# Dynamic Oligopoly and Price Stickiness

Olivier Wang NYU Stern Iván Werning MIT

#### Imperfect Competition

#### Imperfect Competition

- Monopolistic competition: continuum of firms (Dixit-Stiglitz)
  - simple and tractable
  - reigns supreme: trade, macro, growth, ...

#### Imperfect Competition

- Monopolistic competition: continuum of firms (Dixit-Stiglitz)
  - simple and tractable
  - reigns supreme: trade, macro, growth, ...
- Oligopoly: finite number of firms
  - more realistic and complicated
  - extensive IO literature
  - "rise in market power": markups, concentration, superstar firms, ...
- Q: Oligopoly important for macro?

#### This Paper

- Standard macro models...
  - representative agent, infinite horizon
  - consumption, labor and money
  - nominal rigidities a la Calvo

#### This Paper

- Standard macro models...
  - representative agent, infinite horizon
  - consumption, labor and money
  - nominal rigidities a la Calvo
- This paper
  - oligopoly with any n firms
  - general demand structure
     (e.g. Kimball, not just CES)

#### Challenges and Methods

- Monopolistic Competition
  - best response depends on aggregates...
  - ...taken as given (infinitesimal)
- Oligopoly Dynamic Game
  - off-equilibrium deviations...
  - ... influence not infinitesimal

- Our paper...
  - innovation: local analysis for small shocks

#### Literature

- Mongey (2016)
- Rotemberg-Saloner (1986), Rotemberg-Woodford (1992)
- IO Literature (dynamic): Ericson-Pakes (1995), Bajari-Benkard-Levin (2007), ...
- Passthrough Literature (static): Goldberg (1985), Atkeson-Burstein (2008), Gopinath-Itskhoki (2010), Arkolakis-Costinot-Donaldson-Rodríguez Clare (2015), Amiti-Itskhoki-Konings (2019)
- Rational Inattention: Afrouzi (2020)

#### Setup

- Households: consumption, labor, money
- Firms: continuum of sectors s...
  - $n_s$  firms within sector s
  - Calvo: frequency  $\lambda_s$  of price change

- Markov equilibrium
- One time, unanticipated "MIT shock" to money

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$C(t) = G(\{C_s(t)\}_s)$$
  
 $C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t))$ 

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_0^\infty e^{-\rho t} \left( \log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

$$C(t) = G(\lbrace C_s(t)\rbrace_s)$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t))$$

$$C_{s}(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t)) \qquad \frac{1}{n_{s}} \sum_{j=1}^{n_{s}} \Psi\left(\frac{c_{i,s}}{C_{s}}\right) = 1 \quad \text{(Kimball)}$$

 $C(t) = \exp \int_0^1 \log C_s(t) ds$ 

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_0^\infty e^{-\rho t} \left( \log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

 $C(t) = \exp \int_0^1 \log C_s(t) ds$ 

$$C(t) = G(\lbrace C_s(t)\rbrace_s)$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t))$$
 
$$\frac{1}{n_s} \sum_{i=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1$$
 (Kimball)

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \widetilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$\int_{0}^{\infty} e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_{0}^{\infty} e^{-\rho t} \left(\log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)})\right) dt$$

$$C(t) = G(\{C_s(t)\}_s)$$

$$C(t) = \exp \int_{0}^{1} \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t))$$

$$\frac{1}{n_s} \sum_{i=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \widetilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$c_{i,s}(t) = l_{i,s}(t)$$

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t) dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left( p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t) D^{i,s}(p_s(t))$$

$$\int_{0}^{\infty} e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_{0}^{\infty} e^{-\rho t} \left(\log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)})\right) dt$$

$$C(t) = G(\{C_s(t)\}_s)$$

$$C(t) = \exp \int_{0}^{1} \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t))$$

$$\frac{1}{n_s} \sum_{i=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \widetilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$c_{i,s}(t) = l_{i,s}(t)$$

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t) dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left( p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t) D^{i,s}(p_s(t))$$

$$p_{1,s}, p_{2,s}, \dots, p_{n,s}$$

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_0^\infty e^{-\rho t} \left( \log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

$$C(t) = G(\lbrace C_s(t)\rbrace_s)$$

 $C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t))$ 

$$C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$\frac{1}{n_s} \sum_{i=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$j=1$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \tilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$c_{i,s}(t) = l_{i,s}(t)$$

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t)dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left( p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t)D^{i,s}(p_s(t))$$

$$p_{1,s}, p_{2,s}, \dots, p_{n,s}$$

Calvo pricing Poisson arrival



$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_0^\infty e^{-\rho t} \left( \log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

$$C(t) = G(\lbrace C_s(t)\rbrace_s)$$

$$C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t))$$

$$\frac{1}{n_s} \sum_{j=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \tilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$c_{i,s}(t) = l_{i,s}(t)$$

 $\lambda_s$ 

Reset strategy  $p_{i,t}^* = g^{i,s}(p_{-i,s};t)$ 

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t) dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left( p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t) D^{i,s}(p_s(t))$$

$$p_{1,s}, p_{2,s}, \dots, p_{n,s}$$

$$\int_0^\infty e^{-\rho t} U\left(C(t), L(t), \frac{M(t)}{P(t)}\right) dt$$

$$\int_0^\infty e^{-\rho t} \left( \log(C(t)) - L(t) + \log(\frac{M(t)}{P(t)}) \right) dt$$

$$C(t) = G(\lbrace C_s(t)\rbrace_s)$$

$$C(t) = \exp \int_0^1 \log C_s(t) ds$$

$$C_s(t) = H(c_{s,1}(t), c_{s,2}(t), \dots, c_{s,n}(t))$$

$$\frac{1}{n_s} \sum_{i=1}^{n_s} \Psi\left(\frac{c_{i,s}}{C_s}\right) = 1 \quad \text{(Kimball)}$$

$$P(t)C(t) + \dot{B}(t) + \dot{M}(t) = W(t)L(t) + \widetilde{\Pi}(t) + T(t) + r(t)B(t)$$

$$c_{i,s}(t) = l_{i,s}(t)$$

$$\mathbb{E}_0 \int_0^\infty e^{-\int_0^t r(s)ds} \widetilde{\Pi}^{i,s}(t)dt$$

$$\widetilde{\Pi}^{i,s}(t) = c_{i,s}(t) \left( p_{i,s}(t) - W(t) \right)$$

$$c_{i,s}(t) = C(t)P(t)D^{i,s}(p_s(t))$$

$$p_{1,s}, p_{2,s}, \ldots, p_{n,s}$$

Calvo pricing Poisson arrival

Reset strategy
$$p_{i,t}^* = g^{i,s}(p_{-i,s};t)$$

$$\{p_{j,s}\}_{j \neq i}$$

#### Equilibrium

$$\{C(t), L(t), M(t), P(t), W(t), r(t)\}$$

$$\{c_{i,s}(t), p_{i,s}(t)\}$$

$$\{g^{i,s}(p_{-i,s};t)\}$$

• agents: 
$$\{P(t), W(t), r(t)\}$$
  $\longrightarrow$   $\{C(t), L(t), M(t)\}$ 

• firms: 
$$\begin{cases} \{C(t), P(t), W(t), r(t)\} \\ \{g^{-i,s}(\cdot;t)\} \end{cases} \xrightarrow{\max} g^{i,s}(p_{-i,s};t)$$

market clearing:

$$L(t) = \int \sum_{n_s} c_{i,s}(t) ds$$

• Constant C, L, M, P, W, r

- Constant C, L, M, P, W, r
  - household and market clearing

$$C = L$$

$$\frac{U_C}{P} = \frac{U_L}{W} = \frac{U_m}{rP}$$

$$r = \rho$$

- Constant C, L, M, P, W, r
  - household and market clearing

$$C = L$$

$$\frac{U_C}{P} = \frac{U_L}{W} = \frac{U_m}{rP}$$

$$r = \rho$$

• firms

$$\rho V(p) = D^{i}(p)(p_{i} - W) + \lambda \sum_{j} \left[ V(g(p_{-j}), p_{-j}) - V(p) \right]$$

- Constant C, L, M, P, W, r
  - household and market clearing

$$C = L$$

$$\frac{U_C}{P} = \frac{U_L}{W} = \frac{U_m}{rP}$$

$$r = \rho$$

• firms

$$\rho V(p) = D^{i}(p)(p_{i} - W) + \lambda \sum_{j} \left[ V(g(p_{-j}), p_{-j}) - V(p) \right]$$

$$g(p_{-i}) \in \arg\max_{p_{i}} V(p_{i}, p_{-i})$$

- Constant C, L, M, P, W, r
  - household and market clearing

$$C = L$$

$$\frac{U_C}{P} = \frac{U_L}{W} = \frac{U_m}{rP}$$

$$r = \rho$$

• firms

$$\rho V(p) = D^{i}(p)(p_{i} - W) + \lambda \sum_{j} \left[ V(g(p_{-j}), p_{-j}) - V(p) \right]$$

$$g(p_{-i}) \in \arg\max_{p_{i}} V(p_{i}, p_{-i})$$

• steady state price vector P = g(P, P, ..., P)









#### 1. Sufficient Statistics

Starting at steady state...

- Starting at steady state...
- ...unanticipated permanent shock to money...

- Starting at steady state...
- ...unanticipated permanent shock to money...



- Starting at steady state...
- ...unanticipated permanent shock to money...



Nominal interest rate unchanged...

- Starting at steady state...
- ...unanticipated permanent shock to money...



Nominal interest rate unchanged...

- Starting at steady state...
- ...unanticipated permanent shock to money...



Nominal interest rate unchanged...

- Starting at steady state...
- ...unanticipated permanent shock to money...



Nominal interest rate unchanged...

$$r(t) = \rho$$

• Wage jumps to new level:  $W = (1 + \delta)W_{-}$ 

- Starting at steady state...
- ...unanticipated permanent shock to money...



#### Result #1.

Equilibrium transition after shock  $\delta$  satisfies steady-state policies...

$$\hat{p}_{i,s} = g\left(\hat{p}_{-i,s}\right)$$

with 
$$\hat{p}_{i,s} = p_{i,s}/(1+\delta)$$









## Money Shock

- Starting at steady state...
- ...unanticipated permanent shock to money...



#### Result #2.

$$\log P(t) - \log \bar{P} = -\delta \ e^{-\lambda(1-B)t}$$

$$B = (n-1) \frac{\partial g^i}{\partial p_j}(\bar{p})$$



## Money Shock

- Starting at steady state...
- ...unanticipated permanent shock to money...



#### Result #2.

$$\log P(t) - \log \bar{P} = -\delta \int_{s} \zeta_{s} e^{-\lambda_{s}(1 - B_{s})t} ds$$

$$B_s = (n-1) \frac{\partial g_s^i}{\partial p_j}(\bar{p}_s)$$

Adding Heterogeneity!

Cumulative Output

$$\int_0^\infty e^{-rt} \log\left(\frac{C(t)}{\bar{C}}\right) dt = \delta \int_s \frac{\zeta_s ds}{r + \lambda_s (1 - B_s)}$$

• Half Life:  $log(2) \cdot h$ 

$$h = \frac{1}{\lambda(1 - B)}$$

$$\dot{\pi}(t) = \rho \pi(t) - \kappa \, mc(t)$$

$$\pi(t) = \kappa \int e^{-\rho s} mc(t+s) ds$$

Result #3

After M shock



$$\dot{\pi}(t) = \rho \pi(t) - \kappa \, mc(t)$$

$$\pi(t) = \kappa \int e^{-\rho s} mc(t+s) ds$$

Result #3

After M shock



$$\dot{\pi}(t) = \rho \pi(t) - \kappa \, mc(t)$$

$$\pi(t) = \kappa \int e^{-\rho s} mc(t+s) ds$$

#### Result #3

After M shock

$$\dot{\pi}(t) = \rho \pi(t) - \kappa \, mc(t)$$

$$\kappa = \hat{\lambda}(\rho + \hat{\lambda}) \qquad \qquad \hat{\lambda} = \lambda(1 - B)$$

$$\kappa \approx \frac{1}{h^2}$$

$$\dot{\pi}(t) = \rho \pi(t) - \kappa \, mc(t)$$

$$\pi(t) = \kappa \int e^{-\rho s} mc(t+s) ds$$

#### Sufficient Statistic

$$B = \frac{1 + \frac{\rho}{\lambda}}{1 + \frac{1}{(n-1)[(\epsilon-1)(\mu-1)-1]}}$$

$$\mu = \frac{P}{W}$$

$$\epsilon = \frac{-\partial \log D^{i}}{\partial \log n_{i}}$$

### Sufficient Statistic

#### Result #4

$$B = \frac{1 + \frac{\rho}{\lambda}}{1 + \frac{1}{(n-1)[(\epsilon-1)(\mu-1)-1]}}$$

$$\mu = \frac{P}{W}$$

$$\epsilon = \frac{-\partial \log D^{i}}{\partial \log p_{i}}$$

- Intuition... (reverse causality)
  - Nash markup  $\iff B = 0$
  - higher markup  $\iff$  rivals mimic my price (high B)

$$\frac{\mu - 1}{\mu^{\text{Nash}} - 1} = 1 + \frac{1}{n - 1} \cdot \frac{B}{1 - B}$$





## Markups

 Monopolistic competition + Static oligopoly: markup only depends on local elasticity

• Dynamic oligopoly: conditional on elasticity, markup depends on  $n, \theta, \lambda$ ...





## 2. Counterfactuals

• Previous: stickiness from observed steady-state markup

- Previous: stickiness from observed steady-state markup
- Now: Comparative statics...
  - counterfactuals: do not know steady state
  - must solve MPE
  - challenging: large state for large n

- Previous: stickiness from observed steady-state markup
- Now: Comparative statics...
  - counterfactuals: do not know steady state
  - must solve MPE
  - challenging: large state for large n
- Our Method...
  - solve exact approximate model i.e. demand system
  - benefit: tractable and flexible
  - check approximation with other methods

- Previous: stickiness from observed steady-state markup
- Now: Comparative statics...
  - counterfactuals: do not know steady state
  - must solve MPE
  - challenging: large state for large n
- Our Method...
  - solve exact approximate model i.e. demand system
  - benefit: tractable and flexible
  - check approximation with other methods
- IO literature: other approximations ("oblivious" equilibria)

$$d^{i,s}(p_{i,s}(t)) \longleftrightarrow \frac{1}{n} \sum \Psi(\frac{c_i}{C}) = 1$$

$$\epsilon = -\frac{\partial \log d^i}{\partial \log p_i}$$
  $\Sigma = \frac{\partial \log \epsilon}{\partial \log p_i}$ 

$$\eta = -\frac{\Psi'(x)}{x\Psi''(x)} \qquad \theta = -\frac{\partial \eta}{\partial x}$$

$$d^{i,s}(p_{i,s}(t)) \longleftrightarrow \frac{1}{n} \sum \Psi(\frac{c_i}{C}) = 1$$

$$\epsilon = -\frac{\partial \log d^{i}}{\partial \log p_{i}} \quad \Sigma = \frac{\partial \log \epsilon}{\partial \log p_{i}} \qquad \qquad \eta = -\frac{\Psi'(x)}{x\Psi''(x)} \qquad \theta = -\frac{\partial \eta}{\partial x}$$

$$\epsilon = \left(1 - \frac{1}{n}\right)\eta + \frac{1}{n}\omega$$

$$\Sigma = \frac{n-1}{n} \cdot \frac{(n-2)\theta\eta + \eta^2 - (1+\omega)\eta + \omega}{(n-1)\eta + \omega}$$

$$d^{i,s}(p_{i,s}(t)) \longleftrightarrow \frac{1}{n} \sum \Psi(\frac{c_i}{C}) = 1$$

$$\epsilon = -\frac{\partial \log d^i}{\partial \log p_i} \quad \Sigma = \frac{\partial \log \epsilon}{\partial \log p_i}$$

$$\eta = -\frac{\Psi'(x)}{x\Psi''(x)}$$
  $\theta = -\frac{\partial \eta}{\partial x}$ 

$$\epsilon = \left(1 - \frac{1}{n}\right)\eta + \frac{1}{n}\omega$$

$$\Sigma = \frac{n-1}{n} \cdot \frac{(n-2)\theta\eta + \eta^2 - (1+\omega)\eta + \omega}{(n-1)\eta + \omega}$$

$$\begin{array}{l} \epsilon = \eta \\ \Sigma = \theta \end{array} \qquad n \to \infty$$

#### Method

- 2 equations in 2 unknowns...
  - Sufficient statistic formula...

$$B = B(\mu, \epsilon, n, \lambda/\rho)$$

One extra equation...

$$\mu = \mu(B, \epsilon, \Sigma, n, \lambda/\rho)$$

- Verified: good approximation!
- More general: k-order derivatives of demand (see paper)

- What to hold fixed?
  - 1. Preferences  $(\eta, \theta)$

3. Calibrate: evidence on pass-through

5. Local elasticities of demand  $(\epsilon, \Sigma)$ 

- What to hold fixed?
  - 1. Preferences  $(\eta, \theta)$



- 3. Calibrate: evidence on pass-through
- 5. Local elasticities of demand  $(\epsilon, \Sigma)$

## Half-Life









- Low  $\theta$ : greatest stickiness at n=2
- High  $\theta$ : lowest stickiness at n=2!
- Duopoly is knife-edge: half-life stuck at CES level...
   ... Kimball can't help n=2!

- What to hold fixed?
  - 1. Preferences  $(\eta, \theta)$

3. Calibrate: evidence on pass-through

5. Local elasticities of demand  $(\epsilon, \Sigma)$ 

- What to hold fixed?
  - 1. Preferences  $(\eta, \theta)$

- 3. Calibrate: evidence on pass-through Next up
- 5. Local elasticities of demand  $(\epsilon, \Sigma)$

## Pass-Through

- Amiti-Itskhoki-Konings
- Evidence own-cost pass-through...
  - high for small firms
  - low for large firms

• Here: Fix elasticity, set super-elasticity to match...

pass-through = f(market share)

## Pass-Through



pass-through = f(market share)

#### Half-life



• National HHI 0.05 to 0.1 (e.g., Gutierrez-Philippon): MP 15% stronger

## Passthrough

$$\Delta \log p_{it} = \hat{\alpha} \Delta \log mc_{it} + \hat{B} \frac{\sum_{j \neq i} \Delta \log p_{jt}}{n-1} + u_{it}$$

$$\hat{\alpha} \approx \frac{1}{1 + s(\eta - 1)}$$

Amiti et al Regression

# Passthrough

$$\Delta \log p_{it} = \hat{\alpha} \Delta \log m c_{it} + \hat{B} \frac{\sum_{j \neq i} \Delta \log p_{jt}}{n-1} + u_{it}$$
$$\hat{\alpha} \approx \frac{1}{1 + s(\eta - 1)}$$

Amiti et al Regression

$$\tilde{p}_i = \alpha \widetilde{mc}_i + B \frac{\sum_{j \neq i} \tilde{p}_j}{n-1} + \gamma \sum_{j \neq i} \widetilde{mc}_j$$

Our Model Extension

# Passthrough

$$\Delta \log p_{it} = \hat{\alpha} \Delta \log mc_{it} + \hat{B} \frac{\sum_{j \neq i} \Delta \log p_{jt}}{n-1} + u_{it}$$

$$\hat{\alpha} \approx \frac{1}{1 + s(\eta - 1)}$$

Amiti et al Regression

$$\tilde{p}_i = \alpha \widetilde{mc}_i + B \frac{\sum_{j \neq i} \tilde{p}_j}{n-1} + \gamma \sum_{j \neq i} \widetilde{mc}_j$$

Our Model Extension

Result.

$$\hat{\alpha} = \frac{n\alpha + B - 1}{\alpha + B + n - 2}$$

Mapping Model → Regression



- Two effects with finite *n*…
  - feedback: firm i cares about others' prices
  - strategic: firm i can affect others' prices



- Two effects with finite *n*…
  - feedback: firm i cares about others' prices
  - strategic: firm i can affect others' prices
- Feedback effect with  $n = \infty$ 
  - inputs from other firms
  - Kimball (1995) demand



- Compare...
  - Markov with n firms

Naive equilibrium with n firms

Equivalent to  $n=\infty$  with modified Kimball preferences to match elasticity and superelasticity

## Small strategic effects



# Small strategic effects



#### Back to Kimball Demand



$$\theta < \frac{(\eta - 1)^2}{\eta + 1}$$

#### Back to Kimball Demand



- Small strategic effects...
  - use naive model for comparative statics
  - half-life decreases with n if  $\theta < \frac{(\eta 1)^2}{\eta + 1}$

#### Naive and Static Nash

- Naive...
  - ignore own impact
  - anticipation of dynamics of future
- Static Nash...
  - best response to fixed prices
  - simple function of primitives

• In paper: provide useful formula...

$$B^{\mathrm{Naive}} = f\left(B^{\mathrm{Nash}}, \frac{\lambda}{\rho}\right)$$

- What to hold fixed?
  - 1. Preferences  $(\eta, \theta)$

3. Calibrate: evidence on pass-through

5. Local elasticities of demand  $(\epsilon, \Sigma)$ 

- What to hold fixed?
  - 1. Preferences  $(\eta, \theta)$

- 3. Calibrate: evidence on pass-through
- 5. Local elasticities of demand  $(\varepsilon, \Sigma)$  Naive/Kimball Results

# Heterogeneity

- Heterogeneity...
  - across sectors
  - within sector (extension)

### Sectoral Heterogeneity



## Sectoral Heterogeneity

Cumulative output effect is proportional to

$$\mathbf{E}\left[\frac{1}{\lambda_s}\right]\mathbf{E}\left[\frac{1}{1-B_s}\right] + \mathbf{Cov}\left(\frac{1}{\lambda_s}, \frac{1}{1-B_s}\right)$$



## Sectoral Heterogeneity

Cumulative output effect is proportional to

$$\mathbf{E} \left[ \frac{1}{\lambda_s} \right] \mathbf{E} \left[ \frac{1}{1 - B_s} \right] + \mathbf{Cov} \left( \frac{1}{\lambda_s}, \frac{1}{1 - B_s} \right)$$

• Example: Two sectors, n = 3 and n = 20, keeping average duration fixed at 1







Many ways to attain a given HHI instead of 1/n



- Many ways to attain a given HHI instead of 1/n
- Example:
  - 25 firms, 2 type of firms, 23 type A, 2 type B
  - vary relative productivity A vs B



# 4. Phillips Curve

# Phillips Curve

$$\pi(t) = \int_0^\infty \gamma^{mc}(s) mc(t+s) ds$$

$$+ \int_0^\infty \gamma^c(s) c(t+s) ds$$

$$+ \int_0^\infty \gamma^R(s) (R(t+s) - \rho) ds$$

$$\gamma^{mc}(s), \gamma^{c}(s), \gamma^{r}(s) = \text{linear combinations of } \{e^{-\nu_{j}s}\}_{j=1}^{7}$$

- Oligopolistic NKPC
  - Higher order ODE (≤ 7): inflation persistence
  - Not just Marginal Cost (mc): demand (c), interest rates (R)
  - Generally, not equivalent to lower  $\lambda$

# Phillips Curve

Standard NKPC

$$\dot{\pi} = 0.05\pi - 1.05mc$$

- Oligopoly with n = 3 (AIK calibration)
  - MPE

$$\dot{\pi} = 0.07\pi - 0.27 mc$$

$$+1.33\ddot{\pi} + 0.44 mc + 0.03(r - \rho)$$

Naive

$$\dot{\pi} = 0.05\pi - 0.25mc$$

# Phillips Curve

Standard NKPC

$$\dot{\pi} = 0.05\pi - 1.05mc$$

- Oligopoly with n = 3 (AIK calibration)
  - MPE

$$\dot{\pi} = 0.07\pi - 0.27 mc$$

$$+1.33\ddot{\pi} + 0.44 mc + 0.03(r - \rho)$$

Naive

$$\dot{\pi} = 0.05\pi - 0.25mc$$

#### Good approximation?

# 3-Eq Oligopoly NK

• Euler equation + Taylor Rule

$$\dot{c} = \sigma^{-1} \left( r - \pi - \rho - \epsilon^r \right)$$

$$r = \rho + \phi \pi + \epsilon^m$$

- AR(1)  $e^r$ ,  $e^m$  shocks fit basic Phillips curve...
  - exactly with  $\kappa \approx \kappa^{\text{Naive}}$
- Other shocks fit very well...
  - zero lower bound
  - News shocks

# 3-Eq Oligopoly NK

• Euler equation + Taylor Rule

$$\dot{c} = \sigma^{-1} \left( r - \pi - \rho - \epsilon^r \right)$$

$$r = \rho + \phi \pi + \epsilon^m$$

- AR(1)  $e^r$ ,  $e^m$  shocks fit basic Phillips curve...
  - exactly with  $\kappa \approx \kappa^{\text{Naive}}$
- Other shocks fit very well...
  - zero lower bound
  - News shocks

Takeaway: basic NK
Phillips curve excellent
approximation!

## 3 equation Oligopoly NK



Figure 8: Effective slope of the Phillips curve  $\hat{\kappa}$ , strategic vs. naive oligopoly.

#### News and ZLB



#### News and ZLB













Figure A.10: Date-0 consumption and inflation in a liquidity trap lasting from t = 0 to t = T, for different values of T.

*Note:* n=3 firms with AIK calibration. Solid black line: Strategic oligopoly. Dashed gray line: Naive model. c and  $\pi$  denote log-deviations from steady state values in %.

# Summary

- Results...
  - 1. Oligopoly tractable!
  - 2. Sufficient statistic formula
  - 3. Comparative Statics in n: big amplification when calibrated to pass-through
  - 4. Naive/Kimball connection
  - 5. Standard NK Phillips curve good fit

Non-Markov equilibria? Trigger strategies

- Non-Markov equilibria? Trigger strategies
- Abreu-Pearce-Stachetti methods?

- Non-Markov equilibria? Trigger strategies
- Abreu-Pearce-Stachetti methods?
- Folk-theorem  $\rho \to 0$  then collusive outcome

- Non-Markov equilibria? Trigger strategies
- Abreu-Pearce-Stachetti methods?
- Folk-theorem  $\rho \to 0$  then collusive outcome

- Non-Markov equilibria? Trigger strategies
- Abreu-Pearce-Stachetti methods?
- Folk-theorem  $\rho \to 0$  then collusive outcome

• Finding: CES + Collusion

- Non-Markov equilibria? Trigger strategies
- Abreu-Pearce-Stachetti methods?
- Folk-theorem  $\rho \to 0$  then collusive outcome

Finding: CES + Collusion

