INEFFICIENT AUTOMATION

Martin Beraja (MIT)

Nathan Zorzi (Dartmouth)

October 2023

► Automation raises productivity but displaces workers and lowers their earnings

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ▶ No optimal policy results that take into account frictions faced by displaced workers

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ▶ No **optimal policy** results that take into account **frictions** faced by displaced workers
- ► Two literatures can justify taxing automation. Reallocation is frictionless or absent

Tax automation

Guerreiro et al 2017; Costinot-Werning 2018

- (i) Govt. has preference for redistribution
- (ii) Automation/reallocation are efficient

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ▶ No **optimal policy** results that take into account **frictions** faced by displaced workers
- ► Two literatures can justify taxing automation. Reallocation is frictionless or absent

Tax automation

Guerreiro et al 2017; Costinot-Werning 2018

- (i) Govt. has preference for redistribution
- (ii) Automation/reallocation are efficient

Tax capital (long-run)

Aiyagari 1995; Conesa et al. 2002

- (i) Improve efficiency in economies with IM
- (ii) Worker displacement/reallocation absent

- ► Automation raises productivity but displaces workers and lowers their earnings
- ► Increasing adoption has fueled an active policy debate (Atkison, 2019; Acemoglu et al, 2020)
- ▶ No optimal policy results that take into account frictions faced by displaced workers
- ► Two literatures can justify taxing automation. Reallocation is frictionless or absent

Tax automation

Tax capital (long-run)

Guerreiro et al 2017; Costinot-Werning 2018

Aiyagari 1995; Conesa et al. 2002

Take worker displacement seriously. How should we respond to automation?

- 1. Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008; Landais-Spinnewijn, 2021

- 1. Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008; Landais-Spinnewijn, 2021
- 2. Incorporate frictions in a model with endog. automation and heterogeneous agents

- 1. Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008; Landais-Spinnewijn, 2021
- 2. Incorporate frictions in a model with endog. automation and heterogeneous agents
- 3. Theory (second best): gov't can tax automation but lacks tools to alleviate frictions

- 1. Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008; Landais-Spinnewijn, 2021
- 2. Incorporate frictions in a model with endog. automation and heterogeneous agents
- 3. Theory (second best): gov't can tax automation but lacks tools to alleviate frictions
 - (i) Equilibrium is (generically) constrained inefficient and automation is excessive
 Firms do not internalize effect on workers' incomes + Disagreement → Pareto improv't

- 1. Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008; Landais-Spinnewijn, 2021
- 2. Incorporate frictions in a model with endog. automation and heterogeneous agents
- 3. Theory (second best): gov't can tax automation but lacks tools to alleviate frictions
 - (i) Equilibrium is (generically) constrained inefficient and automation is excessive Firms do not internalize effect on workers' incomes + Disagreement → Pareto improv't
 - (ii) Optimal to slown down automation automation on efficiency grounds

- 1. Recognize that displaced workers face two important frictions:
 - (i) Slow reallocation: workers face mobility barriers and may go through unempl./retraining Davis-Haltiwanger, 1999; Jacobson et al, 2005; Lee-Wolpin, 2006; Alvarez-Shimer, 2011
 - (ii) Imperfect credit markets: workers have limited ability to borrow against future incomes Jappelli et al, 2010; Chetty, 2008; Landais-Spinnewijn, 2021
- 2. Incorporate frictions in a model with endog. automation and heterogeneous agents
- 3. Theory (second best): gov't can tax automation but lacks tools to alleviate frictions
 - (i) Equilibrium is (generically) constrained inefficient and automation is excessive Firms do not internalize effect on workers' incomes + Disagreement → Pareto improv't
 - (ii) Optimal to slown down automation automation on efficiency grounds
- 4. Quantitative: gross flows + idiosync. risk \rightarrow Optimal speed of automation + welfare

OUTLINE

Environment

Laissez-Faire

Optimal Policy

Quantitative Analysis

Continuous time $t \ge 0$

Occupations

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha\right)\ ,\ \mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0\right)$$

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha\right)$$
 , $\mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0\right)$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Continuous time t > 0

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha\right)$$
 , $\mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0\right)$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

$$\partial_{\mathsf{A}}\mathsf{G}^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\pmb{\alpha}\right)\downarrow\mathsf{in}\;\pmb{\alpha}\;(\mathsf{labor-displacing})$$

$$G^{\star}\left(\mu^{A},\mu^{N};\alpha\right)$$
 concave in α (costly)

Continuous time $t \ge 0$

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha\right)\ \ \mathrm{,}\ \ \mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0\right)$$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

$$\partial_{\rm A} {\it G}^{\star} \left(\mu^{\rm A}, \mu^{\rm N}; {\it lpha}
ight) \downarrow {\it in} \; {\it lpha} \; ({\it labor-displacing})$$

$$G^{\star}\left(\mu^{A},\mu^{N};\alpha\right)$$
 concave in α (costly)

Profit maximization

$$\max_{\alpha\geq0}\int_{0}^{+\infty}Q_{t}\Pi_{t}\left(\alpha\right)dt$$

Continuous time t > 0

Occupations

$$h = A$$
 (degree $\alpha \ge 0$) or $h = N$

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha\right)\ \ \mathrm{,}\ \ \mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}\right)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0\right)$$

Final good producer

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

$$\partial_{\mathsf{A}}\mathsf{G}^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\pmb{\alpha}\right)\downarrow$$
 in $\pmb{\alpha}$ (labor-displacing)

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\underline{\alpha}\right)$$
 concave in α (costly)

Profit maximization

$$\max_{\alpha\geq0}\int_{0}^{+\infty}Q_{t}\Pi_{t}\left(\alpha\right)dt$$

$$\Pi_{t}\left(\alpha\right) \equiv \max_{\mu^{A},\mu^{N} \geq 0} G^{\star}\left(\mu^{A},\mu^{N};\alpha\right) - \mu^{A}W_{t}^{A} - \mu^{N}W_{t}^{N}$$

► Example based on Acemoglu-Restrepo (2018)

- ► Example based on Acemoglu-Restrepo (2018)
- ightharpoonup Occupations h = A or h = N. Technologies:

$$y^A = \varphi \alpha + \mu^A$$
 and $y^N = \mu^N$

- ► Example based on Acemoglu-Restrepo (2018)
- ightharpoonup Occupations h = A or h = N. Technologies:

$$y^{A} = \varphi \alpha + \mu^{A}$$
 and $y^{N} = \mu^{N}$

► Aggregate production function:

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right) = \left[\left(\varphi\alpha + \mu^{\mathsf{A}}\right)^{\frac{\nu-1}{\nu}} + \left(\mu^{\mathsf{N}}\right)^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}} - \delta\alpha,$$

- ► Example based on Acemoglu-Restrepo (2018)
- ightharpoonup Occupations h = A or h = N. Technologies:

$$y^A = \varphi \alpha + \mu^A$$
 and $y^N = \mu^N$

► Aggregate production function:

$$G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\alpha\right) = \left[\left(\varphi\alpha + \mu^{\mathsf{A}}\right)^{\frac{\nu-1}{\nu}} + \left(\mu^{\mathsf{N}}\right)^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}} - \delta\alpha,$$

where δ is the marginal cost of automation.

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{t}^{A}, \mu_{t}^{N}\right) egin{cases} = 1/2 & \text{in } t=0 \ \\ \text{Reallocation afterwards} \end{cases}$$

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{t}^{A},\mu_{t}^{N}\right) egin{cases} = 1/2 & ext{in } t=0 \ & ext{Reallocation} & ext{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$(\mu_t^A, \mu_t^N) egin{cases} = 1/2 & ext{in } t = 0 \ \\ ext{Reallocation} & ext{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

Two frictions

1. Reallocation (neoclassical)

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_t^{\mathsf{A}}, \mu_t^{\mathsf{N}}\right) egin{cases} = 1/2 & \text{in } t = 0 \ \\ \mathsf{Reallocation} & \mathsf{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

Two frictions

- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{\mathsf{t}}^{\mathsf{A}},\mu_{\mathsf{t}}^{\mathsf{N}}\right) egin{cases} = 1/2 & \text{in } t=0 \ \\ \mathsf{Reallocation} & \mathsf{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

Two frictions

- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ
 - Unempl. / retrain. exit at rate κ

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$(\mu_t^A, \mu_t^N)$$

$$\begin{cases} = 1/2 & \text{in } t = 0 \\ \text{Reallocation} & \text{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

Two frictions

- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ
 - Unempl. / retrain. exit at rate κ
 - Productivity loss heta

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$(\mu_t^A, \mu_t^N)$$

$$\begin{cases} = 1/2 & \text{in } t = 0 \\ \text{Reallocation} & \text{afterwards} \end{cases}$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h \right] dt$$

Two frictions

- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ
 - Unempl. / retrain. exit at rate κ
 - Productivity loss θ

2. Borrowing

$$a_t^h \ge \underline{a}$$
 for some $\underline{a} \le 0$

EQUILIBRIUM

► Resource constraint:

$$\frac{1}{2} \sum_{h} c_{t}^{h} = G^{\star} \left(\mu_{t}^{A}, \mu_{t}^{N}; \boldsymbol{\alpha} \right)$$

EQUILIBRIUM

► Resource constraint:

$$\frac{1}{2} \sum_{h} c_{t}^{h} = G^{\star} \left(\boldsymbol{\mu}_{t}^{\mathsf{A}}, \boldsymbol{\mu}_{t}^{\mathsf{N}}; \boldsymbol{\alpha} \right)$$

► Labor markets:

$$w_t^h = G_h\left(\mu_t^A, \mu_t^N; \alpha\right)$$
 for each $h = A, N$

EQUILIBRIUM

Resource constraint:

$$\frac{1}{2} \sum_{h} c_{t}^{h} = G^{\star} \left(\mu_{t}^{\mathsf{A}}, \mu_{t}^{\mathsf{N}}; \boldsymbol{\alpha} \right)$$

► Labor markets:

$$w_t^h = G_h\left(\mu_t^A, \mu_t^N; \alpha\right)$$
 for each $h = A, N$

► No arbitrage:

$$Q_t = \exp\left(-\int_0^t r_s ds\right)$$

EQUILIBRIUM

Resource constraint:

$$\frac{1}{2} \sum_{h} c_{t}^{h} = G^{\star} \left(\boldsymbol{\mu_{t}^{A}}, \boldsymbol{\mu_{t}^{N}}; \boldsymbol{\alpha} \right)$$

► Labor markets:

$$w_t^h = G_h\left(\mu_t^A, \mu_t^N; \alpha\right)$$
 for each $h = A, N$

► No arbitrage:

$$Q_t = \exp\left(-\int_0^t r_s ds\right)$$

► All agents act competitively.

OUTLINE

Environment

Laissez-Faire

Optimal Policy

Quantitative Analysis

LAISSEZ-FAIRE: REALLOCATION

► Wages $w_t^A < w_t^N$ due to automation

LAISSEZ-FAIRE: REALLOCATION

- ► Wages $w_t^A < w_t^N$ due to automation
- ▶ Reallocation from $h = A \rightsquigarrow h = N$

LAISSEZ-FAIRE: REALLOCATION

- ► Wages $w_t^A < w_t^N$ due to automation
- ightharpoonup Reallocation from $h = A \rightsquigarrow h = N$
- ► Stop reallocating at *T*^{LF}

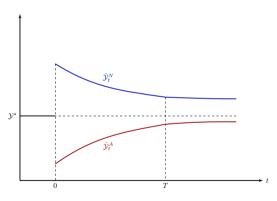
$$\int_{T^{LF}}^{+\infty} e^{-\rho t} u'\left(c_t^{A}\right) \Delta_t dt = 0$$

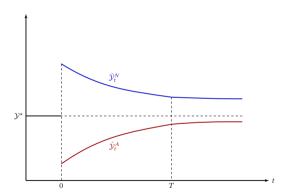
where

$$\Delta_t \equiv \underbrace{(1- heta)\left(1-e^{-\kappa\left(t-T^{LF}
ight)}
ight)}_{ ext{Prod. loss + unemp}} \underbrace{w_t^N - w_t^A}_{ ext{v}}$$

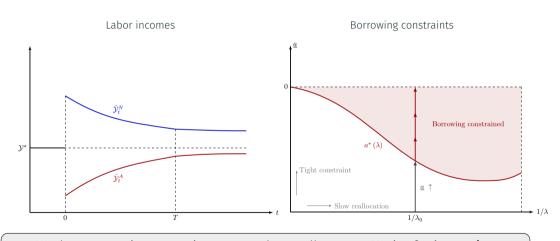
denotes the output gains from reallocation

Laissez-faire: Binding Borrowing constraints

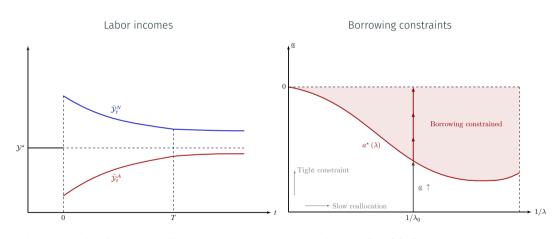




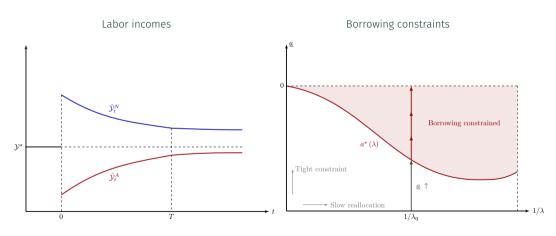
Workers expect income to improve as they reallocate \rightarrow Motive for borrowing



Workers expect income to improve as they reallocate \rightarrow Motive for borrowing



Two benchmarks: instant realloc. (Costinot-Werning) or no borrowing frictions (Guerreiro et al)



Evidence: Earnings losses (Jacobson et al, Braxton-Taska) + Imperf. cons. smoothing (Landais-Spinnewijn)

LAISSEZ-FAIRE: AUTOMATION

▶ Firm automation choice α^{LF} : trades off cost $C(\alpha)$ with increase in output

LAISSEZ-FAIRE: AUTOMATION

- Firm automation choice α^{LF} : trades off cost $C(\alpha)$ with increase in output
- Optimality condition

$$\int_0^{+\infty} Q_t \Delta_t^{\star} dt = 0$$

where

$$\Delta_t^{\star} \equiv \frac{\partial}{\partial \alpha} \mathsf{G}^{\star} \left(\mu_t^{\mathsf{A}}, \mu_t^{\mathsf{N}}; \mathbf{\alpha}^{\mathsf{LF}} \right)$$

denotes the output gains (net of cost) from automation, and

$$Q_{t} = \exp\left(-\int_{0}^{t} r_{s} ds\right) = \exp\left(-\rho t\right) \frac{u'\left(c_{t}^{N}\right)}{u'\left(c_{0}^{N}\right)}$$

since non-automated workers are unconstrained (savers).

OUTLINE

Environment

Laissez-Faire

Optimal Policy

Quantitative Analysis

How should a government respond to automation?

How should a government respond to automation?

► Depends on the **tools** available

How should a government respond to automation?

- ► Depends on the **tools** available
- ► First best tools: lump sum transfers (directed, UBI)

Info requirements? Fiscal cost? (Guerreiro et al., 2017; Costinot-Werning, 2018, Guner et al., 2021)

How should a government respond to automation?

- ► Depends on the **tools** available
- ► Second best tools: tax automation + active labor market interventions

E.g., South Korea's reduction in automation tax credit in manuf; Geneva's tax on automated cashiers. Severance or higher payroll tax after layoffs from automation, as for other qualifying layoffs in the US?

How should a government respond to automation?

- ► Depends on the **tools** available
- ► Second best tools: tax automation + active labor market interventions

 E.g., South Korea's reduction in automation tax credit in manuf; Geneva's tax on automated cashiers.

 Severance or higher payroll tax after layoffs from automation, as for other qualifying layoffs in the US?
- ▶ Primal problem: The government maximizes the social welfare function

$$\mathcal{U} \equiv \sum_{h} \eta^{h} \int_{0}^{+\infty} \exp(-\rho t) u\left(c_{t}^{h}\right) dt$$

by choosing $\{\alpha, T, \mu_t^A, \mu_t^N, c_t^A, c_t^N\}$ subject to workers choosing consumption optimally, the law of motion of labor, firms choosing labor optimally, and market clearing.

 \blacktriangleright Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}} \times \left(\hat{c}_{t}^{N,\star} + \bar{c}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\hat{c}_{t}^{A,\star} + \bar{c}^{A,\star}\right) dt$$

where $\hat{c}_t^{h,\star}$ are time-varying terms (zero PDV) and $\bar{c}^{A,\star} + \bar{c}^{N,\star} = 0$ are distributional.

 \blacktriangleright Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\int_{0}^{t} r_{s} ds\right)} \times \left(\hat{c}_{t}^{N} + \bar{c}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\hat{c}_{t}^{A} + \bar{c}^{A,\star}\right) dt$$

where $\hat{c}_t^{h,\star}$ are time-varying terms (zero PDV) and $\bar{c}^{A,\star} + \bar{c}^{N,\star} = 0$ are distributional.

No borrowing constraints $\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} = \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Efficiency (only distributional terms)}$

 \blacktriangleright Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}} \times \left(\hat{c}_{t}^{N} + \bar{c}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\hat{c}_{t}^{A} + \bar{c}^{A,\star}\right) dt$$

where $\hat{c}_t^{h,\star}$ are time-varying terms (zero PDV) and $\bar{c}^{A,\star} + \bar{c}^{N,\star} = 0$ are distributional.

- No borrowing constraints $\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} = \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Efficiency (only distributional terms)}$
- ▶ There is still an **equity** rationale since $u'(c_t^N) < u'(c_t^A)$, e.g., utilitarian weights.

 \blacktriangleright Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}} \times \left(\hat{c}_{t}^{N,\star} + \bar{c}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\hat{c}_{t}^{A,\star} + \bar{c}^{A,\star}\right) dt$$

where $\hat{c}_t^{h,\star}$ are time-varying terms (zero PDV) and $\bar{c}^{A,\star} + \bar{c}^{N,\star} = 0$ are distributional.

► Borrowing constraints
$$\rightarrow \frac{u'(c_t^N)}{u'(c_0^N)} > \frac{u'(c_t^A)}{u'(c_0^A)} \rightarrow \text{Inefficiency } (\delta \mathcal{U}/\delta \alpha \neq 0)$$

ightharpoonup Consider a perturbation $\delta \alpha$ starting from the laissez-faire. Welfare change

$$\frac{\delta \mathcal{U}}{\delta \alpha} = \eta^{N} u' \left(c_{0}^{N}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{N}\right)}{u' \left(c_{0}^{N}\right)}}_{=\exp\left(-\int_{0}^{t} r_{s} ds\right)} \times \left(\hat{c}_{t}^{N,\star} + \bar{c}^{N,\star}\right) dt$$

$$+ \eta^{A} u' \left(c_{0}^{A}\right) \times \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) \frac{u' \left(c_{t}^{A}\right)}{u' \left(c_{0}^{A}\right)}}_{\text{How automated workers value flows}} \times \left(\hat{c}_{t}^{A,\star} + \bar{c}^{A,\star}\right) dt$$

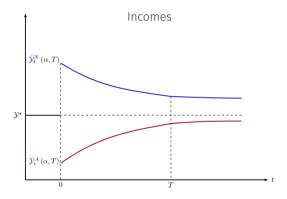
where $\hat{c}_t^{h,\star}$ are time-varying terms (zero PDV) and $\bar{c}^{A,\star} + \bar{c}^{N,\star} = 0$ are distributional.

► Borrowing constraints
$$\rightarrow \frac{u'(c_t^N)}{u'(c_t^N)} > \frac{u'(c_t^N)}{u'(c_t^N)} \rightarrow \text{Inefficiency } (\delta \mathcal{U}/\delta \alpha \neq 0)$$

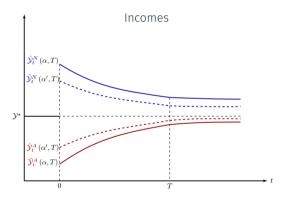
Firms do not fully internalize how automation affects incomes. Source of ineff. if firms (or N workers) and A workers disagree on how they value income over time.

Proposition. (Constrained inefficiency)

Proposition. (Constrained inefficiency)

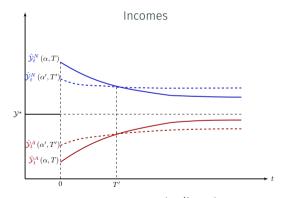


Proposition. (Constrained inefficiency)



Taxing automation $\delta \alpha < 0$ benefits **A** but hurts **N** workers

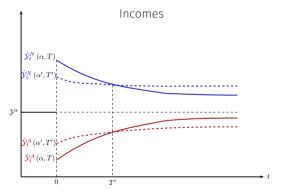
Proposition. (Constrained inefficiency)



Can compensate N workers ($\delta U^N = 0$) with $\delta T < 0$

Proposition. (Constrained inefficiency)

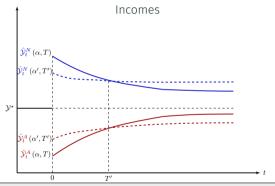
Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.



A workers are hurt more by losses early on. Policy alleviates those $(\delta U^{\rm A}>0)$

Proposition. (Constrained inefficiency)

Generically, there exists $\{\delta\alpha, \delta T\}$ such that $\delta U^A > 0$ and $\delta U^N = 0$. This requires $\delta\alpha < 0$.



Taxing automation raises income of displaced worker early on during the transition precisely when they value it more.

▶ Optimal intervention depends on how the government values efficiency vs. equity.

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- ightharpoonup Optimality condition wrt α

$$\partial_{\alpha}\mathcal{U} = \underbrace{\sum_{h} \eta^{h} \int_{0}^{+\infty} \exp\left(-\rho t\right) u'\left(c_{t}^{h}\right) \times \hat{c}_{t}^{h,\star} dt}_{\text{Taxing } \alpha \text{ on efficiency grounds}} + \underbrace{\sum_{h} \eta^{h} \int_{0}^{+\infty} \exp\left(-\rho t\right) u'\left(c_{t}^{h}\right) dt \times \bar{c}^{h,\star}}_{\text{Taxing } \alpha \text{ on equity grounds}}$$

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- ightharpoonup Optimality condition wrt lpha

$$\partial_{\alpha}\mathcal{U} = \underbrace{\sum_{h} \eta^{h, \text{effic}} \int_{0}^{+\infty} \exp\left(-\rho t\right) u'\left(c_{t}^{h}\right) \times \hat{c}_{t}^{h, \star} dt}_{\text{Taxing } \alpha \text{ on efficiency grounds}} + \underbrace{\sum_{h} \eta^{h} \int_{0}^{+\infty} \exp\left(-\rho t\right) u'\left(c_{t}^{h}\right) dt \times \overline{c}^{h, \star}}_{\text{Taxing } \alpha \text{ on equity grounds}}$$

No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- ightharpoonup Optimality condition wrt lpha

$$\partial_{\alpha}\mathcal{U} = \underbrace{\sum_{h} \eta^{h, \text{effic}} \int_{0}^{+\infty} \exp\left(-\rho t\right) u'\left(c_{t}^{h}\right) \times \hat{c}_{t}^{h, \star} dt}_{\text{Taxing } \alpha \text{ on efficiency grounds}} + \underbrace{\sum_{h} \eta^{h} \int_{0}^{+\infty} \exp\left(-\rho t\right) u'\left(c_{t}^{h}\right) dt \times \bar{c}^{h, \star}}_{\text{Taxing } \alpha \text{ on equity grounds}}$$

No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- ightharpoonup Optimality condition wrt lpha

$$\partial_{\alpha}\mathcal{U} = \underbrace{\eta^{\text{A,effic}} \int_{0}^{+\infty} \exp\left(-\rho t\right) u'\left(c_{t}^{\text{A}}\right) \times \hat{c}_{t}^{\text{A,*}} dt}_{\text{Taxing } \alpha \text{ on efficiency grounds}}$$

No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- \blacktriangleright Optimality condition wrt α . Negative when evaluated at laissez-faire

$$\partial_{\alpha}\mathcal{U} = \eta^{\text{A,effic}} \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) u'\left(c_{t}^{\text{A}}\right)}_{< u'\left(c_{0}^{\text{A}}\right) \exp\left(-\int_{0}^{t} r_{\text{S}} ds\right)} \times \underbrace{\hat{c}_{t}^{\text{A},\star}}_{< 0 \text{ early on, } > 0 \text{ later}} dt < 0$$

No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")

Proposition. (Taxing automation on efficiency grounds)

A government using efficiency weights $\{\eta^{h,\text{effic}}\}$ finds it optimal to tax automation.

OPTIMAL POLICY INTERVENTION

- ▶ Optimal intervention depends on how the government values efficiency vs. equity.
- \blacktriangleright Optimality condition wrt α . Negative when evaluated at laissez-faire

$$\partial_{\alpha}\mathcal{U} = \eta^{\text{A,effic}} \int_{0}^{+\infty} \underbrace{\exp\left(-\rho t\right) u'\left(c_{t}^{\text{A}}\right)}_{< u'\left(c_{0}^{\text{A}}\right) \exp\left(-\int_{0}^{t} r_{\text{S}} ds\right)} \times \underbrace{\hat{c}_{t}^{\text{A},\star}}_{< 0 \text{ early on, } > 0 \text{ later}} dt < 0$$

No pref. for equity: The government uses efficiency weights $\{\eta^{h,\text{effic}}\}$ Gov't does not distort an efficient allocation to improve equity (think "inverse marginal utility weights")

Proposition. (Taxing automation on efficiency grounds)

A government using efficiency weights $\{\eta^{h, {\rm effic}}\}$ finds it optimal to tax automation.

▶ Pref. for equity: Government taxes even more with utilitarian weights

► Tax capital → might improve insurance or prevent capital overaccumulation (Aiyagari, 1995; Conesa et al., 2009; Dávila et al., 2021)

- ► Tax capital → might improve insurance or prevent capital overaccumulation (Aiyagari, 1995; Conesa et al., 2009; Dávila et al., 2021)
- ► This paper: different rationale for taxing automation

- ► Tax capital → might improve insurance or prevent capital overaccumulation (Aiyagari, 1995; Conesa et al., 2009; Dávila et al., 2021)
- ► This paper: different rationale for taxing automation
 - 1. Does not rely on **uninsured income risk**
 - Slow down automation only while workers reallocate and are borrowing constrained.
 No tax in the long-run.

- ► Tax capital → might improve insurance or prevent capital overaccumulation (Aiyagari, 1995; Conesa et al., 2009; Dávila et al., 2021)
- ► This paper: different rationale for taxing automation
 - 1. Does not rely on uninsured income risk
 - Slow down automation only while workers reallocate and are borrowing constrained.
 No tax in the long-run.
- ► To clarify 2., add important features over long horizons: gradual automation + OLG

$$\underbrace{d\alpha_t = (\mathbf{X}_t - \delta\alpha_t)\,dt}_{\text{Law of motion}}; \qquad \underbrace{Y_t = G^*\left(\boldsymbol{\mu}_t; \alpha_t\right) - q_t \mathbf{X}_t}_{\text{Output net of investment cost}}$$

- ► Tax capital → might improve insurance or prevent capital overaccumulation (Aiyagari, 1995; Conesa et al., 2009; Dávila et al., 2021)
- ► This paper: different rationale for taxing automation
 - 1. Does not rely on uninsured income risk
 - Slow down automation only while workers reallocate and are borrowing constrained.
 No tax in the long-run.
- ► To clarify 2., add important features over long horizons: gradual automation + OLG

$$\underbrace{d\alpha_t = (x_t - \delta\alpha_t) dt}_{\text{Law of motion}}; \qquad \underbrace{Y_t = G^* (\mu_t; \alpha_t) - q_t x_t}_{\text{Output net of investment cost}}$$

▶ Workers have identical MRS and MU in the long-run $\implies \alpha_t^{\rm LF}/\alpha_t^{\rm FB} \to 1$ as $t \to +\infty$ No efficiency nor equity rationale for intervention

OUTLINE

Environment

Laissez-Faire

Optimal Policy

Quantitative Analysis

QUANTITATIVE MODEL

Firm

Production – Acemoglu-Restrepo

$$y_t^A = A^A \left(\alpha + \mu^A\right)^{1-\eta}$$
 and $y_t^N = A^N \left(\mu^N\right)^{1-\eta}$

$$Y = \left[\phi\left(y_t^A\right)^{\frac{\nu-1}{\nu}} + (1-\phi)\left(y_t^N\right)^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}$$

Investment – Guerreiro et al

Law of motion:
$$d\alpha_t = (x_t - \delta \alpha_t) dt$$
; $\alpha_0 = 0$

Cost p/unit:
$$q_t = q^{fin} + \exp(-\psi t) \left(q^{init} - q^{fin}\right)$$

OUANTITATIVE MODEL

Firm

Production – Acemoglu-Restrepo

$$y_t^A = A^A \left(\alpha + \mu^A\right)^{1-\eta}$$
 and $y_t^N = A^N \left(\mu^N\right)^{1-\eta}$

$$Y = \left[\phi\left(y_t^A\right)^{\frac{\nu-1}{\nu}} + (1-\phi)\left(y_t^N\right)^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}$$

Investment – Guerreiro et al

Law of motion: $d\alpha_t = (x_t - \delta \alpha_t) dt$; $\alpha_0 = 0$

Cost p/unit:
$$q_t = q^{fin} + \exp(-\psi t) \left(q^{init} - q^{fin}\right)$$

Workers

gross flows - Kambourov-Manovskii

$$S_{t}(\mathbf{x}) = \frac{(1 - \phi) \exp\left(\frac{V_{t}^{N}(\mathbf{x}'(N;\mathbf{x}))}{\gamma}\right)}{\sum_{h'} \phi^{h'} \exp\left(\frac{V_{t}^{h'}(\mathbf{x}'(h';\mathbf{x}))}{\gamma}\right)}$$

uninsured risk - Huggett-Aivagari

$$\mathcal{Y}_{t}^{labor}\left(\mathbf{x}\right)=\xi\exp\left(\mathbf{z}\right)\mathbf{W}_{t}^{h}$$

$$dz_t = -\rho_z z_t dt + \sigma_z dW_t$$

$$\xi_t = (1 - \theta) \, \xi_{t,-}$$
 if move; Replacement rate b $\mathcal{Y}_t^{\text{net}} \left(\mathbf{x} \right) = \mathcal{T} \left(\mathcal{Y}_t^{\text{labor}} \left(\mathbf{x} \right) + \exp \left(\mathbf{z} \right) \Pi_t^{\text{div}} \right)$ 15

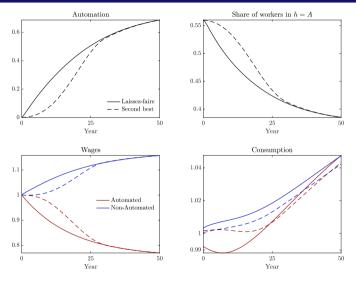
CALIBRATION

- ► Initial stationary eq (no automation) = year 1980. A occupations = Routine-intensive
- ► Mix of external (15 param.) and internal (8 param.) calibration

Table 1: Internal Calibration

Parameter	Description	Calibration	Target / Source
ρ	Discount rate	0.04	2% real interest rate
λ	Mobility hazard	0.364	Gross mobility 1980 (10%)
γ	Fréchet parameter	0.036	Elasticity of labor supply (1)
A^A, A^N	Productivities	0.719, 1.710	$Y_0 = 1$, symm. wages
ϕ	Share of automated occupations	0.537	Routine empl. share 1980 (55%)
q^{fin}	Final cost of autom.	5.621	Log wage gap (0.45) in Cortes et al (2016)
ψ	Cost convergence rate	0.054	Half-life of wage gap (15 yrs) in Cortes et al (2016)

ALLOCATIONS



Half-life of automation: 16 years at LF v. 22 years at SB

Welfare Gains From Slowing Down Automation

	Benchmark	Less liquidity	Less reallocation	More complements
Automated	0.80%	0.91%	0.93%	0.78%
Non-autom.	-0.19%	-0.22%	-0.35%	-0.21%
New gener.	-0.08%	-0.11%	-0.10%	-0.08%
Total	0.20%	0.24%	0.20%	0.19%

Note: 'Less liquidity' and 'Less reallocation' denote alternative calibrations where we target a ratio of liquidity to GDP of 0.35 (instead of 0.5) and a separation rate of 7.2% (instead of 10%), respectively. 'More complements' denotes an alternative calibration where the elasticity of substitution across occupations is 0.76 (instead of 0.9).

Welfare Gains From Slowing Down Automation

	Benchmark	Less liquidity	Less reallocation	More complements
Automated	0.80%	0.91%	0.93%	0.78%
Non-autom.	-0.19%	-0.22%	-0.35%	-0.21%
New gener.	-0.08%	-0.11%	-0.10%	-0.08%
Total	0.20%	0.24%	0.20%	0.19%

Note: 'Less liquidity' and 'Less reallocation' denote alternative calibrations where we target a ratio of liquidity to GDP of 0.35 (instead of 0.5) and a separation rate of 7.2% (instead of 10%), respectively. 'More complements' denotes an alternative calibration where the elasticity of substitution across occupations is 0.76 (instead of 0.9).

Wage supplements: Second best is *as if* the gov't gave \$19,126 to each *A* worker, and taxed \$4,622 each *N* worker in PDV. Total fiscal cost: 1.1 trn.

TAKEAWAYS

► Two novel results in economies where automation displaces workers, and these workers face reallocation and borrowing frictions

TAKEAWAYS

- ► Two novel results in economies where automation displaces workers, and these workers face reallocation and borrowing frictions
 - Automation is inefficient when frictions are sufficiently severe
 Firms do not internalize effect on displaced workers who are borrowing constrained
 - 2. Optimal to slow down automation while workers reallocate, but not tax it in the long-run Raise income of displaced workers when they value it more

TAKEAWAYS

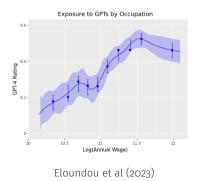
- ► Two novel results in economies where automation displaces workers, and these workers face reallocation and borrowing frictions
 - Automation is inefficient when frictions are sufficiently severe
 Firms do not internalize effect on displaced workers who are borrowing constrained
 - 2. Optimal to slow down automation while workers reallocate, but not tax it in the long-run Raise income of displaced workers when they value it more
- ▶ Quant: Meaningful **efficiency** and **welfare gains** from slowing down automation

ARE THE RATIONALES FOR SLOWING DOWN AI AS STRONG AS THEY WERE FOR ROBOTS?

Al (GENERATIVE, LLMS) \neq ROBOTS

- ► Equity rationale seems much weaker for AI than it was for robots
 - ► Robots automate routine, low-to-middle-wage jobs (car manuf)
 - ► AI (likely) automates cognitive, middle-to high-wage jobs (lawyers, journos, soft devs)

Task disp on automation-dri



(logarithmic scale, 2008 dollars)

Acemoglu and Restrepo (2022)

B. Task displacement across the wage distribution, 1980-2016

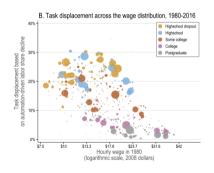
Highschool dropout

Some college
 College
 Postgraduate

Al (GENERATIVE, LLMS) \neq ROBOTS

- ► Efficiency rationale seems much weaker too
 - ► Lawyers, journos, and soft devs not the first that come to mind as "financially vulnerable"
 - ► Call centers? College debt?

Eloundou et al (2023)

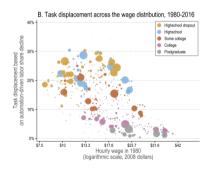


Acemoglu and Restrepo (2022)

Al (GENERATIVE, LLMS) \neq ROBOTS

- ► Efficiency rationale seems much weaker too
 - ► Lawyers, journos, and soft devs not the first that come to mind as "financially vulnerable"
 - ► Call centers? College debt?
- ▶ Weaker rationale for **slowing down AI** due to job automation. AI **alignment** concerns?

Eloundou et al (2023)



Acemoglu and Restrepo (2022)

EXTENSION: NO ACTIVE LABOR MARKET INTERVENTION

- ► Active labor market interventions might not be available (Heckman et al., Card et al.)
- ▶ Gov't now internalizes indirect effect of automation due to reallocation $T'(\alpha) > 0$

$$T'\left(\alpha\right) \times \frac{1}{2}\lambda \exp\left(-\lambda T\right) \times \int_{T\left(\alpha\right)}^{+\infty} \exp\left(-\rho t\right) \left\{\eta^{N} u'\left(c_{t}^{N}\right) - \eta^{A} u'\left(c_{t}^{A}\right)\right\} \times \partial_{T} c_{t}^{N} dt$$

- ► Can reinforce or dampen incentives to tax automation, depending on Pareto weights.
- lacktrian Utilitarian o tax less. Efficiency weights o tax more.

OPTIMAL TAXES

