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based on the platform’s private information about demand conditions. I develop a

theoretical model and algorithmic experiments to study the impact of platform price

recommendations under three types of firm conduct: collusion, competition, and when

firms use pricing algorithms. When firms are either collusive or competitive I show

theoretically that the platform’s optimal price recommendation system is generically

fully informative, and that this outcome is consumer-pessimal. When firms use pricing
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1 Introduction

Modern online platforms such as Amazon, eBay, and Airbnb receive millions of visitors each

day. At the same time, they host millions of sellers. The presence of such a massive number of

firms and consumers interacting on these platforms, and the sheer quantity of data generated

by these interactions, has led to a recent surge in firms using machine learning algorithms

to set prices, hoping to gain an edge over their competitors. In turn, these algorithms

have generated concern from regulators1 and economists2 alike because they can lead to de

facto collusive outcomes without the need for any human intervention, thus skirting existing

antitrust laws.

However, there is another, often overlooked, consequence of this environment: it in-

troduces an acute informational asymmetry between platforms and the firms that sell on

them.3 While firms are typically only able to receive at best coarse information about the

set of potential consumers on the platform via monitoring their own transactions, platforms

are able to generate detailed data about the characteristics of these consumers. In response

to this informational asymmetry, a number of platforms have developed price recommenda-

tion algorithms similar to the pricing algorithms used by firms themselves. These algorithms

then offer firms suggestions on how to price their goods based on the platform’s private

information.

The consequences of these price recommendation algorithms for the firms and consumers

who use online platforms are not well understood. Pavlov and Berman (2019) study their

use in the context of whether or not a platform should centralize pricing and find that decen-

tralized pricing combined with price recommendations can benefit consumers via increased

competition compared to centralized pricing. However, they critically assume that firms

interpret the platform’s recommendation as cheap talk. By contrast, in this paper I take

the view that constructing a price recommendation algorithm solves both a technological

problem—it would otherwise be infeasible for the platform to process its data and provide

useful price recommendations to a potentially large number of firms—and also a strategic

problem—it allows the platform to commit to a particular scheme of sharing its private

information with firms, thus ensuring its recommendations are not solely cheap talk.

Because price recommendation algorithms allow platforms to commit to a given price

recommendation scheme, platforms face an information design problem when constructing

them. On the one hand, they can share more information with firms, allowing firms to set

1See e.g. Delrahim (2018) and OECD (2017).
2See e.g. Assad et al. (2024), Johnson et al. (2023), or Calvano et al. (2020).
3The informational asymmetry between platforms and consumers is comparatively well-studied, see e.g.

Anderson and Renault (2009) or Roesler and Szentes (2017).
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prices more accurately in response to uncertain demand conditions. On the other hand,

platform and firm incentives are not completely aligned. For instance, platforms typically

take a cut of the revenue generated by each sale on their platform, making them total-revenue

maximizers. Firms, on the other hand, seek to maximize their individual profits. Hence,

the platform might wish to leverage its informational advantage to influence the behavior

of firms so that their actions more closely align with the platform’s own objectives. Such

behavior has consumer welfare impacts that are ex ante ambiguous: if platforms try to lower

prices (reflecting the fact that they are revenue maximizing rather than profit maximizing)

then consumers might benefit, but if platforms try to raise prices (reflecting the fact that

they wish to maximize total revenue and price competition is typically a game of strategic

complements) then consumers might suffer.

To study this problem, I take two approaches. First, I develop a theoretical model of

platform price recommendation system design using tools from the burgeoning literature on

information design (Rayo and Segal, 2010; Kamenica and Gentzkow, 2011).4 The model

allows me to study the impact of price recommendations under two types of firm conduct:

collusion and competition. However, the ubiquity of pricing algorithm usage by firms has led

to a third type of conduct that is neither completely collusive nor completely competitive.

Instead, firms typically set supra-competitive prices somewhere in the convex hull of the

competitive and collusive prices.5 To study the impact of price recommendation algorithms

when firms themselves are using pricing algorithms, as well as to assess the quantitative

importance of this new information design channel, I develop simulated experiments in which

machine learning algorithms set prices, taking as one of their inputs a platform-recommended

price. Since the space of possible platform recommendation systems is large, I consider two

benchmark systems that represent the possible extremes: a price recommendation system

that is fully informative of the platform’s private information (always gives the firm-optimal

price) and a price recommendation system that is completely uninformative (only gives a

randomly generated recommendation).

In the context of my theoretical model, I find that the optimal price recommendation

system for platforms is generically fully informative, despite the fact that they have different

preferences for prices than firms. Intuitively, this result follows because platforms are con-

strained in the ways they can influence firm behavior through the use of their information.

Under this constraint, the platform’s desire to influence firm behavior is dominated by its

desire for prices to adjust to the realized state of demand on the platform. In other words,

despite their differences, platform and firm incentives are “aligned enough” that a fully in-

4See Bergemann and Morris (2019) for a recent survey of this literature.
5Calvano et al. (2020) were among the first to document this feature of pricing algorithms.
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formative price recommendation system is optimal. While this is the best possible outcome

for firms, I also show that, by contrast, it is generically consumer-pessimal. Moreover, the

constraints on how platforms can influence firms via information induces a monotonically

decreasing relationship between consumer surplus and the (Blackwell) informativeness of the

platform’s price recommendation system.

The results of my simulations lead to qualitatively similar conclusions. Under an informa-

tive price recommendation system, the platform is able to increase its revenue and consumer

surplus declines. This decline in consumer surplus is substantial, with the average consumer

surplus decreasing by more than 30%. The introduction of an informative price recommenda-

tion system also increases the extent to which algorithmic pricing leads to supra-competitive

prices. This channel is quantitatively important, nearly doubling consumer surplus losses

relative to a counterfactual in which an informative price recommendation system is intro-

duced but the propensity of algorithmic pricing to lead to supra-competitive pricing is held

fixed.

Related Literature A growing literature studies the use of pricing algorithms by firms

and the associated potential for anti-competitive outcomes. These pricing algorithms have

been show to lead to supra-competitive pricing in both simulation (Calvano et al., 2020;

Calvano et al., 2021; Johnson et al., 2023; Banchio and Skrzypacz, 2022) and empirical ev-

idence (Assad et al., 2024). Recent work has also uncovered some important mechanisms

and limiting factors, such as the exact learning protocol used, the richness of the set of

prices that the algorithm considers, and the ability of algorithms to increase the speed at

which firms can change their prices (Klein, 2021; Asker et al., 2022; Brown and MacKay,

2023). In this paper I study how pricing algorithms used by firms can interact with pricing

recommendation algorithms used by platforms. I find that, when offered informative recom-

mendations, algorithms are able to effectively learn how to adjust prices in response to those

recommendations. Moreover, informative recommendations worsen the problem of algorith-

mic collusion, leading to higher prices and lower consumer welfare. My results uncover a

novel mechanism—information—that enables pricing algorithms to learn to collude.

I also build on a large literature that studies the design of various aspects of platforms,

particularly in data-rich environments. Recent empirical and theoretical work has studied

the choice of pricing mechanism (Einav et al., 2018; Pavlov and Berman, 2019; Buchholz

et al., 2020; Banchio and Skrzypacz, 2022), the design of consumer search (Dinerstein et al.,

2018; Johnson et al., 2023), and how the use of fees that are per transaction or proportional

to revenue can impact the platform’s other decisions (Teh, 2022). In this paper I consider

a different aspect of platform design: the use of information as an instrument to influence
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seller behavior. I find that allowing a platform to pass their private information to sellers

through a price recommendation algorithm can increase platform revenue but only at the

cost of consumer welfare.

Within this strand of the literature, Pavlov and Berman (2019) is most closely related

to my work. They consider the impacts of platform price recommendation systems in the

context of a platform deciding whether or not to centralize pricing. They find that rec-

ommendation systems can in fact help consumers because they make decentralized pricing

more attractive, and the competition induced by decentralized pricing is generally consumer-

welfare enhancing. By contrast, in this paper I take as given that firms set prices in a

decentralized manner and explicitly take up the question of the design of the price recom-

mendation system itself. I also critically assume that platforms can commit to the design

of their price recommendation system, ensuring that their recommendations are not solely

cheap talk. Under these assumptions, I reach a very different qualitative conclusion: the

introduction of a price recommendation system is unambiguously bad for consumers.

Finally, this paper builds on a literature that studies the design of information in a

platform context. These papers have largely focused on the design of targeted ads (Anderson

and Renault, 2009; Bergemann et al., 2021; Bergemann and Bonatti, 2023) or the issue of

third-degree price discrimination (Bergemann et al., 2015; Elliott et al., 2021). The work on

third-degree price discrimination is most closely related to this paper, and similarly focuses

on how a platform can use information to influence pricing decisions by firms. Bergemann

et al. (2015) shows in the context of a monopolist seller that information can either help or

harm consumers, and Elliott et al. (2021) extends that conclusion to an oligopoly setting.

By contrast, since personalized pricing is virtually unused in practice, I instead shut down

the price discrimination channel and assume firms use linear pricing. I show in both a

monopolistic and oligopolistic setting that, under linear pricing, information is generically

harmful for consumers. I also consider how the platform’s information design problem might

interact with a third, and empirically relevant, form of conduct—algorithmic pricing. In

this context, the use of information can help increase a platform’s revenue but worsens the

problem of supra-competitive pricing by algorithms and decreases consumer surplus.

2 A Model of Platform Price Recommendations

There is a monopolistic retail platform that connects consumers and firms. Each firm sells

a single product and faces a constant marginal cost c ≥ 0. The platform takes a fraction

of the revenue earned by each firm, leaving the remaining fraction ϕ > 0 to the firm. The

state of the world θ ∈ Θ = [θ, θ̄] is initially unknown by both the platform and the firms,
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and they have a common prior θ ∼ µ0.

The platform has the ability to (costlessly) learn about θ and can share its information

with firms by recommending prices through a price recommendation algorithm.6 When

constructing its price recommendation algorithm, the platform faces the choice of how much,

if any, information the algorithm should communicate to the firms selling on the platform,

an idea I will make formal below.

On the firm side, I assume firms compete in prices and consider two types of firm be-

havior: collusion and competition. In the case of collusion I abstract away from multi-good

considerations and, for simplicity, assume that there is only a single homogeneous good being

sold, or equivalently that there is only a single monopolistic firm selling on the platform. In

the case of competition I assume that it takes the form of simple Hotelling competition. I

also assume that the platform knows whether the firms are colluding or competing so that

the two cases can be analyzed separately. This assumption is only for ease of exposition—the

same price recommendation scheme will be optimal in both cases and so the results still hold

even if the platform has no knowledge of firm conduct. All proofs are contained in Appendix

A.

2.1 Collusive Firms

There are N firms selling a homogeneous good on the platform. They face demand D(p; θ),

which gives the total quantity sold when the prices are p = (p1, ..., pN) and the state is θ.

Since the goods are homogeneous and the firms are colluding it is without loss to consider

only the case of a single firm, and so henceforth I will take N = 1. I also impose the following

three conditions on the demand function:

Assumption 1 (Regularity). There is a non-degenerate interval P = [0, p̄] s.t. D(p; θ) is

twice continuously differentiable and non-negative on P × Θ. Additionally, for any θ ∈ Θ,

D(p; θ) is strictly decreasing and D(p; θ)(ϕp− c) is strictly concave in p on P and D(p; θ) =

0 ∀p ̸∈ P .

Assumption 2 (Non-triviality). ∀θ ∈ Θ ∃p s.t. D(p; θ)(ϕp−c) > max{0, D(p̄; θ)(ϕp̄−c)}

Assumption 3 (Demand Affinity). D(p; θ) = f1(p) + θf2(p) for some affine functions

f1, f2.

6Although the space of signals that the platform can use to communicate information with the firm is
generically large, a revelation principle-style idea (see e.g. Bergemann and Morris 2019) shows that it is
enough to limit attention to signals that take the form of obedient action recommendations. That is, the
platform recommends a price to each firm, and conditional on receiving that price recommendation it is a
best response for the firm to follow the recommendation.
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Figure 1: Example demand curves

Notes: This figure plots demand curves D(p; θ) for f1(p) = 1− p, f2(p) = 2− p across different values of the
demand state.

The first assumption is a relatively standard regularity condition. It ensures that the

firm’s problem always has a unique maximizer, and moreover that the maximizers are uni-

formly bounded. The content of the second assumption is to ensure that, regardless of the

state, the firm’s problem is non-trivial: demand is always high enough that they can make

positive profits, but demand is never so high that they want to price at the maximum price

p̄. It is also technically useful, as it ensures that the firm’s problem has a maximizer that is

not just unique but also in the interior of P . Assumption 3 says that demand is affine in the

both the price and the state. Since the distribution of θ is left arbitrary, I view the latter

as a fairly weak restriction. While the additional assumption of price affinity is strong, the

gain in tractability is large, since it reduces the platform’s information design problem to a

linear form that is much better understood than general non-linear formulations (Dworczak

and Martini 2019; Kleiner et al. 2021; Kolotilin 2018).

Figure 1 exemplifies how the state can affect demand under assumptions 3. In essence,

it implies that the state can affect two objects. The first is the intercept of the demand

curve, which can be interpreted as the total market size. The second is the slope of the

demand curve, which will impact the elasticity of demand faced by the firm. Depending on

the functions f1(·) and f2(·), the state may impact either of these objects, both, or neither.

The platform’s problem is to choose a price recommendation scheme. Since the platform

is able to commit to its choice through the construction of a price recommendation algorithm,

this choice can formally be modeled as an information design problem. In particular, given a

price recommendation scheme, any price recommendation received by the firm will induce a
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posterior belief µ over the distribution of θ. The firm will then choose a price p∗(µ) to solve

max
p
Eµ[D(p; θ)(ϕp− c)] ⇐⇒ max

p
Eµ[D(p; θ)(p− C)]

where C := c
ϕ
. The choice of a price recommendation then amounts to choosing a distribution

over posteriors subject to the Bayes plausibility constraint (Kamenica and Gentzkow, 2011).

In particular, the platform solves

max
τ∈∆(∆(Θ))

∫
∆(Θ)

Eµ[D(p∗(µ); θ)p∗(µ)]dτ(µ)

subject to the Bayes plausibility constraint
∫
∆(Θ)

µdτ(µ) = µ0. Assumption 3 ensures that

the platform’s expected revenue depends only on the expected state.

Lemma 1. There exists p(·) s.t. ∀µ ∈ ∆(Θ), p∗(µ) = p(Eµ[θ]). Moreover, ∀µ ∈ ∆(Θ),

Eµ[D(p∗(µ); θ)p∗(µ)] = R̃(Eµ[θ]), where R̃(Eµ[θ]) := D(p(Eµ[θ]);Eµ[θ])p(Eµ[θ]).

Since the platform’s objective function therefore depends only on the induced posterior

mean, rather than the full induced posterior distribution, the platform’s choice of information

structure reduces to choosing a distribution over posterior means. A distribution of posterior

means µ can be induced by some information structure if and only if µ0 ≻ µ, where ≻ is

the mean-preserving spread relation, indicating that µ0 is a mean-preserving spread of µ

(Blackwell 1953; Gentzkow and Kamenica 2016).7 Intuitively, full information induces a

degenerate posterior that puts full weight on the true state for every signal realization and

so the distribution of posterior means is equal to the prior. By contrast, no information

induces a degenerate distribution of posterior means, with full weight on the prior mean.

Since any interior information structure can be represented as a garbling of full information

(and analogously no information is a garbling of any information structure), the induced

distribution of posterior means must also be a mean-preserving contraction of the induced

distribution of posterior means from full information. The platform’s problem can thus be

written

max
µ0≻µ

∫
Θ

R̃(x)dµ(x)

The critical wedge between the preferences of the platform and the firm is that the firm

faces a potentially non-zero marginal cost to production, so that the firm wants to maximize

profits while the platform wants to maximize revenue. The existence of this wedge creates

a central tension that the platform must confront when designing its price recommendation

7A distribution F is a mean-preserving spread of a distribution G if EF [ν(x)] ≥ EG[ν(x)] for all convex
functions ν, where the inequality is strict for strictly convex functions if F ̸= G.
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system. On the one hand, providing more precise recommendations allows the firm to more

carefully target its prices, raising prices in states with high demand and decreasing prices

in states with low demand. Given free choice over prices, the revenue-maximizing platform

would also prefer to have higher prices in states with high demand and likewise lower prices

in states with low demand.

On the other hand, the firm generically wants higher prices than the platform at any

given demand level because, unlike the platform, they face a potentially non-zero marginal

cost. Hence, in targeting its prices, the firm will raise them too much in the high demand

states and decrease them too little in the low demand states. The platform can thus po-

tentially benefit by providing recommendations for lower prices. However, the platform is

constrained to inducing mean-preserving contractions. So, informally speaking, it cannot

simply recommended lower prices across all demand states but instead must pool a recom-

mendation for a low price across both lower and higher demand states. This type of pooling

carries the cost of lower precision as prices will be less targeted toward the exact realization

of the demand state.

Intuitively, the platform’s optimal price recommendation strategy should balance these

two forces. However, it turns out that the cost of imprecise prices is always greater than

the cost of having prices larger than would be revenue-maximizing, and so the platform’s

precision motive dominates its lower-price motive. Hence, the optimal information structure

for the platform is actually to always fully reveal the state. This result is immediate in the

case when c = 0, since then the platform and the firm have the same preferences. Proposition

1 shows that indeed this full information result still holds independent of the marginal cost

faced by the firm.

Proposition 1. Full information is an optimal information structure, and generically8 it is

the uniquely optimal information structure.

There are two striking features of this result. The first is that it is independent of the

prior beliefs held by the firm and the platform. Hence, regardless of the platform and the

firm’s initial beliefs, the platform will want to use fully informative price recommendations.

Moreover, an outside analyst can likewise be sure of the platform’s optimal price recommen-

dation structure even without any knowledge of the distribution of the state. The second

feature is that the platform’s optimal price recommendation scheme is independent of the

marginal cost faced by firms and the percentage of revenue taken by the platform.9 Thus, an

8I use generically here to mean except for on a measure zero set of parameter values, in particular the
coefficients of the functions f1 and f2.

9This independence holds only under assumptions 1 and 2, which do implicitly place some restrictions on
the firm’s marginal cost and the platform’s revenue cut.
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Figure 2: Pricing and induced revenue curves

Notes: In panel (a) this figure plots the firm pricing rule p(·) and the platform pricing rule p̃(·) as a function
of the posterior expected demand state when f1(p) = 1−p, f2(p) = 2−p, P = [0, 1], Θ = [0, 1], and C = 1/2.
In panel (b) it plots the induced platform revenue curve R̃(·).

outside analyst can also know the platform’s optimal price recommendation structure even

without knowledge of these key institutional features.

We can build up some intuition for this result by considering a simple example with

f1(p) = 1 − p, f2(p) = 2 − p on P = [0, 1], C = 1/2, and Θ = [0, 1]. Figure 2 plots the

firm price p(·) and the platform-optimal price p̃(·) as a function of the posterior expected

state and likewise the platform’s induced revenue curve R̃(·) as a function of the posterior

expected state. In this parametrization of the problem, a higher state means demand is

uniformly higher, and so both price and revenue are increasing in the posterior expected

state. Moreover, the percentage difference between the firm price and the platform’s desired

price decreases as the state increases (the platform price curve is simply a downward shift of

the firm price curve). Hence, revenue is increasing faster for higher posterior expected states

and so the induced revenue curve is convex. This convexity is the key feature that drives

the platform towards full information.

To see why, recall that the platform’s choice among price recommendation schemes can be

represented as choosing among distributions over posterior means subject to the restriction

that the distribution is a mean-preserving contraction of the prior. But when the induced

revenue curve is convex, such a contraction can only make the platform worse off, since by

Jensen’s inequality its value at a weighted average of points lies below the weighted average

of the value of those points. Hence, full information is optimal for the platform.
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2.1.1 Consumer Surplus Impacts

Having established that the platform will always want to use fully informative price recom-

mendations, I now turn to considering the impact of the platform’s price recommendation

scheme on the consumers who use the platform. Intuitively, we would expect that the more

information that the platform provides to firms, the worse off consumers become, as the plat-

form is effectively reducing the information rents that consumers can obtain. As proposition

2 shows, this intuition can be formalized by ranking the platform’s price recommendation

schemes in terms of Blackwell informativeness. In this context, a price recommendation

scheme R being Blackwell more informative than another price recommendation scheme R′

reduces to the induced distribution of posterior means µR being a mean-preserving spread

of the induced distribution of posterior means µR′ .

Proposition 2. Consumer surplus is monotonically decreasing in the Blackwell informative-

ness of the platform’s price recommendation scheme, and generically it is strictly decreasing

in the Blackwell informativeness of the platform’s price recommendation scheme.

Corollary 1. The platform-optimal information structure is generically the consumer-pessimal

information structure.

Given that proposition 1 shows that full information is generically the uniquely optimal

information structure for the platform, proposition 2 yields the immediate corollary that

generically (in particular whenever the platform-optimal information structure is unique),

the platform-optimal information structure is in fact the consumer-pessimal information

structure. In other words, any regulator with a consumer welfare standard should choose to

ban platform price recommendations, as they can only serve to harm consumers.

To gain further intuition for this result, we can once again return to the simple param-

eterized example in which f1(p) = 1 − p, f2(p) = 2 − p, P = [0, 1], C = 1/2, and Θ = [0, 1].

Figure 3 plots consumer surplus in this case as a function of the posterior expected state.

Unlike the induced revenue curve, which was convex, the consumer surplus curve is concave.

Hence, it is precisely analogous logic to the case of the platform’s optimal information struc-

ture that shows that consumers prefer less information. In particular, consider once again

the representation of price recommendation structure as choosing among distributions over

posterior means subject to the restriction that the distribution is a mean-preserving contrac-

tion of the prior. As the expected consumer surplus curve is concave, Jensen’s inequality

again implies that such a contraction can only make consumers better off.
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Figure 3: Expected consumer surplus

Notes: This figure plots expected consumer surplus as a function of posterior expected demand state when
f1(p) = 1− p, f2(p) = 2− p, P = [0, 1], Θ = [0, 1], and C = 1/2.

2.2 Competitive Firms

I now turn to the case of firm competition. For simplicity, I consider only the duopoly case

when N = 2, although it is straightforward to generalize the results to the N firm case. The

firms compete in standard Hotelling competition where the unknown state θ represents the

inverse of the strength of consumer preferences. That is, there is a mass M of consumers,

which I normalize to 1, each with unit demand. Each consumer obtains utility v− θ−1x− p

for purchasing good 1 at price p and v − θ−1(1 − x) − p for purchasing good 2 at price p,

where x ∼ U [0, 1] in the population. To keep utilities well-defined, I impose the additional

assumption that θ > 0. Then under the typical full coverage assumption,10 if the firms know

θ then they have symmetric price p = C + 1
θ
in the unique pure strategy equilibrium.

Now suppose that firms face symmetric uncertainty over θ. In particular, both firms

believe θ ∼ µ. Since θ enters affinely into the firms’ objective functions, a version of lemma

1 holds in this environment and the unique pure strategy equilibrium will depend only on

the expected state Eµ[θ]. Specifically, we will have pi(Eµ[θ]) = C + 1
Eµ[θ]

for i = 1, 2.

Lemma 2. Given beliefs µ, the unique pure strategy equilibrium is p1 = p2 = C + 1
Eµ[θ]

.

While in principle the platform’s price recommendation scheme could induce asymmetric

posterior beliefs among the firms, I restrict the platform to use only symmetric signals, or

10Formally, I assume full coverage for every state θ, which in particular says that v is always large enough
that the potential markets of the two firms overlap, and so in equilibrium every consumer always purchases
a good. Without this assumption the firms simply price at their monopoly level and do not engage in any
meaningful competition, which is the case covered in the previous section.
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equivalently (since the environment is symmetric) to send only publicly observable signals.

This restriction ensures that the firms always have the same posterior beliefs and so the

induced game is always of the above form. It also matches closely with the empirical reality

of most price recommendation systems used in practice, as these systems typically make

good-specific rather than firm-specific recommendations, thereby allowing firms to see the

price recommendation given to another firm simply by entering the relevant information of

the good sold by that firm.

Under the assumptions of full coverage and public signals, and since the firm’s prices

are symmetric in the induced equilibrium, the platform’s revenue is proportional to the

equilibrium price p(x) = C + 1
x
for any posterior expectation x of the state. Since the

function 1/x is strictly convex (for positive x), we can immediately see that once again full

information will be optimal for the platform, yielding the following proposition.

Proposition 3. Full information is the uniquely optimal information structure for the plat-

form.

Analogous to proposition 1, full information is optimal for the platform regardless of the

prior beliefs of the firm, the marginal costs faced by the firms, and the fraction of revenue

that the platform takes. Why is this the case? Intuitively, the platform faces almost exactly

the same trade-off as in the case of collusion. On the one hand, it has a precision motive

and wants to make sure that the prices are set in accordance with the demand state. On the

other hand, the platform, if it could, would want to set prices at a different level than the

equilibrium prices of the firms. Although in this case, due to the full coverage assumption and

the strategic complementarity of the Hotelling competition game, the platform wants higher

prices than the firms, not lower prices. However, despite this distinction, the precision motive

still dominates, and so the platform optimally uses fully informative price recommendations.

2.2.1 Consumer Surplus Impacts

The impact of the platform’s price recommendation system on consumers is again analogous

to the case of competition. Intuitively, by revealing the consumer’s private information

to firms, the platform is reducing the information rents that consumers can achieve and

therefore lowering their welfare. While we might ex ante anticipate that the impact of

price recommendations would be worse for consumers in the case of competition rather than

collusion—since the platform wants higher prices than the firms instead of lower prices than

the firms—this turns out not to be the case since the platform will use fully informative

price recommendations in both cases.
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Formally, the analysis of consumer surplus in the case of competition is complicated by

the fact that expected consumer surplus given posterior beliefs µ depends not just on the

first moment Eµ[θ] but instead the entire distribution µ.

Lemma 3. Given posterior beliefs µ, expected consumer surplus is Eµ[CS] = v−C− 1
Eµ[θ]

−
1
4
Eµ

[
1
θ

]
.

Hence, in order to formally make statements about the consumer welfare impacts of the

platform’s price recommendation scheme, we must take a stance on the exact distribution

of posteriors that the platform induces rather than just the distribution of posterior means.

Since the platform and the firm are both indifferent between any distribution of posteriors

that induces the same distribution of posterior means, this amounts to an assumption on

the tiebreaking behavior of the platform. I make the most favorable assumption possible for

consumers:

Assumption 4 (Tiebreaking). If the platform chooses a price recommendation scheme

R that induces a distribution µR over posterior means, then it does so by inducing the

distribution of posterior beliefs τ that, conditional on inducing µR, yields the maximum

possible expected consumer surplus.

It is not immediately obvious that this assumption is well-formed. That is, it might be

that there is no unique τ that maximizes consumer surplus conditional on inducing a certain

distribution of posterior means. However, the following lemma rules out this possibility, and

indeed identifies the maximizing τ—it is the distribution that only puts positive weight on

degenerate posteriors.

Lemma 4. Fix a distribution of posterior means µ satisfying µ0 ≻ µ. Then under as-

sumption 4, the platform will induce the distribution of posterior means µ by inducing the

distribution of posteriors τ satisfying

dτ(µ̃) =

dµ(x) if µ̃ = δx

0 otherwise

Since under assumption 4 the platform will thus only induce distributions of degenerate

posteriors, lemmas 3 and 4 yield the immediate corollary that expected consumer surplus for

a given posterior belief does in fact only depend on the posterior mean, as long as we assume

that the platform breaks ties in favor of consumers. Since this tiebreaking does not affect

firms, such an assumption merely amounts to assuming that the platform will not discard

consumer surplus “for free.”
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Corollary 2. Under assumption 4, for posterior belief µ induced by a platform recommen-

dation system, expected consumer surplus is v − C − 3
4Eµ[θ]

.

We can thus return to the framework of thinking about price recommendation systems

only in terms of the induced distribution of posterior means. Moreover, since −1/x is strictly

concave (for positive x), we can immediately see that once again full information will be

pessimal for consumers, yielding the following proposition.

Proposition 4. Under assumption 4, the platform-optimal information structure is the

consumer-pessimal information structure, and the unique consumer-optimal information struc-

ture is no information.

Proposition 4 is the analogue of corollary 1 in an environment in which firms are compet-

ing rather than colluding. It says that a fully informative price recommendation system is

in fact the worst possible recommendation system for consumers, and that an uninformative

price recommendation system is the best possible recommendation system for consumers

(among all possible recommendation systems that the platform could choose subject to as-

sumption 4). It thereby formalizes the intuition that informative recommendation systems

are bad for consumers because they lower their information rents. Moreover, it shows that,

just as in the collusive environment, any regulator with a consumer welfare standard should

choose to ban platform price recommendations.

2.3 Discussion of Model Results and Assumptions

A number of key messages emerge from the previous analysis of platform price recommenda-

tion system design in both collusive and competitive settings. The first is that, despite the

existence of wedges between the preferences of the platform and those of the firms, there is

a strong sense in which their incentives are aligned. In particular, the platform will always

want to use a price recommendation system that is fully informative. In other words, it will

always recommend the firm-optimal prices conditional on the realized state. This conclusion

holds independent of institutional features such as the marginal cost faced by firms, the

platform revenue cut, and the type of firm conduct, despite the fact that these features in

some sense control the strength of the wedge between platform and firm preferences. It is

also therefore robust to arbitrary uncertainty about those features.

The second key message regards consumer welfare. Ex ante, it is unclear how consumers

would be impacted by platform price recommendations. On the one hand, they might

benefit if the platform tries to drive down the price to raise revenue, or if prices become

more aligned with their preferences conditional on the realized state (for instance having
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lower prices when demand is lower and higher prices when demand is higher). On the other

hand, any information that the platform provides the firms can in some sense be thought of

as reducing the information rents that consumers are able to achieve, and thus lowering their

welfare. This second intuition turns out to be the correct one. Price recommendation systems

are unambiguously bad for consumers, in the strong sense that the platform-optimal price

recommendation system is in fact consumer-pessimal. This conclusion again holds essentially

independent of institutional features and so is robust to arbitrary uncertainty about those

features.

One important limitation to these conclusions is that I have assumed throughout that

demand is affine. This assumption is explicit in the model of collusion but it is also implicit

in the model of competition, as Hotelling competition induces affine residual demand func-

tions facing each of the firms. In the next section I relax this assumption by using model

simulations to study the case of logit demand, which is a workhorse model of demand in

empirical applications. I have also only analyzed two extreme forms of firm conduct: perfect

competition and perfect collusion. On many modern online platforms firms do not purely

collude or compete. Instead, they set prices through the use of machine learning algorithms.

Typically, these algorithms do not converge to either the collusive or the competitive outcome

but instead to some supra-competitive prices in the convex hull between the competitive and

collusive prices (Calvano et al. 2020; Johnson et al. 2023).

3 The Case of Algorithmic Pricing

In order to understand the impact of platform price recommendations in a setting that

more closely matches the empirical reality on modern platforms, in this section I simulate

the behavior of algorithmically-pricing firms in response to a price recommendation system

implemented by the platform. I also assume logit, rather than affine, demand. Since the space

of possible platform recommendation systems is large, I consider two benchmark systems:

no information and full information.

In keeping with the theoretical model of the previous section, we should expect an un-

informative price recommendation system to be consumer-optimal and a fully informative

system to be platform-optimal if the firms are either competing or colluding. These conclu-

sions are only suggestive, however, as the theory cannot speak directly to the case in which

firms are neither colluding nor competing and consumer demand is not affine. Moreover,

introducing a platform price recommendation system can (and indeed does) change the very

nature of firm conduct in the algorithmic case, as it can make it easier or harder for firms

to collude (O’Connor and Wilson, 2019). Intuitively, this duality stems from the fact that
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additional information about demand both makes collusion more attractive (by increasing

the payoffs to colluding) and at the same time raises incentives to cheat.

Following other recent work in the algorithmic pricing literature (e.g. Calvano et al. 2020;

Johnson et al. 2023; Banchio and Skrzypacz 2022), I assume that firms price according to

Q-learning algorithms. Q-learning algorithms are a popular class of reinforcement learning

algorithms in both computer science and in practice (Sutton and Barto, 2018). In stationary,

single-agent environments, Q-learning works by essentially learning the value function one

state-action pair at a time, updating an estimate of the payoff and continuation value of

playing a certain action in a certain state every time it plays that action in that state.

A typical method to ensure that the algorithm sufficiently explores its environment is

called ϵ−greedy: in each period t the algorithm plays the action that yields the highest

estimated value (inclusive of discounted continuation value) conditional on the state with

probability 1 − ϵt, and with probability ϵt it plays a random action. With this learning

strategy there are provable guarantees that, under certain conditions, Q-learning algorithms

will converge to optimal play (Watkins and Dayan, 1992). In multi-agent settings such

as firm competition, however, there are no provable guarantees that Q-learning algorithms

will even converge, let alone converge to “optimal” play. The reason for this is that the

environment is inherently non-stationary—it changes each time the other firms update their

strategies. Nonetheless, in practice, convergence (in a sense defined below) is nearly always

obtained (Calvano et al., 2020).

3.1 Simulation Environment

There are two different firms selling differentiated goods on the platform, as well as an outside

option. The firms interact repeatedly in periods t = 1, 2, ... and, conditional on the demand

state θt, face standard logit demand

sit =
exp

(
ai−θtpit

µ

)
1 +

∑2
j=1 exp

(
aj−θtpj,t

µ

)
where ai is an index of quality that captures potential vertical differentiation and µ is the

scale of the logit error, capturing horizontal differentiation. In this context the demand state

θt controls the price sensitivity of consumers. Each period it is drawn uniformly at random

from the set Θ, independent of previous realizations. The firms face constant marginal cost

C (interpreted as being adjusted for the platform revenue cut) and hence each period receive

profits πit = (pit − C)sit, where I normalize the mass of consumers to 1 so that qit = sit.
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While the demand state is unknown to the firms, in each period t they receive a (public)

signal ρt of the demand state from the platform (a “price recommendation”), which learns

the state at the beginning of each period. The price recommendations are either fully

informative (ρt = θt) or completely uninformative (ρt ∼ U [Θ]). The firms also have bounded

memory: they can remember prices from the previous m periods.11 In making their period

t decision, the firm can thus condition on ρt and {p1,t−i, p2,t−i}mi=1, which I will call the firm

state, denoted fit. Note that the assumption of bounded memory, which is necessary for

computational tractability, is fairly weak as it still allows for complex dynamic interactions

between the firms (Calvano et al., 2020).

As mentioned previously, I assume that the firms make pricing decisions according to Q-

learning algorithms. Q-learning requires that both the state space and action space of each

agent be finite, hence I restrict Θ to be finite and discretize the price space P as follows. I

compute the Bertrand Nash and fully collusive prices for each θ ∈ Θ. Let p be the minimum

such price, rounded down to the nearest tenth, and p̄ be the maximum such price, rounded

up to the nearest tenth. I take P = {p, p+ .1, p+ .2, ..., p̄}.
The central object of Q-learning is the Q-matrix, which is (informally) defined as

Q(f, p) = E[π | f, p] + δE[max
p′∈P

Q(f ′, p′) | f, p]

where δ < 1 is the discount factor and assumed to be common across firms. In words, the

Q-matrix gives the expected value (inclusive of discounted continuation value) of charging

price p when in firm state f . Note that each firm has its own Q-matrix, but I suppress

this dependence for notational simplicity. Of course, the Q-matrix is also not entirely well-

defined in multi-agent settings such as this one, since it depends on the strategies of other

agents. Nonetheless, there is still a sense in which a Q-learning algorithm, which attempts

to learn the Q-matrix by exploring the payoffs to different prices in different firm states, can

converge. I will define this convergence precisely shortly, but intuitively it can be thought of

as convergence in strategies—once the firms have converged on strategies and cease exploring,

the environment once again becomes stationary and the Q-matrix is well-defined.

A Q-learning algorithm has no knowledge of the Q-matrix, or indeed any of the model

primitives, but instead attempts to learn the optimal strategy via exploration. In particular,

starting from an arbitrary initial matrix Q0, in each period t the algorithm observes firm

state ft and chooses price pt, observes payoff πt and next period firm state ft+1, and then

11To keep the firm state space limited, I assume that firms cannot remember previous price recommenda-
tions. I view this as a weak restriction since firms do not engage in strategic interaction with the platform.
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updates its guess of the Q-matrix by setting

Qt+1(ft, pt) = (1− α)Qt(ft, pt) + α

[
πt + δmax

p∈P
Qt(ft+1, p)

]
where I again suppress firm dependence for notational simplicity. The hyperparameter

α ∈ (0, 1), the learning rate, determines how quickly the algorithm updates its guess of

a particular element of the Q-matrix when receiving new information. Firm exploration is

ϵ-greedy: in each period t, with probability 1 − ϵt the firm chooses p = argmaxp′ Qt(ft, p
′)

and with probability ϵt it chooses a random p ∈ P . In each period, a firm’s strategy ψt gives

the algorithm’s guess of the optimal price for any firm state f . That is

ψt(f) = argmax
p∈P

Qt(f, p)

In keeping with Calvano et al. (2020), I define convergence by the following criterion: each

firm’s strategy has remained stable for the past 100,000 periods. I limit the maximum

number of periods to one billion, but convergence is always achieved in my simulations and

so this limit is never reached.

In my baseline simulations I take δ = .95, µ = 1/4, α = .15, a1 = a2 = 2, C = 1, and

m = 1. I also parametrize ϵt = exp(−βt) and take β = 5∗10−6. These parameter values align

with those of Calvano et al. (2020) and Johnson et al. (2023), ensuring that my results have

a comparable baseline in a setting without demand uncertainty or price recommendations.

The one exception is that I take β to be smaller than their simulations, since the existence of

demand uncertainty introduces additional noise into the simulations and so it is important

to give the firms more opportunity to explore their environment. I take the set of possible

demand state values to be the set Θ = {.8, .9, 1., 1.1, 1.2}. Finally, in every simulation I

initialize the environment in a random demand state and with Q0 a matrix of zeros.

3.2 Simulation Results

I run the above simulations 1,000 times for both the case of fully informative price rec-

ommendations and the case of completely uninformative price recommendations. For each

simulation run, I use the results of the final 100,000 stable periods to measure relevant out-

comes such as prices and consumer surplus. Table 1 reports the average across simulation

runs for a number of key metrics, including total revenue, prices, and consumer surplus.

It also reports an average “collusion level.” I define the collusion level to be a normalized
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measure of how far prices are from the Bertrand Nash level. In particular, I take:

CLt =
pt − pNash,t

pCollusive,t − pNash,t

where, for simplicity since firms are symmetric, all prices are in terms of firm 1.12 In simu-

lations with fully informative price recommendations, the Bertrand Nash and collusive price

is conditional on the demand state in that period, while in simulations with uninformative

price recommendations it is the unconditional Bertrand Nash and collusive price.

Table 1: Simulation outcomes

Informative Uninformative

Average Revenue 1.39 1.36
Average Consumer Surplus 3.69 5.32
Average Collusion Level 0.50 0.29
Average Price (Firm 1) 1.69 1.60
Average Price (Firm 2) 1.69 1.60

Notes: This table shows average outcomes for simulations with fully informative and completely uninforma-
tive price recommendations. Averages are taken over the final 100,000 stable periods in each simulation run.

The results of these simulations are broadly consistent with the model developed in the

previous section. When recommendations are informative, average revenue increases and

consumer surplus decreases. The change in consumer surplus is substantial: going from

uninformative to informative recommendations causes a 31% decrease in average consumer

surplus. Moreover, firms are able to achieve much higher levels of collusion when recommen-

dations are informative, which is also reflected in the fact that prices are higher on average.

Finally, as expected given the symmetry of the environment, the prices of firm 1 and firm 2

are the same on average in both the informative and uninformative case.

3.2.1 Prices

When price recommendations are informative, average prices rise by 6%. However, the fact

that average prices change does not imply that pricing algorithms are able to effectively

use the information provided by the price recommendations to target prices to the demand

state. Figure 4 shows the average (firm 1) price conditional on the demand state for the

informative recommendation case and the uninformative recommendation case. Reassur-

12Calvano et al. (2020) use a similar measure except it is in terms of firm profits rather than prices. I
prefer the measure in terms of prices since it allows for a type of welfare decomposition exercise (see section
3.2.3).
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ingly, the algorithms are indeed able to learn to target prices when recommendations are

informative. In the informative case, the average price when demand is highest is 1.8 while

it is 1.6 when demand is lowest. By contrast, when recommendations are uninformative the

price is constant at about 1.6 across all demand states. That the average price is uniformly

higher across all demand states when recommendations are informative than when they are

uninformative reflects the fact that the algorithms learn to collude much better in the in-

formative case—if conduct were the same in both cases then we would still expect prices to

rise in the high-demand states, but they should fall in the low-demand states.

0.8 0.9 1.0 1.1 1.2

Demand State

1.4

1.6

1.8

2.0

2.2

A
ve

ra
ge

 P
ric

e

(a) Informative Recommendations

0.8 0.9 1.0 1.1 1.2

Demand State

1.4

1.6

1.8

2.0

2.2

A
ve

ra
ge

 P
ric

e

(b) Uninformative Recommendations

Figure 4: Average price by demand state

Notes: This figure plots the average price charged by firm 1 in each demand state for fully informative price
recommendations and completely uninformative price recommendations. Prices are averaged over the final
100,000 stable periods in each simulation run. The dashed and dot-dashed lines give the benchmark fully
collusive and Bertrand Nash prices respectively.

3.2.2 Consumer Surplus

The average consumer surplus is lower in the informative case than in the uninformative

case, a finding that is consistent with the theoretical results of section 2. Moreover, figure 5

shows that these losses stem from large declines in consumer surplus in high-demand states,

while consumer surplus losses are much smaller in low-demand states (and consumer surplus

in fact even increases slightly in the lowest-demand state despite the fact that the average

price increased in that state). That the losses in the high-demand states are significantly

larger than in the low-demand states reflects two factors. First, the average price increase

is much higher in those states. And second, consumers in some sense care more about the

products in the high-demand states than they do in the low-demand states, so that even if
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the price increase was the same in all states the consumer surplus loss would still be higher

in the high-demand states. These two factors compound, leading to large consumer surplus

losses in the high-demand states.
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Figure 5: Average consumer surplus by demand state

Notes: This figure plots consumer surplus conditional on demand state, averaged over the final 100,000
stable periods in each simulation. The solid line conditions on simulations with informative price recom-
mendations, while the dashed line conditions on simulations with uninformative price recommendations.

3.2.3 Collusion Level

The average collusion level goes from 0.29 when recommendations are uninformative to

0.50 when they are informative, a 72% increase. To get a back-of-the-envelope sense of

the importance of this difference in collusion levels, I perform the following exercise. First,

I measure average consumer surplus assuming the price in each demand state is at the

same collusion level as the average collusion level under informative recommendations: pθ =

0.50pcollusive,θ + 0.50pNash,θ. Next, I measure average consumer surplus assuming the price

in each demand state is at the same collusion level as the average collusion level under
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Figure 6: Welfare change decomposition

Notes: This figure decomposes the welfare change from uninformative to informative recommendations into
the fraction due to changes in the collusion level and the fraction due to having prices adjust to the demand
state.

uninformative recommendations: pθ = .29pcollusive,θ + .71pNash,θ. Finally, I measure average

consumer surplus assuming the price in each demand state is at the same collusion level

as the average collusion level under uninformative recommendations, but now relative to

the unconditional Nash and collusive prices rather than the conditional Nash and collusive

prices: pθ = .29pcollusive + .71pNash.

This exercise has the effect of decomposing the consumer surplus loss of informative

recommendations into two pieces. The first piece is the loss from inducing better algorithmic

collusion, holding constant the ability to condition the price on the demand state. The second

piece is the loss from the ability to condition prices on the demand state, holding constant

the collusion level. Figure 6 displays these two pieces visually. Going from a collusion

level of .50 to .29 while keeping prices conditional on the demand state accounts for 45% of

the overall welfare change between informative and uninformative recommendations. Going

from conditional prices to a uniform price accounts for the other 55%. Hence, the increase in

collusion level from introducing informative recommendations represents an important part

of the change in consumer surplus.

3.2.4 Robustness

I assess the sensitivity of my simulation results to the chosen baseline parameters by com-

puting the elasticity of each main outcome—consumer surplus, collusion level, revenue, and

prices—to changes in parameter values. I do so by decreasing the focal parameter or hy-

perparameter by 10% while holding the other parameters fixed at their baseline values and

then computing an implied elasticity from the change in outcomes. Using this procedure

I assess sensitivity to changes in marginal cost (C), product quality (a), the scale of the

logit error (µ), the discount factor (δ), the learning rate (α), and the exploration decay (β).
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The elasticities are typically small (less than 1 in absolute value) and similar across both

informative and uninformative recommendations, suggesting that both the quantitative and

qualitative conclusions from the baseline simulations are fairly robust. The most sensitive

outcome is the collusion level, for which the elasticity is typically between 2.5 and 7.5 in

absolute value. However, the elasticities are similar for both informative and uninformative

recommendations, suggesting that the relative comparison between the two is still robust.

The outcomes are most sensitive to the quality parameter, although the elasticities are again

similar for both informative and uninformative recommendations. The full set of robustness

elasticities can be found in Appendix B.

4 Conclusion

In this paper I study the impact of platform price recommendations under three types of

firm conduct: collusion, competition, and when firms use pricing algorithms. For the cases

in which firms are either colluding or competing, I develop a theoretical model of platform

price recommendation design. I show that, in the case of affine demand, the platform’s

optimal price recommendation system is generically fully informative independent of prior

beliefs and other model primitives. Moreover, the platform-optimal price recommendation

system is generically consumer-pessimal.

To understand how platform price recommendations might interact with firms using

pricing algorithms and more empirically realistic consumer demand, I develop simulated

experiments of algorithmic pricing in an environment with demand uncertainty and price

recommendations. I study two benchmark price recommendation systems: a fully infor-

mative system and a completely uninformative system. In my simulations, I find that the

introduction of a price recommendation system reduces average consumer surplus by about

31%. Approximately 45% of this loss can be attributed to the price recommendation sys-

tem making it easier for pricing algorithms to learn to collude while the other 55% can be

attributed to firms learning to adjust prices in response to changes in the demand state.

There are a number of interesting questions left unanswered by this paper that would

be fruitful directions for future work. For one, it is important to more fully understand

the conditions under which platform and firm preferences are “aligned enough” that fully

informative recommendation systems are optimal for the platform. It would also be useful to

further develop our understanding of how price recommendation systems change the ability

of pricing algorithms to learn to collude.
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Appendix

A Proofs

Proof of Lemma 1. For any induced posterior µ, the firm solves maxpEµ[D(p, θ)(p−C)]. By
state affinity, this can be written maxpD(p, Eµ[θ])(p− C) and so the firm’s choice depends
only on Eµ[θ]. We can thus write this choice as p(Eµ[θ]). The platform’s objective function is
then Eµ[D(p(Eµ[θ]); θ)]p(Eµ[θ]) = D(p(Eµ[θ]);Eµ[θ])p(Eµ[θ]), where the final equality again
follows from state affinity.

Proof of Proposition 1. I solve for the optimal information structure directly. Since f1, f2
are affine, they can be written as f1(p) = a1 + b1p, f2(p) = a2 + b2p. Now fix the posterior
expected state x. By assumptions 1 and 2, the solution to the firm’s problem is given by the
first-order condition:

(f ′
1(p) + xf ′

2(p))(p− C) + f1(p) + xf2(p) = 0

2(b1 + b2x)p = (b1 + b2x)C − (a1 + a2x)

p =
1

2

(
C − a1 + a2x

b1 + b2x

)
Note that b1 + b2x < 0 since demand is decreasing. Hence, for any posterior expectation x

the firm will choose price p(x) = 1
2

(
C − a1+a2x

b1+b2x

)
. This gives

R̃(x) = D(p(x);x)p(x)

= (a1 + a2x+ (b1 + b2x)p(x))p(x)

=
1

2
(a1 + a2x+ (b1 + b2x)C)p(x)

=
1

4

(
(b1 + b2x)C

2 − (a1 + a2x)
2

b1 + b2x

)

It is straightforward to verify that R̃(x) is convex. For instance, its second derivative is

−2(b1a2 − b2a1)
2

(b1 + b2x)3
≤ 0

where the inequality follows since b1 + b2x < 0. Moreover, it is generically strictly convex,
since the numerator is non-zero unless b1a2 = b2a1. It is then immediate from the definition
of a mean-preserving spread that full information is always an optimal information struc-
ture (since this corresponds with the most spread distribution of posterior means) and that
generically it is the uniquely optimal information structure.

Proof of Proposition 2. Suppose that the price is p and the state is θ. Then since demand
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is affine on [0, p̄] and 0 afterward consumer surplus is given by

CS =
1

2
(p̄− p)(D(p; θ) +D(p̄; θ))

which is just the area of the consumer surplus trapezoid.
Since the firm price depends only on the expected state, it is easy to see that a version

of lemma 1 still holds: for posterior beliefs µ, expected consumer surplus is given by

Eµ[CS] =
1

2
(p̄− p(Eµ[θ]))(D(p(Eµ[θ]);Eµ[θ]) +D(p̄;Eµ[θ]))

which depends only on the posterior mean. Therefore, consider expected consumer surplus
given posterior mean x, written CS(x):

CS(x) =
1

2
(p̄− p(x))(D(p(x);x) +D(p̄;x))

=
1

2

p̄D(p(x);x) + p̄D(p̄;x)︸ ︷︷ ︸
affine

−p(x)D(p̄;x)− p(x)D(p(x);x)︸ ︷︷ ︸
R̃(x)


For the other two terms, recall that p(x) = 1

2

(
C − a1+a2x

b1+b2x

)
. Hence,

p̄D(p(x);x) = p̄

(
(a1 + b1p(x)) + (a2 + b2p(x))x

)
= p̄

(
(a1 + a2x) +

1

2
(b1 + b2x)

(
C − a1 + a2x

b1 + b2x

))
=
p̄

2

(
(a1 + a2x) + (b1 + b2x)C

)
p(x)D(p̄;x) =

1

2

(
C − a1 + a2x

b1 + b2x

)(
(a1 + a2x) + (b1 + b2x)p̄

)
=

1

2

(
C

(
(a1 + a2x) + (b1 + b2x)p̄

)
− (a1 + a2x)p̄−

(a1 + a2x)
2

b1 + b2x

)
We can then see that the former term is also affine and the latter term has the same second
derivative as R̃(x). The terms with the same second derivative as R̃(x) enter with a negative,
and so CS(x) is therefore always concave, and generically it will be strictly concave. The
full result then follows from analogous logic to the proof of proposition 1.

Proof of Lemma 2. Note that firms face effective marginal cost C = c
ϕ
. So for state θ, firm

i has the standard Hotelling best response function

BRi(pj) = argmax
p

1

2
(p− C)(1 + θ(pj − p))

Hence, when facing uncertainty over θ in the form of believing θ ∼ µ, their best response
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function is

BRi(pj) = argmax
p

1

2
(p− C)(1 + Eµ[θ](pj − p))

These best response functions are of the same form as a standard Hotelling game with
strength of consumer preferences t = 1

Eµ[θ]
. Thus, the unique pure strategy equilibrium has

p1 = p2 = C + 1
Eµ[θ]

, as desired.

Proof of Proposition 3. The result follows immediately from the fact that 1
x
is strictly convex

for positive x.

Proof of Lemma 3. Fix a posterior distribution of beliefs µ. Consumers will face price p =
C + 1

Eµ[θ]
. Moreover, regardless of the realized state, consumers will always buy the closest

product. Hence, expected consumer surplus given posterior beliefs µ is

Eµ[CS] = Eµ

[
v − C − 1

Eµ[θ]
− 1

θ

(∫ 1/2

0

xdx+

∫ 1

1/2

xdx

)]

= v − C − 1

Eµ[θ]
− 1

4
Eµ

[
1

θ

]

Proof of Lemma 4. Recall that expected consumer welfare conditional on posterior belief µ̃ is
given by v−C− 1

Eµ̃[θ]
− 1

4
Eµ̃

[
1
θ

]
. By Jensen’s inequality, Eµ̃

[
1
θ

]
> 1

Eµ̃[θ]
except when µ̃ = δEµ̃[θ],

in which case the two are equal (recall that Θ ⊆ R>0). Now consider some distribution of
posteriors τ̃ that induces the distribution of posterior means µ and suppose it puts positive
weight on a non-degenerate distribution µ̃. From above we can see that expected consumer
surplus would be strictly increased by replacing µ̃ with the degenerate distribution δEµ̃[θ],
and moreover that by construction this does not change the induced distribution of posterior
means. By proceeding with transformations of this kind, we can transform τ̃ into τ since τ
is the unique distribution that induces the distribution of posterior means µ and only puts
positive weight on degenerate posteriors. As each transformation strictly increases expected
consumer welfare, the result follows.

Proof of Proposition 4. The result follows immediately from the fact that −1
x

is strictly con-
cave for positive x.
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B Robustness

(a) Collusion Level (b) Consumer Surplus

(c) Revenue (d) Firm 1 Price

Figure 7: Robustness

Notes: These figures plot the elasticity of each outcome to a change in a particular parameter, separately
for uninformative and informative recommendations. Panel (a) plots the elasticity of the collusion level,
panel (b) plots the elasticity of the average consumer surplus, panel (c) plots the elasticity of the average
revenue, and panel (d) plots the elasticity of the price for firm 1. Elasticities were computed by decreasing
each parameter 10% from its baseline value while holding the other parameters fixed.

30


