § > § () .

Proof. We will begin by showing that w; (6) = k, for almost all 8 < @ . For contradiction assume
that there exists sets ©%,0% C [0, ] (rr)] with strictly positive measure such that w; (8) < k& for all
6 € ©¢ and w; () > k for all 8 € ©°. By continuity of fr we may without loss of generality assume
that fp.q. fx (8)d6 = Jocer f=(8)d6 > 0. To show that this is inconsistent with equilibrium we
will construct a deviation where the firm replace get rid of some workers that are paid above &
and attracts some workers that are being paid a lower wage. Intuitively it is rather clear that this
deviation will be profitable as long as the total input of workers in both tasks constant. To show

this formally consider the following deviation by firm ¢

w; () +e¢ forfecoO°
wi(@)=| 0 for € @° (

o
[4/]
—
~—

w; (6) otherwise
Since input of both factors remains constant under the deviation (given that the task assignment
rule is unchanged, which we assume) the difference in payoffs for the deviating firm is just the

difference in wage payments, i.e.

L / w; (6) fx (6) df—~ / (w; (9) + €) f,(e)daJ (2.52)

ceb gco
Since lim¢_.g A (¢) > 0 there exists ¢ > 0 such that A (e) > 0. Hence, for € small enough the
deviation is profitable.

Symmetrically, suppose there are sets 2, 0% C [5 (m), 1] with strictly positive measure (where
we again w.l.g may assume feee" fqe(6)do = feeef- fq(8) dB) such that (w; (8) /p (8, 7)) < k for all
6 € ©% and (w; (9) /p(6,7)) > k for all § € ©°. Again we consider a deviation according to (2.51).
Noting that p (8, 7) = (7 f, () / fx (6)) we find that output is unchanged in this case as well and it
is easy to verify by a similar argument as above that the deviation is profitable for ¢ small enough.

|

We now collect the pieces together and prove the necessity part of Proposition 4:
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Figure 2.5: A profitable deviation

Proof.  (necessity). By Lemma 14 it follows that the task assignment rule on any equilibrium
path must satisfy t; (6) = ¢t () for i = 1,2 and almost all 8. Using the notation from the main text
and constant returns to scale we have from Lemma 15 that in any equilibrium of the model both

firms must offer almost identical wage schedules (disregarding sets of measure zero) of the form:

w(f) = { & (2.53)
p(6,7) k.

It remains to be shown that k, =y, (C,S) and k. = y; (C, S). By straightforward calculations it
can be shown that if ks < y2(C,S) and k. < y1 (C,S) then both firms are making positive profits
and a uniform deviation where firm i offers w} (6) = w; (8) + ¢ for all § would be profitable for ¢
small enough. Also, if both inequalities would go the other way and the wages would be uniformly
above the candidate equilibrium wage schedule both firms would make strictly negative profits and
a deviation to w; (6) = 0 for all # would be profitable. The cases that requires a little work are
when the inequalities work in opposite directions.

The two cases can be taken care of with perfectly symmetric arguments we will only consider
the case with k; > y2 (C, S) and k. < y; (C, S). The idea behind the construction is illustrated in
Figure 6.

Recall that 3, (C, S) p (5 (r) ,7r) = 42(C, ) by (2.8). Hence if k, > y2 (C, 5) and k. < y; (C.S)
then k.p (5(71') ,rr) < k, and there is an interval (5(11') ,9‘) such that w; (8) =p (0, 7) k. < k, for

all 8 in this interval. The idea behind the construction (see Figure 6) is now simply to demonstrate
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that it is better to dispose of some of the workers being paid k, and replace them by cheaper workers
from (5 (m) ,9‘) - While this logic is perfectly simple the formal argument below is rather messy.
The reason for this being that we need to keep track of the changes in the effective factor inputs
as well as changes in the wage bill.

Let 8/ solve Fy (6') = Fy (6°)—F; (5 (71’)) and define 6 as the solution to F; (§)—F (5 (7r)) =
(Fx (0°) — F(6(w)))/2. Consider the following deviation for firm i :

0 for 6 € [0,6")
wi(f) = § w;(8)+e for@eld(m),0%) (2.54)
w;i (8) for e [6°,1)uld,h)
, { 0 for 6 € [0,67)
t(6) = (2.55)
1 for6elf”1)

By construction, the input of simple labor is unchanged (i.e. 1/2F; (5 (7r)) is the input of simple
labor before the deviation and since the workers on [0,8’) will go to the other firm and since all
workers on [5 () ,8") will be in thee firm after the deviation a quantity of F (") —~ F; (5 (ﬂ’)) +
1/2 ( (9 ('r)) F. (¢ )) will be in the simple task after the deviation). The change in effective
units of complex labor is given by C' - C = %(Fq (0) —2F,(0")+ F, (5)) and using that
Fyr (6%) — 2F; (6") + F; (5) =0 it is not hard to show that C’' — C > 0. This should be fairly
obvious since the mass of workers assigned to the complex task is unchanged but the average value
of 6 has increased ( formal argument will is similar to the one used in Lemma 13 ). Thus, output
increases under the deviation so the difference in payoffs must be larger than the difference in the
wage bill, that is:

1

1 5' [:2d
A > 3 [ wi(0) fx(0)d8 ~ 3 [ wi(6) fx(0)dO~ [ (wi(8) ~€) f (0)d8 ~ & [ w; (0) fr (6)dO =
[} 0! 7 6

o o (2.56)
= gksFr(0') - [p(a,'/r)kcf,r(ﬂ)de— lef,r (9)do
] ]
Recall that p (6, ) k. < k, for 8 € (5, 0‘)and that Fy (') = Fy (6°) — F, (5) so that:
—k Fr (69 =%/k fr(8)d8 > = /p(9 ) kefx (8) d6 (2.57)

Hence, lim¢_.q A (€) > 0 and there exists € > 0 such that the deviation is profitable. The case with

ks < y2(C,S) and k. > y; (C, S) can be treated symmetrically and Proposition 2 follows. Bl

2.7.2. Proof of Proposition 6



Lemma 16. Suppose that y: R2 — R is strictly concave in both arguments and homogenous of

degree 1. Then for each 7 € (0, 1] there exists a unique 5(7r) € (0, 1) such that (2.8) is satisfied.

Proof. Definep: (0,1)x (0,1] = Ry by p (8, 7) = otz for all (6, 7) € (0.1) x (0. 1]

and let the function D : (0,1) x (0,1] — R be defined as

y2(p(6,7),1) (2.38)

POm=p@.m = o@m.1)

Since ¥ is homogenous of degree one 6 (m) solves the first order condition for the task assignment
problem (equation (2.8) in Section 2.3) if and only if D(§ (), ) = 0. It follows the (strict) mono-
tone likelihood ratio property that p (8, ) is strictly increasing in 6 for any = > 0. Fixing S .
y1(C, S) is strictly decreasing in C while y, (C, S) is strictly increasing in C. Since F, and F,, are
strictly increasing p (8, 7) is strictly decreasing in 8. Consequently y; (p (8, 7) , 1) is strictly increas-
ing and y2 (p (8, ), 1) is strictly decreasing in 6. Hence, the ratio y2 (p(8,7),1) /y1 (0 (6, 7)., 1) is
strictly decreasing which implies that D (8, 7) is strictly increasing in 6. Thus, there can be at most
one solution D(g (m),m) = 0 and the next task is to show that a solution exists for any = > 0. We
note that 0 < p(0,7) < p(1,7) < 1 for any m > 0. Since F;, and F, are c.d.fs it is easy to check
that limz_.9p(8,7) = co and limy—; p(6,7) = 0. Using the boundary conditions A2, constant

returns to scale and standard limit laws

1 -
o le(6m).1) Y2 (1m) _ Jimyz (1,2)

= = = = oo. 2.59
0% i (p(6,7) 1) 0B 7 (p (8 m), 1) Im i (e D) (2:59)

Symmetrically limg—.; y2 (0(8,7),1) /y1 (p (8, 7) , 1) = 0. It follows that limg_o D (8, 7) = —oo and
limg_.; D (6,7) = p(1,7) > 0. Hence there exists a unique 5(71') € (0,1) satisfying D(§(7r) ,7)=0
foreachn>0W

Lemma 17. 6 and r satisfy the following properties:
i6is continuously differentiable on (0,1).
i img_gpr(7) =0

iii  is monotonically increasing in w

Proof. i) It is easy to check that D; (8, 7) > O for each = > 0 which means that the hypothe-

ses of the implicit function theorem is satisfied for each § (7). ii) The equation D (5 () .7r)
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p(g(n'),rr) —%(:—g-%::—; = 0 must be satisfied for each # > 0. But lim,_g p(a('ﬁ).ﬁ>
< limgz—gp(l,7) = 0 so lim,,_.oi’%g(—%;:—g = 0, which implies that lim._.or (%) = 0. iii) For
a contradiction suppose r(w) < r(x’) for # > n’. Since (2.8) must be satisfied for both =
and 7 and since the first derivatives of y are decreasing in its own argument it follows that
D (5 (m) ,7r) <p (5(7&" ), @ ) . But since p (6, 7) is increasing in the second argument (that is, the
posterior is increasing in the prior) this means that § (m) < @ (7). Plugging this into the definition

of r it follows that r (w) > r (') which is a contradiction. Il

Proof.  (Proposition 6) By Proposition 2 the set of all equilibria of the model are fully charac-
terized as fixed points of the map Go H : [0,1] — [0,1], where H is defined by (2.14) in Section
2.3 (Proposition 2 says how equilibrium strategies consistent with a particular fixed point can be
constructed).

By Lemma 17, § is continuously differentiable on (0.1) and since it follows that r and H are
compositions of continuously differentiable functions these are also continuously differentiable on
(0,1). This implies that H is a continuous function of 7 on (0,1). By constant returns to scale
the first derivatives of y are homogenous of degree 0 and since 6 (7) must satisfy the first order

condition (2.8) we have that 5(71') .7 (7) must satisfy
p(0(m),7) 1 (r (m),1) = 2 (v () 1) (2.60)

for every m € (0,1). For # = 1 we have that p(8,1) = 1 for all 8, so it does not really matter what
workers are assigned to the respective tasks. However, r (1) must nevertheless satisfy y, (r 1),1)=
y2(r(m),1) (one particular way of achieving this is by a cutoff rule). Since the workers are
all equally productive in both tasks we get that w(8) = y; (r(7),1) = ya(r (w),1) for all 8
and it follows that the benefits of investment is given by H (1) = 0. It is easy to verify that
limy_;7(7) = r (1) by use of (2.60) and using (2.14) it follows that lim._., H (7) = H (1). The
case with 7 = 0 is taken care of in the same way. No matter how workers are allocated between
tasks output is zero, which implies that w (6) = 0 for all §. Hence H(0) = 0. Furthermore from

(2.60) we have that

T o T yg(?‘(ﬂ’),l)
0= limp (0(7r),7r) = lim (2.61)

and using the boundary conditions we see that the only possibility for this to be satisfied is if
limy_or(m) =0, limr_gy2 (r(r),1) = 0 and limr_gy, (r (7), 1)p(5(7r),1r) = 0. Since F; (8) -
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F, (8) and f;}(”) p(8,7) (fq(6) — fu (6)) df are bounded below and above it follows from (2.14)that
limy_.o H () = 0 = H (0) establishing continuity of G o H on the whole interval [0, 1].

Consider any = € (0,1). Inspection of (2.60) shows that 0 < r(7) < 7 where ¥ is the unique
value satisfying y; (T,1) = y2 (7,1). Hence 0 < ] (m) < 1 and since p (6, 7) is strictly increasing in
@ for any 0 < m < 1 by the assumption of strictly monotone likelihood ratio it follows that

1
/ p(6.7) (fy(8) = fu (B)) 8 > p (8(x) ) [Fu (8(m) - F, (F(m))]- (2.62)
a(m)
Hence H(w) > 0 for all # € (0,1). Since G(0) > O it foliows as a simple application of the
intermediate value theorem that there exists at least one fixed point of G o H. It follows directly
from the assumption that G (0) > 0 that any fixed point must be in the open interval (0, 1). Hence

there exists at least one non trivial equilibrium W

2.7.3. Proof of Proposition 7

Assume that there is an equilibrium such that all agents in group a are assigned to the complex
task. Such an equilibrium exist if and only if there is a (7*,7°) solving 77 = G (H7 (x°.#?))
for j = a,b such that §° (1) = §° (¢, 7%) = 1. Note that in any such equilibrium we have that
w(f) = y2 (r (r),1) for all 8, implying that #* = G (0) . The cutoff rules for the task assignments

must satisfy the Kuhn-Tucker conditions for the problem (2.17), in particular
(P .7) u(r(m) D=1l m,1)+ (% -m)/fw (P @), (2.63)

where 7, is the multiplier associated with the constraint that % > 0 and 7 with the constraint
that 1 — 8% > 0. Note that 6° (r) < 1if§° () since it follows from the definition of r that r () =0
if (5“ () N (7r)) = (1,1). But then the left hand side of (2.63) is less than or equal to zero and
the right hand side is unbounded, so this could not be the case in equilibrium.

Imposing §° (7) = 1 the condition (2.63) together with the complementary slackness conditions
is indeed necessary and sufficient conditions for optimality. Proceeding step by step as in the proof
of Lemma 16 in Section 2.7.2 one shows that there is a unique solution to these conditions (which
may or may not involve assigning all workers in group b to the complex task) for any 7* € (0, 1].
Let this solution be given by §° (7r") (observe that so for all we know so far this need not coincide
with 6% (G (0) ,m°)). Fixing exogenously both the investment behavior and the task assignments

for group a the model is qualitatively the same as the single group model (with some unexplained
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input of labor in the simple task) and we can establish that 6° (x®) is continuous in 7* by use of the
implicit function theorem, exactly as in the single group model (the possibility of corner solutions
where all b workers are assigned to the complex task does not create any discontinuities). Define
r? : (0,1] — Ry as the ratio of factor inputs function of 7®, assuming that all agents from gToup
a are assigned to the simple task, i.e.:

Xt (1- F, (6 (n2) )

A 4 AbbE, (ﬁb) (264)

r (w?) =

Note that 7° = G (H® (G (0),7®)) in order for 7° to be consistent with equilibrium. But this is
equivalent to finding a fixed point of (2.15) with H(w) defined as in (2.14) but with 8 replaced
by 6 and r replaced by r%. It is easily checked that 8° and r* has all the properties of § and r
that were used in the proof of Proposition 6 (i.e. Lemma 16 and Lemma 171 still holds). It then
remains to check that it is optimal for the firms to assign all workers in group a to the simple task.

From the (full) Kuhn-Tucker conditions it follows that this is the case if and only if

d ‘ﬂ'b —_
p(1,G(0) < -’ﬁ%&bg—g =p(6° (), 7*) = p(1,Go) (2.65)

But limg(g)—op(1.G (0)) = 0 and ya (r* (#*) ,1) /y1 (r* (7*) ,1) > 0. This implies that the cutoffs
(1,6° (*)) indeed solves (2.17) if # = (G (0),7®) if G (0) is small enough. Hence r¢ (r) = r ()
and (G(0),7°) is an equilibrium of the model. The fact that all agents in group b are paid a

higher wage than any agent from group a follows directly from the wage schedules. M

2.7.4. Proof of Proposition 8

The proof of the sufficiency part of the proposition uses the following intermediate result.

Lemma 18. Suppose both firms choose the proposed equilibrium strategy. Then both firms are

earning zero profits.

Proof.  Using the proposed wage schedules (2.29) the total wage bill can be expressed as:

wo= 3 Af/wf (6) frs (8)dO = (2.66)

Jj=a,b

" (;, Xip (8,79 F,, (¥) j;b X [1-F, (51)])
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where the missing arguments of y; are the implied factor inputs. But Fia (5“) = F (5”) due
to the affirmative action constraint and using the fact that the weighted average of the marginal
productivities in the complex task for the critical workers equals the marginal productivity in the
simple task (equation 2.28) we get

W=1()Fe (8)+ £ Yo [1-F, (@)]w ) (2.67)

j=ab

Since Y- Ml [1 ~F, (51)] = C and Fiu (8%) = XFre (62) + XFpu (8) = 5 (this comes
j=a,b

directly from the constraint imposed by affirmative action) the result follows from (2.67) by using
Euler’s theorem. ll

Proof of Proposition 8 (sufficiency). The proof parallels the proof of Proposition 4, but
since the affirmative action constraint has to be used in a non-obvious way we give a rather
detailed version of the proof. Suppose one firm should deviate from the candidate equilibrium
strategies and play {w3,,.w5,,,&5,, &5, } so that the actions implied on the outcome path are
(Waew Waey: tew: tiew)-

Define : @? = {0:w°(-) > w* (")} ,9;- ={0:d*()<wr(-)} 05 = {0:w*(-) = w (-)} for
j=a,b. Let C and S the implied factor inputs employed in the candidate equilibrium and Ciey,
Saev be the implied factor inputs for the deviating firm i given that the other firm still plays

according to the proposed equilibrium strategies. The profits for the deviating firm, Hf,eu, can be

expressed as ;

o = CwrSan) = DV | [ e @ feOt+3 [ 0@ f@a] 26

7=ab  |eecen ece-

Using concavity and constant returns to scale as in the in the proof of Proposition 4:

fiev < y1(C,85) Ciev +y2(C, S) Saew (2.69)

-2 | [ de@r@@r) [ WO @

I=ab gcon séos

Using 77 f,(8) = p(6,77) fr,(8), and manipulating, we have:

NG = LN [ e, @Oun(CSp@7) frr @) (2.70)
j=ab fcoh

+% PRY / tew 0)y1 (C,8) p (8,77) fr, (6)d6

j=a,b gee:
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But by definition of (2.29) we have that w’ (8) = y, (C,S)p(8,77) for 6 > 8 and w’ (8) >
1 (C,S)p(6,77) for 6 < 67 .Hence

11 (C,8)Cyev £ Z Y/ / Yo (8)w (0) f., (8)dO + 3 / Jey (O) 07 (8) £, (8)dO (271
j=ab scon 9€0"

Symmetrically, note that w? (8) = y; (C,S)p (53', wj)and w? (8) >y (C.S)p (5j, nj) for 6 > 67 .

Note that

~ NS
n(©9)p (7)< [ Wi (0) (1=t ) fr (O) a0
9ee”
1 , . _
+3 [ v O(-d@)m@@s @
o€
Making use of affirmative action constraint it follows that:
eSS Abse S
Y2 (C S) Sdgv = Y7 (C S) ( dw + /\:e") = Yo (C, S) (/\a + /\b) %’i (2.73)
and combining with (2.72) and (2.28) we get:
RCS) S < LN [ w0 (1-8,0) fu @O (2.74)
Jj=ab 866’
+ RS / W (6) (1=, (8)) fr (6)d8 (2.75)
J=ab geoe
Summing over (2.71) and (2.74) we get:
¥1(C,S) Ciev +y2(C, S) Saev < Z x / w (8) frs (6)dO + / w (0) £, (0)dO (2.76)
j=ab scoh aee;

The last steps of the argument is exactly as in the proof of Proposition 4. Substituting (2.76)
into the expression for the profits and noting that the deviator must pay higher wages than the

candidate equilibrium wages over the relevant ranges gives the result. B

The necessity part is proved using the following steps.

Lemma 19. Suppose (w§,w?,£¢,€%),_ , is a pair of best responses. Then, (1) w}(6) = w}(9)
for almost all § € [0,1], j = a,b. (2) Firms earn zero profits. (3) E{(ur{,w{) = £é(w§,w§) =t (6).
J = a,b, for almost all § € [0, 1], where t7 (-) is the cutoff task assignment rule with critical value
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6. (3) Let ] denote the task assignment rule on the equilibrium path for firm group j = a.b and
firm i = 1,2. Then, there exists 6° and 8 such that the optimal task assignment rule for group i

has the cutoff property with critical value 8.

Proof. (1) Equality of wages follows easily observing that if one firm offer higher wages to a
positive mass of workers, it could profitably deviate by reducing it. (2) Given constant returns
to scale, if firms earned positive profits, one could profitably deviate by reducing the entire wage
schedule by a small amount so as to capture the entire labor supply and double profits. (3) Finally,
given that firms offer the same wage schedule, an argument similar to the one used in the proof
of Proposition 1, Lemma 13 and 14 shows that (2.26) has a unique solution 8 = (5“,97’), and the

optimal task assignment rule is the cutoff rule t7(-) with critical value &, j = a,b. H

Jj=ab

solution to (2.26). Then there is a pair (ki, ki) for each group j = a,b such that w’(8) = k! for
almost all 6 < 87 and w’(8) = kip(6,77) for almost all @ > 87, j = a, b.

Lemma 20. Suppose <w{, w§> is a pair of equilibrium wage schedules and 8§ = (8. 5”) is the

Proof. w](8) =k for almost all§ < &7 , j = a, b follows from the same argument used in Lemma
15. To prove that w}(8) = kip(d,n7) for almost all & > 87 the argument is more cumbersome:
we now have to make sure that deviations don’t affect the affirmative action constraint, which
complicates the arguments. Suppose for contradiction that in the candidate best response wages
the ratio w(6)/p(6,n7) is not constant in 8 for one group which we w.lo.g take to be group a.
Then we can find a positive measure set ©° ¢ [§2, 1} such that w#(8)/p(6, %) > w(8')/p(6'. =*)
for all 8 € B¢, ¢ ¢ [5“, 1]\©°. It is always possible to choose ©% small enough so that there
exists ©° C [[97’, 1] such that A% [ o, fra(8)d6 = N® Jocow fx+(6)d6 (i.e. the mass of workers in the
two sets is the same) and wf(6)/p(6,7°) > w?(8')/p(¢', =*) for almost all 6 € €%, ¢’ € [, 1]\@C.
Now, suppose one firm posts zero wage to workers belonging to sets ©% and ©°. By construction,
affirmative action constraint remains satisfied and qualified workers have been reduced by R¢c =
Yimap N foee- 7' f,(6)df. The proposed deviation consists in "firing” workers belonging to sets
©° and ©° while reducing proportionally workers in the simple task to keep the factor ratio at the
same level of the candidate equilibrium. Any candidate equilibrium must involve zero profits, but
since wage bill per unit of production is lower, profits must be positive after the deviation so that
the deviation is profitable. Formally, let C and S be the total factor inputs respectively in the

complex and simple task. To keep the factor ratio constant, the deviation must reduce workers
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in the simple task by Rs = S - R./C. Because of the affirmative action constraint, reduction of
workers in the simple task must be proportionally distributed between groups. Compute then 05,
and 65, to satisfy jio-”fu.,] fz:1(6)d8 = MR,, j = a,b (we also have to make sure that &, < .
J = a,b which is guaranteed by choosing ©° small enough). Consider the following deviation from

the candidate equilibrium wage profile w’(8), j = a, b:

o (6) = { 0 HoeOUDE) -
w?(4) otherwise
By construction, the factor ratio remains constant. Using constant returns to scale, production
decreases by R./C = R,/S. It is now intuitive but cumbersome to show that average wage per unit
of production decrease, so that the deviation is profitable. In the simple task average wage per
worker is constant by the first part of this lemma. In the complex task, define the average wage
per qualified worker in the candidate equilibrium as Ei = fo 1] w(8) fr. (8)d8/ |77 (1 — Fq(éj)].
Similarly, define £, = foe[@,l]\el wf,eu(a)f,,, (8)db/ fee@.ll\e- 7 £,(8)d6, the average wage
under the proposed deviation. Using w(8) f,.(8) = 7" f,(8) - w(8)/p(8, ) and W), () = w!(-) for
8 e [5’, 1]\®?, j = a,b we can rewrite average wages and derive the following inequality from the
fact that the ratio w(-)/p(-,77) is higher for§ € ©7, j = a,b
o por ORI + foco, PIOURD  fyes 10, ™0 2540
fee[&‘:,x]\e: ™ f4(0)dE + [peq, ™ f4(6)dO fae[@.ll\e) i f,(6)d6

(2.78)

ie. > Fﬂw, J = a,b. But then the total wage bill payed to the complex task workers is
equal to Wye,, = 5, e, foe(f'ﬁ.ll\e- wfq(8)df < (1 — R.) ZiFfae[E-,l] mf,(8)df. Since wages de-
crease proportionally more than production, wﬂev(-) implies positive profits, and the deviation is

profitable. B

Lemma 21. The equilibrium wage schedules <w{, ur§> , e continuous at almost all § € [0, 1].

Jj=a,

Proof. InLemma 20 we established that w?(§) = & for almost all § < 8/ and wl(8) = kip(d,7)
for almost all 8 > 89, j = a,b. All we need to show is that ki = kgp(aj,nj), j = a,b. The proof
is by contradiction and consists of two parts: either there is a group with kJ > kip(67.77), or
k, < kip(67,77) for both groups, with strict inequality for at least one group.

Consider the first case. Then, there exists a positive measure interval [51,0‘] such that &k, >
kip(8,77) = wl(@) for almost all § € [4’9\1',0‘]. In the proof of the necessity part of Proposition 4

we have already shown that there exists a profitable deviation from such a wage schedule. The
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deviation consists in offering a slightly higher wage to workers in the interval [51, 7], and use them
to replace an equal mass of workers in the simple task who receive an higher wage k,. Notice that
his deviation does not affect the affirmative action constraint since the deviation firm is replacing
expensive simple task workers with an equal mass cheaper workers stolen from the other firm.
Suppose instead kJ < kZp(67,77) for j = a,b with strict inequality for at least one group, say
group a. We propose a deviation on wages of both groups that keeps production constant and
maintains the affirmative action constraint satisfied. Take and define 8 € (6 ,§°) as the value
that divides the mass of workers with 8 € [6%, 5"] in two equal parts, i.e. 8* is the solution of
the following equation: [Fra (5“) — Fra(0%)]/2 = [Fra (6*") — Fra(8%)]. In the proposed deviation,
workers with 6 € [6%, 9“") will be assigned to the simple task, and workers with 8 € [6e". 5“] to the
complex task. We want to keep mass of productive workers in the complex task constant. For this
purpose, compute 6** > §° so that jﬁ.,, fq(8)d0 = ( féq- fq(H)dB) /2 and consider the following
deviation:
ke +¢ for € [6v,6%
Weey(6) = 0 for 8¢ g 6% (2.79)

w?  otherwise

0 for g e ([0,6v]
1 for 8 € (§%,1]

deu(0) =

By construction, the mass of workers employed in the simple task and the mass of qualified
workers employed in the complex task are unchanged. On the other hand, if we consider this
deviation alone, the affirmative action constraint will not be satisfied because the mass of workers
employed in the complex task is increased by the following amount (a formal argument is omitted,
but it will be symmetric to the argument used in Lemma 13 showing that employing the same

mass of workers with higher average 6 increases the mass of qualified workers):

7 Ll
W — @ =\ ( /o _ fan(8)d0 - f""f—’;(g)df) (2.80)

To keep the affirmative action constraint unchanged we have to deviate also on wages offered to
group b. The idea is to compute 6% and 6 with 8% < 6 < 65* < 1 to attract from the other firm
workers with 6 € | 5", 6”'), get rid of workers with 6 € [#°*,1] so as to keep the mass of productive
workers employed in the complex task constant (equation (2.81)) and to satisfy the affirmative

action constraint (equation (2.82)). Formally, compute 6° and 6** in order to satisfy the following
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set of equations:

ohl
| fi(6)d8 = / f1(8)d8 (2.81)
b he
olu 1 \III
»(8)dO — +(8)d8 = 2.82
Fu@)s~ [ foto) = (282)

(choosing 8% close enough to 6 guarantees existence of 8® and §°* solving the system of equations).

Consider deviation (wg,,,t3,,) together with the following deviation:

kb +e for 6 € 67,6
Wy () =¢ 0 for 861 (2.83)
b

w;

;  otherwise

Since the proposed deviations make sure that production remain constant, change in profits will

depend only on change in wages. Letting e terms go to zero, we have:

al g"-
limdugey = 5 [ wiOe@d8 -5 [ utO)fre )20 (2.84)
€l0 2 2
gnl b\"
o 1
17, L,
w5 [ wtO @) - 2 [ w(0)f.0(6)d0
67' gb-

Observe now that if 8% is close enough to 8 there is h < k¢ satisfying k2 + ¢ < hp(6, %) for every
6 e [8v ,5"]. We can then conclude using the usual relation fr,(-) = 77 f,(-):

al oll- b l
lilrgAwd“(e)< % / h.-rr“f.,(G)dO—% / k3x “f,,(0)d0+— bt / f2(0)do— / f4(8)d6 (2.85)
I:L3 a‘u gbe

The last term on the right hand side is equal to zero by construction, so the expression reduces to
21im ;g Awgey(€) < 73(h — £2) fj’:', £,(6)d8 < 0

We can then choose € small enough so that the change in wages is negative and the deviation
is profitable. @

Proof of Proposition 8 (necessity) Using the result shown in Lemma 21, the total wage bill paid
to workers of group j is equal to kJ = [p(9J ) F,, (01)+1 —F, (0’)] and is strict increasing in kJ. As
shown in the proof of sufficiency part of this proposition, k2 = k% = y,(C, S) implies zero profits.
To show that a wage schedule with kI # y,(C, S) cannot be an equilibrium, suppose for example
that k2 > y1(C, S). Then zero profits condition implies k% < y;(C,S). Then we can construct a

profitable deviation that deals only with workers assigned to the complex task. The idea of the
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deviation comes from the observation that the cost of labor per productive worker is higher in group
a than in group b. We substitute high test result workers in group a with low test result workers of
the same group, taking care of keeping the number of workers employed in the skilled task constant
this will reduce the number of qualified workers of group a; if we construct a symmetric deviation
for group b in order to restore the original mass of qualified workers, then the total wage bill will
be lower than in the candidate equilibrium without changing total production and keeping the
affirmative action constraint satisfied. Formally, define #% and 6°* with 8% < % < §%* < 1 as the

solution of the following equation:
Fra(8%) = Fra(6%) = 1 — Fra(6*") (2.86)

Consider the following deviation of the wage function for group a:

wf)+e forde [5“,9“']
W3eo(6) = 0 for 4 € [6°°,1] (2.87)

w?(8) otherwise

The mass of qualified workers of workers that belong to group a decrease since we substitute
workers with high test result with an equal mass of workers with low test result (the formal proof
is similar to the one used in Lemma 13). We can quantify the loss in productive workers employed
in the complex task as C' — C = '\7 (f;,,_ 7 fo(8) — f;g:” 7r“f,,(6)>: Next, consider the following

deviation for group b:
0 for § € (67, 6]

Wi (8) =¢ wh(8) +e for 66 1] (2.88)
w?(d)  otherwise
With 8 and 6°* satisfying the following two equations:

Fr(6") ~ Fra(8%) = 1— Fpe(6>) (2.89)

o’

1

[ =0~

gb-

<

f(6) = =(C-C) (2.90)

Y —

b

<

Notice that if 8 is chosen to be close enough to 8° (which implies C’ — C close enough to zero)
then a solution to the system of equations specified above exists). Equation (2.89) guarantees that
the number of employed workers remains constant, and (2.90) that the gain in productive workers

employed in the complex task obtained with deviation w?(-) is equal to the loss due to wd’(-).
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Under the proposed deviations, productions remains constant, so difference in profits depends

uniquely on difference in wage bill:

a g’ a 1
wie) —w = ’\7 /3 - (wf(0) +2¢) f,,«(e)dﬁ—%- /0 w?(8) f (8)d (2.91)

T b ol
—% /5 w?(ﬂ)fxa(9)d9+'\5 /0 . (w?(8) + 2€) fru(8)dd

o+’ 1

= kC'-C)-kY(C' -C)+¢ [,\" / . Tiad f,,(o)de}

al

7% £,(8)d + \® /

gt

Since k% < y1(C, S) < k2 and by construction C’ — C < 0, then there is an € small enough such

that the difference in wage bill is negative and the deviation is profitable. l
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3. STATISTICAL DISCRIMINATION AND EFFICIENCY

Peter Norman*

University of Pennsylvania

July 16, 1997

Abstract

This paper seeks to investigate if there is an efficiency rationale for policies aimed at statistical
discrimination. To do this we consider a model of statistical discrimination with imperfectly
observable human capital investments by the workers. In this setup we contrast the equilibria of
the competitive model with the allocation chosen by a utilitarian social planner. The planner works
under the same informational constraints as the firms in the competitive model and is furthermore
constrained to use reward schemes that satisfy incentive compatibility, individual rationality and
budget balance.

Any equilibrium is constrained sub-optimal. Hence, there is an efficiency rationale for inter-
vention, no matter whether the equilibrium under consideration involves discrimination or not.
However, since this inefficiency arises because a “free riding” problem occurs when human capital
investments are imperfectly observable this does not mean that statistical discrimination is ineffi-
cient. On the contrary, the planner may actually want to discriminate between two groups of ex
ante identical workers. The reason is that by designating one group to be investors and increas-
ing the fraction of investors within this group compared to the best non-discriminatory allocation
the “mismatch” is reduced: fewer workers with the investment end up performing jobs where the

investment is unnecessary and fewer workers without the investment is allocated to tasks where

oI thank Stephen Coate, Stephen Morris, Andrea Moro and Andrew Postlewaite and seminar
participants at the Summer School in Tel-Aviv for comments, discussions and encouragements.
The usual disclaimer applies.
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the investment is needed. This positive effect on social surplus has to be contrasted with the fact
that discrimination creates inefficiencies in investment behavior. It is shown by example that it is
quite possible that the positive effect dominates, so the solution to the planning problem actually

involves discrimination.

3.1. Introduction

In this paper I seek to investigate if there is an efficiency rationale to intervene in an economy with
statistical discrimination. Although this question seems to be of importance for more concrete
policy analysis, such as evaluation of affirmative action programs, there are few attempts in the
literature to analyze the question in detail.

In the earliest theories of discrimination, building on the seminal contribution by Becker[9),
discrimination is explained from preferences. While a planner may potentially disagree with the in-
dividual agents’ racist/sexist preferences there is nothing inefficient with discrimination in Becker's
model.

These preference based models of discrimination were challenged in the seventies by theories of
statistical discrimination, which can explain discrimination without resorting to an assumption of
prejudice. This literature was started by Phelps[24] and Arrow [4] and further developed by Aigner
and Cain (3] and others. The main idea in these models is that workers’ abilities are imperfectly
observable, so firms have to make inferences based on whatever observables they have available.
Now if, as Phelps [24] and Aigner and Cain (3] assumes, traditional measures of productivity are
less informative for minorities this means that relatively few minority workers are in the top end
of the wage distribution, even if the distributions of abilities are identical for the two groups.

Models of statistical discrimination with exogenously determined ability distributions can ex-
plain differential treatment in the labor market even when firms maximize profits and there are no
differences in abilities across groups. However, this does not mean that discrimination is a market
failure. On the contrary, firms simply respond to the differences in screening technologies for the
different groups. Given that there are allocative benefits to have higher skilled workers in more
advanced jobs, statistical discrimination improves allocative efficiency.

If skills are acquired by the workers through costly human capital investment, equilibria with
statistical discrimination may, as Lundberg and Startz [19] observed, be inefficient. The potential

inefficiency is that low cost agents from the discriminated group may choose not to invest while
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high cost agents from the other group invest. Hence it may be efficiency enhancing to enforce an
equal opportunities policy where firms are not allowed to make wages dependent on group identity.

A similar exercise can be found in Schwab [27] who demonstrates that an equal opportunities
policy may result in an increase in social surplus even if agents from one group are on average more
productive than the other. From this Schwab draws the conclusion that there are circumstances
under which statistical discrimination is inefficient. However, it is not clear whether this is the
most natural interpretation. Schwab uses a model similar to Akerlof’s [1] market for lemons and in
the equilibrium when firms are allowed to practice statistical discrimination too few workers from
both groups enter the “standardized” labor market and too many workers from both groups stay
in the “individualized” market. When firms are not allowed to treat the groups differently this
inefficiency is increased for one group and decreased for the other. The net effect on social surplus
is ambiguous in general and with the right choice of supply elasticities the policy may increase
surplus. Still, it’s hard to see why one should interpret this as saying that statistical discrimination
is a market failure when what is driving the result is that the usual lemons problem is less severe in
one group than the other. Also, for statistical discrimination to arise in Schwabs model there must
be intrinsic productivity differences between groups. But this has the consequence that groups are
treated differently also in the surplus maximizing allocation.

Underlying the analysis in this paper is the view that for any given positive model of the labor
market there is a natural welfare analysis based on a planner with no more information than the
firms on the market. This view leads us to compare equilibrium outcomes of a decentralized model
with the solution to a corresponding planning problem rather than comparing equilibrium out-
comes under two different regimes, one where statistical discrimination is allowed and one where
it is not. While arguments of course always can be made about the planners objective, informa-
tional assumptions etcetera, this approach has certain advantages. In particular, the problem with
pairwise comparisons of different regimes is usually that there may be other, better policies that
are “as easy to implement” as the ones under consideration. This problem is mitigated by using
the methodology in this paper since the planners’ feasible set is determined by more primitive
assumptions.

The decentralized model is the same as in Moro and Norman [23]. In this model human capital
investments increase productivity only for workers that are employed to perform a qualified task
(management), while workers in the other task (manual labor) are equally productive irrespective

of whether they invested in their human capital or not. The investment decision is unobservable for
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the firms, but firms observe a noisy signal with some information value and make wage offers on the
basis of this signal and, potentially, group identity. No asymmetries between groups are assumed:
the model abstracts from differences between workers in intrinsic abilities and the distributions of
investment costs and the signaling technology are the same for both groups. Still, discrimination
may occur in equilibrium. The reason for this is that when the fraction of investors is increased in
one of the groups, firms will respond by assigning more workers to the qualified task. Given that the
tasks are complementary in production, this decreases the marginal productivity in the qualified
task relative the other. In equilibrium wages are given by expected marginal productivities, so the
consequence for a worker from a group where investment behavior is unchanged is unambiguously
to decrease the incentives to invest. Hence, the complemetarities in production creates strategic
complemetarities between groups that work “in favor of” discrimination.

This decentralized model is contrasted with a command economy where a utilitarian social
planner has available the same production and screening technology as the firms in the decentralized
model. Since human capital investments are unobservable, the planner must resort to using reward
schemes depending on for the planner observable variables: the noisy signal and group identity.
Besides the usual incentive compatibility constraints we also assume that the planner has to respect
an individual rationality constraint and budget balance.

It is shown that there are circumstances where the solution to this planning problem involves
discrimination. The intuitive reason for this is that there is an element of economics of special-
ization involved. By designating one group as investors and the other group as non-investors the
planner is able to reduce the matching problem. That is, fewer investors will be assigned to the
unskilled task where the investment is not needed and fewer non-investors will be assigned to the
skilled task. However, this is not without a cost. Given that the distributions of investment costs
are the same across groups discrimination raises the investment cost of the average investor if
the total quantity of investors is kept constant. Hence, the planner faces a trade-off between the
informational gains and the losses in terms of increased investment costs and examples can be
constructed where the net effect goes either way.

Comparing the decentralized model with the planning problem we find that there is underin-
vestment in equilibrium. This is hardly surprising: since human capital investments are imperfectly
observable a “free riding” problem occurs. The more people that invest, the higher is the probabil-
ity that any worker with a particular signal has invested. Hence, non-investors will be more likely

to pass as “probable investors” when the fraction of investors increase. In fact, all equilibria are
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constrained sub-optimal and can be improved upon by a small increase in the fraction of investors
for at least one of the groups. The only case when a small increase in the fraction of investors
does not increase surplus is if the fraction of investors in a group where all workers are assigned
to the unqualified job is increased. In this case the surplus would actually be reduced since the
increased investment costs would not be offset by an increase in productivity when these workers
all are assigned to the job where the investment is not needed. For ail interior equilibria however.
with or without discrimination, surplus is always increased when the fraction of investors in any
of the groups increases.

The model is admittedly very stylized. However, neither the “informational gains” of discrim-
ination nor the underinvestment seem to be artifacts of any simplifying assumptions. If this is
true, it means that normative analysis in models of statistical discrimination with endogenous
human capital formation will be difficult for two reasons. First of all, discrimination may actually
improve allocative efficiency and even if the distributional consequences are undesirable, it is not
inconceivable that this may be solved by transfers. Secondly and, maybe, more important, even if
the constrained optimal allocation is non-discriminatory we still have to handle the fact that there
is underinvestment in equilibrium. Thus, while we would want to pose the question “which is the
best way to eliminate or limit discrimination” we cannot separate policies aimed at discrimination
and policies aimed at the underinvestment problem.

There are, of course, good reasons to be careful when interpreting the results. Nevertheless, the
very same assumptions that make discrimination of ex ante identical groups a possible equilibrium
outcome also create potential efficiency gains of discrimination.

Since there is no correlation between group identity and investment costs, the model does not
offer any prediction about which group should specialize in human capital investment. This is
clearly an idealization and if there would be the slightest correlation, the planner would no longer
be indifferent. However, this wouldn’t change the conclusion that specialization in human capital
acquisition has potential welfare benefits.

The rest of the paper is organized as follows: Section 2 describes the model and in section
3 we consider a planning problem and characterize the solutions to this problem. In section 4
the surplus-maximizing allocations are contrasted with the equilibria of the “laissez faire” model
and in section 5 we consider simple transfer instruments that are implementable under weaker
informational assumptions than these needed in order to implement the solutions to the planning

problem. Section 6, finally, contains a discussion.
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3.2. The Model

We will work with the same production and screening technology as in Moro and Norman [23]
and the decentralized model is identical to the model considered there. For expositional purposes

we will begin with a somewhat informal review of the model. Details can be found in Moro and

Norman [23].

3.2.1. The production technology

Output is produced from labor input in two jobs, which we refer to as the complez task and the
simple task. The effective input of labor in these task will be denoted by C and S respectively and
we assume that output is produced from these inputs according to a production function y : R? —
R, which satisfies all standard neoclassical assumptions: y is twice continuously differentiable.
strictly quasi-concave, exhibits constant returns to scale, both factors are essential and the Inada
conditions are satisfied.

The crucial assumption is that only those workers who made an investment in their human
capital are able to perform the complex task satisfactorily. Specifically, we assume that a worker
without the human capital investment does not contribute at all to the effective input of labor
in the complex task while all workers with the investment gives equal contributions, normalized
to unity. The effective input of labor in the complex task will thus be given by the quantity of
workers employed in the task who invested. In the simple task the investment does not matter
for productivity, so here we simply add up the number of workers to get the effective input of
labor. All this can be relaxed considerably without changing anything qualitative. What is needed
is really only that the investment is more important for one of the tasks than the other. At the
cost of some additional complexity we can also handle heterogeneities between workers in intrinsic

abilities to perform the complex task.

3.2.2. Human cagital investments and the screening technology

There are two groups of workers, indexed by a and b respectively. Each group consists of a
continuum of workers with heterogenous costs of investment in their human capital. An agent is
thus characterized by her (unobservable) cost of investment, denoted by ¢, and her (observable)
group identity, which is either a or 4. A worker who undertakes the investment incurs the cost c.

but becomes able to perform the complex task. Workers who don’t invest incur no cost, but are
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unable to perform the qualified task satisfactorily. We denote by A® the fraction of agents with
observable characteristic a and by A® = 1 — A% the fraction of agents with characteristic b. For
both groups a and b, investment costs are distributed according to some continuous and strictly
increasing distribution function G with support in the interval [c,¢]!. We assume that ¢< 0 and
c>0.

Each worker’s investment decision is unobservable, but there is a noisy signal € © that firms
can use as an indicator of how likely it is that a certain worker is qualified. For most of the
analysis we assume that © is the unit interval and that 6 is distributed according to density fq
for a worker who invested in the first stage and according to density f, for a worker who did
not. These densities are assumed to be continuously differentiable and bounded away from zero
we assume without loss of generality that f, and f, satisfies the (strict) monotone likelihood ratio
property, i.e. fq(8)/fu(6) is strictly increasing in . Thus, qualified workers are more likely to get
higher values of 8 than workers who are not qualified2. The cumulative densities are denoted by
Fy and F), respectively. It should be observed that the distribution of signals does not depend on
group identity, so the screening technology is not biased in favor of any of the groups.

Since the investment decision is unobservable, wages can not be contingent on the investment
decision but only on the observable signal. For simplicity we assume that the workers are risk
neutral. We take the payoffs to the expected wage earnings net investment costs, which we can
write as Ef, (w(d)) — c for a worker with investment cost ¢ who invested and Er, (w(6)) for a

worker who did not invest.

3.3. Optimal Policies in a Command Economy

In this section we will consider the problem of a utilitarian social planner operating in the economic
environment described in Section 3.2. Since investment decisions are unobservable, the planner
can control investment behavior only indirectly by designing reward schemes as a function of the
noisy signal and group identity. We will also constrain the planner to use reward schemes that are

non-negative and satisfy a budget balance condition.

'Thus, the two groups are identical in terms of intrinsic investment costs.
2These assumptions are without loss of %enera.lity. If the monotone likelihood ratio property
would not hold the signals can always be relabeled.
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3.3.1. The planning problem

In principle the planner can allocate workers between tasks using arbitrary (measurable) task
assignment rules t’ : © — {0,1}. The interpretation is that ¢ (§) = 0 (= 1) means that a worker
from group j with signal @ is assigned to the simple task (complex task). Given any pair of task-
assignment rules and the fractions of investors in each group, which we denote by = = (7. rrb) .

we can compute the input of labor in each task as®
C = YN /ti (8) 77 £, (6) df (3.1)
J
S = Z,\f/(l —t7(8)) (7' f, () + (1 — 77) £, (6)) df.
J

Using these expressions and the monotone likelihood ratio it is not difficult to prove that we may
without loss of generality restrict attention to task assignment rules that satisfies a cut-off property.
That is, we only need to find a “critical signal” §7 for each group. Then, all workers with signals
below will be assigned to the simple task and all workers with signals above to the complex task.
The intuition behind this is simply that the higher the signal the higher is the probability that
a particular worker has invested. Thus, if some low signal workers are in the complex task and
some high signal workers are in the simple task we can increase the effective input of labor in the
complex task while keeping the input of labor in the simple task constant by switching tasks for
the right number of workers.

Taking this cutoff property of optimal task assignments as given and using F} (8) as shorthand

notation for wFy (6) + (1 — ) F, we can write the problem for the utilitarian social planner as

G Y=’
sup y(EiA’wf(l—Fq(ej)),EIAfFﬂ (0")) -3 " g o) e (3.2)
7 3 i e

{”1 187w (’)}

s.t 7/

6(fw@ue-rnenae)
Z,\J‘ (wf/wi(a) f(0)d8 + (1 — 79) /wi(o) fu (9)d9> [BB]

w’(9) > Ofor 2116 [IR]

31t should be noted that f; and f, are used as frequency distributions in the (3.1), i.e. we are
assuming that a strong law of large numbers holds. For a simple stochastic model that has the
property that the probability distributions facing the individual workers coincides with the realized
frequency distributions we refer the reader to Moro and Norman [23]. More technical discussions
about laws of large numbers for a continuum of random variables can be found in Judd [16] or

Feldman and Gilles [14].
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The reason for taking the supremum will be made clear below, but except that there are some
cases when the maximum cannot be attained, the interpretation of the program (3.2) is pretty
straightforward. The planner seeks to make total surplus as large as possible subject to some
rather familiar looking constraints: the Incentive compatibility constraint reflects the assumption
that the planner can not observe whether a particular worker has invested or not, so the fraction
of investors will be determined as best responses to the wage schemes chosen by the planner!. The

budget balance and individual rationality constraints have the obvious interpretations.

3.3.2. Characterization of the surplus maximizing plan

In characterizing the solutions to the problem (3.2) two auxiliary maximization problems will be
used. Since the first of these problems is to maximize the objective in (3.2) without the constraints

I will refer to this as the unconstrained problem. We write the problem as

. . A . - rG7(w)
s RE Y ;'\W (1-F, (67),> N Fy, (87) —ZJ:,\J/S cg(c)de.  (3.3)

J

While the objective function is strictly concave in § there are no simple conditions that guarantees
that the function is concave in (6, 7). Thus, all we know a priori is that a solution exists and that
any solution must satisfy the first order conditions. It should be noted that the problem (3.3) is
introduced purely for analythical purposes and doesn’t have any natural economic interpretation®.

Note that the constraints of (3.2) are “minimal” in the sense that by throwing any of the
constraints there are always wage schemes implementing any feasible solution of (3.3). Obviously,
if the constraint (IC] would be deleted, anything could be “implemented” by w’ (6) = 0 for all 4. It
is also easy to check that it is possible to implement anything if the constraint [BB| is delated and
the reason is simply that the benefits to investment can be made arbitrarily large by making the
wage for the highest signals sufficiently high. To see that [IR] constraint is needed for the other
constraints to have any bite we just consider simple wage schemes of the form
w), for 6 <6

w (@) ={
w), forf >

(3.4)

“Recall that the payoff for an investor is Er, (w(f)) — c and the payoff for a non-investor is
Ef, (w(8)). In order for a worker to behave rationally given wage schedule w the worker must
invest if and only if EF, (w(6)) — ¢ > Ep, (w(6)). Hence G (f w () (f,(8) - fu (6))df) is the
fraction of workers who rationally choose to invest given wage schedule w. Now, with the different
groups facing different wage schemes we get the constraints [IC] in (3.2).

5To make sense of the problem (3.3) we would have to justify why a planner who can control
investment behavior without any incentive constraints doesn’t know who the investors are when
allocating workers between tasks.
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Note that the benefits of investment given these wages are (ur’H - wJL) (Fu(6?) — F; (¢?)) . Then

if we let
™ (1-F (67)) + (1 —77) (1 - F, (67))
w1 Fy (67) + (1 — w) F,, (67) il

it is easy to verify that the total wage payments are zero for any choice of w’F',, but that the

wp =~ (3.5)

benefits of investment goes to infinity as ur’H goes to infinity. Hence any (7%, 7°) and (6¢,6°) can
be iraplemented if [IR] is delated from the program.

Our second auxiliary problem is

sup / w (8) (f, (6) ~ f. (6))dB (3.6)
toy > Mo mk [ wk(8) £,(8)d8 + (1 — %) [ w* (0) f.(8) B
sty 2 (= [w* @1, (== [ )
w’(e) > 0

7, 78 given.

Here we ask how large can we make the benefits of investment for one of the groups, if production.
the fraction of investors and the wage scheme for the other group is held fixed. For convenience

we use the notation W7 for the total wage payments for group j = a, b, that is
Wi = wj/wj (8) f4(8)d8 + (1 - 1rj) /wj (8) fu(8)d8, (3.7)
and let

e = 0= XW) (£, (1) — £u (1))
SN @+ (1) fu (D))

(3.8)

for j € {a,b} and k # j.
Lemma 22. Fix n,y and w*. The supremum of the benefits of investment for group j over wage
schemes satisfying [IR] and [BB| defined in (3.6) is given by b*

The proof is relegated to the appendix. To understand intuitively where (3.8) comes from it
is useful to consider the case with a finite set of signals, © = {e, 2, ..., 1}. In this case it should
not be too surprising that the way to maximize incentives is to reward only those workers who
got the highest possible signal and give nothing to the workers with lower signals. The quantity of
workers from group j with 6 = 1 is given by the denominator in (3.8) and they share y — A W* (in
per capita terms). It follows that the corresponding benefits of investment equals the right hand
side in (3.8). In the continuum model this translates to 5'* being the lowest upper bound on the

benefits of investment.
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As is easily seen from (3.8), the higher is 7/ or W*, the lower is #*. That 7/ affects “maximal”
incentives negatively simply reflects that the number of agents who actually get rewarded increases
when 77 increases, so with a fixed pie this means that the reward decreases. The effect from W*
is even more straightforward since the total resources spent on group j decreases with W* and.
for the same reason, &’* is also increasing in y.

Now suppose that 7/ satisfies

o L= XWR) (1) - £u (1))
M(mify(1)+ (1 —m) fu (1)) )~

(3.9)

Recall that if group j faces a reward scheme w/, the fraction of workers that invests as a best
response is given by G([ w’ (6) (f, (8) — f. (6))d6). Combining with Lemma 22 and using the fact
that b7 is decreasing in 7/ we can then show:

Lemma 23. There is a unique solution to (3.9) and this solution is the least upper bound on the
fraction of investors in group j satisfying [IC],[IR] and [BB] for any given y and W* .

The proof is in the appendix. By Lemma 22, reward schemes consistent with [IR] and [IC] can
be constructed generating benefits of investments arbitrarily close to the argument of the right
hand side in (3.9) if a fraction 77 invests. Since G is continuous this implies that a fraction of
investors arbitrarily close to 77 is consistent with [IC],[IR] and [BB]. Next, suppose that something
strictly larger could be implemented. Since &’* is strictly decreasing in the fraction of investors this
means that in order for (IR] and [BB] to be satisfied, the benefits of investment must be strictly
lower than the unique solution to (3.9), which means that the fraction of investors consistent with
incentive compatibility is strictly lower that 77, a contradiction.

We are interested in under what conditions, if any, the solution to (3.3), the unconstrained
solution, coincides with the optimal cutoffs and fractions for the full program (3.2). The following
result gives a necessary and sufficient condition for when a feasible plan under program (3.3) can

be implemented in the full program.

Proposition 10. Let (7°,7°,6°,6°) be any feasible solution to (3.3) and let y be the output
corresponding to this plan. Then there exists a pair of wage schemes (w®,w®) such that these
together with (w*,w®,8%,6°) is a feasible solution for the full problem (3.2) if and only if there is

(D =fu(1)) (Q—a)y(f(1)—~fu(1))
some « € [0,1] such that G (&f‘(m‘)‘) > 7 and G( = i‘\,,;*h(l) ) > b,

The proof is in the appendix in Section 3.6.3.

To fix ideas we first consider the case when there is only a single group of workers. The planning
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problem (3.2) then simplifies to;

G~ (x)
s y(r(1-Fy @) F @) - [ cgle)de (3.10)
(”-ng(')} c

G ( JECEACAD de) iic]

v() > w/w<o)fq(0)do+(1—n>/w<o)fu<e)de (BB]
w(d) > Oforallé [IR]

3
I

This problem can be interpreted either as the original problem with the restriction that both
groups are treated equally (a restriction that may or may not bind depending on parameters) or as
the planning problem corresponding to the case when there are no observable “irrelevant” group
characteristics. We first note that no constraints to the problem are directly affected by the cutoffs
for the task-assignment. This implies that task assignment will always be done so as to maximize
production given the particular value of 7 chosen in optimum. Formally

Lemma 24. Suppose that ©*,0*,w* (-) solves (3.10). Then

" = argmaxy (x* (1 - F; (6)) , Fr- (6)

The proof is simple and we leave out the details. Since no constraint depends on 8, the cutoff
must be chosen so as to maximize the objective given 7*. Now, for each 7 € (0, 1] it can be shown
that there is a unique maximizer ] (m)®, which is a continuously differentiable function of 7. We

let Y (7) denote the highest achievable output for any fraction of investors #7,

Y(r) = y(w(1—Fq(é(w)),ﬂ,(é(w))))= (3.11)
maxy (v (1- F, (6), Fx (6))).

i

and note that applying Lemma 23 for the special case with a single group of workers we find
that the least upper bound for the fraction of investment for any given output y consistent with

incentive compatibility, budget balance and individual rationality is the unique fixed point to

fq (1) - fu (1)
)+ 1 (1)) ‘ (3.12)

See Moro and Norman (23] for formal arguments. The idea is that variables can be changed
so that the problem is rewritten as maxy (C, S) subject to C < w (1 ~ F,(6)) and § < F; (4) we
have a strictly quasi-concave objective function and, as a consequence of the monotone likelihood
ratio, a (strictly) convex constraint set. _

‘ 7Whi{)e 6 (0) is not uniquely defined, we may just take it to be lim,_q 8 () , which is ¢ maximizer
or m = 0.

7r=G(y
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So we can collapse [IR],[IC] and [BB] into a single constraint and rewrite (3.10) as to find

G~ ()
Tt € a.rgsqu(n')—/ cg{c)dc (3.13)

fo (1) = fu (1) )
7"fq(]-)'*'(]-_7") fu (1) '

Since the constraint set is open, it is more or less direct that any (local as well as global) maximum

subjtor < G (Y (m)

must be a local maximum of the corresponding unconstrained problem®. The only situation when

7* is not a local maximum of the unconstrained problem is therefore when

fq(l) “fu (1) X
o (1) + (1 —w-)fu(l))’ (3.14)

Although these observations are rather straightforward we will summarize them as a proposition,

™ =G (Y (7*)

which will be useful in Section 4 when we compare the planning model with the decentralized

model.

Proposition 11. Suppose 7* solves (3.13). Then there are two possibilities;
1. @* satisfies the first order condition Y’ (x*) = G~} (n*)
2. w* is a solution to (3.14)

The proof is in the text above the proposition.

Before going on to the case with multiple groups, the reader may note that there are two
potential analythical difficulties with problem (3.13). The first is that ¥ (7) may not be concave®.
Maybe more disturbing is that even if Y is concave the constraint set may not be a convex set.
As will be evident in Section 4 this creates some difficulties that I have only been able to solve
partially. In particular, we cannot even in general rule out the possibility that 7 solving (3.13) is
larger than the solution to the unconstrained problem.

For the case with multiple groups we can do the same exercise as with a single group, but now

Y(r) = Y (7% %) = maxy (Zﬂ'(l - F,(8%)) ,ZF,, (#) | = (3.13)

g~ ,6° -
2

/(S0-RE0).£a F o).

7

il

8Since we assume that G (0) < 0 we can moreover rule out 7* = 0 as a candidate solution. No
assumption made so far guarantees that 7* < 1, but since this case is not very interesting we will
simply assume it away. What is needed is roughly that G () is sufficiently large.

°I have not been able to come up with any easily interpratable sufficient conditions for concavity.
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where 67 (w) are defined in analogy with the single-group model as the pair of unique output max-
imizing cut-offs. In this case partial corner solutions are not only possible, but will actually be
rather interesting. However, the possibilities can still be broken down so that either the solutions
satisfies the first order conditions for the unconstrained problem (including complementary slack-
ness conditions) or the supremum is not achievable, in which case there exists some «a € [0, 1] such

that

o= 6 (e ) - o (1) ). 5.16)

M (73* fo (1) + (1 = m3*) fu (1))
for j = a,b.
While these are only necessary conditions we will see that these are actually very useful when

comparing the planning problem with the “laissez faire” economy in Section 4.

3.3.3. Example: Discrimination By the Planner

The main point in this example is to demonstrate that a utilitarian social planner may want to
discriminate against one of the groups, although the groups are ex ante identical. The intuition
is straightforward; compare a situation where a positive fraction 7 invests in both groups with
a situation wherc no worker from one of the groups and a fraction # > = in the other group
invests. Moving from the symmetric to the discriminatory/specialized allocation the likelihood
that a worker is assigned to the wrong task is decreased. On the other hand, to increase the
fraction of investors in one of the groups the average investment cost must be increased, so the
planner faces a trade-off. By discriminating the informational problem becomes less severe, but it
causes inefficiencies in investment behavior. The example is rather algebra intensive and can be
skipped.

The logic of the exercise is as follows: first we constrain the planner to set #* = #® and solve for
the best “color blind” allocation. We then show that there exists a feasible plan with discrimination
that gives a higher value of the planners’ objective and conclude that the optimal solution (which
we don’t solve for explicitly) must involve discrimination.

We let the set of signals be given by © = {8,,6} with conditional probability distributions;

HL Oy
not inv a (1-ea) (3.17)

inv (1-a) a

where & > 1/2 . The production technology is of Cobb-Douglas form, y (C, S) = C?S'-? and
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investment costs are distributed according to ¢ ~ U [0,k]. Thus, G~! (7) = kx and that total

GHm) kT ¢ 1% kn?
cg (c)de =/ —dc = [—] =— (3.18
/s ) 0o k 2k|, 2 )

Depending on parameter values the solution to the problem to maximize total surplus (under the

investment costs are

“equal treatments constraint”) can be of one of three forms;

Type 1 A worker is employed in the complex task if and only if the worker has a high signal.

Type 2 All workers with 6 = 6, and a fraction o > 0 of the workers with 6 = 8 in the simple

task and a fraction (1 — &) of the workers with the high signal in the complex task.

Type 3 All workers with 8 = 6y and a fraction ¢’ > 0 of the workers with § = 8 in the complex

task and a fraction (1 — ¢’) of the workers with low signals in the simple task.
If the solution is of type 1 or 2 we can compute the factor inputs as

C(o,7) = (1-0)ra (3.19)

S(oym) = g(ra+(l-m)(l-a))+n(l—a)+(1-7)a.

and if the unconstrained solution is implementable, ¢, * must solve!?

max ((1 - o) ra)’ (@(ma+(1-7)(1—a)+r(l—a)+(1-m)a) ™" - kT"z (3.20)

&

By inspection of the problem we see that & = 1 could never be a solution (¢ = 0 is however a

potential solution). The first order conditions are, after some rearranging,

Ta B S(o,m) .
7ra+(1—7r)(1—a)1—[J’C(cr,7r)_120’ (3.21)

(where the inequality must be an inequality if o > 0) and

Co,m) )" Clo,m)\°
B(s(d’ﬂ)) a(l—a)+(1—ﬁ)(s(mﬂ_)) (o0 —1)(2a — 1) =k, (3.22)

If, on the other hand, the solution is of type 3 we have that

C(',n) = ma+odn(l-a) (3.23)

S(@,r) = 1-0)(r(l-a)+(1-7)a)

19The example is constructed so that the unconstrained solution is implementable, which will be
demonstrated later.




and the (unconstrained) maximization problem has first order condition!!

T(1l — a) B8 S(d,7)
T(l-a)+(l-7)al-BC(c,n)

1=0, (3.24)

for o/, while the condition for = still is (3.22). Since there is a discrete jump downwards in the
marginal productivity in the complex task when the first low agent with low signal is put in the
complex task, we suspect thu there is a range of values for 7 such that the optimal solution is such
that the planner puts a worker in the complex task if and only if the worker has a high signal. We
now set 3 = 1/2 and assume that = = 1/2 in the optimal solution (we will set k later so that this
is indeed a solution). After some simple substitutions we see that the first order condition (3.21)
for a type 1 or 2 solution reduces to

llsg i
l2(iljrr))a - 8 ig; 21 (=1ifo>0) (3.25)
2

and the condition (3.24) for a type 3 solution reduces to

Ja-o) .
(1-a) %ai o=y =" (3.26)

Inspecting these conditions we find that o = 0 is the optimal solution to the full (unconstrained).
The implied factor ratio is then simply « and after simplifications we see that in order for the first

order condition (3.22) to hold for = = 1/2 it must be that

i
(é)-a—a* (2a-1)=2*(1-a)=k (3.27)

The value of the objective function for this candidate solution is a? (3 + a) /8!2.

We now observe that given any o (6”) there is at most one solution to (3.22), the first order
condition for 7. To realize this we first note that the factor ratio (complex/simple) is monotonically
increasing in the fraction of investors. To see this formally in the case when some workers with

high signals are in the simple task we consider the derivatives;

%C(a,w) = ;T—r(l—a')vra=(1—a)a>0 (3.28)
(%S(cr,ﬂ') = %a(n’a+(1—ﬂ')(1—a))+7r(1—a)+(1—7r)a=

= (1-0)(1-2a) <0,

1Note that the corner is already taken care of in the other case.

12Rather than looking at second order conditions we will simply find all solutions to the first order
colnditions and then simply compare the value of the objective functions for all these candidate
solutions.
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since a > 1/2. It is easy to check that the same holds true in the case when some workers with
low signals are in the complex task as well. Hence, C (o, 7) /S (o, ) is strictly increasing in 7 for
any o, which means that the left hand side of (3.22) is strictly decreasing in 7, while k is strictly
increasing in w. It follows that there can be at most one solution for each o. Hence, the candidate
solution above is the unique candidate of the first type.

We now specialize the example further and suppose that a = 2/3,8 = 1/2 and k = (2/3)'—g
(which makes 7 = 1/2, = 0 a solution candidate). We will now try to check if there are any other
solutions to the first order conditions.

Type 2 Solutions: We now check for candidate solutions where some workers with the high
signal are assigned to the simple task. In this case (3.21) must hold with equality and substituting

in the parameter values above the condition simplifies to,

2r o(l+m)+2-7

=1. .2
i+m  (l=o)or (3.29)
Solving gives ¢* (7) = 2%’{;‘;,) (which of course means that = > -é—) We can then compute the
effective input of respective factor as S(o* (7),7) = % and C(¢* (7),7) = T4+ - The implied

factor ratio is consequently ~2=. Plugging this into the o timality condition for 7 and solving
(i+m) g P 3

we get that the unique 7 € [0, 1] that satisfying (3.22) is

i
+ (3?) = 0.70023 (3.30)

Thus, there is a unique type 1 solution to the first order conditions in the example of consideration

and we can compute the value of the objective as

™ V(1 %—(2/3)%(”')2~032 3.31
1+ 7 2 2 TS (3.31)
to be compared with the value in the candidate solution with 7 = 1/2 and ¢ = 0
1\ 1Vt /3)% 1/2)?
(5) (5) = 0.34 (3.32)

Type 3 Solutions: We will finally check for potential solutions where all workers with high
signals and some workers with low signals are in the complex task. In this case the factor inputs
are (with parameters set as above);

2r o' (1 —m)
3Tt T3
S(r, o) = (1-d) (2;W>

C(-;r,a") = (3.33)
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and (3.24), the first order condition for o simplifies to
7(l-c)=2r+0'(1-7), (3.34)

which since # > 0 could never be satisfied for any ¢’ € [0, 1]. Hence, in this parametric example,
the unique solution to the problem of maximizing total surplus (treating groups identically) is to
setr=1and o =0’ =0.

Next, we will check if there are wage schemes implementing this solution, i.e. we need to check

that there exists a wage scheme w such that

G ( S Pr(@limv)w(d) - S Pr(fnot inv)w (9)) . (3.35)
CIS GRS 0€({0..61} -
Consider the wage scheme
0 for 4 = gL
w(f) = (3.36)
33@ for 6 =6y

We find that the benefits to invest under this wage scheme is %33@ = %—6 and the fraction of

investors consistent with this wage scheme is consequently given by

[F e (3! @3

~dc = -

v6 _ V6 1
k 9% ~ 9 \2 2’

which means that the incentive compatibility is satisfied. Furthermore we need to make sure that

the wage scheme satisfies the budget balance constraint. This constraint becomes

11 V6 2 1 1 1
—_— - = | Z = - = |>o0 3.
AA -3 | 3 3173 3|20 (3.38)
\ , N R Y Y R iy

y w(fy) a T l-—a 1-7m

It is straightforward to verify that (3.38) holds with equality, which means that (3.36) satisfies
(IR}, [IC] and [BB].

Now let A (1 — M) be the fraction of workers from group a (b) and suppose that 7® = 1 and
7 = 0 and that (irrespective of the signal) a worker is assigned to the simple task if and only if

he belongs to group a. The value of the planners’ objective is then

; y_A[2\¢ .
In order to maximize the incentives for group a we let
a3y _ Ra-t
w (95{) = B\ = T (340)
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and let w* () = w®(8) = w® (6.) = 0. One verifies that budget balance is satisfied with equality
with these wages and that the benefits of investment for agents in group a are

_aba-nt

a 1
w® (0 3 > (3.41)

In order for #* =1 to be incentive compatible the benefits of investment must be at least & =
(2/3)% . Setting the benefits of investment equal to (2/3)% we find that the unique solution to
this equation is A = 27/59 = 0.46 (this value is the highest value of A for which 7® = 1 can be

implemented) and one verifies that the value of the objective is
A (1-A)E-a(@2/3) 2= %A% (1-2%=~037>034 (3.42)

Thus, there is a feasible solution involving discrimination that gives higher social surplus than the

best non-discriminatory plan.

3.4. The Decentralized Model

We now consider how the “competitive model” compares with the allocation that solves the plan-

ning problem. The main point is to show that there is underinvestment in equilibrium.

3.4.1. The Model

To facilitate reading we will give a brief description of the game. The timing of events is as follows.
First individual workers decide whether to invest or not. Each worker is then assigned a signal by
nature. Firms then simultaneously announce wage schedules that are functions on all observable
variables. A pure action for firm i in this stage can thus be described as a pair of wage schedules
(w?,w?), where w',’ :[0,1] = Ry for j = a,b. Workers observe the wage schedules announced
by the firms and then decide what firm to work for. Then, in the final stage each firm decides
how to allocate its available workers between the two tasks. Exactly as in the planner’s problem
the monotone likelihood ratio property implies that task-assignments will be done according to a
cut-off rule for each group.

The reader may consult Moro and Norman [23] for a formal description of the strategy sets

and payoffs as function of the actions.
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3.4.2. Equilibrium

With firms competing in a Bertrand fashion for workers one shows that the essentially unique wage

schemes consistent with equilibrium when a fraction 7 of the workers invest is given by

w (6) = { y2 (r(mw),1) for 8 < 8 (m) (3.43)

p(8,7)y1 (r(x),1) for 8 >8(r)

5(7&'):(5“(71’),5”(71’)) = argmax y(ZAJ‘rJ 1= Fy (6)),) NF, (91‘)) (3.44)

(6+.6%)el0,1]2 i

and

5w (15,0 )
=, MFy (8(m)

For formal arguments see Moro and Norman [23]. The intuitive reasoning is as follows: Bertrand

r ()= (3.45)

competition between firms implies that both firms must offer the same wage schemes. This means
that both firms are facing the same distribution of signals and must choose the (unique) cutoff-rule
with cutoff given by (3.44), which, indeed, is the same as the planner would do if he had to take
7 as given. Next one shows that wages must be given by expected marginal productivities (in the
task a worker will actually be assigned to), which is what (3.43) says.

In equilibrium only those workers that have incentives to invest will do so. The gross benefits
to invest for a worker is simply the difference between the expected wage for a worker who invests

and the expected wage for a worker who does not invest and this difference can be written as

B(m) = (@1 (F(#m)-F(Fm))+ (3.46)
1 (r (), 1) /;,l(,,) P(6.7) (f,(6) - fu(6)) 8

The set of equilibria of the model are thus fully characterized by the solutions to the fixed point

equations

7 =G (B’ (n)) for j=a,b (3.47)

To focus on the extent of underinvestment in the model we will forget momentarily about the
group characteristics. Thus, 7 will be a scalar in the following discussion and § () will now denote
the (single) cutoff point when a fraction 7 of the workers invest. We will also use B () as the

gross benefits of investment in the single group case (defined in analogy with (3.46)).
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3.4.3. Underinvestment in equilibrium

To fix ideas we initially consider how the set of symmetric equilibria (or equivalently the set of
equilibria in the model where there is only a single group!?) compares with the solutions to the

planning problem considered in Section 3.3. We start with a local result.

Proposition 12. If7*? is an arbitrary equilibrium, then a sufficiently small increase in the fraction

of investors increases the value of the planners’ objective.

Proof. We note that there is a neighborhood U around any equilibrium 77 such that any
7 € U is implementable and that the objective function is continuously differentiable. We may
therefore simply study the sign of the derivative of the planners’ objective to see how surplus is
affected by small changes in 7. Taking the derivative we get that

Ly oy [ cg(yde] = v () - 61 (259) = V7 (259) _ B (e 3.48
Y@= [0 @] =Y -G e =V ) - B, @49

where the last equality follows from (3.47). But for any 7 > 0

v = we@ ) (1-F0m)) +rem.(F @) - £ 0m) > (349)
1
> (@, ( /;( PO (0))d9) tum.) (F (@) - F (Fm)) =
= B

It follows that Y’ (7%9) — B(7*?) > 0.l

Given any equilibrium where 77 > G (0) in the model with multiple groups ezactly the same
argument goes through. The (local) underinvestment property thus carries over even to interior
discriminatory equilibria (for both groups) and, in the case where one group is in the lower corner,
there is always underinvestment in the dominant group, unless everybody invests.

Local results are always of limited interest, but in some nice cases we can actually get a global

result as a consequence of the next proposition.

Proposition 13. Let n*? be the smallest (non-discriminatory) equilibrium and let (7*,6*) be any

solution to the planning problem (3.10). Then %9 < ©*.

'3See Moro and Norman (23] for a more detailed discussion of the model with just a single group
of workers.
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Proof. Let (7*,0") solve the planning problem (3.10). From Proposition 11 we know that there
are two possibilities. The first possibility is that (7*,6*) is indeed a maximum of (3.10), in which
m* must satisfy

Y/ (7*) =G ' (=) > B(x"), (3.50)

where the inequality follows from (3.49). Thus B(r*) < Y’(x*), which implies that =* <
G (B(m*)). Given the assumption that G (0) > 0 it follows by the intermediate value theorem
that there must exist some 7°? € (0, 7*) such that 7°9 = G (B (x°?)), which proves the result in
the case when (7*,0*) is a maximum. Suppose next that the supremum is not attainable. This
means that there exists no feasible wage scheme such that 7* = G ([ w (6) (f; (6) — f. (8)) df) . so
clearly 7* < G(B(w*)). The same logic applies. B

It follows directly that;

Corollary If there is a unique (non-discriminatory) equilibrium, then there is underinvestment

in this equilibrium.

When there are multiple equilibria one may still conjecture that there is underinvestment in any
equilibrium even in a global sense. But here the non-convexities and the potential lack of concavity
of the objective create problems and although I have not been able to set up an example, it seems
that it is quite possible that there are equilibria with overinvestment, in the sense that the fraction
of investors is higher than the global maximum (or sup) of the planing problem.

However, the case when Y is concave is easily handled.

Proposition 14. Suppose Y is concave. Then there is underinvestment in any equilibrium.

Proof. IfY is concave, the planners objective function is concave, which means that there is
at most one 7* satisfying Y’ (7*) = G~! (7*) and that the social surplus is strictly increasing on
(0,*]. Now if there exists a feasible wage scheme implementing 7* we are done since concavity of
the objective implies that Y’ (1) < G~!(7) for all # > 7*, so B(7) < G~ () for all m > 7*. i.e.
there could not be any equilibrium on [7*,1]. If 7* is not implementable then concavity implies
that if 7’ is a solution to (3.10), then there exists no 7 in between 7’ and 7* that are implementable

(i.e., if 7’ < 7*4 then there exists no 7 € [#’,7*] such that = can be implemented). If there is no

4Since the set of implementable values of 7 may be non-convex we can’t rule out the possibility
that the actual solution to (3.10) is larger than n* . However, all equilibria must be smaller than
7%, so this doesn’t affect the argument.
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implementable wage scheme there is no equilibrium wage scheme either, so any solution to (3.10)
must always be larger than all equilibria of the laissez faire model. ll

While suggestive this result has the obvious drawback that Y is a derived function and not
a primitive of the model. The shape of Y will depend in a rather complicated way on both the

production function y and the density functions f; and f,.

3.5. Discussion

In this paper we have examined the efficiency properties of statistical discrimination. Unlike the
earlier literature on the subject, we have done this by contrasting a competitive model where
statistical discrimination may in equilibrium occur with the solutions to a planning problem.

All equilibria of the competitive model are inefficient. Hence, policy intervention can always
be justified without resorting to equity arguments. Still, there may very well be “too little dis-
crimination in equilibrium”, meaning that a social planner would prefer to increase the differences
between groups!.

When Schwab [27] and Lundberg and Startz [19] investigates the efficiency properties of sta-
tistical discrimination they compare a competitive model where the firms are allowed to use all
available information, including group identity, with a situation where firms are no longer allowed
to use group identity when determining wages. While this approach leads to several interesting
insights, it is always vulnerable to the criticism that there may be alternative policies that are as
simple to implement as the “equal opportunities law” they consider!S. In fact, in both papers cited
above there are policies that implement the “first best” and since both Schwab [27] and Lundberg
and Startz {19] assume that there are some intrinsic differences between groups, first best involves
differential treatment of groups.

One major advantage with the approach in this paper is that it is not subject to this type of
criticism. Rather than comparing the laissez faire equilibria with equilibria under a particular pol-
icy, the set of feasible policies is determined from more primitive assumptions on the informational

technology.

15In the formal model of the paper we have assumed that the planer is utilitarian. If the planner
also has distributional concerns this conclusion may still be valid. The reason is that the planner
then may counter the undesirable distributional consequences by transfers between groups.

15In fact, as noted by Lundberg [18], the equal oppurtunities policy may in fact be rather dif-
ficult to implement. In the model in this paper, implementation of an equal opportunities policy
requires that the policymaker observes the signal for each worker, which is exactly the informational
assumption I make in the planning problem.
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To keep the problem tractable many simplifying assumptions were made. However, the trade-
off between the gains from discrimination in terms of reduced “mismatch” and the losses in terms
of inefficient investment decisions seems robust. The key assumptions for these welfare benefits of
discrimination/specialization to occur are: 1) human capital investments are imperfectly observ-
able, 2) human capital more important in certain (qualified) jobs than other and 3) labor input
in qualified jobs and unqualified jobs are complementary in the neoclassical sense. The first of
these assumptions is absolutely necessary to explain discrimination without resorting to prejudice
or asymmetries between groups and the other two seems rather plausible. Although I think it
is important to realize that models of statistical discrimination with endogenous human capital
have these potential welfare benefits of discrimination/specialization, one should clearly be careful
interpreting this result. There may, for example, exist more subtle way than discrimination of
ethnic groups to generate more specialized human capital investments.

The other main point of the paper, that it is difficult to separate policies aimed at discrimination
and policies aimed at underinvestment in human capital, should be uncontroversial. Models of
human capital formation usually have too few workers investing in equilibrium. Hence, it seems
that this should be relevant for any model of statistical discrimination with endogenous human

capital.

3.6. Appendix

3.6.1. Proof of Lemma 22

Proof.  First we show that there exists a sequence of feasible wage schemes that such that the
benefits of investment can be made arbitrarily close to ’* . Without loss we consider only j=a

and consider wage schemes of the form

a (g 0 for8<1—e¢ 351
we (0)= AW for8>1-—¢ (3

At (1=Fea(l—¢))

Obviously {IR] is satisfied and one verifies that
e / W2 (8) fra (6)dO =7 — WP, (3.52)

which means that [BB] is satisfied with equality for an arbitrary € € (0,1). The benefits to invest
given w? is

_ g - AW

T A (1-Fr(1-¢)

K (&;m,9) (Fu(1=€) = Fy(1-¢)), (3.53)
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where F; (6) = nF; (8) + (1 — w) F,, () . Note that

(d (F(l-g-F(1-g\)_ _ o B .-
sion (5 (PR )) = —sim (U = £ (- Feo) 4 (Pu = F) ). 334

where fr is the density associated with Fr, i.e. fr (8) =7f,(8) + (1 — 7) f. (). But

Ae) = (fu_fq)(l_Fﬂ“)'*'(Fu_Fq)f-:r“= (3.553)

i

fa(Q=Fra + (1= 7%) Fy = (1= 7%) Fy) — fy(1 = Fya — 7°F, +7°F,) =

fu(1=Fg) = fo(1 - Fu)

We now claim that A(e) > 0 for all ¢ > 0 as a consequence of the monotone likelihood ratio

property. To see this assume A(e) < 0 and let {(8) = f,(8) /f. (8) denote the likelihood ratio.

Then,
fq(l"e) I_Fq(l—e) fll—efQ(e)dg fll—el(g)fu(g)dg q =
l —_ = = = .
R A A ey A Ji_fu(@)d0 [ fu(0)d8 30
But, by the monotone likelihood ratio property, [(8) > [(1 —¢) for all § > 1 — ¢. Thus
1 1
/ 1(6) f. (8)dE > 1(1 —¢) fu (8)d8, (3.57)
1-¢ I—¢

which gives [(1 ~€) > [(1 —¢), a contradiction. Hence, the benefits of investment are strictly

decreasing in €

By applying I'Hopitals rule we now find that by choosing € small enough we can make the
benefits of investment arbitrarily close to (7 — AW?) (f, (1) = fu (1)) /A% fxa (1) = b*. Hence the
supremum is at least b%*.

Next, we show that there is no feasible wage scheme that gives (weakly) higher benefits to

invest. To do this consider an arbitrary wage scheme w®. The benefits of investment is then simply

Jw @@ - r@ndo= [w @) £ ) i’%‘(gT"“’Dw (3.58)

(fa(6) = fu (8)) /fan (6) < (fq (1) ~ fu (1)) / fre (1) for all § < 1 and since w® : [0,1] — Ry there

must be some set © of strictly positive measure such that w® () > 0 for all € ©. It follows that

/wa (9) f1r" (0) (fq (9) - fu (6))(19 < /wa (9) f1r" (0) (fq (1) — fu (1))d9 = (359)

0 T (D)
v = W (f, (1) = fu (1) _
B As fra (1) ’

where the second inequality follows from [BB]. l
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3.6.2. Proof of Lemma 23

Proof. We leave to the reader to verify that there is a unique solution 7°* to (3.9) for any fixed
y — A’W*. Combining Lemma 23 with continuity of G we see that it is possible to implement any
fraction of investors 7% < 7°* satisfying [IC],[IR] and [BB|. Now suppose we can implement some

7* > 7", To satisfy [IR] and [BB] it must then be that (Lemma 22)

. (v = 2W*) (s () = £u (1)
[w @) - s o6 < e (3.60)

Imposing the [IC]-constraint we find that

_ bvb — fu
vr“<c( / w“(9)(fq(9)—fu(9))d0) <c<(y ol Q}f"ﬁi : (1))) =7, (3.61)

a contradiction. Il

3.6.3. Proof of Proposition 10

Proof. Using Lemma 23 we show that if there exists a such that both G ( Qy-f\{,' f“,z._(fl';“)) ) > 7o

and G (“-a)i:(fﬁ'b(}gl—;f"(”)) > 7 holds, where 7/* > G (0) 7, then we can find wages satisfving
all constraints implementing 7* . For the other direction, suppose that the solution involving =*
can be implemented by some wage schemes. Let W7 be the total wage costs for each group and
note that in order for [IC|,[IR] and [BB] to hold we have from Lemma 23 that
G ((y- — MW (o () ~ fu (1))) 5 i
M fra- (1) '

Let a = (y* — A\>W?) /y* € [0,1]. Then
(I1-a)y"=1-(y" = N\oW?) = X°W?b > y* — A°we,

where the last inequality comes from [BB]. The result follows. ll

17In order for 77* to be part of an optimal solution to (3.3) it must be that #7* > G (0). The intuitive reason is
that if 77 < G(0), then the planner can achieve (at least) the same output by switching to =7 = G (0), without

changing anything else in the other group.
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